

© Xephon plc 2003

November 2003

53

In this issue

MQ

3 Fine-tuning WMQI performance
6 Error event processing in a

WMQI Broker domain
14 Using WMQ in J2EE: part two –

JMS and the WAS
27 MQMON
39 Auditing remote administration

of WMQ
48 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2003. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher. Copying permits are available from Xephon in the form of
pressure-sensitive labels, for application to individual copies. A pack of 240 labels costs $36 (£24),
giving a cost per copy of 15 cents (10 pence). To order, contact Xephon at any of the addresses
above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office
Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Editor
Madeleine Hudson
E-mail: MadeleineH@xephon.com

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £100 ($160) per 1000 words and £50
($80) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £20 ($32) per 100
lines. To find out more about contributing an
article, without any obligation, please
download a copy of our Notes for
Contributors from www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Fine-tuning WMQI performance

Organizations will always strive to maximize the performance of an
application and this is particularly important where WMQI
(WebSphere MQ Integrator) is concerned. Many WMQI
implementations use the ‘hub and spoke’ type of architecture,
where the WMQI server forms the hub and all other applications
within the organization form the spokes. As a hub, processing
many different types of message from different applications,
WMQI becomes a single point for the provision of transformation
and routing capabilities. Ensuring that WMQI provides maximum
performance is, therefore, a key deliverable.
The performance of a WMQI implementation is dependent not only
on the hardware capabilities but also on the solution architecture,
which is key to getting the most out of the available resources. To
illustrate these points I will discuss a specific customer
implementation.
For this particular project at a customer’s site we had one source
application, which initiated XML messages that needed to be
routed to seven other applications in flat file format specific to
those applications. There were three different types of message
from the source application. For this requirement the architecture
comprised one main flow that could route the messages to other
flows, depending on the type of message (see Figure 1).
The main flow was similar to that of a traffic director, routing the
messages to relevant flows, which in turn processed the messages
and routed the data to the relevant target application in the
required flat file format. All the queues used by the message flows
were kept persistent since the messages contained important
data that we could not afford to lose.
This architecture gave us flexibility because each target application
had its own flow and would process the messages independent of
other flows. Each flow had a different processing logic since each
target application required different data. For example, one of the
target applications was SAP, which required ‘Bill of Materials’

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 4

data. The message flow for processing SAP data was fairly
complex. Another target application was a training management
system. The message flow for processing training-related data
was fairly straightforward and, as a result, training-related flows
were able to process messages at a faster rate than the SAP
flows. This architecture maintained the independence of each
flow, allowing messages to be processed at different rates.
The architecture worked well and for messages from the source
application of up to 800KB it gave a message-processing rate of
7.63 messages/minute during stress testing. This was the
processing rate for the slowest of the seven message flows.
All the testing was done with two Sun Solaris 8 boxes with a 2GB
RAM Broker with a DB2 database. But as the messages from the
source application increased in size the message-processing
rate decreased. For messages of between 800 KB and 2MB the
same setup gave a processing rate of 5.56 messages/minute for
the slowest message flow. This was expected because larger
messages require more time for parsing and looping the processing
logic but it created a problem with disk space.

Target 1

Target 2

Target 3

Target 4

Target 5

Target 6

Target 7

Source Main flow!!!!! !!!!!

!!!!! !!!!! Flow 1

Flow 2

Flow 3

Flow 4

Flow 5

Flow 6

Flow 7

!!!!!

!!!!! !!!!! !!!!!

!!!!! !!!!! !!!!!

!!!!! !!!!! !!!!!

!!!!! !!!!! !!!!!

!!!!! !!!!! !!!!!

!!!!! !!!!! !!!!!

Figure 1: Message flow architecture

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

The disk space for persistent logs filled up quite quickly. The main
flow would get one copy of a message from the source application
and send four copies of the same message to other flows on their
input queues. Since all the queues were persistent all these
messages are written to logs, thereby eating up the log space at
a faster rate. At one point, message processing stopped completely
because there was no disk space left to which to write the logs.
Increasing the space allocated for logs was one solution but
changing the architecture presented a possible alternative.
The main problem with the original architecture was that it used a
greater number of message flows and, as a result, there were
many persistent queues. Memory requirements, as well as those
of disk space, are increased with this type of architecture.
We devised another architecture with only one message flow to
process all the messages. We designated all seven target
application flows as subflows in WMQI, which were then included
in the main flow so we had one flow that did everything. This meant
that instead of eight flows with their eight persistent input queues
we had just one flow and one input queue.
This architecture produced significant improvements in
performance. It gave a message-processing rate of 11.75
messages/minute for messages of up to 800KB and a rate of 8.37
messages/minute for the larger 2MB messages. In other words
there was a performance improvement of about 50% over the
previous solution.
The second architecture is better in terms of performance but it
has a disadvantage in that all the target applications are dependent
on a single flow, which becomes a single point of failure. If there
is a problem with that flow all the target applications are deprived
of the information they are supposed to receive. Each target
application needs a different set of data; the processing logic is
complex for some and for others it is straightforward but with only
one flow all the target applications will receive the messages at the
same rate, which is that of the slowest flow.
Each solution architecture has its own advantages and

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 6

disadvantages. The ultimate choice of the solution depends on
what the business side of the application really needs. In this case
the business people wanted to have independence for all the
applications so we decided to go with the first architecture even
though it was costly in terms of the system resources required.
To summarize, the following points will help in achieving maximum
performance from your WMQI solutions.
• Use as few persistent queues as you can get away with.
• Try to make message flows generic so that they can be used

as subflows.
• One complex message flow is more efficient than having a

number of message flows utilizing the same logic.
• Wherever possible, use smaller messages in WMQI. Memory

requirements increase significantly as the message size
increases beyond 4 MB.

• Try to use the Message-ID/Correlation-ID fields in message
headers to identify messages. Populating these fields well
help in identifying messages from various applications on
queues, which will reduce the number of queues required.

Kiran Kanetkar
G4 Technologies (USA) © Xephon 2003

Error event processing in a WMQI Broker domain

WMQI Broker is IBM’s product for processing WMQ messages.
The processing is done by message flows that run in execution
groups. A set of execution groups belongs to a broker. Brokers can
work together in a broker network known as a broker domain. Each
broker domain is managed by one WMQI Broker Configuration
Manager.
Error detection in broker message flows is carried out by the

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

broker. Errors during message processing are handled either via
return codes (eg for database operations) or exceptions. If a
return code during message flow processing is not expected the
message flow can throw such an exception. If the exception is not
handled by the message flow itself it can be reported to the system
log of the operation system on which the broker is running.
Depending on the operating system this system log can be a
console, the syslog, or the event viewer. The captured problem
information can then be viewed at the system log by the owner of
the broker or of the message flow. There is no way in WMQI Broker
to access the problem description available in the various system
logs centrally, eg at the Configuration Manager.

Figure 1: Monitoring problems in a broker network

123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012

OperatorOperator

123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012

OperatorOperator

Figure 2: Monitoring problems in a WBI for FN broker network

123456789012
123456789012
123456789012

123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012

123456789012
123456789012
123456789012
123456789012

Operator

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 8

When running one or two brokers this problem reporting is
sufficient. In a domain containing many brokers an operator would
need to monitor each broker’s system log on different computers,
as shown in Figure 1.
If these brokers run on different platforms the operator must be
familiar with the handling of different system logs. To avoid this,
error detection should be possible from any one machine within
the network, as shown in Figure 2. This article describes a
mechanism to achieve this. The mechanism is implemented in
WebSphere Business Integration for Financial Networks (WBI for
FN), a set of products that extends WMQI Broker. The base
product provides common functionality, such as event handling
and dynamic configuration for message flows or auditing.
Extensions to the base product can be delivered by IBM,
independent software vendors, or end users.

EVENT HANDLING CONCEPT
There are two stages to problem detection and error handling:
• Detecting and reporting.
• Viewing or monitoring.
For both parts, the WBI for FN event concept uses standard
WMQI Broker functionality, exceptions, publish /subscribe
functionality, and database access. All errors detected can be
reported as WBI for FN events. These events are stored in a
database and are published within the broker network. WBI for FN
also provides viewers for both methods, publications, and database
entries.

WNI for FN events
A WBI for FN event is similar to a WMQI Broker exception. An
event comprises:
• Identification of the problem.
• Referencing the event to the appropriate message text.

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• Location of the problem.
• Studying in more detail the parameters that describe the

problem.
Problem identification and referencing will be familiar from WMQI
Broker exceptions. The main difference within WBI for FN is that
the catalogues used to store information on event text formatting
are the same on every platform. Instead of platform-dependent
implementations, resource bundles of the International Components
for Unicode (ICU) are used to hold the message text.
When looking at an exception reported in the system log the
exception provides only information about the location in the
message flow where the problem occurred, eg the node name. If
the message flow is used infrequently this is usually sufficient to
identify the cause of the problem.
When this message flow is used to process many messages in a
short time it is difficult to determine which of these messages
caused the problem. To support identification of the erroneous
message, a WBI for FN event can also store the identification of
the message that caused the problem. For WMQ messages the
identification of a message contained in the WBI for FN event is
its Message-ID and Correlation-ID.
A WMQI Broker exception refers to the node within the message
flow that caused the exception. This is helpful when the developer
knows the nodes in the message flow and can control which ones
are used. Products that use WMQI Broker usually structure
common functionality in subflows that can be embedded in more
than one message flow. Such subflows are also provided by WBI
for FN. For message flows that use these subflows the identification
of the nodes would not provide any meaning to the developer as
he doesn’t know which nodes perform what operations or how to
fix a defect in them.
To help identify whether or not the problem is caused in such a
subflow and to identify the functionality, a WBI for FN event can
contain a subcomponent code. This subcomponent code is a short
identification of the function that has the problem, eg the auditing
or warehousing function.

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 10

When looking at the system log for problems in a message flow it
is obvious on which computer the problem occurred. Server
identification is added to WBI for FN events so the information
available is consistent when looking at a set of events that
occurred somewhere in a network.
The parameters of an event that describe the problem in more
detail are the same as the parameters for an exception in WMQI
Broker. They can contain variable information about the event,
such as which resources were involved in the problem.

Issuing events
If a problem is detected during the processing of a message flow,
a WBI for FN event can be issued. There are two ways to achieve
this:
• A WBI for FN-provided node.
• A WBI for FN-provided message.
The WBI for FN-provided node is the Event Store node. Within a
message flow all necessary information can be prepared to call
this Event Store node. The node then stores all information in a
WBI for FN database table and publishes the information with a
WBI for FN-defined topic.
The WBI for FN Event Store node performs its work under
transactional control. That’s why this node can be used only when
the message flow ends successfully with the message flow
processing being committed.
When a problem occurs a rollback is often required. For these
cases WBI for FN offers a message flow for storing the event
information that can be invoked via a WMQ queue. So if there is
a problem or an exception the developer of a message flow, when
necessary, can format a new request message with all required
information and use a standard WMQI Broker MQOutput node to
send this event information to a message flow outside the
transactional control of the message flow.
Because this kind of processing is often required if an exception

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

occurs in a message flow, WBI for FN provides a node that can
handle WMQI Broker exceptions. This node reformats the
exceptions into WBI for FN events. This reformatted exception
than can be directed to the event-handling message flow. After
these actions the exception in the message flow needs to be
rethrown to force a rollback.
The event processing message flow consists mainly of the Event
Store node. It writes the event into the event database and
publishes the event information. The event processing message
flow only stores the event information so there is no other
customer logic that could force a rollback. Because the event-
handling message flow processes WMQ messages in WBI for FN
format, any other WMQ program that has something to report can
use the same event-reporting functionality.
Where publications are concerned most of the information on the
WBI for FN event is included in the publication message. To
facilitate subscriptions to specific events part of the information,
eg the component code, is also used to build a subtree in the topic
tree.

Monitoring
There are two different monitoring models:
• The push model.
• The pull model.
For the pull model it must be possible to view events after they
occur. This is similar to what is already available with the WMQI
Broker event log. With WBI for FN event functionality, this is
achieved using an event administration message flow. A WMQ
message can be formatted and sent to this message flow. The
message flow gets the message and retrieves the event information
from the database. The request message to the message flow can
contain parameters that specify which events the user wants to
see. They limit the listed events to specific criteria, eg a time frame
or the system where the event occurred.
For inserting and formatting the request messages to the event

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 12

administration message flow, WBI for FN provides a command
line interface program (CLI). It receives responses from the
message flow and formats the events using the catalogues. The
CLI program can be used to access any administration message
flow that is part of WBI for FN.
The event administration message flow can run on any broker
within the WMQI Broker domain. This allows events to be listed
centrally from any workstation that is connected to the MQ
network. There is no need to connect to each broker within the
domain and to analyse each of the system logs. Another advantage
is that several people can run this program and list different events
without interfering with each other.
In contrast to the pull method, where a user actively requests the
event information, the WBI for FN event concept also supports a
push model. This is done with the WMQI Broker publish/subscribe
event facility. WBI for FN provides two different monitoring
options:
• Monitoring all events; as events occur each is formatted via

the appropriate catalogue and then displayed to the user.
• Monitoring specific events as determined by the user-defined

filter criteria. For example, one operator might look for IT-
specific problems while another looks for component-specific
problems.

For operators who want to view all events centrally on their usual
system log, WBI for FN also provides a console notifying message
flow. This message flow is subscribed for all WBI for FN events.
Every time an event is issued this message flow gets the
corresponding messages as publication information. The message
flow formats the event information and writes it to the system log.

Using the error event infrastructure
The WBI for FN event functionality can be used to report problems
detected during message flow processing. This functionality cannot
be used to report internal broker problems, eg at startup and
shutdown.

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Through the use of open interfaces when sending WMQ messages
it is possible to monitor problems centrally in a network of brokers.
It is very easy to connect to external monitoring programs,
specifically, when publishing the event information.
In addition to error detection this infrastructure can also be used
to monitor business events. An example is implemented in the WBI
for FN Extension for SWIFTNet, which provides access to the
SWIFT financial network. A connection to the network is represented
by a SWIFT logical terminal. For the business it is mandatory to
know whether the connection is active, so, WBI for FN events are
issued for each state change of a logical terminal that occurs. An
operator can subscribe to such events and is notified when
anything happens to the network connection.
The publish/subscribe mechanism can be used not only by the
monitoring programs provided by WBI for FN but also by customer
programs, thereby enabling them to react automatically to specific
events.

SUMMARY
WMQI Broker provides a means to detect problems that are local
to brokers. WBI for FN shows that it is possible to extend the
problem detection in a WMQI Broker domain from a distributed
operation model to a powerful error detection system for an entire
broker domain, where problems can be monitored centrally. To
implement this, WBI for FN events handling is used. WMQI Broker
provides all the necessary base functionality, eg publish/subscribe,
database access, exceptions, and message flows.
The event functionality can be used to detect problems during
message flow processing in a broker network. It’s also possible to
use this function to connect external monitors or to monitor
business events.
Michael Groetzner
IBM (Germany) © IBM 2003

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 14

Using WMQ in J2EE: part two – JMS and the WAS

INTRODUCTION
This article describes the use of WMQ in the Java 2 Enterprise
Environment (J2EE) and is the second of two parts. In the
previous article, published last month, the J2EE standard interface
for messaging was described, as was its WMQ implementation.
Here we discuss the J2EE in more detail along with the integration
of WMQ with the messaging options available in IBM’s J2EE
platform, the WebSphere Application Server (the WAS).

THE J2EE
The J2EE is an umbrella specification that references many other
Java applications. It defines the standard runtime environment for
enterprise applications written in Java; the current version that
has industry acceptance is J2EE 1.3.
Some of the J2EE specifications define the programming model
for writing applications for the J2EE platform, such as Java
Servlets, Java Server Pages (JSPs), and Enterprise Java Beans
(EJBs). Other component specifications of the J2EE platform
define the runtime services that are available for J2EE applications,
such as JNDI, JDBC, and (of course) JMS.
There is a paradigm shift between writing applications for the
J2EE platform and writing applications in, for example, the C
programming language, although both these applications will
require services and characteristics such as transactions,
resource management, concurrency, and lifecycle.
In the J2EE these services and characteristics are held in
components in such a way that the applications require no specific
coding to use or include them. This is in marked difference to
applications written in C, where the programmer must have
knowledge of all these services and must code or compile to use
them. Together with the set of APIs supplied in the J2EE, this is

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

what is meant by the J2EE Programming Model. It allows
applications to be built more easily, quickly, and cheaply because
the only requirement on the application programmer is to have an
understanding of the behaviour that applications are required to
have.
In addition to the Programming Model, the J2EE also defines a
Deployment Model, which specifies how applications are packaged
and deployed into a J2EE Application Server.

JMS APPLICATION SERVER FACILITIES
The JMS Application Server Facilities, as the name suggests, are
various advanced functions that are implemented by expert JMS
Providers, such as Application Servers. They are split into two
main parts, concurrent message delivery and distributed
transactions.

Distributed transactions
Distributed transactions, as described in the X/Open document
Distributed Transaction Processing: The XA Specification, involve
the coordination of updates of multiple resources in an atomic unit
of work, providing support for robustness using a two-phase
commitment protocol. The specification describes two roles:
• The Resource Manager has control of a single resource that

will be updated as part of the transaction. The WMQ queue
manager is an XA-compliant resource manager.

• The Transaction Coordinator communicates with, and controls
the operation of, all resource managers associated with the
transaction context. It uses the two-phase commitment protocol
to ensure atomic updating of all resources, in other words,
ensuring that all operations happen, or none. The WAS EJB
Container is an XA-compliant transaction coordinator.

The J2EE specification mandates the JTA specification to support
distributed transactions in the J2EE. A JMS Provider must expose
its JTA support through the following special JMS objects:

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 16

• XAConnectionFactory: an XA-aware ConnectionFactory.
• XAConnection: an XA-aware Connection.
• XASession: an XA-aware Session. The XASession holds an

XAResource object, which provides the facilities for allowing
the Session to participate in distributed transactions controlled
by an XA transaction coordinator.

The transactional context does not flow across Sessions –
messages can be sent and received from the same Session under
a single transaction but the same does not apply for different
Sessions.
The J2EE specifications support the demarcation of transactions
by making use of API calls (application or bean-managed
transactions) but it is preferable to use the Application Server to
control the transaction (container-managed transactions). This is
accomplished by specifying the transactional behaviour required
when the application is deployed into the Application Server.

The JMS ConnectionConsumer
In part one of this article asynchronous (or passive) message
delivery was described. This may at first glance appear to be only
a convenient manner of negating the need for applications receiving
messages to block indefinitely whilst waiting for a message.
However, this section describes how this method can be used to
drive very powerful, scalable, concurrent message delivery. The
JMS defines a flexible method of concurrent message delivery,
with the following participant roles:
• The JMS Provider has responsibility for delivering the

messages.
• The Application Server has responsibility for creating the

consumer and managing the threads used by the concurrent
MessageListeners.

• The Application has responsibility for defining an interest in a
JMS Destination (with an optional message selector) and for
providing a single-threaded MessageListener. The Application

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Server will construct multiple instances of the MessageListener
to process messages concurrently.

The following JMS objects provide the facility for concurrent
message delivery:
• The JMS Session provides methods to both determine and

retrieve a MessageListener as well as a ‘run’ method, which
causes messages (loaded on the Session by the
ConnectionConsumer – see below) to be serially processed
in its MessageListener.

• The JMS ServerSession is implemented by the Application
Server to wrap the Session object for concurrent message
delivery.

• The JMS ServerSessionPool is also implemented by the
Application Server and its function is to manage
ServerSessions. The implementation of the
ServerSessionPool is not defined – it could be very simple,
with a defined maximum number of ServerSessions, or expand
and contract dynamically as required. If a ServerSession is
requested from the pool and one is not available, the calling
method will block until the ServerSessionPool can satisfy the
request.

• The JMS ConnectionConsumer pulls all the above together.
It holds a reference to a ServerSessionPool and, as messages
arrive at the Destination that it is consuming messages from
(with an optional selector), it retrieves ServerSessions from
its ServerSessionPool. It then loads them with messages (to
be processed by their Sessions’ MessageListeners) and
starts them.
When traffic is light the Sessions are loaded with one message
at a time but when traffic becomes heavier the Sessions are
loaded with multiple messages. The ConnectionConsumer
has a parameter limiting the maximum number of messages
that can be loaded into a Session at any one time.

The Application Server owns the ConnectionConsumers and

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 18

ServerSessionPools. It must create these and any other JMS
objects that it needs to satisfy concurrent message delivery
requirements. The application supplies the MessageListener
code that will be registered with the Sessions held in the
ServerSessionPool (in the J2EE these are in the form of Message-
Driven Beans – see below for a description of J2EE Messaging).

The WMQ JMS ConnectionConsumer
If a JMS Destination is served by ConnectionConsumers with a
non-maximal set of selectors, unmatched messages will not be
retrieved from the Destination. The WMQ JMS ConnectionFactory
object can be configured to discard these by setting the Message
Retention parameter to MQJMS_MRET_NO. This highlights a
conflict between WMQ robustness and JMS concurrent message
delivery because this situation can cause messages to be
discarded. The following scenarios will cause messages to be left
on the Destination:
• The arrival of a badly formatted message that WMQ JMS

cannot process.
• The arrival of a ‘poison’ message. This type of message is

well-formed but cannot be processed by the application’s
MessageListener and is, therefore, continually processed
and then rolled back. See below for more details on poison
messages.

• There being no ConnectionConsumer interested in the
message.

If any of these situations occur the messages will be removed
according to the report options in the MQMD (the last one also
requires MQJMS_MRET_NO to qualify for this discussion). These
can be either:
• MQRO_DEAD_LETTER_Q, in which case the message will

be requeued to the dead letter queue.
• MQRO_DISCARD_MSG, in which case the message will be

discarded.

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Report messages are also generated if the report options are set
to include these. If the message cannot be put to the dead letter
queue, further processing is based upon the message’s
persistence:
• If the message is not persistent it is discarded.
• If the message is persistent it is rolled back to the underlying

queue and all further processing is stopped. It is therefore vital
to monitor the dead letter queue to prevent messages stacking
up.

Poison messages are messages that are continually read from
the underlying queue and backed out. This can be caused by
application failure, transactional backing out, or Session recovery
for client-acknowledged Sessions.
WMQ keeps a record of the number of times a message is backed
out in the MQMD, which is known as the BackoutCount. The WMQ
JMS ConnectionConsumer verifies the BackoutCount against the
BackoutThreshold set on the underlying WMQ queue and, if the
threshold is reached, the message will be requeued to the
BackoutQueue specified on the underlying WMQ queue. If the
BackoutQueue is not accessible the message will be requeued to
the dead letter queue.

MESSAGING IN THE J2EE
This section will describe how to access the messaging function
in the J2EE programming environment. There are two requirements
in the J2EE 1.3 specification that are directly related to messaging:
• An Application Server must provide an implementation of the

JMS 1.0.2b specification. The JMS function must be available
to application code that is executing in any of the three
Containers: the Web Container (for JSPs and Servlets), the
EJB Container, and the Client Container (for J2SE). The
implementation must allow applications running in the three
Containers to communicate using JMS messaging.

• An Application Server must support the Message-Driven

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 20

Bean (MDB) programming model as defined in the EJB 2.0
specification. The EJB 1.x specification defined Entity Beans
(for managing persistent objects) and Session Beans (for
representing services that can be invoked).
The EJB 2.0 specification introduced the MDB, which is a
stateless component that is invoked by the Application Server’s
Listener component when a message arrives at a designated
JMS Destination. The execution of the MDB can be viewed as
being triggered by the arrival of the message.

The programming model for MDBs is a subset of the EJB
programming model and is very simple. A normal EJB has a home
and a remote interface, which are used by the Application Server
to manage the EJB and to advertise the business methods
provided by the EJB respectively.
 An MDB has neither a home nor a remote interface as its
management is predefined and there is only one business method
that can be invoked: the onMessage method (the fact that this
looks exactly like a JMS MessageListener is no coincidence).
When a message arrives at the JMS Destination stating that the
MDB is serving, the onMessage method is called with the message
as a parameter. The code inside the MDB (which must be written
by a developer) contains the JMS logic, which will extract the
payload of the message and then trigger its processing.
The recommended system design where MDBs are involved is to
have them process the message to extract the data and then call
a normal EJB to process the data within its business logic. In a
sense the MDB is used as an adapter to the EJB. This decoupling
of the messaging logic from the business logic has several
advantages:
• The business logic can be driven asynchronously by the

arrival of messages.
• The business logic can be driven from other sources, such as

direct IIOP client programs or Web applications. This provides
a greater degree of ubiquity for the business logic code.

• The skills required for developing EJBs (containing business

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

logic) and MDBs (containing messaging logic) are cleanly
separated, allowing better definition between application
programmer roles.

It is recommended that, because MDBs are meant to be relatively
short-lived, the EJB methods called by them do not tend towards
long-running transactions. This means that any functions called
from within the onMessage method of the MDB should return fairly
quickly so that the thread being used by the MDB can be recycled
in a timely manner.
Not only is the MDB programming model a simplified subset of the
EJB programming model, but also the MDB transactional attributes
are a subset of those of an EJB. An MDB can have one of two
transactional attributes:
• TX_NOT_SUPPORTED, which implies that the message

processing and any other work done by the MDB does not
require a transaction.

• TX_REQUIRED, which implies that the receipt of the message
by the Application Server’s Listener component, the processing
of the message by the MDB, and the invocation of any other
EJB function by the MDBs are all contained within the same
transactional context.

It is also possible for the onMessage method of the MDB to contain
calls that demarcate the transaction (a bean-managed transaction),
but in this case there is no way to associate the message receipt
by the Listener with the transaction – the transaction starts only
when the appropriate call is made within the MDB.

MESSAGING IN THE WAS 4.x
Although the WAS 4.x implements most of the J2EE specifications
(EJBs, Servlets, JSPs, JNDI, etc) it does not claim J2EE
compliance. Despite this, it offers several functions that facilitate
the implementation of solutions involving messaging:
• Global (XA) transactions that include message sending or

synchronous message receipt under two-phase commit control
with other coordinated resources.

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 22

• Pooling of JMS Session objects (corresponding to the
underlying base WMQ Java Connection Pool).

JMS support in the WAS 4.x (and 3.5.3) requires the separate
installation of messaging products. For point-to-point messaging
either of the following can be used:
• MQSeries 5.2 plus the MA88 Product Extension.
• WMQ 5.3.
For publish/subscribe messaging, any of the following can be used
(together with one of the above WMQ JMS implementations):
• The MA0C Product Extension (this goes out of service at the

end of 2004).
• WMQ Event Broker.
• WMQ Integrator Broker.
The WAS 4.x Enterprise Edition adds support for Message Beans.
This is provided in the additional JMS Listener component.
Message Beans behave exactly like MDBs because the intention
behind the implementation was to provide support for concurrent
message delivery ahead of WAS 5.0 and J2EE 1.3. This was due
to a loophole in J2EE 1.2, where there was no transactional
responsibility defined between the Listener receiving the message
and the invocation of the MDB.

MESSAGING IN THE WAS 5.0
The WebSphere Application Server 5.0 is fully compliant with
J2EE 1.3 and delivers much improvement in the area of messaging
when compared with previous releases. These include the points
mentioned above, and the new ones are summarized as follows
(to be discussed later in this article):
• Complete integration of a JMS Provider (Embedded

Messaging), which is optionally installed with WebSphere and
managed as part of the WebSphere runtime through the
standard administration consoles. WebSphere Embedded
Messaging is built on WMQ technology.

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• The choice of the integrated WebSphere JMS Provider, using
WMQ as an external JMS Provider, or using a third party JMS
Provider.

• Full support for MDBs through the integral MessageListener
component.

• Greater flexibility in the configuration of the various pool of
threads and objects for messaging – both in terms of basic
JMS and for MDBs.

WebSphere Embedded Messaging
The Embedded Messaging JMS Provider is (optionally) installed
as part of the WebSphere installation and is managed from the
WebSphere administration consoles. It is built upon WMQ
technology and the concept behind it is to provide messaging
function to J2EE programmers who have no knowledge of WMQ.
Because of this requirement there are limitations on its usage:
• Use of the WebSphere JMS Provider is possible only from the

WAS containers. It can be used to communicate by any
applications running within them but not by any applications
running outside.

• The WebSphere Embedded Messaging queue manager and
broker cannot communicate with external WMQ queue
managers or WMQ Event Broker instances.

• The WebSphere JMS Provider can be administered only from
the WebSphere administration consoles, not from any external
WMQ tools.

A WMQ practitioner, when observing the WebSphere Embedded
Messaging component, will recognize running processes as those
of a standard WMQ queue manager. However, it should be noted
that any direct configuration of the underlying queue manager (not
using the WebSphere administration consoles) is not supported
and will cause problems for the Application Server. This is because
the Application Server verifies the configuration of the queue
manager against its own internal configuration.

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 24

There are several parts to the WebSphere Embedded Messaging
component:
• The JMS Server manages the Embedded Messaging

constituent parts. When run on a single server instance of
WAS it is run as part of the Application Server itself. In a
WebSphere Network Deployment environment it runs as a
separate server.

• The JMS Wrappers provide an interface between the underlying
WMQ JMS objects and JCA-managed connections in
WebSphere.

• The Embedded Messaging component is installed with
specialized scripts, which check for existing versions of WMQ
on the machine and install or upgrade the required components.

• Point-to-point messaging is provided by WMQ technology at
V5.3.0.1. The JMS Server creates and manages a queue
manager for the Embedded Messaging function. There can
only be one instance of WMQ software installed on any one
machine so Embedded Messaging will replace any previous
version of MQSeries.

• Publish/subscribe messaging is provided by WMQ Event
Broker technology. The JMS Server creates and manages a
broker instance for Embedded Messaging . In contrast to the
above, multiple copies of the Event Broker technology can be
installed on a single machine, so the Application Server
installs its own version of the broker code, which is entirely
separate from any existing Event Broker or Integrator Broker
installations that may exist.
The broker used for Embedded Messaging is substantially
different from Event Broker in that it runs inside the JMS
Server and does not require a relational database.

The Embedded Messaging Server is isolated from other Embedded
Messaging Servers or external WMQ queue managers. This does
not mean that it is impossible to have more than one Embedded
Messaging Server in a cell but it does mean that they cannot

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

communicate. Any applications that are required to communicate
via JMS should agree on one Embedded Messaging Server to
use, which should be accessed in one of the following two ways:
• If the application and the Embedded Messaging Server are on

the same machine the application will use a direct bindings
connection.

• If the application is not on the same machine as the Embedded
Messaging Server the application will use a TCP/IP client
connection. It should be noted that the Embedded Messaging
Client component should always be installed with the Application
Server because the Java code within offers an XA-aware
protocol.

One reason for having multiple Embedded Messaging Servers in
a cell is for availability purposes.

The WebSphere JMS Provider versus WMQ
Although the JMS Provider delivered in the WebSphere Embedded
Messaging component is robust and fully JMS-compliant it is
expected that there will often be a preference for using WMQ as
a separate external JMS Provider for the following two reasons:
• The Embedded Messaging component can be accessed only

from within the WebSphere containers. In order to interface
with existing applications that will not run in a J2EE framework
(such as COBOL applications running on a host system), an
external WMQ queue manager, which can be accessed from
any WMQ-aware application, should be used.

• WMQ offers advanced facilities, such as queue manager
clustering, configurability in high availability technologies,
publish/subscribe broker collectives, and z/OS shared queues,
which cannot be accessed from Embedded Messaging.
External WMQ queue managers should be used when
accessing any of these features.

It should be stressed that Embedded Messaging and WMQ are not
meant to compete with JMS Providers – Embedded Messaging is

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 26

designed to provide access to J2EE messaging for programmers
who are not familiar with WMQ. Conversely, if the application
designers are competent in the use of WMQ, it can be frustrating
to know that WMQ is driving the JMS messaging with no means
to configure it directly.
What is gained by using Embedded Messaging on the one hand
– ease of administration and seamless integration – is lost on the
other if workload balancing or availability are required as part of
the JMS architecture.

MDB support in the WAS 5.0
The WAS 5.0 provides full support for MDBs as required by the
EJB 2.0 specification (and hence the J2EE 1.3 specification).
This is provided in both the Advanced and Enterprise editions of
the product (rather than only the Enterprise edition as in the WAS
4.x) and is fully integrated into the core runtime. Configuration and
management is done with the standard WebSphere consoles and
MDBs in the WAS 5.0 can be used with any compliant JMS
Provider.
Several new WebSphere administered objects are introduced as
part of the MDB support, as described below:
• The Listener Service, which manages the whole MDB structure

within an instance of the Application Server.
• The ListenerPort, which is associated with a

ConnectionFactory and Destination and is used to drive the
MDBs. In JMS terms the ConnectionConsumer is located
here, as is the ServerSessionPool.

• The MDB, which is associated with a ListenerPort and hence
a ConnectionFactory and Destination.

There is a fine granularity on the configuration and management
of these objects. They can be stopped and started at all levels (a
single MDB up to the whole Listener Service) and they can be
configured to the same degree of detail. The configuration is
centred on the number of threads available at the various levels,

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

as required by the MDB thread pools and the ServerSession
threads required by the ServerSessionPools owned by the
ConnectionConsumers.

WebSphere Studio Application Developer 5.0
WebSphere Studio Application Developer 5.0 includes a single-
server copy of the WAS 5.0. It can be controlled and administered
from within WebSphere Studio, in other words the standard
WebSphere administration consoles do not need to be used. This
integrated tooling facilitates faster application development. There
is also fully integrated support for the development and deployment
of MDBs.
There is also special support included for unit testing JMS
applications. This JMS ‘simulator’ implements the full JMS API but
does not provide the robustness behind the scenes that is
expected of WMQ. It is provided solely for the unit testing of JMS
applications (which should, of course, also be tested in the fully
robust JMS environment) and should not be confused with
WebSphere Embedded Messaging. Its advantage is that it further
reduces the time to start the Application Server within the
development environment because the JMS Simulator turns around
much more quickly than the full JMS Provider.
Ewan Withers
IBM Hursley (UK) © IBM 2003

MQMON

MQMON is a REXX utility for monitoring and operating WMQ
channels on OS/390. It is intended to assist helpdesk operators
and MQ administrators.
On execution the program searches the MQ subsystems defined
on OS/390 (the vectors are read from storage), which are then

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 28

displayed. This allows the user to choose the required MQ
subsystem. Subsequently the main panel is displayed, which
appears as follows:
MQSeries CHANNELS Row 1 to 4 of 4
COMMAND ===> SCROLL ===> CSR
Opc Channel Xmitq Conname Status Type Seqno
 MQP2.TO.MQP3_AIX.P MQP3_AIX.XMIT.P.QUEUE MQP3_AIX RUNNING SDR 820723
 MQP5.TO.MQP6 QP6.XMIT.P.QUEUE MQP6 RUNNING SDR 60339
 MQP3_AIX.TO.MQP2.P MQP3_AIX RUNNING RCVR 799989
 MQP6.TO.MQP5 MQP6 RUNNING RCVR 63750

Pushing ‘enter’ will refresh the values on the panel; normally you
will see an increment of the ‘Seqno’ for a channel in ‘running’
status.
Operation is by means of the following options:
• ‘S’ to start a channel.
• ‘T’ to stop a channel.
• ‘R’ to reset a channel.
• ‘D’ to display the channel definition with the date and hour of

the last Start channel. This information is shown in an ISPF
window.

With the ‘T’ (stop) and ‘R’ (reset) options a window is displayed
before execution so the user can confirm the action.
The program is supplied with help panels (use the F1 key). It also
has explanatory and error messages in two versions: brief and
detailed. The more detailed messages are accessed through the
F1 key when the short messge is displayed. The message library
used is ISPMLIB.
This tool minimizes much of the intervention required from MQ
administrators when problems are presented. It is also easy to use
and consumes few system resources. At present the program is
executed with OS/390 V2.9 and MQSeries V1.2 and uses the
RXMQVC interface to connect TSO and MQSeries. I installed
MQMON as a TSO option on the main panel.

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

MQMON
/* REXX MQMON carlos-osorio@excite.com */
TRACE OFF
NUMERIC DIGITS 12;
CVT = C2X(STORAGE(1Ø,4)) /* ADDR DE CVT */
CVTJESCT= D2X((X2D(CVT))+296) /* POINTER A CVTJESCT */
JESCT = C2X(STORAGE(CVTJESCT,4)) /* ADDR DE JESCT */
JESSSCT = D2X((X2D(JESCT))+24) /* POINTER A JESSSCT */
SSCVT = C2X(STORAGE(JESSSCT,4)) /* ADDR DE SSCVT */
J = Ø
DO I = 1 WHILE (SSCVT <> ØØØØØØØØ)
 SSCTSNAM=D2X((X2D(SSCVT))+8) /* POINTER A SSCTSNAM */
 ERLY = D2X((X2D(SSCVT))+2Ø) /* POINTER A ERLY */
 ERLYAD= C2X(STORAGE(ERLY,4)) /* ADDR DE ERLY */
 ERLYSCOM= D2X((X2D(ERLYAD))+56) /* POINTER A ERLYSCOM */
 IF SUBSTR(STORAGE(ERLYSCOM,64),29,8) = 'CSQ3EPX ' THEN
 DO
 J = J + 1
 SSIDMQ.J = STORAGE(SSCTSNAM,4) /* ADDR DE SSCTSNAM */
 END
 SSCTSCTA = D2X((X2D(SSCVT))+4) /* POINTER AL SGTE SSCVT*/
 SSCVT = C2X(STORAGE(SSCTSCTA,4))
END
"ISPEXEC LIBDEF ISPPLIB DATASET ID('YOUR.PANELI')"
"ISPEXEC TBCREATE TSSIDMQ",
"NAMES(O SMQ)",
"NOWRITE REPLACE"
O= '';
DO J = 1 TO J
SMQ = SSIDMQ.J
"ISPEXEC TBADD TSSIDMQ"
END
"ISPEXEC TBTOP TSSIDMQ"
"ISPEXEC TBDISPL TSSIDMQ PANEL(MQØCHNSP)"
IF RC = 8 THEN EXIT;
"ISPEXEC LIBDEF ISPPLIB"
"ISPEXEC LIBDEF ISPMLIB"
"ISPEXEC TBEND TSSIDMQ"
SSID = SMQ
SELECT
 WHEN SSID = 'MQP5' THEN
 DO
 "ISPEXEC LIBDEF ISPPLIB DATASET ID('YOUR.PROD.PANELLIB.USER')"
 "ISPEXEC LIBDEF ISPMLIB DATASET ID('YOUR.PROD.MSGLIB')"
 "ISPEXEC LIBDEF ISPLLIB DATASET ID('YOUR.MA19LOAD')"
 END
 WHEN SSID = 'MQD5' THEN
 DO
 "ISPEXEC LIBDEF ISPPLIB DATASET ID('YOUR.DEVE.PANELLIB.USER')"
 "ISPEXEC LIBDEF ISPMLIB DATASET ID('YOUR.DEVE.MSGLIB')"

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 30

 "ISPEXEC LIBDEF ISPLLIB DATASET ID('YOUR.MA19LOAD')"
 END
 OTHERWISE
 DO
 "ISPEXEC LIBDEF ISPPLIB DATASET ID('YOUR.PROD.PANELLIB.USER')"
 "ISPEXEC LIBDEF ISPMLIB DATASET ID('YOUR.PROD.MSGLIB')"
 "ISPEXEC LIBDEF ISPLLIB DATASET ID('YOUR.MA19LOAD')"
 END
END
ADDRESS TSO "ALLOC FI(SYSTSPRT) DA(*)"
RCCI = RXMQVC('INIT')
DO FOREVER
ADDRESS ISPEXEC "TBCREATE TBMQCH",
"NAMES(CHANNEL XMITQ CONNAME STATUS TYPE SEQNO CHSTATI CHSTADA)",
"NOWRITE REPLACE"
O = ''
OUT.Ø = Ø
M = OUTTRAP('MQCMD.')
RCC1 = RXMQVC('COMMAND',SSID,'DIS CHS(*) ALL','OUT.')
M = OUTTRAP('OFF')
INTERPRET 'FCS = RXMQVC.RCMAP.'WORD(RCC1,1)
IF WORD(RCC1,1) <> Ø
 THEN DO
 SAY WORD(RCC1,1)
 SAY FCS
 EXIT
 END
I = STRIP(WORD(RCC1,1),'B')
IF (OUT.Ø <> Ø)
 THEN DO I = 1 TO OUT.Ø
 IF WORD(OUT.I,1) = 'CSQM42ØI'
 THEN DO
 CHANNEL = STRIP(SUBSTR(WORD(OUT.I,2),1Ø,2Ø))
 XMITQ = STRIP(SUBSTR(WORD(OUT.I,4),7,21))
 CONNAME = STRIP(SUBSTR(WORD(OUT.I,6),9,12))
 STATUS = STRIP(SUBSTR(WORD(OUT.I,9),8,8))
 TYPE = 'SDR '
 SEQNO = STRIP(SUBSTR(WORD(OUT.I,19),1,6))
 SEQNO = STRIP(SEQNO,'T',')')
 CHSTATI = SUBSTR(OUT.I,441,17)
 CHSTADA = SUBSTR(OUT.I,459,18)||')'
 ADDRESS ISPEXEC "TBADD TBMQCH"
 END
 IF WORD(OUT.I,1) = 'CSQM422I'
 THEN DO
 CHANNEL = STRIP(SUBSTR(WORD(OUT.I,2),1Ø,2Ø))
 CONNAME = STRIP(SUBSTR(WORD(OUT.I,4),9,12))
 STATUS = STRIP(SUBSTR(WORD(OUT.I,7),8,8))
 TYPE = 'RCVR'
 SEQNO = STRIP(SUBSTR(WORD(OUT.I,17),1,6))
 SEQNO = STRIP(SEQNO,'T',')')

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 CHSTATI = SUBSTR(OUT.I,385,17)
 CHSTADA = SUBSTR(OUT.I,4Ø3,18)||')'
 ADDRESS ISPEXEC "TBADD TBMQCH"
 END
 CHANNEL=''
 XMITQ=''
 CONNAME=''
 STATUS=''
 TYPE= ''
 SEQNO=''
 CHSTATI=''
 CHSTADA=''
 END
ADDRESS ISPEXEC "TBTOP TBMQCH"
ADDRESS ISPEXEC "TBDISPL TBMQCH PANEL(MQCHP)"
IF RC = 8
 THEN DO
 ADDRESS ISPEXEC "TBEND TBMQCH"
 CALL FINAL
 END
 ELSE DO
 IF ZTDSELS > Ø THEN CALL RESUELVE_OPCION_INGRESADA
 O = ' '
 END
ADDRESS ISPEXEC "TBEND TBMQCH"
END
EXIT
/*-- R U T I N A S --- carlos-osorio@excite.com ----------------*/
RESUELVE_OPCION_INGRESADA:
IF O = 'S' /* START */
 THEN SELECT
 WHEN STATUS = 'RUNNING' THEN
 ADDRESS ISPEXEC "SETMSG MSG(MQS1Ø2)"
 OTHERWISE
 DO
 CMD_START = 'START CHANNEL('||CHANNEL||')'
 M = OUTTRAP('MQCMD.')
 RCCS = RXMQVC('COMMAND',SSID,CMD_START,'OUTSTART.')
 M = OUTTRAP('OFF')
 IF RC = Ø
 THEN DO
 ADDRESS ISPEXEC "SETMSG MSG(MQS1ØØ)" /* GRABALG */
 END
 ELSE
 ADDRESS ISPEXEC "SETMSG MSG(MQS1Ø1)"
 END
 END
IF O = 'T' /* STOP */
 THEN SELECT
 WHEN STATUS = 'STOPPED' THEN
 ADDRESS ISPEXEC "SETMSG MSG(MQS1Ø7)"

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 32

 OTHERWISE
 DO
 CALL CONFIRMT;
 IF CONFIRMT_RC <> Ø THEN RETURN;
 CMD_STOP = 'STOP CHANNEL('||CHANNEL||')'
 M = OUTTRAP('MQCMD.')
 RCCS = RXMQVC('COMMAND',SSID,CMD_STOP,'OUTSTART.')
 M = OUTTRAP('OFF')
 IF RC = Ø
 THEN DO
 ADDRESS ISPEXEC "SETMSG MSG(MQS1Ø8)" /* GRABALG */
 END
 ELSE
 ADDRESS ISPEXEC "SETMSG MSG(MQS1Ø9)"
 END
 END
IF O = 'R' /* RESET */
 THEN DO
 CALL CONFIRMR;
 IF CONFIRMR_RC <> Ø THEN RETURN;
 CMD_STOP = 'STOP CHANNEL('||CHANNEL||')'
 M = OUTTRAP('MQCMD.')
 RCCS = RXMQVC('COMMAND',SSID,CMD_STOP,'OUTSTOP.')
 M = OUTTRAP('OFF')
 CMD_RESET = 'RESET CHANNEL('||CHANNEL||')'
 M = OUTTRAP('MQCMD.')
 RCCS = RXMQVC('COMMAND',SSID,CMD_RESET,'OUTRESET.')
 M = OUTTRAP('OFF')
 IF RC = Ø
 THEN DO
 CMD_START = 'START CHANNEL('||CHANNEL||')'
 M = OUTTRAP('MQCMD.')
 RCCS = RXMQVC('COMMAND',SSID,CMD_START,'OUTSTART.')
 M = OUTTRAP('OFF')
 ADDRESS ISPEXEC "SETMSG MSG(MQS1ØØ)"
 IF RC = Ø
 THEN DO
 ADDRESS ISPEXEC "SETMSG MSG(MQS1Ø6)"
 END
 ELSE
 ADDRESS ISPEXEC "SETMSG MSG(MQS1Ø1)"
 END
 ELSE
 ADDRESS ISPEXEC "SETMSG MSG(MQS1Ø5)"
 END
IF O = 'D' /* DISPLAY */
 THEN DO
 "NEWSTACK"
 CALL LIBDEFWINDJ;
 DSNDISCH = USERID() || '.MQDISCH' || '.CMD' || TIME('S')
 ADDRESS TSO "ALLOC FILE(DISCH) DATASET('"DSNDISCH"') " ,

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 "NEW CAT REUSE UNIT(SYSDA)" ,
 "LRECL(8Ø) BLKSIZE(2792Ø) RECFM(F B) SPACE(1,1)
CYL"
 IF RC <> Ø THEN
 DO
 ADDRESS ISPEXEC "SETMSG MSG(DBCØ21)"
 RETURN
 END
 CMD_DIS = 'DIS CHANNEL('||CHANNEL||')'
 M = OUTTRAP('MQCMD.')
 RCCD = RXMQVC('COMMAND',SSID,CMD_DIS,'OUTDIS.')
 M = OUTTRAP('OFF')
 IF RC = Ø
 THEN DO
 N = 1
 DO UNTIL N >= LENGTH(OUTDIS.1)
 POS_CHAR = POS(')',OUTDIS.1,N)
 CHP = STRIP(SUBSTR(OUTDIS.1,(N+1),(POS_CHAR-N-1)))||')'
 SELECT
 WHEN WORD(CHP,1) = '-' THEN NOP
 WHEN WORD(CHP,1) = 'SQM41ØI' THEN NOP
 WHEN WORD(CHP,1) = 'SQM412I' THEN NOP
 OTHERWISE QUEUE CHP
 END
 N = POS_CHAR + 1
 END
 QUEUE ""
 ADDRESS TSO "EXECIO * DISKW DISCH (FINIS"
 ADDRESS TSO "EXECIO * DISKR DISCH (STEM DISCHQ. FINIS"
 "ISPEXEC TBCREATE TBMQDCH",
 "NAMES(TBMQDCH1)",
 "NOWRITE REPLACE"
 TBMQDCH1 = CHSTADA
 "ISPEXEC TBADD TBMQDCH"
 TBMQDCH1 = CHSTATI
 "ISPEXEC TBADD TBMQDCH"
 TBMQDCH1 = LEFT('-',49,'-')
 "ISPEXEC TBADD TBMQDCH"
 DO J = 1 TO DISCHQ.Ø
 TBMQDCH1 = SPACE(DISCHQ.J,Ø)
 "ISPEXEC TBADD TBMQDCH"
 END
 ADDRESS TSO "FREE DDNAME(DISCH)"
 ISPEXEC 'TBTOP TBMQDCH'
 ISPEXEC 'ADDPOP ROW(3) COLUMN(16)'
 ISPEXEC 'TBDISPL TBMQDCH PANEL(MQTDISCH)'
 ISPEXEC 'REMPOP'
 ISPEXEC 'TBEND TBMQDCH'
 END
 ELSE
 ADDRESS ISPEXEC "SETMSG MSG(MQS1Ø4)"

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 34

 "DELSTACK"
 CALL LIBDEFPANEL
 W = OUTTRAP(DELDSN.)
 ADDRESS TSO "DELETE ('"DSNDISCH"')"
 W = OUTTRAP('OFF')
 END
RETURN
LIBDEFWINDJ:
SELECT
 WHEN SSID = 'MQP5' THEN
 "ISPEXEC LIBDEF ISPPLIB DATASET ID('YOUR.PROD.WINDOWSJ.LIB')"
 WHEN SSID = 'MQD5' THEN
 "ISPEXEC LIBDEF ISPPLIB DATASET ID('YOUR.DEVE.WINDOWSJ.LIB')"
 OTHERWISE
 "ISPEXEC LIBDEF ISPPLIB DATASET ID('YOUR.PROD.WINDOWSJ.LIB')"
END
RETURN
LIBDEFWINDO:
SELECT
 WHEN SSID = 'MQP5' THEN
 "ISPEXEC LIBDEF ISPPLIB DATASET ID('YOUR.PROD.WINDOWS.LIB')"
 WHEN SSID = 'MQD5' THEN
 "ISPEXEC LIBDEF ISPPLIB DATASET ID('YOUR.DEVE.WINDOWS.LIB')"
 OTHERWISE
 "ISPEXEC LIBDEF ISPPLIB DATASET ID('YOUR.PROD.WINDOWS.LIB')"
END
RETURN
/*--------------------- carlos-osorio@excite.com ---------------*/
LIBDEFPANEL:
SELECT
 WHEN SSID = 'MQP5' THEN
 "ISPEXEC LIBDEF ISPPLIB DATASET ID('YOUR.PROD.PANELLIB.USER')"
 WHEN SSID = 'MQD5' THEN
 "ISPEXEC LIBDEF ISPPLIB DATASET ID('YOUR.DEVE.PANELLIB.USER')"
 OTHERWISE
 "ISPEXEC LIBDEF ISPPLIB DATASET ID('YOUR.PROD.PANELLIB.USER')"
END
RETURN
CONFIRMT:
C = ''
"ISPEXEC ADDPOP POPLOC(O)"
CALL LIBDEFWINDO;
"ISPEXEC DISPLAY PANEL(MQTCHNC)"
IF C = 'S' THEN CONFIRMT_RC = Ø
ELSE CONFIRMT_RC = 1;
"ISPEXEC REMPOP"
CALL LIBDEFPANEL;
RETURN
CONFIRMR:
C = ''
"ISPEXEC ADDPOP POPLOC(O)"

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

CALL LIBDEFWINDO;
"ISPEXEC DISPLAY PANEL(MQRCHNC)"
IF C = 'S' THEN CONFIRMR_RC = Ø
ELSE CONFIRMR_RC = 1;
"ISPEXEC REMPOP"
CALL LIBDEFPANEL;
RETURN
/*--*/
FINAL:
M = OUTTRAP('MQCMD.')
RCCT = RXMQVC('TERM')
M = OUTTRAP('OFF')
"ISPEXEC LIBDEF ISPPLIB"
"ISPEXEC LIBDEF ISPMLIB"
"ISPEXEC LIBDEF ISPLLIB"
EXIT
RETURN
/* ----- FIN END ---- carlos-osorio@excite.com ----------------*/
MEMBER 'YOUR.PANELI(MQØCHNSP)' :
)ATTR
 % TYPE(TEXT) INTENS(HIGH) SKIP(ON)
 color(turquoise)
 + TYPE(TEXT) INTENS(LOW) SKIP(ON)
 _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) HILITE(USCORE)
 ! TYPE(OUTPUT) INTENS(LOW) CAPS(ON) JUST(LEFT) HILITE(REVERSE)
 color(turquoise)
 @ TYPE(TEXT) INTENS(HIGH) CAPS(ON) HILITE(REVERSE)
 color(turquoise)
)BODY EXPAND(\\)
@ SUBSISTEM(S) MQSeries
@
%COMMAND ===>_ZCMD
%
% Opc Subsistem MQ
+ %--- ------------
)MODEL
+ _O+ !SMQ +
)INIT
 .help = mqØchnsh
 .cursor = O
 &SCRO = PAGE
)REINIT
 .cursor = O
)PROC
if (.PFKEY = 'PFØ1')
 &pfkeyin = 's'
IF (&ZTDSELS > ØØØØ)
 VER(&O,LIST,S)
)END
MEMBER 'YOUR.PANELI(MQØCHNSH)' :
)attr

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 36

 % TYPE(TEXT) INTENS(HIGH) SKIP(ON)
 color(turquoise)
 + TYPE(TEXT) INTENS(LOW) SKIP(ON)
 _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) HILITE(USCORE)
 ! TYPE(OUTPUT) INTENS(LOW) CAPS(ON) JUST(LEFT) HILITE(REVERSE)
 color(turquoise)
 @ TYPE(TEXT) INTENS(HIGH) CAPS(ON) HILITE(REVERSE)
 color(turquoise)
)BODY EXPAND(\\)
@ SUBSISTEM(S) MQSeries
% Opc (OPTIONS) valids :+
+ %S+ - To select the subsystem MQSeries.
% %Field description :+
+ %Subsistem + Name/Identification of subsystem MQseries
+ defined in MVS - OS/39Ø (SYS1.PARMLIB).
)END
MEMBER 'YOUR.xxxx.panellib.user(MQCHP)' :
)ATTR
 % TYPE(TEXT) INTENS(HIGH) SKIP(ON)
 color(turquoise)
 + TYPE(TEXT) INTENS(LOW) SKIP(ON)
 _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) HILITE(USCORE)
 ! TYPE(OUTPUT) INTENS(LOW) CAPS(ON) JUST(LEFT) HILITE(REVERSE)
 color(turquoise)
 ? TYPE(OUTPUT) INTENS(LOW) CAPS(ON) JUST(RIGHT) HILITE(REVERSE)
 color(turquoise)
 @ TYPE(TEXT) INTENS(HIGH) CAPS(ON) HILITE(REVERSE)
 color(turquoise)
)BODY EXPAND(\\)
@ MQSeries CHANNELS
%COMMAND ===>_ZCMD +%SCROLL
===>_SCRO+
%
%Opc Channel Xmitq Conname Status Type Seqno
+--- ------------- --------------- ----------- ------- ---- -----
)MODEL
+_O+!CHANNEL !XMITQ !CONNAME !STATUS !TYPE ?SEQNO +
)INIT
 .cursor = o
 &SCRO = CSR
 .help = mqchh
)REINIT
 .cursor = o
)PROC
if (.PFKEY = 'PFØ1')
 &pfkeyin = 'S'
IF (&ZTDSELS > ØØØØ)
 VER(&O,LIST,D,S,T,R)
)END
MEMBER 'YOUR.xxxx.panellib.user(MQCHH)' :
)attr

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 % TYPE(TEXT) INTENS(HIGH) SKIP(ON) color(turquoise)
 ! TYPE(TEXT) INTENS(HIGH) SKIP(ON) color(red)
 + TYPE(TEXT) INTENS(LOW) SKIP(ON)
 _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) HILITE(USCORE)
 @ TYPE(TEXT) INTENS(HIGH) CAPS(ON) HILITE(REVERSE)
 color(turquoise)
)BODY EXPAND(\\)
@ MQSeries CHANNELS
% !Opc (OPTIONS) valids :+
+ %D+ - Display the channel definition.
+ %R+ - RESET the message sequence number of the channel.
+ %S+ - START a channel.
+ %T+ - STOP a channel.
% !Field descriptions :+
+ %Channel+- Channel name.+
+ %Xmit+ - Transmission channel name.+
+ %Conname+- Connection name.+
+ %Status+ - Channel status. Can have the following values:
% STARTING,BINDING,INITIALIZING,RUNNING,STOPPING,RETRYING,
% PAUSED,STOPPED,REQUESTING.
+ %Type+ - Type of the channel. Can be %SDR/RCVR (SENDER/RECEIVER)+
+ %Seqno+ - Sequence number of the last message sent/received.
)END
MEMBER 'YOUR.XXXX.WINDOWSJ.LIB(MQTDISCH)' : (lrecl 5Ø blksize 5ØØØ)
)ATTR
 % TYPE(TEXT) INTENS(LOW) SKIP(ON)
 COLOR(TURQUOISE)
 @ TYPE(TEXT) INTENS(HIGH) CAPS(ON)
 HILITE(REVERSE) COLOR(BLUE)
 $ TYPE(TEXT) INTENS(HIGH) CAPS(ON)
 HILITE(REVERSE) COLOR(BLUE)
 ¿ TYPE(OUTPUT) INTENS(LOW) CAPS(ON)
 HILITE(REVERSE) COLOR(WHITE)
 ! TYPE(OUTPUT) INTENS(LOW) CAPS(ON)
 HILITE(REVERSE) COLOR(TURQUOISE)
)BODY WINDOW(5Ø,16)
%COMMAND ===>_ZCMD
$ DESCRIPTION OF THE CHANNEL¿CHANNEL $
$---
)MODEL
!TBMQDCH1
)INIT
)PROC
)END
MEMBER 'YOUR.XXXX.WINDOWS.LIB(MQTCHNC)' : (lrecl 4Ø blksize 4ØØØ)
)attr
 % TYPE(TEXT) INTENS(HIGH) SKIP(ON)
 + TYPE(TEXT) INTENS(LOW) SKIP(ON)
 HILITE(REVERSE) color(blue)
 _ TYPE(INPUT) INTENS(HIGH) CAPS(ON)
 HILITE(REVERSE) color(RED)

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 38

 ! TYPE(OUTPUT) INTENS(HIGH) CAPS(ON)
 HILITE(REVERSE) color(turquoise)
 @ TYPE(TEXT) INTENS(HIGH) SKIP(OFF)
 HILITE(REVERSE) color(turquoise)
)BODY WINDOW(4Ø,1Ø) ASIS
@ CONFIRMATION OF THE STOP CHANNEL
@ +Confirm Stop Channel @
@ + !CHANNEL +==>_C@(S|N)
)INIT
 .CURSOR = C
)PROC
VER(&C,NONBLANK,LIST,S,N)
)END
MEMBER 'YOUR.XXXX.WINDOWS.LIB(MQRCHNC)' : (lrecl 4Ø blksize 4ØØØ)
)attr
 % TYPE(TEXT) INTENS(HIGH) SKIP(ON)
 + TYPE(TEXT) INTENS(LOW) SKIP(ON)
 HILITE(REVERSE) color(blue)
 _ TYPE(INPUT) INTENS(HIGH) CAPS(ON)
 HILITE(REVERSE) color(RED)
 ! TYPE(OUTPUT) INTENS(HIGH) CAPS(ON)
 HILITE(REVERSE) color(turquoise)
 @ TYPE(TEXT) INTENS(HIGH) SKIP(OFF)
 HILITE(REVERSE) color(turquoise)
)BODY WINDOW(4Ø,1Ø) ASIS
@ CONFIRMATION OF THE RESET CHANNEL
@
@ +Confirm Reset Channel @
@ + !CHANNEL +==>_C@(S|N)
)INIT
 .CURSOR = C
)PROC
VER(&C,NONBLANK,LIST,S,N)
)END
MEMBER 'YOUR.XXXX.MSGLIB(MQS1Ø)' :
MQS1ØØ 'CHANNEL STARTED' .ALARM=YES .WINDOW=LNORESP
'START CHANNEL HAS BEEN COMPLETED SUCCESSFULLY'
MQS1Ø1 'START CHANNEL FAILURE' .ALARM=YES .WINDOW=LNORESP
'REVIEW RACF PERMISSIONS FOR MQSERIES CL(MQCMDS)'
MQS1Ø2 'CHANNEL ALREADY RUNNING' .ALARM=YES .WINDOW=LNORESP
'START CHANNEL NOT EXECUTED. THE CHANNEL IS ALREADY RUNNING'
MQS1Ø3 'CHANNEL IS NOT STOPPED' .ALARM=YES .WINDOW=LNORESP
'START CHANNEL NOT EXECUTED. THE CHANNEL NOT IN STOPPED STATUS'
MQS1Ø4 'CHANNEL DISPLAY FAILURE' .ALARM=YES .WINDOW=LNORESP
'REVIEW RACF PERMISSIONS FOR MQSERIES CL(MQCMDS)'
MQS1Ø5 'CHANNEL RESET FAILURE' .ALARM=YES .WINDOW=LNORESP
'REVIEW RACF PERMISSIONS FOR MQSERIES CL(MQCMDS)'
MQS1Ø6 'CHANNEL RESETED' .ALARM=YES .WINDOW=LNORESP
'RESET CHANNEL HAS BEEN COMPLETED SUCCESSFULLY'
MQS1Ø7 'CHANNEL ALREADY STOPPED' .ALARM=YES .WINDOW=LNORESP
'STOP CHANNEL NOT EXECUTED. THE CHANNEL IS ALREADY STOPPED'

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

MQS1Ø8 'CHANNEL STOPPED' .ALARM=YES .WINDOW=LNORESP
'STOP CHANNEL HAS BEEN COMPLETED SUCCESSFULLY'
MQS1Ø9 'STOP CHANNEL FAILURE' .ALARM=YES .WINDOW=LNORESP
'REVIEW RACF PERMISSIONS FOR MQSERIES CL(MQCMDS)'

Carlos Montoya (Peru) © Xephon 2003

Auditing remote administration of WMQ

INTRODUCTION
Keeping track of what changes have been made to a WMQ
(WebSphere MQ) queue manager and who made those changes
can be a difficult task. This article and its accompanying source
code show how you can create an audit trail of all changes that
have been submitted through the remote administration service –
the Command Server.

HOW ADMINISTRATION IS DONE
WMQ provides two main interfaces for its administrative operations,
available across all of the distributed platforms. These are the
runmqsc program, which allows you to type in MQSC commands,
and the Command Server, which reads its commands from a
message queue.
With very minor exceptions the capabilities of both interfaces are
the same. However, the Command Server works with messages
in a structured binary form known as PCF. Because these
messages are just regular MQ messages on a regular MQ queue,
they could have been sent from another queue manager on
another machine. The Command Server reads these PCF
messages (using MQGET), processes them, and then sends any
responses to the ReplyToQ. This allows queue managers to be
administered from a central site.

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 40

There is today, however, no built-in way that allows someone to
track what PCF commands have been submitted to change the
configuration of a queue manager; being able to monitor this can
be useful for audit trails and problem diagnosis.
There are some other aspects of administration that I’m not going
to explore in any detail here, but will mention for completeness. For
example, updates to the ini files or Windows registry can affect the
behaviour of a queue manager. These updates are made outside
the control of WMQ itself and any logging, auditing, or access
control is under the auspices of the operating system. In order to
get the Command Server to process PCF messages it must be
running, and that is not done automatically by WMQ on most
platforms. You need local procedures that will start the Command
Server when the queue manager is started.

AUDITING RUNMQSC OPERATIONS
The runmqsc program has a simple text-based command line. It
works with the normal stdin, stdout, and stderr devices. Keeping
track of what has been entered here could be done fairly easily by
getting all users to invoke it via a wrapper program that logs
terminal input and output.
SupportPac MS0E is a more sophisticated wrapper, which can
also apply further access control checks and will give an audit trail,
showing what has been done locally. The Unix version of MS0E is
modelled after the sudo command; it allows you to have WMQ
administrators who are not in the mqm group. In fact there should
be very little need for any use of the mqm group or mqm User-ID
on systems with MS0E installed.

AUDITING PCF OPERATIONS
The Command Server is conceptually a very simple program. It
reads messages from the SYSTEM.ADMIN.COMMAND.QUEUE,
acts on the instructions inside the message, and puts any
responses to the named reply queue. It continues to loop through
this until it is stopped or the queue manager is ended.

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Note that only one Command Server is permitted for a given queue
manager and the name of its input queue is hard-coded.
Because the Command Server is using MQGET and MQPUT the
messages can be intercepted using the API Exits interface that
was first made available with MQSeries V5.2, but formally supported
across all the distributed platforms on WebSphere MQ V5.3. My
article on API Exits was published in the July 2002 edition of MQ
Update – please refer to that for more information on what can be
done with this very useful extension to WMQ.
One of the nice parts of the API Exit interface is that the queue
manager tells the exit code something about the environment in
which it is running. In this case we can tell immediately whether the
API Exit has been loaded into the Command Server; if it has not,
then no further action is taken.
The cmdlog API Exit module dumps information about every
message that is read from the input queue by the Command
Server. It is formatted to show all the commands and parameters.
It also shows the User-ID that will be used for authorization checks
and where the response is going to be sent to. Knowing the
ReplyToQMgr will allow you to track down who submitted the
command.

THE SOURCE CODE AND HOW TO BUILD IT
The source for this program is contained in a single file, which can
be found at www.xephon.com/extras/cmdlogic.txt.
To compile the program I used the following Makefile. My earlier
article on API Exits gave an example based on Unix systems; this
time I’ve used Windows. The module should compile (with suitably
minor changes) on any of the distributed platforms.

MAKEFILE.NT
 #!include <ntwin32.mak>
 TARGET_DIR=c:\mqm\exits
 # This is where we find the MQSeries header files and libraries
 MQM_INC=c:\mqm\tools\c\include

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 42

 MQM_LIB=c:\mqm\tools\lib\mqm.lib
 # The C compiler
 CPP=cl.exe
 CFLAGS=-c -W3 -Gs- -Z7 -Od -nologo -LD -D_X86_=1
 CDEFINES=-DWIN32 -D_WIN32 -D_MT -D_DLL
 all: inst clean
 inst: cmdlog.dll
 -@rename $(TARGET_DIR)\cmdlog.dll cmdlog.old
 copy cmdlog.dll $(TARGET_DIR)
 cmdlog.dll: $*.obj
 link -nod -nologo -dll @cmdlog.link -out:cmdlog.dll -
 def:cmdlog.def
 cmdlog.obj: cmdlog.c
 $(CPP) $(CFLAGS) $(CDEFINES) cmdlog.c
 # Get rid of files created during the build steps
 clean::
 -@erase *.obj *.pdb
 -@erase cmdlog.exp
 -@erase cmdlog.lib
 -@erase *.bin *.res

On Windows you also need cmdlog.def and cmdlog.link to
complete the build process; these files are not needed on the Unix
platforms.

CMDLOG.DEF
 LIBRARY CMDLOG
 DESCRIPTION 'API Exit for logging remote commands'
 EXPORTS
 EntryPoint

CMDLOG.LINK
 cmdlog.obj
 mqm.lib mqmzf.lib
 msvcrt.lib oldnames.lib kernel32.lib user32.lib

SAMPLE OUTPUT
 [--------] metaylor Fri Jul 25 15:22:45 2ØØ3
 Command : Start Command Server
 [--------] metaylor Fri Jul 25 15:23:11 2ØØ3
 Command : INQUIRE QMGR
 Reply QMgr : 'apix '
 Reply Queue: 'MQAI.REPLY.3F213D34Ø1Ø2ØØ2Ø '
 Parameters :

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 Response : Success
 [--------] metaylor Fri Jul 25 15:23:11 2ØØ3
 Command : INQUIRE CHANNEL
 Reply QMgr : 'apix '
 Reply Queue: 'MQAI.REPLY.3F213D34Ø1Ø2ØØ2Ø '
 Parameters :
 CHANNEL_NAME '*'
 CHANNEL_TYPE 8
 Response : Success
 [--------] metaylor Fri Jul 25 15:23:14 2ØØ3
 Command : INQUIRE QUEUE
 Reply QMgr : 'apix '
 Reply Queue: 'MQAI.REPLY.3F213D34Ø1Ø2ØØ2Ø '
 Parameters :
 Q_NAME '*'
 CLUSTER_INFO 1
 Q_ATTRS
 [Ø] 1ØØ9
 Response : 22 Success(es)
 Ø Warning(s) (Last RC Ø)
 Ø Error(s) (Last RC Ø)
 [--------] metaylor Fri Jul 25 15:57:Ø1 2ØØ3
 Command : INQUIRE QUEUE
 Reply QMgr : 'apix '
 Reply Queue: 'MQAI.REPLY.3F213D34Ø1Ø2ØØ2Ø '
 Parameters :
 Q_NAME 'SYSTEM.DEFAULT.LOCAL.QUEUE'
 Q_TYPE 1
 Q_ATTRS
 [Ø] 1ØØ9
 Response : Success
 [--------] metaylor Fri Jul 25 15:57:Ø4 2ØØ3
 Command : INQUIRE NAMELIST
 Reply QMgr : 'apix '
 Reply Queue: 'MQAI.REPLY.3F213D34Ø1Ø2ØØ2Ø '
 Parameters :
 NAMELIST_NAME '*'
 Response : 2 Success(es)
 Ø Warning(s) (Last RC Ø)
 Ø Error(s) (Last RC Ø)
 [--------] metaylor Fri Jul 25 15:57:Ø4 2ØØ3
 Command : INQUIRE PROCESS
 Reply QMgr : 'apix '
 Reply Queue: 'MQAI.REPLY.3F213D34Ø1Ø2ØØ2Ø '
 Parameters :
 PROCESS_NAME '*'
 Response : Success
 [--------] metaylor Fri Jul 25 15:57:Ø8 2ØØ3
 Command : CHANGE QUEUE
 Reply QMgr : 'apix '

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 44

 Reply Queue: 'MQAI.REPLY.3F213D34Ø1Ø2ØØ2Ø '
 Parameters :
 Q_NAME 'SYSTEM.DEFAULT.LOCAL.QUEUE'
 Q_TYPE 1
 USAGE Ø
 DEF_PERSISTENCE 1
 DEF_PRIORITY Ø
 INHIBIT_GET Ø
 INHIBIT_PUT Ø
 HARDEN_GET_BACKOUT 1
 DEF_INPUT_OPEN_OPTION 2
 MAX_MSG_LENGTH 41943Ø4
 MAX_Q_DEPTH 5ØØØ
 BACKOUT_THRESHOLD Ø
 TRIGGER_MSG_PRIORITY Ø
 TRIGGER_DEPTH 1
 TRIGGER_TYPE 1
 TRIGGER_CONTROL Ø
 RETENTION_INTERVAL 999999999
 MSG_DELIVERY_SEQUENCE Ø
 SHAREABILITY 1
 SCOPE 1
 Q_SERVICE_INTERVAL_EVENT Ø
 Q_DEPTH_LOW_LIMIT 2Ø
 Q_DEPTH_LOW_EVENT Ø
 Q_DEPTH_HIGH_LIMIT 8Ø
 Q_DEPTH_HIGH_EVENT 1
 Q_DEPTH_MAX_EVENT 1
 DIST_LISTS Ø
 Q_SERVICE_INTERVAL 999999999
 DEF_BIND Ø
 Q_DESC ' '
 PROCESS_NAME ' '
 INITIATION_Q_NAME ' '
 BACKOUT_REQ_Q_NAME ' '
 TRIGGER_DATA ' '
 CLUSTER_NAMELIST ' '
 CLUSTER_NAME ' '
 Response : Success
 [--------] metaylor Fri Jul 25 15:57:Ø8 2ØØ3
 Command : INQUIRE QUEUE
 Reply QMgr : 'apix '
 Reply Queue: 'MQAI.REPLY.3F213D34Ø1Ø2ØØ2Ø '
 Parameters :
 Q_NAME 'SYSTEM.DEFAULT.LOCAL.QUEUE'
 Q_TYPE 1
 Q_ATTRS
 [Ø] 1ØØ9
 Response : Success

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

INSTALLATION AND CONFIGURATION
For Unix systems you need to update the qm.ini file for the queue
manager on which the exit will be used. For Windows you can use
the WMQ Services panels to update the registry.
For both styles of configuration you need to give the name of the
module (cmdlog), a sequence number (I used 100), and the
function to be invoked when it is loaded (EntryPoint). On Windows,
the module is a DLL.
Here is a stanza suitable for the qm.ini file on Unix.
 ApiExitLocal:
 Sequence=1ØØ
 Function=EntryPoint
 Module=/var/mqm/exits/cmdlog
 Name=PCFLogger

SECURITY
It’s worth mentioning a couple of aspects of security that are
related to how remote administration is controlled.
First, you need to be careful about whom you allow to put
messages to the command queue. Anyone who can get messages
onto this queue can potentially modify your configuration in
serious ways. Only allow well-controlled User-IDs to put messages
to this queue.
Second, the majority of applications that put messages to this
queue are going to be coming over a remote connection. Make
sure your channels are secure. Do not allow clients to connect into
a channel where the MCAUSER attribute is blank. Use SSL and/
or channel exits to protect the connections. Remember that, when
putting to a target queue, the PUTAUT attribute of a channel can
be used to perform access control based on the message’s User-
ID field instead of the MCA’s User-ID.
There are some products available that can encrypt message
data, decrypting it during the MQGET operation. These can be
very useful for additional authentication and authorization of who
put the PCF message to the command queue. If such products are

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 46

used, the decryption operation needs to be called before the
cmdlog API Exit is invoked. When the security module is implemented
as an API Exit, this can be done easily by modifying the sequence
number in the qm.ini file.

POSSIBLE ENHANCEMENTS
As always there are plenty of developments that could be done
with this code but which I’ve omitted here. Here are some of the
ideas I thought about while writing it.
• Better logging of responses and error codes. The cmdlog exit

only gives details of the command issued with a summary of
the response codes. Problem diagnosis might be easier if the
responses were also expanded along with the detailed error
structures that might be returned. However, I did not feel this
information was needed just for an audit trail.

• There are some operations that you might like to control
remotely but for which there are currently no defined PCF
equivalents. Two examples are the setmqaut and dspmqaut
programs, which must be run on the local machine; they
cannot be executed from a central point.
It would be possible for you to define your own PCF commands
and, when they are recognized by the cmdlog exit, to execute
them directly instead of giving them to the Command Server.
As the API Exit is able to call MQI functions it could send
responses itself to the requesting program. This gives you
extended function while fitting inside the overall WMQ
administration framework.

• You could write tools to summarize the log file generated by the
exit, for example:
– how many remote commands were issued and by whom
– how many errors there were.

• It would also be possible to generate automatically the
FormatCommand and FormatParm functions from the WMQ

 47© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

header files as part of the build process. I didn’t do that this
time but some fairly simple perl or awk/grep code could used
in the Makefile. That would make it easier to update the exit
code whenever there is a new release of WMQ.

SUMMARY
I hope this article has given something that is immediately useful
for audit trails as well as prompting more ideas about what you can
do with API Exits. Perhaps one day WMQ will include some of
these functions in the base product. But until then please use this
code and feel free to modify it.
Mark E Taylor
IBM Hursley (UK) © IBM 2003

MQ news

DataPower Technology, a provider of
intelligent XML-Aware Network (XAN)
infrastructure, has recently announced that
the latest firmware release for its DataPower
XS40 XML Security Gateway and XA35
XML Accelerator network devices includes
support for WebSphere MQ.

This enables direct access to the XML
acceleration and Web services security
features of DataPower’s XAN products for
WMQ applications.

Support for WMQ also makes it possible to
use the XS40 XML Security Gateway as a
wirespeed trusted gateway between internal
WMQ-based Web services and external
HTTP Web services.

For more information contact:
DataPower Technology, One Alewife
Center, 4th Floor, Cambridge, MA 02140,
USA.
Tel: +1 617 864 0455.
Fax: +1 617 864 0458.
Web: http://www.datapower.com

* * *
MQSoftware is this month releasing Version
3.1 of its Q Pasa! middleware management
and monitoring solution.

Version 3.1 adds a Web-enabled
management console that will facilitate
anytime, anywhere authorized access to real-
time data through Q Pasa!’s Business
Dashboard, which is claimed to provide a
consolidated view of what is happening in the
middleware environment in real-time.

For more information contact:
MQSoftware,1660 South Highway 100,
Suite 400, Minneapolis, Minnesota 55416,
USA.
Tel: +1 952 345 8720.
Fax: +1 952 345 8721.
Web: http://www.mqsoftware.com

MQSoftware, Surrey Technology Centre, 40
Occam Road, Surrey Research Park,
Guildford, Surrey, GU2 7YG, UK.
Tel: +44 1483 295400.
Fax: +44 1483 573704.

* * *
IBM has announced the release of V4.2.4 of
WebSphere Business Integration Modeller
and Monitor, products that are claimed to
improve business visibility for fact-based
decision making and optimized business
processes.

New features of the WebSphere Business
Integration Modeller include the WebSphere
Business Integration Workbench, which
enables users to model, and also to represent,
WebSphere MQ Integrator Broker V2.1 and
WebSphere Business Integration Message
Broker V5 flow activities.

Amongst a number of new features in the
latest release of the WebSphere Business
Integration Monitor is the facility to monitor
data and events from WebSphere Business
Integration Message Broker V5 and
WebSphere MQ Integrator Broker V2.1.

For more information contact your local
IBM representative.

* * *

x
xephon

	Fine-tuning WMQI performance
	Error event processing in a WMQI Broker domain
	Using WMQ in J2EE: part two - JMS and the WAS
	MQMON
	Auditing remote administration of WMQ
	MQ news

