50

February 2004

In this Issue

3 Is my queue manager running

8 Creating a channel-based IP
wrapper

25 Triggering WMQ Workflow

35 BAR file deploy in Message
Broker V5.0 Toolkit

47 MQ news

© Xephon Inc 2004

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

MQ Update

Published by
Xephoninc

PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Madel eineHudson
E-mail: Made eineH @xephon.com

Publisher

NicoleThomas
E-mail: nicole@xephon.com

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
informationinthisjournal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organi zationsor
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues

A year’'s subscription to MQ Update,
comprising twelve monthly issues, costs
$380.00intheUSA and Canada; £255.00inthe
UK; $380.00inthe USA and Canada; £261.00
in Europe; £267.00 in Australasiaand Japan;
and £265.50 elsewhere. In all casesthe price
includespostage. Individual issues, startingwith
theJuly 1999issue, areavail ableseparately to
subscribersfor $33.75 (£22.50) eachincluding

postage.

Contributions

When Xephon is given copyright, articles
publishedinMQUpdatearepaidfor attherate
of $160 (£100 outside North America) per
1000wordsand $80 (£50) per 1001inesof code
for thefirst 200 linesof original material. The
remainingcodeispadfor at therateof $32(£20)
per 100 lines. To find out more about
contributinganarticle, without any obligation,
please download a copy of our Notes for
Contributor sfromwww.xephon.com/nfc.

MQ Update on-line

Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mg;
you will need to supply a word from the
printed issue.

© XephonInc2004. All rightsreserved. Noneof thetext inthispublication may bereproduced,
storedinaretrieval system, or transmittedinany formor by any means, without theprior permission
of thecopyright owner. Subscribersarefreeto copy any codereproducedinthispublicationfor use
intheir owninstallations, but may not sell such codeor incorporateitinany commercial product. No
part of thispublicationmay beusedfor any formof advertising, salespromotion, or publicity without

thewritten permissionof thepublisher.

Printed in England.

IS my queue manager running?

“Is my queue manager running?” is a simple question but an
important one nevertheless, because it forms the basis of any
monitoring or health-checking tool.

While the question may be simple the answer is not so
straightforward because there are several possibilities. This
article explores the logic used when | worked on the development
of the High Availability SupportPacs (eg MC63) for WebSphere
MQ (WMQ) on distributed platforms such as Unix and Windows.

Acheckto see whether or notaqueue manageris available needs
to be an efficient and reliable process. Most health checks are
periodic; for timely notification that the queue manager is down,
polling needs to be reasonably frequent, eg every 30 seconds. A
longer polling period will delay any recovery processing, such as
failing over the queue manager to a standby machine. The test
must be efficient and not consume excessive resources because
itis executed regularly. It must also be accurate —an answer such
as “the queue manager is probably running” does not help with
availability. The test should also work with different product
versions.

LOOKING FOR A PROCESS

Queue managers on distributed platforms appear as a number of
cooperating processes. When you start a queue manager
(strmgm) the command causes a new process to begin
(amgzxma0), which in turn starts a number of other processes,
suchasthose neededto control the transaction logs (egamghasmx,
amgharmx). If any one process can be said to be ‘the queue
manager’ itisamgzxma0, known as the Execution Controller (EC).
This process initiates and monitors the various child processes.

One of the parameters of the EC is the queue manager name so
that it can be spotted easily in the list of operating system
processes. So, can we use the existence of this process as an

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 3

indicator of a queue manager’s operation? The answer is no.
Testing for the existence of the process, using the following
command, is efficient, but the test itself does not necessarily give
a true result.

ps -ef | grep amgzxma@ | grep QMgr

Perhaps the queue manager is starting or stopping, which will
show the EC process, butitis not available to applications. There
may also have beentimes when processes have hung orbecome
blocked; this leaves the EC visible but doing no useful work.

THE QMSTATUS.INI FILE

Everyone should know about the gm.ini file, which holds some of
the configuration data for a queue manager. Not as many people
know about the gmstatus.ini file because there is nothing in there
thatusers can or should directly manipulate. Thisfile contains data
that is convenient, but not essential, for the queue manager to
maintain across restarts. For example, it gives hints about how
much memorywas being used lasttime. This is useful because we
do not have to waste time dynamically extending resources from
‘default’ values; on the assumption that this time the queue
manager will handle a similar workload, the previous resource
allocation is used directly.

OnWindows, inifiles are notused. Instead, they are located inthe
registry. The equivalent gmstatus.ini information can be found in
HKEY_ _LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\
CurrentVersion\Status\QueueManagen<Qmgr>.

One of the stanzas in this file shows the queue manager status.
Withvaluesincluding ‘Running’, ‘Ended’, and ‘Endedimmediately’,
this could be used to testthe queue manager. Unfortunately, once
again, this would not be good enough. If the queue manager is
killed directly (eg ‘kill -9) there is no opportunity for the ini file to
be updated and so it cannot be guaranteed to reflect reality. This
iIsone ofthe indicatorsthatis probably, but not necessarily, correct
— not something we can rely on for a health check.

4 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

THE DSPMQ COMMAND

The dspmg commandwas introducedin MQSeries V5.2 asaway
to list the queue managers that have been configured on the
machine. Italso gives the current state of those queue managers.
In WMQ V5.3 the command was substantially enhanced to show
more of the possible queue manager states. The states that it
currently recognizes and reports on are:

* Running.
 Endednormally.
 Endedimmediately.

* Ended pre-emptively.
 Endedunexpectedly.
e Starting.

e Quiescing.

* Endingimmediately.

* Ending pre-emptively.
 Beingdeleted.

* Notavailable.

The dspmg command is a good way to find the current status. It
IS a reasonably reliable check on behaviour. It is a fast and
efficient program to run and there are enough checks being done
inside itthatit will reflectreality evenwhenthe queue manager has
been forced down. (At least it will accurately show whether there
IS a running system — the various flavours of ‘ending’ and ‘ended’
might not be truly distinguished but that level of knowledge is not
needed for a health monitor.) When we developed the HA
SupportPacs this command was not available and so we couldn’t
use it. If you want to check the behaviour on anything other than
a WMQ V5.3 system you cannot use dspmg.

The output from the command is dependent on the environment,
For a reliable script you should always force a known language

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 5

environment. This is necessary so you can parse the responses,
knowing which language the strings are displayed in:

LANG=C
export LANG
dspmg -m <gmgr> |\

grep -e "Running" -e '"'Starting" >/dev/null 2>&1
if [$? -eq 7 1]
then

gmgr is running or on its way up

else

.. anything else is NOT available
fi

USING RUNMQSC

The runmgsc command PING QMGR tests whether the queue
managerisrunning. Thisturned outto be the bestway of checking
availability. Not only does the PING have to succeed but starting
anewinstance ofrunmgsc for each poll onthe health ofthe queue
manager means that the MQCONN must also succeed.

Because MQCONN is executed on each test the check works
even during a queue manager restart — the MQCONN is simply
blocked and delayed while recovery takes place; it does not fail.
The test might, therefore, take a little longer during restart but it
does notfalsely reportaqueue manager failure (which couldinturn
lead to an unnecessary failover and recovery cycle). This operation
works with every version of MQSeries and WMQ and was our
chosenmechanism.

echo "PING QMGR™ | runmgsc <qgmgr>

Testing the return code from this operation will show whether the
gueue manager is alive.

When issuing a command such as this it is a good idea to put a
timeout around it so that a failure can be returned in the case of
the command hanging completely. The timeout should be long
enough to cope with a queue manager going through restart and
recovery but notsolongthatitinhibits the failover. Some of the HA
products will have a timeout of their own; if the health check does
not return in time they will assume a failure.

6 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

| have seen versions of this where runmgsc is left permanently
running and the PING command isregularlyissuedtoit. Thisis not
a good test because it does not get the MQCONN process
exercised during each poll. APING shows not only thatthe queue
manager processes are alive but also that the queue manager is
processing real work — the only true test of availability.

TESTING CHANNELS AND ROUNDTRIPS

More sophisticated health checks can be devised. Acommon one
is to test that two queue managers and their connecting channels
are available. This can be done quite simply by the first queue
manager having a remote queue definition that points to the
partner machine, where the destination is in turn another remote
definition pointing back to the original machine. This can make it
easy to measure not just queue manager availability but also
response time across the network. The polling application puts a
message to the remote queue and then waits for the same
message to appear on its reply queue. Because all the routing is
handled by the queue managers there is no need to have a
servicing application on the partner machine.

There are some drawbacksto this kind of testing. One is scalability
— you will perhaps need many pair-wise definitions to test the
health of allthe intercommunicating queue managers and channels.
But more importantly, these tests do not give any clue as to which
component has failed. Not receiving a response message could
indicate a local channel problem, a network failure, or a failure of
the partner queue manager. This does not help with the decision
of whether or not to failover a queue manager to a standby
machine and is something that is better left to more complex
system managementtools.

Measuring response times and testing the availability of roundtrip
configurations are important, but for the original question of
whether the local queue manager is running this is an area that
should be avoided.

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 7

SUMMARY

In this article | have explained why looking for processes is not a
sufficientcheck for queue manager availability. Instead, use PING
QMGR as a single-shot command into runmgsc. This is an
efficient and accurate test that works with all versions of WMQ.
If you are dealing only with WMQ V5.3 systems, dspmq is an
alternative approach.

Mark E Taylor
IBM Hurdley (UK) © IBM 2004

Creating a channel-based IP wrapper

A WebSphere MQ (WMQ) queue manager that has been set up
using adefault configuration runs with a very weak security profile.
One way of improving the security isto installand configurea TCP
wrapper such as tcpd. This wrapper checks the address of a
requesting queue manager or WMQ client for each incoming
channel request. tcpd compares this address with the contents of
two lists of allowed and denied addresses. If allowed, the wrapper
starts the program amqcrsta as the receiving end of the channel.
The address check oftcpdisindependentfromachannelname or

type.

This article explains how to create a channel-based IP wrapper.
This wrapper works in a similar way to tcpd but is developed as a
security exit. The advantage of this solution is that permissions
are validated that are specific to a channel. In contrast to some
other security exit solutions this validation happens only on the
receiving side of a channel. No communication with the sending
end (ie user or password exchange) is necessary.

HOW TCPD WORKS

The TCP wrapper tcpd (which is available free of charge) controls
the startup of applications through the demon inetd. It uses two

8 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

control files, /etc/hosts.allow and /etc/hosts.deny, to enable or
disable specific IP addresses or host names to run an application.
Add the following entries to the files /etc/services and /etc/
inetd.conf to start a WMQ channel with inetd on AIX (on Sun
Solaris and other Unix systems replace usr with opt):

» /etc/services:
WMQport 1414/tcp # Channel listener for queue manager QM1
e /etc/inetd.conf:

WMQport stream TCP nowait mgm /usr/mgm/bin/amgcrsta amgcrsta -m
QM1

To set up the wrapper for WMQ, assuming tcpd is installed in /usr/
local/bin, the file /etc/inetd.conf has to be modified as described
below:

» /etc/inetd.conf with tcpd:

WMQport stream TCP nowait mgm /usr/local/bin/tcpd /usr/mgm/bin/
amgcrsta -m QM1

Now reconfigure the inetd by executing the following command:
« OnAIX:

refresh -s inetd
* On Sun Solaris and other Unix systems:

kKill -HUP $(ps -ef | grep inetd | grep -v grep | awk “{print $2}")

To use tcpd with WMQ the binary /usr/local/bin/tcpd must be
executable andthe controlfiles/etc/hosts.allow and/etc/hosts.deny
have to be readable by the group mgm.

LIMITATIONS OF TCPD

Thewrappertcpd works very wellin many situations; nevertheless,
there are some limitations, which may restrict or prevent its use:

* You have to install additional software (the TCP wrapper).

* Root privileges are required to set up or modify the tcpd
configuration.

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 9

» Itis not possible to set up different permissions on different
channels.

« Thissolutionis available only on systems using inetd. It does
not work with the listener runmaqlsr.

THE CHANNEL-BASED IP WRAPPER

Purpose of a channel-based IP wrapper

In large WMQ networks the administration of queue manager
configurations can be performed using graphical interfaces such
as MQExplorer or MQMON (IBM SupportPac MO71). These
solutions require WMQ administrator local user accounts on the
machines runninga WMQ queue manager. Additionally, MQEXxplorer
requires an administration channel called
SYSTEM.ADMIN.SVRCONN. If WMQ administrator local user
accountsare notavailable, orthey do notbelongto the group mgm,
it may be necessary to alter the attribute MCAUSER to mgm.
Unfortunately this would open the channel for every user and
provide them with WMQ administrator privileges.

Free Java tools, which are available on the Web, provide users
with full administration rights, even without a local user-ID or
MCAUSER settomgmorachannel SYSTEM.ADMIN.SVRCONN.
ATCP wrapper canrejectunauthorized access by filtering allowed
IP addresses but, to install, configure, and administer a tool such
as tcpd, root privileges are required. Additionally, tcpd checks
access to the process amqcrsta, not to a specific channel.
Another difficulty may be that, because of security concerns,
administrators might want to disable inetd completely and use
runmaqlsr instead.

It would be much easier to have a solution that could be set up by
a WMQ administrator. The solution described in this article is
independent of such restrictions. It can be seen as a part of the
WMQ configuration and carried out by WMQ administrators.

How the channel-based IP wrapper works
The solution described is developed as a security exit. As with

10 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

tcpd, this exit checks the requesting IP address or host name and
compares it with a list of allowed addresses. In contrast to tcpd,
no deny list is used so unknown or not allowed addresses are
always denied. The lists of allowed IP addresses are set up as
namelists. The namelist, whichis used for achannel, isdefined as
security exitdata. This mechanism allows individual address lists
to be set up for each channel. It is also possible to configure a
couple of channels (eg an online and a batch channel, a converting
and a non-converting channel) inthe same way by using the same
namelist.

If an address is not found in the ‘allow-list’ the request will be
revoked. This also happens when no namelistis configured or the
namelistdoes not exist. Revoked channel requests will be reported
in the log file. In report-only mode every request is reported but
nothing will be really revoked. This mode is useful to test the
configuration ofthe listsimply to report channel requests and start-
ups. If a log entry cannot be written (e g because the disk is full)
the functionality of the wrapper is not affected.

Building the library

The following script sample creates the binary — on non-DCE
platforms — from the file wrapper.c for AIX and Sun Solaris
systems. | assume the GNU compiler gccis installed in /usr/local/
bin.

os=$(uname -s)

file=wrapper

case $os iIn

AIX)
CC="/usr/local/bin/gcc"
LD=""/usr/bin/1d"
CC_FLAGS="-c -1/usr/mgm/inc"
LD_FLAGS="-bE:$file.exp -H512 -T512 -e MQStart -bM:SRE"
LD_LIBS="-Imgm_r -Ipthreads_compat -Ipthreads -lc_r"

Sun0S)

CC="/usr/local/bin/gcc"
LD=""/usr/ucb/1d"
CC_FLAGS="-c -1/opt/mgm/inc"
LD_FLAGS="-G"
LD_LIBS="-Imgm -lthread -Isocket -Ic -Insl -I1dI"

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 11

*)
echo "Operating system not supported!"
return 1

esac

$CC $CC_FLAGS -0 $file.o $file.c

if[$? -eq @ 1]

then

$LD -o $Ffile $file.o $LD_FLAGS $LD_LIBS
Ti

For AlX you need the file wrapper.exp, which is shown here:

#1

checkAccess

reportAccess
MQStart

How to build the software on other platforms is described in the
WebSphere MQ Application Programming Guide. Feel free to
extend or modify the script sample above.

Installation of the channel-based IP wrapper

Install the wrapper by copying the created binary wrapper to the
directory /var/mgm/exits. The program must be executable for
user and group mgm. Create a directory /var/mgm/errors/exits
and make it read/write for user and group mgm. The wrapper
creates its log file within this directory.

Configure channel security

First disable all default channel SYSTEM.DEF.*and
SYSTEM.AUTO.* of type SVRCONN, RCVR, SVR, and
CLUSRCVR, by setting the attribute MCAUSER to ‘nobody’. The
newly created channel will then be disabled by default because it
IS assumed that nobody is a non-existing user or at least a user
with no permission in WMQ:

ALTER CHANNEL(SYSTEM....) CHLTYPE(...) +
MCAUSER("nobody*™)

To configure the channel-based IP wrapper alter the attributes
SCYEXIT, SCYDATA, and MCAUSER. Two differentfunctions are
valid. Calling the function ‘reportAccess’ runs the wrapper in
report-only mode:

12 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

SCYEXIT("wrapper(reportAccess) ™)
SCYDATA(MYCHANNEL .ALLOWED. IP)
MCAUSER("mgm*™)

In report-only mode every channel request will be logged but no
further action will take place. Inthe log file you will see a message
askingifthe channel requestshould be accepted or revoked by the
exit. The attribute SCYDATA must contain the name of anamelist.
This namelist contains a number of IP addresses or host names
that are allowed to start this channel.

NAMEL IST(MYCHANNEL . ALLOWED. 1P)

NAMES(19.19.10@.1
,10.10.10@.2

---)

A namelist can be used from more than one channel so you can
easily allowthe same IP addresses for more than one channel (eg
batch and online channel). It is also possible to activate the
wrapper onone channel (function checkAccess)and runinreport-
only mode on another channel(function reportAccess) evenwhen
they use the same namelist.

To activate the channel-based IP wrapper alter the exit function to
checkAccess:

SCYEXIT("wrapper (checkAccess) ™)

From this point every new channel request will be revoked if the
requesting address is not found in the configured namelist. Only
revoked requests will be reported in this mode.

SAMPLE CONFIGURATION

This example describes how to configure the administration
channel SYSTEM.ADMIN.SVRCONN (egfor use with MQEXxplorer)
and how to activate the channel-based IP wrapper. It assumes
that you have disabled the default channel, as described above.

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 13

Creating an administration channel

Create the administration channel SYSTEM.ADMIN.SVRCONN
(eg for use with MQEXxplorer) with runmgsc:

DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN)

The default channel has been disabled so the administration
channel has now setthe attribute MCAUSER to nobody and is not
usable at the moment.

Set up the wrapper

The following commands configure the wrapper for the
administration channel. Now create the namelist with the allowed
IP addresses:

DEFINE NAMELIST(ADMINCHANNEL .ALLOWED. IP) +
NAMES("10.10.109.1","10.10.100.2")

Now set up the wrapper in report-only mode:

ALTER CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN) +
MCAUSER("mgm*®) +
SCYEXIT("wrapper(reportAccess)”) +
SCYDATA(ADMINCHANNEL . ALLOWED . 1P)

From this point every user can open the administration channel.
Every channel requestwill be reported but nothing will be revoked.
This configuration is useful on development systems where
developers can modify the WMQ configuration. This modeis also
of use during the implementation of live systems to identify the
required IP addresses to be enabled for the channel. Therefore,
runthe channelinreport-only mode forawhile. Analyse the log file
and add the requesting IP addresses to the namelist (assuming
that you have — of course — double-checked the addresses!).

Onlive systemsthe administration channel should notbe accessible
by any user exceptthe WMQ administrators. When the appropriate
WQM administrators have local user accounts you should clear
the attribute MCAUSER:

ALTER CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN) +
MCAUSER(")

14 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

This works well for tools such as MQExplorer or MQMON. But, as
mentioned above, with freely available Javatoolsitis still possible
to get administrative access without having a user-ID. This
behaviour results from the way Java submits the client user-IDs.
Activate the channel-based IP wrapper by modifying the exit
function:

ALTER CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN) +
SCYEXIT("wrapper(checkAccess) ")

Afterwards, only channelrequestsfromthe addresses 10.10.100.1
and 10.10.100.2 are accepted. The wrapper revokes requests
from any other addresses. Now set up further channel and
namelists for clientapplications and queue manager connections.

Examples

DEFINE CHANNEL(APPL.SVRCONN) CHLTYPE(SVRCONN) +
MCAUSER("appluser®) +
SCYEXIT("wrapper(reportAccess) ") +

SCYDATA(™ *)

DEFINE CHANNEL(QM2.TO.QM1) CHLTYPE(RCVR) +
MCAUSER(" ") +
SCYEXIT("wrapper(checkAccess) ") +

SCYDATA(QM2 _ALLOWED. 1P)

DEFINE NAMELIST(QM2.ALLOWED. IP) +
NAMES("10.30.100.1","10.30.100.2")

In the examples above, the local queue manager is named QML1.
It will accept and report every channel request for WMQ clients
using the channel APPL.SVRCONN. | assume the user appluser
Isenabled for some application queues by the command setmqgaut.
Requeststo startthe receiver channel QM2.TO.QM1 are accepted
onlyfromthe addresses 10.30.100.1and 10.30.100.2. Modify the
namelist QM2.ALLOWED.IP to allow or deny IP addresses to
start this channel.

THE CODE

The channel-based IP wrapper is developed in the form of a C
library. This library is called ‘Wrapper’ and has two defined entry
points, reportAccess and checkAccess. Both of them call the

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 15

same function, compareAddress, which contains the whole wrapper
logic. Another function, logTsS, is used to create the message
prefix for log file entries.

Exit entry points

Before the exit entries reportAccess and checkAccess can be
calledfromWMQ they have to be definedin the attribute SCYEXIT
in the form libraryName(entryPoint). The entry functions simply
pass all exit arguments to a function called compareAddress. An
additional argument is passed to this function, which defines the
mode ofthe exit (SEC_REPORT_ONLY orSEC_CHECK_ PERM
for read-only or active mode respectively).

Exit function

The mainfunction, compareAddress, checks the Exit-1D provided
with the exit parameters. Values other than
MQXT_CHANNEL_SEC EXIT are notaccepted. Those channel
requests will be closed immediately. If the Exit-ID is of type
MQXT_CHANNEL_SEC_EXIT, the ExitReasonis checked.

The wrapper functionality is activated when the ExitReason is
MQXR_INIT. Ifthe channelrunsinreport-only mode oran address
check has been successful, the ExitResponse willbe MQXCC_OK,
which means a channel start-up is allowed. Otherwise the
ExitResponse is set to MQXCC_CLOSE CHANNEL and the
channel start-up is revoked.

Forthe ExitReasons MQXR_INIT_SEC,MQXR_SEC_ MSG,and
MQXR_TERM, the function always returns the ExitResponse
MQXCC_OK. Other ExitReasons will set the ExitResponse to
MQXCC_CLOSE_CHANNEL.

The function compareAddress is declared as static. This means
it is not visible from functions outside this module. Only the exit
entry points are able to call this function.

Timestamp function
ThefunctionlogTS writes amessage prefix tothe logfile entry. The

16 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

format of the prefix is defined by the C function asctime and is
followed by the name ofthe queue manager. Sample log file entries
may look as follows:

<Wed Nov 5 @9:@08:46 20@3; QM1> *** Channel APPL.SVRCONN runs in
report mode ***
<Wed Nov 5 @9:08:46 20@3; QM1> SCYDATA of channel APPL.SVRCONN
contains not a namelist
<Wed Nov 5 @9:08:46 20@3; QM1> Access to channel " APPL.SVRCONN"
from address "10.20.10@.1" would be revoked by exit

Global parameters

Two parameters are defined as globalto the module. Thisisto give
the functionlogTS access to the file handle and to the name of the
gueue managetr.

Macros

To simplify writing to the log file the macros error_logand error_exit
are defined. The first parameter of these macros is a message
format string. The second parameteris anintegervalue (areason
or return code). If this integer value is unequal to zero and the file
handle is not NULL, a log entry will be written. In case of the
function error_exit the channel program ends and returns this
integer value.

WRAPPER.C

/* July 21 20@3 */
/* Hubert Kleinmanns */
/* Senior Consultant */
/* Exit Purpose: This exit is intended to prohibit unauthorized */
/* access to a channel. It checks the requesting IP address against */
/* the contents of a namelist. The name of the namelist is read */
/* from the exit data. */
/* Secure a channel: */
/* 1) Set the inbound channel scyexit and scydata with: */
/* DEFINE CHANNEL(channel name) CHLTYPE(channel type) + */
/* SCYEXIT("wrapper(checkAccess) ") + */
/* SCYDATA(name_list) */
/* 2) Define the name_list specified in step (1) with: */
/* DEFINE NAMELIST(name_list) + */
/* NAMES(ip_addressl[,ip_adress2[,---11) */
/* Setup in report mode: */

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 17

/* This exit may be run in report mode, so the IP addresses, */

/* which try to connect to the channel, will be logged, but */
/* connections will not be revoked. To enable report mode */
/* use another entry for the exit: */
/* DEFINE CHANNEL(channel _name) CHLTYPE(channel_type) + */
/* —--> SCYEXIT("wrapper(reportAccess) ") + <--- */
/* SCYDATA(nhame_list) */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#ifdef AIX
#include <langinfo.h>
#endif /* AIX */
#ifndef WIN32
#include <unistd.h>
#endif /* WIN32 */
#ifdef WIN32
#include <ctype.h>
#include <windows.h>
#include <winbase.h>
#endif /* WIN32 */
#include <time._h>
#include <sys/timeb_h>

/* includes for MQI */
#include <cmqc.h>
#include <cmgxc.h>
#ifdef WIN32

#define LOG_PATH "C:\\TEMP\\"
#else /* WIN32 */

#define LOG_PATH "/var/mgm/errors/exits/"
#endif /* WIN32 */
#define LOG_SUFFIX " wrapper.log"
#define LOG_FILE_LENGTH 256 /* Must be more than length of LOG_PATH
and LOG_SUFFIX */
#define SEC_REPORT_ONLY "r*
#define SEC_CHECK_PERM *"c*

/* Macros, which write out a log entry, when the second parameter is
not @ */
#define error_log(x,y)

() 1=0)&&(Fp ! =NULL)){logTS) ; fprintf(fp, (X).(¥)):}

/* ... and ends the program ... */
#define error_exit(Xx,y)

ITC(Y) 1=0)&&(fp!=NULL)){logTSQ; fprintf(fp, (x), (¥));exit((¥));:}
/* Declare function prototypes. */

void MQENTRY checkAccess (PMQVOID, PMQVOID, PMQLONG, PMQLONG, PMQVOID,
PMQLONG,

PMQPTR) ;

void MQENTRY reportAccess (PMQVOID, PMQVOID, PMQLONG, PMQLONG, PMQVOID,
PMQLONG,

18 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

PMQPTR) ;

static void logTS (void);

static void compareAddress (PMQVOID, PMQVOID, PMQLONG, PMQLONG,

PMQVOID, PMQLONG,
PMQPTR, char);

/* Global parameters only visible to functions in this file.

static FILE *fp;

static char queueManagerName[MQ_Q MGR_NAME_LENGTH+1];

/* Exit entry definitions

/* Dummy entry point.
void MQStart() {;}

/* Entry point for exit in active mode.

void MQENTRY checkAccess (
PMQVOID pChannelExitParms,
PMQVOID pChannelDefinition,

PMQLONG pDatalLength,

PMQLONG pAgentBufferLength,

PMQVOID pAgentBuffer,

PMQLONG pExitBufferLength,
PMQPTR pExitBufferAddr)

/* Run exit In active mode

/*
/*
/*
/*
/*
/*
/*

*/

Channel exit parameter block

Channel definition
Length of data

Length of agent buffer
Agent buffer

Length of exit buffer
Address of exit buffer

compareAddress (pChannelExitParms,

pChannelDefinition,
pDatalLength,
pAgentBufferLength,
pAgentBuffer,
pExitBufferLength,
pExitBufferAddr,
SEC_CHECK_PERM) ;

}

/* Entry point for exit in report-only mode.

void MQENTRY reportAccess (
PMQVOID pChannelExitParms,
PMQVOID pChannelDefinition,

PMQLONG pDatalLength,

PMQLONG pAgentBufferLength,

PMQVOID pAgentBuffer,

PMQLONG pExitBufferLength,
PMQPTR pExitBufferAddr)

Channel exit parameter block

Channel definition
Length of data

Length of agent buffer
Agent buffer

Length of exit buffer
Address of exit buffer

/* Run exit in report-only mode */
compareAddress (pChannelExitParms,

pChannelDefinition,
pDatalLength,
pAgentBufferLength,
pAgentBuffer,
pExitBufferLength,
pExitBufferAddr,
SEC_REPORT_ONLY);

© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

*/

*/
*/

*/

*/
*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/

19

}

/* Main exit function, which is used by the exit entries
"checkAccess™*/
/* and “reportAccess”. */
static void compareAddress (

PMQVOID pChannelExitParms, /* Channel exit parameter block */

PMQVOID pChannelDefinition, /* Channel definition */
PMQLONG pDatalLength, /* Length of data */
PMQLONG pAgentBufferLength, /* Length of agent buffer */
PMQVOID pAgentBuffer, /* Agent buffer */
PMQLONG pExitBufferLength, /* Length of exit buffer */
PMQPTR pExitBufferAddr, /* Address of exit buffer */
char controlFlag) /* Flag to control the exit mode */

{
PMQCXP pExitParms = (PMQCXP) pChannelExitParms;

PMQCD pChDef = (PMQCD) pChannelDefinition;

static MQHCONN Hcon; /* connection handle */
static logEnable = @;

MQHOBJ Hobj IngNL; /* object handle */
MQLONG CompCode; /* completion code */
MQLONG Reason; /* reason code */

MQOD IngObjDesc = {MQOD_DEFAULT};
MQLONG openOptions, select[1l], namelLen, count;
MQLONG iAttrArr[1];
PMQCHAR pNames, pNameStart, pFirstBlank;
MQCHAR channelName[MQ_ CHANNEL_NAME_LENGTH+1] = "';
MQLONG channellLength;
MQCHAR connectionName[sizeof(pChDef->ConnectionName)];
MQLONG connectionLength;
char logFileName[LOG_FILE_LENGTH + MQ_Q_MGR_NAME_LENGTH + 1];
/* Mark channel, to be closed by default. */
pExitParms->ExitResponse = MQXCC_CLOSE_CHANNEL;
strncpy (queueManagerName, pChDef->QMgrName, MQ_Q_MGR_NAME_LENGTH);
queueManagerName[MQ_Q MGR_NAME_LENGTH] = * *;
pFirstBlank = strstr (queueManagerName, ™ ');
*pFirstBlank = @;
sprintf (logFileName, "%s%s%s', LOG_PATH, queueManagerName,
LOG_SUFFIX);
fp = fopen (logFileName, "a');
switch (pExitParms->Exitld)
{
/* Only call as security exit iIs accepted */
case MQXT_CHANNEL_SEC EXIT:
switch (pExitParms->ExitReason)
{
/* Exit initialization, connect to the queue manager
and store the handle in a static variable. */
case MQXR_INIT:
/* Print out, when in report-only mode. */
if ((controlFlag == SEC_REPORT_ONLY) && (fp !'= NULL))

20 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

{
logTS QO;

fprintf (fp, "*** Channel %s runs in report-only mode ***\n",

pChDef->ChannelName) ;

¥

/* Try to connect to the queue manager */
MQCONN (pChDef->QMgrName, /* queue manager */
&Hcon, /* connection handle */
&CompCode, /* completion code */
&Reason); /* reason code */

/* End program, if connection is not possible. */
if ((Reason = MQRC_NONE) && (Reason I=
MQRC_ALREADY_CONNECTED))

error_exit ("'MQCONN ended with reason %Id\n', Reason);

/* Read the security exit data and interpret it as a namelist. */

InqObjDesc.ObjectType = MQOT_NAMELIST;

strncpy (IngObjDesc.ObjectName, pChDef->SecurityUserData,

sizeof (IngObjDesc.ObjectName));
pNameStart = InqObjDesc.ObjectName;

pFirstBlank = strstr (IngObjDesc.ObjectName, " ™);

/* The security exit data is not empty */
it (pFirstBlank-pNameStart > @)
{

/* Inquire the namelist. */

openOptions = MQOO_INQUIRE;

MQOPEN (Hcon, /* connection handle
&IngObjDesc, /* object descriptor for queue
openOptions, /* open options
&HobjIngNL, /* object handle
&CompCode, /* MQOPEN completion code
&Reason) ; /* reason code

/* Inquiry was NOT successful.

if (Reason !'= @)

{

/* Mark channel, to be closed.
pExitParms->ExitResponse = MQXCC_CLOSE_CHANNEL

if ((Reason == MQRC_UNKNOWN_OBJECT NAME) && (fp = NULL))

{
logTS Q;

fprintf (fp, "Namelist \"%.*s\" iIs not known\n',
pFirstBlank-pNameStart, InqObjDesc.ObjectName);

}
if (controlFlag == SEC_CHECK_PERM)
{
error_exit ("'MQOPEN NL ended with reason %ld\n",
Reason);
}
}
/* Inquiry was successful. */
else

© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

*/
*/
*/
*/
*/
*/
*/

*/

21

{

/* Inquire the NAMCOUNT attribute. */
select[@] = MQIA NAME_COUNT;/* attribute selectors */
MQINQ (Hcon, /* connection handle */
HobjIngNL, /* object handle */
1L, /* Selector count */
select, /* Selector array */
1L, /* integer attribute count */
iAttrArr, /* integer attribute array */
@, /* character attribute count */
NULL, /* character attribute array */
&CompCode, /* completion code */
&Reason); /* reason code */

if (controlFlag == SEC_CHECK_PERM)
error_exit ("MQINQ NL ended with reason %ld\n', Reason);
/* Allocate memory for the NAMES attribute. */
pNames = (char *) malloc (iAttrArr[2] *
MQ_NAMELIST_NAME_LENGTH) ;

/* Inquire the NAMES attribute. */

select[@] = MQCA _NAMES;/* attribute selectors */

MQINQ (Hcon, /* connection handle */
HobjIngNL, /* object handle */
1L, /* Selector count */
select, /* Selector array */
@L, /* integer attribute count */
iAttrArr, /* integer attribute array */
iAttrArr[@]*MQ_NAMELIST _NAME_LENGTH,

/* character attribute count */
pNames, /* character attribute array */
&CompCode, /* completion code */
&Reason); /* reason code */

if (controlFlag == SEC_CHECK_PERM)
error_exit ("MQINQ NL ended with reason %ld\n', Reason);
/* Compare the connection name to the defined addresses. */
for (count = @; count < IAttrArr[d]; count++)
{
pNameStart = &pNames[count*MQ_NAMELIST_ NAME_ LENGTH];
pFirstBlank = strstr (pNameStart, " ');
nameLen = pFirstBlank - pNameStart;
if (strncmp (pNameStart, pChDef->ConnectionName,

nameLen) == @)

{
/* Mark channel, Not to be closed. */
pExitParms->ExitResponse = MQXCC_OK;

}

}

/* Free the memory for the NAMES attribute. */
free (pNames);

/* Close the namelist. */
MQCLOSE (Hcon, /* connection handle */

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

&Hobj IngNL,

MQCO_NONE,

&CompCode,

&Reason) ;

if (controlFlag == SEC_CHECK_PERM)

error_log (""MQCLOSE NL ended with reason %ld\n",

Reason);
}
}
/* The security exit data is empty */
else
{

/* Mark channel, to be closed. */
pExitParms->ExitResponse = MQXCC_CLOSE_CHANNEL;
if (fp = NULL)
{
1ogTsS O:
fprintf (fp,
"SCYDATA of channel %s contains not a namelist\n",
pChDef->ChannelName) ;
}
if (controlFlag == SEC_CHECK_PERM)
error_exit ("MQOPEN NL ended with reason %ld\n", Reason);

}
it ((pExitBufferAddr !'= NULL) && (*pExitBufferAddr != NULL))

{

free(*pExitBufferAddr);

*pExitBufferAddr = NULL;

*pExitBufferLength = @;

}

pNameStart = pChDef->ChannelName;

pFirstBlank = strstr (pNameStart, " ');

if (pFirstBlank > pNameStart)

channelLength = pFirstBlank-pNameStart;

else

channelLength = strlen (pChDef->ChannelName);
strncpy (channelName, pNameStart, channellLength);
pNameStart = pChDef->ConnectionName;

pFirstBlank = strstr (pNameStart, " ');
connectionLength = pFirstBlank-pNameStart;
strncpy (connectionName, pNameStart, connectionLength);

/* Channel i1s marked to be closed. */
if (pExitParms->ExitResponse = MQXCC_OK)
{

if (fp = NULL)

{

/* Channel access is revoked by exit. */
if (controlFlag == SEC_CHECK_PERM)

{
logTS Q;

© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

fprintf (fp, "Access to channel \"%.*s\" from address
\"%.*s\" is revoked by exit\n",
channelLength, channelName,
connectionLength, connectionName);
}
/* Channel access is NOT revoked in report-only mode. */
else
{
1ogTS Q;
fprintf (fp, "Access to channel \"%.*s\" from address
\"%.*s\" would be revoked by exit\n",
channelLength, channelName,
connectionLength, connectionName);
}
}

/* Mark channel, Not to be closed in report-only mode. */
if (controlFlag == SEC_REPORT_ONLY)
pExitParms->ExitResponse = MQXCC_OK;
}
else
{
/* Report allowed access in report-only mode. */
ifT ((controlFlag == SEC_REPORT_ONLY) && (fp != NULL))
{
1ogTS Q;
fprintf (fp, "Access to channel \"%.*s\" from address
\"%.*s\" would be allowed\n",
channelLength, channelName,
connectionLength, connectionName);

}
}

break;
case MQXR_INIT_SEC:
/* Mark channel, Not to be closed. */
pExitParms->ExitResponse = MQXCC_OK;
break;
case MQXR_SEC_MSG:
/* Mark channel, Not to be closed. */
pExitParms->ExitResponse = MQXCC_OK;
break;
case MQXR_TERM:
/* Mark channel, Not to be closed. */
pExitParms->ExitResponse = MQXCC_OK;
break;
default:
/* Mark channel, to be closed. */
pExitParms->ExitResponse = MQXCC_CLOSE_CHANNEL;
}
break;
default:

24 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

error_log ("Invalid exit ID %ld\n", pExitParms->Exitld);

/* Mark channel, to be closed. */
pExitParms->ExitResponse = MQXCC_CLOSE_CHANNEL;
break;

}
if (fp = NULL)
fclose (fp);

}

/* Function, which prints out a time stamp and the name */
/* of the queue manager. */
static void logTS (void)

{

struct tm *pTime;
time_t localTime;
char timeString[197];

int len;
it (fp = NULL)
{

localTime = time (NULL);

pTime = localtime (&localTime);
strcpy (timeString, asctime (pTime));
len = strlen (timeString);
timeString[len - 1] = @;

fprintf (fp, "<Us; %s> ', timeString, queueManagerName);
}
}
Hubert Kleinmanns
N-Tuition Business Solutions (Germany) © Xephon 2004

Triggering WMQ Workflow

INTRODUCTION

This article presents two scenarios where Java classes were
written to interact with MQ Series, achieve legacy database
integration, and trigger WMQ Workflow.

SCENARIO ONE

A CRM (customer relationship management) order management
system used a view of the legacy database to provide a single

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 25

view of a customer’s details. In special circumstances there was
sometimes arequirementto update customer information directly
from the order management system. WMQ was the messaging
system in use so we implemented the solution using a Java
program and interfaced it with a Siebel CRM system.

LEGACYUPDATELOG.JAVA

/* Program name: LegacyUpdatelog */
/* Description: This java program shows MQ-based Java and DB2 in */
/* a two-phase commit */
/* Function: */
/* This program accepts a database update statement from the CRM */
/* application. This statement is then written to an MQSeries */
/* queue and executed against a database in the same unit of work. */
/* The user is then asked whether this unit of work should be */
/* committed or backed out. */
/* This program is called as follows: */
/* jJava LegacyUpdatelLog -q ... -m ... -d ... */
/* where */
/* -q is the queue where messages will be put */
/* -m is the queue manager (if not specified default gmgr is used) */
/* -d is the database that will be used */
/* and possible input would be: */
/* update table set columnl = "valuel® where column2 = “value2*® */
/* The output of this program can be verified by running: */
/* amgsbcg <queue name> <gmgr name> */
/* 1T the work was committed, the db command will be on the queue. */
/* 1f the work was backed out, the queue will be empty. */
/* The database can also be queried to confirm whether or not the */
/* database update was committed or rolled back. */
/* In order to use this program, the following must be done: */
/* - An application database must be created using DB2. This */
/* database will be one of the resources in the two phase commit. */
/* - The MQSeries queue manager must be updated to recognize the */
/* database as a resource. This can be done by using the WMQ */
/* Services to look at the queue manager. The properties of the */
/* queue manager are then selected and updated for this database: */
/* Name: any name you wish to use */
/* SwitcFile: <mg install>\java\lib\jdbc\jdbcdb2.dll */
/* XAOpenString: database name, userid, password */
/* ThreadOfControl : PROCESS */
/* Note 1: There are several changes to the way things work with */
/* java. Details are supplied in the Using Java manual Chapter 7. */
/* Note 2: The MQ System Administration manual gives additional */
/* information on using MQSeries as a transaction manager. */

/* Note 3: This program is designed to work with update statements */

26 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

/* only. If you enter select statements they will throw an exception.*/
import com.ibm.mqg.*; // Include the MQ package
import java.io.*;
import java.lang.*;
import javax.sqgl.*;
import java.sql.*;
public class LegacyUpdatelLog {
private MQQueueManager gMgr;

private String gmgrName;
private String queueName;
private String dbName;
private Connection jdbcConn;

public static void main (String args[]) {
LegacyUpdatelog mySample = new LegacyUpdatelLog(args);
mySample.start();
}
public LegacyUpdatelLog(String[] args) {
/* Get the command-line arguments */
for(int i=@; i<args.length; i++) {
String arg = args[i]-toLowerCase();
if(arg.equals(C'-m)) {
if (i+l<args.length) {
gmgrName = args[++i];
} else {
System.out.printIn(*'didn"t specify queue manager,
exiting');
System.exit(-1);
}
} else 1f(arg.-equals('-g™)) {
if (i+l<args.length) {
queueName = args[++i];
} else {
System.out.printIn(’'didn"t specify queue, exiting);
System.exit(-1);
}
} else 1f(arg.-equals("-d™)) {
if (i+l<args.length) {
dbName = args[++i];
} else {
System.out.printIn(’'didn*t specify datbase name,

exiting™);
System.exit(-1);
}
} else {
System.out.printIn("Unknown argument: ' + arg);
}
}

/* Check that all arguments were entered. */
it ((queueName==null)
|1 (dbName==null)) {

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 27

28

System.out.printIn(*'java LegacyUpdatelog -q ... -m ... -d

System.out.printIn("'where -q is the queue™);
System.out.printIn(” -m is the queue manager');
System.out.printIn(” -d is the database name');
System.exit(-1);
}

}

/* Put any Specific Initializations Here */

public void init(Q) {

}

public void start() {

try {

System.out.printlIn(‘'LegacyUpdatelog started...");
/* Create a queue manager object and access the queue */
/* that will be used for the putting of messages. */
gMgr = new MQQueueManager(gmgrName) ;
int openOptions = MQC.MQOO_OUTPUT;
MQQueue myQueue = gMgr.accessQueue(queueName, openOptions,
null, null, null);
/* Create a DB2 XA DataSource that we will use as the */
/* place to perform database updates. */
COM.ibm.db2. jdbc.DB2XADataSource myDataSource =
new COM.ibm.db2. jdbc.DB2XADataSource();
myDataSource .setDatabaseName(dbName) ;
jJjdbcConn = gMgr.getJDBCConnection(myDataSource);
/* Set up a reader to get the user input */
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(isr);
String runShow;
System.out.printlIn(‘'LegacyUpdatelog ready for db command');
/* As long as the applications sends data, */
/* process it... */
do {
runShow = br.readLine();
/* See 1T the user entered anything */
if (runShow.length(Q) > 9) {
gMgr.beginQ);
/* Set up a new message with a format of string and */
/* write the user input to it. */
MQMessage myMessage = new MQMessage();
myMessage .writeString(runShow) ;
myMessage . format = MQC.MQFMT_STRING;
MQPutMessageOptions pmo = new MQPutMessageOptions();
pmo.options = pmo.options | MQC.MQPMO_SYNCPOINT;
myQueue . put(myMessage, pmo);
boolean validStatement = true;
Statement stmt = jdbcConn.createStatement();

try {
int rowsUpdated = stmt.executeUpdate(runShow);

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

System.out.printIn(""'Rows updated: " + rowsUpdated);
} catch (Java.lang.Exception ex) {
validStatement = false;
System.out.printIn('Java exception: " + ex);
System.out.printlIn(*'LegacyUpdatelog is designed to
work only with update statements.\n");
by
stmt.close();
/* Ask if the db update, message put should be committed or */
/* backed out (if db command was valid). If the command */
/* wasn"t valid, we"ll backout the gmgr update. */
if (validStatement) {
System.out.printIn(""Enter C to Commit or R to rollback');
runShow = br.readLine();
if ((runShow.indexOf("'c') >= Q@)
Il (runShow.indexOF("'C") >= @)) {
gMgr .commit();
} else {
gMgr.backout();
}
} else {
gMgr .backout();
}
}
System.out.printIn(‘'LegacyUpdatelog ready for db command™);
3} while (runShow.length() > 2) ;
/* Before the program ends, we need to close all of our */
/* connections. */
myQueue.close();
jdbcConn.close();
gMgr.disconnect();
}
catch (MQException ex) {
System.out.printIn("*An MQ error occurred: " +
ex.completionCode + ™ ' +
ex.reasonCode);
}
catch (Java.io.l0Exception ex) {
System.out.printIn(*'Java.io exception: " + ex);
}
catch (Java.lang.Exception ex) {
System.out._printlIn(’'Java exception: ™ + ex);
}
System.out.printIn(‘'LegacyUpdateLog finished...");

SCENARIO TWO
A customized collection system tracks the accounts receivables

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 29

and validates the payments against the legacy database. A Java
program had to be written to interface it with XML and WMQ), in
ordertoinitiate aWMQ Workflow process. This program, included
with the collection system, starts the MQ Workflow process.

STARTMQWORKFLOW.JAVA

// This program is used to start the sample MQ Workflow process using
// XML. Also, this process is started as a particular user that is not
// the WinNT logged on user. The user identifier is set to ADMIN
// (This user must be defined in the MQ Workflow runtime database)
// XML messages for MQSeries Workflow are put into the queue
// EXEXMLINPUTQ. The queue manager is set to FMCQM in this code.
// Process name = StartWorkflowRequest
// InputContainer = Personlnfo
// container members = FirstName,LastName,TaxID are string types
// You will need to compile this using the command:
// javac StartWorkflowRequest. java
// To run it, make sure the MQSeries Workflow server is started.
// Make sure you have imported and translated fmccred.fdl
// Type: jJjava StartWorkflowRequest
// A window/dialog is displayed that prompts you for the First
// Name,Last Name and TaxID. Press the pushbutton to start the process.
// You will get no response back. Must login to client to verify
process start.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.text.*;
import javax.swing.event.™;
import com.ibm.mq.*; //MQSeries java classes
public class StartRequestWorkflow extends JFrame implements
ActionListener, DocumentListener
{

// variables used

private JLabel fnameLabel= null;

private JTextField fnameText = nullj;;

private JlLabel InameLabel= null;

private JTextField InameText = null;

private JButton startButton = null;

private JButton cancelButton = null;

private Document myDocTextField = null;

private String firstName = null;
private String lastName = null;
private MQQueueManager wfgmgr = null;
private MQQueue xmlinputqg = null;
private String procTempName = null;
private String proclnstName = null;

30 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

private String contName = null;
private String xmlIRequestMessage = null;
public StartWorkflowRequest()
{
// put title on window
super("Workflow Request Application™);
//setSize(500,450);
setlLocation(309d,309) ; // center of display
addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
System.exit(@);
¥
)

JPanel rootPanel = new JPanel();
rootPanel .setLayout(new BorderLayout());
JPanel fnamePanel = new JPanel();
fnamePanel .setLayout(new FlowLayout());
fnameLabel = new JLabel ('First Name: ");
fnameText = new JTextField(25);
fnamePanel .add(fnameLabel) ;

fnamePanel .add(fnameText);

JPanel InamePanel = new JPanel();
InamePanel .setLayout(new FlowLayout());
InameLabel= new JLabel(*’Last Name: ');
InameText = new JTextField(25);
InamePanel .add(InameLabel);

InamePanel .add(InameText) ;

JPanel taxidPanel = new JPanel();
taxidPanel .setLayout(new FlowLayout());
taxidPanel = new JLabel("Tax ID: ');
taxidPanel = new JTextField(25);
taxidPanel .add(taxidLabel);

taxidPanel .add(taxidText);

myDocTextField = InameText.getDocument();
myDocTextField.addDocumentListener(this);
JPanel buttonPanel = new JPanel();
buttonPanel .setLayout(new FlowLayout());
startButton = new JButton(''Start Workflow Request Process');
cancelButton = new JButton(''Cancel™);
buttonPanel .add(startButton);
startButton.addActionListener(this);
startButton.setEnabled(false);
buttonPanel .add(cancelButton);
cancelButton.addActionListener(this);
rootPanel .add("'North" , fnamePanel) ;
rootPanel .add('Center’, InamePanel);
rootPanel .add("'South™, buttonPanel);
getContentPane().setLayout(new BorderLayout());
getContentPane().add("'Center', rootPanel);

packQ);

© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

31

setVisible(true);
}
public void insertUpdate(DocumentEvent evtDoc)
{
iT (myDocTextField.getLength() > 9)
startButton.setEnabled(true);
}

public void removeUpdate(DocumentEvent evtDoc)
{
it (myDocTextField.getLength() > 9)
startButton.setEnabled(true);
else
startButton.setEnabled(false);
}

public void changedUpdate(DocumentEvent evtDoc)

{
// nothing here

}
public void actionPerformed(ActionEvent e)
{
// See if the start button was pressed
if (e.getActionCommand() == "'Start Workflow Request Process™) {
// get the data from the input fields
firstName=fnameText.getText();
lastName=InameText.getText();
taxid = taxidText.getText();
System.out.printIn("Firstname = """ + firstName + ""'");
System.out.printlIn(‘'Lastname = *" + lastName + """);
System.out.printIn(*Tax ID = " + taxID + """);
// Connect to queue manager and open the queue
try
{
wfgmgr = new MQQueueManager("FMCQM™);
// SET_IDENTITY_CONTEXT is used to change the useridentifier
int openOptions = MQC.MQOO_OUTPUT |
MQC .MQOO_SET_IDENTITY_CONTEXT;
xmlinputg = wfgmgr.accessQueue(""EXEXMLINPUTQ", openOptions,
null, null, null);

}
catch (MQException mgException)
{
System.out.printIn("'"MQException has been thrown on connect or
open');
System.exit(99);
}

// Build the XML message that will start the process
procTempName=""WorkflowRequest";

proclnstName = lastName;

contName = ""Personinfo";

xmlRequestMessage=

32 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

"<?xml version=\"1.0\" standalone=\"yes\"?>" +
"\n <WfMessage>" +

'"\n <WfMessageHeader>" +

"\n <ResponseRequired>No</ResponseRequired>" +
"\n </WfMessageHeader>" +

"\n <ProcessTemplateCreateAndStartinstance>" +

"\n <ProcTempIName>" + procTempName + "</
ProcTempIName>" +

"\n <ProclnstName>" + proclnstName + "</ProclnstName>"
+

\n <ProclnstlnputData>" +

\n <" + contName + ">" +

"\n <FirstName>" + FirstName + "</FirstName>" +

"<LastName>" + lastName + "'</LastName>" +
"<TaxID>" + TaxID + "</Taxld>" +
"</" + contName + "'>"+
\n </ProclnstinputData>" +
"\n </ProcessTemplateCreateAndStartlnstance>" +
"\n </WFfMessage>\n\n\n"';
try

// Set user identifier and write the message to the buffer
MQMessage msg = new MQMessage();
msg.-userld = "ADMIN"; // use a userid other than WinNT userid
msg.writeString(xmlRequestMessage);
// Specify put options and put the message on the queue
MQPutMessageOptions pmo = new MQPutMessageOptions();
pmo.options = MQC.MQPMO_SET_IDENTITY_CONTEXT; // to use
non-WinNT userid
xmlinputqg.put(msg, pmo);
System.out.printIn("'Have put xml message on queue.');
} /7 end try
catch(MQException mgexception)
{
System.out.printIn("'"MQException thrown on put of message.™);
}
catch (Java.io.lOException exception)
{
System.out.printIn(""An error occurred writing string into
the message buffer. Exception = " + exception);
this.cleanup(Q);
this.endAppQ);
}
// close queue and disconnect
this.cleanup(Q);
// End application
this_endApp(Q);
} 7/ endif Start button pressed
// See if the cancel button was pressed
if (e.getActionCommand() == "Cancel™) {

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 33

this.endAppQ);
}
} //end actionPerformed
// Close the queue and disconnect from gmgr
public void cleanup()

{
System.out.printIn(*'"Closing queue and disconnect from gmgr.');
try
{
xmlinputg.close();
}
catch(MQException mgexecption)
{
System.out.printIn("'"MQException has been thrown on close of
queue.");
}
try
{
wfgmgr.disconnect();
}
catch(MQException mgexception)
{

System.out.printIn(""MQException has been thrown on disconnect
from gmgr.');
3
} 7/ end ActionPerformed
// End the application
public void endApp(Q)

{

System.out.printIn(‘'Leaving this application.™);
System.exit(?);

3

// Main

public static void main(String[] args)

{

StartWorkflowRequest startworkflowRequest = new
StartWorkflowRequest();

}
} 7/ end of StartWorkflowRequest class

Vikas Baruah
American Management Systems (USA) © Xephon 2004

34 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

BAR file deploy in Message Broker V5.0 Toolkit

The BAR (Broker Archive) file deploy is one of the newest and
most important pieces of functionality in WebSphere Business
Integration Message Broker V5.0 Toolkit (hereafter referred to as
Message Broker V5.0). It is a radical change from the deploy
methodinV2.1.

The BAR file is a unit of deployment to a broker. It can be seen as
a zip file containing message flows and message sets, thus
forming the unit to be deployed to a broker. This also means that
the assignments pane in V2.1 does not exist in V5.0 in a
perspective of its own. The BAR is a fresh functional addition to
the Message Broker V5.0 Toolkit.

The mostfunctional use of a BAR file probably lies inits portability.
A user can create a number of message flows and message sets,
add them to a BAR file, and then export the BAR file. This means
that the BAR file can be used in different workspaces without the
need to export the actual message flows and message sets. The
message flows and message sets are compiled and stored in the
BAR file.

The following sections describe how to create a BAR file and the
source, add message flows and message sets to a BAR file, and
ways of deploying a BAR file to a broker with other important
functional aspects.

| use ‘BARMessageFlow’ and ‘BARMessageSet’ as a message
flow and message set respectively, with the assumption that they
exist in the workspace for illustrative purposes.

REQUIREMENTS
The following set-up is required before proceeding:

* Aconfiguration manager with its queue manager and listener
running.

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 35

» A broker with its queue manager and listener running. (It's
easier if the configuration manager and broker share the
same queue manager and listener.)

« A domain connection to the configuration manager and a
broker to deploy to in the toolkit.

CREATE A BAR FILE

A BAR can be created using the file menu or the toolbar button in
the Broker Administration perspective, as shown in Figure 1.

« The BAR file has to be part of a server project, so create a
server project fromthe file menu: File->New->Project. Select
Server in the left-hand pane and Server Project in the right
pane. Click Next.

« Givethe projectaname, eg ‘BARProject’. Make sure the Use
Default checkbox is checked and click Finish. The project is
created and the Server perspective is opened. Close the
Server perspective.

* In the Broker Administration perspective click the Create a
New Broker Archive File toolbar button.

* Inthe New Message Broker Archive window selectthe server
project just created and enter a name for the BAR file to be
created, for example ‘BARFilel’ and click Finish.

* An editor opens in the workspace, showing the name of the
BAR file just created with a .bar extension. In the Broker

<P Broker Administration - Message Brokers Toolkit for WebSphe

File Edit Mawvigate Search Projectk Run ent Log Editor Window Help
BR-HES | 2SR BP-cF-| 88~
B [

YCreate a Mew EBroker Archive File]

1 =

Figure 1. Creating a BARfile

36 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Administration Navigator pane of the Broker Administration
perspective, the BAR file is listed under the Broker Archives
folder as a child of the Server projectit belongs to (see Figure
2).

(Note: assuming defaults were used, the BAR file is created
and stored under <WBIMBV5.0InstallDirectory>/eclipse/
workspace/<ProjectName> on the system.)

ADD MESSAGE FLOWS AND MESSAGE SETS TO A BAR FILE

Afterthe BARfile is created the message flows and message sets
to be deployed have to be added to the BAR file.

e Click the Add button on the BAR file editor pane, as shown in
Figure 3.

* Inthe Add to Broker Archive window that opens, select the
deployable resources and check the Include message flow/
set source box, as shown in Figure 4. This is a very useful
feature as it includes the source of the message flow and
message set in the BAR file. A user can then extract the
source message flow and message set from the BAR file if
required. Click OK.

e ok Aivwiniuraiben mesage liskers Teabar for WenSplwse Sroiie - sisage llisker

T ¥ i

T Mg Tl

Figure 2: Viewing the created BARfile

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 37

wicos R

Content

Al @il rensi dnes sagic Noss or

[5][*]
I mﬂ@ Tene

Figure 3: Adding and removing message flows

@ Lidd 1o Breker Archive El
Sedect ceplrpaiis mesangs Hoss or messags by ba s Ba He binher sciess
T b chapkirpain, & wrwrias Sy el nchode o gt fode and e o o
B PESRAE S P FLyes i SErpeT
[mizipy bl PR OES
EL. TR Fleg g b E- VRSt e rre e

- F R Hensgess
e EsdProgeet

B Beschide W Flowassn sonrre

[| Caned

Figure4: Selecting the deployable resources

38

Awindow opens showing the progress of adding resourcesto
the BAR file. This is useful because any errors and warnings
resulting from the actual message flows and message sets
can be seen in the details pane of the window. Click OK. You
can also check for successful deploy results in the event log
(see Figure 5).

(Note: message flow and message set projects with errors will
not be added to the BAR file and the Details pane will outline
the projects that have errors.)

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Kdding b Broker Anchive Flle

"'i-l') e b D]

| o |

| Reslts of addiion (o e bar (s
Frorsare] Hie ™ Tes e cae el [T Fiecoans Tl [rao moe e st ™
Tiedl Lt [ot &l Flas e evalllh B Trod . Levelth | sady il o Wil [el i 19
Frocsirs] He BAS Feansealy. '] roed”
Ve e Lcecgec 5 o]

S et B L

Lo b i

Cpa sl comeee
Provmieryg He B Floisipt ios, oo
i peitully seidedd Sl AR Fesoel ke, ragiors o archess s

D] Trd: | o Sl
Tha E50L lerval o B Flamnsrel ioes. raghos m 2.1

| %]

Figure5: Adding resources and checking results

 Once the resources have been successfully added to the
BAR file the editor pane will display the list of the resources
(see Figure 6).

 Ascan be seen from Figure 5, the BAR file now contains the
resources with their source. The Compiled Message Flowand
Dictionary File are generated as a result of the addition to the
BARfile. Thesefiles bring the portability factor to the BAR file.
With these files forming part of the BAR file the user can take
the BAR file and deploy it in another workspace without any
prior knowledge of the message flow and message setin the
BAR file.

 The Show Source Files checkbox can betoggledtodisplay or
hide the source files. Also, the user can remove resources
fromthe BAR file using the Remove button. Save the BAR file.

(Note: ifthe BAR fileis not saved the user will be asked to save
it at the time of deploy. The asterisk in the title of the BAR file
editor pane indicates that the BAR file has not been saved.)

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 39

oo DRI %
Content E'—"Hl.?-'l-:l"*l :-!rl

bl gl P eeEEge TsE oF nesage Sels fros this anthiee

[E][=]
Feawe: Type Fdend [Conmwert | e | Path
ot PRCECT i 12-0ed-0 19:19: 22 LLC s T
BiSMamegals rugloss Hainsga B s 1 7-Tick-T 033800 DEE IBSrPismagmlie
BAFMsmagel e o Corples] reseags Hose | T-Cict-I00 F9:36:04 ZARE
Pk PRACICT tie 130t 130T 40T (iR meem St
[t S e s nags o Fil= (P e L I e H O N T e e e P)
BEMarrageted, ditiorawy Dty ks 17003 (PG i EET
L A] P e 124003 |9 L7rEE N AR e cal] AR age et

B v sonnca s

Content | Conligurs

Figure 6:Displaying thelist of resources

DEPLOY A BAR FILE

Once allthe deployable resources are added to the BAR file, itcan
be deployed using one of three methods.

Drag and drop
* Inthe Broker Administration Navigator pane click onthe BAR
file to be deployed.

 Drag the BAR file and drop it on the execution group of the
brokerinthe Domains pane toinitiate adeploy (see Figure 7).

(Note: the BAR file can only be dropped onto an execution group.
A‘noentry’signwillappearifthe user attempts to drop itanywhere
else.)

40 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

%P Broker Administration - Message Brokers Toolkit for WebSphere 5t

File Edit Mavigate Search Project Run indow Help

[=1-[£% Domain Connections
=129 BARProject
ﬁ; -2 BARFileConnection, configmgr

= Broker Archives

S = BARPmiEiE
-2 Message Sers

+ E@ Message Flows

EEE:' Darmains v X

=8 oMi@localhost: 1414
- E(: Broker Topoldgy
=g BK1

— defa

%ﬂ Topics

Subscriptions
‘F’ Evenk Log

Figure 7: Drag and Drop method of initiating a deploy

Menu popup

* Right-click on the BAR file in the Broker Administration pane
and select Deploy File... from the list.

* In the Deploy a BAR File... window that opens, select the
execution group of the broker to initiate the deploy (see Figure
8). Click OK .

Command line deploy

The user also has an option to deploy the BAR file from the
command line. This can be done usingthe mgsideploy command
at the command prompt. In this case the command will be:

mgsideploy -b<broker name> -e<execution group name> -bar <BAR File
name>

The mgsideploy command also has additional options thatcan be
used to dictate other aspects of the deploy, such as timeout value,
read logs, etc.

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 41

L3 Dapioy a BAR File., .,

Enlect e Fasruton Graup:
oF s o T e -

= T Brdes Topokgy

SE - | e—

Z

L

|a|-:|-\:m||

Figure 8. Using the popup menu to initiate a deploy

Check for deploy results

Oncethe deploy has beeninitiated and is successful, the following
processes should be checked to confirm that the deploy was

successful.

* A dialog box will appear, confirming a successful response

from the configuration manager. Click ‘OK’.

ML docakhost: 1414

Do Brokesr Topokogy
- B

= =, defauk '|

il EARMessageFios |

| BARMessageset |

'E__ Tup;a:

T Subscriptions
[EvantLog |

Figure 9: The Domains pane

42 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

¥
o Vipkoradhoat- 1414

Logs
| Message [soamee | TrieStamg
(LIsP40400 B 9 Qkober 001 1359090 T
(D epaiseg Bl 20 Cohber 2000 13 45 40 GMT
8 [T

E{P40H001 Tre Exescution Group ‘defsul” haes processed & configurstion messegs sunoesstuly

& corfigporation rmmidags hai been poakied aeoaniluly, Sy confgurabon charge berss bean madh afed ibored paniibanthy.

Mo Eer s requEed. |

Figure 10: Check for successful deploy messages

 The message flows and message sets added to the BAR file
should appear under the execution group the BAR File was
deployed to in the Domains pane, as shown in Figure 9.

 Open the Event Log from the Domain pane and check for
successful deploy messages, as shown in Figure 10.

(Note: checkthelocal systemlog forthe brokerto ensure no errors
were given as a result of the deploy.)

Fealark

o, rega ey bos T e e e ol Pl soefiem u

et i o, da et
JE1 g i JAF: il
o i

o= Pl ol

.‘_Jﬂ-l-

S Javacdor

T R g o

o T

= e Leorn
Lo

Figure 11. Exporting the BARfile

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 43

Export/import/reuse of the BAR file

As mentioned previously, the BAR file can be exported as a zipfile
and can be deployed in another workspace without needing the
actual message flows and message sets. The BAR file can be
exported using the following steps:

« Highlightthe BAR File and select File -> Export. In the Export
window, select Zip file, as shown in Figure 11. Click Next.

 Selectthe BAR File to be exported and give the name of the
zipfileto be created. You can compress the contents of thefile
in the options section, as Figure 12 illustrates. Click Finish.

 The .zipfile now created is a portable unit of deployment that
can be imported in another workspace and deployed. To
importthe BAR File, select File -> Import. Inthe Importwindow
select Zip file and Click Next.

* Browse the .zip file to be imported and select the destination

= b - Tip He v L e Pl sl IE
L |

1 Pl I Eraarcas: 50 ggeport
e Pl o - B hicirEi ts
v I e
- O B Froim:t

[3 B Pt
f e P91
+ ([l reameil -

o] b il ol
T s | K

i Pl ARSI 5 [T

Dipkiors

v Corpress b ooty of B e
iyl e peniliy) Ml vl e il mlp oo

v e desiorp Aeamies A il

" iy ekt St

o Bk | LT]

Figure 12: Compressing the contents of thefile

44 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

plle

Iagpecat e ponients o 4 Tie Pl from the ol e srsiemn E

I
T Pl] e BARFie L2 | Brmae... |
+ E—!

R Tt | Seleccdd | Dessscad |

i&t‘.llrd:ﬂrﬂ:‘l!l:! i e risiar T |
Sy [T — ... |

T CweinARE sisTine reseEnss vt TN

o | o o] oo |

Figure 13: Sdecting the destination project folder

CEEE

(M BaRMessageFiow.omf BARMessageFhow.cnd
= [1H1] BaAMesssg=low
28] MO M
O] M Tt ; M
G Gumorine [3
- _.d'F _\"‘\-\.‘
Contert), Configure)

Figure 14: Configuring properties

projectfolder where the BAR file will be imported, as shownin
Figure 13. Click Finish.

 TheBAR File willappear under the name of the projectitwas
imported into, and can be deployed as it is.

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 45

If the BAR file contains a message flow, some properties can
be configured. Open the BAR File editor and click on the
Configure tab, as shown in Figure 14.

The properties of the nodes can be configured and changed.
Changethevalues asrequired and deploythe BAR File. Thus
the user can modify the values to be in sync with respect to
different deployment scenarios. The actual message flow is
not required in order to change values.

Rohit Bhasin
IBM Hurdey (UK) © IBM 2004

46

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

MQ news

In a recent announcement on WebSphere
security services IBM claims that
forthcomingfeaturesin WebSphereBusiness
Integration and WebSphere MQ will enable
its mainframe and distributed customers to
improve network performance by defining
security policiesfor aselect group of Web or
legacy applications.

For instance, a customer may want to limit
access to 20% of their applications — those
that contain sensitive data — and provide
more open accessto other applications. This
function is claimed to improve network
performance because systemswon'’t be tied
up by unnecessary security checks.

For more information contact your local
IBM representative.

* * %

Bristol Technology is shipping
TransactionVision4.0, thelatestversionof its
transaction tracking and analysis software,
featuringsupportfor bothWebSphereM Qand
J2EE transactions.

Thecompany claimsthat TransactionVision
tracks transactions across each touch point,
self-discovering transaction flows and
contentwhileprovidingreal-timemonitoring
topinpoint failuresand ensureservicelevels.

The software includes: J2EE Sensor
Support, automatic categorization of tracked
transactions into user-defined classes, ie
equity trades, foreign exchangetransactions,
etc, and enhanced reporting capabilities.

For more information contact:

Bristol Technology, 39 Old Ridgebury Road,
Danbury, CT 06810-5113, USA.

Tel: +1 203 798 1007.

Fax: +1 203 798 1008.

Web: http://www.Bristol.com

Bristol Technology, Plotterweg 2A 3821
BB, Amersfoort, The Netherlands.

Tel: +31 33 450 50 50.

Fax: +31 33450 50 51.

* * %

NEON Systemshasrecently launched Shadow
Event Publisher, whichisclaimedtoprovidea
single interface for the realtime capture and
publishingof critical mainframebus nessevents
occurring within DB2, IMS, and CICS
environments.

Thecompany claimsthat, without touchingthe
application code, events are captured in real
timeand' pushed’ asynchronoudy viamultiple
messaging protocols, HTTPand WebSphere
MQ, to drive heterogeneous business
processesand maintaindataconsistency.

For more information contact:

NEON Systems, 14100 Southwest Freeway
Suite 500, Sugar Land, TX 77478, USA.
Tel: +1 281 491 4200.

Fax: +1 281 242 3880.

Web: http://www.neonsys.com

NEON Systems, 1 High Street, Windsor,
Berks, SL4 1LD, UK.

Tel: + 44 1753 752800.

Fax: + 44 1753 752818.

xephon

	Is my queue manager running?
	Creating a channel-based IP wrapper
	Triggering WMQ Workflow
	BAR file deploy in Message Broker V5.0 Toolkit
	MQ news

