

© Xephon Inc 2004

February 2004

56

In this issue

MQ

3 Is my queue manager running?
8 Creating a channel-based IP

wrapper
25 Triggering WMQ Workflow
35 BAR file deploy in Message

Broker V5.0 Toolkit
47 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.

Printed in England.

Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Madeleine Hudson
E-mail: MadeleineH@xephon.com

Publisher
Nicole Thomas
E-mail: nicole@xephon.com

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in the
UK; $380.00 in the USA and Canada; £261.00
in Europe; £267.00 in Australasia and Japan;
and £265.50 elsewhere. In all cases the price
includes postage. Individual issues, starting with
the July 1999 issue, are available separately to
subscribers for $33.75 (£22.50) each including
postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the rate
of $160 (£100 outside North America) per
1000 words and $80 (£50) per 100 lines of code
for the first 200 lines of original material. The
remaining code is paid for at the rate of $32 (£20)
per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Is my queue manager running?

“Is my queue manager running?” is a simple question but an
important one nevertheless, because it forms the basis of any
monitoring or health-checking tool.
While the question may be simple the answer is not so
straightforward because there are several possibilities. This
article explores the logic used when I worked on the development
of the High Availability SupportPacs (eg MC63) for WebSphere
MQ (WMQ) on distributed platforms such as Unix and Windows.
A check to see whether or not a queue manager is available needs
to be an efficient and reliable process. Most health checks are
periodic; for timely notification that the queue manager is down,
polling needs to be reasonably frequent, eg every 30 seconds. A
longer polling period will delay any recovery processing, such as
failing over the queue manager to a standby machine. The test
must be efficient and not consume excessive resources because
it is executed regularly. It must also be accurate – an answer such
as “the queue manager is probably running” does not help with
availability. The test should also work with different product
versions.

LOOKING FOR A PROCESS
Queue managers on distributed platforms appear as a number of
cooperating processes. When you start a queue manager
(strmqm) the command causes a new process to begin
(amqzxma0), which in turn starts a number of other processes,
such as those needed to control the transaction logs (eg amqhasmx,
amqharmx). If any one process can be said to be ‘the queue
manager’ it is amqzxma0, known as the Execution Controller (EC).
This process initiates and monitors the various child processes.
One of the parameters of the EC is the queue manager name so
that it can be spotted easily in the list of operating system
processes. So, can we use the existence of this process as an

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 4

indicator of a queue manager’s operation? The answer is no.
Testing for the existence of the process, using the following
command, is efficient, but the test itself does not necessarily give
a true result.
 ps -ef | grep amqzxmaØ | grep QMgr

Perhaps the queue manager is starting or stopping, which will
show the EC process, but it is not available to applications. There
may also have been times when processes have hung or become
blocked; this leaves the EC visible but doing no useful work.

THE QMSTATUS.INI FILE
Everyone should know about the qm.ini file, which holds some of
the configuration data for a queue manager. Not as many people
know about the qmstatus.ini file because there is nothing in there
that users can or should directly manipulate. This file contains data
that is convenient, but not essential, for the queue manager to
maintain across restarts. For example, it gives hints about how
much memory was being used last time. This is useful because we
do not have to waste time dynamically extending resources from
‘default’ values; on the assumption that this time the queue
manager will handle a similar workload, the previous resource
allocation is used directly.
On Windows, ini files are not used. Instead, they are located in the
registry. The equivalent qmstatus.ini information can be found in
HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\
CurrentVersion\Status\QueueManager\<Qmgr>.
One of the stanzas in this file shows the queue manager status.
With values including ‘Running’, ‘Ended’, and ‘EndedImmediately’,
this could be used to test the queue manager. Unfortunately, once
again, this would not be good enough. If the queue manager is
killed directly (eg ‘kill -9’) there is no opportunity for the ini file to
be updated and so it cannot be guaranteed to reflect reality. This
is one of the indicators that is probably, but not necessarily, correct
– not something we can rely on for a health check.

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

THE DSPMQ COMMAND
The dspmq command was introduced in MQSeries V5.2 as a way
to list the queue managers that have been configured on the
machine. It also gives the current state of those queue managers.
In WMQ V5.3 the command was substantially enhanced to show
more of the possible queue manager states. The states that it
currently recognizes and reports on are:
• Running.
• Ended normally.
• Ended immediately.
• Ended pre-emptively.
• Ended unexpectedly.
• Starting.
• Quiescing.
• Ending immediately.
• Ending pre-emptively.
• Being deleted.
• Not available.
The dspmq command is a good way to find the current status. It
is a reasonably reliable check on behaviour. It is a fast and
efficient program to run and there are enough checks being done
inside it that it will reflect reality even when the queue manager has
been forced down. (At least it will accurately show whether there
is a running system – the various flavours of ‘ending’ and ‘ended’
might not be truly distinguished but that level of knowledge is not
needed for a health monitor.) When we developed the HA
SupportPacs this command was not available and so we couldn’t
use it. If you want to check the behaviour on anything other than
a WMQ V5.3 system you cannot use dspmq.
The output from the command is dependent on the environment.
For a reliable script you should always force a known language

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 6

environment. This is necessary so you can parse the responses,
knowing which language the strings are displayed in:
 LANG=C
 export LANG
 dspmq -m <qmgr> |\
 grep -e "Running" -e "Starting" >/dev/null 2>&1
 if [$? -eq Ø]
 then
 … qmgr is running or on its way up
 else
 … anything else is NOT available
 fi

USING RUNMQSC
The runmqsc command PING QMGR tests whether the queue
manager is running. This turned out to be the best way of checking
availability. Not only does the PING have to succeed but starting
a new instance of runmqsc for each poll on the health of the queue
manager means that the MQCONN must also succeed.
Because MQCONN is executed on each test the check works
even during a queue manager restart – the MQCONN is simply
blocked and delayed while recovery takes place; it does not fail.
The test might, therefore, take a little longer during restart but it
does not falsely report a queue manager failure (which could in turn
lead to an unnecessary failover and recovery cycle). This operation
works with every version of MQSeries and WMQ and was our
chosen mechanism.
 echo "PING QMGR" | runmqsc <qmgr>

Testing the return code from this operation will show whether the
queue manager is alive.
When issuing a command such as this it is a good idea to put a
timeout around it so that a failure can be returned in the case of
the command hanging completely. The timeout should be long
enough to cope with a queue manager going through restart and
recovery but not so long that it inhibits the failover. Some of the HA
products will have a timeout of their own; if the health check does
not return in time they will assume a failure.

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

I have seen versions of this where runmqsc is left permanently
running and the PING command is regularly issued to it. This is not
a good test because it does not get the MQCONN process
exercised during each poll. A PING shows not only that the queue
manager processes are alive but also that the queue manager is
processing real work – the only true test of availability.

TESTING CHANNELS AND ROUNDTRIPS
More sophisticated health checks can be devised. A common one
is to test that two queue managers and their connecting channels
are available. This can be done quite simply by the first queue
manager having a remote queue definition that points to the
partner machine, where the destination is in turn another remote
definition pointing back to the original machine. This can make it
easy to measure not just queue manager availability but also
response time across the network. The polling application puts a
message to the remote queue and then waits for the same
message to appear on its reply queue. Because all the routing is
handled by the queue managers there is no need to have a
servicing application on the partner machine.
There are some drawbacks to this kind of testing. One is scalability
– you will perhaps need many pair-wise definitions to test the
health of all the intercommunicating queue managers and channels.
But more importantly, these tests do not give any clue as to which
component has failed. Not receiving a response message could
indicate a local channel problem, a network failure, or a failure of
the partner queue manager. This does not help with the decision
of whether or not to failover a queue manager to a standby
machine and is something that is better left to more complex
system management tools.
Measuring response times and testing the availability of roundtrip
configurations are important, but for the original question of
whether the local queue manager is running this is an area that
should be avoided.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 8

SUMMARY
In this article I have explained why looking for processes is not a
sufficient check for queue manager availability. Instead, use PING
QMGR as a single-shot command into runmqsc. This is an
efficient and accurate test that works with all versions of WMQ.
If you are dealing only with WMQ V5.3 systems, dspmq is an
alternative approach.
Mark E Taylor
IBM Hursley (UK) © IBM 2004

Creating a channel-based IP wrapper

A WebSphere MQ (WMQ) queue manager that has been set up
using a default configuration runs with a very weak security profile.
One way of improving the security is to install and configure a TCP
wrapper such as tcpd. This wrapper checks the address of a
requesting queue manager or WMQ client for each incoming
channel request. tcpd compares this address with the contents of
two lists of allowed and denied addresses. If allowed, the wrapper
starts the program amqcrsta as the receiving end of the channel.
The address check of tcpd is independent from a channel name or
type.
This article explains how to create a channel-based IP wrapper.
This wrapper works in a similar way to tcpd but is developed as a
security exit. The advantage of this solution is that permissions
are validated that are specific to a channel. In contrast to some
other security exit solutions this validation happens only on the
receiving side of a channel. No communication with the sending
end (ie user or password exchange) is necessary.

HOW TCPD WORKS
The TCP wrapper tcpd (which is available free of charge) controls
the startup of applications through the demon inetd. It uses two

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

control files, /etc/hosts.allow and /etc/hosts.deny, to enable or
disable specific IP addresses or host names to run an application.
Add the following entries to the files /etc/services and /etc/
inetd.conf to start a WMQ channel with inetd on AIX (on Sun
Solaris and other Unix systems replace usr with opt):
• /etc/services:
 WMQport 1414/tcp # Channel listener for queue manager QM1

• /etc/inetd.conf:
 WMQport stream TCP nowait mqm /usr/mqm/bin/amqcrsta amqcrsta -m
 QM1

To set up the wrapper for WMQ, assuming tcpd is installed in /usr/
local/bin, the file /etc/inetd.conf has to be modified as described
below:
• /etc/inetd.conf with tcpd:
 WMQport stream TCP nowait mqm /usr/local/bin/tcpd /usr/mqm/bin/
 amqcrsta -m QM1

Now reconfigure the inetd by executing the following command:
• On AIX:
 refresh -s inetd

• On Sun Solaris and other Unix systems:
 kill -HUP $(ps -ef | grep inetd | grep -v grep | awk '{print $2}')

To use tcpd with WMQ the binary /usr/local/bin/tcpd must be
executable and the control files /etc/hosts.allow and /etc/hosts.deny
have to be readable by the group mqm.

LIMITATIONS OF TCPD
The wrapper tcpd works very well in many situations; nevertheless,
there are some limitations, which may restrict or prevent its use:
• You have to install additional software (the TCP wrapper).
• Root privileges are required to set up or modify the tcpd

configuration.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 10

• It is not possible to set up different permissions on different
channels.

• This solution is available only on systems using inetd. It does
not work with the listener runmqlsr.

THE CHANNEL-BASED IP WRAPPER

Purpose of a channel-based IP wrapper
In large WMQ networks the administration of queue manager
configurations can be performed using graphical interfaces such
as MQExplorer or MQMON (IBM SupportPac MO71). These
solutions require WMQ administrator local user accounts on the
machines running a WMQ queue manager. Additionally, MQExplorer
requires an administration channel called
SYSTEM.ADMIN.SVRCONN. If WMQ administrator local user
accounts are not available, or they do not belong to the group mqm,
it may be necessary to alter the attribute MCAUSER to mqm.
Unfortunately this would open the channel for every user and
provide them with WMQ administrator privileges.
Free Java tools, which are available on the Web, provide users
with full administration rights, even without a local user-ID or
MCAUSER set to mqm or a channel SYSTEM.ADMIN.SVRCONN.
A TCP wrapper can reject unauthorized access by filtering allowed
IP addresses but, to install, configure, and administer a tool such
as tcpd, root privileges are required. Additionally, tcpd checks
access to the process amqcrsta, not to a specific channel.
Another difficulty may be that, because of security concerns,
administrators might want to disable inetd completely and use
runmqlsr instead.
It would be much easier to have a solution that could be set up by
a WMQ administrator. The solution described in this article is
independent of such restrictions. It can be seen as a part of the
WMQ configuration and carried out by WMQ administrators.

How the channel-based IP wrapper works
The solution described is developed as a security exit. As with

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

tcpd, this exit checks the requesting IP address or host name and
compares it with a list of allowed addresses. In contrast to tcpd,
no deny list is used so unknown or not allowed addresses are
always denied. The lists of allowed IP addresses are set up as
namelists. The namelist, which is used for a channel, is defined as
security exit data. This mechanism allows individual address lists
to be set up for each channel. It is also possible to configure a
couple of channels (eg an online and a batch channel, a converting
and a non-converting channel) in the same way by using the same
namelist.
If an address is not found in the ‘allow-list’ the request will be
revoked. This also happens when no namelist is configured or the
namelist does not exist. Revoked channel requests will be reported
in the log file. In report-only mode every request is reported but
nothing will be really revoked. This mode is useful to test the
configuration of the list simply to report channel requests and start-
ups. If a log entry cannot be written (e g because the disk is full)
the functionality of the wrapper is not affected.

Building the library
The following script sample creates the binary – on non-DCE
platforms – from the file wrapper.c for AIX and Sun Solaris
systems. I assume the GNU compiler gcc is installed in /usr/local/
bin.
 os=$(uname -s)
 file=wrapper
 case $os in
 AIX)
 CC="/usr/local/bin/gcc"
 LD="/usr/bin/ld"
 CC_FLAGS="-c -I/usr/mqm/inc"
 LD_FLAGS="-bE:$file.exp -H512 -T512 -e MQStart -bM:SRE"
 LD_LIBS="-lmqm_r -lpthreads_compat -lpthreads -lc_r"
 ;;
 SunOS)
 CC="/usr/local/bin/gcc"
 LD="/usr/ucb/ld"
 CC_FLAGS="-c -I/opt/mqm/inc"
 LD_FLAGS="-G"
 LD_LIBS="-lmqm -lthread -lsocket -lc -lnsl -ldl"
 ;;

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 12

 *)
 echo "Operating system not supported!"
 return 1
 ;;
 esac
 $CC $CC_FLAGS -o $file.o $file.c
 if [$? -eq Ø]
 then
 $LD -o $file $file.o $LD_FLAGS $LD_LIBS
 fi

For AIX you need the file wrapper.exp, which is shown here:
 #!
 checkAccess
 reportAccess
 MQStart

How to build the software on other platforms is described in the
WebSphere MQ Application Programming Guide. Feel free to
extend or modify the script sample above.

Installation of the channel-based IP wrapper
Install the wrapper by copying the created binary wrapper to the
directory /var/mqm/exits. The program must be executable for
user and group mqm. Create a directory /var/mqm/errors/exits
and make it read/write for user and group mqm. The wrapper
creates its log file within this directory.

Configure channel security
First disable all default channel SYSTEM.DEF.*and
SYSTEM.AUTO.* of type SVRCONN, RCVR, SVR, and
CLUSRCVR, by setting the attribute MCAUSER to ‘nobody’. The
newly created channel will then be disabled by default because it
is assumed that nobody is a non-existing user or at least a user
with no permission in WMQ:
 ALTER CHANNEL(SYSTEM....) CHLTYPE(...) +
 MCAUSER('nobody')

To configure the channel-based IP wrapper alter the attributes
SCYEXIT, SCYDATA, and MCAUSER. Two different functions are
valid. Calling the function ‘reportAccess’ runs the wrapper in
report-only mode:

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 ...
 SCYEXIT('wrapper(reportAccess)')
 SCYDATA(MYCHANNEL.ALLOWED.IP)
 MCAUSER('mqm')
 ...

In report-only mode every channel request will be logged but no
further action will take place. In the log file you will see a message
asking if the channel request should be accepted or revoked by the
exit. The attribute SCYDATA must contain the name of a namelist.
This namelist contains a number of IP addresses or host names
that are allowed to start this channel.
 NAMELIST(MYCHANNEL.ALLOWED.IP)
 ...
 NAMES(1Ø.1Ø.1ØØ.1
 ,1Ø.1Ø.1ØØ.2
 ...)
 ...

A namelist can be used from more than one channel so you can
easily allow the same IP addresses for more than one channel (eg
batch and online channel). It is also possible to activate the
wrapper on one channel (function checkAccess) and run in report-
only mode on another channel(function reportAccess) even when
they use the same namelist.
To activate the channel-based IP wrapper alter the exit function to
checkAccess:
 SCYEXIT('wrapper(checkAccess)')

From this point every new channel request will be revoked if the
requesting address is not found in the configured namelist. Only
revoked requests will be reported in this mode.

SAMPLE CONFIGURATION
This example describes how to configure the administration
channel SYSTEM.ADMIN.SVRCONN (eg for use with MQExplorer)
and how to activate the channel-based IP wrapper. It assumes
that you have disabled the default channel, as described above.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 14

Creating an administration channel
Create the administration channel SYSTEM.ADMIN.SVRCONN
(eg for use with MQExplorer) with runmqsc:
 DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN)

The default channel has been disabled so the administration
channel has now set the attribute MCAUSER to nobody and is not
usable at the moment.

Set up the wrapper
The following commands configure the wrapper for the
administration channel. Now create the namelist with the allowed
IP addresses:
 DEFINE NAMELIST(ADMINCHANNEL.ALLOWED.IP) +
 NAMES('1Ø.1Ø.1ØØ.1','1Ø.1Ø.1ØØ.2')

Now set up the wrapper in report-only mode:
 ALTER CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN) +
 MCAUSER('mqm') +
 SCYEXIT('wrapper(reportAccess)') +
 SCYDATA(ADMINCHANNEL.ALLOWED.IP)

From this point every user can open the administration channel.
Every channel request will be reported but nothing will be revoked.
This configuration is useful on development systems where
developers can modify the WMQ configuration. This mode is also
of use during the implementation of live systems to identify the
required IP addresses to be enabled for the channel. Therefore,
run the channel in report-only mode for a while. Analyse the log file
and add the requesting IP addresses to the namelist (assuming
that you have – of course – double-checked the addresses!).
On live systems the administration channel should not be accessible
by any user except the WMQ administrators. When the appropriate
WQM administrators have local user accounts you should clear
the attribute MCAUSER:
 ALTER CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN) +
 MCAUSER(' ')

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

This works well for tools such as MQExplorer or MQMON. But, as
mentioned above, with freely available Java tools it is still possible
to get administrative access without having a user-ID. This
behaviour results from the way Java submits the client user-IDs.
Activate the channel-based IP wrapper by modifying the exit
function:
 ALTER CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN) +
 SCYEXIT('wrapper(checkAccess)')

Afterwards, only channel requests from the addresses 10.10.100.1
and 10.10.100.2 are accepted. The wrapper revokes requests
from any other addresses. Now set up further channel and
namelists for client applications and queue manager connections.

Examples
 DEFINE CHANNEL(APPL.SVRCONN) CHLTYPE(SVRCONN) +
 MCAUSER('appluser') +
 SCYEXIT('wrapper(reportAccess)') +
 SCYDATA(' ')

 DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(RCVR) +
 MCAUSER(' ') +
 SCYEXIT('wrapper(checkAccess)') +
 SCYDATA(QM2.ALLOWED.IP)

 DEFINE NAMELIST(QM2.ALLOWED.IP) +
 NAMES('1Ø.3Ø.1ØØ.1','1Ø.3Ø.1ØØ.2')

In the examples above, the local queue manager is named QM1.
It will accept and report every channel request for WMQ clients
using the channel APPL.SVRCONN. I assume the user appluser
is enabled for some application queues by the command setmqaut.
Requests to start the receiver channel QM2.TO.QM1 are accepted
only from the addresses 10.30.100.1 and 10.30.100.2. Modify the
namelist QM2.ALLOWED.IP to allow or deny IP addresses to
start this channel.

THE CODE
The channel-based IP wrapper is developed in the form of a C
library. This library is called ‘Wrapper’ and has two defined entry
points, reportAccess and checkAccess. Both of them call the

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 16

same function, compareAddress, which contains the whole wrapper
logic. Another function, logTS, is used to create the message
prefix for log file entries.

Exit entry points
Before the exit entries reportAccess and checkAccess can be
called from WMQ they have to be defined in the attribute SCYEXIT
in the form libraryName(entryPoint). The entry functions simply
pass all exit arguments to a function called compareAddress. An
additional argument is passed to this function, which defines the
mode of the exit (SEC_REPORT_ONLY or SEC_CHECK_PERM
for read-only or active mode respectively).

Exit function
The main function, compareAddress, checks the Exit-ID provided
with the exit parameters. Values other than
MQXT_CHANNEL_SEC_EXIT are not accepted. Those channel
requests will be closed immediately. If the Exit-ID is of type
MQXT_CHANNEL_SEC_EXIT, the ExitReason is checked.
The wrapper functionality is activated when the ExitReason is
MQXR_INIT. If the channel runs in report-only mode or an address
check has been successful, the ExitResponse will be MQXCC_OK,
which means a channel start-up is allowed. Otherwise the
ExitResponse is set to MQXCC_CLOSE_CHANNEL and the
channel start-up is revoked.
For the ExitReasons MQXR_INIT_SEC, MQXR_SEC_MSG, and
MQXR_TERM, the function always returns the ExitResponse
MQXCC_OK. Other ExitReasons will set the ExitResponse to
MQXCC_CLOSE_CHANNEL.
The function compareAddress is declared as static. This means
it is not visible from functions outside this module. Only the exit
entry points are able to call this function.

Timestamp function
The function logTS writes a message prefix to the log file entry. The

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

format of the prefix is defined by the C function asctime and is
followed by the name of the queue manager. Sample log file entries
may look as follows:
 <Wed Nov 5 Ø9:Ø8:46 2ØØ3; QM1> *** Channel APPL.SVRCONN runs in
 report mode ***
 <Wed Nov 5 Ø9:Ø8:46 2ØØ3; QM1> SCYDATA of channel APPL.SVRCONN
 contains not a namelist
 <Wed Nov 5 Ø9:Ø8:46 2ØØ3; QM1> Access to channel " APPL.SVRCONN"
 from address "1Ø.2Ø.1ØØ.1" would be revoked by exit

Global parameters
Two parameters are defined as global to the module. This is to give
the function logTS access to the file handle and to the name of the
queue manager.

Macros
To simplify writing to the log file the macros error_log and error_exit
are defined. The first parameter of these macros is a message
format string. The second parameter is an integer value (a reason
or return code). If this integer value is unequal to zero and the file
handle is not NULL, a log entry will be written. In case of the
function error_exit the channel program ends and returns this
integer value.

WRAPPER.C
/* July 21 2ØØ3 */
/* Hubert Kleinmanns */
/* Senior Consultant */
/* Exit Purpose: This exit is intended to prohibit unauthorized */
/* access to a channel. It checks the requesting IP address against */
/* the contents of a namelist. The name of the namelist is read */
/* from the exit data. */
/* Secure a channel: */
/* 1) Set the inbound channel scyexit and scydata with: */
/* DEFINE CHANNEL(channel_name) CHLTYPE(channel_type) + */
/* SCYEXIT('wrapper(checkAccess)') + */
/* SCYDATA(name_list) */
/* 2) Define the name_list specified in step (1) with: */
/* DEFINE NAMELIST(name_list) + */
/* NAMES(ip_address1[,ip_adress2[,...]]) */
/* Setup in report mode: */

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 18

/* This exit may be run in report mode, so the IP addresses, */
/* which try to connect to the channel, will be logged, but */
/* connections will not be revoked. To enable report mode */
/* use another entry for the exit: */
/* DEFINE CHANNEL(channel_name) CHLTYPE(channel_type) + */
/* ---> SCYEXIT('wrapper(reportAccess)') + <--- */
/* SCYDATA(name_list) */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#ifdef AIX
#include <langinfo.h>
#endif /* AIX */
#ifndef WIN32
#include <unistd.h>
#endif /* WIN32 */
#ifdef WIN32
#include <ctype.h>
#include <windows.h>
#include <winbase.h>
#endif /* WIN32 */
#include <time.h>
#include <sys/timeb.h>
/* includes for MQI */
#include <cmqc.h>
#include <cmqxc.h>
#ifdef WIN32
 #define LOG_PATH "C:\\TEMP\\"
#else /* WIN32 */
 #define LOG_PATH "/var/mqm/errors/exits/"
#endif /* WIN32 */
#define LOG_SUFFIX "_wrapper.log"
#define LOG_FILE_LENGTH 256 /* Must be more than length of LOG_PATH
and LOG_SUFFIX */
#define SEC_REPORT_ONLY 'r'
#define SEC_CHECK_PERM 'c'
/* Macros, which write out a log entry, when the second parameter is
not Ø */
#define error_log(x,y)
if(((y)!=Ø)&&(fp!=NULL)){logTS();fprintf(fp,(x),(y));}
/* ... and ends the program ... */
#define error_exit(x,y)
if(((y)!=Ø)&&(fp!=NULL)){logTS();fprintf(fp,(x),(y));exit((y));}
/* Declare function prototypes. */
void MQENTRY checkAccess (PMQVOID, PMQVOID, PMQLONG, PMQLONG, PMQVOID,
PMQLONG,
 PMQPTR);
void MQENTRY reportAccess (PMQVOID, PMQVOID, PMQLONG, PMQLONG, PMQVOID,
PMQLONG,

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 PMQPTR);
static void logTS (void);
static void compareAddress (PMQVOID, PMQVOID, PMQLONG, PMQLONG,
PMQVOID, PMQLONG,
 PMQPTR, char);
/* Global parameters only visible to functions in this file. */
static FILE *fp;
static char queueManagerName[MQ_Q_MGR_NAME_LENGTH+1];
/* Exit entry definitions */
/* Dummy entry point. */
void MQStart() {;}
/* Entry point for exit in active mode. */
void MQENTRY checkAccess (
 PMQVOID pChannelExitParms, /* Channel exit parameter block */
 PMQVOID pChannelDefinition, /* Channel definition */
 PMQLONG pDataLength, /* Length of data */
 PMQLONG pAgentBufferLength, /* Length of agent buffer */
 PMQVOID pAgentBuffer, /* Agent buffer */
 PMQLONG pExitBufferLength, /* Length of exit buffer */
 PMQPTR pExitBufferAddr) /* Address of exit buffer */
{
 /* Run exit in active mode */
 compareAddress (pChannelExitParms,
 pChannelDefinition,
 pDataLength,
 pAgentBufferLength,
 pAgentBuffer,
 pExitBufferLength,
 pExitBufferAddr,
 SEC_CHECK_PERM);
}
/* Entry point for exit in report-only mode. */
void MQENTRY reportAccess (
 PMQVOID pChannelExitParms, /* Channel exit parameter block */
 PMQVOID pChannelDefinition, /* Channel definition */
 PMQLONG pDataLength, /* Length of data */
 PMQLONG pAgentBufferLength, /* Length of agent buffer */
 PMQVOID pAgentBuffer, /* Agent buffer */
 PMQLONG pExitBufferLength, /* Length of exit buffer */
 PMQPTR pExitBufferAddr) /* Address of exit buffer */
{
 /* Run exit in report-only mode */
 compareAddress (pChannelExitParms,
 pChannelDefinition,
 pDataLength,
 pAgentBufferLength,
 pAgentBuffer,
 pExitBufferLength,
 pExitBufferAddr,
 SEC_REPORT_ONLY);

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 20

}
/* Main exit function, which is used by the exit entries
'checkAccess'*/
/* and 'reportAccess'. */
static void compareAddress (
 PMQVOID pChannelExitParms, /* Channel exit parameter block */
 PMQVOID pChannelDefinition, /* Channel definition */
 PMQLONG pDataLength, /* Length of data */
 PMQLONG pAgentBufferLength, /* Length of agent buffer */
 PMQVOID pAgentBuffer, /* Agent buffer */
 PMQLONG pExitBufferLength, /* Length of exit buffer */
 PMQPTR pExitBufferAddr, /* Address of exit buffer */
 char controlFlag) /* Flag to control the exit mode */
{
 PMQCXP pExitParms = (PMQCXP) pChannelExitParms;
 PMQCD pChDef = (PMQCD) pChannelDefinition;
 static MQHCONN Hcon; /* connection handle */
 static logEnable = Ø;
 MQHOBJ HobjInqNL; /* object handle */
 MQLONG CompCode; /* completion code */
 MQLONG Reason; /* reason code */
 MQOD InqObjDesc = {MQOD_DEFAULT};
 MQLONG openOptions, select[1], nameLen, count;
 MQLONG iAttrArr[1];
 PMQCHAR pNames, pNameStart, pFirstBlank;
 MQCHAR channelName[MQ_CHANNEL_NAME_LENGTH+1] = "";
 MQLONG channelLength;
 MQCHAR connectionName[sizeof(pChDef->ConnectionName)];
 MQLONG connectionLength;
 char logFileName[LOG_FILE_LENGTH + MQ_Q_MGR_NAME_LENGTH + 1];
 /* Mark channel, to be closed by default. */
 pExitParms->ExitResponse = MQXCC_CLOSE_CHANNEL;
 strncpy (queueManagerName, pChDef->QMgrName, MQ_Q_MGR_NAME_LENGTH);
 queueManagerName[MQ_Q_MGR_NAME_LENGTH] = ' ';
 pFirstBlank = strstr (queueManagerName, " ");
 *pFirstBlank = Ø;
 sprintf (logFileName, "%s%s%s", LOG_PATH, queueManagerName,
 LOG_SUFFIX);
 fp = fopen (logFileName, "a");
 switch (pExitParms->ExitId)
 {
 /* Only call as security exit is accepted */
 case MQXT_CHANNEL_SEC_EXIT:
 switch (pExitParms->ExitReason)
 {
 /* Exit initialization, connect to the queue manager
 and store the handle in a static variable. */
 case MQXR_INIT:
 /* Print out, when in report-only mode. */
 if ((controlFlag == SEC_REPORT_ONLY) && (fp != NULL))

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 {
 logTS ();
 fprintf (fp, "*** Channel %s runs in report-only mode ***\n",
 pChDef->ChannelName);
 }
 /* Try to connect to the queue manager */
 MQCONN (pChDef->QMgrName, /* queue manager */
 &Hcon, /* connection handle */
 &CompCode, /* completion code */
 &Reason); /* reason code */
 /* End program, if connection is not possible. */
 if ((Reason != MQRC_NONE) && (Reason !=
MQRC_ALREADY_CONNECTED))
 error_exit ("MQCONN ended with reason %ld\n", Reason);
 /* Read the security exit data and interpret it as a namelist. */
 InqObjDesc.ObjectType = MQOT_NAMELIST;
 strncpy (InqObjDesc.ObjectName, pChDef->SecurityUserData,
 sizeof (InqObjDesc.ObjectName));
 pNameStart = InqObjDesc.ObjectName;
 pFirstBlank = strstr (InqObjDesc.ObjectName, " ");
 /* The security exit data is not empty */
 if (pFirstBlank-pNameStart > Ø)
 {
 /* Inquire the namelist. */
 openOptions = MQOO_INQUIRE;
 MQOPEN (Hcon, /* connection handle */
 &InqObjDesc, /* object descriptor for queue */
 openOptions, /* open options */
 &HobjInqNL, /* object handle */
 &CompCode, /* MQOPEN completion code */
 &Reason); /* reason code */
 /* Inquiry was NOT successful. */
 if (Reason != Ø)
 {
 /* Mark channel, to be closed. */
 pExitParms->ExitResponse = MQXCC_CLOSE_CHANNEL;
 if ((Reason == MQRC_UNKNOWN_OBJECT_NAME) && (fp != NULL))
 {
 logTS ();
 fprintf (fp, "Namelist \"%.*s\" is not known\n",
 pFirstBlank-pNameStart, InqObjDesc.ObjectName);
 }
 if (controlFlag == SEC_CHECK_PERM)
 {
 error_exit ("MQOPEN NL ended with reason %ld\n",
 Reason);
 }
 }
 /* Inquiry was successful. */
 else

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 22

 {
 /* Inquire the NAMCOUNT attribute. */
 select[Ø] = MQIA_NAME_COUNT;/* attribute selectors */
 MQINQ (Hcon, /* connection handle */
 HobjInqNL, /* object handle */
 1L, /* Selector count */
 select, /* Selector array */
 1L, /* integer attribute count */
 iAttrArr, /* integer attribute array */
 Ø, /* character attribute count */
 NULL, /* character attribute array */
 &CompCode, /* completion code */
 &Reason); /* reason code */
 if (controlFlag == SEC_CHECK_PERM)
 error_exit ("MQINQ NL ended with reason %ld\n", Reason);
 /* Allocate memory for the NAMES attribute. */
 pNames = (char *) malloc (iAttrArr[Ø] *
 MQ_NAMELIST_NAME_LENGTH);
 /* Inquire the NAMES attribute. */
 select[Ø] = MQCA_NAMES;/* attribute selectors */
 MQINQ (Hcon, /* connection handle */
 HobjInqNL, /* object handle */
 1L, /* Selector count */
 select, /* Selector array */
 ØL, /* integer attribute count */
 iAttrArr, /* integer attribute array */
 iAttrArr[Ø]*MQ_NAMELIST_NAME_LENGTH,
 /* character attribute count */
 pNames, /* character attribute array */
 &CompCode, /* completion code */
 &Reason); /* reason code */
 if (controlFlag == SEC_CHECK_PERM)
 error_exit ("MQINQ NL ended with reason %ld\n", Reason);
 /* Compare the connection name to the defined addresses. */
 for (count = Ø; count < iAttrArr[Ø]; count++)
 {
 pNameStart = &pNames[count*MQ_NAMELIST_NAME_LENGTH];
 pFirstBlank = strstr (pNameStart, " ");
 nameLen = pFirstBlank - pNameStart;
 if (strncmp (pNameStart, pChDef->ConnectionName,
 nameLen) == Ø)
 {
 /* Mark channel, Not to be closed. */
 pExitParms->ExitResponse = MQXCC_OK;
 }
 }
 /* Free the memory for the NAMES attribute. */
 free (pNames);
 /* Close the namelist. */
 MQCLOSE (Hcon, /* connection handle */

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 &HobjInqNL,
 MQCO_NONE,
 &CompCode,
 &Reason);
 if (controlFlag == SEC_CHECK_PERM)
 error_log ("MQCLOSE NL ended with reason %ld\n",
 Reason);
 }
 }
 /* The security exit data is empty */
 else
 {
 /* Mark channel, to be closed. */
 pExitParms->ExitResponse = MQXCC_CLOSE_CHANNEL;
 if (fp != NULL)
 {
 logTS ();
 fprintf (fp,
 "SCYDATA of channel %s contains not a namelist\n",
 pChDef->ChannelName);
 }
 if (controlFlag == SEC_CHECK_PERM)
 error_exit ("MQOPEN NL ended with reason %ld\n", Reason);
 }
 if ((pExitBufferAddr != NULL) && (*pExitBufferAddr != NULL))
 {
 free(*pExitBufferAddr);
 *pExitBufferAddr = NULL;
 *pExitBufferLength = Ø;
 }
 pNameStart = pChDef->ChannelName;
 pFirstBlank = strstr (pNameStart, " ");
 if (pFirstBlank > pNameStart)
 channelLength = pFirstBlank-pNameStart;
 else
 channelLength = strlen (pChDef->ChannelName);
 strncpy (channelName, pNameStart, channelLength);
 pNameStart = pChDef->ConnectionName;
 pFirstBlank = strstr (pNameStart, " ");
 connectionLength = pFirstBlank-pNameStart;
 strncpy (connectionName, pNameStart, connectionLength);
 /* Channel is marked to be closed. */
 if (pExitParms->ExitResponse != MQXCC_OK)
 {
 if (fp != NULL)
 {
 /* Channel access is revoked by exit. */
 if (controlFlag == SEC_CHECK_PERM)
 {
 logTS ();

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 24

 fprintf (fp, "Access to channel \"%.*s\" from address
\"%.*s\" is revoked by exit\n",
 channelLength, channelName,
 connectionLength, connectionName);
 }
 /* Channel access is NOT revoked in report-only mode. */
 else
 {
 logTS ();
 fprintf (fp, "Access to channel \"%.*s\" from address
 \"%.*s\" would be revoked by exit\n",
 channelLength, channelName,
 connectionLength, connectionName);
 }
 }
 /* Mark channel, Not to be closed in report-only mode. */
 if (controlFlag == SEC_REPORT_ONLY)
 pExitParms->ExitResponse = MQXCC_OK;
 }
 else
 {
 /* Report allowed access in report-only mode. */
 if ((controlFlag == SEC_REPORT_ONLY) && (fp != NULL))
 {
 logTS ();
 fprintf (fp, "Access to channel \"%.*s\" from address
 \"%.*s\" would be allowed\n",
 channelLength, channelName,
 connectionLength, connectionName);
 }
 }
 break;
 case MQXR_INIT_SEC:
 /* Mark channel, Not to be closed. */
 pExitParms->ExitResponse = MQXCC_OK;
 break;
 case MQXR_SEC_MSG:
 /* Mark channel, Not to be closed. */
 pExitParms->ExitResponse = MQXCC_OK;
 break;
 case MQXR_TERM:
 /* Mark channel, Not to be closed. */
 pExitParms->ExitResponse = MQXCC_OK;
 break;
 default:
 /* Mark channel, to be closed. */
 pExitParms->ExitResponse = MQXCC_CLOSE_CHANNEL;
 }
 break;
 default:

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 error_log ("Invalid exit ID %ld\n", pExitParms->ExitId);
 /* Mark channel, to be closed. */
 pExitParms->ExitResponse = MQXCC_CLOSE_CHANNEL;
 break;
 }
 if (fp != NULL)
 fclose (fp);
}
/* Function, which prints out a time stamp and the name */
/* of the queue manager. */
static void logTS (void)
{
 struct tm *pTime;
 time_t localTime;
 char timeString[1ØØ];
 int len;
 if (fp != NULL)
 {
 localTime = time (NULL);
 pTime = localtime (&localTime);
 strcpy (timeString, asctime (pTime));
 len = strlen (timeString);
 timeString[len - 1] = Ø;
 fprintf (fp, "<%s; %s> ", timeString, queueManagerName);
 }
}

Hubert Kleinmanns
N-Tuition Business Solutions (Germany) © Xephon 2004

Triggering WMQ Workflow

INTRODUCTION
This article presents two scenarios where Java classes were
written to interact with MQ Series, achieve legacy database
integration, and trigger WMQ Workflow.

SCENARIO ONE
A CRM (customer relationship management) order management
system used a view of the legacy database to provide a single

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 26

view of a customer’s details. In special circumstances there was
sometimes a requirement to update customer information directly
from the order management system. WMQ was the messaging
system in use so we implemented the solution using a Java
program and interfaced it with a Siebel CRM system.

LEGACYUPDATELOG.JAVA
/* Program name: LegacyUpdateLog */
/* Description: This java program shows MQ-based Java and DB2 in */
/* a two-phase commit */
/* Function: */
/* This program accepts a database update statement from the CRM */
/* application. This statement is then written to an MQSeries */
/* queue and executed against a database in the same unit of work. */
/* The user is then asked whether this unit of work should be */
/* committed or backed out. */
/* This program is called as follows: */
/* java LegacyUpdateLog -q ... -m ... -d ... */
/* where */
/* -q is the queue where messages will be put */
/* -m is the queue manager (if not specified default qmgr is used) */
/* -d is the database that will be used */
/* and possible input would be: */
/* update table set column1 = 'value1' where column2 = 'value2' */
/* The output of this program can be verified by running: */
/* amqsbcg <queue name> <qmgr name> */
/* If the work was committed, the db command will be on the queue. */
/* If the work was backed out, the queue will be empty. */
/* The database can also be queried to confirm whether or not the */
/* database update was committed or rolled back. */
/* In order to use this program, the following must be done: */
/* - An application database must be created using DB2. This */
/* database will be one of the resources in the two phase commit. */
/* - The MQSeries queue manager must be updated to recognize the */
/* database as a resource. This can be done by using the WMQ */
/* Services to look at the queue manager. The properties of the */
/* queue manager are then selected and updated for this database: */
/* Name: any name you wish to use */
/* SwitcFile: <mq install>\java\lib\jdbc\jdbcdb2.dll */
/* XAOpenString: database name, userid, password */
/* ThreadOfControl: PROCESS */
/* Note 1: There are several changes to the way things work with */
/* java. Details are supplied in the Using Java manual Chapter 7. */
/* Note 2: The MQ System Administration manual gives additional */
/* information on using MQSeries as a transaction manager. */
/* Note 3: This program is designed to work with update statements */

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

/* only. If you enter select statements they will throw an exception.*/
import com.ibm.mq.*; // Include the MQ package
import java.io.*;
import java.lang.*;
import javax.sql.*;
import java.sql.*;
public class LegacyUpdateLog {
 private MQQueueManager qMgr;
 private String qmgrName;
 private String queueName;
 private String dbName;
 private Connection jdbcConn;
 public static void main (String args[]) {
 LegacyUpdateLog mySample = new LegacyUpdateLog(args);
 mySample.start();
 }
 public LegacyUpdateLog(String[] args) {
 /* Get the command-line arguments */
 for(int i=Ø; i<args.length; i++) {
 String arg = args[i].toLowerCase();
 if(arg.equals("-m")) {
 if (i+1<args.length) {
 qmgrName = args[++i];
 } else {
 System.out.println("didn't specify queue manager,
exiting");
 System.exit(-1);
 }
 } else if(arg.equals("-q")) {
 if (i+1<args.length) {
 queueName = args[++i];
 } else {
 System.out.println("didn't specify queue, exiting");
 System.exit(-1);
 }
 } else if(arg.equals("-d")) {
 if (i+1<args.length) {
 dbName = args[++i];
 } else {
 System.out.println("didn't specify datbase name,
exiting");
 System.exit(-1);
 }
 } else {
 System.out.println("Unknown argument: " + arg);
 }
 }
 /* Check that all arguments were entered. */
 if ((queueName==null)
 || (dbName==null)) {

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 28

 System.out.println("java LegacyUpdatelog -q ... -m ... -d
...");
 System.out.println("where -q is the queue");
 System.out.println(" -m is the queue manager");
 System.out.println(" -d is the database name");
 System.exit(-1);
 }
 }
 /* Put any Specific Initializations Here */
 public void init() {
 }
 public void start() {
 try {
 System.out.println("LegacyUpdatelog started...");
 /* Create a queue manager object and access the queue */
 /* that will be used for the putting of messages. */
 qMgr = new MQQueueManager(qmgrName);
 int openOptions = MQC.MQOO_OUTPUT;
 MQQueue myQueue = qMgr.accessQueue(queueName, openOptions,
 null, null, null);
 /* Create a DB2 XA DataSource that we will use as the */
 /* place to perform database updates. */
 COM.ibm.db2.jdbc.DB2XADataSource myDataSource =
 new COM.ibm.db2.jdbc.DB2XADataSource();
 myDataSource.setDatabaseName(dbName);
 jdbcConn = qMgr.getJDBCConnection(myDataSource);
 /* Set up a reader to get the user input */
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 String runShow;
 System.out.println("LegacyUpdatelog ready for db command");
 /* As long as the applications sends data, */
 /* process it... */
 do {
 runShow = br.readLine();
 /* See if the user entered anything */
 if (runShow.length() > Ø) {
 qMgr.begin();
 /* Set up a new message with a format of string and */
 /* write the user input to it. */
 MQMessage myMessage = new MQMessage();
 myMessage.writeString(runShow);
 myMessage.format = MQC.MQFMT_STRING;
 MQPutMessageOptions pmo = new MQPutMessageOptions();
 pmo.options = pmo.options | MQC.MQPMO_SYNCPOINT;
 myQueue.put(myMessage, pmo);
 boolean validStatement = true;
 Statement stmt = jdbcConn.createStatement();
 try {
 int rowsUpdated = stmt.executeUpdate(runShow);

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 System.out.println("Rows updated: " + rowsUpdated);
 } catch (java.lang.Exception ex) {
 validStatement = false;
 System.out.println("Java exception: " + ex);
 System.out.println("LegacyUpdatelog is designed to
 work only with update statements.\n");
 }
 stmt.close();
 /* Ask if the db update, message put should be committed or */
 /* backed out (if db command was valid). If the command */
 /* wasn't valid, we'll backout the qmgr update. */
 if (validStatement) {
 System.out.println("Enter C to Commit or R to rollback");
 runShow = br.readLine();
 if ((runShow.indexOf("c") >= Ø)
 || (runShow.indexOf("C") >= Ø)) {
 qMgr.commit();
 } else {
 qMgr.backout();
 }
 } else {
 qMgr.backout();
 }
 }
 System.out.println("LegacyUpdatelog ready for db command");
 } while (runShow.length() > Ø) ;
 /* Before the program ends, we need to close all of our */
 /* connections. */
 myQueue.close();
 jdbcConn.close();
 qMgr.disconnect();
 }
 catch (MQException ex) {
 System.out.println("An MQ error occurred: " +
ex.completionCode + " " +
 ex.reasonCode);
 }
 catch (java.io.IOException ex) {
 System.out.println("Java.io exception: " + ex);
 }
 catch (java.lang.Exception ex) {
 System.out.println("Java exception: " + ex);
 }
 System.out.println("LegacyUpdateLog finished...");
 }
}

SCENARIO TWO
A customized collection system tracks the accounts receivables

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 30

and validates the payments against the legacy database. A Java
program had to be written to interface it with XML and WMQ, in
order to initiate a WMQ Workflow process. This program, included
with the collection system, starts the MQ Workflow process.

STARTMQWORKFLOW.JAVA
// This program is used to start the sample MQ Workflow process using
// XML. Also, this process is started as a particular user that is not
// the WinNT logged on user. The user identifier is set to ADMIN
// (This user must be defined in the MQ Workflow runtime database)
// XML messages for MQSeries Workflow are put into the queue
// EXEXMLINPUTQ. The queue manager is set to FMCQM in this code.
// Process name = StartWorkflowRequest
// InputContainer = PersonInfo
// container members = FirstName,LastName,TaxID are string types
// You will need to compile this using the command:
// javac StartWorkflowRequest.java
// To run it, make sure the MQSeries Workflow server is started.
// Make sure you have imported and translated fmccred.fdl
// Type: java StartWorkflowRequest
// A window/dialog is displayed that prompts you for the First
// Name,Last Name and TaxID. Press the pushbutton to start the process.
// You will get no response back. Must login to client to verify
process start.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.*;
import com.ibm.mq.*; //MQSeries java classes
public class StartRequestWorkflow extends JFrame implements
ActionListener, DocumentListener
{
 // variables used
 private JLabel fnameLabel= null;
 private JTextField fnameText = null;;
 private JLabel lnameLabel= null;
 private JTextField lnameText = null;
 private JButton startButton = null;
 private JButton cancelButton = null;
 private Document myDocTextField = null;
 private String firstName = null;
 private String lastName = null;
 private MQQueueManager wfqmgr = null;
 private MQQueue xmlinputq = null;
 private String procTempName = null;
 private String procInstName = null;

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 private String contName = null;
 private String xmlRequestMessage = null;
 public StartWorkflowRequest()
 {
 // put title on window
 super("Workflow Request Application");
 //setSize(5ØØ,45Ø);
 setLocation(3ØØ,3ØØ); // center of display
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 System.exit(Ø);
 }
 });
 JPanel rootPanel = new JPanel();
 rootPanel.setLayout(new BorderLayout());
 JPanel fnamePanel = new JPanel();
 fnamePanel.setLayout(new FlowLayout());
 fnameLabel = new JLabel("First Name: ");
 fnameText = new JTextField(25);
 fnamePanel.add(fnameLabel);
 fnamePanel.add(fnameText);
 JPanel lnamePanel = new JPanel();
 lnamePanel.setLayout(new FlowLayout());
 lnameLabel= new JLabel("Last Name: ");
 lnameText = new JTextField(25);
 lnamePanel.add(lnameLabel);
 lnamePanel.add(lnameText);
 JPanel taxidPanel = new JPanel();
 taxidPanel.setLayout(new FlowLayout());
 taxidPanel = new JLabel("Tax ID: ");
 taxidPanel = new JTextField(25);
 taxidPanel.add(taxidLabel);
 taxidPanel.add(taxidText);
 myDocTextField = lnameText.getDocument();
 myDocTextField.addDocumentListener(this);
 JPanel buttonPanel = new JPanel();
 buttonPanel.setLayout(new FlowLayout());
 startButton = new JButton("Start Workflow Request Process");
 cancelButton = new JButton("Cancel");
 buttonPanel.add(startButton);
 startButton.addActionListener(this);
 startButton.setEnabled(false);
 buttonPanel.add(cancelButton);
 cancelButton.addActionListener(this);
 rootPanel.add("North",fnamePanel);
 rootPanel.add("Center",lnamePanel);
 rootPanel.add("South", buttonPanel);
 getContentPane().setLayout(new BorderLayout());
 getContentPane().add("Center", rootPanel);
 pack();

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 32

 setVisible(true);
 }
 public void insertUpdate(DocumentEvent evtDoc)
 {
 if (myDocTextField.getLength() > Ø)
 startButton.setEnabled(true);
 }
 public void removeUpdate(DocumentEvent evtDoc)
 {
 if (myDocTextField.getLength() > Ø)
 startButton.setEnabled(true);
 else
 startButton.setEnabled(false);
 }
 public void changedUpdate(DocumentEvent evtDoc)
 {
 // nothing here
 }
 public void actionPerformed(ActionEvent e)
 {
 // See if the start button was pressed
 if (e.getActionCommand() == "Start Workflow Request Process") {
 // get the data from the input fields
 firstName=fnameText.getText();
 lastName=lnameText.getText();
 taxid = taxidText.getText();
 System.out.println("Firstname = '" + firstName + "'");
 System.out.println("Lastname = '" + lastName + "'");
 System.out.println("Tax ID = '" + taxID + "'");
 // Connect to queue manager and open the queue
 try
 {
 wfqmgr = new MQQueueManager("FMCQM");
 // SET_IDENTITY_CONTEXT is used to change the useridentifier
 int openOptions = MQC.MQOO_OUTPUT |
MQC.MQOO_SET_IDENTITY_CONTEXT;
 xmlinputq = wfqmgr.accessQueue("EXEXMLINPUTQ", openOptions,
null, null, null);
 }
 catch (MQException mqException)
 {
 System.out.println("MQException has been thrown on connect or
open");
 System.exit(99);
 }
 // Build the XML message that will start the process
 procTempName="WorkflowRequest";
 procInstName = lastName;
 contName = "PersonInfo";
 xmlRequestMessage=

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 "<?xml version=\"1.Ø\" standalone=\"yes\"?>" +
 "\n <WfMessage>" +
 "\n <WfMessageHeader>" +
 "\n <ResponseRequired>No</ResponseRequired>" +
 "\n </WfMessageHeader>" +
 "\n <ProcessTemplateCreateAndStartInstance>" +
 "\n <ProcTemplName>" + procTempName + "</
ProcTemplName>" +
 "\n <ProcInstName>" + procInstName + "</ProcInstName>"
+
 "\n <ProcInstInputData>" +
 "\n <" + contName + ">" +
 "\n <FirstName>" + firstName + "</FirstName>" +
 "<LastName>" + lastName + "</LastName>" +
 "<TaxID>" + TaxID + "</TaxId>" +
 "</" + contName + ">"+
 "\n </ProcInstInputData>" +
 "\n </ProcessTemplateCreateAndStartInstance>" +
 "\n </WfMessage>\n\n\n";
 try
 {
 // Set user identifier and write the message to the buffer
 MQMessage msg = new MQMessage();
 msg.userId = "ADMIN"; // use a userid other than WinNT userid
 msg.writeString(xmlRequestMessage);
 // Specify put options and put the message on the queue
 MQPutMessageOptions pmo = new MQPutMessageOptions();
 pmo.options = MQC.MQPMO_SET_IDENTITY_CONTEXT; // to use
non-WinNT userid
 xmlinputq.put(msg, pmo);
 System.out.println("Have put xml message on queue.");
 } // end try
 catch(MQException mqexception)
 {
 System.out.println("MQException thrown on put of message.");
 }
 catch (java.io.IOException exception)
 {
 System.out.println("An error occurred writing string into
the message buffer. Exception = " + exception);
 this.cleanup();
 this.endApp();
 }
 // close queue and disconnect
 this.cleanup();
 // End application
 this.endApp();
 } // endif Start button pressed
 // See if the cancel button was pressed
 if (e.getActionCommand() == "Cancel") {

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 34

 this.endApp();
 }
 } //end actionPerformed
 // Close the queue and disconnect from qmgr
 public void cleanup()
 {
 System.out.println("Closing queue and disconnect from qmgr.");
 try
 {
 xmlinputq.close();
 }
 catch(MQException mqexecption)
 {
 System.out.println("MQException has been thrown on close of
queue.");
 }
 try
 {
 wfqmgr.disconnect();
 }
 catch(MQException mqexception)
 {
 System.out.println("MQException has been thrown on disconnect
from qmgr.");
 }
 } // end ActionPerformed
 // End the application
 public void endApp()
 {
 System.out.println("Leaving this application.");
 System.exit(Ø);
 }
 // Main
 public static void main(String[] args)
 {
 StartWorkflowRequest startworkflowRequest = new
StartWorkflowRequest();
 }
} // end of StartWorkflowRequest class

Vikas Baruah
American Management Systems (USA) © Xephon 2004

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

BAR file deploy in Message Broker V5.0 Toolkit

The BAR (Broker Archive) file deploy is one of the newest and
most important pieces of functionality in WebSphere Business
Integration Message Broker V5.0 Toolkit (hereafter referred to as
Message Broker V5.0). It is a radical change from the deploy
method in V2.1.
The BAR file is a unit of deployment to a broker. It can be seen as
a zip file containing message flows and message sets, thus
forming the unit to be deployed to a broker. This also means that
the assignments pane in V2.1 does not exist in V5.0 in a
perspective of its own. The BAR is a fresh functional addition to
the Message Broker V5.0 Toolkit.
The most functional use of a BAR file probably lies in its portability.
A user can create a number of message flows and message sets,
add them to a BAR file, and then export the BAR file. This means
that the BAR file can be used in different workspaces without the
need to export the actual message flows and message sets. The
message flows and message sets are compiled and stored in the
BAR file.
The following sections describe how to create a BAR file and the
source, add message flows and message sets to a BAR file, and
ways of deploying a BAR file to a broker with other important
functional aspects.
I use ‘BARMessageFlow’ and ‘BARMessageSet’ as a message
flow and message set respectively, with the assumption that they
exist in the workspace for illustrative purposes.

REQUIREMENTS
The following set-up is required before proceeding:
• A configuration manager with its queue manager and listener

running.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 36

• A broker with its queue manager and listener running. (It’s
easier if the configuration manager and broker share the
same queue manager and listener.)

• A domain connection to the configuration manager and a
broker to deploy to in the toolkit.

CREATE A BAR FILE
A BAR can be created using the file menu or the toolbar button in
the Broker Administration perspective, as shown in Figure 1.
• The BAR file has to be part of a server project, so create a

server project from the file menu: File->New->Project. Select
Server in the left-hand pane and Server Project in the right
pane. Click Next.

• Give the project a name, eg ‘BARProject’. Make sure the Use
Default checkbox is checked and click Finish. The project is
created and the Server perspective is opened. Close the
Server perspective.

• In the Broker Administration perspective click the Create a
New Broker Archive File toolbar button.

• In the New Message Broker Archive window select the server
project just created and enter a name for the BAR file to be
created, for example ‘BARFile1’ and click Finish.

• An editor opens in the workspace, showing the name of the
BAR file just created with a .bar extension. In the Broker

Figure 1: Creating a BAR file

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Administration Navigator pane of the Broker Administration
perspective, the BAR file is listed under the Broker Archives
folder as a child of the Server project it belongs to (see Figure
2).
(Note: assuming defaults were used, the BAR file is created
and stored under <WBIMBv5.0InstallDirectory>/eclipse/
workspace/<ProjectName> on the system.)

ADD MESSAGE FLOWS AND MESSAGE SETS TO A BAR FILE
After the BAR file is created the message flows and message sets
to be deployed have to be added to the BAR file.
• Click the Add button on the BAR file editor pane, as shown in

Figure 3.
• In the Add to Broker Archive window that opens, select the

deployable resources and check the Include message flow/
set source box, as shown in Figure 4. This is a very useful
feature as it includes the source of the message flow and
message set in the BAR file. A user can then extract the
source message flow and message set from the BAR file if
required. Click OK.

Figure 2: Viewing the created BAR file

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 38

• A window opens showing the progress of adding resources to
the BAR file. This is useful because any errors and warnings
resulting from the actual message flows and message sets
can be seen in the details pane of the window. Click OK. You
can also check for successful deploy results in the event log
(see Figure 5).
(Note: message flow and message set projects with errors will
not be added to the BAR file and the Details pane will outline
the projects that have errors.)

Figure 3: Adding and removing message flows

Figure 4: Selecting the deployable resources

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• Once the resources have been successfully added to the
BAR file the editor pane will display the list of the resources
(see Figure 6).

• As can be seen from Figure 5, the BAR file now contains the
resources with their source. The Compiled Message Flow and
Dictionary File are generated as a result of the addition to the
BAR file. These files bring the portability factor to the BAR file.
With these files forming part of the BAR file the user can take
the BAR file and deploy it in another workspace without any
prior knowledge of the message flow and message set in the
BAR file.

• The Show Source Files checkbox can be toggled to display or
hide the source files. Also, the user can remove resources
from the BAR file using the Remove button. Save the BAR file.
(Note: if the BAR file is not saved the user will be asked to save
it at the time of deploy. The asterisk in the title of the BAR file
editor pane indicates that the BAR file has not been saved.)

Figure 5: Adding resources and checking results

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 40

DEPLOY A BAR FILE
Once all the deployable resources are added to the BAR file, it can
be deployed using one of three methods.

Drag and drop
• In the Broker Administration Navigator pane click on the BAR

file to be deployed.
• Drag the BAR file and drop it on the execution group of the

broker in the Domains pane to initiate a deploy (see Figure 7).
(Note: the BAR file can only be dropped onto an execution group.
A ‘no entry’ sign will appear if the user attempts to drop it anywhere
else.)

Figure 6:Displaying the list of resources

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Menu popup
• Right-click on the BAR file in the Broker Administration pane

and select Deploy File… from the list.
• In the Deploy a BAR File… window that opens, select the

execution group of the broker to initiate the deploy (see Figure
8). Click OK .

Command line deploy
The user also has an option to deploy the BAR file from the
command line. This can be done using the mqsideploy command
at the command prompt. In this case the command will be:
 mqsideploy -b<broker name> -e<execution group name> -bar <BAR File
 name>

The mqsideploy command also has additional options that can be
used to dictate other aspects of the deploy, such as timeout value,
read logs, etc.

Figure 7: Drag and Drop method of initiating a deploy

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 42

Check for deploy results
Once the deploy has been initiated and is successful, the following
processes should be checked to confirm that the deploy was
successful.
• A dialog box will appear, confirming a successful response

from the configuration manager. Click ‘OK’.

Figure 8: Using the popup menu to initiate a deploy

Figure 9: The Domains pane

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• The message flows and message sets added to the BAR file
should appear under the execution group the BAR File was
deployed to in the Domains pane, as shown in Figure 9.

• Open the Event Log from the Domain pane and check for
successful deploy messages, as shown in Figure 10.

(Note: check the local system log for the broker to ensure no errors
were given as a result of the deploy.)

Figure 10: Check for successful deploy messages

Figure 11: Exporting the BAR file

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 44

Export/import/reuse of the BAR file
As mentioned previously, the BAR file can be exported as a zip file
and can be deployed in another workspace without needing the
actual message flows and message sets. The BAR file can be
exported using the following steps:
• Highlight the BAR File and select File -> Export. In the Export

window, select Zip file, as shown in Figure 11. Click Next.
• Select the BAR File to be exported and give the name of the

zip file to be created. You can compress the contents of the file
in the options section, as Figure 12 illustrates. Click Finish.

• The .zip file now created is a portable unit of deployment that
can be imported in another workspace and deployed. To
import the BAR File, select File -> Import. In the Import window
select Zip file and Click Next.

• Browse the .zip file to be imported and select the destination

Figure 12: Compressing the contents of the file

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

project folder where the BAR file will be imported, as shown in
Figure 13. Click Finish.

• The BAR File will appear under the name of the project it was
imported into, and can be deployed as it is.

Figure 14: Configuring properties

Figure 13: Selecting the destination project folder

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 46

• If the BAR file contains a message flow, some properties can
be configured. Open the BAR File editor and click on the
Configure tab, as shown in Figure 14.

• The properties of the nodes can be configured and changed.
Change the values as required and deploy the BAR File. Thus
the user can modify the values to be in sync with respect to
different deployment scenarios. The actual message flow is
not required in order to change values.

Rohit Bhasin
IBM Hursley (UK) © IBM 2004

MQ news

In a recent announcement on WebSphere
security services IBM claims that
forthcoming features in WebSphere Business
Integration and WebSphere MQ will enable
its mainframe and distributed customers to
improve network performance by defining
security policies for a select group of Web or
legacy applications.

For instance, a customer may want to limit
access to 20% of their applications – those
that contain sensitive data – and provide
more open access to other applications. This
function is claimed to improve network
performance because systems won’t be tied
up by unnecessary security checks.

For more information contact your local
IBM representative.

* * *

Bristol Technology is shipping
TransactionVision 4.0, the latest version of its
transaction tracking and analysis software,
featuring support for both WebSphere MQ and
J2EE transactions.

The company claims that TransactionVision
tracks transactions across each touch point,
self-discovering transaction flows and
content while providing real-time monitoring
to pinpoint failures and ensure service levels.

The software includes: J2EE Sensor
Support, automatic categorization of tracked
transactions into user-defined classes, ie
equity trades, foreign exchange transactions,
etc, and enhanced reporting capabilities.

For more information contact:
Bristol Technology, 39 Old Ridgebury Road,
Danbury, CT 06810-5113, USA.
Tel: +1 203 798 1007.
Fax: +1 203 798 1008.
Web: http://www.Bristol.com

Bristol Technology, Plotterweg 2A 3821
BB, Amersfoort, The Netherlands.
Tel: +31 33 450 50 50.
Fax: +31 33 450 50 51.

* * *

NEON Systems has recently launched Shadow
Event Publisher, which is claimed to provide a
single interface for the realtime capture and
publishing of critical mainframe business events
occurring within DB2, IMS, and CICS
environments.

The company claims that, without touching the
application code, events are captured in real
time and ‘pushed’ asynchronously via multiple
messaging protocols, HTTP and WebSphere
MQ, to drive heterogeneous business
processes and maintain data consistency.

For more information contact:
NEON Systems, 14100 Southwest Freeway
Suite 500, Sugar Land, TX 77478, USA.
Tel: +1 281 491 4200.
Fax: +1 281 242 3880.
Web: http://www.neonsys.com

NEON Systems, 1 High Street, Windsor,
Berks, SL4 1LD, UK.
Tel: + 44 1753 752800.
Fax: + 44 1753 752818.

x
xephon

	Is my queue manager running?
	Creating a channel-based IP wrapper
	Triggering WMQ Workflow
	BAR file deploy in Message Broker V5.0 Toolkit
	MQ news

