
© Xephon Inc 2004

June 2004

60

In this issue

3 ESQL debugging in IBM
WebSphere Business
Integration Message Broker
V5.0 toolkit

9 Message warehousing with
WebSphere MQ Integrator
Broker and DB2 UDB

22 MQJavaRoundTrip: a Java-
based performance tester

39 A command server for
MQMONNTP

45 July 2000 – June 2004 index
47 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.

Printed in England.

Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Nicole Thomas
E-mail: nicole@xephon.com

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in the
UK; $380.00 in the USA and Canada; £261.00
in Europe; £267.00 in Australasia and Japan;
and £265.50 elsewhere. In all cases the price
includes postage. Individual issues, starting with
the July 2000 issue, are available separately to
subscribers for $33.75 (£22.50) each including
postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the rate
of $160 (£100 outside North America) per
1000 words and $80 (£50) per 100 lines of code
for the first 200 lines of original material. The
remaining code is paid for at the rate of $32 (£20)
per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

ESQL debugging in IBM WebSphere Business
Integration Message Broker V5.0 toolkit

This article is aimed at people with some previous working
experience and knowledge of using IBM MQSeries Integrator
V2.1 and WebSphere MQ products. Additional knowledge of the
Agent Controller and Visual Debugger is useful. WebSphere
Business Integration Message Broker V5.0 will be referred to as
Message Broker V5.0 in future in the article.

ESQL debugging is a new, previously unavailable, feature present
in Message Broker V5.0. ESQL debugging is done in the Debug
perspective. It is very useful especially for flows containing
complex and large amounts of ESQL code. Various uses and
features of the ESQL debugger will be discussed in the following
sections.

The V5.0 BVTMain message flow is used in this article for
illustrative purposes, with the assumption that it exists in the
workplace. The flow contains a compute node with the following
ESQL code:

CREATE COMPUTE MODULE "v5.ØBVTMain_Compute"

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 DECLARE origSharePrice INTEGER 1;

 DECLARE I INTEGER 1;

 DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

 WHILE I < J DO

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I = I+1;

 END WHILE;

 SET origSharePrice = InputRoot.XML.SP1.Price;

 SET OutputRoot.XML.SP1.Company='Non-Existent Ltd';

 SET OutputRoot.XML.SP1.Company.(XML.Attribute)ID='NEØØ1';

 SET OutputRoot.XML.SP1.Address1='1 Long Street';

 SET OutputRoot.XML.SP1.Address2='Bigtown';

 SET OutputRoot.XML.SP1.Address3='Greenshire';

 SET OutputRoot.XML.SP1.Address4.Country='UK';

 END;

END MODULE;

 4 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

— see Working with Messages v2.1 book for reference —

(Note: the code given above is for illustrative purposes only.)

REQUIREMENTS

The following set-up is required before proceeding:

1 A configuration manager created with its queue manager
and listener running.

2 A broker created with its queue manager and listener running.
(Less set up is required if the configuration manager and
broker share the same queue manager and listener.)

3 A domain connection connected to the configuration manager
and a broker to deploy to in the toolkit.

4 A deployed message flow to debug.

5 An agent controller installed and running on the machine
where the broker is installed.

GETTING STARTED

To get started:

1 Once the message flow has been deployed, open the flow
debug perspective – Window/Open Perspective/Other.
Select Flow Debug from the list and click OK. By default a
debug perspective will open along with the flow debug
perspective (ESQL debugging is done in the debug
perspective). If it does not, the debug perspective will open
when the user steps into ESQL code in the message flow.
The default behaviour can be changed from the preferences
menu – select Window/Preferences. Select Flow Debug
from the left pane. Here the user can choose whether to
Enable ESQL source debugging or not by default.

2 Attach to the flow run-time engine of the deployed message
flow. Click on the Attach to Flow runtime toolbar button.

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Select localhost and click Next. Select the flow engine
where the flow resides from the list, and click Finish.

3 Double-click the message flow in the Flow Debug pane to
open the message flow in the flow editor pane if it is not
already open.

4 Add a breakpoint before the compute node (or other nodes
with ESQL) that contains the ESQL code in the message flow
as shown in Figure 1.

5 Start the message flow if it is not already started and put a
message on the queue of the input node (See USEFUL
TITBITS section at the end of the article). When the message

Figure 1: Add a breakpoint and step into the compute node

Figure 2: The debug perspective

 6 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

gets to the breakpoint before the compute node, the user can
step into the compute node, as shown in Figure 1.

6 In the Flow Debug pane click the Step Into Source Code
button. This will open the debug perspective if it is not already
open and display the ESQL source code.

THE DEBUG PERSPECTIVE

Figure 3: Debug pane

Figure 4: Columns and breakpoints

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

In the debug perspective (see Figure 2):

1 The Debug pane gives details about the Data Flow Engine
process id, the broker, message flow, and the current
position of the ESQL debugger in the ESQL code (see Figure
3).

2 The user can add breakpoints to the ESQL code by right-
clicking on the column next to the ESQL statement where the
breakpoint is desired and select Add Breakpoint. Alternatively
a double-click can also be used to add a breakpoint. The
column and breakpoints are shown in Figure 4.

3 Breakpoints can also be added to the ESQL source code
when it is written and before attaching to the flow run-time
engine. It is quite useful to be able to add the ESQL
breakpoints dynamically during debugging, and it provides
great flexibility and ease of use.

4 Once breakpoints have been added, the user can step
through the ESQL source code with the debugger, stopping
at each breakpoint. The user has similar actions to choose

Figure 5: Variables and breakpoints

 8 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

from in the right-hand corner of the Debug pane, which
include Play, Suspend, Terminate, Step Into, Step Over, and
Step Return.

5 The Variables pane shows and displays the construction of
the message as it moves through the ESQL code breakpoints.
The user is able to see the construction of variables used in
the code, and can see the manipulation of the message.
Perhaps the most important feature is that the user has the
ability to modify the value of a variable in debug mode. As
shown in Figure 5, the user can right-click on a variable in the
Variables tab and select Change Variable Value. This is
quite useful because different values can be used during
debug mode to check the output. This saves the user having
to run another debug cycle to test different values. The
Breakpoints tab displays a list of the breakpoints and their
position in the code, as shown in Figure 5.

6 Once the message has passed through the breakpoints in
the ESQL code, the message will exit the compute node
displaying the message flow in the flow debug perspective
and move to the next breakpoint in the message flow, if there
are any.

7 The Outline pane gives an overview of where the user is in
the ESQL code.

8 The Console pane is standard with the debug perspective
and allows the user to interact with the running program.
(Note: this is not within the scope of this article.)

ESQL debugging is a very powerful and dynamic feature in
Message Broker V5.0. The ability to be able dynamically to
debug large ESQL code on the spot by adding breakpoints and
altering variable values in the code is probably one of the most
significant uses of the ESQL debugger. It provides a major
capability for visual debugging as a whole.

USEFUL TITBITS

It can be useful to know that:

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

1 The underlying IBM WebSphere MQ program provides a
useful command called amqsput.exe, which can be run
from the command line. The user can use this to put a
message on a queue.

2 ESQL written in the ESQL editor follows a colour scheme
(not visible in this article). There is a separate colour for
comments, keywords, user code, etc. This makes it easier
to read the ESQL code.

3 The ESQL editor also has another feature, called Content
Assist. While typing in the ESQL editor, the user can stop
halfway through a word and press Ctrl and Space. This
displays a list of all possible keywords to select from, based
on the incompletely typed word.

Rohit Bhasin
Software Engineer, WebSphere MQI GUI Test Team
IBM Hursley (UK) © IBM 2004

Message warehousing with WebSphere MQ
Integrator Broker and DB2 UDB

INTRODUCTION

WebSphere MQ is IBM’s messaging product. This product features
an asynchronous communication technique, via messages, that
decouples the application sending the messages from the
application that receives and processes the information. Between
those applications there can be a message broker like WebSphere
MQ Integrator Broker that routes or reformats the messages that
are interchanged between the sending and the receiving
application. The broker may even translate the protocols between
these applications. In such a system, as shown in Figure 1, the
broker is usually needed for both directions – from the sending
application to the receiving application and also when the
receiving application replies to the request message.

 10 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Figure 1: Message broker

If the sending application and the receiving application belong to
different organizations, it is necessary to be able to determine
which messages have passed the broker and the status of the
messages. To determine which messages passed the broker,
auditing capabilities are required. Depending on the complexity
of the processing in the broker and the kind of messages that are
interchanged between both applications, it must be possible to
determine the actual state of a message. One example where
this is required is the WebSphere Business Integration for
Financial Networks product (abbreviated to WebSphere BI for
FN) – for further details see http://www.ibm.com/software/
integration/wbifn. This product consists of a base part that
contains common functionality required on top of WebSphere
MQ Integrator Broker to deliver extensions to the market. One
such extension is the Extension for SWIFTNet (ESN). This
extension allows applications to connect to the Secure Internet
Protocol Network (SIPN) provided by SWIFT (Society for
Worldwide Interbank Financial Telecommunication). Messages,
for example SWIFT FIN messages, can be exchanged across
this network. The exchange of FIN messages is based on a
complex session protocol.

A simplified overview of the SWIFT FIN processing over the
SIPN is shown in Figure 2. In this Figure, it can be seen that
SWIFT FIN messages arrive at a component called Interface
Layer Client. This component stores the message data in a
database. The reason for not forwarding the message directly is
that the access to the SIPN is twofold:

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• Sending FIN messages is allowed only if a logical session,
represented by a SWIFT logical terminal (LT), is established.

• If the logical session is established, only a defined number
of messages can be sent to the SIPN while the
acknowledgements (ACKs) are still outstanding.

In addition to the translation of the message formats, Figure 2
also shows that a protocol conversion is required. Access to the
SIPN is based on a request/reply model while the FIN processing
is based on asynchronous correlated request messages. For
further details on the SWIFT FIN processing on the SIPN see
either information from SWIFT or the documentation about
WebSphere BI for FN ESN.

The messages interchanged between the financial application
and the SWIFT network represents, for example, high-value
payments. For a bank it is essential to know whether the payment
is already accepted and stored in the database, whether it is
already sent to the SIPN, or whether the message is already
acknowledged by the network.

When searching for a specific message, a user usually doesn’t
know technical criteria like the WebSphere MQ message id that
identifies the message. Instead, the user wants to search using
a criterion that is part of the message, for example, a specific

Figure 2: WebSphere BI for FN ESN FIN processing

 12 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

amount, the currency, or the addressee. To allow full flexibility the
search criteria should be definable by the user.

To determine which messages have been processed or in which
state the messages are, all messages should be stored in a
message warehouse with their corresponding state. In the
message warehouse, a user must be able to search whether a
message that matches certain criteria has already been processed
or whether the message is currently being processed – for
example accepted by the broker, sent to the external network,
acknowledged by the external network, or similar.

There are different techniques that allow for the building of such
a message warehouse. This article describes different ways to
achieve this with WebSphere MQ Integrator Broker and DB2
UDB, and discusses advantages and disadvantages of the
different methods.

DIRECT METHOD

To allow queries for specific information about messages, the
simplest method is to create a database table that contains
predefined search criteria.

The message flow that is processing the messages is extended
with a WebSphere MQ Integrator Broker database node that
extracts the relevant information from the message and stores it
as a row in the database table. This row can then be updated as
the message continues processing through the various stages in
the broker. To allow this, the row may require some technical
criteria in order to identify the correct row in the database table.
Such a technical criterion could be the WebSphere MQ message
id from the message descriptor (MQMD) of the first incoming
message. It must be passed through the complete processing
chain.

When searching for a message, a user can specify search
arguments based on the fields stored in the database table. An
application can take these search arguments and execute the
necessary SQL SELECT statement that checks for entries with

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

the appropriate values. Depending on the results the user can
identify the stage of the processing of his individual message and
may take some action, if required. Such a process is shown in
Figure 3.

There exist some variations in how and when the data is stored,
perhaps with some transformations of the values in the message
and the format that these values are stored in the message
warehouse.

The direct method is easy to understand and very easy to
implement. It requires either that the message format be defined
in the message dictionary, for example in the WebSphere MQ
Integrator Broker Message Repository Manager (MRM), or that
the message be in a self-defined format, for example Extensible
Mark-up Language (XML). This is necessary to be able to parse
the messages flowing through the broker and to access the
appropriate fields of the message that need to be stored in the
database table. Parsing the message can add processing time
and a processing delay if the message does not need to be
parsed.

Storing only the relevant parts used for searching for messages
in such a database table is very efficient in terms of the amount
of data and the time required for storing entries in the message
warehouse. Also, searching for specific messages in such a

Figure 3: Message warehouse

 14 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

database table could be relatively cheap, given that indexes can
be used for common search patterns.

Even if simple and optimized for performance, this method has
some drawbacks. It is very inflexible if search criteria need to be
added or the database table should be used to store different
kinds of messages. When changing a search criterion, either by
changing an existing one or adding a new one, everything must
be changed, including:

• The message flow that inserts the data into the database
table.

• The definition of the database table.

• The application used to search for specific messages.

Each of the search criteria is defined at development time. A user
has no opportunity to use others fields at search time to define
his selection criteria.

In addition, there are problems with entries already existing in the
database table. These do not have any values for added criteria,
and a transformation of the existing criteria to the new ones may
not be possible. They can also not be rebuilt because the
messages themselves no longer exist. There are ways to
reprocess messages stored in a message audit database, but
this usually requires additional programming.

If there is the need to store information for different kinds of
message, the direct method requires either many optional fields
to be added into the database table or new tables. This makes
the design much more complex or leads to inconsistent search
criteria. Then, there is no longer a common format for the data
and the search arguments.

WEBSPHERE MQ INTEGRATOR BROKER WAREHOUSE NODE

Another way to provide message warehouse functionality is by
using the Warehouse node provided by WebSphere MQ Integrator
Broker. This node is a specialized database node that can be

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

used as is to store the whole message or parts of the message
in a database table. Storing parts of the message corresponds to
the method described in the previous section.

The whole message is stored by converting the current message
into a stream of binary data. This binary data is then stored in a
BLOB column in the table. Together with this binary data, a
timestamp can be stored. This method is relatively fast because
the broker does not need to parse the message. There is also the
advantage that the format of the message data does not have to
be defined to the broker.

This process adds a large amount of unnecessary data to the
database table. Searching within this data is not trivial, because
searching within BLOB data itself is not supported by DB2.
Therefore, any search can be done only by using a separate
program that post-processes the messages in the message
store. This structure is shown in Figure 4.

After the data is inserted into the message store, a second
process is required that regularly scans the message store. It
retrieves and processes the new records. Processing means
that the program needs to parse the message data, extract the
fields that should be used as search criteria, and insert them into
a message warehouse database table as in the first method. The

Figure 4: Message warehouse using post-processing

 16 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

processing can be decoupled from the actual processing of the
message, eg at off-peak times when sufficient processing capacity
is available. Similar to the direct method this method is easy to
implement and searching the post-processed data can be very
effective.

Having the complete data in the database allows the search
criteria to be altered, for example by reprocessing the message
data in the database table. Changes to the database layout must
be synchronized with the changes to the search application. The
message flow is not affected by any such change.

With this method there are also some drawbacks. The most
important one is that there is a time delay until the information is
available for searching. Another disadvantage is that the post-
processing program must be capable of parsing the message. If
this is also required in the WebSphere MQ Integrator Broker
environment, there are potentially two different locations where
the message format has to be defined. If different types of
messages are stored using this method, the post-processing
program must be able to parse different message formats.

COMBINED METHOD

It is possible to combine the WebSphere MQ Integrator Broker
Warehouse node method with the direct method described in the
previous section. Using this method, the message flow already
extracts search criteria from the message and stores them
together with the complete message data in a database table.
This combines some of the advantages, but also some of the
disadvantages, of both methods.

This method generates good access performance to the search
criteria and is easy to implement. If a new search criterion is
needed, the message data is still available to be reprocessed.

On the other hand, changes to the search criteria require that
changes to the message flow, the search application, and the
database layout have to be synchronized. If there are different
message types that need to be stored in the message warehouse

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

table, different search criteria are usually needed. This can result
in a lot of unused fields in a row. The search criteria are already
pre-defined to the fields extracted by the message flow before
the entry is added to the table. To be able to extract the values,
the message layout must be defined to the broker.

The amount of data that is stored in the message warehouse is
much more than in the direct method because the complete
message data is stored in addition to the search criteria.

USING DB2 XML EXTENDER

In contrast to the methods above, WebSphere BI for FN defines
a common message format for its message warehouse. All
messages of any message type have to be converted into this
common message format and will then be stored in the message
warehouse database table. The format used is the Extensible
Mark-up Language (XML).

XML is a simple, very flexible, text format to store structured data
like financial transactions, addresses, and so on. It is easy to
learn even for people who are not programmers. Although XML
is not meant to be read by humans, people can read it using their
favourite text editor. Take a look at the following simple example.
It shows how XML can be used to store people’s addresses:

<address>

 <forename>Mike</forename>

 <surname>Smith</surname>

 <street>Oak Avenue 2</street>

 <postal>12345</postal>

 <city>Oakville</city>

 <state>Oakland</state>

</address>

The XML syntax uses tags to represent the structure and values
of the data. In the example, an address consists of the forename,
surname, street, postal, city, and state information. The value of
the forename is Mike, because it is enclosed by the start tag
<forename> and the end tag </forename>.

WebSphere BI for FN uses XML for its common message format

 18 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

because it is standardized, easy to use, and many people know
it today. Additionally, many off-the-shelf tools are available to
handle this format, giving customers the choice of tool with which
to accomplish their tasks.

Nevertheless, to provide customers with a running solution out-
of-the-box, WebSphere BI for FN uses the off-the-shelf tool DB2
XML Extender (for more details see http://www.ibm.com/software/
data/db2/extenders/xmlext/index.html) to offer the search
functionality for user-defined search criteria.

The message warehouse component of WebSphere BI for FN
consists mainly of three components – a message flow to convert
the incoming message into XML, a database table to store the
converted message, and the DB2 XML Extender, or other XML
tools, to search for specific information within the stored messages.

The message flow uses the ability of the WebSphere MQ
Integrator Broker to convert messages from any parser domain
into another parser domain. This is done within a compute node
by changing the parser domain of the output message to XML
using the following two ESQL statements:

SET OutputRoot.MQRFH2.Format = 'XML';

SET OutputRoot.MQRFH2.mcd.Msd = 'xml';

Each child of the input message, represented in WebSphere MQ
Integrator Broker as InputRoot, can have its own parser, for
example the message descriptor (MQMD), request, and the
formatting header (MQRFH2). To ensure that each child element
of InputRoot is correctly copied to the XML part of the output
message OutputRoot.XML.Msg, each child element must be
copied separately. This can be done with the following ESQL
statements:

DECLARE I INTEGER;

SET I = 1;

DECLARE C INTEGER;

SET C = CARDINALITY(InputRoot.*[]);

WHILE I <= C DO

 SET OutputRoot.XML.Msg.*[I] = InputRoot.*[I];

 SET I=I+1;

END WHILE;

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

If the parser domain of a child element is not known by WebSphere
MQ Integrator Broker, it cannot be converted into XML. Such
child elements are copied as BLOB elements into the output
message.

By using this approach it is possible to provide a message
warehouse that is independent of the message types that should
be stored. It also means that an Extension of WebSphere BI for
FN needs to provide its own parser or MRM definitions if it
handles message types not basically known by WebSphere MQ
Integrator Broker.

After the message is converted into XML format it is stored in a
database table. This database table contains an XMLCLOB
column to support the DB2 XML Extender. XMLCLOB is a user-
defined data type provided by the DB2 XML Extender.

Storage of the message in the database table is done in the
compute node. The XML part of the message is put into the
database table. Before this can be done, that part of the message
must be converted into a flat text string. This can be accomplished,
for example, with the following ESQL statements:

DECLARE chXmlMsg CHARACTER;

SET chXmlMsg = CAST(BITSTREAM(OutputRoot.XML) AS CHARACTER

 CCSID 12Ø8

 ENCODING MQENC_NATIVE);

Now, the field chXmlMsg contains the whole original message
converted into XML surrounded by the start tag <Msg> and the
end tag </Msg>. Note that the surrounding XML tag is necessary,
because the XML specification requires that an XML document
be allowed to have only one root element. The data can then be
stored in the XMLCLOB column using an INSERT statement.

The great benefit of this approach is that all messages are stored
in one common message format and the user is able to use the
DB2 XML Extender to search for messages containing any kind
of search criterion. The following example shows how many
messages were originated by user Mike in the Message
Warehouse database table DNI.DNI_MWH_OU1:

 20 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

SELECT COUNT(*) FROM DNI.DNI_MWH_OU1

WHERE DB2XML.extractChar(MWH_XML_MSG, '/Msg/MQMD/UserIdentifier') =

 'Mike'

Using this method, a user can define searches on any field in the
message. The search criteria do not have to be pre-defined at
development time. To allow for this, the user must know about the
structure of the messages he is searching for.

Furthermore, no additional programming logic is needed to
query the message warehouse for specific information. All
queries can be performed using just SQL.

The drawback with this method is that additional processing time
is needed to convert the messages into XML format, and that no
dedicated database table columns exist for a fast search. The
latter problem can be solved using side table definitions for the
DB2 XML Extender at the cost of insert and update performance.
Side tables are additional database tables that the XML Extender
creates to improve performance when searching elements or
attributes in an XML column. A Document Access Definition
(DAD) file describes which XML elements have to be extracted
and which columns they are stored in in the side tables. The
search performance can further be improved by indexing the
most frequently-used columns of the side tables. This allows
users to optimize the search performance for their specific
search criteria.

Another disadvantage of this method compared with the previous
methods is that the amount of data stored is much greater. The
main reason is that most data used for messages is in a structure
that is very compact. XML usually requires much more space
because each field is surrounded by a start tag and an end tag.

COMMON CHARACTERISTICS

The message warehouse methods described above for building
the message warehouse for messages processed in WebSphere
MQ Integrator Broker consider just storing the information in the
message warehouse and searching in the message warehouse.
To search for entries within the message warehouse, users need

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

to provide their own program. After the search is complete a user
may want to perform actions to resolve a problem. An example
could be when a user detects that his message has not yet
arrived at the required destination, for example because the
session to that destination is not available. In this case the user
may decide to use message administration functions to route the
message to the destination via a different path . In case of a
payment, the message may be sent using a fax instead of the
SWIFT network. Such types of application need to be interfaced
with the search program for the message warehouse. The
interface between such programs usually uses some technical
attributes. Therefore, such attributes, perhaps with some state
information, have to be stored in the message warehouse
independently of the chosen solution.

Another common issue for all solutions is that the amount of data
is continually growing. Specific messages are usually looked for
shortly after the message has been sent. After a defined time, the
data in the message warehouse is usually no longer used to find
the status of individual messages. Instead the data may be used
to get statistical data, such as the total amount of money
transferred to a specific addressee. Depending on the utilization
of the information in the message warehouse, some maintenance
needs to be carried out on the data. This requires, for example,
archiving the message warehouse data for later use or deleting
data that is no longer used for searching.

SUMMARY

There are different methods for building a message warehouse
in the WebSphere MQ Integrator Broker environment and using
DB2 UDB. Each of them has its own advantages and
disadvantages. A user can make the choice between these
different methods based on his requirements for performance,
flexibility, and associated costs. As it stores only the minimum
required information, the direct method is the fastest. The
method provided by WebSphere BI for FN’s message warehouse
nodes using DB2 XML Extender is the most flexible.

Michael Groetzner
IBM (Germany) © IBM 2004

 22 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

MQJavaRoundTrip: a Java-based performance
tester

WHY USE IT? (PROBLEMS SOLVED)

When rolling out a new message queueing deliverable or prototype
that involves the movement of messages between queues, it
would be advantageous to be able to both performance test and
stress test the new system or prototype. This could be particularly
useful when implementing a WebSphere Business Integration
Message Broker solution on top of WebSphere MQ. When using
a message flow within WBIMB, which reads a message from an
input queue, performs some operation(s) on that message, and
then places it onto an output queue, it is often difficult to predict
exactly how quickly messages can be processed.

The performance of such flows is often a key requirement, and
being able easily to measure performance outside of the
production environment is a major enabler of a good estimate.

The MQJavaRoundTrip application is a simple Java-based tool
that connects to WMQ, puts a message in a queue, and waits for
a reply on another queue, while reporting throughput during the
test.

MQJavaRoundTrip will, therefore, allow a more scientific figure
of potential throughput to be obtained.

HOW TO USE IT

Before executing MQJavaRoundTrip, set-up information needs
to be obtained, such as the name of the queue manager your
application is connected to, the queues messages are put to and
got from by the client, and the input message to be used. Note:
some systems may have several different input messages –
MQJavaRoundTrip uses one message only, and is intended to
be used to obtain ballpark figures. It may be necessary to run

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

MQJavaRoundTrip several times, specifying a different input
message each time in order to obtain a more accurate throughput
figure.

Note: if a usable MQ message is not yet available, for example
the raw data is available but required message headers (MQRFH2)
have not been set, a useful tool to allow the simple construction
of an MQ message is RFHUTIL – available from IBM’s WebSphere
MQ SupportPac Web site at http://www-306.ibm.com/software/
integration/support/supportpacs/category.html#cat2 – IH03.

MQJavaRoundTrip is run from the command line and a number
of arguments are required. A detailed breakdown of the arguments
can be found in the section ARGUMENT BREAKDOWN.

When running MQJavaRoundTrip, a number of decisions need
to be made. MQJavaRoundTrip is a multithreaded application in
that it can spawn several client threads capable of producing
messages and putting them in the input queue and retrieving the
subsequent reply from the output queue. Deciding on the number
of threads to run depends largely on the desired findings. If the
maximum possible throughput is sought, it may be necessary to
run MQJavaRoundTrip several times with increasing numbers of
threads until the throughput rate doesn’t increase. This will be the
point at which the application being tested is running at its full
potential.

It is also necessary to decide on how to connect to the queue
manager: whether to connect directly to the API using binding
connections or whether to connect as an MQ client.

The persistence of the message, along with other message
specifics such as the character set of the character data within
the message and the encoding of the numeric data within the
message, needs to be specified.

These decisions should be made based on what a fully-working
version of the system would use. For example, if within the end
system the connection to the queue manager would be made via
an MQSeries Java Client, then a client connection should be
used for MQJavaRoundTrip.

 24 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Once MQJavaRoundTrip has been executed it will print out
confirmation of the connection to the queue manager and
queues. Depending on the interval argument specified,
MQJavaRoundTrip will then begin intermittently to print out the
message rates per second. Once the test has completed, a final
printout of average throughput will be produced. Note: this
doesn’t take into account warm-up of the messaging transport.

ARGUMENT BREAKDOWN

Running MQJavaRoundTrip with no arguments specified displays
the following output. This details all of the possible command line
arguments:

usage: java MQJavaRoundTrip <args>

 Controller properties:

 -n <clients> (parallel threads)

 -d <duration> (in seconds - 0=never stop)

 -z (quiet, minimal output)

 -v <interval> (statistics interval)

 Queue manager properties:

 -qm <qm> (queue manager name)

 -i <queue> (put requests to)

 -o <queue> (get replies from)

 Connection properties for Bindings :

 -b (use local bindings connection)

 -t (use trusted/fastpath bindings, must use -b too)

 Connection properties for TCP/IP client :

 -h <hostname> (QM machine)

 -c <channel> (QM svrconn - defaults to SYSTEM.DEF.SVRCONN)

 -p <port> (QM listener port - defaults to 1414)

 Message properties:

 -f <file> (user data to send)

 -x (use transactions one-per-message)

 -s (use persistent messages)

 -mc (message character set)

 -me (message encoding)

 -mf (message format)

 -id (use get-correlation-id from sent-mesg-id)

 -gid (fixed correlation id per thread)

 -w <timeout> (message wait timeout in seconds)

where:

• -n <clients> allows the user to specify the number (the

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

default is 1) of client threads that the application should
spawn. Each thread will execute its put-get loop in parallel.

• -d <duration> allows the user to specify in seconds how long
the test should run. Once the duration has passed, the
application will terminate and remove any handles on queues
and queue managers. By specifying a value of 0, the test will
run indefinitely.

• -z allows the user to specify that only the final average
throughput rate should be output.

• -v <interval> allows the user to specify in seconds the interval
at which the throughput rate is output. The default value is 10
seconds.

• -qm <qm> allows the user to specify which WebSphere MQ
queue manager to connect to.

• -i <queue> allows the user to specify the name of the queue,
in the specified queue manager, to which MQJavaRoundTrip
will put its requests.

• -o <queue> allows the user to specify the name of the queue,
in the specified queue manager, from which
MQJavaRoundTrip will wait for replies.

• -b allows the user to specify whether to connect to the queue
manager through local bindings (the default is via TCP/IP
client connections). This gives faster results but is only
applicable if the client is on the same hardware as the queue
manager.

• -t allows the user to specify whether the binding connection
being used is to be trusted, also known as fastpath bindings.
This option will increase the performance at the cost of
reduced safety checking. It is not usually recommended for
a production system, but may help with load generation from
a performance testing client.

• -h <hostname> allows the user to specify the name/IP
address of the machine that is hosting the queue manager.

 26 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

This is relevant only for client connections. Note: if the –b flag
is specified all client connection settings are ignored.

• -c <channel> allows the user to specify the channel to be
used when connecting to the queue manager (the default is
SYSTEM.DEF.SVRCONN). This is relevant only for client
connections. Note: if the –b flag is specified all client
connection settings are ignored.

• -p <port> allows the user to specify which port to use when
connecting to the queue manager (the default is 1414). This
is relevant only for client connections. Note: if the –b flag is
specified all client connection settings are ignored.

• -f <file> allows the user to specify the full path of the file to be
used as the basis of the request message. This should be in
the format of x:\temp\filename.msg.

• -x allows the user to specify that messages should be put and
got transactionally (the default is to send non-transactionally).
If transactional, the client loop will be: put, commit, get,
commit.

• -s allows the user to specify that sent messages should be
persistent (the default is to send non-persistent).

• -mc <ccsid> allows the user to explicitly specify which
character set identifier (CCSID) is set on sent messages (the
default is to use the CCSID of the queue manager). See the
WebSphere MQ Using Java manual for details if this applies
to your scenario.

• -me <??> allows the user to specify which representation
should be used for numeric values within the message data.
See the WebSphere MQ Using Java manual for details if this
applies to your scenario.

• -mf <format> allows the user to specify to the receiving
application (the application reading the message from the
input queue) the nature of the data within the message.
Typical examples are MQRFH2, MQSTR, or XML. See the

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

WebSphere MQ Using Java manual for details if this applies
to your scenario.

• -id informs the tool that replies will have their correlation-id
set to the message-id of the request message. In order for
this to work the server process under test must adhere to the
same policy (ie it must copy the correlation-id into place from
the message-id). The default is to do nothing with correlation
identifiers.

• -gid informs the tool to generate a correlation-id for each
thread and specify it in the request message. Reply messages
must then have the same correlation-id. In order for this to
work the server process under test must adhere to the same
policy (ie it must duplicate the correlation-id of the request
message).

• -w allows the user to specify how long the tool should wait for
a reply to the message it originally put in seconds. If the
application being tested is likely to take 10 seconds to
process a single message the wait time should be specified
as ~10 seconds. (the default is 5 seconds).

An example of how to use MQJavaRoundTrip:

java MQJavaRoundTrip -n 10 -d 60 -qm TEST_QM -i IN.QUEUE -o OUT.QUEUE -h

127.0.0.1 -c JAVA.CHANNEL -p 1414 -f inputmessage.xml -x -s -id

This will run for 60 seconds with 10 threads connecting via TCP/
IP port 1414 to TEST_QM (hosted on 127.0.0.1). They will put
persistent, transacted messages onto IN.QUEUE and wait for
replies from OUT.QUEUE. They are expecting those replies to
have a correlation-id matching the message-id of the request

CAVEAT

This program is an excellent starting place for investigating the
potential throughput of WebSphere MQ applications that move
messages from one queue to another. Take care that the settings
of this tool do match the scenario you are expecting. Incorrectly
specifying message persistence, bindings connections or suchlike
can give markedly different performance, both higher and lower.

 28 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

CODE

MQJavaRoundTrip consists of two classes. The first,
MQJavaRoundTrip, is the main class and as such contains the
main method required for executing a Java application.

This class contains all of the code for setting up the connections
to the queues and queue manager etc. The second class,
ClientThread, is instantiated by the MQJavaRoundTrip class x
number of times, where x is the number of threads specified by
the user.

It is then the individual instances that do the actual putting and
getting to the queues.

MQJavaRoundTrip
import com.ibm.mq.*;

import java.io.*;

import java.util.ArrayList;

import java.util.Properties;

import java.util.Iterator;

public class MQJavaRoundTrip extends Thread {

 private static MQJavaRoundTrip instance = null;

 private boolean shutdown = false;

 private final ArrayList workers = new ArrayList();

 private Thread stats = null;

 final Properties arguments = new Properties();

 private byte[] inputFileBytes = null;

 private final java.text.NumberFormat numberFormat =

 java.text.NumberFormat.getInstance();

 boolean verbose = true;

 private MQJavaRoundTrip() {

 super("MQJavaRoundTrip");

 numberFormat.setMinimumFractionDigits(2);

 numberFormat.setMaximumFractionDigits(2);

 numberFormat.setGroupingUsed(false);

 }

 public static MQJavaRoundTrip getInstance() {

 if (instance == null) {

 instance = new MQJavaRoundTrip();

 }

 return instance;

 }

 void signalShutdown() {

 shutdown = true;

 interrupt();

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 }

 public static void main(String args[]) {

 getInstance().parseArguments(args);

 getInstance().start();

 }

 public void run() {

 try {

 {

 if (verbose) System.out.println("Testing settings");

 MQQueueManager qm = getQueueManagerConnection();

 if (verbose) System.out.println("Connection to QM OK");

 MQQueue putQueue =

 qm.accessQueue(

 arguments.getProperty("i"),

 MQC.MQOO_OUTPUT

 | MQC.MQOO_INQUIRE

 | MQC.MQOO_FAIL_IF_QUIESCING);

 MQQueue getQueue =

 qm.accessQueue(

 arguments.getProperty("o"),

 MQC.MQOO_INPUT_SHARED

 | MQC.MQOO_INQUIRE

 | MQC.MQOO_FAIL_IF_QUIESCING);

 if (verbose) System.out.println("Connection to Queues OK");

 getQueue.close();

 putQueue.close();

 qm.disconnect();

 }

 readDataFromFile();

 createClientThreads();

 startStatisticsThread();

 startClientThreads();

 // Wait for the end fo the test

 int duration = Integer.parseInt(arguments.getProperty("d")) * 1ØØØ;

 if (duration <= Ø) {

 ((Thread) workers.get(Ø)).join();

 } else {

 Thread.sleep(duration);

 }

 } catch (InterruptedException e) {

 // No-op

 } catch (Throwable e) {

 // Display all other errors

 System.out.println(e);

 e.printStackTrace();

 } finally {

 shutdown = true;

 if (verbose) System.out.println("Instructing threads to stop");

 if (stats != null)

 stats.interrupt();

 30 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 // signal workers to die

 Iterator iter = workers.iterator();

 while (iter.hasNext()) {

 ClientThread worker = (ClientThread) iter.next();

 worker.shutdown = true;

 worker.interrupt(); // wake them if they are waiting

 } // end while workers

 if (verbose) System.out.println("Waiting for threads");

 iter = workers.iterator();

 try {

 while (iter.hasNext())

 ((Thread) iter.next()).join();

 } catch (InterruptedException e) {}

 // Collect overall message rates

 iter = workers.iterator();

 double rate = Ø;

 while (iter.hasNext()) {

 ClientThread worker = (ClientThread) iter.next();

 rate += (double) (worker.numberOfMessages * 1ØØØ)

 / worker.runlength;

 worker.interrupt(); // wake them if they are waiting

 } // end while workers

 System.out.println(

 "Total rt/sec=" + numberFormat.format(rate));

 } // end try/catch/finally

 } // end run()

 private void startClientThreads() throws Exception {

 Iterator iter = workers.iterator();

 while (iter.hasNext()) {

 ClientThread worker = (ClientThread) iter.next();

 Thread.sleep(25Ø + (int) (Math.random() * 5ØØ));

 worker.start();

 } // end while

 } // end startClientThreads

 MQQueueManager getQueueManagerConnection() throws MQException {

 int connectionoptions = MQC.MQCNO_NONE;

 boolean bindings = arguments.getProperty("b") != null;

 if (bindings) {

 boolean fastpath = arguments.getProperty("f") != null;

 if (fastpath) {

 connectionoptions = MQC.MQCNO_FASTPATH_BINDING;

 } else {

 connectionoptions = MQC.MQCNO_STANDARD_BINDING;

 } // End elseif fastpath bindings

 } else { // End if bindings

 // if client connections

 MQEnvironment.hostname = arguments.getProperty("h");

 MQEnvironment.channel = arguments.getProperty("c");

 MQEnvironment.port = Integer.parseInt(arguments.getProperty("p"));

 }

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 return new MQQueueManager(

 arguments.getProperty("qm"),

 connectionoptions);

 } // End getQueueManagerConnection

 private void createClientThreads() throws Exception {

 int nThreads = Integer.parseInt(arguments.getProperty("n"));

 for (int i = 1; i <= nThreads; i++) {

 String name = "Client" + i;

 if (arguments.getProperty("gid") != null) {

 byte addr[] = java.net.InetAddress.getLocalHost().getAddress();

 byte bytes[] = new byte[24];

 System.arraycopy(addr, Ø, bytes, Ø, addr.length);

 bytes[2Ø] = (byte) i;

 bytes[21] = (byte) (i >> 8);

 bytes[22] = (byte) (i >> 16);

 bytes[23] = (byte) (i >> 24);

 workers.add(new ClientThread(name, bytes));

 } else {

 workers.add(new ClientThread(name));

 }

 } // end foreach thread

 } // end createClientThreads

 private void readDataFromFile() throws Exception {

 File theFileToRead = new File(arguments.getProperty("f"));

 inputFileBytes = new byte[(int) theFileToRead.length()];

 BufferedInputStream bIS =

 new BufferedInputStream(new FileInputStream(theFileToRead));

 bIS.read(inputFileBytes);

 bIS.close();

 } // End readDataFromFile

 // Create a new copy of the message

 MQMessage createMessage() throws Exception {

 MQMessage putMessage = new MQMessage();

 if (arguments.getProperty("mc") != null)

 putMessage.characterSet =

 Integer.parseInt(arguments.getProperty("mc"));

 if (arguments.getProperty("me") != null)

 putMessage.encoding = Integer.parseInt(arguments.getProperty("me"));

 if (arguments.getProperty("mf") != null)

 putMessage.format = arguments.getProperty("mf");

 putMessage.messageFlags = MQC.MQMT_REQUEST;

 if (arguments.getProperty("s") != null) {

 putMessage.persistence = MQC.MQPER_PERSISTENT;

 } else {

 putMessage.persistence = MQC.MQPER_NOT_PERSISTENT;

 }

 putMessage.write(inputFileBytes);

 return putMessage;

 } // end createMessage

 private void parseArguments(String[] args) {

 32 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 String currentkey = null;

 String currentvalue = "";

 arguments.setProperty("c", "SYSTEM.DEF.SVRCONN");

 arguments.setProperty("p", "1414");

 arguments.setProperty("n", "1");

 arguments.setProperty("d", "6Ø");

 arguments.setProperty("w", "5");

 if (args.length == Ø)

 printUsage();

 for (int i = Ø; i < args.length; i++) {

 if (args[i].startsWith("-")) {

 if (currentkey != null) {

 arguments.setProperty(currentkey, currentvalue);

 }

 currentkey = args[i].substring(1);

 currentvalue = "true";

 } else if (currentvalue.equals("true")) {

 currentvalue = args[i];

 }

 } // end for

 if (currentkey != null)

 arguments.setProperty(currentkey, currentvalue);

 if (arguments.getProperty("z")!=null) verbose = false;

 } // end parseArguments

 private void printUsage() {

 System.out.println(

 "usage: java " + this.getClass().getName() + " <args>");

 System.out.println(" Controller properties:");

 System.out.println(" -n <clients> (parallel threads)");

 System.out.println(" -d <duration> (in seconds - Ø=never stop)");

 System.out.println(" -z (quiet, minimal output)");

 System.out.println(" -v <interval> (statistics interval)");

 System.out.println(" Queue manager properties:");

 System.out.println(" -qm <qm> (queue manager name)");

 System.out.println(" -i <queue> (put requests to)");

 System.out.println(" -o <queue> (get replies from)");

 System.out.println(" Connection properties for Bindings :");

System.out.println(" -b (use local bindings connection)");

 System.out.println(

 " -t (use trusted/fastpath bindings, must use -b too)");

 System.out.println(" Connection properties for TCP/IP client :");

 System.out.println(" -h <hostname> (QM machine)");

 System.out.println(

 " -c <channel> (QM svrconn - defaults to SYSTEM.DEF.SVRCONN)");

 System.out.println(

 " -p <port> (QM listener port - defaults to 1414)");

 System.out.println(" Message properties:");

 System.out.println(" -f <file> (user data to send)");

 System.out.println(

 " -x (use transactions one-per-message)");

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 System.out.println(" -s (use persistent messages)");

 System.out.println(" -mc (message character set)");

 System.out.println(" -me (message encoding)");

 System.out.println(" -mf (message format)");

 System.out.println(

 " -id (use get-correllation-id from sent-mesg-id)");

 System.out.println(

 " -gid (fixed correllation id per thread)");

 System.out.println(

 " -w <timeout> (message wait timeout in seconds)");

 System.exit(Ø);

 } // end printUsage

 private final void startStatisticsThread() throws Throwable {

 stats = new Thread("Stats") {

 private int prev[];

 private int curr[] = null;

 private void getValues() {

 // Get a snapshot of current "total messages"

 prev = curr;

 curr = new int[workers.size()];

 int i = Ø;

 Iterator iter = workers.iterator();

 while (iter.hasNext() && i < curr.length) {

 ClientThread worker = (ClientThread) iter.next();

 curr[i++] = worker.numberOfMessages;

 }

 }

 public void run() {

 int diff;

 int total;

 final int interval = Integer.parseInt(arguments.getProperty("v"));

 final StringBuffer sb = new StringBuffer();

 getValues();

 while (!shutdown) {

 sb.setLength(Ø);

 try {

 Thread.sleep(interval * 1ØØØ);

 getValues();

 total = Ø;

 // Calculate difference from last snapshot

 for (int j = Ø; j < curr.length; j++) {

 diff = curr[j] - prev[j];

 total += diff;

 }

 sb.append("rt/sec=").append(

 numberFormat.format((double) total / interval));

 System.out.println(sb);

 } catch (InterruptedException e) {}

 } // end while

 } // end run

 34 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 }; // end inner stats class

 stats.setDaemon(true);

 stats.start();

 } // end startstatisticsthread

} // End of file

ClientThread:

import java.util.Date;

import com.ibm.mq.*;

public class ClientThread extends Thread {

 private byte[] fixedCorrelId = null;

 private final static MQJavaRoundTrip parent =

MQJavaRoundTrip.getInstance();

 int numberOfMessages = Ø;

 boolean shutdown = false;

 long runlength = Ø;

 public ClientThread(String name) {

 super(name);

 }

 public ClientThread(String name, byte[] correlId) {

 super(name);

 this.fixedCorrelId = correlId;

 }

 public void run() {

 MQQueueManager queueManager = null;

 MQQueue putQueue = null;

 MQQueue getQueue = null;

 if (parent.verbose) System.out.println(getName() + " : START");

 boolean transacted = parent.arguments.getProperty("x") != null;

 boolean useCorrelId =

 (parent.arguments.getProperty("id") != null)

 || (fixedCorrelId != null);

 boolean copyCorrelId =

 (parent.arguments.getProperty("id") != null)

 && (fixedCorrelId == null);

 // SETUP MESSAGES AND OPTIONS

 MQPutMessageOptions pmo = new MQPutMessageOptions();

 MQGetMessageOptions gmo = new MQGetMessageOptions();

 gmo.waitInterval =

 Integer.parseInt(parent.arguments.getProperty("w")) * 1ØØØ;

 gmo.matchOptions =

 useCorrelId ? MQC.MQMO_MATCH_CORREL_ID : MQC.MQMO_NONE;

 gmo.options = MQC.MQGMO_WAIT | MQC.MQGMO_FAIL_IF_QUIESCING;

 gmo.options |= transacted

 ? MQC.MQGMO_SYNCPOINT

 : MQC.MQGMO_NO_SYNCPOINT;

 pmo.options = MQC.MQPMO_FAIL_IF_QUIESCING | MQC.MQPMO_NEW_MSG_ID;

 pmo.options |= transacted

 ? MQC.MQPMO_SYNCPOINT

 : MQC.MQPMO_NO_SYNCPOINT;

 long startTime = Ø;

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 try {

 MQMessage outMessage = parent.createMessage();

 MQMessage inMessage = new MQMessage();

 if (fixedCorrelId != null) {

 outMessage.correlationId = fixedCorrelId;

 inMessage.correlationId = fixedCorrelId;

 }

 // Make connections to WMQ resources

 queueManager = parent.getQueueManagerConnection();

 putQueue =

 queueManager.accessQueue(

 parent.arguments.getProperty("i"),

 MQC.MQOO_OUTPUT | MQC.MQOO_FAIL_IF_QUIESCING);

 getQueue =

 queueManager.accessQueue(

 parent.arguments.getProperty("o"),

 MQC.MQOO_INPUT_SHARED | MQC.MQOO_FAIL_IF_QUIESCING);

 if (parent.verbose) System.out.println(getName() + ": connected");

 startTime = new Date().getTime();

 while (!shutdown) {

 try {

 putQueue.put(outMessage, pmo);

 if (transacted) queueManager.commit();

 if (copyCorrelId) inMessage.correlationId = outMessage.messageId;

 getQueue.get(inMessage, gmo);

 if (transacted) queueManager.commit();

 numberOfMessages++;

 } catch (MQException e) {

 if (e.reasonCode == MQException.MQRC_NO_MSG_AVAILABLE)

 System.err.println(

 getName() + " : Cannot see a

response to message "+outMessage.messageId);

 throw e;

 } // End try catch

 } // End while ! shutdown

 } catch (Throwable e) {

 // Handle a fatal error

 System.err.println(

 getName() + " : Fatal Error. Exception follows: \n" + e);

 parent.signalShutdown();

 } finally {

 // Clear up code carefully in fair weather or foul.

 runlength = new Date().getTime() - startTime;

 if (getQueue != null) {

 if (parent.verbose) System.out.println(

 getName() + " : Closing queue " + getQueue.name);

 try {

 getQueue.close();

 } catch (MQException e) {} finally {

 getQueue = null;

 36 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 }

 }

 if (putQueue != null) {

 if (parent.verbose) System.out.println(

 getName() + " : Closing queue " + putQueue.name);

 try {

 putQueue.close();

 } catch (MQException e) {} finally {

 putQueue = null;

 }

 }

 if (queueManager != null) {

 if (parent.verbose) System.out.println(

 getName()

 + " : Closing queue manager "

 + queueManager.name);

 try {

 queueManager.disconnect();

 } catch (MQException e) {} finally {

 queueManager = null;

 }

 }

 if (parent.verbose) System.out.println(getName() + " : STOP");

 } // End try/catch/finally

 } // End run method

}

Clientthread.java
import java.util.Date;

import com.ibm.mq.*;

//import com.ibm.mq.jms.services.ConfigEnvironment;

public class ClientThread extends Thread {

 private byte[] fixedCorrelId = null;

 private final static MQJavaRoundTrip parent =

MQJavaRoundTrip.getInstance();

 int numberOfMessages = Ø;

 boolean shutdown = false;

 long runlength = Ø;

 public ClientThread(String name) {

 super(name);

 }

 public ClientThread(String name, byte[] correlId) {

 super(name);

 this.fixedCorrelId = correlId;

 }

 public void run() {

 MQQueueManager queueManager = null;

 MQQueue putQueue = null;

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 MQQueue getQueue = null;

 if (parent.verbose) System.out.println(getName() + " : START");

 boolean transacted = parent.arguments.getProperty("x") != null;

 boolean useCorrelId =

 (parent.arguments.getProperty("id") != null)

 || (fixedCorrelId != null);

 boolean copyCorrelId =

 (parent.arguments.getProperty("id") != null)

 && (fixedCorrelId == null);

 // SETUP MESSAGES AND OPTIONS

 MQPutMessageOptions pmo = new MQPutMessageOptions();

 MQGetMessageOptions gmo = new MQGetMessageOptions();

 gmo.waitInterval =

 Integer.parseInt(parent.arguments.getProperty("w")) * 1ØØØ;

 gmo.matchOptions =

 useCorrelId ? MQC.MQMO_MATCH_CORREL_ID : MQC.MQMO_NONE;

 gmo.options = MQC.MQGMO_WAIT | MQC.MQGMO_FAIL_IF_QUIESCING;

 gmo.options |= transacted

 ? MQC.MQGMO_SYNCPOINT

 : MQC.MQGMO_NO_SYNCPOINT;

 pmo.options = MQC.MQPMO_FAIL_IF_QUIESCING | MQC.MQPMO_NEW_MSG_ID;

 pmo.options |= transacted

 ? MQC.MQPMO_SYNCPOINT

 : MQC.MQPMO_NO_SYNCPOINT;

 long startTime = Ø;

 try {

 MQMessage outMessage = parent.createMessage();

 MQMessage inMessage = new MQMessage();

 if (fixedCorrelId != null) {

 outMessage.correlationId = fixedCorrelId;

 inMessage.correlationId = fixedCorrelId;

 }

 // Make connections to WMQ resources

 queueManager = parent.getQueueManagerConnection();

 putQueue =

 queueManager.accessQueue(

 parent.arguments.getProperty("i"),

 MQC.MQOO_OUTPUT | MQC.MQOO_FAIL_IF_QUIESCING);

 getQueue =

 queueManager.accessQueue(

 parent.arguments.getProperty("o"),

 MQC.MQOO_INPUT_SHARED | MQC.MQOO_FAIL_IF_QUIESCING);

 if (parent.verbose) System.out.println(getName() + ": connected");

 startTime = new Date().getTime();

 while (!shutdown) {

 try {

 putQueue.put(outMessage, pmo);

 if (transacted) queueManager.commit();

 if (copyCorrelId) inMessage.correlationId = outMessage.messageId;

 getQueue.get(inMessage, gmo);

 38 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 if (transacted) queueManager.commit();

 numberOfMessages++;

 } catch (MQException e) {

 if (e.reasonCode == MQException.MQRC_NO_MSG_AVAILABLE)

 System.err.println(

 getName() + " : Cannot see a

response to message "+outMessage.messageId);

 throw e;

 } // End try catch

 } // End while ! shutdown

 } catch (Throwable e) {

 // Handle a fatal error

 System.err.println(

 getName() + " : Fatal Error. Exception follows: \n" + e);

 parent.signalShutdown();

 } finally {

 // Clear up code carefully in fair weather or foul.

 runlength = new Date().getTime() - startTime;

 if (getQueue != null) {

 if (parent.verbose) System.out.println(

 getName() + " : Closing queue " + getQueue.name);

 try {

 getQueue.close();

 } catch (MQException e) {} finally {

 getQueue = null;

 }

 }

 if (putQueue != null) {

 if (parent.verbose) System.out.println(

 getName() + " : Closing queue " + putQueue.name);

 try {

 putQueue.close();

 } catch (MQException e) {} finally {

 putQueue = null;

 }

 }

 if (queueManager != null) {

 if (parent.verbose) System.out.println(

 getName()

 + " : Closing queue manager "

 + queueManager.name);

 try {

 queueManager.disconnect();

 } catch (MQException e) {} finally {

 queueManager = null;

 }

 }

 if (parent.verbose) System.out.println(getName() + "

: STOP");

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 } // End try/catch/finally

 } // End run method

}

Kevin Braithwaite (braithwa@uk.ibm.com)
WebSphere Business Integration Message Broker Performance Specialist
IBM (UK)
Marc Carter (mcarter@uk.ibm.com)
WebSphere MQ/JMS Performance Specialist
IBM (UK) © IBM 2004

A command server for MQMONNTP

The WebSphere MQ SupportPac MO71 (WebSphere MQ for
Windows – GUI Administrator) is a simple yet powerful tool for
monitoring and administering WebSphere MQ. It is referred to as
MQMONNTP in the User Guide for the SupportPac. MQMONNTP
may be downloaded from http://www-3.ibm.com/software/ts/
mqseries/txppacs/mo71.html.

Although MQMONNTP runs on Windows platforms, it can connect
to queue managers on any platform that will accept client
connections. Platforms that do not accept client connections
(typically OS/390) can be administered with another queue
manager. When connection is via another queue manager
WebSphere MQ objects can be displayed and modified, but
messages cannot normally be browsed, copied, moved, or
deleted. The User Guide states, ‘It is possible to browse messages
on other queue managers but you need a program on the remote
system that understands the PCF messages generated by
MQMONNTP’. Programs CmdSvr and CmdSvr2 have been
written to fill this gap.

HOW IT WORKS

By way of example, let us assume that the queue manager to
which MQMONNTP connects is called LOCAL_QMGR and the

 40 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

remote queue manager whose messages we want to browse is
called REMOTE_QMGR. In MQMONNTP’s location settings for
REMOTE_QMGR the Via QM field will specify LOCAL_QMGR.
In the location settings there is also a field called Server Queue.
The User Guide defines this as, ‘The name of the queue at the
remote machine where MQMONNTP command messages
should be sent’. Let’s call this queue MQMON.SERVER. This
queue must be defined on REMOTE_QMGR with triggering on
and a process that will initiate program CmdSvr.

The MQMD ReplyToQ field set by MQMONNTP when messages
are sent to MQMON.SERVER contains the queue name specified
in the location settings field Reply Queue for LOCAL_QMGR.
One would expect CmdSvr to send reply messages to this
queue. However, a problem arises when the code page or integer
encoding of the two queue managers differs and WebSphere MQ
attempts to convert the messages (either on the channel if
conversion is done there or when MQMONNTP does an MQGET
with the MQGMO_CONVERT option). Conversion fails because
the reply messages expected by MQMONNTP are not standard
PCF messages. To overcome this problem CmdSvr sends
standard PCF messages to another queue on LOCAL_QMGR –
we’ll call it MQMON.SERVER2. This queue triggers program
CmdSvr2, which gets the messages with the
MQGMO_CONVERT option to ensure that they are converted,
changes them to the format expected by MQMONNTP, and puts
them into MQMONNTP’s reply queue.

Note that in order for CmdSvr2 to deliver the reply messages to
MQMONNTP in the correct format, it should run on a Windows
platform – normally the same machine that runs MQMONNTP.
MQMONNTP connecting to a local queue manager triggering
CmdSvr2 is not a problem. However, if MQMONNTP is running
as a client, it is recommended you use SupportPac MA7K
(WebSphere MQ for Windows 2000 – Trigger Monitor Service) to
trigger CmdSvr2. The Client Trigger Monitor Service may be
downloaded from http://www-306.ibm.com/software/integration/
support/supportpacs/individual/ma7k.html.

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

If you do not wish to run CmdSvr2 on a Windows platform most
functions will still work correctly in spite of the incorrect format of
some fields. For example, if REMOTE_QMGR runs on OS/390,
LOCAL_QMGR on AIX, and MQMONNTP connects as a client
to the AIX queue manager, you will still be able to browse, copy,
move, and delete messages. However, selecting a message by
MessageId will fail with ‘MessageId mismatch error’. To overcome
this restriction, messages may be selected by position. For more
information on message selection in MQMONNTP see the User
Guide.

OTHER PARAMETERS

The file CmdSvr.TST contains sample definitions for queues
MQMON.SERVER and MQMON.SERVER2 and their associated
processes. Please note the following:

• A trigger monitor needs to be running against the initiation
queues for the processes to be triggered.

• The TRIGDATA field in the definition of the queue
MQMON.SERVER contains the name of the reply queue for
CmdSvr.

• The ENVRDATA field in the definition of both processes
contains the name of a directory to which the programs will
write a log file with error messages.

• If CmdSvr or CmdSvr2 fails to open the log file, an error
message will be written with a printf statement. This may be
redirected to a file with >> in the APPLICID field of the
process definitions.

• On OS/390, all error messages are written with printf.
Because CmdSvr is written to run under CICS, these
messages will be written to transient data queue CESO.

• On OS/390 the ENVRDATA field of the process definition
may contain the name of a CICS terminal id. If so, CmdSvr
will be restarted on that terminal. This is to facilitate tracing
program execution with CEDF or another debugging tool.

 42 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• Parameters to control the execution of CmdSvr and CmdSvr2
are specified in the process USERDATA field and separated
by commas:

– WaitInterval=nnnnnn milliseconds – if this parameter is
specified the program will issue its MQGET calls with
MQGMO_WAIT and the specified WaitInterval. This can
result in improved performance by eliminating
reconnecting to WebSphere MQ and re-opening queues
between successive commands from MQMONNTP.

– CodedCharSetId=nnn – this parameter specifies the
codepage of the ultimate destination of the reply
messages. If MQMONNTP connects to LOCAL_QMGR
as a client, this is the codepage of the client machine. If
MQMONNTP runs on a Windows server and
LOCAL_QMGR is also running on that server, this is the
codepage of LOCAL_QMGR. This parameter must be
specified for CmdSvr if the codepages of LOCAL_QMGR
and REMOTE_QMGR differ and conversion is performed
on the channels between the queue managers. If not
specified, the default for this parameter is
MQCCSI_DEFAULT, which causes the codepage of the
current queue manager to be used.

– Encoding=Normal – this parameter applies only to
CmdSvr2. It should be specified if the integer encoding
of the platform on which CmdSvr2 runs is not reversed.
For example, if CmdSvr2 runs on a Unix platform and
MQMONNTP connects to the Unix queue manager from
a Windows platform, then CmdSvr2 should convert the
reply messages to reversed integer encoding before
they are retrieved by MQMONNTP.

Compiling CmdSvr and CmdSvr2

The header file CmdSvr.h contains various constants taken from
MQMONNTP as well as a few extras used only by CmdSvr and
CmdSvr2.

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Platforms on which these programs have been compiled and
tested are:

• Windows NT and Windows 2000:

– Microsoft Visual C++ 5.0 was used.

– project created as a Win32 console application.

– CmdSvr linked with library module mqm.lib.

– CmdSvr2 linked with mqm.lib or mqic32.lib for server or
client versions respectively.

• OS/390 and CICS 4.1.0:

– compiler version OS/390 C V2 R9 M0.

– compiler option DEF(_MVS_) was specified.

• HP-UX V10.20:

– compiled with command:

cc +DAportable +u1 –Ae +z CmdSvr.c –D_HPUX_ -lmqm –o CmdSvr

• AIX 4.3.3 and 5.1:

– compiled with command:

make –f CmdSvr2.aix.mak

The files included in the ZIP file available from www.xephon.com/
extras/cmdsrv.zip are:

• CmdSvr.aix.mak – makefile for compiling CmdSvr on AIX.

• CmdSvr.c – the C source code for CmdSvr.

• CmdSvr.h – header file for CmdSvr and CmdSvr2.

• CmdSvr.hpux.mak – command for compiling CmdSvr on
HP-UX.

• CmdSvr.TST – sample queue and process definitions for
REMOTE_QMGR.

• CmdSvr2.aix.mak – makefile for compiling CmdSvr2 on AIX.

 44 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• CmdSvr2.c – the C source code for CmdSvr2.

• CmdSvr2.TST – sample queue and process definitions for
LOCAL_QMGR.

CmdSvr and CmdSvr2 have been tested with MQMONNTP
versions 5.2, 5.2.2, 5.3, and 5.3.2 and may not be compatible
with older releases of MQMONNTP.

Eric Judd
Systems Engineer
T-Systems (South Africa) © Xephon 2004

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

64-bit applications 34.3-10
ActiveX 13.21-31
Administration 57.3-11
Alias 42.29-36
API exits 37.24-42
Application design 23.39-43
AS/400 22.33-47, 27.25-31
Audit 53.36-43
Back-up 33.25-33,

37.42-43, 41.14-22
Bridge 54.33-43
Broker archive 56.33-43
Buffers 26.34-41
Channel configuration 52.22-25
Channel exits 28.5-9
Channel initiator 16.43
Channel start process 50.38-43
Channel 39.43-47, 44.35-43,

53.25-36, 55.5-22, 56.7-23
CICS 13.41-43
Clusters 15.35-42, 18.24-35,

23.30-38, 24.3-11, 25.3-8,
34.29-47, 41.23-32, 52.32-40

Command server 60.37-41
Configuration 35.35-43, 36.7-17,

38.19-32, 39.12-21, 46.9-29
Connecting applications 32.23-33,

33.11-24, 58.3-9
Control 47.3-12
Coordination 30.22-38
Copying 33-3-11, 24.24-27
Coupling Facility 20.5-20, 59.37-43
CSQ4APPL 14.34-43
CSQ4CHNL 25.16-23
CSQ4INP2 14.34-43
CSQ4MQxx 17.39-42
CSQ4XPRM 25.16-23
CSQ4ZPRM 16-39-42
CSQUTIL 28.26-27
CSQXMQxx 24.42-43
Customizing 58.20-35,

59.13-31, 59.31-37

Data grouping 44.30-35
DB2 23.3-9, 60.9-20
Dead letter queues 34.11-22, 35.3-8
Debugging 58.36-43, 60.3-8
Design 51.12-21
eNDI 29.6-27
Error handling 31.37-43,

51.29-43, 53.6-12
Error log 24.27-32, 37.7-23
ESQL 60.3-8
Everyplace 13.31-41
Exception processing 28.10-26,

27.6-21, 38.3-12, 39.32-42
Expired messages 31.8-20
Extended transactional client 48.37-42
Financial Network 40.40-47
Firewalls 26.27-33, 46.3-9
Global transactions 35.9-19, 36.18-27
Groups 50.12-22
High availability option 49.25-33
Host Integration Server 27.31-45,

28.27-47, 29.3-6
IMS Bridge 49.3-12
Installable services 16.3-5
Interface 40.32, 46.30-44
IP multicasting 26.3-8
IP 56.7-23
J2EE 52.7-21, 53.13-24
Java 58.3-9
JavaMQMail 44.9-17
JMS publish-and-subscribe

13.3-20, 14.3-11
JMS 43.36-43, 45.29-43,

50.3-12, 53.13-24
Logging 20.3-5, 25.8-13
Management 23.11-29
Message Broker 52.26-31
Message length 25.40-43
Messages 25.13-15, 30.6-22,

39.22-32, 44.3-9, 44.18,
48.25-29, 48.30-37, 54.44-47,

59.3-13, 59.31-37

July 2000 – June 2004 index

Below is an index of all topics covered in MQ Update since Issue 13, July 2000.
References show the issue number followed by the page number(s). Subscribers can
download copies of all issues in Acrobat PDF format from Xephon’s Web site.

 46 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

MQ Bridge 16.26-39
MQAI 44.19-30, 46.45-51
MQJava for Notes 42.36-43
MQRFH2 headers 50.32-37
MQSC facilities 42.3-8
MQSeries first steps 45.3-11
MQSI 14.18-33, 17.43,

21.3-10, 34.23-28, 28.3-5,
29.36-43, 34.19-24, 36.42-45

MRM 22.3-4
MSMQ 17.15-39, 18.7-23, 15.24-35
.Net 57.29-40
Nodes 37.3-7, 48.3-8
OS/390 24.33-41, 26.41-43
Output channel status 52.3-6
Parameters 38.41-43
Patrol 27.22-24
Performance 22.28-33, 30.39-43,

38.12-18, 49.34-47, 50.23-31,
53.3-6, 55.5-22, 60.20-37

Printing 32.3-12
Processing 14.12-27
Profiles 41.3-14
Publish/Subscribe 40.26-32, 42.9-20
Quality checking 49.12-23
Queue manager 18.3-7, 21.39-43,

22.22-28, 56.3-7
Queue names 19.6-10, 23.9-10
Queues 25.24-31, 27.3-5,

40.5-8, 40.9-26, 58.10-19
Quick start 20.25-43
Recovery 15.3-24
Resources 30.3-6
Response times 33.33-43
Scripts 43.3-9
Security exits 21.11-27, 40.3-4
Security 22.4-21, 38.3-9

Segments 50.12-22
Sending data 45.12-19
Set authorities script 36.3-6
Sideinfo dataset 18.35-41, 19.3-6
Sizing 59.37-43
SOAP 57.11-28
SSL 42.20-27, 47.22-30,

47.30-36, 51.22-28
Start-up 51.3-10
Statistics 57.40-47
Su 27.46-47
Syncpoint 55.37-47
TCP/IP 31.3-8
Temporary files 43.34-36
Throughput 24.11-23,

25.32-39, 29.27-36
Training 19.33-43
Transaction integrity 20.21-24
Transport 54.7-32
Triggers 36.28-37, 40.33-39,

43.27-34, 56.24-33
Unix 17.3-15, 21.27-39
Utilities 24.41, 42.28, 47.37-43
Warehousing 60.9-20
WAS 53.13-24
Web applications 55.3-4
WebSphere MQ 49.3-12
Wireless applications 19.11-32
WMQ V5.3 54.3-7
WMQI Broker 55.23-36
WMQI 39.3-12, 43.20-27,

45.20-28, 47.12-22,
48.9-24, 53.3-6

Workflow 15.42-43, 32.33-47,
41.33-47, 59.13-31

Wrapper 31.21-36, 56.7-23
XML 52.41-43

If you have ever experienced any difficulties with MQ,
or made an interesting discovery, you could receive a
cash payment or a free subscription to any of our
Updates, simply by telling us all about it. Articles can
be of any length and can be e-mailed to Trevor Eddolls
at trevore@xephon.com. A free copy of our Notes for
Contributors is available from our Web site at
www.xephon.com/nfc.

MQ news

Sonic Software has released Version 6.0 of
SonicMQ, its enterprise messaging system using
Sonic Continuous Availability Architecture
(CAA).

SonicMQ 6.0 reduces the time required for an
enterprise messaging system to resume
operations after hardware, software, or
network failures, eliminating transaction
rollbacks.

SonicMQ provides fault-tolerant messaging
architecture, reducing failover time. Most fault
tolerant architectures rely entirely on custom
coded solutions and hardware-based
mechanisms to ensure failover. SonicMQ 6.0
provides a software-based solution that uses
stateful replication between a pair of servers,
eliminating the need for dedicated hardware,
specialized fault sensing software, and mirrored/
redundant disks.

SonicMQ 6.0 also eases administrative load,
resulting in a simpler and more cost-effective
approach to enterprise messaging availability,
the company claims.

For further information contact:
Sonic Software, 14 Oak Park, Bedford, MA
01730, USA.
Tel: (781) 999 7000.
URL: http://www.sonicsoftware.com/
products/sonicmq.

* * *

IBM has announced Version 5.1.1 of
WebSphere Studio Enterprise Developer. This
new version is focused on supporting multi-
platform mixed workload development,
integration, debugging, and collaboration. It

helps reduce the skills needed to develop
component-based Web applications, lets
developers integrate WebSphere with
traditional transactional environments,
promotes the reuse and transformation of
existing applications to reduce costs and shorten
the development cycle, and provides the engine
for integrating inbound and outbound Web
Services in z/OS environments.

For further information contact your local IBM
representative.
URL: http://www-306.ibm.com/software/
awdtools/studioenterprisedev.

* * *

Versata has announced Version 5.6.2 of its
Logic Suite. The solution adds support for the
IBM WebSphere Application Server Version
5.1 and provides a range of enhanced features to
increase developer productivity, Versata
claims.

The new Versata Logic Suite, which consists of
the Versata Logic Server and the Versata Logic
Studio, will also be released by IBM and
distributed through the company’s Passport
Advantage Program.

In addition to support for the IBM WebSphere
Application Server Version 5.1, the solution
provides improved XML integration and J2EE
packaging.

For further information contact:
Versata, 300 Lakeside Drive, Suite 1500,
Kaiser Building, Oakland, CA 94612, USA.
Tel: (510) 238 4100.
URL: http://www.versata.com/products/
inSuite/products.html.

x xephon

	ESQL debugging in IBM WebSphere Business Integration Message Broker V5.0 toolkit
	Message warehousing with WebSphere MQ Integrator Broker and DB2 UDB
	MQJavaRoundTrip: a Java-based performance tester
	A command server for MQMONNTP
	July 2000 - June 2004 index
	MQ news

