
© Xephon Inc 2004

July 2004

61

In this issue

3 Using amqmdain to manage
WebSphere MQ for Windows

11 Viewing a queue’s properties
from the Java console – revisited

20 Web services and the enterprise
business environment

29 Application Serialization with
WMQ

35 WebSphere Integrator, writing a
plug-in input node

43 Using WebSphere MQ as a
JNDI repository for JMS
administrable objects

48 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.

Printed in England.

Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Nicole Thomas
E-mail: nicole@xephon.com

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in the
UK; $380.00 in the USA and Canada; £261.00
in Europe; £267.00 in Australasia and Japan;
and £265.50 elsewhere. In all cases the price
includes postage. Individual issues, starting with
the July 2000 issue, are available separately to
subscribers for $33.75 (£22.50) each including
postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the rate
of $160 (£100 outside North America) per
1000 words and $80 (£50) per 100 lines of code
for the first 200 lines of original material. The
remaining code is paid for at the rate of $32 (£20)
per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Using amqmdain to manage WebSphere MQ for
Windows

INTRODUCTION

In issue 51 of MQ Update (September 2003) an article of mine
was published that showed how to automatically start WebSphere
MQ (WMQ) programs on Unix systems (see Auto-starting WMQ
on Unix). Since then I’ve seen some questions about how to do
similar things on Windows machines. This article is about the
configuration program called amqmdain, which can be used to
configure both automatic starting and a number of other attributes
for Windows systems.

HOW WMQ WORKS ON WINDOWS

Programs on Windows that can execute either automatically
when the machine is booted or when there is no user logged on
to the machine are run as services. These can be seen and
controlled from the Administrative Tools folder from the Start
menu.

A program that is running as a service cannot normally directly
interact with a user unless it is running under the Local System
account. Instead, calls can be made to the service via COM
functions from a program that the user might be running. The
service may have a number of attributes that can be configured.
It can be started either automatically on system restart or
manually. It might have security controls. It may have
dependencies defined so that it will start only after some other
service has been started.

WMQ includes all the components needed for it to be run as a
service. When it is installed, an entry is made in the Services list,
for ‘IBM MQSeries’. (The old product name is maintained here,
for compatibility with any older tools that customers might have
written.) By default, a userid called MUSR_MQADMIN is created

 4 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

during installation, and the service is configured to run as that
user. This userid is in the mqm group and can therefore do all
WMQ administrative tasks. The actual program being run is
called amqsvc.exe. This program implements a COM interface
and is able to start and stop the WMQ programs. It can also start
and stop arbitrarily-configured user programs, based on the
status of associated queue managers. The amqsvc program
uses little resource, and can always be left running. However, if
you do want to stop it, you can use:

NET STOP MQSeriesServices

from a command line.

THE WEBSPHERE MQ SERVICES GUI

The easy-to-use and interactive way of configuring WMQ queue
managers, listeners, and other programs is to use the WMQ
Services MMC snap-in. Do not confuse this with the WMQ
Explorer snap-in, which is used as the graphical equivalent of the
runmqsc program. (A good way of configuring your system is to
customize the MMC view to show both snap-in components in a
single panel.) As well as configuring start-up values, the snap-in
also sets values in the Windows registry that correspond to
entries in the mqs.ini or qm.ini files on other operating systems.
While simple text editors such as vi can be used on a Unix
machine, and little permanent damage can be caused by making
a mistake editing an ini file, there are lots of things that can be
broken if you err when updating the Windows registry by hand.
So WMQ provides programs that will do the updates in a
controlled way.

THE AMQMDAIN PROGRAM

While the GUI is useful as an interactive tool, there are times
when you need to control things from a script or program. And this
is where amqmdain comes in.

At its simplest, you should use amqmdain to start and stop
queue managers, instead of using strmqm and endmqm. I use

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

this facility for queue managers that I do not use frequently on my
machine, for manual control instead of having them start
automatically. For example, if I am using the WBI Message
Broker product, I have a batch program that starts the queue
manager and database components before starting the broker.
Then, when I’m finished, I can end all the programs and free their
resources. It’s interesting to see how the different products have
implemented their control commands; as I said earlier, WMQ has
a single service program that then drives all configured queue
managers under its control. DB2, by contrast, has all of its
individual pieces executing as separate Windows services.
Starting the Message Broker in a batch command looks like:

net start DB2-Ø

net start DB2CTLSV-Ø

net start DB2DASØØ

amqmdain start WBRK_QM

mqsistart configmgr

mqsistart usernameserver

mqsistart WBRK_BROKER

pause

DEFINING INI FILE ENTRIES

All the stanzas that can be found in qm.ini or mqs.ini on other
platforms can be modified by amqmdain. There are also a few
Windows-specific entries that can be changed, such as the
behaviour when a machine is suspended or hibernated.

The root of all WMQ registry information can be found under the
key:

HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion

I will refer to this point as MQROOT. Information about each
queue manager can then be found in:

{MQROOT}\configuration\QueueManager\QMGRNAME

Note that when there might, in the text-based ini files, be several
stanzas of the same type, the Windows registry has to slightly

 6 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

restructure the data and use a unique element (which is usually
the name attribute from the ini file) to contain the attributes for that
stanza.

There are a number of examples given in the product
documentation of how to use the command to modify these
stanzas. I won’t repeat that information here.

DEFINING SERVICES

An aspect of amqmdain that I feel is less fully explained in the
books (especially as some function was added after the books
were written) is how the custom services are configured and
stored.

There are a few services, started with the queue manager, that
are well known and predefined. These are the listener, command
server, and channel initiator. A trigger monitor can also be
defined, although one is not configured by default. Named
channels can also be started, using the runmqchi command,
although that is less likely to be used when the channel initiator
automatically starts your channels. Multiple listeners can be
configured, and these will appear in the registry as folders
labelled Listener, Listener (2), and so on. The predefined classes
of entries can be found at:

{MQROOT}\configuration\Services\QMGRNAME

Custom services are any other programs that should be started
with the queue manager. One WMQ-provided program that
might be useful here is the dead-letter queue handler, runmqdlq.
Because runmqdlq takes its rules processing configuration
from stdin instead of from a command line, it cannot be executed
directly from the services panel. Instead we need to create a one-
line batch file that can then redirect the configuration file into the
real program.

In the GUI, you can see two sets of options for custom services.
The two sets allow selection of PROCESS or COMMAND, and
AFTER or BEFORE.

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

The PROCESS/COMMAND switch determines whether the
controlling program should wait for the custom service to complete
or not before going on to the next service that needs starting.
Programs that are long running (such as the runmqdlq example)
should be started as a PROCESS; the status of these operations
can be monitored by the controlling service. Programs that
execute for only a short time (one example might be to delete log
files from previous runs of an application) should be run as a
COMMAND.

The AFTER/BEFORE option is used to select where the service
should be started in relation to the queue manager. Note that
there are no dependencies defined between services that are
associated with a common queue manager. There is no way to
force our dead-letter handler example to start before any other
application, except by altering the order in which the services are
listed in the registry.

The same configuration options are available from amqmdain,
but they are provided to the program in a rather different way.

While ini file parameters are passed to amqmdain on the
command line, custom services are first entered into a text file.
That file is then given as a parameter to amqmdain, with the
cstmig option.

The format of the file is to have multiple lines, where each line has
the fields Cmd Name, Start Cmd, End Cmd, Flags, and Queue
Manager.

The command name is the key under which the rest of the
parameters are saved in the registry. The start and end commands
are fairly obvious. If there is no command to end the service, then
leave that field blank, still separating it from the other fields by
commas. If the start and end commands require the queue
manager to be passed as parameters, then it needs to be entered
here. There is no automatic appending or insertion of the
associated queue manager name into the commands. The
default location for commands, when no explicit path is given, is
set to be the bin subdirectory under the WMQ installation
directory.

 8 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

The Flags field is a string such as:

SUFFIX|ROOT|STARTUP|COMMAND

There are no quotes around this string and the various keywords
are joined together with the OR symbol (vertical bar). Spaces
could also be used between the keywords, but the OR makes it
clear how they are linked together.

In the V5.3 documentation, the final field on the line is listed as
Reserved, but it can actually be used to associate the custom
service with a named queue manager. This queue manager
name should, of course, match with any queue manager name
that has been included in the start and end commands.

The complete set of keywords that can be put in the flags field,
which also shows mutually exclusive settings, is:

• ROOT (0x02) or QMGR (0x01)

If QMGR is set, then the service is associated with the named
queue manager, the final field on the input line. If ROOT is set
(or neither keyword is used), then the custom service will be
started before or after all of the queue managers on the
machine have been started. ROOT is the default setting of
this pair of options.

• COMMAND (0x10) or PROCESS (0x20)

These have the same meaning as in the GUI. COMMAND is
the default setting of this pair of options.

• PREFIX (0x04) or SUFFIX (0x08)

These are equivalent to the BEFORE and AFTER settings in
the GUI. PREFIX is the default setting for this pair of options.

• STARTUP (0x40)

Use the start command, as listed in the file. STARTUP is
always assumed to be set, but it is helpful to put it in the input
file for clarity.

• SHUTDOWN (0x80)

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Use the stop command, as listed in the file. If this flag is not
set, even if there is a stop command, it will not be executed.

The hex values that I’ve listed cannot be used for input purposes,
but are useful as we’ll see later for decoding the storage of the
flags in the registry.

In the GUI there is also the ability to have the service configured
as Automatic or Manual. There does not appear to be a similar
capability available from amqmdain, which always sets the
service to be started automatically. The GUI also sets some
additional retry parameters that are visible in the registry but not
exposed through the user interface or through amqmdain.

It’s important to know that when you use the cstmig option, all
existing custom service definitions are deleted. The new input file
replaces the services totally. This is because it would be rather
difficult to know exactly how to merge the services with any
previous ones. If all updates are made through the command
line, it is possible to manage a system by controlling the input file,
which will always be the master definition.

DISPLAYING SERVICES AND INI FILE ENTRIES

The amqmdain program includes an option to display the
settings for ini file stanzas. However, there are two restrictions to
this. The first is that there is no way in a single command to
display all the stanzas: amqmdain must be issued multiple
times, once per stanza. The second limitation is that the output
format is not directly suitable for reuse as an input command.
While readable, it needs to be reformatted if you want to repeat
the commands that generated these settings.

C:\> amqmdain reg * -c display -s LogDefaults -v *

5724-B41 (C) Copyright IBM Corp. 1994, 2ØØ2. ALL RIGHTS RESERVED.

Displaying registry value for Queue Manager '*'

 Attribute = LogDefaultPath, Value = C:\mqm\log

 Attribute = LogPrimaryFiles, Value = 3

 Attribute = LogSecondaryFiles, Value = 2

 Attribute = LogFilePages, Value = 256

 Attribute = LogType, Value = CIRCULAR

 Attribute = LogBufferPages, Value = Ø

 10 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

There is also no option built in to amqmdain that will display
custom service entries.

However, the information can be extracted from the registry
directly by using the Windows regedit command. This is usually
run as an interactive GUI command, but the /e <filename>
option extracts the given key and subfolders to a file, which can
then be browsed. All custom services, whether dependent on a
named queue manager or not, can be found under the key at:

{MQROOT}/services/.custom

Just as with the ini file entries, the format of displayed services
cannot be directly used as input to amqmdain. It is not too
difficult to reformat them into the correct style, however. (As a
mostly-Unix programmer I would do it in a simple awk or perl
script.) The only difficult parameter to decode is the CustomType
field – a hex word. This corresponds to the Flags field in the input
control file described earlier. Each keyword has a value, and
these are added together to form the total that is set in the
CustomType field.

An example session showing a configuration file and the generated
registry entry is below:

C:\> type dlq.bat

runmqdlq < dlqrules.txt

C:\> type cst.reg

DLQ Handler,dlq.bat,,SUFFIX|QMGR|STARTUP|PROCESS, QMGRNAME

C:\> amqmdain cstmig cst.reg

5724-B41 (C) Copyright IBM Corp. 1994, 2ØØ2. ALL RIGHTS RESERVED.

Added service 'DLQ Handler'

The custom service configured successfully

C:\>regedit /e cst.out HKEY_LOCAL_MACHINE\

SOFTWARE\IBM\MQSeries\CurrentVersion\configuration\

services\.custom

C:\> type cst.out

Windows Registry Editor Version 5.ØØ

[HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion\configuration\

services\.custom]

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

[HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQSeries\CurrentVersion\configuration\

services\.custom\DLQ Handler]

"CustomType"=dword:ØØØØØØ69

"StrCommand"="dlq.bat"

"EndCommand"=""

"Startup"=dword:ØØØØØØØ1

"Depends"="QMGRNAME"

C:\>

SUMMARY

This article has shown how a Windows machine can be configured
and managed through the command line – an essential element
to automatic and unattended operation. While some additional
utilities might be useful to extract and reformat an existing
configuration for back-up purposes, the amqmdain and regedit
commands can be used to provide all the data that is required.

Mark E Taylor
Technical Strategist
WebSphere MQ Development
IBM Hursley (UK) © IBM 2004

Viewing a queue’s properties from the Java
console – revisited

Following the publication of the code in the article of the same
name in the April 2004 issue of MQ Update, the author has more
MQ Java code, which will get information from a queue and write
it to a file. It reads the message from a separate file and puts it
in the queue.

MQGETPUTFILE
/**/

/* Program name: mqGetPutFile */

 12 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

/* Author : Balaji SR */

/* mail id : balaji_srajan@yahoo.com */

/**/

/* Function: */

/* Input : This is a Java console application which take a file */

/* as an argument */

/* Output: This displays the queue attributes on the console */

/**/

import com.ibm.mq.*;

import java.util.*;

import java.io.*;

public class mqAttrInquiry {

 private MQQueueManager mqQueueManager; // for QMGR object

 private MQQueue queue; // for Queue object

 private int openOptionInquire; // Open options

 private String hostName; // for host name -> QMGR

 private String channel; // server connection channel

 private String port; // port number on which the QMGR is running

 private String qmgrName;

 private String qName;

 public static void main(String arg[])

 {

 try{

 if (arg.length == 1)

 {

 System.out.print(" Propertie file name ..." + arg[Ø] + "\n");

 }

 else

 {

 System.out.print("Please enter the properties file name \n");

 System.exit(1);

 }

 mqAttrInquiry mqattrinquiry = new mqAttrInquiry();

 mqattrinquiry.readPropertyFile(arg[Ø]);

 mqattrinquiry.init();

 }

 catch(Exception e)

 {

 System.out.print("Please enter the properties file name only\n");

 e.printStackTrace();

 System.exit(1);

 }

 }

 public void init()

 {

 try{

 System.out.println("In init");

 this.mqInit();

 }

 catch(Exception e)

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 {

 e.printStackTrace();

 }

 }

 private void mqInit()

 { // Initiation of the MQ parameter

 try

 {

 System.out.println("hostName : " + hostName);

 System.out.println("qmgrName : " + qmgrName);

 System.out.println("port : " + port);

 System.out.println("channel : " + channel);

 System.out.println("QName : " + qName);

 getConnected();

 }

 catch (Exception exp)

 {

 System.out.println(" Error in mqInit ...\n");

 exp.printStackTrace();

 System.exit(1);

 }

 }

 public void getConnected() throws Exception

 { // gets connected to the Queue & checks the queue depth high event

 try

 {

 mqConnect();

 mqOpen();

 chexQType();

 mqClose();

 mqDisconnect();

 }

 catch (Exception exp)

 {

 exp.printStackTrace();

 }

 } //getConnected ends here

 private void mqConnect() throws Exception

 { // Connection to the queue manager

 try

 {

 MQEnvironment.hostname = hostName;

 MQEnvironment.channel = channel;

 MQEnvironment.port = Integer.parseInt(port);

System.out.println(hostName + " ————— " + channel + "————— " + port);

 mqQueueManager = new MQQueueManager(qmgrName);

 System.out.println("Qmgr : " + qmgrName + " connection successfull");

 }

 catch (MQException mqExp)

 {

 14 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 System.out.println("Error in queue manager connect....");

 System.out.println("QMGR Name : " + qmgrName);

 System.out.println("CC : " + mqExp.completionCode);

 System.out.println("RC : " + mqExp.reasonCode);

 }

 }

 private void mqDisconnect() throws Exception

 { // disconnect to queue manager

 try

 {

 mqQueueManager.disconnect();

System.out.println("Qmgr : " + qmgrName + " disconnection successful ");

 }

 catch (MQException mqExp)

 {

 System.out.println("Error in queue manager disconnect....");

 System.out.println("QMGR Name : " + qmgrName);

 System.out.println("CC : " + mqExp.completionCode);

 System.out.println("RC : " + mqExp.reasonCode);

 }

 } // end of mqDisconnect

 private void mqOpen() throws MQException

 {

 try

 {

 int openOption = Ø;

 openOption = MQC.MQOO_INQUIRE;

 queue = mqQueueManager.accessQueue(qName,openOption,null,null,null);

 System.out.println("Open queue sucessfull... ");

 }

 catch (MQException mqExp)

 {

 System.out.println("Error in opening queue");

 System.out.println("Queue Name : " + qName);

 System.out.println("CC : " + mqExp.completionCode);

 System.out.println("RC : " + mqExp.reasonCode);

 }

 } //end of mqOpen

 private void mqClose() throws MQException

 {

 try

 {

 queue.close();

 System.out.println("Close queue successfull.....");

 }

 catch (MQException mqExp)

 {

 System.out.println("Error in closing queue");

 System.out.println("Queue Name : " + qName);

 System.out.println("CC : " + mqExp.completionCode);

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 System.out.println("RC : " + mqExp.reasonCode);

 }

 } // end of mqClose

 private void chexQType() throws MQException

 { // for checking the queue type

 try

 {

 int[] qSelectors = new int[1];

 int[] qIntAttrs = new int[1];

 byte[] qCharAttrs = new byte[1];

 int MQIA_Q_TYPE = 2Ø;

 qSelectors[Ø] = MQIA_Q_TYPE ;

 qInquire(qSelectors,qIntAttrs,qCharAttrs);

 qType(qIntAttrs[Ø]);

 }

 catch (MQException mqExp)

 {

 System.out.println("Error in closing queue");

 System.out.println("Queue Name : " + qName);

 System.out.println("CC : " + mqExp.completionCode);

 System.out.println("RC : " + mqExp.reasonCode);

 }

 } //end of chexQType

 private void qAliasInquiry() throws MQException

 { // to get the Base queue name for Alias queue

 try

 {

 int MQCA_BASE_Q_NAME = 2ØØ2;

 int MQ_Q_NAME_LENGTH = 48;

 int[] qAliasSelectors = new int[1];

 int[] qAliasIntAttrs = new int[Ø];

 byte[] qAliasCharAttrs = new byte[MQ_Q_NAME_LENGTH];

 qAliasSelectors [Ø] = MQCA_BASE_Q_NAME ;

 System.out.println(" in qAliasInquiry ...");

 qInquire(qAliasSelectors, qAliasIntAttrs, qAliasCharAttrs);

 System.out.println(" Base queue name : " + new

String(qAliasCharAttrs));

 }

 catch (MQException mqExp)

 {

 System.out.println("Error in qAliasInquiry....");

 System.out.println("Queue Name : " + qName);

 System.out.println("CC : " + mqExp.completionCode);

 System.out.println("RC : " + mqExp.reasonCode);

 }

 } // end qAliasInquiry

 private void qRemoteInquiry() throws MQException

 { // to get the Remote queue properties

 try

 {

 16 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 int MQCA_REMOTE_Q_MGR_NAME = 2Ø17;

 int MQCA_REMOTE_Q_NAME = 2Ø18;

 int MQCA_XMIT_Q_NAME = 2Ø24;

 int MQ_Q_NAME_LENGTH = 48;

 int MQ_Q_MGR_NAME_LENGTH = 48;

 int[] qAliasSelectors = new int[3];

 int[] qAliasIntAttrs = new int[Ø];

 byte[] qAliasCharAttrs = new byte[MQ_Q_MGR_NAME_LENGTH +

 MQ_Q_NAME_LENGTH + MQ_Q_NAME_LENGTH];

 qAliasSelectors [Ø] = MQCA_REMOTE_Q_MGR_NAME ;

 qAliasSelectors [1] = MQCA_REMOTE_Q_NAME ;

 qAliasSelectors [2] = MQCA_XMIT_Q_NAME ;

 System.out.println(" in qRemoteInquiry...");

 qInquire(qAliasSelectors, qAliasIntAttrs, qAliasCharAttrs);

System.out.println(" Base queue name : " + new String(qAliasCharAttrs,

 Ø, MQ_Q_MGR_NAME_LENGTH));

 System.out.println(" Base queue name : " + new String(qAliasCharAttrs,

 MQ_Q_MGR_NAME_LENGTH , MQ_Q_MGR_NAME_LENGTH));

 System.out.println(" Base queue name : " + new String(qAliasCharAttrs,

 MQ_Q_MGR_NAME_LENGTH + MQ_Q_NAME_LENGTH, MQ_Q_NAME_LENGTH));

 }

 catch (MQException mqExp)

 {

 System.out.println("Error in qRemoteInquiry....");

 System.out.println("Queue Name : " + qName);

 System.out.println("CC : " + mqExp.completionCode);

 System.out.println("RC : " + mqExp.reasonCode);

 }

 } // end qAliasInquiry

 private void qLocalInquiry () throws MQException

 {

 //int currentDepth =Ø;

 try

 {

 //queue type / usage

 int MQIA_USAGE = 12;

 //queue inquire

 int MQIA_DEF_PRIORITY = 6;

 int MQCA_Q_DESC = 2Ø13;

 int MQ_Q_DESC_LENGTH = 64;

 int MQIA_DEF_PERSISTENCE = 5;

 int MQIA_MAX_Q_DEPTH = 15;

 int MQIA_CURRENT_Q_DEPTH = 3;

 int MQIA_TRIGGER_CONTROL = 24;

 //for Event

 int MQIA_Q_DEPTH_HIGH_EVENT = 43;

 int MQIA_Q_DEPTH_MAX_EVENT = 42;

 int MQIA_Q_DEPTH_HIGH_LIMIT = 4Ø;

 int MQIA_Q_DEPTH_LOW_EVENT = 44;

 int MQIA_Q_DEPTH_LOW_LIMIT = 41;

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 //for Triggering

 int MQCA_INITIATION_Q_NAME = 2ØØ8;

 int MQCA_PROCESS_NAME = 2Ø12;

 int MQ_PROCESS_NAME_LENGTH = 48;

 int MQ_Q_NAME_LENGTH = 48;

 int MQIA_TRIGGER_TYPE = 28;

 int[] selectors = new int[14];

 int[] intAttrs = new int[11];

 byte[] charAttrs = new byte[MQ_Q_DESC_LENGTH +

 MQ_Q_NAME_LENGTH + MQ_PROCESS_NAME_LENGTH];

 selectors[1] = MQCA_Q_DESC;

 selectors[4] = MQIA_DEF_PERSISTENCE ;

 selectors[5] = MQIA_MAX_Q_DEPTH ;

 selectors[6] = MQIA_CURRENT_Q_DEPTH;

 //for triggering

 selectors[3] = MQCA_INITIATION_Q_NAME;

 selectors[7] = MQIA_TRIGGER_CONTROL;

 selectors[8] = MQIA_TRIGGER_TYPE ;

 selectors[9] = MQCA_PROCESS_NAME ;

 //for Event

 selectors[Ø] = MQIA_Q_DEPTH_HIGH_EVENT;

 selectors[2] = MQIA_Q_DEPTH_MAX_EVENT;

 selectors[1Ø] = MQIA_Q_DEPTH_HIGH_LIMIT ;

 selectors[11] = MQIA_Q_DEPTH_LOW_EVENT ;

 selectors[12] = MQIA_Q_DEPTH_LOW_LIMIT ;

 selectors[13] = MQIA_USAGE ;

 qInquire(selectors,intAttrs,charAttrs);

 if (intAttrs[1Ø] == Ø)

 {

 System.out.println("Queue usage Normal ");

 }

 else if (intAttrs[1Ø] == 1)

 {

 System.out.println("Queue usage XMIT ");

 }

 System.out.println("Default Priority = " + intAttrs[Ø]);

 System.out.println("Description : " +

 new String(charAttrs,Ø,MQ_Q_DESC_LENGTH));

 System.out.println("Q_DEPTH_MAX_EVENT = " + intAttrs[1]);

 if (intAttrs[1] == 1)

 { // Event enabled

 System.out.println("Q monitoring event is enabled ");

 System.out.println ("Q high depth event " +

 enableDisable(intAttrs[1]));

 System.out.println ("Q high depth limit " + intAttrs [7]);

 System.out.println ("Q low depth event " +

 enableDisable(intAttrs[8]));

 System.out.println ("Q low depth limit " + intAttrs [9]);

 }

 System.out.println("Q_DEF_PERSISTENCE = " + intAttrs[2]);

 18 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 System.out.println("Q_MAX_Depth = " + intAttrs[3]);

 System.out.println("CURRENT_Q_DEPTH = " + intAttrs[4]);

 //Trigger is set On then displays the trigger properties....

 if (intAttrs[5] == 1)

 {

 System.out.println("Trigger is On");

 //variable decalration for getting the Trigger control values

 System.out.println("TRIGGER_TYPE = " + intAttrs[6]);

 if (intAttrs[6] == 3)

 System.out.println("TRIGGER_TYPE is Depth");

 else if (intAttrs[6] == 2)

 System.out.println("TRIGGER_TYPE is Every");

 else if (intAttrs[6] == 1)

 System.out.println("TRIGGER_TYPE is First");

 else if (intAttrs[6] == Ø)

 System.out.println("TRIGGER_TYPE is None");

 //Initiation queue name

 System.out.println("Init Q Name : " + new

 String(charAttrs,MQ_Q_DESC_LENGTH,MQ_Q_NAME_LENGTH));

 System.out.println("Process defination Name : " + new

 String(charAttrs,MQ_Q_DESC_LENGTH + MQ_Q_NAME_LENGTH,

 MQ_PROCESS_NAME_LENGTH));

 }

//queue inquire ends here

 queue.close();

 }

 catch (MQException mqExp)

 {

 System.out.println("Error in Inquiry queue");

 System.out.println("Queue Name : " + qName);

 System.out.println("CC : " + mqExp.completionCode);

 System.out.println("RC : " + mqExp.reasonCode);

 }

 } // currDepth ends here

 private void qInquire(int[] selectors , int[] intAttrs , byte[]

 charAttrs) throws MQException

 { // MQ queue inqiury

 try

 {

 System.out.println(" in qInquire ");

 queue.inquire(selectors,intAttrs,charAttrs);

 }

 catch (MQException mqExp)

 {

 System.out.println("Error in Inquiry queue");

 System.out.println("Queue Name : " + qName);

 System.out.println("CC : " + mqExp.completionCode);

 System.out.println("RC : " + mqExp.reasonCode);

 }

 } //end of qInquire

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 private String enableDisable(int parameter)

 {// to check the argument is enabled or disabled

 String str="";

 if (parameter == 1)

 str = "Enabled";

 else if (parameter == Ø)

 str = "Disabled";

 return str;

 }// end of enableDisable

 private void qType(int qTypeInt)

 {

 try

 {

 //Queue Types

 if (qTypeInt == 1)

 {

 System.out.println(" Queue Type : Local ");

 qLocalInquiry ();

 }

 else if (qTypeInt == 3)

 {

 System.out.println(" Queue Type : Alias ");

 qAliasInquiry();

 }

 else if (qTypeInt == 6)

 {

 System.out.println(" Queue Type : Remote ");

 qRemoteInquiry();

 }

 else if (qTypeInt == 6)

 {

 System.out.println(" Cluster Queue ");

 System.out.println(" Clusrter queue are supported in this version ");

 }

 }

 catch (Exception e)

 {

 System.out.println("Error in qType function ");

 e.printStackTrace();

 }

 } //end of qType

 private void readPropertyFile(String propFileName) throws Exception

 {

 try

 {

 System.out.println("Reading from file " + propFileName);

 Properties mqProperties = new Properties();

 mqProperties.load(getClass().getResourceAsStream(propFileName));

 hostName = mqProperties.getProperty("hostname");

 qmgrName = mqProperties.getProperty("qmgrName");

 20 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 port = mqProperties.getProperty("portNumber");

 channel = mqProperties.getProperty("channel");

 qName = mqProperties.getProperty("QueueName");

 } // end of try

 catch (Exception exp)

 {

 System.out.println("Error in reading property file");

 exp.printStackTrace();

 System.exit(Ø);

 } // end of catch

 } // end of readPropertyFile

}

Balaji SR (balaji_srajan@yahoo.com)
MQ Administrator
eFunds International (India) © Xephon 2004

Web services and the enterprise business
environment

There’s a revolution occurring in enterprises and it’s all about
Web services producing a minimum 50% reduction in the Total
Cost of Ownership (TCO) and up to 3000% Return On technology
Investment (ROI). Its use is moving from early adopters to early
majority in 2004. The most common usage is integration between
mainframe (eg MVS, OS/390, z/OS, CICS), client/server, and
Web-based environments (intranets/extranets/Internet). I spoke
on this topic at Comdex Las Vegas in November 2003 to a
capacity ‘enterprise’ audience because of the high level of
interest.

In this article, we outline the advantages and impediments,
discuss examples, define Web services from a business and a
technical perspective, and, finally, end with a roadmap for
implementation.

ADVANTAGES TO ENTERPRISES

Web services are critical to strategic consideration and planning

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

of the organization and business models, and the value chain
and operations. Business models are heavily impacted by the
universal integration abilities of Web services. The integration
process occurs in three phases: internally, externally on a limited
basis, and then broadly through the Internet. Web services are
currently being used heavily for internal integration, and external
integration will gain momentum in 2005/6.

Phase I integration occurs behind the firewall on the intranet. It
involves enterprise systems, such as ERP and CRM, legacy
mainframes, and client/server and Web-based systems, plus
aggregating applications and sources for self-service portals.
Next, Phase II integration occurs with a limited number of
customers, suppliers, and partners through a company’s extranet.
Ford and Dell are good examples of companies in this phase.
Finally, in Phase III, this is broadened to larger trading networks,
e-markets, and the public using the Internet.

Using Web services, your business becomes more agile since
you have microscopic and global visibility into all your operations,
which allows for quick adjustments. You will have a faster time to
market for new products and services since the supporting
applications can be implemented 70% faster by re-using existing
systems.

Web services provide tighter relationships with your customers,
suppliers, and partners because it’s easier for them to do
business with you. Outcomes will include lower inventories
throughout the supply chain, improved data quality, better business
intelligence on sales and marketing programs, faster product
design through collaboration, and higher sales from streamlined
delivery of business services.

Overall, substantial savings are made in cost and time through
less development and maintenance, improvements in productivity
and efficiency through streamlined operations, reduction in
redundant applications and processes, not using traditional
Enterprise Application Integration (EAI) technologies, and
managing/reusing existing legacy assets. Furthermore, resources
can be redeployed for other strategically important initiatives.

 22 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

In addition, Web services allow you to expand to new markets,
new sources of revenue, and new business models by redesigning
business processes. For example, a large credit-rating firm is
using Web services to expand revenues from small and medium-
sized businesses. Web services support portal initiatives and the
resulting improvements in self-service can offer new revenue
opportunities. T-mobile and Amazon are good examples.

IMPEDIMENTS TO IMPLEMENTING WEB SERVICES

Web services can be deployed over the Internet, which impacts
on reliability and availability. XML (eXtensible Mark-up Language)
underlies Web services, so bulkier text processing can impede
performance.

Moreover, the standards that affect interoperability are still
evolving. This problem is being addressed by the Web Services
Interoperability (ws-i.org) organization, which publishes profiles
and guidelines to ensure interoperation. Two major groups
guiding the standards are the Organization for the Advancement
of Structured Information Standards (oasis-open.org) and the
World Wide Web Consortium (w3.org).

Added challenges come from the training required on the
technology and service-oriented architecture. Finally, can you
trust a publicly-available Web service discovered dynamically
without user intervention, since trading-partner relationships are
typically based on interpersonal exchanges?

ENTERPRISE BUSINESS CASES FOR WEB SERVICES

Merrill Lynch used Web services to integrate its CICS applications,
saving 96% over using integration-bus technologies. They
developed a Web services SOAP gateway to their CICS
environment, allowing full access to the CICS applications with
no adapters required for their client applications. And, they saved
on licensing costs usually associated with EAI.

The Bank of Montreal is using Web services to provide a unified

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

customer view of the bank’s array of specialized IBM mainframe
applications such as savings, loans, and investments.

The US Government in its single portal, E-travel system, is
providing centralized travel management, saving $300m annually,
yielding a 70% reduction in processing time, with an estimated
650% ROI. The system is using Web services to provide a single
reservation system integrating a myriad of travel care providers,
reservation/voucher systems, travel agencies, and travel payment
reimbursement systems.

AT&T connects its TIRKS (Trunks Inventory Record Keeping
System), first developed in 1960, to more than 100 other
applications using Web services, resulting in a 78% saving in
maintenance time. Prior to using Web services, any changes to
TIRKS resulted in changes to the 100+ applications.

Wachovia, a financial services giant, is providing a consolidated
view of customer information by using Web services to access
numerous legacy CICS/DB2 back-end systems. Furthermore,
Web services allow support for browsers, rich clients, interactive
voice response systems, pagers, and wireless systems.

Dunn and Bradstreet (D&B) and Swiss Interbank Clearing (SIC)
use Web services, replacing EDI (Electronic Data Interchange),
to provide improved services to their clients. For example, SIC
clears most cheques written in Switzerland. Using EDI, the
process could take up to six days in contrast to the one day using
Web services.

In a recent discussion, Michael Liebow, Vice President of Web
Services for IBM’s Global Services Division, provided additional
examples of mainframe integration. These are summarized
below.

Arkansas Blue Cross and Blue Shield and its affiliates generate
12 million manual contacts (phone, fax, e-mail) annually. Arkansas
Blue Cross wants to replace the inefficient tangle of phone and
paper-based transactions with direct, secure, and HIPAA-
compliant processes. Web services applications will put billing
and claims processes online, bringing an anticipated 50%

 24 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

reduction in its 12 million manual contacts, as well as a 20%
increase in efficiency in filing and processing claims.

Miami Dade County is already using Web services projects to
improve government operations and enhance the services it
offers to its citizens. Web services will allow 40 departments to
reuse existing mainframe functionality as they build new e-
government applications. For example, Web services allow
contractors to apply for and pay for building licences and permits
on-line, and the information is automatically directed to the
appropriate building inspectors. Web services also power its new
311 non-emergency information phone number. It will be the key
in providing operator access to all county information – regardless
of what system it is sitting on – to answer callers’ questions.

Visa’s network includes more than 21,000 members, 396 million
cardholders, and millions of merchants in the USA. It’s no
surprise that the company must deal with charge-backs and
dispute-resolution as part of the normal course of business. The
company’s most recent Web services project, Resolve Online,
lets banks resolve charge-backs over the Internet and automates
the dispute process over its network. Now, most cardholder
disputes will be resolved within just one billing cycle.

Huntington Bank provides innovative retail and commercial
financial products and services to more than 300 regional
banking offices, and has been serving the financial needs of its
customers for more than 137 years. Over the past decade,
Huntington Bank experienced significant growth through
acquisitions and increased cross sales, which led to a more
complex IT infrastructure to support a diverse mix of products,
services, and delivery channels. Implementing advanced Web
services technologies, Huntington was able to drive customer
information across lines of business at every delivery channel
and reduce redundant software by 60%. By streamlining their
application infrastructure, the bank has reduced maintenance
costs and can now take a more focused and strategic approach
to future software development. Web services also allow the
bank to have instant access to all its customer data, which

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

reduces the amount of time customers spend on the phone with
customer service representatives. Other Web services related
savings come from ease in deploying, maintaining, and upgrading
systems.

WHAT ARE WEB SERVICES?

A business-centric viewpoint

Picture Web services as applications exposed as standards-
based services. More than 100 open source and commercial
toolkits are available, allowing applications developed under any
environment to be easily (somewhat automatically) exposed as
Web services. These services can be used by other applications
bridging internal applications or across trading partner supply
and demand chains. Using intranets and the Internet, any
system can easily connect to any other system. Web services
allow Business Process Management (BPM), permitting different
platforms, such as SAP and Oracle, to exchange information.
Moreover, Web services provide real-time visibility to all aspects
of the business value chain, demand chain, and supply chain,
enabling Business Activity Monitoring (BAM) and alerting users
to imminent problems. Web services enable the collection and
computation of analytic information and optimization through the
evaluation of complex ‘what if’ scenarios.

A technological perspective

This time, picture Web services as an Application Program
Interface (API) based on XML and open standards – a WS-API.
Web services can be built from an existing application simply and
easily by using one of the many toolkits available. Since it’s
standards-based, with all major vendors in agreement, a WS-
API supports Application-To-Application Communication (APPC)
from any system to any other system across an internal intranet
or across the Internet. This allows loosely-coupled connections,
services reuse, and combining services into composite services.

WS-API loosely-coupled connections are flexible, not brittle, and

 26 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

do not break when applications are modified. Changing one
application doesn’t require rewriting connected applications,
much like in the AT&T TIRKS example. No expensive integration
middleware, integration-bus technology, or adaptors are required
to connect different systems.

In addition, once a Web service is created, it can be reused. For
example, a travel reservation service can be reused in the
following ways:

1 To provide Business Intelligence (BI) by analysing reservation
trends in a BI application.

2 To provide customer service representatives with customer
travel reservation history in a CRM application.

3 To allow customers to make travel reservations and obtain
reservation status information through a self-service travel
portal.

4 To allow management reporting on reservations.

Composite services are formed by combining services. This
permits business agility or the quick reaction to new trends and
business needs. In addition, end-to-end business processes can
be modelled and automated.

Because Web services are based on XML, they allow universal
connectivity and interoperability between applications of any
type. And this is across platforms, operating systems, and
programming languages. The use of XML provides a standard
way of representing data, understandable by all systems and
vendors, and is human/machine readable as illustrated in this
XML example:

<order>

 <quantity>5</quantity>

 <price>4.5Ø</price>

</order>

Web services are founded on universally-recognized standards.
The primary ones are HTTP, SOAP, WSDL, and UDDI. HTTP
and SOAP are used to communicate with a Web service. WSDL

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

is used to describe a service, can be auto-generated from service
code, and can be used to auto-connect with a service. UDDI is
used to register Web services so they can be found and then
used, even automatically. A more in-depth description follows.

HTTP
HTTP (HypertText Transfer Protocol) is used as a transport for
message exchanges with a Web service. Protocols such as
SMTP (Simple Mail Transport Protocol), FTP (File Transfer
Protocol), and others can be used; however, HTTP has the
advantage that it’s the same protocol for seeing Web pages, it
goes through firewalls, and is widely supported and pervasive.

SOAP
SOAP (formerly Simple Object Access Protocol) is now just a
name as of Version 1.2. It is the XML-based envelope used to
hold message exchanges with a Web service. The messages
are typically XML documents containing business information or
method (service) calls. SOAP is valuable in its own right since it
can be used as a messaging system for generic Enterprise
Application Integration (EAI), replacing the need for expensive
messaging software or middleware. An added advantage of
SOAP is that it can be generated automatically by the Web
services toolkits. Moreover, SOAP can be extended for added
capabilities such as security and management and is supported
by all systems and vendors.

WSDL
WSDL (Web Services Description Language – pronounced Wiz
Del) is used in WSDL documents. WSDL, which is automatically
generated by Web services toolkits from application code,
describes in a human/machine readable form what a service
does, what operations it can perform, how you communicate with
it, and where it’s located. WSDL describes the Web services’
interface in a standardized way that can be understood and used
by anyone from any development environment (Java, C#, VB,
COBOL, etc) without requiring knowledge of the internal workings

 28 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

of the software component. You can think of it as a generic API
design document allowing code reuse – a COBOL programmer
can easily use a Java component for example. You can also use
an application’s associated WSDL document to auto-generate
the Web services connection code for the client software.

UDDI
UDDI (Universal Description Discovery and Integration) offers
the ability to submit and register Web services in a private or
public registry so they can be manually or programmatically/
dynamically (automatically) found and then used. UDDI provides
the ability to describe the owner of the software, contact
information, the services offered by the software, information on
how to use it, and where it’s located. Furthermore, UDDI provides
the ability to do searches based on categories. Using a phone
book analogy, you can think of a UDDI registry consisting of
searchable white pages listing business information, yellow
pages categorizing services, and green pages containing the
technical details about what the service does, how you
communicate with it, and where it’s located. Public UDDI registries
are offered by companies such as Microsoft, IBM, and SAP. A
private UDDI registry allows a company or trading partner
network to list available Web services. This provides an added
function as a software catalogue to allow reuse and prevent
duplication – to manage your software assets.

A ROADMAP FOR IMPLEMENTING WEB SERVICES

Here are some guidelines if you wish to implement Web services:

1 Gain knowledge on Web services technologies and educate
at all levels to realize the strategic and operational
opportunities that result in a reduction in TCO and provide a
high ROI.

2 Create a centre for excellence that promotes best practices,
technology reuse, and development patterns.

3 Look at what you are doing, what platforms you are using,
and conduct an application inventory.

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

4 Look to see what others are doing.

5 Define standards/policies/guidelines on how you will conduct
your Web services implementation.

6 Look for service candidates with the greatest impact; for
example, recurring processes involving many users, areas
where there’s dynamic or continual change, business
processes involving many manual steps or manual
intervention, or areas where you can consolidate views to
increase employee productivity.

7 Pilot an internal integration project.

8 Fine-tune your standards/policies.

9 Repeat steps 1 to 7 using Web services to integrate your
internal systems as much as possible.

10 Try a few of your closest trading partners – prioritize to the top
20% who affect 80% of your revenues.

11 Expand to a broader market only when the standards are
mature.

Stephen Ibaraki
Board of Directors, http://www.hr-online.com/
www.StephenIbaraki.com (Canada) © Stephen Ibaraki 2004

Application Serialization with WMQ

Starting with Version 5.1 WebSphere, MQ introduced a not-
widely-recognized feature called Application Serialization. It was
introduced as part of the support for shared queues on z/OS. This
article describes the problem that is solved with this feature, the
different possibilities it offers, and how to use it.

PROBLEM DESCRIPTION

For some applications it is necessary to process messages in the

 30 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

same sequence as they arrive on the queue. On all platforms
supported by WebSphere MQ, it is possible to open message
queues in exclusive mode. This assures that only one application
can get messages from that message queue. But there are other
scenarios that cannot be resolved with exclusive access to one
queue only. Examples are partitioned queues that are accessed
by indexes, for example when there is key information in the
message id (MsgId), or correlation id (CorrelId), or both fields of
the message descriptor (MQMD). One application is processing
messages with key value A while others process messages with
key value B.

When using exclusive access to a message queue, the first
application may terminate abnormally. The second application
can then open the queue and start processing messages. This
processing can start before the recovery of the messages being
processed by the first application has completed. This could
result in processing messages out of sequence.

Another scenario is serialization across different queue managers.
Exclusive access to a message queue works only when accessing
the same queue in the same queue manager.

For some application scenarios it is necessary to process and
correlate messages from multiple message queues. Exclusive
access covers processing messages for only one queue.

A further, more theoretical, problem is where applications
exclusively access multiple message queues in different orders.
Such a scenario can occur for WMQ-based application platforms
like message brokers.

APPLICATION SERIALIZATION

To solve these problems, WebSphere MQ offers Application
Serialization. In contrast to exclusive access on a message
queue, Application Serialization works at the connection level.
Because there is no message queue object involved at connection
time, another identification item is needed. This item is the so-
called queue manager connection tag (connection tag). The

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

connection tag is defined by an application programmer. It
should be unique for the applications that need to be serialized.
The connection tag is a character field that allows for 128 bytes.
This is sufficient to find a tag that is unique for a type of
application. If you’re using the connection tag within a product,
you could use a similar naming schema as for Java packages,
for example com.ibm.dni.myapplication. In this example dni is a
product identifier for the IBM product WebSphere Business
Integration for Financial Networks (for details see http://
www.ibm.com/software/integration/wbifn).

The connection tag is defined in the connection options (MQCNO).
It requires connection options Version 3, which has been supported
since WebSphere MQ Version 5.1 on z/OS. A example showing
how to specify the connection tag is given below:

#include <cmqc.h>

...

MQCNO connection_options = { MQCNO_DEFAULT };

MQLONG rc, cc;

MQCHAR48 queue_manager;

MQHCONN connection_handle;

/* make sure to use connection options version 3 */

connection_options.Version = MQCNO_VERSION_3;

connection_options.Options = MQCNO_SERIALIZE_CONN_TAG_QSG;

strcpy (connection_options.ConnTag, "com.ibm.dni.myapplication");

strcpy (queue_manager, "MQØ1");

MQCONNX (queue_manager, &connection_options, &connection_handle, &cc,

&rc);

...

The version in the connection options structure must be explicitly
set to MQCNO_VERSION_3 because the default version is
Version 1.

Once the MQCONNX call is successful, any other application
that tries to connect using the same connection tag gets an
unsuccessful return code MQRC_CONN_TAG_IN_USE (2271).
This return code occurs until the first application disconnects
using the MQDISC function. If the application holding the
connection tag ends abnormally, there is also a difference in the
situation where the serialization is done using exclusive access

 32 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

to a queue. A second application cannot connect using the
connection tag until recovery for the crashed application is
completed. This assures that messages can be processed only
if there is no recovery outstanding and therefore the sequential
processing of all messages can be assured.

SERIALIZATION SCOPE

Application Serialization can be assured in different situations.
First of all, the scope for the serialization can be a single
WebSphere MQ queue manager. If a connection tag is in use by
the first application for one queue manager, other applications
that want to connect to the same queue manager using the same
connection tag are rejected. Applications connecting to another
queue manager are not affected by the first application even if
they use the same connection tag.

The second choice for the serialization scope is the scope of a
WebSphere MQ Queue Sharing Group (QSG). All queue
managers within the QSG can be either on one z/OS logical
partition (LPAR) or on different LPARs. An application can
request that serialization should occur for the whole QSG. If an
application is connected to a queue manager using a connection
tag and that queue manager is part of a QSG, other applications
trying to connect to any queue manager in the same QSG using
the same connection tag is rejected. Applications connecting to
a queue manager that are not part of the QSG are not affected
by the first application even if they use the same connection tag.

SERIALIZATION TYPES

Besides the serialization scope, there is another behaviour that
an application can control. This is the type of serialization that is
required for the connection tag. WebSphere MQ supports two
types of serialization:

1 The connection tag is used to serialize applications. This
type allows just one application to connect within the
serialization scope. Even the same application can connect
only once using the same connection tag.

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

2 The connection tag is used to restrict applications. This type
allows multiple connections within the same serialization
scope to be successful. The second MQCONNX succeeds
if it was issued from within the same processing scope as the
first MQCONNX with the same connection token. The
processing scope for z/OS is defined to be the same MVS
address space. Within one MVS address space, you can run
one process with multiple threads (or TCBs in MVS terms),
multiple processes with a single thread, or a mix of both. All
of them can connect using the same connection tag.

Applications running outside the processing scope and
trying to connect using the same connection tag will get a
return code MQRC_CONN_TAG_IN_USE.

SERIALIZATION OPTIONS

The serialization scope and the serialization type that an
application requests is controlled using the options field in the
MQCNO structure used for the MQCONNX call. Any combination
of serialization scope and type is allowed so that there are four
different values that can be used:

• MQCNO_SERIALIZE_CONN_TAG_Q_MGR – this option
serializes the usage of the connection tag in the scope of a
queue manager.

• MQCNO_SERIALIZE_CON_TAG_QSG – this option
serializes the usage of the connection tag in the scope of a
QSG.

• MQCNO_RESTRICT_CONN_TAG_Q_MGR – this option
restricts the usage to the connection tag in the scope of a
queue manager.

• MQCNO_RESTRICT_CONN_TAG_QSG – this option
restricts the usage to the connection tag in the scope of a
QSG.

These values have to be used exclusively. How to set this is
shown in the example above with the value

 34 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

M Q C N O _ S E R I A L I Z E _ C O N N _
TAG_QSG. As mentioned above, the options take effect only if
the version in the MQCNO structure is set to 3.

If you use the QSG options for the MQCONNX and the queue
manager you are connecting to is not part of a QSG, then the
behaviour falls back to its corresponding options for the queue
manager; for example, MQCNO_SERIALIZE_CON_TAG_QSG
falls back to MQCNO_
SERIALIZE_CONN_TAG_Q_MGR.

USAGE SCENARIOS

There are several scenarios for which Application Serialization
can be used. The main one has already been described.
Application Serialization can be used to assure that messages
in a WebSphere MQ message queue can be guaranteed to be
processed in the sequence in which they are stored in the queue.
Be aware that WebSphere MQ does not guarantee that messages
will always arrive in sequence when putting them onto a queue.

Application Serialization can also be applied to a set of applications
that need to work together. An example might be where a
program implements a protocol conversion, eg between a program
that is processing WebSphere MQ messages and another
program that is processing, say, TCP/IP requests, where
messages are retrieved from a message queue as well as others
having to be written to a message queue . Because protocols are
often asynchronous for a connection, a preferred implementation
is by using different threads. Because each thread needs to
connect to a queue manager, Application Serialization with the
restrict option can be used to protect a set of queues at once. If
the protocol conversion needs to implement a kind of session
and the program is able to support multiple sessions, the
connection tag could be used to represent the session.

Another main use for Application Serialization is for allowing the
implementation of a hot stand-by system. A hot stand-by system
is where one application is actively processing messages and
another application is already active with all the resources, but is

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

not processing any of the messages. The hot stand-by application
becomes active only if the primary application fails. This kind of
system is especially interesting in a parallel sysplex environment
with shared queues.

Hot stand-by can be used for applications that process messages
needing to be processed in sequence and a response must be
assured within a predefined time. In such situations, a long start-
up time for a second instance of the application is not allowed.

There is one drawback when using Application Serialization for
hot stand-by systems. The problem is that the hot stand-by
application gets just the reason code
MQRC_CONN_TAG_IN_USE and there is no way of knowing
when a connection tag is no longer in use. This requires the
stand-by application to be regularly polling using the MQCONNX
call.

SUMMARY

With Application Serialization, WebSphere MQ offers capabilities
to serialize or restrict access to applications. This can be used to
guarantee that messages on a message queue are processed
in sequence and to implement hot stand-by environments.
Application Serialization can be applied for a single queue
manager but also across a queue sharing group.

Michael Groetzner
IBM (Germany) © IBM 2004

WebSphere Integrator, writing a plug-in input node

TARGET AUDIENCE

This article is aimed at C programmers who need to implement
a WebSphere MQ Integrator C plug-in node that creates an
entirely new message tree with a Properties folder and an MQMD

 36 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

folder and is then propagated to and correctly parsed by the IBM
primitive nodes and written to a bitstream. The reader must be
familiar with WebSphere MQ Integrator and the C plug-in interface
to make best use of this article.

WRITING A PLUG-IN INPUT NODE (WMQI)

The simplest course of action to take in an input node is to create
a new message with a Properties and an MQMD folder that can
be passed to, for example, the IBM primitive MQOutputNode.
This is accomplished by calling two CNI functions,
cniCreateMessage and
cniCreateElementAsFirstChildUsingParser (or suitable
alternatives), to create the default Properties and MQMD folders.
Uninitialized fields are populated by the relevant parser as and
when necessary through the message flow:

int rc;

CciChar* constMQHMD = (CciChar*)CciString("MQHMD", BIP_DEF_COMP_CCSID);

CciChar* constMQMD = (CciChar*)CciString("MQMD", BIP_DEF_COMP_CCSID);

CciChar* constMqPropertyParser = (CciChar*)CciString("MQPROPERTYPARSER",

BIP_DEF_COMP_CCSID);

CciChar* constProperties = (CciChar*)CciString("Properties",

BIP_DEF_COMP_CCSID);

CciElement* element;

/* inMessage is passed by the broker but for all intent purposes is

blank */

CciMessageContext* inMessageContext = cniGetMessageContext(&rc,

inMessage);

CciMessage* outMessage = cniCreateMessage(&rc, inMessageContext);

element = cniCreateElementAsFirstChildUsingParser(&rc, outMesage,

constMQHMD);

cniSetElementName(&rc, element, constMQMD);

cniSetElementType(&rc, element, CCI_ELEMENT_TYPE_NAME);

element = cniCreateElementAsFirstChildUsingParser(&rc, outMesage,

constMqPropertyParser);

cniSetElementName(&rc, element, constProperties);

cniSetElementType(&rc, element, CCI_ELEMENT_TYPE_NAME);

cniFinalize(&rc, outMessage);

cniPropagate(&rc, outMessage);

Note:

• Broker plug-in nodes should always check for non-zero (0 !=
rc) return codes.

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• The C compiler may predicate that all declarations are
finished before functions are called.

• The MQMD folder is created first so that when
cniCreateElementAsFirstChildUsingParser is called for the
Properties folder, the Properties folder becomes the first
folder in the message tree.

PROPAGATING MESSAGES FROM A USER-WRITTEN PLUG-IN
INPUT NODE

In most broker plug-in nodes, messages are propagated from the
cniEvaluate function. For a plug-in input node, messages are
propagated using cniRun; they can also be propagated from the
cniEvaluate function if the node defines this function, and if
another node is plumbed to an input terminal of the plug-in input
node. This behaviour is not well documented and can be
confusing: suffice it to say that a plug-in input node has all the
same functionality as a normal plug-in node and can also initiate
a message flow by creating and propagating a new message
without needing to receive a message on an input terminal. In
fact, a plug-in input node does not normally define any input
terminals since it is normally only ever dispatched directly by the
broker. The user-written code programmatically sets a pointer to
cniRun inside the bipGetMessageflowNodeFactory function of
the loadable implementation library, in an identical way to setting
a pointer for cniEvaluate in a standard plug-in node. When a
message flow is deployed, the broker calls the cniRun function
of each plug-in input node. The first noteworthy difference
between the cniEvaluate and cniRun functions concerns message
context: cniEvaluate typically creates messages based on the
context of the message passed to it; whereas cniRun creates
messages based instead on the context of a blank message
passed as a parameter of the cniRun function, which has the
context of the broker. If a different context is required it can either
be set programatically in the user code, set by a compute node
or database node plumbed to the output terminal of the plug-in
node, or by a mechanism described below.

 38 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

COMMON MISTAKES WITH PROPERTIES AND MQMD FOLDERS

New messages created by a plug-in input node have no Properties
folder and no MQMD folder. The presence of an MQMD folder is
not mandatory since the message may never end up being
propagated to an MQOutputNode. The Properties folder has
more uses, especially in the ResetContentDescriptor node. The
omission of these two folders can create problems that can be
difficult to remedy or understand, so the following information will
be useful.

If a new message is passed to an MQOutputNode, the message
tree must contain an MQMD folder, and the MQOutputNode
property ‘Message Context’ cannot be left as the default or set to
either ‘Pass All’ or ‘Pass Identity’ if there is no message context
set in the MQMD folder – these problems are made apparent by
finding a related reason code in the system log. The property
value of ‘Set All’, ‘Set Identity’, and ‘Default’ can be used, but the
context of the message on the queue will be set to that of the
broker (unless it is changed en route). The property value of
‘None’ also works, but applications that rely on context will not
find this useful. If context is required to differentiate messages on
the output queue, and the broker context is not practical, a
compute node, database node, or alternative means should be
used to set the context before propagating the message.

CNIRUN COMPLETION CODES: TRANSACTION RESULT, STATE
INFORMATION

The second noteworthy difference between cniRun and
cniEvaluate is the dispatching mechanism: cniRun is dispatched
directly by the broker, and cniEvaluate from a message propagated
to an input terminal of the node. A third difference is that while
cniEvaluate returns a single-meaning completion code to the
broker, cniRun returns a double-meaning completion code to
reflect the message flow transaction result and state information.
The completion codes are: CCI_TIMEOUT,
CCI_SUCCESS_CONTINUE, CCI_SUCCESS_RETURN,
CCI_FAILURE_CONTINUE, and CCI_FAILURE_RETURN.

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

The following notes give general guidelines on how the completion
codes are interpreted when returned to the broker:

• CCI_TIMEOUT is used to tell the broker ‘nothing happened’
– no messages have been propagated out of the node and
the node should be dispatched again.

• CCI_SUCCESS_CONTINUE and
CCI_FAILURE_CONTINUE also indicate that the node
should be re-dispatched, whereas
CCI_SUCCESS_RETURN and CCI_FAILURE_RETURN
indicate that the node should not be re-dispatched – the
broker will not invoke the node until after the redeployment
of message flows incorporating the node.

• The use of the ‘SUCCESS’ completion codes gets the broker
to commit transactions because of messages being
propagated out of the plug-in node for this invocation of
cniRun – ie this time the plug-in node was dispatched by the
broker. ‘FAILURE’ completion codes get the broker to back
out transactions for this invocation of cniRun.

Messages propagated from a single call to cniRun or cniEvaluate
are encapsulated in a unit of work managed by the broker. (An
example of an exception is when an MQInputNode or
MQOutputNode is configured to handle messages not in the
transaction. These are handled by that node.)

A well-behaved plug-in node frequently returns control to the
broker, especially in cases where many messages are propagated
in an iterative fashion – for example processing records in a file.
If the node does not yield in this way, the broker is prevented from
stopping (or restarting) the data flow engine, publishing
configuration changes, or redeploying message flows within the
same execution group.

If it is critical that the broker dispatches the plug-in node on the
very same thread, the cniRun function must not use either of the
‘RETURN’ completion codes since this indicates that the node
has finished processing and does need to be re-dispatched. If the
node is subsequently dispatched again (for example, a message

 40 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

flow containing the node is redeployed) the broker may use any
of its available threads with no guarantee of ever using the same
thread as before. To ensure the cniRun function is dispatched on
the same thread, CCI_TIMEOUT or either of the ‘CONTINUE’
completion codes should be used.

Note: if a ‘RETURN’ completion code is returned by cniRun and
the plug-in node also declares cniEvaluate, cniEvaluate can
continue to be called if the plug-in node has its input terminal
connected (directly or indirectly) to an input node that has at least
one thread dispatched and is propagating messages.

THREAD AFFINITY

The message context passed to either the cniRun or cniEvaluate
functions is not valid across future calls to the plug-in node. This
limits the scope of any one message context to the function call
in-progress. A handle on the message tree (or part of it) is
immediately invalid when control returns to the broker. However,
the message tree can be written to a bitstream and reconstructed
in a different scope, since this constitutes taking a copy of the
message tree rather than passing it as a reference. For example
the MQMD folder of a message tree passed to cniEvaluate can
be stored for use later in the cniRun function for creating new
messages using the context of the message passed to cniEvaluate
(recall that the message context passed to the cniRun function
is that of the broker).

Delegating to cniRun is particularly useful for adhering to POSIX
restrictions such as thread affinity on file descriptors, where a file
must be opened and closed on the same thread. The open/close
call can be deferred for processing in the cniRun function,
providing a ‘RETURN’ completion code was not used last time
cniRun returned control to the broker. Although this problem
does not often arise, it is one example of where thread affinity
must be addressed when architecting a plug-in node to be used
in a multi-threaded environment. Careful consideration is required
to avoid imposing a scalability restriction (ie a point of
synchronization/performance bottleneck) when the message

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

flow is configured for additional instances. It is also difficult to
correctly handle exceptions that may need to be passed from
cniRun back to the cniEvaluate function.

In a real life scenario, additional instances of a message flow
write data into the same file. A message that arrives when a file
is not open causes a new file to be opened. A message that
arrives and results in certain conditions being met closes the file.
The net result may effectively require the file to be ‘opened’ on
one thread and ‘closed’ on another. This violates POSIX rules on
file descriptor thread affinity, so the cniEvaluate defers the open/
close operation to the cniRun function. This is not a standard use
of cniRun – a typical application is MQInputNode, where messages
are read from a queue and propagated out to the message flow.

MEMORY UTILIZATION

Consider implementing a C plug-in input node that processes the
records of a file, creating and propagating a new message for
each record in the file. For a small file with few records there is
little adverse impact on the broker. As the number of records in
the file increases, it become obvious that memory utilization and
processing time per record also increase. For a file with hundreds
of thousands of records, this side effect is severe. The broker
cannot allocate sufficient memory to process all the records and
causes an abnormal termination of the execution group in which
the message flow is running. Memory is required to create a new
message tree and syntax elements attached to it. This memory
is available for re-use when the node that initiated the message
flow returns control to the broker with a completion code other
than CCI_TIMEOUT.

This effect can be addressed in one of two ways. The first is the
preferred method and the more reliable of the two. It requires
saving state between consecutive calls to the plug-in node
(either the broker dispatching cniRun, or a message propagated
to an input terminal). The second approach is both undocumented
and unsupported. Nevertheless, it is presented here as a tried-
and-tested solution architected by the author for propagating

 42 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

300,000 messages without memory heap expansion and
associated performance degradation. A message tree and syntax
element are created into which the user data is copied, the
handle to the syntax element is retained and used to copy new
data over old. The updated message tree is propagated each
time round the loop. The first method is obviously more difficult
to implement and manage state between invocations. The
second method has obvious limitations in that the message tree
structure must essentially remain unchanged, otherwise memory
utilization will increase as before for each structural change to the
tree.

The actual implementation of propagating every record without
returning control to the broker contradicts best practice, but was
judged to be an acceptable disadvantage in the rare event of an
extraordinarily large number of records. It was deemed necessary
for the broker to wait for all the records to complete before the
execution group could be interrupted, and it was also decided
that the performance benefits of processing all records using a
single message tree outweighed the disadvantage of holding up
configuration changes or redeployment of other message flows,
which could always be allocated in an alternative execution
group.

SUMMARY

The important points to note from this article are:

• A new message created by a plug-in node must have a
Properties folder in order to be correctly processed by many
of the IBM primitive nodes, especially the MQOutputNode,
and for configurations of the ResetContentDescriptor node.

• A new message created by a plug-in node must have an
MQMD folder that does not specify the default message
context of ‘Pass All’ or ‘Pass Identity’ if the message is
propagated to an MQOutputNode, unless it is set by a
compute node or database node, or by some other means.

• Using the C programming interface, syntax elements are

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

retained by the broker and consume memory until control is
returned to the broker.

This article has explained how to create a new message with the
necessary parser folders that can be propagated without causing
parsing errors. It has also discussed considerations for
propagating an essentially unlimited number of messages without
running into memory problems.

Efficient use of memory is one of two reasons for a plug-in input
node to frequently return control to the broker: it is also desired
to allow the data flow engine to update configuration information,
and redeploy some or all of the message flows in an execution
group. A node that returns control frequently to the broker will fit
in better with the architecture of the Integrator product.

A FINAL WORD OF CAUTION

The reader must note that re-using syntax elements is an
approach that has been used successfully by the author in a
production environment with no discernible side effects, but may
not necessarily be the preferred design for versions of WebSphere
MQ Integrator other than V2.1 or when using the Java
programming interface. It is the reader’s responsibility to
implement a plug-in node with careful attention to data integrity.

With thanks to John Hosie (IBM) and Vicente Suarez (IBM).

Alexander Russell
IT Specialist
IBM Hursley (UK) © IBM 2004

Using WebSphere MQ as a JNDI repository for JMS
administrable objects

JMS applications are designed to be ‘provider’ independent, that
is, they should have no code that pertains only to WebSphere

 44 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

MQ. This is so that they could easily be taken and used with
another JMS provider without changing the code. JMS applications
would generally get a connection to the messaging transport by
obtaining a connection factory object and calling a method
createConnection() on it. A connection factory provides a
connection to the messaging transport, and destination objects
provide a connection to a specific destination on that transport
(such as a queue). These objects are called ‘administrable
objects’. Obtaining administrable objects would normally be
done by a look-up from a repository using JNDI (Java Naming
and Directory Interface). A JNDI repository can be anything from
an LDAP server to a file system, and an administrator would have
previously defined these connection factories and bound them
into the repository. Using this system a JMS application has no
repository-specific or messaging transport-specific code because
it is written using these standard interfaces.

This can add some complexity when getting your first JMS
application up and running. You would have to create your
messaging transport environment, create a repository, define
your administrable objects, and then write your JMS application.
However, by using WebSphere MQ and Support Pac ME01, you
can combine the jobs of messaging transport and JNDI repository
into one, and thus set-up can be greatly reduced. Consequently,
a JMS application can be up and running in much less time.

JMS IN WEBSPHERE MQ

The WebSphere MQ classes for Java provide a JMS
implementation and have been part of the full WMQ product
since MQ Version 5.3 (previously it was a downloadable Support
Pac). Provided with these classes is a JMS administration tool
(JMSAdmin), which will create JMS administrable objects that
work with WebSphere MQ and stash them in a repository that
provides a JNDI implementation. Administrable objects are the
only JMS objects that can contain transport-specific information,
and, as such, need to be created with a provider-written tool. For
example, JMSAdmin will allow you to create a connection factory

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

that defines the name of the queue manager or the name of the
SVRCONN channel to use – a property which may mean nothing
to another messaging transport.

As someone who has written many JMS applications for
WebSphere MQ, I have often found that a large amount of
information is repeated in defining the queue manager and the
queues, and the administrable objects. For example, if my JMS
application wishes to put a message on a queue located on a
queue manager I would need to:

• Define a queue manager called QM1.

• Define a queue called QUEUE1.

Similarly I would have to create a JNDI repository and use
JMSAdmin to perform the following operations:

• Define a QueueConnectionFactory that points to queue
manager QM1.

• Define a Queue type destination that points to queue
QUEUE1.

As you can see, information has been duplicated in the
administrable object definition. More work would be needed if the
queue manager were on a remote machine because not only
would you have to set up the SVRCONN channel and listener on
the queue manager, but the QueueConnectionFactory would
also need to contain exactly the same information.

In a production environment, you would want to do this. This is
so that it would be possible for an administrator to change
properties on your system (such as the hostname of the queue
manager) while your applications continued working seamlessly
without alteration. However, during development it is not always
desirable to have to set up a JNDI repository as well as a queue
manager.

One solution to this is to use Support Pac ME01. This Support
Pac turns a WebSphere MQ queue manager into a JNDI
repository for administrable objects. That sounds like a good idea

 46 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

because it means that all definitions are in one place. However,
the main advantage of this Support Pac is that it is able to
dynamically generate administrable objects, based on real objects
on the queue manager, with no user intervention. For example,
if you use ME01 to connect to the queue manager we created
earlier, you would be able to look up an object called QM1 and a
QueueConnectionFactory would be returned to your application
with the correct properties set on it – without needing to take the
JMSAdmin tool out of the box.

USING ME01

ME01 comes shipped as a single jar that contains a set of JNDI
implementation classes. There are three main operations that a
JNDI implementation should support (although there are many
more that it could) and these are:

• bind() – bind or store an object into the repository.

• lookup() – look up or retrieve an object from the repository.

• list() – return a list of all the objects that are stored in the
repository.

ME01 can operate in two modes – advanced or basic. Let’s look
at the basic mode initially. In this mode, ME01 will allow you to
bind and look up Queue type destinations for each WMQ queue,
and also allow you to look up a single QueueConnectionFactory
that will provide a connection to the queue manager. For example,
if you use ME01 against a queue manager called QM1 with three
queues defined on it (QUEUE1, QUEUE2, and QUEUE3) a call
to lookup("QUEUE1") will return you a JMS Queue type destination
that points to QUEUE1.

What this means is that, with no explicit JNDI configuration, a
JMS application can be instantly used with this queue manager.

The administrable object that is returned is one with all the default
properties set on it. The only property that is modified by ME01
is the queue name (for Queue type destinations) and the queue

 47© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

manager name, host name, port number, and SVRCONN channel
name for the QueueConnectionFactory.

Editor’s note: this article will be concluded next month.

Gareth Matthews
WebSphere Platform Messaging Developer
IBM (UK) © IBM 2004

MQ news

MQSoftware has announced that its flagship Q
Pasa! middleware management system will
provide monitoring support for WebSphere
MQ for TPF (Transaction Processing Facility)
used by airlines, hotels, and financial institutions
worldwide. It provides a dashboard showingf
MQ metrics, queues, events, and associated
technologies.

For further information contact:
MQSoftware, 1660 South Highway 100, Suite
400, Minneapolis, MN 55416, USA.
Tel: (952) 345 8720.
URL: http://www.mqsoftware.com/news/
newsDetail.jsp?id=60.

* * *

Sonic Software has released Sonic ESB 5.5,
which makes it possible for companies to build
an event-driven, Service-Oriented Architecture
(SOA) that can adapt to changing business
requirements.

Sonic ESB 5.5 incorporates Sonic Continuous
Availability Architecture (CAA), which reduces
the time required for the communications
infrastructure of the ESB to resume operations
after hardware, software, or network failures,
and guarantees that transactions are not lost or
rolled back.

For further information contact:
Sonic Software, 14 Oak Park, Bedford, MA
01730, USA.
Tel: (781) 999 7000.
URL: http://www.sonicsoftware.com/
products/sonic_esb/index.ssp.

* * *

IBM has announced Versions 5.1.2 of
WebSphere Studio Application Developer and
WebSphere Studio Site Developer.

These are designed to simplify the development
of Web user interfaces, business logic, and
interactive portals. New rapid application
development and code generation tools in
WebSphere Studio automate many tasks and
hide Java complexities, simultaneously reducing
the learning curve for Java novices, while
accelerating development.

For further information contact your local IBM
representative.
URL: http://www-306.ibm.com/software/
awdtools/studioappdev/about.

* * *

TeamQuest Software has announced
TeamQuest Performance 9.1 with scalability,
statistical analysis, and multi-system modelling
advancements. The new version of the
performance management and capacity
planning software provides additional
capabilities, making it easier to predict
performance when servers are added to
horizontally scale a tiered network of servers.
The product now includes agents for
WebSphere, DB2 UDB, and EMC.

For further information contact:
Teamquest, One TeamQuest Way, Clear Lake,
IA 50428, USA.
Tel: (641) 357 2700.
URL: http://www.teamquest.com/newsletter/
2004/1q/highlights.shtml.

* * *

x xephon

	Using amqmdain to manage WebSphere MQ for Windows
	Viewing a queue's properties from the Java console - revisited
	Web services and the enterprise business environment
	Application Serialization with WMQ
	WebSphere Integrator, writing a plug-in input node
	Using WebSphere MQ as a JNDI repository for JMS administrable objects
	MQ news

