

© Xephon plc 2004

January 2004

55

In this issue

MQ

3 Interfacing WMQ with Web
applications

5 Investigating server channel
performance

24 Writing a WMQI Broker input
node

39 Global Unit of Work and two-
phase commit

50 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher. Copying permits are available from Xephon in the form of
pressure-sensitive labels, for application to individual copies. A pack of 240 labels costs $36 (£24),
giving a cost per copy of 15 cents (10 pence). To order, contact Xephon at any of the addresses
above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office
Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Editor
Madeleine Hudson
E-mail: MadeleineH@xephon.com

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £100 ($160) per 1000 words and £50
($80) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £20 ($32) per 100
lines. To find out more about contributing an
article, without any obligation, please
download a copy of our Notes for
Contributors from www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Interfacing WMQ with Web applications

OVERVIEW
Web server platforms such as Active Server Pages (ASP) and
ASP.Net have difficulty connecting to remote queue managers
because their applications run under a local user-ID that can’t
access network resources. This article explores solutions to this
problem.

THE PROBLEM
I base my discussion on the ASP.Net platform; however, the same
problems and solutions also apply to ASP Classic and many
others.
ASP.Net applications and Web services all run under the ASPNET
user-ID. This user-ID is local to the Web server machine and can
belong to local security groups on that machine but not domain
groups on the network. You can grant it access to local resources
but not network resources. This has two implications for WMQ
development:
• If you normally use a network-based channel table to locate

queue managers a local user account cannot access it. When
this happens your attempts to connect to a queue manager will
return a reason code of 2058 – MQRC_QUEUE
MANAGER_NAME_ERROR – even though you specified a
perfectly good queue manager name. The NT event log on the
Web server will show error messages reporting that the WMQ
client cannot find the channel table. The file path will look OK
but it isn’t available to the application since it is a network path.

• The second problem is that WMQ can grant access only to
security IDs it can see, that is domain user-IDs and groups or
user-IDs and groups that are local to the queue manager
machine. When you try to grant ASPNET access to WMQ
resources using SetMQAut you will get an ‘Invalid Principal’
error.

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 4

SOLUTIONS
To solve the channel table problem copy it to the Web server’s
local hard drive and change environment variable MQCHLLIB to
point to the new location.
There are two ways you can make WMQ grant access to
ASPNET; one is to put a queue manager on the Web server
machine. The ASPNET account will be visible to that queue
manager because it is local to that queue manager. Remote queue
managers may be reached via remote queues. Unfortunately,
queue managers are not inexpensive so it may not be cost-
effective to put a queue manager on every one of your Web
servers.
As an alternative to proliferating queue managers there is a way
to trick WMQ into granting access to ASPNET. On the queue
manager machine create a new local user named ASPNET. Add
this user to the appropriate local groups to provide the necessary
access or use the SetMQAut command on that user-ID. After
restarting WMQ your ASP.Net applications will connect to that
queue manager without a problem.

IMPLICATIONS
Most companies have a good reason for putting their channel
table on the network. As new queue managers are added or
existing ones moved to different machines a shared network-
based channel table will always be up-to-date. By switching to a
local channel table you must assume the responsibility for keeping
it current.
A more important issue is this – every ASP.Net application uses
the same user-ID regardless of what machine it is running on.
Therefore, when you grant access to ASPNET you can’t pick and
choose which Web servers you are authorizing – you grant the
same access to every ASP.Net application in your company. This
would be undesirable for queue managers that pass confidential
data.
Although this particular issue cannot be avoided it can be managed.

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

I suggest you designate one of your queue managers as a
‘gateway’ and allow all your ASP.Net applications to connect only
to that one. If you currently use a hub-and-spoke architecture,
where all queue managers connect through a single central queue
manager, I suggest you use that hub as your gateway.
Mills Perry
Zyquest (USA) © Xephon 2004

Investigating server channel performance

This article is aimed at WMQ system administrators and architects
who have an interest in the performance of server channels
between two queue managers. It is an advantage for the reader
to be familiar with the WMQ runmqsc command line processor,
server channel statistics, and general performance concepts.
The primary focus of this article is two of the server channel
statistics, MSGS and BATCHES; three of the server channel
attributes, BATCHSZ, BATCHINT, and NPMSPEED; and the queue
attribute CURDEPTH. These can be queried using the command
line processor runmqsc, WMQ Explorer for Windows, or z/OS
methods, such as CSQUTIL or the ISPF panels.

OVERVIEW OF MSGS AND BATCHES
The number of messages and batches transmitted is a running
total from the time the channel was started – channel start date
‘CHSTADA’ – and channel start time ‘CHSTATI’. When a channel
is restarted some attribute values are reset, including messages
(MSGS) and batches (BATCHES). When a message is transmitted
over a server channel between two queue managers it is transmitted
as part of a batch (preferably on its own in a batch). One or more
messages are transmitted in a single batch, ie at least one, but
never zero.

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 6

Communication data is transmitted between queue managers
outside the scope of a batch – the number of bytes sent
(BYTSSENT) and bytes received (BYTSRCVD) increases while
the channel is active but the number of messages (MSGS) and
batches (BATCHES) may not. The number of bytes sent and
received changes at the heartbeat interval (HBINT) when the two
queue managers transmit data to keep alive the transport
mechanism underpinning the server channel. This ‘outside of
batch scope’ is not discussed in this article; however, the effects
of the heartbeat interval will be examined later.

CALCULATING AN EFFECTIVE BATCH SIZE
The server channel attribute values for MSGS and BATCHES can
be used to derive the effective size of batches being transmitted
over a server channel. The reader may be familiar with the term
‘effective batch size’ from previous discussions of WMQ server
channel performance. It is not a metric generated by the queue
manager; it should be considered as a cumulative rolling average.
The effective batch size is calculated by taking the change in
values for MSGS and BATCHES, ideally (but not necessarily) for
an increment of 1 in the value of BATCHES.
Use the procedure outlined below to record values for MSGS and
BATCHES:
1 To obtain a list of channels:
 DIS CHL(*) TYPE(SDR|SVR|RCVR|RQSTR)

2 To obtain channel attribute values:
 DIS CHS(<CHNAME>) CURRENT ALL

3 Divide the number of MSGS by the number of BATCHES:
– effective batch size=MSGS÷BATCHES (average

messages per batch).
From two attributes with little individual use for monitoring
performance this derived metric uses the total number of messages
transmitted over the channel and the number of batches used to

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

transmit them to determine the ‘effective size’ of each batch of
messages. Using totals in this way the effective size is the
average number of messages in each batch since the channel
was started.
The absolute size of the very next batch can now be found if values
for MSGS and BATCHES can be recorded for an increase of 1 in
the number of batches. If the channel has an even utilization, ie
there are no bursts of messaging, the effective batch size since
the channel was started will approximately follow the effective size
for further batches and there may be no added benefit in obtaining
an absolute size.

BEHAVIOUR IMPACTING EFFECTIVE BATCH SIZE
The channel and queue attributes listed below have an impact on
the effective batch size.
• Channel batch size (BATCHSZ).
• Batch interval (BATCHINT).
• Queue current depth (CURDEPTH).
Application parallelism, non-persistent message speed, and
pipeline length are also discussed in the context of the channel
batch size.
A batch is closed on one of two conditions, the first of which is
when the number of messages in the batch reaches the maximum
batch size for the channel (BATCHSZ). At this point the batch is
closed and no more messages are added. The default for BATCHSZ
is 50 but even under a heavy load it is rare to see the effective
batch size reach this maximum.
The second condition that leads to the batch being closed is at the
point the channel transmission queue becomes empty, ie the
current queue depth (CURDEPTH) is zero. Strictly speaking the
batch is closed only when the batch interval is also zero. If the
effective batch size on a channel is only a fraction of the maximum
batch size this does not indicate a performance problem. The
Message Channel Agent (MCA) is an efficient program and is

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 8

dedicated to the task of processing and transmitting batches.
The effective batch size of a channel can be increased if the
transmission queue depth can be prevented from becoming empty
so quickly. The simplest way to achieve this is to increase the
parallelism of messaging applications using that channel. The
reader should not use the batch interval for increasing the
effective batch size unless they understand the circumstances
where it should be used.
If the batch interval is greater than zero when the channel
transmission queue is empty the batch interval timer is started.
When the timer reaches the value of the batch interval the batch
is closed. If a message arrives on the transmission queue while
the timer is running, the message is added to the batch and the
timer is not reset.
The batch interval provides a window of opportunity for increasing
the batch size by keeping the batch open while the channel
transmission queue is empty.
The default batch interval is zero since, normally, when the
transmission queue is empty, it is undesirable to introduce delay
before closing the batch. However, for small batches in certain
situations a short delay in waiting for the next message to arrive
and adding it to the current batch can provide a performance
enhancement. With a batch interval of zero the next message
arrives on the transmission queue while the MCA is processing
the last batch and there is a delay waiting for the previous batch
to complete (see the following section on pipeline length).
It is useful to remember that, while a larger batch has a greater
processing cost, the cost per message is lower and fewer batches
need to be transmitted for the same number of messages.
Although the batch size can be reduced to allow the effective batch
size (MSGS÷BATCHES) to reach its maximum, this does not
provide superior performance. The default maximum batch size is
configured at 50 because this is a number where the batch
processing cost per message is low; adding more messages to
the batch does not significantly reduce the per-message cost.

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Furthermore, the larger the batch the more data is transmitted over
the channel and the longer the time can be in waiting for messages
to be delivered to the destination queue.

NON-PERSISTENT MESSAGE SPEED
Using the default non-persistent message speed (NPMSPEED) of
‘FAST’, non-persistent messages can be transmitted over the
channel outside of syncpoint (ie not part of a Unit of Work). These
messages are visible on the destination queue before persistent
messages and this can be misconstrued as non-persistent
messages overtaking persistent messages on the channel.
For each batch of messages the MCA performs end-of-batch
processing. During this phase non-persistent (when NPMSPEED
is set to ‘NORMAL’) and persistent messages are committed by
the sending and receiving MCAs. The messages in the batch
arrive in the same order that they are sent but, because a
persistent message appears on a queue only when the Unit of
Work that it is part of is committed, a non-persistent message sent
as part of the same batch (when NPMSPEED is FAST) can
become visible on the destination queue first.
It is important to note that, when using an NPMSPEED of FAST,
if there is a communication failure while the MCAs are transmitting
or committing the batch, persistent messages will be returned to
the sending MCA and non-persistent messages will either be
delivered to the receiving MCA or dropped en route because they
are not part of the MCA Unit of Work.
Considering these factors, it is no surprise to hear that both
persistent and non-persistent messages contribute to the batch
size.

Pipeline length
When a batch is closed the MCA performs end of batch. Some
queue managers can be configured to use two threads of control
in the MCA (Channels stanza, PipelineLength=2) so that during
end of batch processing the second thread can start a new batch

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 10

while the first thread of control is still handling a batch. This is
particularly useful for channels with a long ‘line turn-around’ time
(as discussed earlier in the context of batch interval).

INSTALLING THE MONITORING SCRIPT
Copy the monitoring script (BATCHSZ, included below) to a
sensible place on the queue manager machine. PERL is the only
prerequisite; there are no other files, modules, or packages
required by the script. The script has been tested on Windows and
HP-UX. Invoking the script with ‘-h’ gives a usage statement.
A variation of the tool provided was used by the author to measure
the effective batch size for a few high-utilization, high-throughput
server channels and, separately, for a few randomly selected
(from thousands of active channels) low-utilization, low-throughput
server channels. This was to ensure that there were messages
flowing across those channels at an anticipated frequency between
two iterations of the script.

LIMITATIONS OF A MANUAL TECHNIQUE
The manual technique is not good for monitoring a number of
channels on an iterative basis. The quickest method of querying
the queue manager channel of interest is to name channels
similarly or use the smallest subset of DISPLAY CHSTATUS
commands, using wildcard matching where possible and reducing
the attributes to the minimum: MSGS and BATCHSZ.

LIMITATIONS OF AN AUTOMATED TECHNIQUE
Although an automated technique is easiest, when a channel is in
use the data collected becomes very quickly outdated. The more
channels queried the more intrusive and more time-consuming the
process becomes, which can introduce contention for system
resources; so much so that with thousands of channels it is not
possible to take a subsequent measurement for each channel until
all the channels have been queried. Alternatively, if quick,
successive measurements are taken for the same channel

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

(attempting to record a single increase in the number of transmitted
batches), subsequent channels may not be queried until some
time after the measurements for earlier channels.

SUMMARY
The important points to note from this article are:
• Persistent and non-persistent messages contribute to the

batch size.
• The maximum number of messages sent or received in a

batch is limited by the server channel attribute BATCHSZ.
• A batch of messages is sent over the channel when either:

– the maximum number of messages in one batch is reached,
or

– the transmission queue is empty and the batch interval
has expired.

• The batch interval should not be used to drive up batch size.
This attribute should be tuned and the effective batch size
observed.

• The effective batch size can be derived by dividing the number
of MSGS by the number of BATCHES.

• A small, effective batch size does not necessarily indicate bad
performance. It is important to note that you should not reduce
BATCHSZ to allow the effective batch size to reach this value.

BATCHSZ
#!/usr/bin/perl
batchsz.pl
Copyright International Business Machines Corporation 1998,2ØØ1
Change History:
use strict;
$| = 1;
my $OUTPUT = Ø;
my %qmname = (
);

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 12

my ($qmname, $channel_name_prefix, $number_of_channels) = (undef,
undef, Ø);
my ($bytes_threshold, $msgs_threshold, $batches_threshold) = (Ø, Ø, Ø);
print "WebSphere MQ Channel Performance Tool\n";
print "(C)IBM 2ØØ3. Version 2.Ø, 7th Oct 2ØØ3\n";
print "WebSphere MQ Performance Group, SWG\n";
print "\n";
my @qmname;
my %params = ();
my $METHOD = undef;
my %MQSC;
my $CHSTATUS_ALL = 1;
my %STATUS;
my %STATUS_init = (
 'STARTING' => Ø,
 'BINDING' => Ø,
 'INITIALIZING' => Ø,
 'RUNNING' => Ø,
 'STOPPING' => Ø,
 'RETRYING' => Ø,
 'PAUSED' => Ø,
 'STOPPED' => Ø,
 'REQUESTING' => Ø,
);
my %BYTSSENT_total = ();
my %BYTSRCVD_total = ();
my %MSGS_total = ();
my %BATCHES_total = ();
my $spin_text = '-\|/';
my $spin_counter = Ø;
my $spin_length = length($spin_text);
if ($#ARGV == Ø && ($ARGV[Ø] eq '-?' or $ARGV[Ø] eq '-h')) {
 &usage;
 &help;
 exit(Ø);
}
my ($interval, $count) = (Ø, 1);
if ($#ARGV >= 1) {
 $interval = shift @ARGV;
 $count = shift @ARGV;
} elsif ($#ARGV != 2 and $#ARGV != 3) {
 &usage;
 exit(Ø);
}
if ($^O !~ /Win32/i && $#ARGV == -1) {
 print "Finding active queue manager(s) using 'amqzxmaØ -m'...\n";
 $METHOD = '(discovered)';
 my @pids = 'ps -ef | grep "amqzxmaØ -m" | grep -v grep';
 if ($#pids >= Ø) {
 for (my $p = Ø; $p <= $#pids; $p++) {

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 chomp($pids[$p]);
 $pids[$p] =~ s/^.*amqzxmaØ\s+\S+\s+(\S+)\s*$/$1/;
 next if (!defined($qmname{$pids[$p]}));
 print "Found active queue manager: $pids[$p]\n";
 push (@qmname, $pids[$p]);
 }
 } else {
 print "No active queue manager(s) found\n";
 }
 print "\n";
} else {
 $METHOD = '(manual)';
}
if ($#ARGV >= 1) {
 $qmname[Ø] = shift @ARGV;
 $channel_name_prefix = shift @ARGV;
 if ($#ARGV >= Ø) {
 $number_of_channels = shift @ARGV;
 }
 if ($#ARGV == Ø) {
 $bytes_threshold = shift @ARGV;
 }
}
if ($#ARGV >= Ø) {
 &usage;
 exit(Ø);
}
print "Parameters $METHOD:\n";
print "- qmname(s) : ".join(', ', @qmname)."\n";
print "- channel_name_prefix: $channel_name_prefix\n";
print "- number_of_channels : $number_of_channels\n";
print "- bytes_threshold : $bytes_threshold\n";
print "\n";
if ($count > 1) {
 print "Iterating $count time(s) at sleep frequency: $interval
second(s)\n";
 print "Note: sleep can be pre-empted by sending SIGALRM to pid:
$$\n";
 print "\n";
}
for (my $c = Ø; $c < $count; $c++) {
 if ($count > 1) {
 print "Iteration number ".($c+1)." of $count\n";
 print "\n";
 }
 &get_all_channel_throughput;
 if ($c == $count-1) {
 } else {
 print "".($count-$c-1)." more iteration(s) to go\n";
 print "Going to sleep for $interval second(s)...\n";

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 14

 print "\n";
 sleep($interval);
 }
}
exit(Ø);
sub reset_spinner
{
 $spin_counter = Ø;
 print "\n";
}
sub update_spinner
{
 my ($prefix, $suffix) = (shift, shift);
 print "\r$prefix ".substr($spin_text, $spin_counter, 1)." $suffix";
 $spin_counter++;
 if ($spin_counter >= $spin_length) {
 $spin_counter = Ø;
 }
}
sub get_localtime
{
 my $time = localtime(time);
 $time =~ s/(\s+)/\ /g;
 return ($time);
}
sub get_channel_throughput
{
 my ($cmd, $c, $qmname) = (shift, shift, shift);
 my $rc = Ø;
 my (@BYTSSENT, @BYTSRCVD, @MSGS, @BATCHES);
 if ($cmd =~ /\s+CHS\w*\(/i) {
 if (open(MQSC, "echo '$cmd' | runmqsc $qmname |")) {
 while (my $mqsc = <MQSC>) {
 chomp($mqsc);
 if ($mqsc =~ /AMQ8147/) {
 print "\n** Warning: WebSphere MQ object not found **\n";
 return (-1, undef, undef);
 last;
 }
 }
 close(MQSC);
 }
 }
 if (!$CHSTATUS_ALL) {
 if ($cmd =~ /\sALL\s*$/i) {
 $CHSTATUS_ALL = 1;
 }
 }
 if (open MQSC, "echo '$cmd' | runmqsc $qmname |") {
 my $rc = 1;

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 my ($BYTSSENT_is_same, $BYTSSENT_below_threshold, $BYTSSENT) = (Ø,
Ø, -1);
 my ($BYTSRCVD_is_same, $BYTSRCVD_below_threshold, $BYTSRCVD) = (Ø,
Ø, -1);
 my ($MSGS_is_same, $MSGS_below_threshold, $MSGS) = (Ø,
Ø, -1);
 my ($BATCHES_is_same, $BATCHES_below_threshold, $BATCHES) = (Ø,
Ø, -1);
 while (my $mqsc = <MQSC>) {
 chomp($mqsc);
 if ($mqsc =~ /AMQ8118/) {
 print "\n** Warning: queue manager '$qmname' does not exist
**\n";
 $rc = Ø;
 last;
 }
 if ($mqsc =~ /AMQ8146/) {
 print "\n** Warning: queue manager '$qmname' is not started
**\n";
 $rc = Ø;
 last;
 }
 if ($mqsc =~ /AMQ842Ø/) {
 print "\n** Warning: channel status not found **\n";
 next;
 }
 if ($mqsc =~ /STATUS/) {
 $mqsc =~ s/STATUS\((\w+)\s*\)/$1/;
 $STATUS{$1}++;
 }
 if ($CHSTATUS_ALL) {
 if ($mqsc =~ /BYTSSENT/) {
 $mqsc =~ /BYTSSENT\((\d+)\s*\)/;
 $BYTSSENT = $1;
 ($BYTSSENT_is_same, $BYTSSENT_below_threshold) =
 do_threshold($BYTSSENT, $bytes_threshold, $c, "BYTSSENT");
 }
 if ($mqsc =~ /BYTSRCVD/) {
 $mqsc =~ /BYTSRCVD\((\d*).*\)/;
 $BYTSRCVD = $1;
 ($BYTSRCVD_is_same, $BYTSRCVD_below_threshold) =
 do_threshold($BYTSRCVD, Ø, $c, "BYTSRCVD");
 }
 if ($mqsc =~ /MSGS/) {
 $mqsc =~ /MSGS\((\d+)\s*\)/;
 $MSGS = $1;
 ($MSGS_is_same, $MSGS_below_threshold) =
 do_threshold($MSGS, $msgs_threshold, $c, "MSGS");
 }
 if ($mqsc =~ /BATCHES/) {

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 16

 $mqsc =~ /BATCHES\((\d+)\s*\)/;
 $BATCHES = $1;
 ($BATCHES_is_same, $BATCHES_below_threshold) =
 do_threshold($BATCHES, $batches_threshold, $c, "BATCHES");
 }
 }
 }
 close (MQSC);
 my @BYTSSENT = ($BYTSSENT_is_same, $BYTSSENT_below_threshold,
$BYTSSENT);
 my @BYTSRCVD = ($BYTSRCVD_is_same, $BYTSRCVD_below_threshold,
$BYTSRCVD);
 my @MSGS = ($MSGS_is_same, $MSGS_below_threshold,
$MSGS);
 my @BATCHES = ($BATCHES_is_same, $BATCHES_below_threshold,
$BATCHES);
 return ($rc, \@BYTSSENT, \@BYTSRCVD, \@MSGS, \@BATCHES);
 } else {
 print "** Error: failed to invoke runmqsc for queue manager
'$qmname' **\n";
 return (Ø);
 }
}
sub do_threshold
{
 my ($value, $value_threshold, $c, $name) = (shift, shift, shift,
shift);
 my ($value_is_same, $value_below_threshold) = (Ø, Ø);
 my ($hash, $array) = ("", "");
 if ($c > Ø) {
 $hash = "$c:";
 $array = "[$c]";
 }
 if (defined($MQSC{$hash.$name})) {
 $MQSC{$hash.$name.'~'} = $MQSC{$hash.$name};
 if ($MQSC{$hash.$name} == $value) {
 $value_is_same = 1;
 } elsif ($value_threshold > Ø) {
 my $previous = $MQSC{$hash.$name.'~'};
 my $present = $value;
 if (abs($previous-$present) < $value_threshold) {
 $value_below_threshold = 1;
 }
 }
 }
 $MQSC{$hash.$name} = $value;
 print $name.$array.'='.$MQSC{$hash.$name}."\n" if ($OUTPUT);
 return ($value_is_same, $value_below_threshold);
}
sub get_all_channel_throughput

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

{
 print "Preparing to invoke WebSphere MQ command console 'runmqsc'
for: ";
 for (my $m = Ø; $m <= $#qmname; $m++) {
 print $qmname[$m];
 if ($m < $#qmname) {
 print ", ";
 }
 }
 print "\n";
 my @revisedqm;
 for (my $m = Ø; $m <= $#qmname; $m++) {
 print "Invoking command console to query queue manager
'$qmname[$m]'...\n";
 if (open (MQSC, "echo 'DIS QMGR' | runmqsc $qmname[$m] |")) {
 my ($AMQ8118, $AMQ8146) = (Ø, Ø);
 while (my $mqsc = <MQSC>) {
 chomp($mqsc);
 print "MQSC: $mqsc\n" if ($OUTPUT);
 if ($mqsc =~ /AMQ8118/) {
 print "** Warning: queue manager '$qmname[$m]' does not exist
**\n";
 $AMQ8118 = 1;
 last;
 }
 if ($mqsc =~ /AMQ8146/) {
 print "** Warning: queue manager '$qmname[$m]' is not started
**\n";
 $AMQ8146 = 1;
 last;
 }
 }
 push (@revisedqm, $qmname[$m]) if (!$AMQ8118 and !$AMQ8146);
 close(MQSC);
 } else {
 print "** Error: failed to invoke runmqsc for queue manager
'$qmname[$m]' **\n";
 }
 print "\n";
 }
 if ($#revisedqm != $#qmname) {
 print "** Warning: ";
 print "non-existent and inactive queue managers will not be invoked
**\n";
 print "\n";
 }
 @qmname = @revisedqm;
 if ($#qmname < Ø) {
 print "There are no remaining active queue managers to work
with\n";

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 18

 print "=> Exited normally\n";
 exit(Ø);
 }
 print "Start time is: ".&get_localtime()."\n";
 print "\n";
 FOR: for (my $m = Ø; $m <= $#qmname; $m++) {
 %STATUS = %STATUS_init;
 my $qmname = $qmname[$m];
 my (@BYTSSENT_same_list, @BYTSSENT_below_list);
 $BYTSSENT_total{$qmname.'~'} = $BYTSSENT_total{$qmname};
 $BYTSSENT_total{$qmname} = Ø;
 my (@BYTSRCVD_same_list, @BYTSRCVD_below_list);
 $BYTSRCVD_total{$qmname.'~'} = $BYTSRCVD_total{$qmname};
 $BYTSRCVD_total{$qmname} = Ø;
 my (@MSGS_same_list, @MSGS_below_list);
 $MSGS_total{$qmname.'~'} = $MSGS_total{$qmname};
 $MSGS_total{$qmname} = Ø;
 my (@BATCHES_same_list, @BATCHES_below_list);
 $BATCHES_total{$qmname.'~'} = $BATCHES_total{$qmname};
 $BATCHES_total{$qmname} = Ø;
 if ($^O !~ /Win32/i) {
 print "Cursory check for active channel(s) for queue manager
'$qmname' ";
 print "using 'amqcrsta -m'...\n";
 }
 my @pids = ();
 if ($^O !~ /Win32/i) {
 push (@pids, 'ps -ef | grep "amqcrsta" | grep $qmname | grep -v
grep');
 push (@pids, 'ps -ef | grep "runmqlsr" | grep $qmname | grep -v
grep');
 }
 if ($^O =~ /Win32/i || $#pids >= Ø) {
 if ($^O !~ /Win32/i) {
 print "Found ".($#pids+1)." active channel(s) for queue manager
'$qmname'\n";
 if ($number_of_channels != $#pids+1) {
 print "\n";
 print "** Warning: parameter ";
 print "'number_of_channels' different to active channels
**\n";
 print "** Warning: number_of_channels=$number_of_channels, ";
 print "active channels=".($#pids+1)." **\n";
 print "\n";
 }
 }
 print "Invoking command console to query channel(s) ";
 print "for queue manager '$qmname'...\n";
 my ($cmd, $spinner, $spooner) = (undef, '', '');
 my ($rc, $c) = (Ø, Ø);

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 my ($BYTSSENT_is_same, $BYTSSENT_below_threshold, $BYTSSENT);
 my ($BYTSRCVD_is_same, $BYTSRCVD_below_threshold, $BYTSRCVD);
 my ($MSGS_is_same, $MSGS_below_threshold, $MSGS);
 my ($BATCHES_is_same, $BATCHES_below_threshold, $BATCHES);
 while (1) {
 # WebSphere MQ Command Reference: channel-name max length 2Ø
characters
 if ($number_of_channels == Ø) {
 $cmd = "DIS CHS($channel_name_prefix) ALL";
 $c = -1;
 } else {
 $cmd = "DIS CHS($channel_name_prefix".sprintf("%-2Ød", $c).")
ALL";
 }
 if (defined($number_of_channels) && $number_of_channels > Ø) {
 last if ($c > $number_of_channels);
 $spinner = "$cmd: ";
 $spooner = "(".sprintf("%3d", ($c+1)/
$number_of_channels*1ØØ)."%)";
 }
 &update_spinner($spinner, $spooner);
 my @list = &get_channel_throughput($cmd, $c, $qmname);
 if ($CHSTATUS_ALL) {
 $rc = shift @list;
 last if ($rc == Ø);
 my $BYTSSENT_ref = shift @list;
 my @BYTSSENT = @$BYTSSENT_ref;
 ($BYTSSENT_is_same, $BYTSSENT_below_threshold, $BYTSSENT) =
@BYTSSENT;
 my $BYTSRCVD_ref = shift @list;
 my @BYTSRCVD = @$BYTSRCVD_ref;
 ($BYTSRCVD_is_same, $BYTSRCVD_below_threshold, $BYTSRCVD) =
@BYTSRCVD;
 my $MSGS_ref = shift @list;
 my @MSGS = @$MSGS_ref;
 ($MSGS_is_same, $MSGS_below_threshold, $MSGS) = @MSGS;
 my $BATCHES_ref = shift @list;
 my @BATCHES = @$BATCHES_ref;
 ($BATCHES_is_same, $BATCHES_below_threshold, $BATCHES) =
@BATCHES;
 }
 if ($m < $#qmname) {
 print "Intermediate end time: is ".&get_localtime()."\n";
 print "\n";
 }
 if ($rc == -1) {
 my $prematurely = '';
 if ($c < $number_of_channels) {
 $prematurely = ' prematurely';
 }

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 20

 print "** Warning: channel processing ended$prematurely at ";
 print "$c of $number_of_channels requested channel(s) **\n";
 next FOR;
 }
 if ($CHSTATUS_ALL) {
 if ($BYTSSENT_is_same) {
 push (@BYTSSENT_same_list, $c);
 }
 if ($BYTSSENT_below_threshold) {
 push (@BYTSSENT_below_list, $c);
 }
 if ($BYTSRCVD_is_same) {
 push (@BYTSRCVD_same_list, $c);
 }
 if ($BYTSRCVD_below_threshold) {
 push (@BYTSRCVD_below_list, $c);
 }
 if ($MSGS_is_same) {
 push (@MSGS_same_list, $c);
 }
 if ($MSGS_below_threshold) {
 push (@MSGS_below_list, $c);
 }
 if ($BATCHES_is_same) {
 push (@BATCHES_same_list, $c);
 }
 if ($BATCHES_below_threshold) {
 push (@BATCHES_below_list, $c);
 }
 }
 if ($BYTSSENT >= Ø) {
 $BYTSSENT_total{$qmname} += $BYTSSENT;
 }
 if ($BYTSRCVD >= Ø) {
 $BYTSRCVD_total{$qmname} += $BYTSRCVD;
 }
 if ($MSGS >= Ø) {
 $MSGS_total{$qmname} += $MSGS;
 }
 if ($BATCHES >= Ø) {
 $BATCHES_total{$qmname} += $BATCHES;
 }
 $c++;
 last if ($c == $number_of_channels);
 }
 &reset_spinner;
 my $total = Ø;
 print "Channel STATUS statistics for queue manager '$qmname':\n";
 foreach my $status (keys %STATUS) {
 next if ($STATUS{$status} <= Ø);

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 my $field = sprintf("%-12s", $status);
 print "- $field: ".$STATUS{$status}."\n";
 $total += $STATUS{$status};
 }
 if (defined($number_of_channels)) {
 print "=> ";
 if ($number_of_channels == Ø) {
 print "status found for requested channel
'$channel_name_prefix'\n";
 } elsif ($total == $number_of_channels) {
 print "status found for all requested $total channel(s)\n";
 } else {
 print "status not found for ".($number_of_channels-$total);
 print " channel(s)\n";
 }
 }
 if ($number_of_channels > Ø) {
 print "Note: there are no channels for queue manager '$qmname'
in any other state\n";
 }
 if ($BYTSSENT_total{$qmname} >= Ø) {
 if ($BYTSSENT_total{$qmname} == Ø) {
 print "No channel throughput measured for queue manager
'$qmname'\n";
 } else {
 print "Channel statistics for queue manager '$qmname':\n";
 print "- BYTSSENT : $BYTSSENT_total{$qmname}\n";
 print "- BYTSRCVD : $BYTSRCVD_total{$qmname}\n";
 print "- MSGS : $MSGS_total{$qmname}\n";
 print "- BATCHES : $BATCHES_total{$qmname}\n";
 if ($BYTSSENT_total{$qmname.'~'} > Ø) {
 my $sent = $BYTSSENT_total{$qmname}-
$BYTSSENT_total{$qmname.'~'};
 my $rcvd = $BYTSRCVD_total{$qmname}-
$BYTSRCVD_total{$qmname.'~'};
 my $bytes = $sent + $rcvd;
 print "=> $bytes additional byte(s) on this iteration\n" if
($bytes > Ø);
 my $msgs = $MSGS_total{$qmname}-$MSGS_total{$qmname.'~'};
 my $batches = $BATCHES_total{$qmname}-
$BATCHES_total{$qmname.'~'};
 print "=> $msgs msg(s) and $batches batch(es) this
iteration\n" if ($msgs > Ø);
 }
 }
 }
 } elsif ($^O !~ /Win32/i) {
 print "Found no active channels for queue manager '$qmname'\n";
 }
 if ($CHSTATUS_ALL) {

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 22

 if ($OUTPUT) {
 print "\n";
 for (my $s = Ø; $s < $#BYTSSENT_same_list; $s++) {
 print "** Warning:
CHL($channel_name_prefix$BYTSSENT_same_list[$s])";
 print " BYTSSENT no change **\n";
 }
 } elsif ($#BYTSSENT_same_list >= Ø) {
 print "\n";
 print "** Warning: ".($#BYTSSENT_same_list+1)." channel(s)";
 print " BYTSSENT no change **\n";
 } elsif ($#BYTSSENT_below_list < Ø and $#BYTSSENT_same_list < Ø)
{
 if (defined($BYTSSENT_total{$qmname.'~'})) {
 if ($BYTSSENT_total{$qmname} > $BYTSSENT_total{$qmname.'~'})
{
 print "\n";
 if ($number_of_channels == Ø) {
 print "Channel BYTSSENT changed this interation\n";
 } else {
 print "All channels BYTSSENT changed this interation\n";
 }
 }
 }
 }
 if ($#BYTSSENT_below_list >= Ø) {
 print "** Warning: ".($#BYTSSENT_below_list+1)." channel(s)
BYTSSENT";
 print " change below threshold '$bytes_threshold' **\n ";
 } elsif ($bytes_threshold > Ø and
defined($BYTSSENT_total{$qmname.'~'})) {
 if ($BYTSSENT_total{$qmname} > $BYTSSENT_total{$qmname.'~'}) {
 if ($number_of_channels == Ø) {
 print "Channel above BYTSSENT threshold this iteration\n";
 } else {
 print "All channels above BYTSSENT threshold this
iteration\n";
 }
 }
 }
 }
 print "\n";
 }
 print "End time is: ".&get_localtime()."\n";
 print "\n";
}
sub usage
{
 print "usage: perl batchsz.pl <interval> <count> [options...]\n";
 print "options => qmname : queue manager name\n";

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 print " channel_name : server channel name\n";
 print " number_of_channels : number of channels\n";
 print " BYTSSENT_below_threshold: threshold number of
bytes\n";
 print "For Example:\n";
 print "\$ perl chanperf.pl 12Ø 2 QMGR CHANNEL 1ØØØ 2Ø48\n";
}
sub help
{
#print "\$ perl batchsz.pl 12Ø 2 QMGR CHANNEL 1ØØØ 2Ø48\n";
 print ' | | | | | |'."\n";
 print " (1) (2,3) (4) (5) (6)\n";
 print "Commentary:\n";
 print " 1. wait two minutes between interations\n";
 print " 2. make two iterations\n";
 print " 3. use the queue manager called 'QMGR'\n";
 print " (passed to the DISPLAY QMGR in runmqsc)\n";
 print " 4. use the channel prefix name 'CHANNEL'\n";
 print " (passed to the DISPLAY CHANNEL and DISPLAY CHSTATUS in
runmqsc)\n";
 print " 5. use one thousand channels\n";
 print " *(i.e. CHANNELØ, CHANNEL1, CHANNEL999)\n";
 print " 6. set the bytes sent threshold required increase to 2Ø48
bytes\n";
 print " (a warning is given when the increase between two
consecutive\n";
 print " DISPLAY CHSTATUS(CHANNEL*) BYTSSENT values are less than
the\n";
 print " threshold required increase)\n";
 print "*Note: this version of the tool must start at channel Ø
(zero)\n";
 print "\n";
 print "\$ perl batchsz.pl 1Ø 2 QMGR QMA.TO.QMB Ø\n";
 print "Commentary:\n";
 print " Similar to before, but only query channel 'QMA.TO.QMB'\n";
 print " Do not impose a threshold in the number of bytes sent\n";
}
1;

Alexander Russell
IBM Hursley (UK) © IBM 2004

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 24

Writing a WMQI Broker input node

INTRODUCTION
In 2000, when IBM delivered WebSphere MQ Integrator (WMQI)
V2.0, the product was able to process only WMQ messages
although it was positioned to handle any kind of input message.
Over time, WMQI delivered other input nodes for WMQ Everyplace
and SCADA devices.
Since the release of V2.1 of WMQI and WMQI Broker it has been
possible to develop user-defined input nodes that allow message
flows to process input messages from other sources.
This article describes our experience of developing a Timer Input
node for WebSphere Business Integration for Financial Networks
(WBI for FN). To understand the environment in which the Timer
Input node is used we start with a general overview of the Timer
Service. We go on to discuss the special tasks required when
creating an input plug-in node compared with writing a ‘normal’
message processing plug-in. It is assumed that readers know how
to write a message processing plug-in.

OVERVIEW
The WMQI Broker documentation lists several potential reasons
for writing input nodes: for example, there could be a need to use
a specific file or database as message flow input and not an MQ
queue. Such a situation applied to the Timer Service of WBI for FN.
The overall structure of this service is shown in Figure 1.
This Timer Service provides a wake-up mechanism for other
services, which can request timer event messages at a specified
time or after a specified duration. The Timer Service generates
these timer events and sends them as WMQ messages to the
requesting service.
The Timer Service consists of a Timer Interface and a Timer

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Wake-up Processor. These parts communicate using a common
database. The main reason for using a database is that it enables
multiple brokers to access data simultaneously and the information
is persistent so it will survive a broker restart.
The Timer Interface is an API that can be used within a WMQI
Broker message flow. It is available as a set of nodes that a
developer can use in the same way as any WMQI Broker node.
The interface comprises a node used to request timer events as
well as a node to cancel timer events that have already been
scheduled.

WBI for FN Instance

Application/
service

Request

Timer
Interface

!!!!!

!!!!! !!!!!

Timer
Wake-up
Processor

Wake-up Wake-up Wake-up

Scan database
Delete record

Insert/delete
record

!!!!!
!!!!!

Insert/delete
record

!!!!!

!!!!!

Figure 1: Structure of the WBI for FN Timer Service

Application/
service

Request

!!!!!

Other
services

!!!!!

Timer
Interface

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 26

For the node used to request timer events a user specifies the time
when the event is to occur. This is called the wake-up time.
Together with the wake-up time any additional information, such as
the destination queue name for the timer event message, has to
be passed with the message. This information is stored in the
common timer database.
The wake-up time in the timer event indicates when a wake-up
message is to be sent to trigger another service. For this task the
Timer Service provides a message flow that regularly checks the
timer database for expired timer events. If one is detected the
message flow issues an MQPUT, using the MQOutput node
provided by WMQI Broker to invoke the requested service via a
WMQ message.
This message flow is called the Timer Wake-up Processor. The
general structure of this message flow is shown in Figure 2. To
start processing of the logic within the message flow on a regular
basis, a special input node is needed.
Except for the special input node, the required processing reads
expired events from the database, formats the wake-up messages
as necessary, and sends them to the WMQ queue stored within
the timer event.
The Timer Input node, the special input node, was implemented as
part of WBI for FN. This node creates input messages for the flow
and propagates them to the subsequent node in the message flow

Figure 2: General layout of the Timer Wake-up Processor

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

through its out terminal. A compute node was used to get the
expired events from the database and generate the wake-up
messages; another compute node handles addressing the correct
queue, and an MQOutput node sends the message.
Getting entries out of a database table, formatting messages, and
sending them to an arbitrary queue are standard operations within
WMQ Broker and are not shown in the general structure illustrated
in Figure 2.
The setup of the Timer Wake-up Processor consists of several
nodes that ensure both the main functionality needed in the
message flow and the reusability of the input node.
When implementing the Timer Wake-up Processor the following
design points require consideration:
• Whether the message flow should process one timer event at

a time or all expired events at once.
• How the checks on the database should be carried out.
The ideal operation of the Timer Wake-up Processor message
flow would be for the expired timer events to be processed at the
time of expiry and the wake-up messages to be created and sent
immediately. This would require real-time checks for changes in
the common timer database. Unfortunately, real-time checks
usually require a lot of resources in terms of CPU cycles and I/O
bandwidth so it was decided to do the checking at defined intervals
only.
For the interval processing it was decided to use a node attribute
to control the time between the creation of messages. The
attribute PollingInterval specifies the number of seconds the node
has to wait between the creation of every new message.
The disadvantage of this approach is that it creates an inaccuracy
in the delivery time of the wake-up messages. For example, if the
polling interval value is one minute, in the worst case a wake-up
message for a timer event could be delivered one minute too late
because the Timer Wake-up Processor checked for expired timer
entries immediately before the entry expired and the entry would

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 28

have to wait another minute (until the next polling interval expires)
before a wake-up message could be sent.
This means that the accuracy of the Timer Wake-up Processor
depends on the value of the PollingInterval attribute of the Timer
Input node. This is usually acceptable and because all expired
timer events are processed at once, with every message flow
execution, this setup requires fewer resources than a real-time
check as described above.

Root

Properties MQMD MQRFH2

ComIbmDni

Figure 3: Message structure created by the Timer Input plug-in
node

To ensure the reusability of the input node the structure of the input
message is important. The folders generally used for processing
in WMQI Broker are the MQMD and the MQRFH2. WBI for FN
uses these two folders and a NameValueData section in the
MQRFH2 folder for its internal processing data. Because the
Timer Input node is currently used only within the WBI for FN
environment, the Timer Input node creates a valid WBI for FN
message.
The structure of the message is shown in Figure 3. The Properties
folder in this figure is part of the structure required by WMQI
Broker. For details of the message structure you should refer to
the WMQI Broker documentation.

THE NODE INTERFACE
Because the Timer Input node is used by several message flows

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

it was an important design consideration that it should be capable
of being changed or enhanced without necessitating a change in
the flows that use it.
It was decided, therefore, to encapsulate this node into a subflow.
This allows the implementation of the node to be changed while
leaving the interface to the node unchanged, eg by adding WMQI
Broker nodes to the corresponding subflow.
Figure 4 shows subflow DniGenerateMessage, which
encapsulates the Timer Input node DniCTP. DniGenerateMessage
is the external interface for a message flow developer using the
Timer Input function.

Terminals of the Timer Input node
The Timer Input node has two output terminals: an out terminal and
a catch terminal. The Timer Input node propagates a message to
the out terminal every time the specified timer interval is expired.
The catch terminal is used when an error occurs during the
processing of the Timer Input node. Once this occurs the message
flow developer can send a message to an operator, who then can
resolve the problem.

Figure 4: DniGenerateMessage subflow encapsulating the
Timer Input plug-in

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 30

Properties of the Timer Input node
The Timer Input node has two properties:
• The polling interval (PollingInterval). The value of the

PollingInterval property specifies the amount of time in seconds
that needs to be between two messages that are sent to the
node’s out terminal.

• The name of a WBI for FN organizational unit (OU). The OU
property is needed as an attribute of a valid WBI for FN
message. An organizational unit in WBI for FN is used to
separate resources within the processing of a message flow
and for access control within a message flow. Further
information about organizational units within WBI for FN can
be found in the support documentation.

IMPLEMENTATION ISSUES
The WBI for FN Timer Input node is a WMQI Broker plug-in that is
implemented using the C interface to the broker. Its interface
consists of two parts:
• Implementation functions, which are called by the broker

during initialization and runtime. They must be implemented by
the plug-in developer.

• Utility functions, which provide functionality for the plug-in’s
internal processing, for example, to manipulate a message or
to request a service of the broker, such as propagating a
message to subsequent nodes in a message flow. These
utility functions are used by the plug-in itself.

For more information on these interfaces refer to the WMQI
Broker V2.1 Programming Guide SC34-6170.
If the node initiates the implementation function cniRun() it signals
to the broker that it has input node capabilities. cniRun() is called
by the broker during runtime. It creates a message, propagates it
to the subsequent nodes in the message flow, and returns control
to the broker.

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

The periodical handing back of control to the broker is particularly
important. As long as the control is within this function the broker
cannot follow commands, eg a shutdown. The broker must wait
until control is handed back to it by its message flows. Therefore,
an input node must regularly return control to the broker to allow the
broker to correctly maintain its state.
Because WBI for FN is available for z/OS, AIX, and Sun Solaris,
the Timer Input node must support these platforms. The WMQI
Broker C interface functions are identical on all platforms, so, in
general, common source code could be generated, but these
platforms use different character encoding. The International
Classes for Unicode (ICU) were used to handle the code page
transformation.

Providing input data to the broker
As mentioned previously, the special behaviour of the input node
is implemented in the implementation function cniRun(). In this
function the input message must be created and propagated to
subsequent nodes in the message flow.
Within the Timer Input node this function is used to create a
message consisting of an MQMD and an MQRFH2, including a
NameValueData section with the WBI for FN ‘ComIbmDni’ folder.
See the Overview and Figure 3 for a detailed view of the
message.
Using the WMQI Broker plug-in API there are three ways to create
an output message:
• Use WMQI Broker utility functions to create each message

element separately. The code fragments below show how this
is done.

 //
 // Build up output message
 // -> MQMD
 CciMessageContext* pMessageContext; // message context
 CciElement* pRootOut; // output root element
 // get message context
 pMessageContext = cniGetMessageContext(&iRC, pMessageIn);
 ctpCheckReasonCode(iRC, "invoke cniGetMessageContext()");

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 32

 // create the output message with this message context
 pMessageOut = cniCreateMessage(&iRC, pMessageContext);
 ctpCheckReasonCode(iRC, "invoke cniCreateMessage()");
 // create output message root element
 pRootOut = cniRootElement(&iRC, pMessageOut);
 ctpCheckReasonCode(iRC, "invoke cniRootElement() for output
 message");
 // create MQMD header
 CciElement* pMQMDHeader;
 UnicodeString usMQMDParser("MQHMD");
 CciChar* szMQMDParser =
 (CciChar*)usMQMDParser.append(CH_EOS).getBuffer();
 pMQMDHeader = cniCreateElementAsFirstChildUsingParser(&iRC,
 pRootOut,
 szMQMDParser);
 ctpCheckReasonCode(iRC,
 "invoke cniCreateElementAsFirstChildUsingParser() for MQMD");

This example shows the steps for creating an output message
consisting of an MQMD header only. At this point this header
does not have an element assigned to it.
Using the utility functions is very time-consuming. Another
problem with using this method is that WMQI Broker does not
create its Properties folder on its own. This must probably be
done by the plug-in using the same method, but this has not
been tried.

• The second option to create an output message is to use the
Timer Input node to create a dummy message and so start the
message flow at the right time. A subsequent compute node
then could insert the MQMD and MQRFH2 headers and the
ComIbmDni folder.

• The third option is to use the WMQI Broker utility function
cniSetInputBuffer() to cause the plug-in to assemble a message
in memory, using the predefined header structures defined in
the WMQ header file (cmqc.h). These headers can be initialized
to their default values. These default values can also be found
in the same header file.
Once initialized, individual fields within the message can be
set according to the requirements of subsequent message
processing. This is true for the MQMD and for the MQRFH2
header used by the WBI for FN Timer node. Additional

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

information can be added when providing your own input
nodes.

When calling the function cniSetInputBuffer() with this message
as a parameter the function attaches this message to the internal
message object. During this procedure WMQI Broker automatically
creates a Properties folder and appends it to the front of the
message.
When creating the message in this way the built-in node attribute
‘firstParserClassName’ is very important. It specifies the parser
class name of the first message part (excluding the Properties
folder). In the example given below, the parser class name
‘MQHMD’ has to be used to indicate the MQMD.
 // create attribute firstParserClassName and set its value to MQMD
 UnicodeString firstParserClassName((char*)"firstParserClassName");
 szAttrName =
 (CciChar*)firstParserClassName.append(CH_EOS).getBuffer();
 UnicodeString firstParserClassValue((char*)"MQHMD");
 szAttrValue =
 (CciChar*)firstParserClassValue.append(CH_EOS).getBuffer();
 DnitCciAttribute attrFirstParserClassName;
 attrFirstParserClassName.setName(szAttrName);
 pContext->add(attrFirstParserClassName);
 ctpSetAttribute(pContext,
 szAttrName,
 szAttrValue);

The default value of the ‘firstParserClassName’ attribute is ‘XML’.
This value causes the first part of the message at least, which is
constructed by the input node and forwarded to the subsequent
nodes, to have the parser name set to XML. So if a header in a
format other than XML should be the first header of the generated
message this parser class name has to be set to another value.
Furthermore, to use parser class names other than XML on z/OS
for WMQI Broker, including CSD3 or CSD4, the fix for WMQI
Broker APAR PQ73602 must be installed.
A list of all parsers provided by WMQI Broker and their parser
class names is available in the manual WMQI Broker V2.1
Programming Guide SC34-6170.
The example code shown below creates a message following this
approach.

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 34

 MQMD MQMDHeader = {MQMD_DEFAULT};
 MQRFH2 MQRFH2Header = {MQRFH2_DEFAULT};
 int iMQMDHeaderSize = Ø;
 int iMQRFH2HeaderFixPartSize = Ø;
 int iComIbmDniFolderSize = Ø;
 MQBYTE completeMessage[1Ø24];
 MQBYTE ComIbmDniFolder[512];
 memset(completeMessage, Ø, sizeof(completeMessage));
 memset(ComIbmDniFolder, Ø, sizeof(ComIbmDniFolder));
 // Prepare MQMD Header
 MQMDHeader.MsgType = MQMT_DATAGRAM;
 // set Format to following header: MQRFH2
 memcpy((char*)MQMDHeader.Format,
 MQFMT_RF_HEADER_2,
 sizeof(MQMDHeader.Format));
 iMQMDHeaderSize=sizeof(MQMDHeader);
 // Move MQMD to completeMessage
 memcpy(completeMessage,
 &MQMDHeader,
 iMQMDHeaderSize);
 // Prepare MQRFH2 header
 // fixed part of MQRFH2
 MQRFH2Header.NameValueCCSID = 12ØØ;
 iMQRFH2HeaderFixPartSize=sizeof(MQRFH2Header);
 // variable part of MQRFH2
 // -> generate ComIbmDni folder
 UnicodeString usComIbmDniFolder(DNIT_RFH2_COMIBMDNI_PART1);
 // append OU value
 usComIbmDniFolder.append(usAttrValue);
 usComIbmDniFolder.append(DNIT_RFH2_COMIBMDNI_PART2);
 // a NameValueData folders size must a multiple of 4
 // pad " " if necessary
 int lCntSpacesToPadDniFolder = (4 -
((usComIbmDniFolder.length())%4))%4;
 for (int i = 1; i <= lCntSpacesToPadDniFolder; i++)
 usComIbmDniFolder.append(" ");
 iComIbmDniFolderSize = (usComIbmDniFolder.length()*2);
 char* chComIbmDniFolder = new char[iComIbmDniFolderSize];
 lLen = usComIbmDniFolder.length();
 usComIbmDniFolder.extract(Ø, lLen, (UChar*)chComIbmDniFolder);
 // set ComIbmDni folder
 memcpy((char*)ComIbmDniFolder,
 (const char*)chComIbmDniFolder,
 iComIbmDniFolderSize);
 // set length of complete MQRFH2 folder
 MQRFH2Header.StrucLength = iMQRFH2HeaderFixPartSize
 + sizeof(iComIbmDniFolderSize)
 + iComIbmDniFolderSize;
 // move fixed part of MQRFH2 to completeMessage
 memcpy(completeMessage + iMQMDHeaderSize,

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 &MQRFH2Header,
 iMQRFH2HeaderFixPartSize
);
 // move NameValueLength (iComIbmDniFolderSize) of
 // MQRFH2 to completeMessage
 memcpy(completeMessage
 + iMQMDHeaderSize
 + iMQRFH2HeaderFixPartSize,
 &iComIbmDniFolderSize,
 sizeof(iComIbmDniFolderSize));
 // move NameValueData (ComIbmDniFolder) of MQRFH2
 // to completeMessage
 memcpy(completeMessage
 + iMQMDHeaderSize
 + iMQRFH2HeaderFixPartSize
 + sizeof(iComIbmDniFolderSize),
 &ComIbmDniFolder,
 iComIbmDniFolderSize);
 // set Input Buffer
 memcpy(inputBuffer,
 completeMessage,
 (iMQMDHeaderSize + MQRFH2Header.StrucLength));
 cniSetInputBuffer(&iRC,
 pMessageIn,
 inputBuffer,
 (iMQMDHeaderSize + MQRFH2Header.StrucLength));

The Timer Input node uses the third method because of the
automatic generation of the WMQI Broker Properties folder and
because it requires fewer function calls than the first method.
The second method was not used because variable fields, such
as the OU in the ComIbmDni folder, could not be filled by the
compute note and this part of the message would have to be
created by the Timer Input node.
The low number of additional function calls for creating the whole
message required by the third method did not affect our decision
to use this method. Furthermore, with this method one message
tree copy between the Timer Input node and this compute node is
saved.

Transactional processing and thread handling
Transactional processing within the message flow is handled by
the broker. If the return value of function cniRun() signals a

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 36

successful completion of the message flow to the broker, the
broker commits the processing. The broker rolls back the processing
of the message flow if the cniRun() function returns a corresponding
return code or if the broker detects an unhandled exception.
The input node in a WMQI Broker message flow is responsible for
the thread handling of this flow. A message flow can be processed
by multiple threads. The ‘Additional Instances’ property is a flow
property that can be set in the Control Centre in the Assignments
panel. It defines the maximum number of threads that are available
in addition to the minimum number of threads.
The minimum number of threads is defined by the number of input
nodes in this message flow. The default of the Additional Instances
property is zero, which means that there is only one thread
available for each input node in the message flow. Any other
number creates a thread pool with unused threads for this
message flow. The thread processing for the message flow can
request an additional thread from this thread pool. This is done by
calling the utility function cniDispatchThread() once a message is
available for processing. The new thread starts execution in the
cniRun() plug-in implementation function for the same input node.
After processing the message the node can decide whether the
current thread is to be returned to the thread pool or whether it is
to remain.
For example, the Timer Input node uses the return value
CCI_TIMEOUT if it has to wait until the next message is created.
This return value is used to return control to the broker. There is
no commit or rollback and the same thread receives control from
the broker again in the cniRun() function of its input node.
If the message processing was successful in the subsequent
nodes of the message flow, indicated by the fact that the utility
function cniPropagate() returns without an error, the input node
signals the broker to commit the transaction.
The node must decide whether the current thread should remain
or be returned to the thread pool. This decision depends upon how
often the input node and the message flow are used. If there is a

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

large load on the message flow it probably makes no sense to
return the thread so CCI_SUCCESS_CONTINUE can be returned.
This return value signals that the operation was successful and
can be committed and that the thread remains.
For a complete list of all possible return codes and their meanings
refer to the manual WMQI Broker V2.1 Programming Guide
SC34-6170.

Error handling
When processing problems occur a node usually throws a WMQI
Broker exception. If the broker detects that an exception is thrown
within a plug-in node it performs the same actions regardless of
whether the node is a message processing node or an input node.
WMQI Broker adds an entry to the ExceptionList tree and
propagates it, as well as sending a message to the appropriate
error terminal. This error terminal is named ‘failure’ for a message
processing plug-in node and for an input plug-in the name of the
error terminal is ‘catch’. If this message is handled successfully,
eg without any exception, the processing is committed.
If the input node does not have a catch terminal the broker detects
this. Since the broker can’t propagate the error now, this is handled
as if the input node indicates to roll back the processing. The same
processing will also occur if the input node has a catch terminal but
an exception occurs in the processing of this path or the catch
terminal is not connected.
A node can propagate its message to a subsequent node on an
output terminal usually named ‘out’. During the processing that
follows there can also be problems and one of the subsequent
nodes can throw an exception. Such a situation can be detected
by the node by analysing the return code from the propagate call.
A node usually rethrows this exception to its preceding node in the
message flow.
If an input node detects an exception from a subsequent node
connected to its out terminal and rethrows it, the exception,
including the message, is also propagated to its catch terminal.

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 38

WMQI Broker adds an ExceptionList entry for the message and
propagates it, along with the message, to the catch terminal.
There is a specific problem that requires a mention here, which is
the possibility of an error occurring during message creation in the
input node. During this procedure the processing of the node in
which the exception is thrown is cleared.
Given that the purpose and function of this node is to create a
message, the problem with this behaviour in the Timer Input node
is that message creation would be rolled back. This means that
because no message is available to the broker the output message
at the catch terminal is empty. There is valid information only in the
ExceptionList that appears at the catch terminal. Any message
flow programmer has to handle this situation when wiring the catch
terminal to handle errors.
Propagating empty messages to the catch terminal was undesirable
for the design of the WBI for FN Timer Input node so the Timer Input
node does not throw its recoverable exceptions. It builds the
ExceptionList tree on its own and propagates the message
together with this tree to the catch terminal. At the same time it
writes the error to the WMQI Broker log. Only if severe system
problems occur, eg insufficient memory, does it throw an exception
without a message.

CONCLUSION
As part of the development of WBI for FN a method was developed
that can be used to process messages that result from external
resources such as files and databases. This was done using the
Timer plug-in node that regularly generates messages. During the
processing of such Timer messages the data can be retrieved
from these resources.
Writing an input node is in most cases similar to writing a message
processing node, but additional thought must be given to threading,
transactional behaviour, and error handling.
Susan Herrmann and Michael Groetzner
IBM (Germany) © IBM 2004

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Global Unit of Work and two-phase commit

INTRODUCTION

Syncpoint in WMQ supports both local and global Units of Work
(UoW). A local UoW is one in which the only resources updated
are those of the WMQ queue manager. A global UoW is one in
which resources belonging to other resource managers, such as
databases, are updated.
In a global UoW a two-phase commit procedure has to be
executed by a transaction resource coordinator, such as the
database, to maintain full integrity. The global UoW is committed
by WMQ using MQCMIT; this initiates a two-phase commit of all
the resource managers involved in the UoW.
A two-phase commit process is used whereby resource managers
(for example, XA-compliant database managers such as DB2,
Oracle, and Sybase) are first all asked to prepare to commit. Only
if all are prepared are they then asked to commit. If any resource
manager signals that it cannot commit, each is asked to back out
instead. Alternatively, MQBACK can be used to roll back the
updates of all the resource managers.
This article presents two programs. The first one uses WMQ as
an XA resource coordinator with DB2 V7.2 and performs a two-
phase commit; this is a C program. The second program takes as
input an update statement and puts it in the queue. The program
then executes the statement against the database along with a
two-phase commit procedure; this is a Java program.
We have used these two programs in our environment to establish
global units of transactions and two-phase commits, which are
initiated from the Siebel CRM system and passed to a home-
grown provisioning system based on DB2 via WMQ.

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 40

WEBMQDB2.C
/* The following C Program demonstrates using WebSphere MQ as an XA */
/* Resource coordinator with DB2 UDB Version 7.2 and has been tested */
/* using DB2 UDB Version 7.2 FP7 with MQSeries for Windows 2ØØØ V5.2 */
/* service level U2ØØ148 (CSDØ3). */
/* This program requires include files from both MQSeries and */
/* DB2 UDB and requires linking utilcli.obj (from DB2 UDB) and */
/* linking in both db2cli.lib and mqm.lib. */
/* Once built, this application can be executed against the TEST */
/* database after the following updates have been made to db2cli.ini */
/* [test] */
/* DBALIAS=test */
/* CURSORHOLD=Ø */
/* SYNCPOINT=2 */
/* CONNECTTYPE=2 */
/* AUTOCOMMIT=Ø */
/* For additional information on the necessary configuration changes */
/* to WebSphere MQ, refer to the System Administration Guide. */
#include <stdio.h> /* standard include file */
#include <string.h> /* standard include file */
#include <stdlib.h> /* standard include file */
#include <sqlcli1.h> /* DB2 include file */
#include <cmqc.h> /* MQSeries include file */
#include "utilcli.h" /* DB2 include file */
#define MAX_STMT_LEN 255
#define MAXCOLS 1ØØ
#ifndef max
#define max(a,b) (a > b ? a : b)
#endif
/* Global Variables for user id and password. */
extern SQLCHAR server[SQL_MAX_DSN_LENGTH + 1] ;
extern SQLCHAR uid[MAX_UID_LENGTH + 1] ;
extern SQLCHAR pwd[MAX_PWD_LENGTH + 1] ;
/* Function declarations: */
int process_stmt(SQLHANDLE, SQLCHAR *) ;
structure of the program is as below:
** main
** - initialize
** - start a transaction
** - get statement
** - another statement?
** - COMMIT or ROLLBACK
** - another transaction?
** - terminate
int main(int argc, char * argv[]) {
 FILE *fp;
 SQLHANDLE henv, hdbc, hstmt ;
 SQLCHAR sqlstmt[MAX_STMT_LEN + 1] = "";
 SQLCHAR sqltrans[sizeof("ROLLBACK")];

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 SQLRETURN rc;
 MQOD od = {MQOD_DEFAULT}; /* Object Descriptor for reply */
 MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
 MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */
 MQBO bo = {MQBO_DEFAULT}; /* begin options */
 MQHCONN Hcon; /* connection handle */
 MQHOBJ Hobj; /* object handle, server queue */
 MQLONG O_options; /* MQOPEN options */
 MQLONG C_options; /* MQCLOSE options */
 MQLONG OpenCode; /* completion code */
 MQLONG CompCode; /* completion code */
 MQLONG Reason; /* reason code */
 MQLONG CReason; /* reason code (MQCONN) */
 MQLONG BackCode; /* Completion code for MQBACK */
 MQLONG CmitCode; /* Completion code for MQCMIT */
 MQLONG BackReason; /* reason code for MQBACK */
 MQLONG CmitReason; /* reason code for MQCMIT */
 MQLONG BeginCode; /* completion code for MQBEGIN */
 MQLONG BeginReason; /* reason code for MQBEGIN */
 MQBYTE buffer[256]; /* message buffer */
 MQLONG buflen; /* buffer length */
 char QMName[5Ø]; /* queue manager name */
 printf("test mqadhoc start\n");
 if (argc < 2) {
 printf("Missing parameter - logging queue\n");
 exit(99);
 }
 /* Connect to the Queue Manager that will be used. */
 QMName[Ø] = Ø; /* default */
 if (argc > 2) {
 strcpy(QMName, argv[2]);
 }
 MQCONN(QMName, &Hcon, &CompCode, &CReason);
 /* report reason and stop if it failed */
 if (CompCode == MQCC_FAILED) {
 printf("MQCONN ended with reason code %ld\n", CReason);
 exit(CReason);
 }
 /* Use first parameter as the name of the logging queue */
 strncpy(od.ObjectName, argv[1], (size_t)MQ_Q_NAME_LENGTH);
 printf("Logging queue is %s\n", od.ObjectName);
 /* Open the target message queue for output */
 O_options = MQOO_OUTPUT + MQOO_FAIL_IF_QUIESCING;
 MQOPEN(Hcon, &od, O_options, &Hobj, &OpenCode, &Reason);
 /* report reason, if any; stop if failed */
 if (Reason != MQRC_NONE) {
 printf("MQOPEN ended with reason code %ld\n", Reason);
 }
 if (OpenCode == MQCC_FAILED) {
 printf("unable to open queue for output\n");

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 42

 }
 fp = stdin;
 CompCode = OpenCode;
 while (CompCode != MQCC_FAILED) {
 MQBEGIN(Hcon, &bo, &BeginCode, &BeginReason);
 if (BeginCode != MQCC_OK) {
 printf("MQBEGIN failed: Code = %ld, Reason = %ld\n",
 BeginCode, BeginReason);
 CompCode = BeginCode;
 } else {
 /* allocate an environment handle */
 rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv)
;
 HANDLE_CHECK(SQL_HANDLE_ENV, henv, rc, &henv, &hdbc) ;
 /* Allocate a connect handle, and connect. */
 /* The userid and password are not specified since MQ */
 /* already connected to the DB with the MQBEGIN. */
 rc = SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc) ;
 HANDLE_CHECK(SQL_HANDLE_ENV, henv, rc, &henv, &hdbc) ;
 rc = SQLConnect(hdbc,
 "test", SQL_NTS,
 (SQLCHAR *)NULL, SQL_NTS,
 (SQLCHAR *)NULL, SQL_NTS
) ;
 HANDLE_CHECK(SQL_HANDLE_DBC, hdbc, rc, &henv, &hdbc) ;
 /* allocate statement handle and process statement */
 rc = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt) ;
 HANDLE_CHECK(SQL_HANDLE_STMT, henv, rc, &henv, &hdbc) ;
 printf("Enter SQL command to process:\n");
 if (fgets(buffer, sizeof(buffer), fp) != NULL) {
 buflen = strlen(buffer);
 if (buffer[buflen-1] == '\n') {
 buffer[buflen-1] = '\Ø';
 --buflen;
 }
 } else {
 buflen = Ø;
 }
 if (buflen > Ø) {
 strcpy((char *)sqlstmt, buffer);
 if (process_stmt(hstmt, sqlstmt) == SQL_ERROR) {
 CompCode = MQCC_FAILED;
 } else {
 memcpy(md.Format, MQFMT_STRING,
 (size_t)MQ_FORMAT_LENGTH);
 memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
 memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));
 pmo.Options = MQPMO_SYNCPOINT;
 MQPUT(Hcon, Hobj, &md, &pmo, buflen, buffer, &CompCode,
 &Reason);

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 /* See if the MQPUT worked. If it failed, notify the */
 /* user and set the transaction to be rolled back. If */
 /* worked, ask user whether to commit or roll back. */
 if (CompCode != MQCC_OK) {
 printf("MQPUT failed: Code = %ld, Reason = %ld\n",
 CompCode, Reason);
 strcpy(buffer, "r");
 } else {
 printf("Enter 'c' to COMMIT or 'r' to ROLLBACK the
 transaction\n");
 if (fgets(buffer, sizeof(buffer), fp) != NULL) {
 buflen = strlen(buffer);
 if (buffer[buflen-1] == '\n') {
 buffer[buflen-1] = '\Ø';
 --buflen;
 }
 }
 }

 /* See if the user said to commit or roll back */
 /* the transaction and make appropriate MQ call. */
 if ((strcmp(buffer, "C") == Ø) || (strcmp(buffer, "c")
== Ø)) {
 printf("Changes would be committed...\n");
 MQCMIT(Hcon, &CmitCode, &CmitReason);
 if (CmitReason != MQRC_NONE) {
 printf("MQCMIT ended with reason code %ld\n",
 CmitReason);
 }
 } else {
 printf("Changes would be rolled back...\n");
 MQBACK(Hcon, &BackCode, &BackReason);
 if (BackReason != MQRC_NONE) {
 printf("MQBACK ended with reason code %ld\n",
 BackReason);
 }
 }
 }
 } else {
 CompCode = MQCC_FAILED;
 }
 /* Free statement handle */
 rc = SQLFreeHandle(SQL_HANDLE_STMT, hstmt) ;
 HANDLE_CHECK(SQL_HANDLE_STMT, hdbc, rc, &henv, &hdbc) ;
 /* Disconnect from database and release handle */
 rc = SQLDisconnect(hdbc) ;
 HANDLE_CHECK(SQL_HANDLE_DBC, hdbc, rc, &henv, &hdbc) ;
 rc = SQLFreeHandle(SQL_HANDLE_DBC, hdbc) ;
 HANDLE_CHECK(SQL_HANDLE_DBC, hdbc, rc, &henv, &hdbc) ;
 /* Free environment handle */

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 44

 rc = SQLFreeHandle(SQL_HANDLE_ENV, henv) ;
 ENV_HANDLE_CHECK(henv, rc) ;
 }
 } /* end while */
 if (OpenCode != MQCC_FAILED) {
 C_options = Ø;
 MQCLOSE(Hcon, &Hobj, C_options, &CompCode, &Reason);
 /* report reason, if any */
 if (Reason != MQRC_NONE) {
 printf("MQCLOSE ended with reason code %ld\n", Reason);
 }
 }
 /* Disconnect from the Queue Manager if not already connected. */
 if (CReason != MQRC_ALREADY_CONNECTED) {
 MQDISC(&Hcon, &CompCode, &Reason);
 /* report reason, if any */
 if (Reason != MQRC_NONE) {
 printf("MQDISC ended with reason code %ld\n", Reason);
 }
 }
 return(SQL_SUCCESS) ;
} /* end main */
/*--> SQLL1X63.SCRIPT */
** process_stmt
** - allocates a statement resources
** - executes the statement
** - determines the type of statement
** - if there are no result columns, therefore non-select statement
** - if rowcount > Ø, assume statement was UPDATE, INSERT, DELETE
** else
** - assume a DDL, or Grant/Revoke statement
** else
** - must be a select statement.
** - display results
** - frees the statement resources
int process_stmt(SQLHANDLE hstmt, SQLCHAR * sqlstr) {
 SQLSMALLINT nresultcols;
 SQLINTEGER rowcount;
 SQLRETURN rc;
 /* execute the SQL statement in "sqlstr" */

 rc = SQLExecDirect(hstmt, sqlstr, SQL_NTS);
 if (rc != SQL_SUCCESS)
 if (rc == SQL_NO_DATA_FOUND) {
 printf("\nStatement executed without error, however,\n");
 printf("no data was found or modified\n");
 return (SQL_SUCCESS);
 }
 else /*indicate an error executing the statement*/
 STMT_HANDLE_CHECK(hstmt, rc);

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 /* printf("Error issuing SQLExecDirect %i",rc) ; */
 rc = SQLNumResultCols(hstmt, &nresultcols);
 STMT_HANDLE_CHECK(hstmt, rc);
 /* determine statement type */
 if (nresultcols == Ø) { /* statement is not a select statement */
 rc = SQLRowCount(hstmt, &rowcount);
 if (rowcount > Ø) /* assume statement is UPDATE, INSERT, DELETE */
 printf("Statement executed, %ld rows affected\n", rowcount);
 else /* assume statement is GRANT, REVOKE or a DLL statement */
 printf("Statement completed successful\n") ;
 }
 else StmtResultPrint(hstmt) ; /* display the result set */
 /* end determine statement type */
 /* free statement resources */
 rc = SQLFreeStmt(hstmt, SQL_UNBIND) ;
 STMT_HANDLE_CHECK(hstmt, rc);
 rc = SQLFreeStmt(hstmt, SQL_RESET_PARAMS) ;
 rc = SQLFreeStmt(hstmt, SQL_CLOSE) ;
 return(Ø) ;
} /* end process_stmt */
/*<-- */

MQDB2LOG.JAVA
/* Program name: mqdb2log */
/* Description: java program that shows MQSeries base java and DB2 */
/* jdbc transactions in the same unit of work (ie, two */
/* phase commit) */
/* Function: */
/* This program accepts a user's db update statement. This */
/* statement is then written to an MQ queue and executed against a */
/* database inthe same unit of work. The user is then asked whether */
/* this unit of work should be committed or backed out. */
/* This program is run as follows: */
/* java mqdb2log -q ... -m ... -d ... */
/* where */
/* -q is the queue where messages will be put */
/* -m is the queue manager (if not specified default qmgr is used)*/
/* -d is the database that will be used */
/* and possible input would be: */
/* update table set column1 = 'value1' where column2 = 'value2' */
/* The output of this program can be verified by running: */
/* amqsbcg <queue name> <qmgr name> */
/* If the work was committed, the db command will be on the queue. */
/* If the work was backed out, the queue will be empty. */
/* The database can also be checked to confirm whether or not the */
/* database update was committed or rolled back. */
/* This program has been tested with: */
/* MQSeries V5.2 CSD 3 */

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 46

/* JDK 1.3 that ships with WebSphere 4.Ø1 */
/* DB2 V7.2 */
/* Windows 2ØØØ */
/* In order to use this program, the following must be done: */
/* An application database must be created using DB2.This database */
/* will be one of the resources in the two phase commit. */
/* - The MQ queue manager must be updated to recognize the database */
/* as a resource. This can be done by using the MQ Services to */
/* look at the queue manager. The properties of the queue manager */
/* are then selected and updated for this database: */
/* Name: any name you wish to use */
/* SwitcFile: <mq install>\java\lib\jdbc\jdbcdb2.dll */
/* XAOpenString: database name, userid, password */
/* ThreadOfControl: PROCESS */
/* Note 1: There are quite a few changes to the way things work with */
/* Java. Details are supplied in the Using Java manual, Chapter 7. */
/* Note 2: The MQSeries System Administration manual gives additional*/
/* information on using MQSeries as a transaction manager. */
/* Note 3: This program is designed to work with update statements */
/* only. If you enter select statements they will throw an exception.*/
import com.ibm.mq.*; // Include the MQ package
import java.io.*;
import java.lang.*;
import javax.sql.*;
import java.sql.*;
public class mqdb2log {
 private MQQueueManager qMgr;
 private String qmgrName;
 private String queueName;
 private String dbName;
 private Connection jdbcConn;
 public static void main (String args[]) {
 mqdb2log mySample = new mqdb2log(args);
 mySample.start();
 }
 public mqdb2log(String[] args) {
 /* Get the command-line arguments */
 for(int i=Ø; i<args.length; i++) {
 String arg = args[i].toLowerCase();
 if(arg.equals("-m")) {
 if (i+1<args.length) {
 qmgrName = args[++i];
 } else {
 System.out.println("didn't specify qmgr, exiting");
 System.exit(-1);
 }
 } else if(arg.equals("-q")) {
 if (i+1<args.length) {
 queueName = args[++i];
 } else {

 47© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 System.out.println("didn't specify queue, exiting");
 System.exit(-1);
 }
 } else if(arg.equals("-d")) {
 if (i+1<args.length) {
 dbName = args[++i];
 } else {
 System.out.println("didn't specify dbname,
 exiting");
 System.exit(-1);
 }
 } else {
 System.out.println("Unknown argument: " + arg);
 }
 }
 /* Check that all arguments were entered. */
 if ((queueName==null)
 || (dbName==null)) {
 System.out.println("java mqdb2log -q ... -m ... -d ...");
 System.out.println("where -q is the queue");
 System.out.println(" -m is the qmgr");
 System.out.println(" -d is the database name");
 System.exit(-1);
 }
 }
 /* This program doesn't have any specific initialization. */
 /* If it did, it could go here. */
 public void init() {
 }
 public void start() {
 try {
 System.out.println("mqdb2log started...");
 /* Create a queue manager object and access the queue */
 /* that will be used for the putting of messages. */
 qMgr = new MQQueueManager(qmgrName);
 int openOptions = MQC.MQOO_OUTPUT;
 MQQueue myQueue = qMgr.accessQueue(queueName, openOptions,
 null, null, null);
 /* Create a DB2 XA DataSource that we will use as the */
 /* place to perform database updates. */
 COM.ibm.db2.jdbc.DB2XADataSource myDataSource =
 new COM.ibm.db2.jdbc.DB2XADataSource();
 myDataSource.setDatabaseName(dbName);
 jdbcConn = qMgr.getJDBCConnection(myDataSource);
 /* Set up a reader to get the user input */
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 String runShow;
 System.out.println("mqdb2log ready for db command");
 /* As long as the user keeps entering data, */

© 2004. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 48

 /* process it... */
 do {
 runShow = br.readLine();
 /* See if the user entered anything */
 if (runShow.length() > Ø) {
 qMgr.begin();
 /* Set up a new message with a format of string and */
 /* write the user input to it. */
 MQMessage myMessage = new MQMessage();
 myMessage.writeString(runShow);
 myMessage.format = MQC.MQFMT_STRING;
 MQPutMessageOptions pmo = new MQPutMessageOptions();
 pmo.options = pmo.options | MQC.MQPMO_SYNCPOINT;
 myQueue.put(myMessage, pmo);
 boolean validStatement = true;
 Statement stmt = jdbcConn.createStatement();
 try {
 int rowsUpdated = stmt.executeUpdate(runShow);
 System.out.println("Rows updated: " + rowsUpdated);
 } catch (java.lang.Exception ex) {
 validStatement = false;
 System.out.println("Java exception: " + ex);
 System.out.println(" mqdb2log is designed to work
 only with update
 statements.\n");
 }
 stmt.close();
 /* Ask if the db update, message put should be committed or */
 /* backed out (if db command was valid). If the command */
 /* wasn't valid, we'll backout the qmgr update. */
 if (validStatement) {
 System.out.println("Enter C to Commit or R to rollback");
 runShow = br.readLine();
 if ((runShow.indexOf("c") >= Ø)
 || (runShow.indexOf("C") >= Ø)) {
 qMgr.commit();
 } else {
 qMgr.backout();
 }
 } else {
 qMgr.backout();
 }
 }
 System.out.println("mqdb2log ready for db command");
 } while (runShow.length() > Ø) ;
 /* Before the program ends, we need to close all of our */
 /* connections. */
 myQueue.close();
 jdbcConn.close();
 qMgr.disconnect();

 49© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 }
 catch (MQException ex) {
 System.out.println("An MQ error occurred: " +
ex.completionCode + " " +
 ex.reasonCode);
 }
 catch (java.io.IOException ex) {
 System.out.println("Java.io exception: " + ex);
 }
 catch (java.lang.Exception ex) {
 System.out.println("Java exception: " + ex);
 }
 System.out.println("mqdb2log finished...");
 }

Vikas Baruah
American Management Systems (USA) © Xephon 2004

Although the articles published in MQ Update are of a
very high standard, the vast majority are not written by
professional writers, and we rely heavily on our readers
themselves taking the time and trouble to share their
experiences with others. Many have discovered that
writing an article is not the daunting task that it might
appear to be at first glance.
They have found that the effort needed to pass on
valuable information to others is more than offset by
our generous terms and conditions and the recognition
they gain from their fellow professionals. Often, just a
few hundred words are sufficient to describe a problem
and the steps taken to solve it.
If you have ever experienced any difficulties with MQ,
or made an interesting discovery, you could receive a
cash payment, a free subscription to any of our Updates,
or a credit against any of Xephon’s wide range of
products and services, simply by telling us all about it.
For a copy of our Notes for Contributors, which explains
the terms and conditions under which we publish
articles, please point your browser at www.xephon.com/
nfc.

MQ news

Original Software, a provider of testing
solutions for the IBM iSeries, has announced
the release of TestMQ, a new module in its
TestBench for iSeries product.

TestBench for iSeries is an automated testing
solution that claims to capture and track all
PC and server activity related to an
application under test.

The TestMQ module uses API exits to
capture and analyse the content and data of
MQ messages as they are sent to or from MQ-
enabled applications on the iSeries.This,
claims the company, enables TestBench to
build a detailed picture of an iSeries
application under test, including automated
tracking, testing, checking, and verification
of all server processes, plus data extraction
and maintenance, environment protection, and
central script and results storage, as well as
thorough testing of the PC processes.

For more information contact:
The Original Software Group, 2500 South
Highland Avenue, Suite 20, Lombard, IL
60148, USA.
Tel: +1 630 268 1488.
Fax: +1 630 268 1499.
Web: http://www.origsoft.com

The Original Software Group, Grove House,
Chineham Court, Basingstoke, RG24 8AG,
UK.
Tel: +44 1256 338666.
Fax: +44 1256 338678.

* * *

Solstice Software has recently launched its
Integra Enterprise 4.0 integration testing
suite.

The company claims that the product enables
visibility and control of the messaging
backbone of mainframe integration, Web
services, and other complex software
integration projects.

Integra Enterprise’s protocol library and
focus on messaging is claimed to give project
teams the ability to go ‘behind-the-screens’
and unearth problems buried in messages and
files. The product suite consists of four main
components: Automate, Simulate, Validate,
and the Protocol Library.

The Protocol Library contains support for:
WebSphere MQ, Tibco, webMethods, JMS,
Http/XML, Https, TCP/IP, FTP, and SOAP/
WSDL, as well as Solstice proprietary
protocols.

For more information contact:
Solstice Software (Formerly Class IQ),
Brandywine Corporate Center, 650
Naamans Road, Suite 207, Claymont,
Delaware 19703, USA.
Tel: +1 302 791 9900.
Fax: +1 302 791 0322.
Web: http://www.solsticesoftware.com

* * *

x
xephon

	Interfacing WMQ with Web applications
	Investigating server channel performance
	Writing a WMQI Broker input node
	Global Unit of Work and two-phase commit
	MQ news

