

© Xephon Inc 2004

April 2004

57

In this issue

MQ

3 Are you connected?
10 Viewing a queues properties

from the Java console
19 Customizing WebSphere

MQSeries to run with Veritas
Cluster Server

36 Visual debugging in IBM
WebSphere Business
Integration Message Broker
V5.0 Toolkit

45 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.

Printed in England.

Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Nicole Thomas
E-mail: nicole@xephon.com

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in the
UK; $380.00 in the USA and Canada; £261.00
in Europe; £267.00 in Australasia and Japan;
and £265.50 elsewhere. In all cases the price
includes postage. Individual issues, starting with
the July 2000 issue, are available separately to
subscribers for $33.75 (£22.50) each including
postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the rate
of $160 (£100 outside North America) per
1000 words and $80 (£50) per 100 lines of code
for the first 200 lines of original material. The
remaining code is paid for at the rate of $32 (£20)
per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Are you connected?

This short article aims to highlight a potential pitfall for those of
you writing Java client programs using the MQ-supplied interface.
The question is, how do you ensure that if there is a connection
problem the program will handle any errors and reconnects
gracefully?
Basically, every time the queue manager on AIX was restarted,
our MQ/Java client programs running on Linux were not able to
re-establish a connection and continually received return code
2009. The problem was exacerbated because at the time we
were using the Unix-supplied listener INETD (which spawned a
separate process for each channel request); it has now been
replaced by the MQ supplied listener runmqlsr, which, since
V5.3, is the recommended listener.
The IBM manual WebSphere MQ using Java (ref SC34-6066-
01) has a description of the following items within class
MQQueueManager:
Variables:
isConnected
public boolean isConnected
True if the connection to the queue manager is still open.

Methods:
isConnected
public boolean isConnected()
Returns the value of the isConnected variable.

It seems from the above description that the isConnected()
method is a good way to check whether the connection to the
queue manager still exists.
Unfortunately, it is not!
The following MQ Java program, called test2009, demonstrates
the problem.It displays the value of isConnected() as well as my
own separately maintained field called connected. Indeed, it
shows that when the queue manager is stopped, the

 4 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

isConnected() method returns TRUE, contrary to the description
in the manual.
My own variable detects when a return code 2009 occurs and
sets its value to FALSE.
A call to the IBM Support Centre soon revealed an explanation
of the cause of the problem.
It turns out that the isConnected variable, and hence the
method, gets updated only when the program specifically connects
and disconnects! In other words, it does not get updated if the
connection is dropped. For those of you who have access to IBM
internal documents, it is described in document RTA000165151.
I have requested a change to the manual, which has been
accepted by IBM.

TEST2009 JAVA
import com.ibm.mq.*;
import java.io.*;
import java.lang.*;
//**
// Program Name : test2ØØ9
// Function : Test program to demonstrate programming method of
// coping with MQ client connection problems.
// Author : Ruud van Zundert, January 2ØØ4
// Invocation : java test2ØØ9 parms
// Parameters : The following parameters are required
// parm1 : MQ queue manager name
// parm2 : MQ queue name
// parm3 : MQ SVRCONN channel name
// parm4 : MQ listener port number
// parm5 : IP address/DNS name where queue manager resides
//**
public class test2ØØ9
{
 public String UsrId = "";
 public String Pswd = "";
 public MQQueueManager qMgr; // Queue manager
 public MQQueue queue;
 public MQGetMessageOptions gmo;
 public MQMessage msg;
 public int openOptions;
 public int loop=Ø;

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 public int i=Ø;
 public boolean connected=false;
 public String msgText;

 public static void main(String[] args) {

 System.out.print("*** Java MQ client utility to read messages ***");
 System.out.print("*** Author: Ruud van Zundert ***\n");
 if (args.length < 4) {
 System.out.print("Please supply all 5 required parameters\n");
 System.out.print("1=qmgr,2=queue,3=channel,4=port,5=ip addr/DNS
name\n");
 return;
 }

 test2ØØ9 instance = new test2ØØ9();
 instance.init(args);

 boolean keepgoing=true;

 while (keepgoing) {
 keepgoing = instance.getmsgs (args);
 }

 System.out.print("*** end of utility ***\n");

 }

 // Initialize the environment.
 void init(String[] args) {
 // Set up MQ client environment
 // (ie normally would be in env variables)

 // Tracing - currently commented out
 // try {
 // FileOutputStream
 // traceFile = new FileOutputStream("test2ØØ9.trc");
 // MQEnvironment.enableTracing(2,traceFile);
 // }
 // catch (FileNotFoundException ex) {
 // MQEnvironment.enableTracing(2);
 // }

 MQEnvironment.hostname = args [4];
 MQEnvironment.channel = args [2];
 MQEnvironment.port = Integer.parseInt(args[3]);
 MQEnvironment.userID = UsrId;
 MQEnvironment.password = Pswd;

 6 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 } // end of init

// Get messages
 boolean getmsgs(String[] args) {
 boolean gotMsg, keepgoing=true;
 int cnt=Ø;
 loop++;
 try {
 System.out.print("\nLoop "+loop+" Sleeping for 3 seconds... ");
 Thread.sleep(3ØØØ);
 System.out.print("\nworking storage connection status
"+connected+"\n");

 if (!connected) {
 System.out.print("\nattempting (re)connect...\n");
 qMgr = new MQQueueManager(args [Ø]); // connect to qmgr
 System.out.print("\nconnect successful\n");
 connected=true; // only reached if it worked
 gmo = new MQGetMessageOptions(); // 'get' message options
 openOptions = MQC.MQOO_FAIL_IF_QUIESCING + MQC.MQOO_INPUT_AS_Q_DEF;

 queue = qMgr.accessQueue(args [1], openOptions,
 null, // default q manager
 null, // no dynamic q name
 null); // no alternate user id

 } // end if

 do {
 gotMsg = true;
 msg = new MQMessage(); // Obtain message buffer
 queue.get(msg, gmo); // get message from queue

 cnt++; // increment message count

 i = msg.getMessageLength();
 msgText = msg.readString(i);
 System.out.print("\n"+cnt+"="+msgText+"\n");
 if (msgText.length() > 3 && msgText.indexOf("stopstop") >= Ø) {
 System.out.print("\n*** Request to stop received ***\n");
 gotMsg = false;
 }

 } while (gotMsg);

 queue.close();
 qMgr.disconnect(); // disconnect from qmgr
 System.out.print("\ndisconnected\n");
 connected=false;
 keepgoing=false;

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 } // end try

 catch (MQException ex) {
 gotMsg = false; // did not get msg
 switch (ex.reasonCode) {
 case 2Ø33:
 break;
 case 2ØØ9:
 System.out.println("\n*** Connection broken ***\n");
 if (qMgr != null) {
 System.out.print("\nisConnected status "+qMgr.isConnected());
 }
 connected=false;
 break;
 default:
 System.out.println("\nMQ error. " + ex.completionCode + " Reason
code " + ex.reasonCode+"\n");
 }

 }
 catch (java.io.IOException ex) {
 System.out.println("/nAn error occurred whilst getting from the
message buffer: " + ex);
 }
 catch (InterruptedException ex) {
 System.out.println("/nAn error occurred related to sleep " + ex);
 }

 return keepgoing;

 } // end of getmsg

} // end of program

RUNNING THE PROGRAM
Obviously, to run the program you’ll need to properly set up your
environment.
This program has successfully run on both Windows 2000 and
XP as well as AIX 5.1.
For the Windows environment:
• Install Java runtime (and SDK if you want to change the

code).

 8 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• Install MQ V5.3 and apply the latest CSD.
• If necessary, set up the PATH and CLASSPATH environment

variables.
Enter this command:

java test2ØØ9 T1 LQT1 SCONT1 14141 localhost

where T1 is the queue manager, LQT1 is a local queue, SCONT1
is a server connection channel, 14141 is the port, and localhost
is the hostname. Choose your own appropriate values.
These results are shown in the following output, which has been
annotated with actions taken during the test.
*** Java MQ client utility to read messages ****** Author: Ruud van
Zundert ***

Loop 1 Sleeping for 3 seconds...
working storage connection status false

attempting (re)connect...

connect successful
*** PROGRAM PICKS UP 3 MESSAGES ***
1=test message 1
2=test message 2
3=test message 3

Loop 2 Sleeping for 3 seconds...
working storage connection status true

Loop 3 Sleeping for 3 seconds...
working storage connection status true
*** AT THIS POINT QUEUE MANAGER IS STOPPED ***
MQ error. 2 Reason code 2162

Loop 4 Sleeping for 3 seconds...
working storage connection status true

*** Connection broken ***

isConnected status true
Loop 5 Sleeping for 3 seconds...
working storage connection status false
*** NOTE THAT THE WORKING STORAGE FIELD IS 'FALSE'
*** WHEREAS isConnected IS STILL 'TRUE'

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

attempting (re)connect...

*** Connection broken ***

isConnected status true
Loop 6 Sleeping for 3 seconds...
working storage connection status false

attempting (re)connect...

MQ error. 2 Reason code 2Ø59

Loop 7 Sleeping for 3 seconds...
working storage connection status false

Loop 8 Sleeping for 3 seconds...
working storage connection status false
*** AT THIS POINT QUEUE MANAGER IS STARTED ***
attempting (re)connect...

connect successful
*** ADD 3 MORE MESSAGES TO QUEUE VIA AMQSPUT ***
Loop 9 Sleeping for 3 seconds...
working storage connection status true

1=test message 1
2=test message 2
3=test message 3

Loop 1Ø Sleeping for 3 seconds...
working storage connection status true

Loop 11 Sleeping for 3 seconds...
working storage connection status true
*** ADD MSG TO QUEUE WITH 'stopstop' TO STOP PROGRAM ***
1=stopstop

*** Request to stop received ***

disconnected
*** end of utility ***

CONCLUSION
Do not rely on the isConnected() method to test whether the
MQ/Java client is currently connected. Instead, test for MQ
return code 2009 and reconnect.

 10 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Viewing a queues properties from the Java console

Here is an MQSeries-Java Interface that enables users to view
the properties of queues via the Java console.
/**/
/* Program name: mqAttrInquiry */
/* Author : Balaji SR */
/**/
/* Function: */
/* This is a Java console application, which will take Queue Name */
/* and Queue Manager name as arguments. This will display the queue */
/* attributes on the console */
/**/

import com.ibm.mq.*;
import java.util.*;
import java.io.*;

public class mqAttrInquiry {
 private MQQueueManager mqQueueManager; // for QMGR object
 private MQQueue queue; // for Queue object
 private int openOptionInquire; // Open options
 private String hostName; // for host name -> QMGR
 private String channel; // server connection channel
 private String port;
 // port number on which the QMGR is running
 private String qmgrName;
 private String qName;

 public static void main(String arg[])
 {
 try{
 if (arg.length == Ø)
 {
 System.out.print("Please enter the argument in the order of \n");
 System.out.print("Queue name Queue manager name");

The test2009.class file can be downloaded from
www.xephon.com/extras/test2009.class.
Ruud van Zundert (ruudvz@btclick.com)
Independent Consultant (UK) © Xephon 2004

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 System.exit(1);
 }

 mqAttrInquiry mqinqset = new mqAttrInquiry();
 System.out.println("Queue name " + arg[Ø]);
 System.out.println("Queue manager name " + arg[1]);
 mqinqset.init(arg[Ø], arg[1]);
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 }

 public void init(String queueName, String QMGRName)
 {
 try{
 System.out.println("In init");
 this.mqInit(queueName, QMGRName);
 this.getConnected();
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 }

 private void mqInit(String queueName, String QMGRName)
 { // Initiation of the MQ parameter
 hostName = "localhost";
 port = "1414";
 qmgrName = QMGRName;
 channel = "SYSTEM.DEF.SVRCONN";
 qName = queueName;
 }

 public void getConnected() throws Exception
 { // gets connected to the Queue & checks the queue
 // depth high event & if the event is set,
 // it start the broker & send mails
 try
 {
 mqConnect();
 mqOpen();
 chexQType();
 mqClose();
 mqDisconnect();
 }

 catch (Exception exp)

 12 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 {
 exp.printStackTrace();
 }

 } //getConnected ends here

 private void mqConnect() throws Exception
 { // Connection to the queue manager
 try
 {
 MQEnvironment.hostname = hostName;
 MQEnvironment.channel = channel;
 MQEnvironment.port = Integer.parseInt(port);

System.out.println(hostName + " ---------- " + channel + " ----------
" + port);

 mqQueueManager = new MQQueueManager(qmgrName);
 System.out.println("Qmgr : " + qmgrName + " connection successful ");

 }

 catch (MQException mqExp)
 {
 System.out.println("Error in queue manager connect....");
 System.out.println("QMGR Name : " + qmgrName);
 System.out.println("CC : " + mqExp.completionCode);
 System.out.println("RC : " + mqExp.reasonCode);
 }
 }

 private void mqDisconnect() throws Exception
 { // disconnect to queue manager
 try
 {
 mqQueueManager.disconnect();
System.out.println("Qmgr : " + qmgrName + " disconnection successful ");
 }

 catch (MQException mqExp)
 {
 System.out.println("Error in queue manager disconnect....");
 System.out.println("QMGR Name : " + qmgrName);
 System.out.println("CC : " + mqExp.completionCode);
 System.out.println("RC : " + mqExp.reasonCode);
 }
 } // end of mqDisconnect

 private void mqOpen() throws MQException
 {

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 try
 {
 int openOption = Ø;
 openOption = MQC.MQOO_INQUIRE;
 queue = mqQueueManager.accessQueue(qName, openOption,null,null,null);
 System.out.println("Open queue sucessfull... ");

 }
 catch (MQException mqExp)
 {
 System.out.println("Error in opening queue");
 System.out.println("Queue Name : " + qName);
 System.out.println("CC : " + mqExp.completionCode);
 System.out.println("RC : " + mqExp.reasonCode);
 }

 } //end of mqOpen

 private void mqClose() throws MQException
 {
 try
 {
 queue.close();
 System.out.println("Close queue successfull.....");
 }
 catch (MQException mqExp)
 {
 System.out.println("Error in closing queue");
 System.out.println("Queue Name : " + qName);
 System.out.println("CC : " + mqExp.completionCode);
 System.out.println("RC : " + mqExp.reasonCode);
 }

 } // end of mqClose

 private void chexQType() throws MQException
 { // for checking the queue type
 try
 {
 int[] qSelectors = new int[1];
 int[] qIntAttrs = new int[1];
 byte[] qCharAttrs = new byte[1];
 int MQIA_Q_TYPE = 2Ø;
 qSelectors[Ø] = MQIA_Q_TYPE ;

 qInquire(qSelectors,qIntAttrs,qCharAttrs);
 qType(qIntAttrs[Ø]);
 }
 catch (MQException mqExp)
 {

 14 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 System.out.println("Error in closing queue");
 System.out.println("Queue Name : " + qName);
 System.out.println("CC : " + mqExp.completionCode);
 System.out.println("RC : " + mqExp.reasonCode);
 }

 } //end of chexQType

 private void qAliasInquiry() throws MQException
 { // to get the Base queue name for Alias queue
 try
 {
 int MQCA_BASE_Q_NAME = 2ØØ2;
 int MQ_Q_NAME_LENGTH = 48;
 int[] qAliasSelectors = new int[1];
 int[] qAliasIntAttrs = new int[Ø];
 byte[] qAliasCharAttrs = new byte[MQ_Q_NAME_LENGTH];
 qAliasSelectors [Ø] = MQCA_BASE_Q_NAME ;

 System.out.println(" in qAliasInquiry ...");

 qInquire(qAliasSelectors, qAliasIntAttrs, qAliasCharAttrs);
 System.out.println(" Base queue name : " + new String
(qAliasCharAttrs));
 }

 catch (MQException mqExp)
 {
 System.out.println("Error in qAliasInquiry....");
 System.out.println("Queue Name : " + qName);
 System.out.println("CC : " + mqExp.completionCode);
 System.out.println("RC : " + mqExp.reasonCode);
 }
 } // end qAliasInquiry

 private void qRemoteInquiry() throws MQException
 { // to get the Remote queue properties
 try
 {
 int MQCA_REMOTE_Q_MGR_NAME = 2Ø17;
 int MQCA_REMOTE_Q_NAME = 2Ø18;
 int MQCA_XMIT_Q_NAME = 2Ø24;
 int MQ_Q_NAME_LENGTH = 48;
 int MQ_Q_MGR_NAME_LENGTH = 48;
 int[] qAliasSelectors = new int[3];
 int[] qAliasIntAttrs = new int[Ø];
 byte[] qAliasCharAttrs = new byte[MQ_Q_MGR_NAME_LENGTH
+ MQ_Q_NAME_LENGTH + MQ_Q_NAME_LENGTH];
 qAliasSelectors [Ø] = MQCA_REMOTE_Q_MGR_NAME ;
 qAliasSelectors [1] = MQCA_REMOTE_Q_NAME ;

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 qAliasSelectors [2] = MQCA_XMIT_Q_NAME ;

 System.out.println(" in qRemoteInquiry...");

 qInquire(qAliasSelectors, qAliasIntAttrs, qAliasCharAttrs);
 System.out.println(" Base queue name : " + new String
(qAliasCharAttrs, Ø,
 MQ_Q_MGR_NAME_LENGTH));
 System.out.println(" Base queue name : " + new String
(qAliasCharAttrs,
 MQ_Q_MGR_NAME_LENGTH , MQ_Q_MGR_NAME_LENGTH));
 System.out.println(" Base queue name : " + new String
(qAliasCharAttrs,
 MQ_Q_MGR_NAME_LENGTH + MQ_Q_NAME_LENGTH, MQ_Q_NAME_LENGTH));
 }

 catch (MQException mqExp)
 {
 System.out.println("Error in qRemoteInquiry....");
 System.out.println("Queue Name : " + qName);
 System.out.println("CC : " + mqExp.completionCode);
 System.out.println("RC : " + mqExp.reasonCode);
 }
 } // end qAliasInquiry

 private void qLocalInquiry () throws MQException
 {
 //int currentDepth =Ø;

 try
 {
 //queue type / usage
 int MQIA_USAGE = 12;
 //queue inquire
 int MQIA_DEF_PRIORITY = 6;
 int MQCA_Q_DESC = 2Ø13;
 int MQ_Q_DESC_LENGTH = 64;
 int MQIA_DEF_PERSISTENCE = 5;
 int MQIA_MAX_Q_DEPTH = 15;
 int MQIA_CURRENT_Q_DEPTH = 3;
 int MQIA_TRIGGER_CONTROL = 24;

 //for Event
 int MQIA_Q_DEPTH_HIGH_EVENT = 43;
 int MQIA_Q_DEPTH_MAX_EVENT = 42;
 int MQIA_Q_DEPTH_HIGH_LIMIT = 4Ø;
 int MQIA_Q_DEPTH_LOW_EVENT = 44;
 int MQIA_Q_DEPTH_LOW_LIMIT = 41;

 //for Triggering

 16 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 int MQCA_INITIATION_Q_NAME = 2ØØ8;
 int MQCA_PROCESS_NAME = 2Ø12;
 int MQ_PROCESS_NAME_LENGTH = 48;
 int MQ_Q_NAME_LENGTH = 48;
 int MQIA_TRIGGER_TYPE = 28;

 int[] selectors = new int[14];
 int[] intAttrs = new int[11];
 byte[] charAttrs = new byte[MQ_Q_DESC_LENGTH +
MQ_Q_NAME_LENGTH +
 MQ_PROCESS_NAME_LENGTH];

 selectors[1] = MQCA_Q_DESC;
 selectors[4] = MQIA_DEF_PERSISTENCE ;
 selectors[5] = MQIA_MAX_Q_DEPTH ;
 selectors[6] = MQIA_CURRENT_Q_DEPTH;

 //for triggering
 selectors[3] = MQCA_INITIATION_Q_NAME;
 selectors[7] = MQIA_TRIGGER_CONTROL;
 selectors[8] = MQIA_TRIGGER_TYPE ;
 selectors[9] = MQCA_PROCESS_NAME ;

 //for Event
 selectors[Ø] = MQIA_Q_DEPTH_HIGH_EVENT;
 selectors[2] = MQIA_Q_DEPTH_MAX_EVENT;
 selectors[1Ø] = MQIA_Q_DEPTH_HIGH_LIMIT ;
 selectors[11] = MQIA_Q_DEPTH_LOW_EVENT ;
 selectors[12] = MQIA_Q_DEPTH_LOW_LIMIT ;
 selectors[13] = MQIA_USAGE ;

 qInquire(selectors,intAttrs,charAttrs);

 if (intAttrs[1Ø] == Ø)
 {
 System.out.println("Queue usage Normal ");
 }
 else if (intAttrs[1Ø] == 1)
 {
 System.out.println("Queue usage XMIT ");
 }

 System.out.println("Default Priority = " + intAttrs[Ø]);
 System.out.println("Description : " + new
String(charAttrs,Ø,MQ_Q_DESC_LENGTH));

 System.out.println("Q_DEPTH_MAX_EVENT = " + intAttrs[1]);

 if (intAttrs[1] == 1)
 { // Event enabled

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 System.out.println("Q monitoring event is enabled ");
 System.out.println ("Q high depth event " +
enableDisable(intAttrs[1]));
 System.out.println ("Q high depth limit " + intAttrs [7]);
 System.out.println ("Q low depth event " +
enableDisable(intAttrs[8]));
 System.out.println ("Q low depth limit " + intAttrs [9]);
 }

 System.out.println("Q_DEF_PERSISTENCE = " + intAttrs[2]);
 System.out.println("Q_MAX_Depth = " + intAttrs[3]);
 System.out.println("CURRENT_Q_DEPTH = " + intAttrs[4]);
// System.out.println("MQIA_TRIGGER_CONTROL = " + intAttrs[5]);

 //Trigger is set On then displays the trigger properties....
 if (intAttrs[5] == 1)
 {
 System.out.println("Trigger is On");
 //variable decalration for getting the Trigger control values
 System.out.println("TRIGGER_TYPE = " + intAttrs[6]);
 if (intAttrs[6] == 3)
 System.out.println("TRIGGER_TYPE is Depth");
 else if (intAttrs[6] == 2)
 System.out.println("TRIGGER_TYPE is Every");
 else if (intAttrs[6] == 1)
 System.out.println("TRIGGER_TYPE is First");
 else if (intAttrs[6] == Ø)
 System.out.println("TRIGGER_TYPE is None");

 //Initiation queue name
 System.out.println("Init Q Name : " + new
 String(charAttrs,MQ_Q_DESC_LENGTH,MQ_Q_NAME_LENGTH));
 System.out.println("Process defination Name : " + new
 String(charAttrs,MQ_Q_DESC_LENGTH + MQ_Q_NAME_LENGTH,
MQ_PROCESS_NAME_LENGTH));
 }

//queue inquire ends here

 queue.close();
 }
 catch (MQException mqExp)
 {
 System.out.println("Error in Inquiry queue");
 System.out.println("Queue Name : " + qName);
 System.out.println("CC : " + mqExp.completionCode);
 System.out.println("RC : " + mqExp.reasonCode);
 }
 } // currDepth ends here

 18 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 private void qInquire(int[] selectors , int[] intAttrs , byte[]
charAttrs) throws
 MQException
 { // MQ queue inqiury
 try
 {
 System.out.println(" in qInquire ");
 queue.inquire(selectors,intAttrs,charAttrs);
 }
 catch (MQException mqExp)
 {
 System.out.println("Error in Inquiry queue");
 System.out.println("Queue Name : " + qName);
 System.out.println("CC : " + mqExp.completionCode);
 System.out.println("RC : " + mqExp.reasonCode);
 }
 } //end of qInquire

 private String enableDisable(int parameter)
 {// to check the argument is enabled or disabled
 String str="";
 if (parameter == 1)
 str = "Enabled";

 else if (parameter == Ø)
 str = "Disabled";

 return str;

 }// end of enableDisable

 private void qType(int qTypeInt)
 {
 try
 {
 //Queue Types
 if (qTypeInt == 1)
 {
 System.out.println(" Local Queue ");
 qLocalInquiry ();
 }
 else if (qTypeInt == 3)
 {
 System.out.println(" Alias Queue ");
 qAliasInquiry();
 }
 else if (qTypeInt == 6)
 {
 System.out.println(" Remote Queue ");
 qRemoteInquiry();

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 }
 else if (qTypeInt == 6)
 {
 System.out.println(" Cluster Queue ");
 System.out.println(" Clusrter queue are
supported in this version ");
 }
 }
 catch (Exception e)
 {
 System.out.println("Error in qType function ");
 e.printStackTrace();
 }
 } //end of qType
}

Balaji SR (balaji_srajan@yahoo.com)
MQ Administrator
eFunds International (India) © Xephon 2004

Customizing WebSphere MQSeries to run with
Veritas Cluster Server

INTRODUCTION
On a recent contract, I was called on to support WebSphere
MQSeries (WS MQ) running on Solaris servers controlled by a
Veritas Cluster Server (VCS). In order to understand better the
implications of running WS MQ under VCS control, I began
looking through the IBM WebSphere MQSeries Support libraries
for SupportPacs dealing with MQ and Veritas.
I quickly found the IBM SupportPac MC6A, Configuring MQSeries
for Sun Solaris with Veritas Cluster Server at http://www-
306.ibm.com/software/integration/support/supportpacs/
product.html.
It seemed too good to be true, and after reviewing the contents
with the VCS administrator, I found that it was: the current version

 20 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

of VCS is well beyond the VERITAS Version 1.3 that MC6A was
created to support. In the current releases of VCS, many of the
functions that previously required agents to be written are now
system functions of VCS itself. The concepts portrayed in MC6A
were quite good, but the practical implementation was going to
be very different.
In the following sections, I will be dealing with the WS MQ
requirements for bringing queue managers under the control of
VCS. I will not be dealing with the specific coding or scripting
requirements of VCS. I believe that most WS MQ administrators
will be dealing with VCS experts, as I was on my assignment.
These system administrators understand VCS, but are probably
not familiar with WS MQ.

THE ENVIRONMENT
The client environment I was working with ran the following
software packages and service levels:
• Solaris V2.8 Release 22.
• WS MQSeries 5.3 with service pack U487899.
• Veritas Cluster Server 3.5 MP1.
The hardware configuration was:
• Two WS MQ servers, running a single WS MQ instance as

a Portal, sharing D2 disk arrays with 36GB SCSI disks.
These were configured as Raid 0 and then mirroring was
implemented with Veritas to effectively create a Raid 10
environment.

• Two WS MQ servers, running two WS MQ instances App1
and App2, sharing T3 disk arrays with 18GB FCAL disks. As
described above, they were configured as Raid 0 and then
mirroring was implemented with Veritas to effectively create
a Raid 10 environment.

This environment is shown in Figure 1.

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

THE WHYS AND WHEREFORES OF VERITAS CLUSTERING
The two sets of queue managers are handled in different ways:
• The Portal servers are an active–inactive pair.
• App1 and App2 (A1 and A2 in Figure 1) are an active–active

pair.
An active – inactive pair means, in VCS terms, that one queue
manager will run, on either one of the two portal machines. If the
first server fails, then Veritas moves the image to the second
server and processing continues. When the first server is
restored, the queue manager can be moved back to the first
server at any point in time. Normally, fallback would occur during
the normal maintenance window.
An active – active pair means, again in VCS terms, that queue

Q
1

P L
Q
2

App1 App2

Portal Portal

Figure 1: Environment diagram

managers exist on both the App1 and App2 servers, and, if one
machine fails, VCS then moves the image of the failing
environment to the surviving environment to continue application

 22 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

processing. When the failed environment is restored, the image
that has been moved is then moved back, either at the next
scheduled maintenance window or earlier if desired by the
application client base.
In order to make MQSeries compatible with VCS, several criteria
need to be met:
• It is necessary for VCS to be able to determine whether the

WS MQ queue managers are running in a given environment.
• The binary libraries for the WS MQ instance must be

available to all the servers that will host queue managers.
• The libraries that allow the WS MQ instance to determine the

configuration and status of a given queue manager must be
on shared devices so that when a VCS failover occurs, the
back-up server can access them to restart the failed WS MQ
objects.

Once MQSeries has been installed on a server, and the queue
managers created and customized, based on the application
requirements, it is then possible to make the installation VCS
compliant.

TRANSFORMING THE WS MQ INSTALLATION INTO A VCS-
COMPLIANT SYSTEM
In order to transform a normal WS MQ installation into a VCS-
compliant installation, the three areas listed above need to be
addressed.

IS WS MQ RUNNING?
In order to determine whether WS MQ is running on a given
server, VCS needs to be able to check whether a process is
active or inactive. It is possible for VCS to check the status of a
given process or group of processes. Alternatively, a command
that will force a response from the application being managed by
VCS can be used for this purpose. First, let’s look at the

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

processes that WS MQ creates on start up in the Solaris
environment:
[/opt/customer/home/mqm] -> ps –ef | grep mqm
 mqm 22227 2222Ø Ø Dec 3Ø ? Ø:16 amqzlaaØ –mP -fipØ
 mqm 22756 22226 Ø Dec 3Ø ? Ø:ØØ /opt/mqm/bin/amqrmppa
-m P
 mqm 22224 2222Ø Ø Dec 3Ø ? Ø:ØØ /opt/mqm/bin/amqrrmfa
-t23328ØØ -s2592ØØØ -p2592ØØØ -g5184ØØØ -c36ØØ –m P
 mqm 22226 2222Ø Ø Dec 3Ø ? Ø:ØØ /opt/mqm/bin/runmqchi
-m P
 mqm 2222Ø 1 Ø Dec 3Ø ? Ø:Ø2 amqzxmaØ -m P
 mqm 22232 1 Ø Dec 3Ø ? Ø:ØØ amqpcsea P
 mqm 14394 1 Ø Dec 18 ? Ø:ØØ vmstat 35ØØ
 mqm 22222 2222Ø Ø Dec 3Ø ? Ø:ØØ amqhasmx P /var/mqm
 mqm 22225 2222Ø Ø Dec 3Ø ? Ø:ØØ /opt/mqm/bin/amqzdmaa
-m P
 mqm 22221 2222Ø Ø Dec 3Ø ? Ø:ØØ /opt/mqm/bin/amqzfuma
-m P
 mqm 2223Ø 1 Ø Dec 3Ø ? Ø:ØØ runmqlsr -m P -t tcp
-p 1414
 mqm 22229 1 Ø Dec 3Ø ? Ø:ØØ runmqlsr -m P -t tcp
-p 1415
 mqm 22223 2222Ø Ø Dec 3Ø ? Ø:ØØ amqzllpØ -mP ?
 mqm 22228 1 Ø Dec 3Ø ? Ø:ØØ runmqlsr -m P -t tcp
-p 1416

As you can see, the list of processes is somewhat involved, and
the list may vary depending on what extra processing requirements
are placed on the WS MQ instance. For example, you will notice
that three MQ Listeners are running in this instance. This is
because of channel requirements for differing external
communications sources. Since the list of processes may
change as application processing requirements change, having
VCS check for a list of processes may lead to false positive or
negative reactions as the personality of MQ evolves.
Another alternative for VCS validation would be to look for the
primary process in the MQ instance. From the listing above, you
will notice that Process ID 22220 (amqzxma0) is the parent
process for a number of other processes. It would be possible to
code the VCS monitor to look for the amqzxma0 process and
thus determine whether WS MQ is active or not. However, you
can also see from the listing that a number of other WS MQ
processes are started external to amqzxma0. amqpcsea (the

 24 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

command server) and runmqlsr are examples of processes that
are critical to the functioning of WS MQ, but are not spawned by
amqzxma0. So, again, if you depend on a static list, you may end
up with incorrect reactions from VCS as the MQ instance
matures.
Finally, if you specify a list of processes that must be up in order
to have VCS declare WS MQ ‘active’, you still have not ensured
that the MQ instance is reacting to external requests for service.
Processes can be running on Solaris, but stalled for a number of
reasons. In these situations, you would like VCS to detect that
there are problems and that failover needs to occur.
So, instead of coding and maintaining lists of processes, the
alternative is for VCS to issue a command on the server that WS
MQ will accept and that will produce a message indicating the
state of the instance. Consider the following scripts:
[/opt/customer/home/mqm/Scripts] -> ls -al
total 3Ø
drwxr-xr-x 2 mqm mqm 512 Nov 18 13:45 .
drwxr-xr-x 13 mqm mqm 1Ø24 Dec 19 1Ø:38 ..
-rwxr-xr-x 1 mqm mqm 819 Nov 18 11:43 QMUP.sh
-rw-r--r-- 1 mqm mqm 564 Nov 18 11:35 qmst.mqc

[/opt/customer/home/mqm/Scripts] -> cat QMUP.sh
#!/usr/bin/ksh

###
#
Run the MQSC interface against P
#
###

runmqsc P < /opt/customer/home/mqm/Scripts/qmst.mqc

[/opt/customer/home/mqm/Scripts] -> cat qmst.mqc
**
*
* qmst.mqc
*
* This file provides the input commands necessary for
* MQSC processing to determine the status of the Queue
* Manager
*

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

display qmgr

The QMUP.sh script uses the MQSC input file of qmst.mqc in
order to run a display command against the WS MQ instance
using the RUNMQSC administrative application. When WS MQ
is active, the following output is produced:
[/opt/customer/home/mqm/Scripts] -> ./QMUP.sh
5724-B41 (C) Copyright IBM Corp. 1994, 2ØØ2. ALL RIGHTS RESERVED.
Starting MQSC for queue manager P.

 :***
 : *
 : * qmst.mqc
 : *
 : * This file provides the input commands
 : * necessary for MQSC processing to determine the
 : * status of the Queue Manager
 : *
 : **
 :
 1 : display qmgr
AMQ84Ø8: Display Queue Manager details.
 DESCR(Portal QUEUE MANAGER)
 DEADQ(DLQ.P) DEFXMITQ()
 CHADEXIT() CLWLEXIT()
 CLWLDATA() REPOS(PROD)
 REPOSNL()
 SSLKEYR(/var/mqm/qmgrs/P/ssl/key)
 SSLCRLNL() SSLCRYP()
 COMMANDQ(SYSTEM.ADMIN.COMMAND.QUEUE) QMNAME(P)
 CRDATE(2ØØ3-12-24) CRTIME(11.22.24)
 ALTDATE(2ØØ3-12-24) ALTTIME(11.22.32)
 QMID(P_2ØØ3-12-24_11.22.24) TRIGINT(999999999)
 MAXHANDS(256) MAXUMSGS(1ØØØØ)
 AUTHOREV(DISABLED) INHIBTEV(DISABLED)
 LOCALEV(DISABLED) REMOTEEV(DISABLED)
 PERFMEV(DISABLED) STRSTPEV(ENABLED)
 CHAD(DISABLED) CHADEV(DISABLED)
 CLWLLEN(1ØØ) MAXMSGL(99999)
 CCSID(819) MAXPRTY(9)
 CMDLEVEL(53Ø) PLATFORM(UNIX)
 SYNCPT DISTL(YES)
 :
One MQSC command read.
No commands have a syntax error.
All valid MQSC commands were processed.

 26 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

However, if the WS MQ instance is inactive or non-responsive,
the following output is produced:
[/opt/customer/home/mqm/Scripts] -> ./QMUP.sh
5724-B41 (C) Copyright IBM Corp. 1994, 2ØØ2. ALL RIGHTS RESERVED.
Starting MQSC for queue manager P.

AMQ8146: WebSphere MQ queue manager not available.

No MQSC commands read.
No commands have a syntax error.
All valid MQSC commands were processed.

Having VCS check for the AMQ8146 message, shown above, is
relatively simple (according to our VCS expert). This gives us a
method for VCS to determine whether WS MQ is active and
responsive. Remember, the external processes like the MQ
Command Server and the MQ Listeners may not be present or
responsive even though WS MQ accepts and returns values for
the RUNMQSC command string. Additional checks can be
designed to ensure that critical processes of the WS MQ
instance are active and working.

VALIDATING THE WS MQ BINARIES…
A WS MQ instance on Solaris uses two sets of libraries for
execution. The first group of directories and files is located in /var/
mqm:
[/var/mqm] -> ls -al
total 24
drwxrwxr-x 9 mqm mqm 512 Dec 12 12:21 .
drwxr-xr-x 34 mqm mqm 1Ø24 Dec 1Ø 14:51 ..
drwxrwxr-x 2 mqm mqm 512 Nov 17 15:25 config
drwxrwxr-x 3 mqm mqm 512 Nov 17 15:25 conv
drwxrwxrwx 2 mqm mqm 512 Dec 12 12:19 errors
drwxrwxr-x 2 mqm mqm 512 Nov 17 15:25 exits
drwxrwxr-x 2 mqm mqm 512 Dec 12 12:59 log
 -rw-rw-r-- 1 mqm mqm 2211 Dec 12 13:13 mqs.ini
drwxrwxr-x 3 mqm mqm 512 Dec 12 13:ØØ qmgrs
drwxrwxrwx 2 mqm mqm 512 Nov 17 15:25 trace

The directories and files in /var/mqm are used to control the
‘personality’ of the WS MQ instance. The mqs.ini file contains a

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

list of all the queue managers that have been created on the
server. The log directory contains the WS MQ execution logs.
Other directories are used for supporting files of various types
and purposes.
The second group of directories and files is located in /opt/mqm:
[/opt/mqm] -> ls -al
total 34
dr-xr-xr-x 12 mqm mqm 512 Nov 2Ø 11:14 .
drwxr-xr-x 29 mqm mqm 1Ø24 Dec 1Ø 14:52 ..
dr-xr-xr-x 14 mqm mqm 512 Nov 17 15:25 READMES
drwxr-xr-x 12 mqm mqm 512 Nov 17 15:25 READMES.client
dr-xr-xr-x 2 mqm mqm 1536 Nov 2Ø 11:14 bin
dr-xr-xr-x 2 mqm mqm 2Ø48 Nov 2Ø 11:14 inc
drwxr-xr-x 4 mqm mqm 512 Nov 17 15:25 java
dr-xr-xr-x 3 mqm mqm 1Ø24 Nov 2Ø 11:14 lib
dr-xr-xr-x 2 mqm mqm 512 Nov 17 15:25 licenses
 -rw-r--r-- 1 mqm mqm 18 Sep 27 Ø1:46 ptf_installed
 -rw-r--r-- 1 mqm mqm 182 Sep 27 Ø1:46 ptf_supersede
dr-xr-xr-x 6 mqm mqm 1536 Nov 2Ø 11:14 samp
dr-xr-xr-x 6 mqm mqm 512 Nov 17 15:27 ssl
dr-xr-xr-x 2 mqm mqm 512 Nov 17 15:25 tivoli

The directories and files in /opt/mqm are used to run the WS MQ
instance itself and include the bin directory where all the application
binaries are stored. Additionally, the java and lib directories are
used to support external applications that access WS MQ.
With access to these two groups of directories, it is possible to
start and run the queue managers that have been defined within
the WS MQ instance. One of the critical files in this process is the
/var/mqm/mqs.ini file. An example of this file follows:
[/var/mqm] -> cat mqs.ini
#**#
#* *#
#* <START_COPYRIGHT> *#
#* Licensed Materials - Property of IBM *#
#* *#
#* 63H9336 *#
#* (C) Copyright IBM Corporation 1994, 2ØØØ *#
#* *#
#* <END_COPYRIGHT> *#
#* *#
#**#
#**#

 28 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

#* Module Name: mqs.ini *#
#* Type : WebSphere MQ Machine-wide Configuration File *#
#* Function : Define WebSphere MQ resources for an entire machine *#
#* *#
#**#
#* Notes : *#
#* 1) This is the installation time default configuration *#
#* *#
#**#
AllQueueManagers:
 #**#
#* The path to the qmgrs directory, below which queue manager data *#
#* is stored *#
#**#
 DefaultPrefix=/var/mqm

ClientExitPath:
 ExitsDefaultPath=/var/mqm/exits

LogDefaults:
 LogPrimaryFiles=3
 LogSecondaryFiles=2
 LogFilePages=1Ø24
 LogType=CIRCULAR
 LogBufferPages=Ø
 LogDefaultPath=/var/mqm/log
QueueManager:
 Name=P
 Prefix=/var/mqm
 Directory=P

In order to start a queue manager, or run a utility against it, you
must have an entry in the mqs.ini file for the queue manager that
you wish to work with. The last four lines in the listing above are
the minimum definition of a queue manager.

SHARING WS MQ CONFIGURATION LIBRARIES
In order for VCS to correctly execute the RUNMQSC command
mentioned above, it will be necessary for the WS MQ instance
on a server to know about any queue manager(s) that you will
wish to validate. WS MQ uses the mqs.ini file to verify that a
queue manager name is valid for utility or start processing. If you
attempt to execute the RUNMQSC command against a queue
manager, say X, which does not have an entry in the mqs.ini file,
you get a message similar to the following:

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

[/var/mqm] -> runmqsc X
5724-B41 (C) Copyright IBM Corp. 1994, 2ØØ2. ALL RIGHTS RESERVED.
Starting MQSC for queue manager X.

AMQ8118: WebSphere MQ queue manager does not exist.

No MQSC commands read.
No commands have a syntax error.
All valid MQSC commands were processed.

Since the VCS validation script for WS MQ should generate the
message AMQ8146 as indicated above, the output produced is
incorrect and will cause problems when VCS attempts to verify
that an instance of queue manager X is not running.
If we update the mqs.ini file, referenced above with the minimum
information required to define queue manager X, we should see
a definition similar to the following:
[/var/mqm] -> cat mqs.ini
#**#
#* *#
#* <START_COPYRIGHT> *#
#* Licensed Materials - Property of IBM *#
#* *#
#* 63H9336 *#
#* (C) Copyright IBM Corporation 1994, 2ØØØ *#
#* *#
#* <END_COPYRIGHT> *#
#* *#
#**#
#**#
#* Module Name: mqs.ini *#
#* Type : WebSphere MQ Machine-wide Configuration File *#
#* Function : Define WebSphere MQ resources for an entire machine *#
#* *#
#**#
#* Notes : *#
#* 1) This is the installation time default configuration *#
#* *#
#**#
AllQueueManagers:
 #**#
#* The path to the qmgrs directory, below which queue manager data *#
#* is stored *#
#**#
 DefaultPrefix=/var/mqm

 30 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

ClientExitPath:
 ExitsDefaultPath=/var/mqm/exits

LogDefaults:
 LogPrimaryFiles=3
 LogSecondaryFiles=2
 LogFilePages=1Ø24
 LogType=CIRCULAR
 LogBufferPages=Ø
 LogDefaultPath=/var/mqm/log
QueueManager:
 Name=P
 Prefix=/var/mqm
 Directory=P
QueueManager:
 Name=X
 Prefix=/var/mqm
 Directory=X
 Figure 1Ø – mqs.ini Updated
When the RUNMQSC utility is executed to validate the status of queue
manager X, output similar to the following is produced:

[/var/mqm] -> runmqsc X
5724-B41 (C) Copyright IBM Corp. 1994, 2ØØ2. ALL RIGHTS RESERVED.
Starting MQSC for queue manager X.

AMQ8146: WebSphere MQ queue manager not available.

No MQSC commands read.
No commands have a syntax error.
All valid MQSC commands were processed.

Now that VCS can verify whether an instance of a queue
manager is running, we next need to make the changes that will
allow ‘failed over’ queue managers to be started when server
outages occur.
The objects that define the processing capabilities or ‘personality’
of a queue manager are defined in a discrete set of libraries within
the /var/mqm directory structure as shown below:
[/var/mqm] -> ls -al
total 28
drwxrwxr-x 9 mqm mqm 512 Jan 7 16:19 .
drwxr-xr-x 35 root sys 1Ø24 Nov 17 15:21 ..
drwxrwxr-x 2 mqm mqm 512 Sep 5 14:12 config
drwxrwxr-x 3 mqm mqm 512 Sep 5 14:12 conv
drwxrwxrwx 2 mqm mqm 3Ø72 Jan 13 1Ø:38 errors

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

drwxrwxr-x 2 mqm mqm 512 Sep 5 14:12 exits
drwxrwxr-x 4 mqm mqm 512 Jan 7 16:19 log
 -rw-rw-r-- 1 mqm mqm 2279 Jan 8 14:48 mqs.ini
drwxrwxr-x 5 mqm mqm 512 Jan 7 16:19 qmgrs
drwxrwxrwx 2 mqm mqm 512 Sep 5 14:12 trace

For each queue manager defined to the WS MQ instance,
subdirectories are created in the /var/mqm/qmgrs directory and
in the /var/mqm/log directory. Additionally, if site-specific exits
have been coded, these will be located in the /var/mqm/exits
directory. When a queue manager has been defined using the
GUI, command line, or RUNMQSC utility, a new subdirectory is
created in the /var/mqm/qmgrs directory:
[/var/mqm/qmgrs] -> ls -al
total 12
drwxrwxr-x 5 mqm mqm 512 Jan 7 16:19 .
drwxrwxr-x 9 mqm mqm 512 Jan 7 16:19 ..
drwxrwxr-x 8 mqm mqm 512 Sep 5 15:59 @SYSTEM
lrwxrwxrwx 1 mqm mqm 27 Dec 12 16:49 P
drwxrwxr-x 21 mqm mqm 512 Jan 12 15:22 L

In the code above, two queue managers, P and L, have been
created and the associated subdirectories have been created.
Additionally, when the queue managers are created, new
subdirectories are created in the /var/mqm/log directory:
[/var/mqm/log] -> ls -al
total 1Ø
drwxrwxr-x 4 mqm mqm 512 Jan 7 16:19 .
drwxrwxr-x 9 mqm mqm 512 Jan 7 16:19 ..
lrwxrwxrwx 1 mqm mqm 25 Dec 12 16:5Ø P
 drwxrwx-- 3 mqm mqm 512 Jan 7 16:18 L

These directories exist on the server where the WS MQ instance
has been installed, and are essential to execute the functions of
the queue manager. If you refer back, the mqs.ini entry for a
queue manager contains three parameters:
• Name – this corresponds to the WS MQ queue manager

name.
• Prefix – this is the directory path to the WS MQ libraries.
• Directory – this is the name of the subdirectory that contains

the ‘personality’ files.

 32 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

It has already been established above that updating the mqs.ini
file is essential for the RUNMQSC utility to decide that a queue
manager can be run on a given server under a WS MQ instance.
In order for the queue manager to actually run, the WS MQ
instance must be able to access the files in the /var/mqm
subdirectories (qmgrs and log) that define the queue manager
components.
In the system design shown in Figure 1, the portal queue
manager and the application queue managers each have a
shared disk array. This is configured so that both systems see the
shared arrays and the high-level directory structures. So, from
the App1 server the shared disk array shows both of the high-
level directories:
[/<shared array path>] -> ls -al
total 8
drwxr-xr-x 4 mqm mqm 512 Oct 9 15:Ø1 .
drwxr-xr-x 19 root root 512 Jan 6 21:Ø8 ..
drwxr-xr-x 2 root other 512 Oct 9 15:Ø1 App1
drwxr-xr-x 2 root other 512 Oct 9 15:Ø1 App2

When you change directory to the App1 high-level directory in
the shared disk array, you can then see the WS MQ /var directory
as well as the /var/qmgrs and /var/log subdirectories where the
files that are to be shared across both servers will exist:
[/<shared array path>/App1] -> ls -al
total 1249ØØ
drwxr-xr-x 5 mqm mqm 1Ø24 Dec 15 11:Ø3 .
drwxr-xr-x 4 mqm mqm 512 Oct 17 1Ø:17 ..
drwxr-xr-x 4 mqm mqm 96 Dec 12 16:58 var

[/<shared array path>/App1/var] -> ls -al
total 2
drwxr-xr-x 4 mqm mqm 96 Dec 12 17:19 .
drwxr-xr-x 7 mqm mqm 1Ø24 Dec 15 1Ø:45 ..
drwxr-xr-x 3 mqm mqm 96 Dec 12 17:19 log
drwxr-xr-x 3 mqm mqm 96 Dec 12 17:19 qmgrs

If you change the directory to the App2 high-level directory on the
shared device, and failover has not yet been triggered by VCS,
then you see only the directory structures as shown:
[/<shared array path>/App2] -> ls -al

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

total 4
drwxr-xr-x 2 root other 512 Oct 9 15:Ø1 .
drwxr-xr-x 4 mqm mqm 512 Oct 9 15:Ø1 ..

Now that all the disk definitions have been described, let’s
consider how we modify the WS MQ installation to allow the
queue manager to be moved from one server to another.
Since the personality of the queue manager is defined by the
subdirectory entries in /var/mqm/qmgrs and /var/mqm/log, we
can move those directories to the /var directory on the shared
disk array (as shown below) so that either system can see the
appropriate directories as needed. In Unix, the easiest way to
move the directories is to use the tar utility to package up the
directory and all its subdirectories, and then use the tar utility
again to extract the files and put them into their new location. The
commands, if you have created a queue manager named P, will
be similar to the following:
cd /var/mqm/qmgrs

tar cf PQMGR.tar P

mv PQMGR.tar /<shared array path>/App1/var/qmgrs

cd /<shared array path>/App1/var/qmgrs

tar xf PQMGR.tar

cd /var/mqm/log

tar cf PLog.tar P

mv PLog.tar /<shared array path>/App1/var/qmgrs

cd /<shared array path>/App1/var/qmgrs

tar xf PLog.tar

After you have packaged the directories and copied them to the
shared disk array, you need to update the local libraries so that
WS MQ understands where the new physical directories reside.
Remove the existing physical directories in the /var/mqm/qmgrs
and /var/mqm/log directories for the queue managers that are to
be VCS managed, and insert symbolic links pointing to the

 34 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

shared disk arrays instead. The command to create a symbolic
link in Solaris is:
ln –s (existing target) (softlink name)

So in the environment we have described, the command sequence
that you would use to create the links between the WS MQ
installation directories for queue manager P and the shared disk
array would be:
cd /var/mqm/qmgrs

ln –s /<shared disk array path>/App1/var/qmgrs/P P

cd /var/mqm/log

ln –s /<shared disk array path>/App1/var/log/P P

In addition to defining the queue manager entries for the local
system, in this case App1, you will also need to define the queue
manager entries for the remote queue manager, which runs on
App2, since it will be started on the local environment in the event
of a VCS failover. Modifying the commands listed above, to point
to the App2 directories, and changing the queue manager name
from P to L, will allow you to create softlink entries for the remote
system after creating the softlink for the local system. A softlink
does not have to have a target that can be resolved, until an
application attempts to access the link.
After you have run both sets of softlink definition commands, you
will have created the directory entries listed below on the local
disks where the WS MQ instance has been created:
[/var/mqm/qmgrs] -> ls -al
total 1Ø
drwxr-xr-x 3 mqm mqm 512 Dec 12 17:21 .
drwxr-xr-x 9 mqm mqm 512 Jan 7 16:55 ..
drwxr-xr-x 8 mqm mqm 512 Sep 9 1Ø:54 @SYSTEM
lrwxrwxrwx 1 mqm mqm 29 Dec 12 17:21 P -> /<shared disk
path>/App1/var/qmgrs/P
lrwxrwxrwx 1 mqm mqm 29 Dec 12 17:2Ø L -> /<shared disk
path>/App2/var/qmgrs/L

[/var/mqm/log] -> ls -al
total 8

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

drwxr-xr-x 2 mqm mqm 512 Dec 12 17:2Ø .
drwxr-xr-x 9 mqm mqm 512 Jan 7 16:55 ..
lrwxrwxrwx 1 mqm mqm 27 Dec 12 17:2Ø P -> /<shared disk
path>/App1/var/log/P
lrwxrwxrwx 1 mqm mqm 27 Dec 12 17:2Ø L -> /<shared disk
path>/App2/var/log/L

Once your VCS administrator has created the necessary scripts
and entries to define the WS MQ environment to VCS, the
changes outlined above should allow you to fail over the WS MQ
queue managers from one system to another.

CONCLUSION
In addition to the definitions listed above, there are operational
considerations that need to be planned for a failover scenario.
These include application recovery for those programs that work
with WS MQ, restarting channels within the WS MQ instance,
and re-establishing connections between the WS MQ queue
manager(s) and their external clients. The implementation of a
WS MQ cluster can improve the resiliency of the managed
environment and minimize the mean time to failure resolution.
Issues of VCS script installations and customization have been
deliberately omitted, because those skills can normally be found
in environments where VCS is used. The issue of failing over
network connections from one server to another has also been
omitted, because this belongs in the domain of your network and
security administrators.
However, once you have implemented the recommendations
listed above, your WS MQ instance and the associated queue
managers will be VCS compliant, and you will be able to manage
them just as any other application or server that can be controlled
by VCS.
Aaron Cain
Independent Consultant
The Performance Edge Limited (UK) © The Performance Edge Limited 2004

 36 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Visual debugging in IBM WebSphere Business
Integration Message Broker V5.0 Toolkit

This article is most suited to those with some previous working
experience and knowledge of using IBM MQSeries Integrator
V2.1 and WebSphere MQ products. The WebSphere Business
Integration Message Broker V5.0 will be referred to as Message
Broker V5.0 throughout the article.
The Visual Debugger has received a makeover in Message
Broker V5.0. All the debugging for message flows is done in the
Flow Debug perspective. This new design also introduces the
IBM Agent Controller, which is a requirement for debugging and
will be explained later.
The following sections will describe what the Agent Controller is
and how to use the Flow Debug perspective to debug a message
flow. ‘VDBMessageFlow’ and ‘VDBSubMessageFlow’ message
flows are used, with the assumption that they exist in the
workspace, for illustrative purposes.

REQUIREMENTS
The following set-up is required before proceeding:
1 A configuration manager created with its queue manager

and listener running.
2 A broker created with its queue manager and listener

running. (Less set up is required if configuration manager
and broker share the same queue manager and listener.)

3 A domain connection connected to the configuration manager
and a broker to deploy to in the toolkit.

4 A deployed message flow to debug.
5 A running Agent Controller.

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

AGENT CONTROLLER
Once installed the IBM Agent Controller is a daemon process
running in the background. The Agent Controller is required to
use the Flow Debugger and should be installed on the system
where the broker will be used. When a broker is created and
started, it registers itself with the Agent Controller running on the
system. Thus when a message flow is deployed to an execution
group of the registered broker, the user can attach to the Flow
Engine of the deployed message flow. Once attached to the Flow
Engine, the user can debug the message flows running. The
Agent Controller service can be seen in the services window
shown in Figure 1.

Figure 1: Services window

FLOW DEBUG PERSPECTIVE
The Flow Debug perspective is a dedicated perspective for flow
debugging. The following steps will show how to open and use
the flow debug perspective for debugging.

 38 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Set up the flow for debugging:
1 Once the message flow has been successfully deployed,

open the Flow Debug perspective – Window/Open
Perspective/Other. Select Flow Debug from the list and

Figure 2: Flow Debug perspective

Figure 3: Attach to Flow runtime

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

click OK. The Flow Debug perspective opens as shown in
Figure 2.

2 Click on the Attach to Flow runtime toolbar button to attach
to the execution group where the deployed message flow is
running as shown in Figure 3.

3 In the Attach to the flow engine window, select localhost and
click Next as shown in Figure 4. This will connect to a broker
local to the system. To connect to a remote broker, enter the
name or IP address of the machine hosting the remote

Figure 4: Attaching a host

broker in the Hostname or IP box and click Add. This will add
the remote machine to the list of hosts to be used.

4 Select from the list the flow engine where the flow resides

 40 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Figure 5: Select the flow engine

and click Finish. In the snapshot shown in Figure 5, BK1 is
the name of the broker and default is the name of the
execution group to where the flow is deployed to. The

Figure 6: Flow Debug pane

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

number 4888 in the snapshot is the process id of the broker’s
actual flow engine process.

5 The message flow appears in the Flow Debug pane shown
in Figure 6. It also shows the name of the flow engine. (Note:
in the snapshot ‘rohit’ is the name of the broker’s host
machine.)

6 Double-click the message flow in the Flow Debug pane to
open the message flow in the flow editor pane. To debug the

Figure 7: Adding breakpoints

various nodes add breakpoints after or before the nodes.
This can be done by right-clicking on a node and selecting
Add Breakpoint before/after from the list. Breakpoints added
to the flow can be seen as a list in the Flow Breakpoints pane
shown in Figure 7. Breakpoints are circled in the Figure.

Debugging the flow:

 42 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

1 Once the required breakpoints have been inserted into the
flow, start the message flow (if it is not already started), and
put a message on the queue of the input node. The message
will go through the flow stopping at the breakpoints in the
order it hits them. When the message hits a breakpoint the
breakpoint is highlighted by a yellow circle around the
breakpoint in the flow editor pane, as shown in Figure 8.

2 When the message stops at a breakpoint, there are various

Figure 8: Breakpoint flow

Figure 9: Step Over Node

user actions to choose from. They are on the top-right corner
of the Flow Debug pane and include actions like Step Over
Node, Step into Subflow, Step Out of Subflow, Step over
node, Run to next breakpoint, and Run to completion. Step
Over Node is illustrated in Figure 9.

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

3 The state of the message being debugged can be seen
under the Flow Debug Message tab in the Flow Debug
Message pane, as shown in Figure 10. Here the user can
see how the message is created or changed as it goes

Figure 10: Flow Debug Message pane

Figure 11: Detach

 44 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

MQ Update on the Web

Code from individual articles of MQ Update, and
complete issues in Acrobat PDF format, can be
accessed on our Web site, at:

http://www.xephon.com/mq
You will be asked to enter a word from the printed issue.

through the flow. As mentioned earlier you can see the
message go through the flow in the editor pane via the yellow
circled breakpoints.

4 To detach from the flow engine once debugging is complete,
right-click on the connection details in the Flow Debug pane
and select Detach, as illustrated in Figure 11.

Rohit Bhasin
Software Engineer, WebSphere MQI GUI Test Team
IBM Hursley (UK) © IBM 2004

MQ news

Micro Focus and iWay Software have
announced a strategic alliance focused on
extending COBOL applications to work with
disparate back-end and e-business systems.
The companies plan to work together to offer
the easiest way to implement integrated
software solutions for organizations seeking to
unlock existing value from legacy COBOL
applications.

The joint solution interoperates seamlessly with
all major integration platforms across J2EE and
.NET environments. Micro Focus’ COBOL
source code can be fully reused with iWay’s
adapters to support any type of integration
project, including composite business
applications and Web services initiative.

For further information contact:
Micro Focus, Old Bath Road, Newbury, Berks
RG14 1QN, UK.
Tel: (01635) 32646.
URL: http://www.microfocus.com/press/
releases/20040217.asp.

* * *

KANA has announced KANA portlets, which
integrate KANA IQ software (an application
for enterprise knowledge management and
service optimization) with IBM WebSphere
Portal. KANA’s portlets for KANA IQ are
designed to help companies accelerate
successful deployment of knowledge-powered
service applications. It was jointly developed
with IBM.

KANA portlets empower WebSphere Portal
customers to integrate KANA knowledge-
powered customer service applications into
their WebSphere Portal. Organizations can now

leverage KANA IQ to provide agent-assisted
and customer self-service while using
WebSphere Portal.

KANA IQ is an integral part of the KANA
iCARE suite, an enterprise software suite made
up of modular CRM applications.

For further information contact:
KANA, 181 Constitution Drive, Menlo Park,
CA 94025, USA.
Tel: (650) 614 8300.
URL: http://www.kana.com.

* * *

MQSoftware has announced management and
monitoring support for WebSphere MQ for
z/Linux for Q Pasa!, the company’s real-time
middleware monitoring solution, which works
with the WebSphere family of products to
address the management and delivery of
business services.

The move is aimed at allowing organizations to
have a monitoring and configuration
management solution for properly managing and
deploying WebSphere MQ across the
enterprise.

Q Pasa! provides broad WebSphere MQ-
related platform coverage, to help customers
realize the total enterprise reach of all their
legacy and middleware applications.

For further information contact:
MQSoftware, 1660 South Highway 100, Suite
400, Minneapolis, MN 55416, USA.
Tel: (952) 345 8720.
URL: http://www.mqsoftware.com/news/
newsDetail.jsp?id=54.

x
xephon

	Are you connected?
	Viewing a queues properties from the Java console
	Customizing WebSphere MQSeries to run with Veritas Cluster Server
	Visual debugging in IBM WebSphere Business Integration Message Broker V5.0 Toolkit
	MQ news

