

© Xephon Inc 2004

February 2004

56

In this issue

MQ

3 REXX utility for MQ on z/OS
administration

12 Soap WMQ transport
30 Using WMQ with the

Microsoft.Net platform
42 Statistics and accounting in WBI

MB
51 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.

Printed in England.

Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Madeleine Hudson
E-mail: MadeleineH@xephon.com

Publisher
Nicole Thomas
E-mail: nicole@xephon.com

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in the
UK; $380.00 in the USA and Canada; £261.00
in Europe; £267.00 in Australasia and Japan;
and £265.50 elsewhere. In all cases the price
includes postage. Individual issues, starting with
the July 1999 issue, are available separately to
subscribers for $33.75 (£22.50) each including
postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the rate
of $160 (£100 outside North America) per
1000 words and $80 (£50) per 100 lines of code
for the first 200 lines of original material. The
remaining code is paid for at the rate of $32 (£20)
per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

REXX utility for MQ on z/OS administration

Despite the fact that there are already a number of user-written
tools in existence I felt the need to write another one; without it I
would have gone mad! I’ll describe a recent project to illustrate the
problem I faced. Imagine you arrive at a customer’s site and you’re
confronted with nearly 3,000 queues, all of which need to be
categorized and analysed. Specifically, this was the situation:
• A large number of the queues (500) were left over from the

TSO program CSQOREXX and the batch utility CSQUTIL.
• A significant number of queues were not in use, but the

customer didn’t know which ones these were.
• A small number (around 100) were to become ‘shared’

persistent queues.
• A certain number were to become cluster queues.
• The queues were shared amongst a number of projects and

it was the customer’s express wish that these queues had
their own pagesets (!).

• The queues had to be categorized and spread across a set of
new storage classes. These storage classes were to be
based on how many messages were processed against a
queue as well as its ‘latency’ – a measure of how long
individual messages stayed on a queue.

• The existing queue manager was to be ‘cloned’, with the clone
running on a separate LPAR within the sysplex. This clone,
however, wasn’t an exact copy of the main one.

So, how was I to tackle a project like this? The main problem with
ISPF panels is that they consume a lot of time and CPU resources
and you can select on only a limited number of attributes. You really
need to use a batch-like utility to list queues and select specific
attributes. CSQUTIL is quite good at this but with so many queues
it doesn’t provide an ideal solution.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 4

The REXX program listed at the end of this article takes the output
from the CSQUTIL utility and selectively prints queues, depending
on the attributes you’ve specified. It is based on the premise that
what is printed is displayed as a group of lines, typically like this:
• MAIN line containing the item selected

– ATTRIBUTES belonging to the main item.
• Next MAIN item

– ATTRIBUTES belonging to this item.
Here is an example from CSQUTIL as a result of a dis q(*) all
command:
 CSQM4Ø2I ?PR2P
 QUEUE(BBOMVAO.COMMAND.REPLY.MODEL)
 TYPE(QMODEL)
 QSGDISP(QMGR)
 STGCLASS(DEFAULT)
 CSQM4Ø1I ?PR2P
 QUEUE(BBSMVMQS.RR.PR2P)
 TYPE(QLOCAL)
 QSGDISP(QMGR)
 STGCLASS(DEFAULT)

REQUIREMENTS
• Run CSQUTIL against the relevant queue manager with a

command (eg dis q(*) all) and save the output as a file.
• Supply the following files:

– DD statement FILEIN containing the file from step 1
– DD statement MAIN containing a single keyword to scan

for
– DD statement PARMS containing zero or more attributes

to scan for.
I have supplied some example files (allques.txt, main.txt, parms.txt,
and qstatus.txt), which can be found at www.xephon.com/extras.
• Run, and check the output. It has successfully run on Windows

in both IBM Object REXX and Reginald REXX environments.

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

EXAMPLE REPORTS
The following examples show what you can specify and the results
obtained. Obviously only a very small subset of queue names
could be printed here.
 MAIN keyword : QUEUE
 PARMS keywords: not supplied
 *** Main search key requested : QUEUE
 BBOMVAO.COMMAND.REPLY.MODEL
 BBOMVAO.EXEC.RR.SSØ2.PR2P
 BBSMVMQS.RR.PR2P
 CISSJ.BASE.BLOB.IMTDMSGID
 TARGET.QUEUE2
 PR2PØ.PJKULPØ2
 ...
 TTTT
 ZZTEMP
 *** No. of items found : 2448
 *** No. of items ignored: Ø
 Started at 18:23:24 Ended at 18:24:13

The result of this is a complete list of all 2,448 queue names.
 MAIN keyword : QUEUE
 PARMS keyword: CURDEPTH* - The * means 'display the value'.
 *** Main search key requested : QUEUE
 *** Attribute Requested : CURDEPTH*
 BBOMVAO.EXEC.RR.SSØ2.PR2P (Ø)
 BBSMVMQS.RR.PR2P (Ø)
 CISSJ.BASE.BLOB.IMTDMSGID (Ø)
 ...
 TTTT (Ø)
 ZZTEMP (Ø)
 *** No. of items found : 2391
 *** No. of items ignored: 57
 Started at 18:26:56 Ended at 18:28:Ø1

The result of this is 2,391 queues displayed with the value of
CURDEPTH shown in brackets; the other queues (‘ignored’) were
probably model and remote queues. Note that the total is still
2,448.
 MAIN keyword : QUEUE
 PARMS keyword: CURDEPTH(<>Ø)
 MAXDEPTH*
 ** Main search key requested : QUEUE
 *** Attribute Requested : CURDEPTH(<>Ø)
 *** Attribute Requested : MAXDEPTH*

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 6

 LCDEF.GSJJUTER.LF11ØØ.LOG.FGFG (1) (3ØØØ)
 LCDEF.LCDEF.LF11ØØ.WWV.FGFG (23229) (1ØØØØØ)
 ...
 SYSTEM.CHANNEL.SYNCQ (63) (999999999)
 SYSTEM.CLUSTER.REPOSITORY.QUEUE (2) (999999999)
 *** No. of items found : 347
 *** No. of items ignored: 21Ø1
 Started at 18:28:59 Ended at 18:3Ø:33

The result of this is 347 queues found, showing their non-zero
queue CURDEPTH and the value of MAXDEPTH.
 MAIN keyword : QUEUE
 PARMS keyword: CURDEPTH(<>Ø)
 MAXDEPTH*
 INDXTYPE(MSGID)
 *** Main search key requested : QUEUE
 *** Attribute Requested : CURDEPTH(<>Ø)
 *** Attribute Requested : MAXDEPTH*
 *** Attribute Requested : INDXTYPE(MSGID)
 LSSB.LSSB.LF11ØØ.SRSWTRZADTYFGFG (9) (5ØØØØ)
 LSSFF.LSSFF.LF11ØØ.SRSWTRZADTYFGFG (6) (5ØØØØ)
 ...
 PR2P.ØØ.KVS.DZ.KV1Ø1AU (2851) (5ØØØØ)
 SYSTEM.CHANNEL.SYNCQ (63) (999999999)
 *** No. of items found : 183
 *** No. of items ignored: 2265
 Started at 18:4Ø:15 Ended at 18:42:Ø5

The result of this is 183 queues with non-zero CURDEPTH, the
MAXDEPTH whose INDXTYPE was set to MSGID. Of course, the
utility isn’t restricted to the above command. Issue the command
reset qstats(*) and run with these values :
 MAIN keyword : QSTATS
 PARMS keyword: HIQDEPTH(<>Ø)
 *** Main search key requested : QSTATS
 *** Attribute Requested : HIQDEPTH(<>Ø)
 BBOMVAO.CLXCLC.REPLY.SSØ2.PR2P (3)
 GB.WDR.GT_WARM (22)
 ...
 SYSTEM.CSQOREXX.B96D732661689542 (5)
 SYSTEM.CSQOREXX.B96D781DAFCLDC8Ø7 (3)
 *** No. of items found : 633
 *** No. of items ignored: 1743
 Started at 19:ØØ:46 Ended at 19:Ø1:Ø2

The result of this is 633 queues with an HIQDEPTH greater than
zero. This is useful when deciding which queues are ‘in use’; if run

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

on a regular basis you may be able to delete those ‘unused’queues.
In fact any file with the same ‘structure’ can be analysed.

REXX SOURCE CODE
The original program used the EXECIO keyword, which is available
to REXX on the IBM mainframe, but I also wanted to be able to run
it on my PC so it was replaced with the LINEIN and LINEOUT
keywords. The advantage is that, the file having been created on
the mainframe, could easily be transferred to the PC and analysed
via REXX, thereby offloading processing.
You may be surprised to learn that running CSQUTIL with a dis q(*)
all command on 2,448 queues produced nearly 114,000 lines of
output (one of the example files), which will take a fair amount of
processing. Running this on the PC may take between 1and 5
minutes, which may well be faster than on the mainframe, where
a job may have to wait before it’s even processed.
Producing a list of queues with the required parameters will be
useful. What may be even more useful is to act on that set and
automatically generate a set of commands.
This is achieved by setting the switch gen_commands to 1 and
reviewing the internal procedure proc_util_commands. I suggest
you always check the file of commands generated. Naturally, it will
take longer to process.
For those of you who are real experts in REXX I’m sure there are
improvements to be made, but it’s the ideas that are important
here.
/**************** REXX ***/
/* Author : Ruud van Zundert */
/* Date : November 2ØØ3 */
/* Function : To ease the burden of MQ administration on Z/OS. */
/* The main problem with the CSQUTIL output is that */
/* it lists things over more than one line making it */
/* difficult and time consuming to extract specific */
/* queues, eg all queues with non-zero queue depth. */
/* Input : 3 files */
/* File 1 DD statement FILEIN is the input file usually */
/* the output from the CSQUTIL utility. */

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 8

/* File 2 : DD statement MAIN contains the main keyword to */
/* scan for. */
/* File 3 : DD statement PARMS contains extra keyword(s) to */
/* scan for. More than one keyword can be given. e.g. */
/* INDXTYPE(MSGID) lists only those with this value */
/* CURDEPTH list queues with CURDEPTH but does not */
/* display the actual CURDEPTH */
/* CURDEPTH* also displays the actual depth */
/* CURDEPTH(Ø) only those with this value */
/* CURDEPTH(<>Ø) only those with CURDEPTH NOT Ø */
/* Output : If the 'gen_commands' switch is 'on' then it will */
/* generate additional commands to administer the */
/* queues selected. Alter the internal procedure */
/* called 'proc_util_commands' accordingly. */
sttime = TIME() /* store start time */
gen_commands = Ø /* 1=generate commands */
/*inptfile = 'C:/qstatus.txt'*/
inptfile = 'C:/rexxfiles/allques.txt'
mainfile = 'C:/rexxfiles/main.txt'
parmfile = 'C:/rexxfiles/parms.txt'
match_count = Ø
ignore_count = Ø
call proc_readfiles
DO ix1 = 1 TO parmi.Ø /* loop round all parameters */
 parms_showkey.ix1 = Ø /* initialize */
 parms_found.ix1 = Ø
 parms_ignore.ix1 = ''
 parms_ignore_found.ix1 = Ø
 PARSE UPPER VAR parmi.ix1 parms_search.ix1 /* find attribute */
 parms_search.ix1 = STRIP(parms_search.ix1)
 SAY '*** Attribute Requested : ' parms_search.ix1
 /* If a parameter has an * behind it, it means display its value */
 IF POS('*',parms_search.ix1) > Ø THEN parms_showkey.ix1 = 1
 parms_search.ix1 = STRIP(parms_search.ix1,,'*')
 /* if a parameter has <> specified, it means only display if the */
 /* value is NOT the one specified */
 IF POS('<>',parms_search.ix1) > Ø THEN /* special search */
 DO
 x = POS('(',parms_search.ix1)
 y = POS(')',parms_search.ix1)
 parms_showkey.ix1 = 1
 wlit2 = parms_search.ix1
 parms_search.ix1 = SUBSTR(parms_search.ix1,1,x-1)
 parms_ignore.ix1 = SUBSTR(wlit2,1,x) || SUBSTR(wlit2,x+3,y-x-2)
 END
END
main_found = Ø
IX1 = Ø
/* Open the file for reading, but only if it exists */
IF STREAM(inptfile, 'C', 'OPEN READ') == 'READY:' THEN DO

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 OPTIONS 'FAST_LINES_BIF_DEFAULT'
 SIGNAL ON NOTREADY NAME MainFileError
END /* STREAM() */
wline = LINEIN(inptfile, , 1) /* read first line */
DO WHILE LINES(inptfile) > Ø
 IX1 = IX1 + 1 /* increment read count */
 wpos = POS(mainkey'(',wline,1) /* main key in record read? */
 IF wpos > Ø THEN DO /* yes - process it */
 CALL proc_mainkey
 END
 ELSE DO /* no -look for other matches */
 CALL proc_other
 END
 wline = LINEIN(inptfile, , 1) /* read next line */
END
MainFileError:
 /* Close the file */
 CALL STREAM inptfile, 'C', 'CLOSE'
CALL proc_output
SAY '*** No. of items found : ' match_count
SAY '*** No. of items ignored: ' ignore_count
SAY 'Started at ' sttime ' Ended at ' TIME()
SAY '*** End of REXX scan procedure ***'
EXIT /* end of program */
/* Read the input file(s) */
proc_readfiles:
lineno = Ø
mainkey = LINEIN(mainfile) /* read single main keyword */
mainkey = STRIP(mainkey) /* remove blanks */
SAY '*** Main search key requested : ' mainkey
/* Open the file for reading, but only if it exists */
IF STREAM(parmfile, 'C', 'OPEN READ') == 'READY:' THEN DO
 /* Use LINES() == 1 to indicate more lines */
 OPTIONS 'FAST_LINES_BIF_DEFAULT'
 /* Set up for any errors */
 SIGNAL ON NOTREADY NAME FileError
 /* Any more lines? */
 DO WHILE LINES(parmfile) > Ø
 i = lineno + 1
 /* Read the next line */
 parmi.i = LINEIN(parmfile, , 1) /* store in stem array */
 /* Increment line count now that it is successfully read */
 lineno = i
 END /* WHILE LINES() */
 parmi.Ø = lineno /* store total lines */
FileError:
 /* Close the file */
 CALL STREAM parmfile, 'C', 'CLOSE'
END /* STREAM() */
RETURN

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 10

proc_mainkey: /* Process the main key */
 wpos2 = POS(')',wline) /* find the end bracket */
 IF wpos2 > Ø THEN
 DO
 CALL proc_output
 main_found = 1
 LS = wpos+LENGTH(mainkey)
 wQname = SUBSTR(wline,LS+1,wpos2-LS-1) /* get queue name */
 DO ix2 = 1 TO parmi.Ø /* init parm switches */
 wreq.ix2 = ''
 parms_found.ix2 = Ø
 parms_ignore_found.ix2 = Ø
 END
 END
RETURN
proc_other: /* Process additional attr */
 DO ix2 = 1 TO parmi.Ø /* loop round each attribute */
 IF parms_ignore.ix2 <> '' THEN /* are any to be ignored? */
 DO
 wpos3 = POS(parms_ignore.ix2,wline)
 IF wpos3 > Ø THEN DO /* found item to be ignored */
 parms_ignore_found.ix2 = 1 /* set switch so that it is */
 RETURN /* not printed later on. */
 END
 END
/* Cater for search string already having a bracket */
 IF POS('(',parms_search.ix2) > Ø THEN
 wpos = POS(' 'parms_search.ix2,wline)
 ELSE
 wpos = POS(' 'parms_search.ix2'(',wline)
 IF wpos > Ø THEN
 DO
 parms_found.ix2 = 1
 /* found key - do we also want to show the key value? */
 IF parms_showkey.ix2 > Ø THEN
 DO
 wpos2 = POS(')',wline)
 IF wpos2 > Ø THEN
 DO
 LS = wpos+LENGTH(parms_search.ix2)
 wreq.ix2 = SUBSTR(wline,LS+1,wpos2-LS+1)
 END
 END
 END
 END
RETURN
proc_output: /* Display output */
 wResult = '' /* blank out print line */
 wPrint = 1 /* assume we're printing */
 IF main_found = 1 THEN DO

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 /* Found main key but only display stuff if it is eligible */
 DO ix2 = 1 to parmi.Ø WHILE wPrint = 1
 IF parms_ignore_found.ix2 = 1 THEN wPrint = Ø
 IF parms_found.ix2 = Ø THEN wPrint = Ø
 wResult = wResult' 'wreq.ix2 /* append to display line */
 END
 IF wPrint = 1 THEN DO /* Display still required */
 match_count = match_count + 1 /* increment match count */
 SAY wQname wResult
 IF gen_commands THEN call proc_util_commands
 END
 ELSE /* Display not required */
 ignore_count = ignore_count + 1 /* increment ignore count */
 END
RETURN
proc_util_commands: /* generate new commands */
outfile1 = 'C:/rexxfiles/outq1.txt'
outfile2 = 'C:/rexxfiles/outq2.txt'
outfile3 = 'C:/rexxfiles/outq3.txt'
outfile4 = 'C:/rexxfiles/outq4.txt'
IF match_count = 1 THEN DO /* clear the files at the start */
 call SysFileDelete outfile1
 call SysFileDelete outfile2
 call SysFileDelete outfile3
 call SysFileDelete outfile4
END
/* The following are some example commands you may want to use if */
/* there are a set of queues that need to have their storage class */
/* altering but if there are messages in the queue this is not */
/* possible. The commands below will achieve that change. */
cmdline = 'DEF QL('wQname'2) +'
LINEOUT(outfile1,cmdline)
cmdline = ' LIKE('wQname')'
LINEOUT(outfile1,cmdline)
cmdline = 'MOVE QL('wQname') +'
LINEOUT(outfile2,cmdline)
cmdline = ' TOQLOCAL('wQname'2)'
LINEOUT(outfile2,cmdline)
cmdline = 'ALTER QL('wQname') +'
LINEOUT(outfile3,cmdline)
cmdline = ' STGCLASS(NEWSTG1)'
LINEOUT(outfile3,cmdline)
cmdline = 'MOVE QL('wQname'2) +'
LINEOUT(outfile4,cmdline)
cmdline = ' TOQLOCAL('wQname')'
LINEOUT(outfile4,cmdline)
RETURN

Ruud van Zundert (UK)
ruudvz@btclick.com © Xephon 2004

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 12

Soap WMQ transport

This article has been written from the perspective of a developer
whose task was to create an alternative transport for Web
services. It describes how to create such transport for Web
services through WMQ, provided as an implementation of the
IsoapTransport interface of the Web Services Enhancements
(WSE 2.0). Correct implementation of the transport allows
developers to incorporate the security, routing, and attachment
features of WSE in their applications without incurring additional
costs.

WHY TRANSPORT THROUGH WMQ?
There are at least two answers to this question. The first is to
satisfy the requirement to communicate with a service through
WMQ (ie a legacy application). Another reason is to provide
reliable delivery of messages.
One requirement of a particular project we recently worked on was
to create a Web service with secure and reliable delivery and
processing of messages. WSE 2.0 is claimed to support a
message-oriented programming model, allowing the implemention
of peer-to-peer programs or event-driven applications. Web
services that leverage WSE can be hosted in multiple environments,
including ASP.NET, standalone executables, NT Services etc, and
can communicate over alternative transports. So we decided to
implement our custom transport based on WMQ.

IMPLEMENTATION OF WMQ TRANSPORT
Previously, in order to implement transport through WMQ you had
to implement the IsoapTransport interface (which is quite small)
and then register it in WSE; however, there have been changes
to its implementation, including communication with WMQ,
transaction support, configuration options, and other useful
features.

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

In this article we examine the details of implementing WMQ
transport. Each transport channel implementation contains a
client application and a server application; so too does our
implementation. You can find a description of the demo solution
that includes these applications at the end of this article. It
demonstrates how to use WMQ transport in a real task and its
sources can be downloaded from www.xephon.com/
MQTransport_src.zip.
SoapWMQTransport utilizes IBM’s MA7P SupportPac, which
implements WMQ classes for Microsoft .NET. Actually this
SupportPac is only a .NET-compatible wrapper for an IBM library
that provides native access to WMQ.
The WMQ transport implementation consists of the following
parts:
• Transport – defines the means for transferring Soap messages

between the client and the server.
• Channel – defines a channel that uses WMQ to transfer

particular messages.
• Listener – allows the server to accept WMQ requests.
• Transactions – supports transactions.
• Configuration – allows binding of Web services to specified

channels, using a configuration file.
• Performance counters – allows WMQ transport activity to be

monitored.
• Installation classes – allows the WMQ transport library to be

used as a separate installation unit or as a part of a bigger
installation.

TRANSPORT
The SoapWMQTransport class encapsulates details of the
interaction with WMQ. It is inherited from the auxiliary
SoapTransport class and implements the ISoapTransport interface.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 14

Instances of this class are used by the infrastructure only; there
is no need for users to deal directly with them. In order to use an
alternative transport you need to implement the following methods
and properties of the ISoapTransport interface:
• Scheme property.
• RegisterPort method.
• UnregisterAll method.
• UnregisterPort method.
• Send method.
• BeginSend method.
• EndSend method.

Scheme property
The scheme property returns a scheme prefix. SoapWMQTransport
uses the URI scheme provided by the property to identify Web
services endpoints. An example of such an endpoint is:
‘soap.WMQ:limits-service’. ‘Soap.WMQ’ refers to a transport
protocol, as do http and ftp. The presence of the ‘Soap.WMQ’
scheme in URI determines that WSE will use WMQ-based transport.
The service name ‘limits-service’, which appears after the scheme
name, is used on the server-side to identify a targeted Web
service, distinguishing it from other Web services that may be
available at this server.

RegisterPort method
The RegisterPort method binds the URI service to the service
handler. This method is called on the server indirectly by the
infrastructure. Use the configuration file to bind the service to
Soap WMQ transport. For details of how to create and tune the
configuration file look at the comments in the app.config file of the
SoapWMQTransport project. You can also bind the URI to the
service handler from your application, eg:

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 SoapWMQConfiguration.Initialize();
 SoapWMQServiceBinding binding = new SoapWMQServiceBinding();
 // Fill instance of binding here ...
 SoapWMQConfiguration.Bindings.Add(binding);

After service binding is registered the server starts a listening
channel associated with the service.

UnregisterAll and UnregisterPort methods
UnregisterAll and UnregisterPort methods perform opposite
functions to the RegisterPort method. Use UnregisterAll to release
all listeners so requests will no longer be accepted. The
UnregisterPort method is used to stop requests being accepted
for a specified service. To remove transport binding for a service
or all services manually, use the configuration classes shown in
the following example, rather than the UnregisterPort and
UnregisterAll methods.
 // Removes service with name "limits-service".
 SoapWMQConfiguration.Bindings.Remove("limits-service");
 // Removes all services.
 SoapWMQConfiguration.Bindings.Clear();

Usually there is no need to remove transport bindings manually.

Send
Send is called by the infrastructure to send data to a server
through the transport. Actually, the client never uses this method
directly. A descendent of the SoapClient class (service proxy)
usually invokes and passes data to the server:
 /// <summary>
 /// Defines proxy for limits requests.
 /// </summary>
 [SoapService(Message.DEMO_NS)]
 public class LimitsProxy: SoapClient
 {
 /// <summary>Requests limits.</summary>
 /// <param name="request">determines a request message.</param>
 /// <returns>response as a LimitResponse instance.</returns>
 [SoapMethod("limits")]
 public LimitResponse GetLimits(LimitRequest request)
 {
 return (LimitResponse)SendRequestResponse("GetLimits", request).

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 16

 GetBodyObject(typeof(LimitResponse));
 }
 }

Send creates an instance of the transport channel
(SoapWMQChannel), which performs real work. It communicates
with WMQ (fills the WMQMessage, puts into the appropriate
output queue, and gets responses from the input queue). If a
response is expected, Send calls the OnReceive private method
to get a response.

BeginSend and EndSend methods
These methods are used by the WSE infrastructure for calling the
Send method asynchronously. Below, we describe several private
methods that are not part of the ISoapTransport interface, but
which are often used to enhance functionality.

DoReceive method
DoReceive is a private method, which is used as an incoming
request handler on the server side. DoReceive generally calls the
OnReceive method; however, if it discovers that the operation is
transactional it wraps an OnReceive invocation into the transaction.

OnReceive method
OnReceive is a private method that converts a WMQ message
into the soap envelope and then calls the WSE service dispatcher
to process a request (or response). The following code sample
shows how the Send, OnReceive, and DoReceive methods
collaborate.
 class SoapWMQTransport
 {
 void ISoapTransport.Send(SoapEnvelope envelope, Uri to)
 {
 SoapWMQChannel channel = GetChannel(to,envelope.Context.MessageID);
 try
 {
 channel.Send(envelope);
 if (channel.MessageType == WMQC.WMQMT_REPLY)
 OnReceive(channel);
 }

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 finally
 {
 channel.Close();
 }
 }

As you see, SoapWMQTransport recognizes request/response
messages by their message type. When the client sends a
request message the OnReceive method is called. Since a
SoapWMQChannel instance encapsulates real communication
with WMQ it is important to note that the channel is closed each
time a message is processed. This happens because the Send
method could be called from different threads and you cannot
create a connection to an WMQ queue manager in one thread and
use it in another.
 /// <summary>This auxiliary class is used to call methods in
 transactional context.</summary>
 private class ReceiveProcessor
 {
 internal SoapWMQListener listener;
 internal WMQMessage message;
 internal SoapWMQServiceBinding binding;
 internal SoapWMQChannelDescription descr;
 internal SoapWMQTransport transport;
 internal void Process()
 {
 SoapWMQChannel channel = transport.GetChannel(descr, message,
 binding.Transactional);
 try
 {
 //...
 transport.OnReceive(channel);
 if (binding.Transactional)
 {
 // at this point we decide to commit or rollback transaction
 // depending on channel state
 if (channel.IsFault)
 ContextUtil.SetAbort();
 else
 ContextUtil.SetComplete();
 }
 // ...
 }
 finally
 {
 channel.Close();
 }

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 18

 }
 }
 private void DoReceive(SoapWMQListener listener,
 SoapWMQServiceBinding binding, WMQMessage message)
 {
 SoapWMQChannelDescription descr =
 SoapWMQConfiguration.Channels[binding.Channel];
 ReceiveProcessor processor = new ReceiveProcessor();
 processor.message = message;
 processor.binding = binding;
 processor.descr = descr;
 processor.transport = this;
 processor.listener = listener;
 if (binding.Transactional)
 {
 // if we need to perform a transaction we create for this purpose
 // COM+ object that provides transactional context and supports
 // distributed transaction
 using(SoapWMQDTCTransaction context = new SoapWMQDTCTransaction())
 {
 context.Process(new SoapWMQDTCMethod(processor.Process));
 }
 }
 else
 {
 processor.Process();
 }
 }
 private void OnReceive(SoapWMQChannel channel)
 {
 SoapEnvelope envelope = channel.Receive();
 if (envelope != null)
 {
 // at this point we delegate control to WSE
 SoapReceiver.DispatchMessage(envelope);

}
 }
 }

ReceiveProcessor is an auxiliary class that is used to support
transactions. The DoReceive method is called by the infrastructure
on the server-side only, whereas OnReceive is called by WSE on
both sides.

Channel
Channel encapsulates WMQ-related aspects of communication.
It sends and receives WMQ messages and converts them to soap

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

envelopes. The main communication with WMQ is carried on
inside this class. Two crucial methods are Receive and Send:
 /// <summary>
 /// Creates instance of soap channel through WMQ.
 /// </summary>
 public class SoapWMQChannel: SoapChannel
 {
 private WMQMessage message; // message is initialized in

constructor
 // ...
 /// <summary>
 /// Receives message from the input queue.
 /// </summary>
 /// <returns>Soap envelope.</returns>
 public override SoapEnvelope Receive()
 {
 WMQGetMessageOptions options=new WMQGetMessageOptions();
 switch(message.MessageType)
 {
 case WMQC.WMQMT_REPLY: // client received response from server.
 options.Options = WMQC.WMQGMO_WAIT | WMQC.WMQGMO_NO_SYNCPOINT;
 options.MatchOptions = WMQC.WMQMO_MATCH_CORREL_ID;
 options.WaitInterval = timeout;
 break;
 case WMQC.WMQMT_REQUEST: // server received request from client.
 case WMQC.WMQMT_DATAGRAM:
 options.Options=WMQC.WMQGMO_NO_WAIT |
 (IsTransactional ? WMQC.WMQGMO_SYNCPOINT :
WMQC.WMQGMO_NO_SYNCPOINT);
 options.MatchOptions = WMQC.WMQMO_MATCH_MSG_ID;
 break;
 }
 inQ.Get(message, options);
 SoapEnvelope envelope;
 using (SoapWMQStream stream = new SoapWMQStream(message))
 envelope = DeserializeMessage(stream);
 if (message.MessageType == WMQC.WMQMT_REQUEST)
 {
 message.MessageType = WMQC.WMQMT_REPLY;
 message.CorrelationId = message.MessageId;
 }
 if (envelope != null)
 envelope.Context.Channel = this;
 return envelope;
 }
 /// <summary>
 /// Send the specified SOAP envelope to the output queue.
 /// </summary>
 /// <param name="envelope">Determines the envelope.</param>

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 20

 public override void Send(SoapEnvelope envelope)
 {
 using(SoapWMQStream stream = new SoapWMQStream(message))
 SerializeMessage(envelope, stream);
 Timestamp timestamp = envelope.Context.Timestamp;
 if (timestamp != null)
 {
 long ttl = timestamp.Ttl;
 if (ttl > Ø)
 message.Expiry = (int)(ttl / 1ØØ);
 }
 switch(message.MessageType)
 {
 case WMQC.WMQMT_REQUEST: // Send request from client
 message.ReplyToQueueName = inQ.Name;
 message.Report=WMQC.WMQRO_COPY_MSG_ID_TO_CORREL_ID;
 outQ.Put(message);
 message.MessageType = WMQC.WMQMT_REPLY;
 message.CorrelationId = message.MessageId;
 break;
 case WMQC.WMQMT_DATAGRAM: // Send one way request from client
 case WMQC.WMQMT_REPLY: // Send response from server
 outQ.Put(message);
 break;
 }
 }
 }

Receive method
Receive is called by the transport to receive a request or
response and deserialize it into a soap envelope. This method is
the starting point for distributed transactions. On a server this
method is triggered by a listener, which monitors WMQ. On a
client, Receive is invoked after sending a message and when
WSE expects a response.

Send method
Send serializes the soap envelope and sends a request to a client
or a response to a server. It also manages the expiration time of
messages. The Send method delivers a one-way message and,
therefore, doesn’t return anything to the caller. However, if the
sender wants a response from the receiver it has to implement a
SoapReceiver of its own and indicate where the original receiver
should send the response messages.

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Listener
SoapWMQListener monitors incoming messages. Listener is
used only on the server side. For each input queue on the server
side there is a listener object that monitors it. The methods of this
class are Start, Browse, Listen, and Receive event.

Start method
When the transport needs to monitor a specific queue it creates
an instance of SoapWMQListener and calls the Start method over
this listener. The method creates a new monitoring thread.

Browse method
Browse waits for incoming messages; usually it’s sleeping.

Listen method
Listen performs a thread cycle, which calls Browse, and, if there
is an incoming message, gets a service binding for the message
and passes the message to a handler
(SoapWMQTransport.DoReceive).

Receive event
This is an event handler that the transport attaches when a
SoapWMQListener instance is created.
Now it’s time to define how the channel and listener identify a
destination service. For identification purposes the message-ID
and correlation-ID WMQ message fields are used.
• When the client sends a request to a server a new message

identification is generated and assigned to the message-ID.
The correlation-ID is given the value of a service-ID, which is
defined in the configuration.

• When the server accepts a request from a client the correlation-
ID of the message is used to identify the service handler. The
message-ID is used to identify the client that has sent the
request.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 22

• When the server sends a response to the client the server
uses the message-ID of the request message, which identifies
the client and puts it into the correlation-ID of the response
message.

• When the client gets a response from the server it selects a
message with the correlation-ID that is equal to the message-
ID of the request message.

This technique avoids having to get a whole message from a
queue in order to identify its destination. It’s especially important
for transactions, where the transaction needs to be started before
a message is got from the queue. Use the configuration file to
define the service binding or SoapWMQConfiguration to bind the
service manually:
 <configuration>
 <configSections>
 <section name="nesterovsky-bros.web.services.WMQ"
 type="NesterovskyBros.Web.Services.Messaging.Configuration.SoapWMQConfiguration,
 SoapWMQTransport" />
 </configSections>
 <nesterovsky-bros.web.services.WMQ>
 ...
 <!--

 Define limit service. This services uses following channel
 name: "server-channel".

 Service handler is:
 "NesterovskyBros.WMQTransport.Demo.Server.LimitsService".

 As a correlationID of outgoing messages the following id will
 be used:
 "Ø9cbbe5f-a8d2-4f8e-99fa-c53d7347afa1". Actually this id is used
 to bind messages
 to the service.
 -->
 <service name="limits-service"

 channel="server-channel"
 type="NesterovskyBros.WMQTransport.Demo.Server.LimitsService,
 Server"
 id="Ø9cbbe5f-a8d2-4f8e-99fa-c53d7347afa1" />
 </nesterovsky-bros.web.services.WMQ>
 </configuration>

See the app.config files of the Client and Server projects for more
details of how to configure channels on the client and server-side
respectively.

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

TRANSACTIONS
Our implementation of WMQ transport supports distributed
transactions. This means that the whole process of getting a
message from the queue on the server, processing it, and sending
a response, may be considered as a single unit of work, which
either succeeds or is rolled back. The Distributed Transaction
Coordinator (DTC) is used to manage transactions. See
SoapWMQTransport.DoReceive method above for details of how
the transport deals with transactions.
To configure a service to use transactions use the ‘transactional’
attribute in the ‘service’ element of the transport configuration, or
configure a service binding manually:
 <configuration>
 <configSections>
 <section name="nesterovsky-bros.web.services.WMQ"
 type="NesterovskyBros.Web.Services.Messaging.Configuration.SoapWMQConfiguration,
 SoapWMQTransport" />
 </configSections>
 <nesterovsky-bros.web.services.WMQ>
 ...
 <service name="charge-service"
 channel="server-channel"
 type="NesterovskyBros.WMQTransport.Demo.Server.ChargeService,
 Server"
 id="8af1d7fe-4f63-4c64-937c-1a5ffd497fc5"
 transactional="true"/>
 </nesterovsky-bros.web.services.WMQ>
 </configuration>

It is important to note the following:
• A ‘transactional’ attribute has meaning only for the server, not

for the client application.
• WMQ supports distributed transactions for server connections

only (binding connection to a local queue manager), not for
remote connections.

CONFIGURATION
Soap WMQ transport supports a rich variety of configuration
options. The main tasks are configuring channels and services. To

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 24

perform a configuration a transport section handler should be
added to the ‘configSections’ of the configuration file and a
nesterovsky-bros.web.services.WMQ section should be created.
 <configuration>
 <configSections>
 <section name="nesterovsky-bros.web.services.WMQ"
 type="NesterovskyBros.Web.Services.Messaging.Configuration.SoapWMQConfiguration,
 SoapWMQTransport" />
 </configSections>
 <nesterovsky-bros.web.services.WMQ>
 ...
 </nesterovsky-bros.web.services.WMQ>
 </configuration>

Channels comprise a named set of parameters that transport uses
to discover how to send and receive data for a particular service.
It’s possible to define many channels using the following template:
 <nesterovsky-bros.web.services.WMQ>
 <!--
 Channel definition for the Soap WMQ transport.
 All services that use Soap WMQ transport are bound to
 channels.
 At least one channel required.
 Note that name is unique through all channels name.
 It's using for service binding.
 Note:
 In case of remote connection to queue manager the
 connection name must include a host name and port, if
 any. Also you have to specify a client channel name (eg
 CLNT.CONN).
 -->
 <channel name="{channel name}" queue-manager="{queue manager name}"
 input-queue="{optional input queue name}" output-queue="{optional
 output queue name}"
 dead-messages="{optional dead messages queue name}"
 client-channel-name="{client channel name in case of remote queue
 manager}"
 connection-name="{connection name in case of remote queue manager}"

/>
 ...
 </nesterovsky-bros.web.services.WMQ>

Service elements define how services and clients are bound to
channels, whether the service is transactional, a timeout option,
and more.
 <nesterovsky-bros.web.services.WMQ>

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 ...
 <!--
 Service binding.
 There are two type of service binding: server and client.
 If an element contains a type attribute then the service element
 is considered as server binding, otherwise it's considered as
 client binding.
 The server uses the correlation-id to differentiate destinations
 of messages. A guid value of id attribute is used for these
 means. It's a good idea to use the TModel guid of service in UDDI
 as such an id.
 Service is bound to URI: soap.WMQ:{service name}.
 Service name should be unique through all services.
 There could be many service bindings.
 -->
 <service name="{service name}"
 channel="{name of channel to use}"
 type="{fully qualified type name on the server to process
 messages}"
 id="{guid that identifies service type}"
 transactional="{optional boolean value that determines whether
 service is transactional}"
 timeout="{optional value of client timeout in milliseconds}"
 try-count="{optional number of attempts to process transactional
 one-way method}" />
 </nesterovsky-bros.web.services.WMQ>

It is important to note that:
• In order to define a service binding you have to specify a type

(type attribute), which will handle requests; otherwise, binding
is considered to be a client of a service.

• The ‘transactional’ and ‘try-count’ attributes have meaning
only to a server so it’s only the client that uses the
‘timeout’attribute .

It’s possible to limit the maximum allowable number of
simultaneously processing requests:
 <nesterovsky-bros.web.services.WMQ>
 <!--
 Parameters that determine dynamic characteristics of the Soap WMQ
 transport max-requests - maximum of requests to process at a
 time.
 -->
 <process-model max-requests="5" />
 ...
 </nesterovsky-bros.web.services.WMQ>

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 26

There is an option to perform all configurations manually, using the
SoapWMQConfiguration class and its related classes:
• SoapWMQChannel.
• SoapWMQChannelCollection.
• SoapWMQServiceBinding.
• SoapWMQServiceBindingCollection.
To ensure that the configuration is loaded, invoke the
SoapWMQConfiguration.Initialize method.

PERFORMANCE COUNTERS
When we have implemented WMQ transport the following questions
require consideration:
• What is the performance of the Web services layer?
• How much time does WMQ transfer take?
• In what way is performance dependent on transactions?
• How much time does WSE consume?
• How does the number of simultaneously processing requests

affect speed?
• How can we speed up the implementation?
In order to address these questions we use performance counters,
which means the Soap WMQ transport library has to be installed.
During installation a ‘SOAP WMQ Transport’ performance category
is created, which contains the following counters:
• Client time – counts the average time (in milliseconds) that the

client spends processing a request. The counting starts right
before sending data through WMQ and ends immediately
after receiving a WMQ response.

• Server time – counts the average time (in milliseconds) that
the server spends processing a request. The counting starts

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

right after receiving data through WMQ and ends immediately
after sending WMQ a response.

• WMQ time – counts the average time (in milliseconds) that is
consumed by WMQ operations during a request/response
cycle. The value is counted both on a client and on a server.

• Listener threads – an instantaneous counter that shows the
number of threads on a server that listen for requests. This
number of listening threads depends on the number of different
input queues in channel bindings.

• Requests processing – an instantaneous counter that shows
the number of requests being processed at any one time. The
value is limited by the property ‘SoapWMQConfiguration.Max
WorkingRequests’.

• Requests total – counts the total number of requests that the
server accepted for processing.

• Requests succeed – counts the total number of requests that
were processed successfully.

• Failed requests – counts the total number of requests that
failed during processing.

• Requests/sec – counts the average speed of request
processing (requests per second).

• Transactions – counts the total number of transactional
requests that the server accepted for processing.

• Transactions pending – an instantaneous counter that shows
the number of transactional requests in processing at a time.

• Transactions committed – counts the total number of
transactional requests that were committed.

• Transactions aborted – counts the total number of transactional
requests that were aborted.

• Transactions/sec – counts the average processing speed
of transactional requests (transactional requests per second).

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 28

The main reason for installation is to register and remove
performance counters. We consider, however, that performance
counters are a justified feature of the transport library because
they help significantly in tracking the health of the application using
Soap WMQ transport.
The SoapWMQInstaller class performs automatic installation of
the performance counters. There are several installation options:
• Invoke the install utility to perform a registration process.
• Create an install project and add primary output custom action

for SoapWMQTransport.
• Add primary output custom action for SoapWMQTransport as

a part of a bigger installation.

SAMPLE
From the perspective of the ‘final’ user, who creates Web services
and writes application logic, transport is only one of the services
plugged into the WSE. To demonstrate how to use our WMQ
transport in real life we have created two demo applications, Client
and Server. The demo project was created in C# and provided as
a Visual Studio .NET 2003 solution. In order to compile and test
demo projects the following programs should be installed:
• Visual Studio .NET 2003.
• WMQ V5.3 or higher.
• IBM’s MA7P SupportPac, which implements WMQ classes

for Microsoft .NET.
• WSE 2.0.
Let’s look at the functionality of both applications.

Client project
For simplicity, it performs two operations only:
• Request limits (whatever they are, eg money): the Client

sends this request and awaits a response from the server.

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• Charge request: in these situations the client sends a one-
way message.

Server project
The server project also supports two operations:
• It processes limit requests and returns the actual limits or a

fault message as a response.
• It processes charge requests and changes corresponding

limits without sending any response.
The charge and limit operations are implemented as two different
services. The rationale of this decision is that our transport
implementation considers transaction options on a per service
basis; therefore, all service methods can be either transactional
or non-transactional.
Whether or not the service is transactional is a configuration
option. By ‘transaction’ we mean the following set of operations is
carried out on the server: get a request, process it, and send a
response. If the transaction succeeds the request message is
deleted from the queue, otherwise, depending on the options, the
message is either moved to a dead message queue or postponed
for subsequent processing.
Charge operation is transactional because it changes the database
state. On the other hand, the limits operation may be non-
transactional because it just gets information.
In order for the service to work, WMQ transport bindings have to
be configured. These are channel and service declarations. Note
also that WMQ itself should be appropriately configured.
The essential part is the SoapMQTransport project. The Client and
Server projects are included to demonstrate how to use the library.
 public decimal GetLimit(string cardId)
 {
 // ...
 // Create service proxy. Uri is transport (protocol) specific.
 LimitsProxy proxy = new LimitsProxy(new Uri("soap.WMQ:limits-

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 30

 service"));
 // ...
 }

Another transport specific code is transport initialization:
 static void Main(string[] args)
 {
 SoapWMQConfiguration.Initialize();
 // ...
 }

If a user decides to change the background transport, eg to TCP/
IP, only these parameters need to be changed.
Arthur and Vladimir Nesterovsky (Israel) © Xephon 2004

Using WMQ with the Microsoft.Net platform

You can use WMQ in your Microsoft.Net programs. This article is
written from the perspective of Visual Basic.Net, but most of it
applies to the other .Net languages as well. You have three options
available, each with its own set of benefits and limitations:
• WMQ classes for .Net.
• WMQ automation classes for ActiveX.
• IBM Message Queue Interface (MQI).

.NET CLASSES FOR WMQ
IBM has recently released a set of .Net classes for WMQ as part
of ServicePac CSD05 for WMQ V5.3. If you use an older version
of WMQ you can’t use these classes. The DLL containing the
classes is amqmdnet.dll in the \Bin folder of your WMQ client. You
can download this ServicePac from http://www-3.ibm.com/
software/integration/mqfamily/support/summary/wnt.html.
The WMQ classes for .Net support major WMQ application
objects with the classes listed below. There are other minor

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

classes not listed below, plus an MQAX namespace, which is a
.Net wrapper for the old WMQ COM object. You can use that when
you want to upgrade your programs to .Net without changing the
program logic.
• MQC – contains all the familiar WMQ constants.
• MQEnvironment – controls the network settings for connecting

to the queue manager.
• MQQueueManager – contains the standard queue manager

properties and methods. You connect via the constructor.
• MQQueue – contains the standard (MQOD) queue properties

plus methods to Get, Set, Put, and Inquire. You open queues
via the constructor.

• MQMessage – contains the standard (MQMD) message
properties. There is no MessageData property any more. To
access the message buffer you must use one of the many
ReadXXXX and WriteXXXX methods.

• MQGetMessageOptions – contains settings that control the
MQQueue.Get() operation.

• MQPutMessageOptions – contains settings that control the
MQQueue.Put() operation.

• MQException – a .Net exception class with extra properties
for ConditionCode and ReasonCode.

The code sample that follows shows an example of a .Net Class.
Imports IBM.WMQ
Module Module1
 Sub Main()
 Try
 Dim QMgr As New MQQueueManager("MyQueueManager")
 Dim Q As New MQQueue(QMgr, "My.Queue.Name", _
 MQC.MQOO_INPUT_AS_Q_DEF, Nothing, _
 Nothing, Nothing)
 Dim Msg As New MQMessage()
 Dim Gmo As New MQGetMessageOptions()
 Gmo.MatchOptions = MQC.MQMO_NONE
 Gmo.Options = MQC.MQGMO_WAIT
 Gmo.WaitInterval = 1ØØØØ

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 32

 Do
 Try
 Q.Get(Msg, Gmo)
 Catch ex As MQException
 If ex.ReasonCode = MQC.MQRC_NO_MSG_AVAILABLE Then
 Exit Do
 Else
 Throw ex
 End If
 Catch ex As Exception
 Throw ex
 End Try

 ' Process the message.
 Console.WriteLine(Msg.ReadString(Msg.MessageLength))
 Loop

 Q.Close()
 QMgr.Disconnect()
 Catch ex As MQException
 Console.WriteLine(ex.ToString)
 Catch ex As Exception
 Console.WriteLine(ex.ToString)
 Finally
 Console.WriteLine("Press ENTER to continue.")
 Console.ReadLine()
 End Try
 End Sub
End Module

WMQ classes for .Net – advantages
• The product WMQ classes for .Net is the only commercially

supported .Net class for WMQ.
• It has the advantage of being managed code.
• Support will diminish for the MQI and ActiveX interfaces over

time.

WMQ classes for .Net – disadvantages
• It requires a specific WMQ version.
• Documentation is superficial and the examples are exclusively

in C#.
• This set of classes seems to be a step backwards from the old

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

ActiveX classes. There is no longer a distribution list class,
nor do you have the ReasonName or MessageData properties.
My first impression is that this is a stripped-down, no frills,
hastily thrown together set of classes.

AUTOMATION CLASSES FOR ACTIVEX (MQAX200)
The ActiveX classes, which were available for VB6, can still be
used in .Net programs in pretty much the same way as they were
used in VB6.

Add the reference to your project
• Right-click the References folder and select Add Reference.
• In the References dialogue, select the COM tab for a list of

COM object references.
• Locate IBM WMQ Automation Classes for ActiveX. Select

and add it to your references.

Import the name space
Add this line to the top of your code:
 Imports MQAX2ØØ

While importing namespaces is not strictly necessary, if you don’t
do it you will have to prefix every MQ class reference with
‘MQAX200.’.

Work with the objects
Here is a VB.Net snippet for reading a queue, which shows the
differences between VB6 and .Net:
 Dim qm As New MQQueueManager
 qm.Name = "QmgrName"
 qm.Connect()
 Dim q As New MQQueue
 q.Name = "QueueName"
 q.ConnectionReference = qm
 q.OpenOptions = MQ.MQOO_OPEN_AS_Q_DEF
 q.Open()

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 34

 Dim gmo As New MQGetMessageOptions
 gmo.MatchOptions = MQ.MQMO_NONE
 Dim msg As New MQMessage
 Do

 Try
 q.Get(msg, gmo)

 Catch ex As Exception
 Exit Do

 End Try
 ' Process the message
 ' here.

 Loop
 q.Close()
 qm.Disconnect()
 msg = Nothing
 gmo = Nothing
 q = Nothing
 qm = Nothing

Garbage collection issues
Objects in the .Net Framework tend to stay in memory until the
garbage collector routine executes, and this usually happens at
the discretion of the Common Language Runtime. You can put
clean-up logic for your .Net classes in a reserved, protected
subroutine named Finalize().
MQAX200 objects do not run as managed code and they won’t be
available to you in the Finalize() routine. So any clean-up you wish
to do with them, such as closing queues, disconnecting from
queue managers, or destroying objects, must be done before
garbage collection happens. Since the .Net garbage collection
resources do not work on unmanaged code you must clean them
up properly yourself, or you will have memory leakage.

.Net differences
• WMQ constants are defined in the MQAX200.MQ namespace.

To reference them, just add the namespace prefix ‘MQ.’ to the
front of the constant name. You could also just import the
MQAX200.MQ namespace, but I like having Visual Basic’s
Intellisense pop-up the list of constants when I type the
namespace prefix.

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• It’s OK to declare MQ objects with the new keyword, since
there are no longer any performance penalties for doing so.

• There is little use any more for the MQSession class. In VB6
it was used for manipulating the ExceptionThreshold property
and as an object factory for the other MQ classes. In VB.Net
there are better ways to handle exceptions and you can easily
declare MQAX200 objects directly without the need to invoke
MQSession’s object access methods.

• The Try / Catch structure makes end-of-queue processing
much easier. The MQQueue class throws an exception when
you read past the end of a queue (an over-reaction if there
ever was one). VB6 required clumsy error handling to deal with
this, or turning off MQ error handling altogether by setting the
MQSession.ExceptionThreshold property higher than 2. Of
course, built-in error handling is there for a reason and if you
turned it off you had to take on the responsibility for doing your
own error checking. Wrapping a Try / Catch around the
MQQueue.Get() method makes the whole issue a lot neater.

MQAX200 – advantages
• Object-oriented interface.
• Easiest option for older WMQ versions.
• Works as well as it did for pre-.Net platforms.

MQAX200 – disadvantages
• You are making calls to unmanaged code.
• Advanced OO functionality, such as inheritance, overloading,

and parameterized constructers, isn’t available to MQAX200
classes.

• Poor support for PCF and MQAI.

IBM MESSAGE QUEUE INTERFACE (MQI)
The old API calls still work in .Net, but you need to handle the API
declarations and the structure definitions with care. If you just

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 36

paste them into your program from CMQB.Bas they won’t work.
The problem is that VB.Net changed the default mode for passing
parameters from ByRef to ByVal, therefore, the old calls fail
because they don’t pass parameters properly. Fix this by specifying
ByRef/ByVal explicitly for each API parameter. The .Net upgrade
wizard can automate this chore for you.
As an example, let’s look at the MQConn call. The IBM-supplied
syntax for this call was written for Visual Basic 4.0 and looks like
this:
 Declare Sub MQCONN Lib "MQIC32.DLL" Alias "MQCONNstd@16" (ByVal
 QMgrName As String * 48, Hconn As Long, CompCode As Long, Reason
 As Long)

Remove the maximum string length from the QMgrName parameter
definition to make it syntactically correct for VB.Net. However,
when you try to execute the call it still won’t work.
 Declare Sub MQCONN Lib "MQIC32.DLL" Alias "MQCONNstd@16" (ByVal
 QMgrName As String, Hconn As Long, CompCode As Long, Reason As
 Long)

To fix this declaration, look at the parameter definitions. Make sure
that each parameter is defined with either the keyword ByRef or
ByVal. This is because parameters were passed by reference as
the VB6 default, but now they are passed by value as the .Net
default. This small change makes all the difference between your
code working or not working.
 Declare Sub MQCONN Lib "MQIC32.DLL" Alias "MQCONNstd@16" (ByVal
 QMgrName As String, ByRef Hconn As Long, ByRef CompCode As Long,
 ByRef Reason As Long)

Structures are different from types
The user-defined data type, or UDT, has been with Visual Basic for
as long as most programmers can remember. It is used to create
a data structure consisting of fields that are stored contiguously
in memory. In other words, suppose you have a UDT consisting of
two fields – FirstName and LastName. You declare a variable
named ‘Person’ of this type, and assign the values ‘Agent’ and
‘Smith’ to the two fields, respectively. The memory area occupied
by the Person variable will look like this: ‘AgentSmith’. This

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

contiguous storage makes it possible to pass UDT variables to C-
style APIs as parameters.
The UDT is no longer supported in .Net, having been replaced by
the Structure. Structures do not store their fields contiguously by
default so you cannot pass them to C-style APIs without a lot of
serious persuasion. This ‘persuasion’ is done via .Net marshalling
attributes. To use marshalling attributes you should first import the
InteropServices namespace, using this import statement:
 Imports System.Runtime.InteropServices

Next, add the StructLayout attribute as a prefix to each of your
structure definitions. This attribute forces the common Language
Runtime to store all fields in the structure contiguously.
 <StructLayout(LayoutKind.Sequential, CharSet:=CharSet.Ansi)> _
 Structure MQOD
 Public StrucId As String
 ...
 End Structure

Because many of the WMQ UDT fields are fixed length strings you
have another problem – VB.Net does not support fixed-length
strings. This is solved with another marshalling attribute, MarshalAs.
You control the string length with the SizeConst parameter.
Convert the data type from String to a Char array. Each such Char
array must be padded to the exact length prior to using the
structure in an API call.
 <StructLayout(LayoutKind.Sequential, CharSet:=CharSet.Ansi)> _
 Structure MQOD
 <MarshalAs(UnmanagedType.ByValArray, SizeConst:=4)> _
 Public StrucId() As Char
 ...
 End Structure

A word of warning: the Visual Studio Upgrade Wizard is not very
helpful for the WMQ Structures. It has a bug that causes it to use
an incorrect attribute for the fixed-length strings. Also, it does not
apply the StructLayout attribute.
Once you have added all your marshalling attributes you must add
initialization logic. It’s really up to you as the programmer where
you initialize the fields, but in my example I added an initialization

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 38

method to my structures. Yes, VB.Net structures support methods,
just like objects do. Here is an example of my finished MQOD
structure – UDT converted to a .Net version structure.
<StructLayout(LayoutKind.Sequential, CharSet:=CharSet.Ansi)> _
Structure MQOD
 <MarshalAs(UnmanagedType.ByValArray, SizeConst:=4)> _
 Public StrucId() As Char
 Dim Version As Integer
 Dim ObjectType As Integer
 <MarshalAs(UnmanagedType.ByValArray, SizeConst:=48)> _
 Public ObjectName() As Char
 <MarshalAs(UnmanagedType.ByValArray, SizeConst:=48)> _
 Public ObjectQMgrName() As Char
 <MarshalAs(UnmanagedType.ByValArray, SizeConst:=48)> _
 Public DynamicQName() As Char
 <MarshalAs(UnmanagedType.ByValArray, SizeConst:=12)> _
 Public AlternateUserId() As Char
 Dim RecsPresent As Integer
 Dim KnownDestCount As Integer
 Dim UnknownDestCount As Integer
 Dim InvalidDestCount As Integer
 Dim ObjectRecOffset As Integer
 Dim ResponseRecOffset As Integer
 <MarshalAs(UnmanagedType.ByValArray, SizeConst:=32)> _
 Public ObjectRecPtr() As Char
 <MarshalAs(UnmanagedType.ByValArray, SizeConst:=32)> _
 Public ResponseRecPtr() As Char
 <MarshalAs(UnmanagedType.ByValArray, SizeConst:=4Ø)> _
 Public AlternateSecurityId() As Char
 <MarshalAs(UnmanagedType.ByValArray, SizeConst:=48)> _
 Public ResolvedQName() As Char
 <MarshalAs(UnmanagedType.ByValArray, SizeConst:=48)> _
 Public ResolvedQMgrName() As Char
 Sub Initialize()
 Me.StrucId = "OD "
 Me.Version = MQ.MQOD_CURRENT_VERSION
 Me.ObjectType = MQ.MQOT_Q
 Me.ObjectQMgrName = New String(" ", 48)
 Me.DynamicQName = "AMQ.*" & New String(" ", 43)
 Me.AlternateUserId = New String(" ", 12)
 Me.AlternateSecurityId = New String(" ", 4Ø)
 Me.ObjectRecPtr = New String(Chr(Ø), 32)
 Me.ResponseRecPtr = New String(Chr(Ø), 32)
 Me.ResolvedQMgrName = New String(" ", 48)
 Me.ResolvedQName = New String(" ", 48)
 End Sub
End Structure

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Putting it all together, here is a sample of the Main() subroutine for
a program using the MQI API, with as much ‘fluff’ compressed out
as possible.
' I put my MQ constants here.
Private Enum MQ
 MQCC_OK = Ø
 MQCC_FAILED = 2
 MQOD_CURRENT_VERSION = 3
 MQOO_INPUT_AS_Q_DEF = 1
 MQOT_Q = 1
 MQRC_NO_MSG_AVAILABLE = 2Ø33
 MQMO_NONE = Ø
End Enum

Declare Sub MQCONN Lib "MQIC32.DLL" Alias "MQCONNstd@16" _
 (ByVal QMgrName As String, ByRef hConn As Integer, _
 ByRef CompCode As Integer, ByRef Reason As Integer)
Declare Sub MQOPEN Lib "MQIC32.DLL" Alias "MQOPENstd@24" _
 (ByVal hConn As Integer, ByRef ObjDesc As MQOD, _
 ByVal Options As Integer, ByRef Hobj As Integer, _
 ByRef CompCode As Integer, ByRef Reason As Integer)
Private Declare Sub MQGETX Lib "MQIC32.DLL" Alias "MQGETstd@36" _
 (ByVal hConn As Integer, ByVal Hobj As Integer, _
 ByRef MsgDesc As MQMD, ByRef GetMsgOpts As MQGMO, _
 ByVal BufferLength As Integer, ByVal Buffer As String, _
 ByRef DataLength As Integer, ByRef CompCode As Integer, _
 ByRef Reason As Integer)
Declare Sub MQDISC Lib "MQIC32.DLL" Alias "MQDISCstd@12" _
 (ByRef hConn As Integer, ByRef CompCode As Integer, _
 ByRef Reason As Integer)
Declare Sub MQCLOSE Lib "MQIC32.DLL" Alias "MQCLOSEstd@2Ø" _
 (ByVal hConn As Integer, ByRef Hobj As Integer, _
 ByVal Options As Integer, ByRef CompCode As Integer, _
 ByRef Reason As Integer)
Public Sub Main()
 Dim hConn As Integer ' Connection handle.
 Dim hQueue As Integer ' Queue handle.
 Dim CompCode, Reason, intMsgLen As Integer
 Dim OD As MQOD
 Dim MD As MQMD
 Dim GMO As MQGMO
 Dim strMsg As String
 ' Connect to queue manager.
 MQCONN("MyQMgrName", hConn, CompCode, Reason)
 If CompCode = MQ.MQCC_FAILED Then
 Console.WriteLine("MQCONN failed. RC(" & Reason & ")")
 Exit Sub
 End If

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 40

 ' Open the queue.
 OD.Initialize()
 OD.ObjectName = Left("My.Queue.Name" & New String(" ", 48),48)
 MQOPEN(hConn, OD, MQ.MQOO_INPUT_AS_Q_DEF, hQueue, _
 CompCode, Reason)
 If CompCode = MQ.MQCC_FAILED Then
 Console.WriteLine("MQOPEN failed. RC(" & Reason & ")")
 Exit Sub
 End If
 ' Initialize the message and GMO.
 MD.Initialize()
 GMO.Initialize()
 GMO.MatchOptions = MQ.MQMO_NONE
 strMsg = New String(Chr(Ø), 1ØØØ)
 ' Process the queue.
 Do Until Reason = MQ.MQRC_NO_MSG_AVAILABLE
 MQGETX(hConn, hQueue, MD, GMO, strMsg.Length, _
 strMsg, intMsgLen, CompCode, Reason)
 If CompCode < MQ.MQCC_FAILED Then
 ' Do something with the message.
 Else
 Exit Do
 End If
 Loop
 MQDISC(hConn, CompCode, Reason)
 MQCLOSE(hConn, hQueue, Ø, CompCode, Reason)
End Sub

Return to ‘DLL hell’
If you check the opening comments in CMQB.BAS you will see that
you must use different compile options depending on whether you
run the code on an WMQ client or a queue manager machine. This
is because the API functions are defined in differently-named
DLLs depending on whether it’s a client or server machine. This
can be especially annoying if you are developing programs on a
client machine that are intended to run on a server machine. This
problem has at least three solutions:
1 Set compiler directives to compile the calls to either the client

DLL or the server DLL as needed. This is the recommended
way in CMQB.BAS.

2 Fool the system into thinking the expected DLL is on the target
machine. On a client machine, locate file MQIC32.DLL. Make

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

a copy of the file and rename it MQM.DLL. Now most API calls
coded against MQM.DLL will work on this machine. Reverse
the process for a queue manager machine by copying
MQM.DLL and renaming it MQIC32.DLL. Okay, I’ll admit this
is an ugly hack, but it works for most functions.

3 Use polymorphism. Declare an abstract class with all the
required MQ functions prototyped. Create two derived classes
– one implemented for a client and the other implemented for
a server. In your program, create an object of the class type
you need, and then assign it to an instance of the base class.
All subsequent calls to the base class methods will now
actually call the correct derived class implementation.

MQI – advantages
• Supports all WMQ functionality, including PCF and MQAI.
• May run marginally faster than ActiveX.
• If you are upgrading VB6 programs that used this API you may

find it easier to keep it than convert to another API.
• If you spend any amount of time in this API you will feel like a

real programmer and will be fully justified in looking down your
nose at lesser programmers with their silly object-oriented
interfaces. Of course, they will get twice as much done as you.

MQI – disadvantages
• You are calling unmanaged code.
• It has a less intuitive interface.
• VB.Net structures pass data differently from VB6 user-defined

data types, and extra code is needed to resolve it.
• This API is very delicate. Any failure to properly initialize your

structures will cause program exceptions.
• You must declare the API functions with different DLLs

depending on whether the application runs on a client or queue
manager machine.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 42

CONCLUSION
At the company where I work we have a large investment in VB6
code but we are developing new systems in VB.Net. Because the
WMQ classes for .Net have been available for such a short time
we are still using the ActiveX classes for most things and MQI
where we absolutely have to. We have WMQ V5.2.1 and we
probably won’t upgrade just for the .Net support given the
disappointing quality of those classes.
Mills Perry
ZyQuest (USA) © Xephon 2004

Statistics and accounting in WBI MB

In May 2003 IBM announced the release of WebSphere Business
Integration Message Broker Version 5.0 (WBI MB), which is the
successor to WMQ Integrator Broker V2.1. With the new version
the product introduced the new statistics and accounting
functionality. This article discusses the capabilities and application
of that functionality.

STATISTICS AND ACCOUNTING INFORMATION
The statistics and accounting function gathers dynamic information
about message flow use, and processing details about the nodes
involved in message processing. Accounting information provides
a customer with data on broker usage, which enables chargeback
for invoking message flows. These statistics can be used for
monitoring and performance analysis.
A WBI MB broker can provide the following different statistics:
• Message flow statistics. This is the highest level of information

and includes data on the names of the flow, the execution
group a message flow is running in, the broker, and the
timeframe of the data-gathering period. Additionally, it contains
the following information:

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

– the number of messages processed in the measurement
interval.

– the number of commits and rollbacks used to process the
messages.

– the total, minimum, and maximum length of the messages
processed.

– the total, minimum, and maximum CPU time used to
process the messages.

– the total, minimum, and maximum elapsed time used to
process the messages.

– thread statistic information about the number of threads
and the maximum number of parallel processing threads
for this message flow.

In most cases the invocation of a message flow is used as an
accounting unit. The functionality of the message flow is
associated with a price, so different message flows could
have different prices.
Some customers measure broker usage by the resources
used by message flows. For this kind of accounting the
amount of CPU time or the size of the messages processed
form useful accounting criteria.

• Message flow thread statistics. Information similar to that
collected for a message flow is also gathered for each thread
that is processing for the message flow. Each thread is
identified by a thread number. This thread number does not
correspond to any thread ID within the processing of the flow,
eg the one in the user trace or the one that can be retrieved
by a plug-in node.

• Node statistics. This statistic contains information about all
nodes within a message flow. For each node the number of
input and output terminals and the node type (eg MQInputNode
or ComputeNode) are included. The following processing
information is also included:

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 44

– the number of times the node was invoked.
– total, minimum, and maximum elapsed time spent in this

node.
– total, minimum, and maximum CPU time used for this

node.
In the previous version of the broker you could use the user
trace only to get information about the elapsed time for a node.
When comparing the results of a user trace with the results of
the new node significant differences appear for some nodes.
The accuracy of the statistics and accounting information
seems to be much higher, so the node statistic can be used
for performance analysis, for example, to get information
about which nodes of a message flow are using most of the
elapsed and processing time. This provides a good indication
of where to start investigating possible performance
improvements.
For some nodes the statistic shows significant differences
between the elapsed time and the CPU time. In most cases
this is because the nodes are performing an I/O operation,
such as a database update.

• Terminal statistics. For each terminal of a message
processing node the terminal statistic contains information on
the name of the terminal, whether it is an input or output
terminal, and the number of invocations for this terminal.
If a message flow contains a filter node that checks for the
correctness of the message and the false terminal indicates
incorrect messages, this statistic could be used to get
information about the number of incorrect messages that are
processed by the flow. This can be achieved by counting the
false terminals of a filter node that checks for message
correctness.
Another use for this statistic could be to count processed
elements. It could be achieved if messages are processed
which contain an arbitrary number of records. If one node

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

splits up the message and forwards each record separately
on its out terminal the number of invocations of the out terminal
can be used to count the number of records that have been
processed.

You need to enable the statistics and accounting information
function to gather this information; it is disabled by default.
Collection of the data is integrated in the broker. The broker must
not be changed to get the information; redeploying message flows
is not required. A simple command can be used to turn the
statistics on and off.

TYPES OF INFORMATION
WBI MB provides two different types of statistics information –
snapshot and archive – which are used for different time periods.
Each time period or type of statistic can separately be enabled and
disabled, and it is possible to enable both at the same time. When
snapshot statistics are enabled the broker collects all information
for a predefined brief time interval and makes this information
available. The time interval is approximately 20 seconds. It cannot
be altered by the user.
The snapshot statistics can be used to monitor the broker’s
processing activities. A monitoring program could retrieve the
snapshot statistic data and display it as an indication of health , eg
if a flow is processing messages this could be used as a sign that
everything is OK. Snapshot statistics can also be useful in
production environments to gather performance data.
Archive statistics data is intended for accounting and chargeback
purposes and is collected over a longer period. The default period
is one hour, but it can be adjusted by a user within the range of 10
minutes to 10 days.

GETTING THE STATISTICS AND ACCOUNTING INFORMATION
WBI MB can write the statistics and accounting information to
different destinations. On all platforms the information can be

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 46

written to the WBI MB user trace and the broker can publish it on
a subscription basis.
When writing the information to the WBI MB user trace it must be
handled like any other user trace information. It can be retrieved
using the standard commands mqsireadlog and mqsiformatlog.
When using the user trace destination you should ensure that
tracing is not active in parallel. Otherwise the statistics and
accounting information may be overwritten by the trace information.
That’s why this destination should be used mainly for short-term
statistical information, eg when using the data for performance
analysis. Usually a batch of messages is processed and the data
is retrieved for analysis purposes. Afterwards, the data is usually
discarded.
In the user trace the broker uses message numbers BIP2380I to
BIP2383I. An example message for a flow statistic is shown
below. The statistical information is for message flow
DNF_ILC_FIN_3140 in broker WFMGBRK.
2ØØ3-Ø8-14 13:54:54.3Ø3344 3 UserTrace BIP238ØI: WMQI
message flow statistics.
ProcessID='66ØØ9',
Key='Ø',
Type='Archive',
Reason='Shutdown',
BrokerLabel='WFMGBRK',
BrokerUUID='a7b766b7-f6ØØ-ØØØØ-ØØ8Ø-feØ7351Ø7e6b',
ExecutionGroupName='MGTEST',
ExecutionGroupUUID='ad138ee2-f6ØØ-ØØØØ-ØØ8Ø-feØ7351Ø7e6b',
MessageFlowName='DNF_ILC_FIN_314Ø',
StartDate='2ØØ3-Ø8-14',
StartTime='13:43:13.418564',
EndDate='2ØØ3-Ø8-14',
EndTime='13:43:5Ø.267868',
TotalElapsedTime='211785',
MaximumElapsedTime='446ØØ',
MinimumElapsedTime='39836',
TotalCPUTime='121323',
MaximumCPUTime='2611Ø',
MinimumCPUTime='23579',
CPUTimeWaitingForInputMessage='3344',
ElapsedTimeWaitingForInputMessage='36632372',
TotalInputMessages='5',
TotalSizeOfInputMessages='18478',

 47© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

MaximumSizeOfInputMessages='4426',
MinimumSizeOfInputMessages='3418',
NumberOfThreadsInPool='1',
TimesMaximumNumberOfThreadsReached='5',
TotalNumberOfMQErrors='Ø',
TotalNumberOfMessagesWithErrors='Ø',
TotalNumberOfErrorsProcessingMessages='Ø',
TotalNumberOfTimeOuts='Ø',
TotalNumberOfCommits='5',
TotalNumberOfBackouts='Ø'.

For readability the message in the example has been split into
multiple lines. The broker can also publish the statistics and
accounting data. This is done using a pre-defined topic structure
and the default subscription point. The topic structure looks like
this:

$SYS/Broker/<broker name>/StatisticsAccounting/<type>/<EG name>/
 <Flow name>

The placeholders in this structure are substituted by the
corresponding value for the broker name, the type of accounting
and statistic information – either SnapShot or Archive, the name
of the execution group the message flow is running in, and the
name of the message flow. Using this structure an accounting
application can subscribe to the relevant information.
As can be seen from the fact that the topic name starts with $SYS,
statistics and accounting data publications are broker publications.
The broker is always allowed to publish these topics. If topic-

Figure 1: XML structure of statistics and accounting data

Terminal statistics
........
Terminal statistics
Terminal statistics
........
Terminal statistics

Node statistics

Node statistics

Thread statistics
Thread statistics

Message flow

Threads

Nodes

WMQI Statistics
Accounting

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 48

based security for the broker domain is used the user name that
is running the application requesting the statistics and accounting
information must be allowed to issue the subscription.
When publishing the information the broker issues a publication
with an RFH2 header and the accounting and statistics information
in the message body. The message body is in XML format. The
information is structured in a folder as shown in Figure 1. The
details of each statistic are available as attributes to the appropriate
element in the tree.
Publish and subscribe allows an application to get the accounting
and statistics information for a whole WBI MB broker domain.
On z/OS the WBI MB broker offers a third destination for the
statistics and accounting data, the Systems Management Facility
(SMF). SMF is a standard z/OS high-performance service that can
be used to store and handle data, eg switching to a different
dataset if one becomes full.
Statistics and accounting information is provided in SMF records
of type 117, which has two subtypes. Subtype 1 contains message
flow statistics and, if enabled, message flow thread statistics.
Subtype 2 is used when node statistics are requested. This
subtype also contains message flow statistics and, if enabled,
terminal statistics.
The format of SMF type 117 is a dynamic, record-oriented C-
structure, consisting of character and binary data. Further
information on the data format in SMF records can be found in the
header file BipSMF.h and in the WBI MB product documentation.
To write to SMF, the SMF destination in the broker must be
enabled. The broker must be allowed to write the SMF data by
enabling the broker’s user ID access to the BPX.SMF facility
class.

CONTROLLING STATISTICS AND ACCOUNTING INFORMATION
With the new broker there are two additional commands available
to define and control the settings for statistics and accounting
information: mqsichangeflowstats and mqsireportflowstats.

 49© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

mqsichangeflowstats is used to change the settings for the type
of statistics and accounting information requested from a broker.
The setting can be changed for a specific execution group or for
all execution groups. The settings can address a specific message
flow or all message flows in the specified execution group.
Furthermore you can also specify the type of statistic requested
and its destination. The broker allows different destinations for
snapshot and archive statistics.
If the statistics and accounting function is turned on, message flow
statistics are always gathered. Thread statistics and node statistics
can be controlled separately. Terminal statistics can be included
only if node statistics are also requested.
The new command mqsireportflowstats displays the current
settings for statistics and accounting processing. The settings
can be requested for one type of statistics and accounting
information at a time. The requested information can be at the
same granularity as for mqsichangeflowstats, either for a
specific execution group or for all execution groups of the broker,
and for a specific message flow or all message flows in the
specified execution group.
Once enabled, the broker writes the statistics and accounting
information to the specified destination at the set intervals. Other
events can force the statistics and accounting information to be
written, however, ie if message flows are redeployed or if the
broker is shutting down.

FURTHER DETAILS
The statistics and accounting functionality is available on all WBI
MB-supported platforms and for all members of the broker family,
including the WBI Event Broker. The information is collected for all
built-in nodes except MQeInput and MQeOutput, SCADAInput and
SCADAOutput, Real-timeInput and Real-timeOptimizedFlow. It is
also collected for any customer-provided plug-in node.
With CSD2, WBI MB introduced another capability to the statistics
and accounting functionality. It allows the statistic information to

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 50

be partitioned according to a customer-defined criterion known as
the Accounting Origin. To allow for this partitioning a message flow
has to be modified to provide the Accounting Origin. This is done
by providing a value in a field in the message environment, eg by
using a compute node, as shown here:

SET Environment.Broker.Accounting.Origin = 'MyDepartment';

The information in the environment field is recognized when the
flow returns to its input node. There is no predefined value that has
to be entered into this field, but usually partitioning is decided by
the department or organizational unit to which the message
belongs.
On all platforms archive statistics and accounting information can
be gathered for intervals as defined by the WBI MB user. On z/OS
there is an option to synchronize writing the statistics and
accounting information with the same type of information of other
z/OS subsystems, eg a WMQ queue manager. If the archive
interval is set to 0 the broker listens to the Event Notification
Facility (ENF). If the system issues an ENF event with event code
37 the broker writes to the archive statistics.
When enabling the data gathering for statistics and accounting
purposes you should be aware that there may be an impact on
performance. The more statistics are requested, the higher the
impact. How much a flow is impacted depends on what the flow is
doing. General rules to estimate the impact on the throughput and
processing resources are not available.

SUMMARY
WebSphere Business Integration Message Broker provides new
functionality for gathering statistics and accounting information. It
provides different kinds of information to suit different purposes,
eg accounting message flow processing to allow chargeback of
the costs for monitoring and performance analysis.
Michael Groetzner
IBM (Germany) © IBM 2004

MQ news

Symbol Technologies and IBM have recently
announced the joint development of a new
generation of hand-held wireless and
scanning solutions, which are customized for
specific industries.

The companies claim the technology will
provide a new generation of mobile workers
with rapid access to key business
information, such as helping retailers track
inventory and customer orders from the
factory to the cash register more efficiently.

Symbol’s ruggedized wireless mobile
computers, running IBM’s WebSphere
Micro Edition, will use the messaging
capabilities of MQ Everyplace to allow users
access to Siebel, SAP, JD Edwards, or
PeopleSoft applications, in addition to
information from disparate databases, such
as IBM’s DB2e database software.

Symbol will integrate devices with embedded
IBM mobile middleware so workers will be
able to use their handhelds to rapidly access
data from back-end computer systems
running on IBM eServer x-Series servers for
the enterprise.

For more information contact your local
IBM representative.

* * *
Candle has recently announced six new
PathWAI packages that are claimed to
accelerate IBM WebSphere Java 2

Enterprise Edition (J2EE) and enterprise
application integration (EAI) initiatives.

The new solutions are designed to
complement the original PathWAI packages,
which include architecture and development
services, as well as application performance
testing, tuning, and management packages
for WebSphere Application Server and
WebSphere MQ.

Amongst the new packages released is the
PathWAI Tuning Workbench for
WebSphere Business Integration, which is
said to deliver powerful tuning and testing
tools, including PathWAI Message Editor
and monitors for WebSphere MQ and
WebSphere Business Integration.

Candle claims these tools will enable
organizations to accelerate problem
resolution and gain assurance that their
infrastructures will support business-critical
applications once in production.

For more information contact:
Candle, 100 N Sepulveda Blvd, El Segundo,
CA, 90245, USA.
Tel: +1 310 535 3600.
Fax: +1 310 727 4287.
Web:http://www.candle.com

Candle, 1 Archipelago, Lyon Way, Frimley,
Camberley, Surrey, GU16 7ER, UK.
Tel: +44 1276 414 700.
Fax: +44 1276 414 777.

* * *

x
xephon

	REXX utility for MQ on z/OS administration
	Soap WMQ transport
	Using WMQ with the Microsoft.Net platform
	Statistics and accounting in WBI MB
	MQ news

