
© Xephon Inc 2004

May 2004

59

In this issue

3 Interpreting WebSphere MQ
messages

14 Configuring a Web client to
show a list of authorized users
while transferring work items

32 Customizing WebSphere MQ
Integrator Broker message flows

38 Sizing WebSphere MQ for z/OS
CF structures

46 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.

Printed in England.

Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Nicole Thomas
E-mail: nicole@xephon.com

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in the
UK; $380.00 in the USA and Canada; £261.00
in Europe; £267.00 in Australasia and Japan;
and £265.50 elsewhere. In all cases the price
includes postage. Individual issues, starting with
the July 2000 issue, are available separately to
subscribers for $33.75 (£22.50) each including
postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the rate
of $160 (£100 outside North America) per
1000 words and $80 (£50) per 100 lines of code
for the first 200 lines of original material. The
remaining code is paid for at the rate of $32 (£20)
per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Interpreting WebSphere MQ messages

INTRODUCTION
WMQ allows two applications to communicate using messages.
This is also possible in a network of computers with different
architectures and operating systems. The application sending
the message doesn’t have a problem, it just formats a message
and sends the data, and doesn’t need to worry about its content.
If the sending application is building the message as expected by
the receiving application there are no communication problems.
But in some cases the receiving application can have problems,
for example it might be that:
• The format is not as expected. This may be because the

sending application made a mistake when creating the
message, or the messages of another application are routed
by mistake to the input queue of the receiving application.

• The format of the message is correct but the content is not
as expected. This can happen when messages are sent with
unexpected codepages or encoding.

• The message type is not as expected. There are parameters
in the messages that control the kinds of message that
should be returned. If these settings are not correct, the
application may not work.

• The message never reaches the input queue of the
application. It may be that a message is sent to the wrong
queue or that it ends up in a dead letter queue.

In some cases one just needs to verify the messages that are
created by an application.
ApAart from all these reasons, it is important anyway to be able
to analyse and understand the messages in a WMQ message
queue. How to analyse the content of a message, what problems
can occur, and how to handle them are demonstrated using a tool

 4 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

program that is able to display messages in any queue and
thereby analyse any WMQ-defined formats and interpret their
content.
This article reviews first the general structure of WMQ messages,
followed by the handling required to receive a message, and how
to parse the message. Then we describe some special
considerations for dynamic data structures.

A REMINDER
To demonstrate the kinds of problem that can occur if the content
of a message is not as expected by the receiving application, let’s
just remind ourselves what WMQ messages look like.
A WMQ message consists of two parts: the WMQ message
descriptor (MQMD) and the message data. The MQMD, besides
some context information for the message data, describes the
message data in terms of message data format name, message
encoding, and coded character set ID (CCSID). The message
data format name, or just format, indicates how the following data
is structured. The encoding tells the receiver of the message how
numbers in the message data are encoded. This encoding is
different for different processor architectures. The encoding field
describes the actual format of integer numbers, floating-point
numbers, and decimals.
The CCSID describes how characters in the message data
should be interpreted. In general there are two main character
encodings, ASCII (American Standard Code for Information
Interchange) and EBCDIC (Extended Binary Coded Data
Interchange Code), but also within these encoding schemes
there are different CCSIDs for different languages, eg German
or English. In addition to ASCII and EBCDIC characters, WMQ
also supports Unicode CCSIDs within some WMQ headers.
The message data itself can be completely described by the
MQMD if the data consists of only one data structure. In general
the message data can consist of different parts, intermediate
headers for intermediate applications (eg middleware), and a

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

final part containing the information necessary to run your
business. To be able to understand the following parts in the
message, each part must describe the following part in the same
terms, format, encoding, and CCSID. Each part in the message
data therefore can have a different encoding and CCSID. Some
parts are already predefined WMQ data structures. These
predefined formats are described in WMQ Application
Programming, reference SC33-1673.
Even if handled as different parameters in the WMQ API, the
MQMD and the message data can be seen as one stream of
bytes. This eases the description. This structure is shown in
Figure 1 for a message that consists of an MQMD, two headers
and the final application data.

RECEIVING THE MESSAGE
The tool program contains a main function. This is called with a
queue name and, optionally, the name of a queue manager. It
does the usual:
MQCONN ()
MQOPEN ()

Figure 1: WMQ message structure

12345678901234
12345678901234
12345678901234
12345678901234
12345678901234
12345678901234
12345678901234
12345678901234
12345678901234
12345678901234
12345678901234
12345678901234
12345678901234
12345678901234

1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901
1234567890123456789012345678901

12345678901234
12345678901234
12345678901234
12345678901234
12345678901234
12345678901234
12345678901234
12345678901234
12345678901234
12345678901234
12345678901234
12345678901234
12345678901234
12345678901234

MQMD Part 1 Part 2 Part 3

Format

Encoding

CCSID

Format

Encoding

CCSID

Format

Encoding

CCSID

 6 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

This is followed by a loop of MQGET() calls. The following special
characteristic is interesting. The open is done only for browsing.
This is because the program should not destroy the message.
The message may be reprocessed later when the problem is
identified and the program is corrected to handle the message.
The MQGET could be issued with parameters that force WMQ
to convert the message, but this is not done because problems
could be caused by the conversion process, or the conversion
itself could fail.
The complete message is received into one buffer according to
Figure 1. Afterwards the parser for the MQMD is retrieved from
a parser factory. Then the parser is invoked for the first part of the
message. Each parser combines with the data to parse the
information about encoding and the CCSID of the message part
to parse. Generally this is not known, but for the MQMD returned
by the MQGET it is assured that the CCSID is in the encoding
standard of the platform the program is running on, and the
character data in the MQMD is either in ASCII or EBCDIC
depending on the operating system the receiving platform is
running on.

PARSING THE MESSAGE
A parser’s function is to analyse and understand a part of a
message. Each parser parses and displays the message part for
which it is responsible. To do this, the parser first checks whether
it can understand the part by looking to see whether the data
length is sufficient. Most WMQ-supported formats start with an
eye-catcher and a version number. These can also validate that
the message can be handled by the program. As an example, an
extract from the MQMD parser is shown below:
 if (length < sizeof (MQMD)
 ...
 printf ("Incorrect version or size.\n"
 "Size is %u, expected is %u, version is %u\n",
 length, sizeof (MQMD),
 local_enc (mqmd->Version, encoding));
 return (MGERR_INVALID_FORMAT);
 } // endif

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 if (!is_correct_StrucId (mqmd->StrucId, MQMD_STRUC_ID, &converter)
) {
 printf ("Incorrect Structure ID: ");
 display_data (mqmd->StrucId, sizeof (mqmd->StrucId), 24);
 return (MGERR_INVALID_FORMAT);
 }/* endif */
 // Convert if necessary
 if ((encoding & MQENC_INTEGER_MASK) !=
 (MQENC_NATIVE & MQENC_INTEGER_MASK)) {
 /* integer conversion required */
 mqmd->Version = conv_int (mqmd->Version);
 ...
 }/* endif */
 if (converter != NULL) {
 /* character conversion required */
 converter (mqmd->Format, sizeof (mqmd->Format));
 ...
 }/* endif */
 /* Output MQMD content */
 printf ("\tVersion: %u\n", mqmd->Version);
 ...
 if ((mqmd->Version == MQMD_VERSION_1 && length == sizeof (MQMD)))
{
 // No data with MQMD available
 return (Ø);
 }/* endif */
 /* Pass on to next formatter if necessary */
 formatter = format_factory->getFormatter (mqmd->Format);
 if (formatter == NULL) {
 printf ("No formatter for format !!!!!!\n");
 } else {
 return (formatter->format (mqmd + 1,
 length - sizeof (MQMD),
 mqmd->CodedCharSetId,
 mqmd->Encoding));
 }/* endif */
 return (Ø);

The length check shown here is simplified because different
versions of the MQMD structure are already available from
different versions of the WMQ product.
The eye-catcher’s check is not that simple because the character
field is in the CCSID passed to the current formatter. In general,
from the CCSID it’s not obvious whether the character data is in
ASCII or EBCDIC. One trick that helps here is based on the fact
that the characters used for the eye-catcher are restricted to
being in the common part of either all ASCII or EBCDIC codepages.

 8 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Therefore the eye-catcher is first checked against the expected
value for the platform the program is running on.
If this fails, the function converts the actual value from ASCII to
EBCDIC on an EBCDIC platform or vice versa on an ASCII
platform. Then the comparison for a correct eye-catcher is
repeated. If this also fails, then it is assumed that the eye-catcher
doesn’t match. In the case that the actual data is converted, the
function is_correct_StructId(), which carries out the checks for
eye-catchers, returns the converter used to convert the data.
This converter is used later by the formatter to convert all other
character data in the actual header.
A similar problem also arises for the integer fields in each header.
The encoding itself is encoded within the encoding field. WMQ
headers contain only an integer number – no floating-point
values or decimal numbers. The extracted encoding for integers
is compared with the encoding of the local platform. This local
encoding for integers can be retrieved as shown in the code
example from the constant MQENC_NATIVE. For each platform
this is correctly defined in the WMQ header file. For integers
there are only two valid forms of encoding – normal (as on most
processor architectures) and reversed (as, for example, for the
processors in a PC). So in the case of the integer encodings not
matching, all integer fields within the actual header will be
converted.

INTERPRETING THE MESSAGE
Most tools that are available to analyse messages display just
the values of each field in the WMQ headers. For a ‘normal’ WMQ
programmer these values are not meaningful because he is
usually familiar with the constants as described in the WMQ
Application Programming Guide. The tool program converts the
values into the WMQ constants as described for the header. To
allow for this, there is a set of helper functions for each type of
value:
• Completion codes.

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• Reason codes.
• Persistent values.
• Feedback codes.
• Encoding values.
• Application types.
• Message flags.
• Integer attributes.
• Character attributes.
• Command values.
The helper functions can be found in the file mgmq.cpp. Usually,
each version of WMQ extends the list of supported values for
these fields. That’s why the helper functions need to be checked
whenever a new version of WMQ becomes available or when
compiling the program on another platform.
The program is capable of analysing and interpreting the following
WMQ headers and messages:
• Message descriptor.
• Transmission header.
• Dead letter queue header.
• Work information header.
• Trigger messages.
• Strings and command formats.
• Reference message header.
• Request and format header.
• Programmable command format.
• Event messages.
• Administration messages.

 10 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• CICS and IMS information headers.
• Distribution header.
• Binary messages.
Details of all the WMQ-supported formats can be found in the
WMQ Application Programming Guide, reference SC33-1673.

PARSERS WITH SPECIAL HANDLING
Most WMQ-supported headers have a fixed structure with a
defined number of elements, but there are some headers that
require special handling. These structures are listed below:
• Unknown – this is the simplest parser. An unknown format

means that the structure cannot be interpreted. In this case
the data is handled as a binary large object (BLOB). The
BLOB parser is used for the defined format
MQFMT_UNKNOWN and it is the parser that is used as the
default for any format that is not in the list of known and
supported message elements of the program.
The handling of the BLOB parser is very simple. It just
formats and prints out the data in hex and character format.
The parser doesn’t care about the CCSID and encoding of
the data. This way the data could be interpreted by a human
reader.

• String and command formats – WMQ supports various
formats that contain only character strings. MQFMT_STRING
is the format that should be used for user applications, but
there are other formats, eg MQFMT_CMD, that are used for
commands to a command server running within the queue
manager that contain only characters. While processing the
data, the parser itself doesn’t take the CCSID into account.
The main reason for this is that there is no rule to identify
whether a CCSID is EBCDIC, ASCII, or Unicode. The same
method as used in the ‘standard’ headers is not working
because there is no structure identifier that can be used as
an indication for the character encoding.

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• CICS and IMS information headers – these are ‘normal’
headers with a fixed structure and a defined number of
elements. But the WMQ documentation states that the
Encoding and CCSID fields are reserved and have no
meaning. Their values are initialized with zero. For these
formats the appropriate parsers assume that the following
structure is in the same Encoding and CCSID as the one for
the current header.

• Programmable Command Format (PCF) – this is a WMQ
internal, self-definable, dynamic data structure. Examples of
where PCF format is used in WMQ include command
messages to define and delete WMQ objects, such as
queues or name lists, and also for events.
The PCF structure consists of a short fixed header and a
variable number of structures for each element. The structures
are different for each supported type of element. Each
structure starts with an identification about what type of
element it is.
The use of PCF character strings, arrays of character
strings, integer numbers, and arrays of integer numbers is
supported. Floating point numbers and decimals are not
supported. The structure that describes each element in the
PCF header contains detailed information about the element,
eg the length, number of array elements, the encoding, or the
CCSID.
For details about the PCF structure and how to use it refer to
the WMQ Programmable System Management Guide,
reference SC33-1482.

• Request and Format headers – WMQ supports two versions
of the Request and Format Header (MQRFH): Version 1 and
Version 2 (MQRFH2). Both headers start with a fixed structure.
This is followed by a variable length structure. In Version 1
the variable part consists of a number of name-value pairs.
The MQRFH parser of the tool program tries to parse and
analyse this variable part.

 12 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

With MQRFH2, the variable part of the header is an XML-like
data structure. This structure can only be a set of predefined
Unicode CCSIDs. The MQRFH parser prints this part in hex
and converts the data from Unicode to character format. The
RFH parser does not try to analyse the XML-like structure.
This would require integrating an XML parser.

PARSING THE REMAINDER OF THE MESSAGE
Once a parser has interpreted the content of its part of the
message, it has to allow the remaining part to be parsed.
Because all parser functions should be independent of available
parsers and supported message formats, the knowledge about
all existing parsers and the formats that they are responsible for
is concentrated in a parser factory.
The parser factory is the central point where the tool program can
be extended. The parser factory can be found in the file
mgFormat.cpp amongst the source code provided with this
article, available from www.xephon.com/extras/mqmay04.zip.
The factory maps the format name to a parser. Each parser is a
function that gets a buffer, the length of the buffer, plus the
encoding and CCSID values for the buffer. If the parser detects
that the buffer is longer than the data it can interpret, it retrieves
the name of the following format from the current message part.
This format name is then used to ask the factory for the parser
that is responsible for the remaining part of the buffer. The actual
parser hands the remaining buffer, with the remaining length of
the buffer, to the parser returned by the factory. In addition, the
new parser gets the encoding and CCSID that the actual parser
gets from its part of the buffer.

BUILDING THE TOOL PROGRAM
The tool program supplied with the source code is written in C/
C++ and should compile on all WMQ-supported platforms.
Nevertheless, the code is not completely platform-neutral. The
main reason is that there are slight differences in the supported

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

constants and encodings. Because each new version of WMQ
usually introduces new constants, the versions on different
platforms will not always match, and it may be that some
constants are missing or new ones need to be added.
The tool program was compiled and tested on z/OS and Linux.
A makefile for the z/OS platform is part of the code. On z/OS the
distribution header is not supported.

POSSIBLE ENHANCEMENTS
The tool program is usable as it is. Nevertheless, it may be
enhanced with some additional options by any developer,
depending on where and how the program will be used. Such
enhancements may include:
• An option to convert the message. At the moment, the

program uses the MQGMO_CONVERT option when
retrieving messages from a queue. An option can be added
to the command line parameters that allows switching of this
option.

• Parsing of MQRFH2 NameValueData. Currently the program
simply prints out the XML-like structure without analysing or
interpreting it. The program could be enhanced by integrating
an XML parser to check whether the data is well-formed and
can show the structure.

• Change the output format. The program prints the messages
in its own format. There are SupportPacs available that can
construct a WMQ message using a text description as the
input. The output format could be changed to match the input
format of that particular SupportPac. This would allow
messages to be reconstructed for test purposes, for example.

SUMMARY
Understanding WMQ messages by a program is very complex
as any part of the message can have different encodings and
CCSIDs. The tool program, located at www.xephon.com/extras/

 14 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

mqmay04.zip, demonstrates how to analyse messages from
any WMQ message queue. It shows each header, interprets
each field, and shows its field with the corresponding WMQ
constant, all of which improves our understanding of the
messages.
The program is delivered as source code, which allows developers
to extend the program with message formats that are used by
their applications.
The program has already been proved to be useful when
messages are not handled correctly, or just for looking at the
messages that are generated by different programs.
Michael Groetzner
IBM (Germany) © IBM 2004

Configuring a Web client to show a list of
authorized users while transferring work items

The general interface provided out-of-the-box with MQSeries
Workflow allows the transfer of work items. It lets logged-on
users transfer work items to other users to whom they are
authorized. Suppose the logged-on user is TESTMGR, and
TESTMGR would like to transfer a work item to, say,
ADHOCTEST01. The user needs to click on the transfer button
shown in Figure 1.
This will bring up a Java pop-up as shown in Figure 2 that prompts
the user to enter the name of the person to whom the item needs
to be transferred.
User (TESTMGR) needs to remember the ID of the person to
whom the work is being transferred and has to type in the text box
provided and click OK.
The whole process is shown in Figures 2 and 3.

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 1: Transfer button

Figure 2: Work list view without code changes

This is quite manageable if the number of users reporting to
TESTMGR is low and TESTMGR can remember each individual’s
ID. But what if there are hundreds of workers reporting to
TESTMGR? What if the workers are on a continuous job rotation
and the group reporting to TESTMGR is continually changing?
I am not sure if anybody else has faced this situation, but we
have. So, in this article, I would like to present the solution we
found to solve this problem.

 16 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Figure 3: Transferring works item to another user

I would like to thank the IBM MQ Workflow team for providing
useful tips. The modifications I have made to ListViewer.jsp are
intended to help the MQ Workflow development community and
it’s not my intention to incur any copyright infringement issues.

SOLUTION
When a user logs on as TESTMGR, we present the same
interface as given in the out-of-the-box client. But when the user
(TESTMGR) clicks on the Transfer Item button, as in Figure1, we
show a pop-up window containing a list of users to whom
TESTMGR could transfer the work item. The list comprises user
ID, first name, middle initial, and last name. TESTMGR can
select the ID/name to whom the work item needs to be transferred
and click on the Transfer Item button on the pop-up window.
Alternatively the user (TESTMGR) may choose to cancel the
transfer, in which case the Cancel button needs to be clicked or

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 4: Work list view with code changes

Figure 5: Transferring work item with code changes

 18 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

the pop-up window closed.
We, in fact, modified our custom Web client interface to have the
new functionality. However, to explain it to the user community I
have modified ListViewer.jsp to demonstrate how the functionality
can be added.
The modifications are shown in Figures 4 and 5.

CODE

ListViewer.jsp
We have to modify ListViewer.jsp, which can be found at
\Program Files\MQSeries Workflow\cfgs\(Your webclient
configuration)\WebClient\webpages\forms. Add the code exactly
as shown. To make it clear, I have started each code modification
with ‘code change # begins’ and ended each one with ‘code
change # ends’. I have included the IBM-supplied code to make
it clear where the changes are to be made.
In ListViewer.jsp we added a function getUsersAuthorizedFor.
This function performs the following:
• Checks the authorizations for user (TESTMGR).
• Then gets personsAuthorizedFor: for (TESTMGR).
• For each personId in the personsAuthorizedFor list, gets the

firstname, lastname, middlename using
persistentPerson(personID).
Puts each ID in Treemap
end for.

<%@ page language="java" contentType="text/html"
errorPage="ViewError.jsp"
 import="java.util.*,com.ibm.workflow.api.*,
 com.ibm.workflow.api.ProcessInstancePackage.*,c
om.ibm.workflow.api.ItemPackage.*,com.ibm.workflow.servlet.client.*"
%><jsp:useBean id="context" scope="request"
type="com.ibm.workflow.servlet.client.RequestContext"
/><% context.setLocale(response); %>

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

<html>
<!-- Create the page title -------------------------------------->
<% String user = context.getUserID();
 String distype = "", refreshCommand = "";
 int count = Ø, type = SessionContext.NOT_SET;
 PersistentList list = null;
 //code change #Ø1 begins
 TreeMap authorizedUsers = null;
 String userId = context.getUserID();;
 authorizedUsers =
getUsersAuthorizedFor(context.getExecutionService().persistentPerson(userId),
context.getExecutionService());
%><%! private TreeMap getUsersAuthorizedFor(Person workflowUser,
ExecutionService wfService) {
 TreeMap userNameReference = new TreeMap();
 //TreeMap to be returned.
 String[] usersAuthorizedFor = null;
 //List of userIds current user is authorized for.
 String currentId = null; //UserId of current logged on user
 String firstName = null; //User First Name
 String middleName = null; //User Middle Name
 String lastName = null; //User Last Name
 String fullName = null; //Formatted Full Name of user
 Person thisPerson = null; //Workflow Person object
 //Get list of users for whom this person is authorized.
 try {
 currentId = workflowUser.userID();
// **** Important ****
// PersonsAuthorizedFor()
// Returns the persons for whom this person is authorized either
// explicitly or by being a
// substitute. If the person is authorized for all other persons,
// then no person is returned here. For example if "ADMIN" is
// authorized for all users
// then usersAuthorizedFor will contain null list.
// Please see MQ Workflow programming guide for further information.
 usersAuthorizedFor = workflowUser.personsAuthorizedFor();
 } catch (FmcException xcpt) {
 return null;
 }
 //Retrieve information about the current logged on user
 // and store in the TreeMap.
 try {
 //Get info about the current logged on user.
 thisPerson = workflowUser;
 firstName = thisPerson.firstName();
 middleName = thisPerson.middleName();
 lastName = thisPerson.lastName();
 //Format the Full Name text for the current logged on user.

 20 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 if ((lastName == null) || (firstName == null)) {
 fullName = currentId;
 } else {
 if (middleName == null) {
 middleName = "";
 }
 fullName = lastName + ", " + firstName + " " + middleName;
 }
 //Store username info about the current logged on user Id in TreeMap.
 userNameReference.put(currentId, fullName);
 } catch (FmcException xcpt) {
 }
 // For each user ID for which the current Workflow User is
 // authorized, find the first name, middle name and last name.
 for (int i = Ø; i < usersAuthorizedFor.length; i++) {
 try {
 //Retrieve UserName Info for authorized user.
 // *** Important ****
 // The user who is trying to get the list of users for whom he/she is
 // authorized needs to have "AUTHORIZED_FOR STAFF" authority.
 // This authorization can be set in Buildtime. When defining the
 // person under Buildtime see to that the check box "Staff definition"
 // under "Authorizations" tab is checked. Make sure the exported FDL
 // contains "AUTHORIZED_FOR STAFF".
 // Please see MQ Workflow programming guide & Getting started with
 // Buildtime for further information.
 thisPerson =
wfService.persistentPerson(usersAuthorizedFor[i]);
 currentId = thisPerson.userID();
 firstName = thisPerson.firstName();
 middleName = thisPerson.middleName();
 lastName = thisPerson.lastName();
 //Format the Full Name of the authorized user.
 if ((lastName == null) || (firstName == null)) {
 fullName = currentId;
 } else {
 if (middleName == null) {
 middleName = "";
 }
 fullName = lastName + ", " + firstName + " " + middleName;
 }
 //Store username info for the authorized user Id in TreeMap.
 userNameReference.put(usersAuthorizedFor[i], fullName);
 } catch (FmcException xcpt) {
 }
 }
 /*try {
 } catch (FmcException xcpt) {
 //Do nothing.
 }

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

*/
 return userNameReference;
}
//code change #Ø1 ends
%><%
 if (context.getInstances() != null)
 {
 distype = context.get("ListViewer.ProcessInstances");
 type = SessionContext.INSTANCELIST;
 refreshCommand = "queryProcessInstances";
 count = context.getInstances().length;
 list = context.getInstanceList(context.getInstanceListOid());
 }
 *** *** ***
 *** *** ***
 *** *** ***
 <script language='JavaScript'>
 function fillForm(doc, name, owner, user, cmd, canEmail)
 {
 doc.open("text/html");
 doc.writeln("<html><head><title><%=context.get("ListViewer.TransferWorkItem")%></
title>");
 doc.writeln("<link rel='stylesheet' type='text/css' href='../
webclientstyle.css'>");
 doc.writeln("</head><body><form name='data'><div width='1ØØ%'
class='title'>");
 doc.writeln("<%=context.get("ListViewer.TransferWorkItemToPrefix")%>
<i>" + name + "</i>
<%=context.get("ListViewer.TransferWorkItemToPostfix")%>

</
div>");
 doc.writeln("<center><table><tr><label><td><%=context.get("ListViewer.UserID")%></
b></td><td><input type='text' name='userID' value='" + user + "'
size='3Ø'></td></label></tr>");
 if (canEmail == 'true')
doc.writeln("<tr><label><td><%=context.get("ListViewer.EmailAddress")%></
b></td><td><input type='text' name='email' size='3Ø'></td></label></
tr>");
 doc.writeln("</table><p><input type='button'
value='<%=context.get("ListViewer.Transfer")%>' " +
 "onClick='javascript:if (data.userID.value ==
"") alert("You must provide a User ID"); else { var
sub="" + cmd +
 "" + "&userID=" + data.userID.value" +
 (canEmail == 'true' ? "+ "&email=" +
data.email.value;" : ";"));
 doc.writeln("window.opener.location.href = sub;
window.close();}'>");
 doc.writeln("<input type='button'
value='<%=context.get("Command.Cancel")%>'

 22 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

onClick='javascript:window.close();'></center></p></form></body></
html>");
 doc.close();
 doc.data.userID.focus();
 }
//code change #Ø2 begins
// Insert include file transferInclude that conatins necessary code
// segement for popping up of window with names of the users populated
 <%@ include file="../forms/transferInclude.inc" %>

 function newWindow() {
 if (window.screen) {
 window.moveTo(Ø, Ø);
 window.resizeTo(1Ø24, 74Ø);
 }
 if (window.opener && !window.opener.closed) {
 window.opener.close();
 }
 }
//code change #Ø2 ends
 </script>
</head>
<body>
<!-- code change #Ø3 begins
-->
<FORM NAME="TransferForm" method="post"
action='<%=context.getServletName()%>'>
 <INPUT type="hidden" name="command" value="transferItem">
 <INPUT type="hidden" name="id" value="">
 <INPUT type="hidden" name="userID" value="">
</FORM>
<!-- code change #Ø3 ends
-->
<%=context.openForm(refreshCommand, list == null ? null :
list.persistentOid())%>
<table width="1ØØ%" border="2" bordercolordark="#ØØØØØØ"
bordercolorlight="#FFFFFF" cellpadding="Ø" cellspacing="Ø"
class="navigator">
 <tr>
 <td align="left" nowrap>
 <!-- Create the navigation combobox ------------------------------>
 *** *** ***
 *** *** ***
 *** *** ***
 <%} /* End of for ---------- Process Templates ---------- */
 else if (type == SessionContext.WORKLIST)
 {
 Config cfg = context.getConfig();
 boolean viaEmail = cfg.getParameter("SMTP", "Host") != null; //

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

A configured SMTP host triggers email enablement
 int cpn = context.getProcessInstanceNotifications().length;
 int can = context.getActivityInstanceNotifications().length;
 int cwi = context.getWorkItems().length;
 for (int i = Ø; i < count; i++)
 {
 try
 {
 ProcessInstanceNotification processNotification = null;
 ActivityInstanceNotification activityNotification = null;
 WorkItem workItem = null;

 Item item = null;
 Command[] cmds = null;

 if (i < cpn)
 {
 item = processNotification =
 context.getProcessInstanceNotifications()[i];
 cmds = Command.getActions(processNotification);
 }
 else if (i < cpn + can)
 {
 item = activityNotification =
 context.getActivityInstanceNotifications()[i - cpn];
 cmds = Command.getActions(activityNotification);
 }
 else
 {
 item = workItem = context.getWorkItems()[i - cpn - can];
 cmds = Command.getActions(user, workItem);
 }

 String oid = item.persistentOid();
 String name = item.name();
 %>

 <tr class="<%=row[i % row.length]%>">

 <td nowrap><%
 if (cmds.length == Ø)
 {%> <%}
 else for (int j = Ø; j < cmds.length; ++j)
 {
 //codeØ4
 %>
 <%
 if (!"transferItem".equals(cmds[j].getCommand())) {
 %><%=cmds[j].getTriggerTag(context, oid, name)%><%

 24 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 }
 //code change #Ø4 begins
 else if ("transferItem".equals(cmds[j].getCommand())) {
 %><%
 String url1= "javascript:{}\"
onclick=\"javascript:TransferWorkitemWindow('" + oid + "')\"";
 %><a href="<%=url1%>"><%=cmds[j].getActionIcon(context,
imageAttr)%><%
 //code change #Ø4 ends
 } else if (!viaEmail) {
 %><%=cmds[j].getTriggerTag(context, oid, user)%><%
 }
 else
 {
// String url = "javascript:{}\" onClick=\"javascript: var xfer
= window.open('','Transfer_Item','width=4ØØ,height=19Ø,screenX=1ØØ,
screenY=1ØØ,dependent=yes,resizable=yes, menubar=yes, status=yes');" +
 String url = "javascript:{}\" onClick=\"javascript: var xfer =
window.open('','Transfer_Item','width=4ØØ,height=19Ø,screenX=1ØØ,screenY=1ØØ,
dependent=yes,resizable=yes');" +
 " fillForm(xfer.document, '" + name + "', '" +
item.owner() +
 "', '" + user + "', '" +
 context.getCommand("x-transferItem",
oid) +
 "', '" + viaEmail + "');";
 %><a href="<%=url%>"><%=cmds[j].getActionIcon(context,
imageAttr)%><%
 }
 }%></td>
 *** *** ***
 *** *** ***
 *** *** ***

 } /* End of for ---------- List of Lists ---------- */

 } %>
</table>

</td></tr></table>

</body></html>

transferInclude.inc
Transferinclude.inc contains basic JavaScript that takes the
contents of TreeMap built in the getUsersAuthorizedFor function
and populates it in the form of a scrollable list. The functionality

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

for the Transfer button on the pop-up window is similar to the out-
of-the-box client.
Please keep transferInclude.inc under \Program Files\MQSeries
Workflow\cfgs\(Your webclientconfiguration)\WebClient\
webpages\forms.
- function TransferWorkitemWindow(WorkItemOid)
 {
 var w = window.open("", "TransferWindow", "width=45Ø, height=3ØØ,
resizable=no", false);
 var d = w.document;
 var transferString = "<%= context.getCommand("transferItem", "")
%>" + WorkItemOid;

 TransferForm.id.value=WorkItemOid;

 window.name="WorkListPage";
 d.open();
 d.writeln('<HTML><HEAD><TITLE>Transfer Item</TITLE>');
 d.writeln('<link rel="stylesheet" type="text/css" href="../
webclientstyle.css">');
 d.writeln('<META HTTP-EQUIV="Pragma" CONTENT="no-cache"><META
HTTP-EQUIV="Expires" CONTENT="-1">');
 d.writeln('</HEAD><BODY onblur="window.focus();" text="#FFFFFF"
onLoad="window.moveTo(25Ø, 25Ø);">');
<%if (authorizedUsers != null){ /* ---- If Authorized Users is null ---
--- */%>
 d.writeln('<SCRIPT language="JavaScript">');
 d.writeln('function SendTransfer()');
 d.writeln('{');
 d.writeln(' if(TransferUser.value == ""){');
 d.writeln(' alert("Please Select the User to Transfer");');
 d.writeln(' return false;');
 d.writeln('}');
 d.writeln(' var itemTransferString = "' + transferString + '" +
"&userID=" + TransferUser.value;');
 //d.writeln(' window.open(itemTransferString,
"WorkListPage");');
 d.writeln('
window.opener.TransferForm.userID.value=TransferUser.value;');
 d.writeln(' window.opener.TransferForm.submit();');
 d.writeln(' window.close();');
 d.writeln('}');
 d.write('</SCRIPT');
 d.writeln('>');
 d.writeln('<CENTER><SELECT NAME="TransferUser" id="TransferUser"
SIZE="1Ø">');

 26 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

<%Iterator userIdList = authorizedUsers.keySet().iterator(); /* */
 while (userIdList.hasNext()) {
 Object thisUser = userIdList.next();%>

 d.writeln('<OPTION VALUE="<%=(String) thisUser%>"><%=(String)
thisUser %> - <%=authorizedUsers.get(thisUser)%>');
 <%}/* End While */%>
 d.writeln('</SELECT>

');
 d.writeln('<a href="javascript:{}"
onClick="javascript:{SendTransfer()}"><img src="/MQWFClient-FMCWADMN/
images/action/transfer.gif" border="Ø" alt="Transfer Item"></
a> ');
 d.writeln('<a href="javascript:{}"
onClick="javascript:{window.close();}"><img src="/MQWFClient-FMCWADMN/
images/action/cancel_checkout.gif" border="Ø" alt="Cancel"></
CENTER>');
<%}else{%>
 d.writeln('<P>There are no users to transfer to.');
<%}/* End If of Authorized Users is null */%>
 d.writeln('</BODY>');
 d.writeln('<HEAD>');
 d.writeln('<META HTTP-EQUIV="Pragma" CONTENT="no-cache"><META
HTTP-EQUIV="Expires" CONTENT="-1">');
 d.writeln('</HEAD>');
 d.writeln('</HTML>');
 d.close();
 }
 function truncateName(name)
 {
 document.write(name.substr(Ø,1Ø));
 }

 function transferListItem(itemOid)
 {
 TransferForm.id.value = itemOid;
 }

TROUBLESHOOTING
The easiest way to implement the changes is to modify
ListViewer.jsp and restart the Web client Web application, if you
are using WebSphere. Taking a back-up of the original
ListViewer.jsp is strongly recommended.
The modifications to ListViewer.jsp confuse normal users who
are not used to the way the workflow Web client functions. So I

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

suggest you create an alias Web client configuration and modify
the ListViewer.jsp under the alias configuration. The steps to
create an alias Web client configuration FMCADMIN under
WebSphere using FMCZUTIL utility are described below.

CREATING AN ALIAS WEB CLIENT CONFIGURATION
Microsoft Windows 2ØØØ [Version 5.ØØ.2195]
(C) Copyright 1985-2ØØØ Microsoft Corp.

C:\Documents and Settings\db2admin>cd \

C:\>fmczutil
 FMC332Ø1I Configuration Commands Menu:
 l ... List
 s ... Select
 c ... Create
 d ... Change default configuration
 x ... Exit Configuration Commands Menu
c
 Configuration identifier : [FMC] FMCWADMN

 FMC3321ØI Select Category Menu:
 s ... () Server
 i ... () Runtime Database Utilities
 b ... () Buildtime
 c ... () Client with queue manager
 j ... () Java Agent
 w ... () Web Client
 a ... all
 n ... none
 x ... Exit Select Category Menu
w
 FMC3321ØI Select Category Menu:
 s ... () Server
 i ... () Runtime Database Utilities
 b ... () Buildtime
 c ... () Client with queue manager
 j ... () Java Agent
 w ... (X) Web Client
 a ... all
 n ... none
 x ... Exit Select Category Menu
j
 FMC3321ØI Select Category Menu:
 s ... () Server

 28 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 i ... () Runtime Database Utilities
 b ... () Buildtime
 c ... (A) Client with queue manager
 j ... (X) Java Agent
 w ... (X) Web Client
 a ... all
 n ... none
 x ... Exit Select Category Menu
x

- Configuration of queue manager ...

 System group name : [FMCGRP1] FMCGRP
 System name : [FMCSYS1] FMCSYS
 Queue manager name : [FMCCONQM] FMCCONQM
 Queue prefix : [FMC] FMC

- Configuration of client ...

 Channel definition table file : [d:\program files\mqseries
workflow
\chltabs\mqwfchl.tab]

- Configuration of Java Agent ...

- FMC33749I Selected Locator Policy : Local bindings

 FMC336Ø6I Specify information about garbage collection (reaper) ...:
 Agent cycle (in seconds) : [3ØØ]
 Client threshold (number of objects) : [1ØØØ]
 Client cycle (in % of agent cycle) : [9Ø]
- Configuration of Web Client ...

 FMC33942I Specify the root URI of the Web Client :
 Root URI : [MQWFClient-FMCWADMN]

 FMC33777I Select application server ...:
 w ... () WebSphere 3.x
 f ... (X) WebSphere 4.Ø (EAR)
 o ... () Other
 j ... () Other (Servlet 2.2 / J2EE 1.2)
w
 Code Version : [33Ø3]

FMC336Ø7I Specify information about the WebSphere Application Server..:
 Installation directory : [d:\WebSphere\AppServer]
 TCP/IP address of administration node : [slater]

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 TCP/IP address of name service host : [slater]
 TCP/IP port number of name service : [9ØØ]
 XML configuration skeleton file name : [fmcoh354.skel]

 c ... Create configuration profile for 'FMCWADMN' now
 s ... Save input to file
 r ... Review/change input
 x ... Exit (input for configuration 'FMCWADMN' will be lost)
- FMC3368ØI The profile for the configuration 'FMCWADMN' was updated
successfully.

- Do you want to configure the Web Client within the WebSphere
Application Server now?
 y ... Yes
 n ... No
y
[Ø2.12.1Ø 17:41:14:5ØØ EST] ce421533 NodeConfig A XMLCØØ53I:
Importing Node :
 slater
[Ø2.12.1Ø 17:41:14:671 EST] ce421533 ApplicationSe A XMLCØØ53I:
Importing Applic
ationServer : MQWF Web Client - FMCWADMN
[Ø2.12.1Ø 17:41:15:671 EST] ce421533 ServletEngine A XMLCØØ53I:
Importing Servle
tEngine : Servlet Container
[Ø2.12.1Ø 17:41:17:Ø62 EST] ce421533 WebApplicatio A XMLCØØ53I:
Importing WebApp
lication : MQWFClient-FMCWADMN
[Ø2.12.1Ø 17:41:17:562 EST] ce421533 ServletConfig A XMLCØØ53I:
Importing Servle
t : ErrorReporter
[Ø2.12.1Ø 17:41:17:875 EST] ce421533 ServletConfig A XMLCØØ53I:
Importing Servle
t : file
[Ø2.12.1Ø 17:41:18:281 EST] ce421533 ServletConfig A XMLCØØ53I:
Importing Servle
t : jsp11
[Ø2.12.1Ø 17:41:18:546 EST] ce421533 ServletConfig A XMLCØØ53I:
Importing Servle
t : Main
[Ø2.12.1Ø 17:41:18:89Ø EST] ce421533 SessionManage A XMLCØØ53I:
Importing Sessio
nManager : Session Manager
[Ø2.12.1Ø 17:41:19:281 EST] ce421533 ApplicationSe A XMLCØØ53I:
Importing Applic
ationServer : MQWF Web Client - FMCWADMN
[Ø2.12.1Ø 17:41:19:687 EST] ce421533 ContainerConf A XMLCØØ53I:
Importing Contai
ner : Default Container
 FMC332Ø1I Configuration Commands Menu:

 30 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Figure 6: Buildtime person set up step 1

Figure 7: Buildtime person set up step 2

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 8: Buildtime person set up step 3

 l ... List
 s ... Select
 c ... Create
 d ... Change default configuration
 x ... Exit Configuration Commands Menu
x

C:\>

CAVEATS
1 The code is tested on the environment comprising IE, IIS,

and WebSphere 3.5 with MQSeries Web Client V3.3.0.3.
2 The solution works for users of type TESTMGR who have

authorization for a partial list of users. In the case of ADMIN
(system administrator) type users who are authorized for
ALL staff the solution does not give the list of ALL users. This
is not the limitation of the solution but this is how the
personsAuthorizedFor function in MQWorkflow works. Please
see the workflow programming guide.

 32 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

PersonsAuthorizedFor() returns the people for whom this
person is authorized either explicitly or by being a substitute.
If the person is authorized for all other people, then no person
is returned here.

3 The user TESTMGR needs to have AUTHORIZED_FOR
STAFF authority.
This authorization can be set at build time. When defining the
person under build time see that the check box Staff definition
under the Authorizations tab is ticked. Make sure the exported
FDL contains AUTHORIZED_FOR STAFF.

SETTING AUTHORIZED_FOR STAFF AUTHORITY
To set AUTHORIZED_FOR STAFF authority for a person at
Buildtime, follow the three steps illustrated in Figures 6, 7, and 8.
Please see the checkbox in Figure 8.
Chandra Upadhyayula
Programmer/Analyst (USA) © Blue Cross Blue Shield of Tennessee 2004

Customizing WebSphere MQ Integrator Broker
message flows

WebSphere MQ Integrator Broker is a development platform and
a run-time environment for message flows. Once the development
of a message flow is done, the flow is usually transferred from the
development environment to a production environment. In simple
cases, just the message flow needs to be transferred or the flow
is transferred for only one customer. In these situations only the
flow needs to be adapted to the target environment. This can be
done using the Control Center, the development tool for message
flows.
In general, transferring the flow is not that simple because the
message flow may be installed for multiple customers and the

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 1: Customization overview

Customization data
Message flow template

Resource definition template

Personalized message flow

Personalized resource definition

message flow is usually referencing external resources, for
example WebSphere MQ message queues or DB2 database
tables. Together with the message flow, the resources that are
referenced by the message flow must be created in the target
environment. While this is done, the resources must be defined
and their names adapted to the convention of the target system.
Adapting the names of resources is necessary because customers
usually have different naming conventions for test and production
system or they use a different resource manager, for example
different WebSphere MQ queue managers. These changes
must be consistent with the changes in the message flows. This
article describes how WebSphere Business Integration for
Financial Networks (abbreviated to WebSphere BI for FN)
solves this problem. (For details visit http://www.ibm.com/
software/integration/wbifn/.)

CUSTOMIZATION
The process to adapt a message flow and the resources needed
by the message flows to a target environment in WebSphere BI

 34 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

for FN is called customization. The overall structure of the
process is shown in Figure 1.
Inputs to the customization process are message flow templates,
resource definition templates, and customization data. A message
flow template is a message flow that contains placeholders in the
properties that need to be substituted. This is similar for the
resource definition templates. These templates contain all the
required definitions, for example the column names for a DB2
database table or required attributes of WebSphere MQ message
queues. For attributes that need to be adapted to a target
environment, like the name of a WebSphere MQ queue or the
schema name for a DB table, the same placeholders as in the
message flow are used.
The customization program is substituting the placeholders in
the template files with actual values for the target environment.
The values are defined by a WebSphere BI for FN customizer as
customization data. This customization data describes the target
environment. Substituting the placeholders with actual values in
the message flow templates and resource definition templates is
done by a customization program. The program generates
message flows and resource definitions that are personalized for
the target environment. These can then be deployed to the
appropriate resource managers. The personalized message
flows can be imported into the Control Center for the target broker
domain, assigned to the target broker, and deployed.
The personalized resource definitions can be deployed to the
resource managers to which the target broker is connected. How
to handle the resource definitions depends on the type of
resources that need to be defined. For example, definitions of
WebSphere MQ queues can be processed with the program
runmqsc on distributed platforms or db2cmd can be used for
definitions of DB2 tables.
WebSphere BI for FN currently is processing the following kinds
of resource definition file:
• WebSphere MQ resources.

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• WebSphere MQ Integrator Broker message flows.
• DB2 resources.
• Security definitions, for example for RACF on z/OS or OAM

on distributed platforms.
• WebSphere BI for FN configuration objects.
Since the customization program is doing simple text substitution,
any other kind of resource definition could also be handled in the
customization process, if needed.
After all the resources and the message flows are deployed,
messages can be processed.

CUSTOMIZATION VARIABLES
The placeholders that need to be substituted in the template files
are called customization variables. In principle any kind of
information could be substituted in the message flow, but, if the
variables are not carefully selected, the process can result in
some overhead. Using the customization process, WebSphere
BI for FN has restricted the customization variable to describe
static properties of the run-time environment only. Static properties
are variables for values of a target environment that are expected
to stay constant for the lifetime of the message flow.
If other values are needed that could change often, it would be
necessary to repeat the customization process. You would then,
possibly, need to re-deploy all message flows and all resource
definitions. This must be done carefully because if the resources
already exist they may already contain data, for example
messages in a WebSphere MQ message queue or entries in a
DB2 table. This data would then be migrated. To prevent this,
WebSphere BI for FN provides other means, so called
configuration objects, which can be changed within the lifetime
of the message flow.
Another restriction by WebSphere BI for FN for customization
variables that can be substituted in message flows is that they

 36 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

should not describe broker-specific values. If this were to be
allowed, the result of the customization process would be
different message flows for different brokers in a WebSphere MQ
Integrator Broker domain. Since both would have the same
template as origin, both message flows would have the same
UUID. This would lead to the situation in which the second
message flow would override the one that was imported first.
WebSphere BI for FN has chosen a very limited set consisting of
the DB2 parameters data source name (DSN), the schema
name for WebSphere BI for FN tables, and a high-level qualifier
for the names of WebSphere MQ queue names. Also, there are
only a few additional WebSphere BI for FN internal values, for
example the name of a WebSphere BI for FN instance. Such an
instance is a subset of the broker domain that is used by
WebSphere BI for FN message flows.
The customization program is a text substitution program.
Therefore the customization values could be anywhere in the
message flow XML file, including in the ESQL for compute
nodes. But WebSphere BI for FN is just using the customization
variables in node properties. These are promoted to a high-level
main flow. Just this main flow is processed through the
customization process. This has the advantage that, for service
purposes, sub-flows can be altered, imported into the Control
Center, and deployed, without the need to process the main flow
again through the customization process.
Most customization variables like a DSN or a queue name can
be inserted directly in standard properties of WebSphere MQ
Integrator Broker nodes. But for others, for example the schema
name for DB2 tables, there are no such properties. To feed such
values into the message flow processing, WebSphere BI for FN
provides different plug-in nodes that can be used to receive the
values and place them into the messages that are processed by
the message flows.
Template files and template message flows are in different
codepages. Message flow files are XML files in codepage 1208
(UTF-8), while other resource template files are usually in a text

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

format where the encoding depends on the platform, either ASCII
or EBCDIC. The customization program is able to handle these
differences in such a way that all resource template files,
including the template message flows, are first converted to
Unicode UCS-2 (codepage 1200) before the customization
variables are replaced with actual values. After the replacements
takes place, the customization program converts the files back
to their original codepage to be able to process them with the
appropriate import utilities.

CUSTOMIZATION DATA DEPLOYMENT
As described above, the personalized message flows and the
personalized resource definitions can be deployed to the
corresponding resource managers. In general the resource
definitions describe only the mandatory parameters that are
required for processing. For DB2 this is, for example, the name
of the table columns. But such resources usually have a lot of
other parameters that can be used to tune the application at run-
time. Such parameters are for example DB2 buffer pools,
WebSphere MQ page sets, or WebSphere MQ Integrator Broker
message flow attributes like Additional Instances. Such
parameters are tuning parameters that are usually adjusted by
an administrator or the corresponding resource manager. That’s
why WebSphere BI for FN has decided that these kinds of
parameters are best suited to being set by the administrator for
the resource managers when the resources are defined. So
before actually deploying the personalized resource definitions,
the administrator should review the definitions and optionally set
such tuning parameters. If at run-time an administrator decides
that other values for the resources are better suited, the
administrator can adapt these parameters without reprocessing
the resource definition files or the message flow again through
the customization process.

EXPLOITING CUSTOMIZATION
The customization as described in the previous sections is part

 38 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

of the WebSphere BI for FN base product. The product uses the
customization mechanism for its own resources. The base
product is used as an infrastructure to deliver network-specific
extension. Such extension can be developed by IBM, Independent
Software Vendors (ISVs), or any customer. All WebSphere BI for
FN extensions can exploit the customization program.
To participate in the customization process the message flows
and resource definitions that make up a solution have to be
collected after the flows are developed. Afterwards the values
that need to be adapted are replaced with the customization
variables. These can then be processed using the customization
program when the extension should run at a customer site.
This kind of processing is especially useful if it is planned to use
the message flows at multiple sites, for example when the
message flows are delivered as part of a product or a solution.

SUMMARY
WebSphere BI for FN provides a powerful customization program
that can be used to adapt message flows and the resources that
are needed to run the message flow to a target environment. This
program is used for product and solutions that need to be
deployed to different target environments, either within an
organization or if it is planned to sell a WebSphere MQ Integrator
Broker application to multiple customers.
Michael Groetzner
IBM (Germany) © IBM 2004

Sizing WebSphere MQ for z/OS CF structures

This article will explain a method used to calculate the sizes of
the application Coupling Facility structures; it is valid for both MQ
V5.2 with non-persistent messages and V5.3 with persistent
messages on shared queues.

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

The various books available from IBM refer to a logarithmic chart
one could use to estimate roughly the size of the structures, but
I haven’t found it very usable.
There is also a Web site that is dedicated to displaying the CF
structure sizes given the size and number of messages – www-
1. ibm.com/servers/eserver/zser ies/cfsizer/mq.html.
Unfortunately, it does not give the correct figures!
I have written to IBM and they acknowledge the fact that the
calculations behind the scene have not been updated for some
time. A PMR has been raised for this (January 2004).
The only source of useful information was the IBM SupportPac
MP16 entitled Capacity Planning and Tuning for WebSphere MQ
for z/OS and MP1D entitled WebSphere MQ for zOS V5.3 and
V5.3.1 Performance Report, which gave this formula for calculating
application structure sizes:
• Estimate the size of the message(s) including all headers (I

believe excluding the MQMD).
• Round up to the 256 byte boundary (subject to a minimum

size of 1,536).
• Multiply by the maximum number of messages.
• Add an overhead dependent on the CFCC level.
The following variables will therefore need to be obtained:
• A list of all the shared queues.
• For each queue the size of the messages.
• For each queue the highest queue depth reached.
• The CFCC level.

A LIST OF ALL THE SHARED QUEUES
A list of all the shared queues could be found by running the
CSQUTIL utility with the following command:

 40 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

DIS QL(*) QSGDISP(SHARED)

The only problem with this method is that the system might
contain a number of shared queues that have been defined but
are not, nor will ever be, actually used. So a more accurate
method is to use the SMF statistics because only queues that
have been used are listed.
Because SMF reports on all types of queues, the list will need to
be filtered.
Warning: I discovered the following issue with the SMF data. I
used the MXG product to report on all queues and summarized
them on an hourly basis; in addition, I wanted to separate shared
from non-shared queues. The reason for this is that the non-
shared queues were being looked at from a storage class and
pageset point of view, and as we know, shared queues’ messages
are stored in the CF.
In V5.2 a fix was applied (and carried forward into V5.3) by IBM
to resolve alias queues into their base name (APAR PQ49374).
Unfortunately, in doing so, the fix did not copy the other details of
the base queue like QSGDISP, CFSTRUCT, and STGCLASS.
This means that if the report summarizes on queue name, it will
appear twice – once as a shared queue and once as a non-
shared queue. This, too, has been raised as a PMR (January
2004).
Obviously, you will need to run the SMF extract over a period of
time in order to obtain a ‘master’ list of queues because some
queues might be used one day and not the next, and vice versa.

SIZE OF MESSAGES
The size of messages can also be obtained from the SMF
statistics. I would recommend that the queue definitions be
changed to reflect the 63KB (64512 bytes) shared queue
maximum message size rather than the default size of 4MB.
Also set the MAXDEPTH to the highest value it is likely to go to
rather than some arbitrary value.

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

QUEUE DEPTH REACHED
Finding the queue depth reached is a bit trickier. Surprisingly, the
SMF statistics do not hold this data, but I am hopeful that the next
release of WebSphere MQ for z/OS will.
In the meantime, the only way to obtain queue depth is either via
a vendor product (I did look at BMC’s Mainview product but did
not find the data) or via the following MQ command:

RESET QSTATS(*)

It’s best to run this as part of CSQUTIL because it is then possible
to store the output in a file for analysis; issuing the command at
the console will only flood the system log.
Be warned, however, that the RESET command does zeroize
the counters it displays.
Extract the output and format (via for example a REXX program)
into a space or comma-delimited CSV file, eg store as Date,
Time, Queue, Highest Queue Depth Reached.
You could also extract the MSGSIN and MSGSOUT fields
(representing the MQPUTs and MQGETs in the period). This file
needs to be matched with the list of shared queues.
In fact, if you are collecting a full day’s worth of SMF data, and
summarizing by the hour, then you could try to run the RESET
command on an hourly basis as well. To reduce the amount of
data, choose a typical day of the week and run it just on that day.
What you’re after is the highest queue depth reached.

CFCC LEVEL
The CFCC level is obtained via the following command:

D CF

CALCULATIONS
The easiest way is to use a spreadsheet and I have supplied one
which can be found on the Xephon Web site, at www.xephon.com/
extras/cfsizing.xls. The spreadsheet looks like this:

 42 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

(A) (B) (C) (D) (E) (F)
Shared Max Calc Highest CF Max
Queue Msg Msg Depth o/h Structure
Name Size Size Reached Factor Size

QueueØ1 5434 5632 276 1.3 2Ø2Ø762
QueueØ2 5Ø1Ø 512Ø 346 1.3 23Ø2976
QueueØ3 5Ø25 512Ø 477 1.3 3174912
QueueØ4 5434 5632 2393 1.3 1752Ø589
QueueØ5 5424 5632 1565 1.3 114583Ø4
QueueØ6 9934 9984 471 1.3 61132Ø3
QueueØ7 9Ø 1536 15 1.3 29952
QueueØ8 1Ø 1536 3 1.3 599Ø
QueueØ9 173 1536 2415 1.3 4822272
Queue1Ø 173 1536 3332 1.3 6653338
Queue11 15 1536 3524 1.3 7Ø36723
Queue12 6ØØ 1536 25Ø7 1.3 5ØØ5978
Queue13 2ØØØ 2Ø48 2135 1.3 5684224
Queue14 2Ø 1536 493 1.3 984422
Queue15 2Ø 1536 1Ø621 1.3 212Ø8Ø13
Queue16 2Ø 1536 1Ø13Ø 1.3 2Ø227584
Queue17 2Ø 1536 13812 1.3 275798Ø2

Totals 54515 141829Ø44

Column A is from the SMF statistics filtered for ‘shared’ queues
only.
Column B is from the SMF statistics. Here only the maximum
message size is considered.
Column C copies Column B and adjusts it to ensure that the
minimum size is 1,536 and that it is divisible by 256.
Column D is from the RESET QSTATS output.
Column E represents the CF overhead, which for level 12 is 30%.
Column F is derived by multiplying columns C*D*E.
If you wanted to, you could do the above on an hourly basis,
which will show how much CF storage is being used throughout
the day.

DEFINING THE STRUCTURES
The z/OS systems programmer will be able to define the CFRM
policy for each of the structures. Ensure that a reasonable ‘initial’

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

and ‘maximum’ size is provided and allow the structure to be
automatically increased (ALLOWAUTOALT : YES).
In the above example set the SIZE to around 150MB, and
INITSIZE to 75MB.
Although the operating system will increase the size of the
structures when the threshold (FULLTHRESHOLD : 85) is
reached, it is possible in a very busy system that the increase
won’t happen fast enough. This will result in the application
getting return code 2192.
Checking the meaning of this code (eg via the mqrc command)
gives:
MQRC_PAGESET_FULL
MQRC_STORAGE_MEDIUM_FULL

and it’s the second description that would be applicable in this
instance.
It may be found, however, that by the time the structure size is
checked there is plenty of room in it; this is purely because of the
time it takes to get the extra storage.
It may therefore be worthwhile setting the INITSIZE larger than
the expected average size in order to avoid this situation.
In addition, if there is more than one Coupling Facility, with each
one acting as a back-up for the other, ensure that the storage
actually in use (check the maximum possible as well) does not
exceed 50% of the available capacity (assuming the CFs are
equally balanced). This is to cater for a failover scenario when
one CF has to cope with the complete workload. Careful
measurement is required because several of IBM’s other flagship
products use the CF, including DB2, CICS, IMS, and now MQ.

MONITORING
There are several methods of monitoring available:
1 Manually by using the TSO panels. Use CFSTRUCT to list

all structures and press PF11 to show the following example
screen:

 44 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

CF struct name Status Failure time Type Size(KB) %Used Entries In use
*
STRUC1 ACTIVE APPL 2Ø224 74 7889 5914
CSQ_ADMIN ACTIVE ADMIN 1Ø24Ø 2 43Ø7 75
SYSSTRUC ACTIVE APPL 1Ø24Ø 1 2Ø25 34
STRUC2 ACTIVE APPL 3ØØØ32 99 8627Ø 8Ø6Ø8
TESTSTRUC1 ACTIVE APP 13568 1 6321 35
 ******** End of list ********

Note that the In use column is a measure of the number of
messages on shared queues, but not an exact one because
it depends on the size of the messages.

2 Using a vendor product.
3 SMF statistics.
4 Issuing command /D XCF,STRUCTURE,STRNAME=xxxx

where xxxx is the structure name (ie QSG name plus
structure name defined on the queue) and check the ACTUAL
SIZE field. Compare it with the SIZE value.

5 Using the MQ command DIS CFSTATUS(*)
TYPE(SUMMARY) to check the SIZEMAX, ENTSMAX, and
ENTSUSED values.

6 Using an automation tool to pick up the following message:
IXC585E STRUCTURE QSG1STRUC2 IN COUPLING FACILITY A12CF, 641
PHYSICAL STRUCTURE VERSION BA9B11EA 1BAC57Ø6,
IS AT OR ABOVE STRUCTURE FULL MONITORING THRESHOLD OF 85%.

This is followed by message IXC588I during structure increase
and IXC590I when it has been completed.

CONCLUSION
This article has shown one method of calculating the CF
application structures. It is, however, impossible to work it out
accurately because it is dependent on the workload at any one
time as well as message size.
As the available CF storage is likely to be less than the pagesets,
I would recommend that a reasonable maximum queue depth be
pre-assigned to each shared queue.

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Got an idea for an article for MQ Update? Contact
Trevor Eddolls at TrevorE@xephon.com to talk about
it. Alternatively, read a copy of our Notes for Contributors
at www.xephon.com/nfc. We are waiting to hear from
you.

As queues are changed from local to shared queues, recalculate
the CF structure sizes. In addition, when the CF level changes,
take into account the increased system overhead.
Calculating a ‘maximum size possible’ gives an indication of
whether the CF is able to hold that size in the case of system
failures and peak periods. Be prepared!
Ruud van Zundert (ruudvz@btclick.com)
Independent Consultant (UK) © Xephon 2004

MQ news

BMC Software has announced Version 3.2 of
InTune, its MQ application tuning software.

InTune provides application-specific tuning
information allowing users to improve the
performance of applications in traditional and
Parallel Sysplex mainframe environments. The
solution allows users to view the performance
metrics of their WebSphere MQ applications,
enabling them to identify the source of
application inefficiencies.

The new WebSphere MQ application support
reports detailed performance statistics and
activity associated with the WebSphere MQ
queues and queue managers.

For further information contact:
BMC Software, 2101 City West Blvd,
Houston, TX 77042-2827, USA.
Tel: (713) 918 8800.
URL: http://www.bmc.com/products/
proddocview/0,2832,19052_19429_
23398_1363,00.html.

* * *

Candle has announced two new PathWAI
solutions that provide the first management
support for all IBM WebSphere integration
brokers, including the new WebSphere
Business Integration Message Broker V5.0.
PathWAI XE for WebSphere Integration
Brokers V120 is a performance tuning and
analytical tool that provides a high level of
broker and message flow performance.
Additionally, PathWAI Dashboard for
WebSphere Business Integration offers a single
integrated view of an entire IBM message
broker and WebSphere MQ environment.

The new Candle offerings provide visibility into
performance across an entire application or
broker environment, enabling users to attain

higher levels of process efficiencies and
availability, say the company. WebSphere
brokers function as communication hubs to
transform and route data.

The WebSphere brokers identify new and
updated events, translate the data into the
appropriate format for each system and ensure
that the messages are distributed immediately.

For further information contact:
Candle, 100 N Sepulveda Blvd, El Segundo,
CA 90245, USA.
Tel: (310) 535 3600.
URL: http://www.candle.com/www1/cnd/
portal /CNDportal_Channel_Master/
0,2258,2683_2734,00.html.

* * *

Rogue Wave Software, a division of Quovadx,
has announced Version 2.0 of its Lightweight
Enterprise Integration Framework (LEIF).
LEIF is a framework for creating service-based
applications using new or existing C++ code.

LEIF eliminates barriers normally associated
with transitioning to a Web services environment
by allowing for complex messaging patterns and
communication between business partners,
including the use of WebSphere MQ
connections between applications written in C/
C++. This enhanced messaging capability
allows developers to model virtually any
communication pattern, including event
notification and server-initiated messages.

For further information contact:
Rogue Wave, 5500 Flatiron Parkway, Boulder,
CO 80301, USA.
Tel: (303) 473 9118.
URL: http://www.roguewave.com/products/
leif.

x
xephon

	Interpreting WebSphere MQ messages
	Configuring a Web client to show a list of authorized users while transferring work items
	Customizing WebSphere MQ Integrator Broker message flows
	Sizing WebSphere MQ for z/OS CF structures
	MQ news

