
© Xephon Inc 2004

August 2004

62

In this issue

3 Customizing Unix queue
managers in an enterprise

19 List all the queues in the queue
manager

26 Using WebSphere MQ as a
JNDI repository for JMS
administrable objects – part 2

38 IGQ in practice
47 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.

Printed in England.

Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Nicole Thomas
E-mail: nicole@xephon.com

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in the
UK; $380.00 in the USA and Canada; £261.00
in Europe; £267.00 in Australasia and Japan;
and £265.50 elsewhere. In all cases the price
includes postage. Individual issues, starting with
the July 2000 issue, are available separately to
subscribers for $33.75 (£22.50) each including
postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the rate
of $160 (£100 outside North America) per
1000 words and $80 (£50) per 100 lines of code
for the first 200 lines of original material. The
remaining code is paid for at the rate of $32 (£20)
per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Customizing Unix queue managers in an enterprise

INTRODUCTION

Unix administrators often have to manage lots of programs and
tools on their systems, such as application servers, databases,
security tools, back-up and monitoring utilities, and other
applications. One of these applications may be WebSphere MQ
(WMQ). Mostly, administrators do not want to know too many
details about tools and utilities like WMQ; they just want to use
it as a black box that performs the tasks it is designed for.

In the case of WebSphere MQ, there are lots of objects with many
attributes that have to be customized. With graphical configuration
tools like MQExplorer or MQMON (IBM SupportPac MO71) or
other products, it is a little bit easier to configure WMQ. But most
of the tools require a Windows platform for the tool itself and a
client connection with a running command server on the WMQ
system. It is difficult or even impossible to automate WMQ
configuration with these tools.

The mechanism described in this article simplifies the
administration and configuration of WMQ queue managers on
Unix systems. It reduces to a minimum the knowledge of WMQ
required by administrators and it allows interactive as well as
automated queue manager configuration.

DESCRIPTION OF THE TOOL

Intention for mkqmgr

In WMQ environments, often several servers have to be set up
with a similar, but not identical, configuration (eg development,
application testing, integration testing, production, back-up). The
names and attributes of most of the WMQ objects (queues,
processes, etc) could be the same or similar, but at least the
name of the queue manager and the names and attributes of the
channel (eg IP addresses or IP ports) have to be different.

 4 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

One possibility is to clone queue managers (eg with saveqmgr,
the IBM SupportPac MS03), modify the created file, and read it
into another queue manager. In this case, the administrator has
to know the names and attributes that need to be modified and
must alter them with a text editor like vi. The administrator has
also to remove test and dummy queues, which otherwise will be
copied to the new queue manager too.

An alternative procedure would be to provide the administrators
with a set of WMQ definition files that they have to read into the
queue managers. In this case, the different definition files have
to be stored somewhere. Changes (eg a new queue) have to be
made in all of the files. Some mechanism to handle the definition
files has to be set up and managed.

The solution described in this article is script-based and solves
the problems mentioned above. With the script, mkqmgr
administrators are able to configure queue managers without
needing huge amounts of WMQ skill. The script can be automated
and is usable with software distribution tools or via job control. It
is developed and tested on AIX and Solaris, but an adaptation to
other Unix systems should not be a big deal.

How mkqmgr works

Generally, queue managers differ only in a few attributes. For
example remote queues have to address another queue manager,
a channel may use another transmission queue, and so on. The
trick is to separate the variable values from the fixed definitions.
In the solution described here, the variable parts are stored in a
configuration file specific to the queue manager and the fixed
definitions are put into a template file.

The template file is independent of the environment, which
means it is the same for development, testing, production, and
so on. The template file contains MQSC definition commands for
every WMQ object that has to be defined to the queue manager.
Labels or wildcards replace names and attributes, or even parts
of them, that need to be variable. Wildcards are surrounded by
a less than and a greater than sign (< and >):

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

*--

* Definition of the remote request queue.

*--

DEFINE QREMOTE(<Q_PREFIX>.QUESTION) +

 DESCR('Request queue for <Q_PREFIX>') +

 XMITQ(<REMOTE_QMGR>) +

 RNAME(<Q_PREFIX>.QUESTION) +

 RQMNAME(<REMOTE_QMGR>) +

 REPLACE

The configuration file differs for each system or queue manager
and contains all the environment-specific data; this means
translations for the wildcards. This file contains lines with pairs of
wildcards and a value for each. The values may be followed by
a comment with a preceding hash sign (#):

Q_PREFIX TEST # Prefix for the queues.

REMOTE_QMGR QMTEST1 # Name of the remote queue manager.

In general, the configuration file will be a very short and easily-
readable file, whereas the template file looks very similar to an
MQSC commands file, and so a WMQ novice would find it hard
to read.

mkqmgr is a script that uses these two files for input for the
creation and configuration of a queue manager. mkqmgr first
parses the template file and extracts any wildcards in it. Each
wildcard is shown and the script asks the user to enter a value for
it. When a configuration file exists and the wildcard is found there,
the value will be shown as a default. The administrator may now
change the value or accept it by pressing Return.

Enter the value for parameter "Q_PREFIX" [TEST]? PROD<RETURN>

Enter the value for parameter "REMOTE_QMGR" [QMTEST1]? QMPROD1<RETURN>

The new values are stored in the configuration file:

Q_PREFIX PROD # Prefix for the queues.

REMOTE_QMGR QMPROD1 # Name of the remote queue manager.

mkqmgr stores the last ten versions of the configuration file.

Last but not least, mkqmgr creates a definition file, which looks
similar to the template file, but the wildcards are replaced with the
values from the configuration file:

*--

 6 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

* Definition of the remote request queue.

*--

DEFINE QREMOTE(PROD.QUESTION) +

 DESCR('Request queue for PROD) +

 XMITQ(QMPROD1) +

 RNAME(PROD.QUESTION) +

 RQMNAME(QMPROD1) +

 REPLACE

This definition file is now read into the queue manager. If the
queue manager does not exist, mkqmgr asks the user and tries
to create it.

The template file has first to be created by a WMQ administrator.
The configuration file may be provided with the system
configuration or may be created by the script mkqmgr itself. For
use with software distribution, the WMQ administrator has to
create a template file and one configuration file for each queue
manager. New objects (eg a new queue, but with the same prefix)
have only to be added to the template file.

For additional environments (eg a second production system)
only a new configuration file has to be created. Even an additional
wildcard – which needs a modification to the template file and the
configuration files – is quite easy, because the WMQ administrator
needs to alter only one template file (maybe adding a suffix for
each channel or queue) and to add only one line per configuration
file.

Installation of mkqmgr

There is nothing to install. Just copy the script to your working
directory or to a directory within your search path. The script
always looks in your current working directory for template and
configuration files. You have, at least once, to create a template
file, and run the script to create a configuration and a definition
file. If no template file is used, the script creates an empty queue
manager.

Call mkqmgr

When you run mkqmgr without valid options, you will get a short
usage message:

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

usage: mkqmgr [-v {12}] queue_manager [-t template_file[.tpl]]

 mkqmgr -q queue_manager -t template_file[.tpl]

 -v: Set verbose (1, 2); default level is "Ø".

 -q: Run in "quiet" mode; default mode is "interactive".

mkqmgr has two different modes – an interactive and a quiet
mode. Interactive mode means that the script guides the
administrator through the creation and configuration of a queue
manager. The administrator may use a template file and, if a
configuration file exists, this will be read. The administrator has
to specify the name of the queue manager. If no template file is
specified, mkqmgr asks for one. If you ignore it, mkqmgr creates
an empty queue manager. Some more output is generated when
the verbose level (-v number) is increased to ‘1’ or ‘2’.

In quiet mode, mkqmgr may be used for automatic WMQ
configuration, eg via software distribution tools. In this case both
the template file and the configuration file must exist. The script
does not ask for the attributes, it just replaces the wildcards. Each
wildcard in the template file must have a value defined in the
configuration file. The software distribution mechanism has to
distribute mkqmgr, the template, and the configuration file. A
postinstall script has to call mkqmgr with the correct parameters
and perform the steps in the created README file (see below).

DESCRIPTION OF THE CODE

The script mkqmgr is divided into six parts. The first three parts
of the script contain general functions, which may be used in the
same or a similar way in any other scripts. Part IV contains the
main logic of the script. These functions handle the input and
output files and create an MQSC definition file. Parts V and VI
contain functions to create and configure a queue manager and
to set up some start-up scripts.

Part I – general input functions

The first part of the mkqmgr consists of two general input
functions. Both functions are able to display a default answer,
which will be used by pressing Return. The first attribute contains

 8 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

a string with the question that is to be displayed. The second
attribute is the name of the parameter where the answer will be
stored (not the answer itself!). If the second attribute was set
previously, that value will be used as a default answer:

Set the default answer to 'n'.

enter_tpl="n"

read_answer " Do you have a template file" enter_tpl

The difference between the two functions is that the first one
(read_answer) allows only Y and N, whereas the second function
(read_value) accepts any text as input. In addition, read_value
accepts the string optionally as a third parameter. In this case, the
entered value may be empty, otherwise only non-empty values
will be accepted:

Ask for the name of the template file.

read_value " Enter the name of the template file" TEMPLATE_FILE optional

Part II – script initialization

The next set of functions is used to initialize the script environment.
The function initialise defines default values for several
parameters. It calls the function check_arguments, which reads
and checks all command line parameters. If invalid arguments
are found, a usage message is displayed and the script exits
(function show_usage).

Part III – logging functions

The third part of the script code contains some logging functions.
The function log_start creates the log file and prints a short
message with a time stamp. In interactive mode a short description
about the script function is shown. The function log_finish again
prints a time stamp and exits the program. In interactive mode
some statistics are shown.

Screen output (in interactive mode only):

--

Welcome to the WebSphere MQ configuration.

The log file is "TESTQM.log".

This script will guide you through the configuration

of a WebSphere MQ queue manager. If the queue manager

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

does not already exist, it will be created.

--

...

--

Queue manager configuration finished with:

 2 information(s)

--

Log file output:

**

**

*** Queue manager configuration started at Thu Mar 25 15:18:59 MET 2ØØ4.

**

**

...

**

**

***Queue manager configuration finished at Thu Mar 25 15:19:16 MET 2ØØ4.

**

**

The function log_msg is used to print out a message to the log
file as well as (in interactive mode) to the screen. The first
argument of this function defines the type of message (normal
(m)essage, (i)nformation message, (w)arning message, (e)rror
message, or a (s)eparator line):

...

log_msg "S"

log_msg "M" "Read configuration..."

...

log_msg "I" " Use template file \"$TEMPLATE_FILE\"."

...

Screen output (in interactive mode only):

...

--

Read configuration...

...

 INFO: Use template file "APPL.tpl".

...

 10 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Log file output:

...

**

* Read configuration...

...

* INFO: Use template file "APPL.tpl".

...

Part IV – prepare configuration

Part IV of mkqmgr consists of several functions to read and write
template, configuration, and definition files. The ‘core’ function of
this part is prepare_qmgr_creation:

 956: #

 957: # Set up the input and output files to prepare

 958: # the queue manager configuration.

 959: #

 96Ø:

 961: function prepare_qmgr_configuration

 962: {

 963: log_msg "S"

 964: log_msg "M" "Read configuration..."

 965:

 966: # Read the queue manager data.

 967: get_qmgr_data

 968:

 969: # Look for a template file.

 97Ø: find_template_file

 971:

 972: if ["$TEMPLATE_FILE" != ""]

 973: then

 974: # Parse the template file and extract the wildcards.

 975: parse_template_file

 976:

 977: # Test if wildcards are to be replaced.

 978: if [$NO_OF_PARAMETERS -gt Ø]

 979: then

 98Ø: # Read or create the local configuration file.

 981: read_config_file

 982:

 983: # Enter new values for the WebSphere MQ configuration.

 984: enter_parameters

 985:

 986: # Store the new values in the local configuration file.

 987: store_parameters

 988: else

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 989: log_msg "I" " Nothing to replace in template file."

 99Ø: fi

 991: fi

 992: }

This function calls first get_qmgr_data (in line 967), which finds
out the next unused IP port in /etc/services. This function now
asks whether this queue manager should be used as a default.
When the port 1414 is used, the ‘use as default’ flag is pre-
selected.

The next function called by prepare_qmgr_creation is
find_template_file (in line 970). This function checks whether a
template file was specified on the command line and whether the
name is valid. Otherwise every file located in the current working
directory ending with .tpl is listed and the user is asked for a valid
name. If only one template file has been found, its name will be
shown as a default value.

When a template is used, it will be parsed by the function
parse_template_file. This function extracts any strings surrounded
by a less than and a greater than sign (< and >), and writes them
to a temporary file (lines 773 to 799). In line 806, the wildcards
are sorted and duplicate entries are removed. The function sets
the value of NO_OF_PARAMETERS to the number of wildcards
found (line 809) and stores any wildcard in the template file in an
array PARAMETERS (line 814):

 753: #

 754: # Create a configuration file, if it does not already

 755: # exist. The function reads the template file and

 756: # extracts all wildcards, separated by '<' and '>'.

 757: #

 758:

 759: function parse_template_file

 76Ø: {

 761: parse_file=$QMGR_NAME.parse

 762: tmp_parse=$CONFIG_FILE.tmp

 763:

 764: log_msg "M" " Parsing template file..."

 765:

 766: # Remove the temporary file, if necessary.

 767: if [-e "$tmp_parse"]

 768: then

 769: rm $tmp_parse

 12 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 77Ø: fi

 771:

 772: # Search the wildcards in the template file.

 773: line_list='grep '<.*>' $TEMPLATE_FILE'

 774:

 775: # Add a blank before each '<'.

 776: line_list='echo "$line_list" | sed -e "s/</ </g"'

 777:

 778: # Extract the wildcard names from the lines.

 779: for line in $line_list

 78Ø: do

 781: # Calculate the length of the line.

 782: len='echo $line | awk '{print length ($1)}''

 783:

 784: # The line must contain at least three characters.

 785: if [$len -gt 2]

 786: then

 787: # First character of a valid line must be '<'.

 788: buffer="<'echo $line | cut -c 2-$len'"

 789:

 79Ø: if ["$buffer" = "$line"]

 791: then

 792: # Extract the string between '<' and '>'.

 793: param='echo "$line" | sed -e "s/^<\([A-Za-z_].*\)>.*$/\1/g"'

 794:

 795: # Store the string in a temporary file.

 796: echo "$param\t" >> $tmp_parse

 797: fi

 798: fi

 799: done

 8ØØ:

 8Ø1: # Test if wildcards are to be replaced.

 8Ø2: if [-e $tmp_parse]

 8Ø3: then

 8Ø4: # Remove duplicates lines, sort and store the parameters in

 8Ø5: # the configuration file.

 8Ø6: cat $tmp_parse | sort -u > $parse_file

 8Ø7:

 8Ø8: # Count the number of configuration parameters.

 8Ø9: NO_OF_PARAMETERS='cat $parse_file | wc -l'

 81Ø:

 811: # Store the parameter names in an array.

 812: if [$NO_OF_PARAMETERS -gt Ø]

 813: then

 814: set -A PARAMETERS 'awk '{print $1}' $parse_file'

 815: fi

 816:

 817: # Remove the temporary files.

 818: rm $tmp_parse

 819: rm $parse_file

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 82Ø: fi

 821: }

If any wildcards are found, the function read_config_file looks for
an existing configuration file. Each element of the array
PARAMETERS will be searched in the first column of this
configuration file (lines 839 and 840). If the parameter is found,
the second column of the line is set into the string tmp_values
and the rest of the line behind the hash sign (#) is stored into the
string tmp_comments (lines 842 to 854). Blanks within the
comments are replaced in line 840 by underscores (_). At the end
of the function (lines 861 and 862), the contents of the temporary
strings are stored into the arrays VALUES and COMMENTS:

 823: #

 824: # Read an existing configuration file. The

 825: # parameters will be stored in two arrays.

 826: #

 827:

 828: function read_config_file

 829: {

 83Ø: tmp_values=""

 831: tmp_comments=""

 832:

 833: if [-e $CONFIG_FILE]

 834: then

 835: let idx=Ø

 836: while [$idx -lt $NO_OF_PARAMETERS]

 837: do

 838: # Store the old parameter value and the comment.

 839: val='grep -w "^${PARAMETERS[$idx]}" $CONFIG_FILE | awk

'{print $2}''

 84Ø: cmt='grep -w "^${PARAMETERS[$idx]}" $CONFIG_FILE | awk -

F'#' '{print $2}' | tr ' ' '_''

 841:

 842: if ["$val" = ""]

 843: then

 844: tmp_values="$tmp_values \"\""

 845: else

 846: tmp_values="$tmp_values $val"

 847: fi

 848:

 849: if ["$cmt" = ""]

 85Ø: then

 851: tmp_comments="$tmp_comments \"\""

 852: else

 853: tmp_comments="$tmp_comments $cmt"

 14 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 854: fi

 855:

 856: let idx=$idx+1

 857: done

 858: fi

 859:

 86Ø: # Store the parameter values and comments in two arrays.

 861: set -A VALUES $tmp_values

 862: set -A COMMENTS $tmp_comments

 863: }

The function enter_parameters now shows the stored parameters
and its values. The administrator now may change the value, or
accept it by pressing Return.

The last step in this part is to store the new values back into the
configuration file, if anything has changed. Underscores within
the comments are replaced by spaces. The previous 10 versions
of the configuration file are saved as files ending with .cfg.0 to
.cfg.9, with the oldest configuration in the file ending with .cfg.9.
The actual version has the extension .cfg.

Part V – execute configuration

The functions in part V now configure the queue manager. The
‘core’ function of this part is execute_qmgr_creation:

1159: #

116Ø: # Execute the queue manager configuration.

1161: #

1162:

1163: function execute_qmgr_configuration

1164: {

1165: ret=Ø

1166:

1167: log_msg "S"

1168: log_msg "M" "Starting the queue manager configuration..."

1169:

117Ø: ans=""

1171: read_answer " Start now" ans

1172:

1173: if ["$ans" = "n"]

1174: then

1175: log_msg "I" "Queue manager configuration cancelled by user!"

1176:

1177: # Finish the script logging and exit the program.

1178: log_finish Ø

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

1179: fi

118Ø:

1181: # Suppress the usage of CTRL-C and other interrupts.

1182: trap '' HUP INT ERR TERM

1183:

1184: log_msg "S"

1185: log_msg "M" "Setting up queue manager $QMGR_NAME (takes a

while, output follows) ..."

1186:

1187: # If the queue manager does not exist ...

1188: if [$QMGR_EXISTS = "n"]

1189: then

119Ø: # ... create the new queue manager.

1191: create_qmgr

1192: ret=$?

1193: fi

1194:

1195: if [$ret -eq Ø]

1196: then

1197: # Start the queue manager.

1198: start_qmgr

1199: ret=$?

12ØØ:

12Ø1: if [$ret -eq Ø]

12Ø2: then

12Ø3: # Configure the queue manager objects.

12Ø4: configure_qmgr

12Ø5: fi

12Ø6:

12Ø7: # End the queue manager.

12Ø8: end_qmgr

12Ø9: fi

121Ø:

1211: return $ret

1212: }

First this function checks whether the queue manager exists (line
1188). If no, the queue manager will be created (call create_qmgr
in line 1191). If the queue manager did exist before or has been
successfully created, the function tries to start the queue manager
by calling the function start_qmgr (line 1198). This function first
checks whether the queue manager is already active. If so, the
parameter STOP_QMGR is set to NO, otherwise it is set to YES
and the queue manager will be started.

Now the function configure_qmgr is called (line 1204), and it
reads the created definition file into the queue manager. Afterwards

 16 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

the queue manager will be stopped, if the parameter
STOP_QMGR is set to YES.

Part VI – creating sample files

The last part of mkqmgr consists of functions to create some
sample scripts and a README file. These files are stored in a
directory, which has a name like the created queue manager, but
ending with .postinstall. The README file describes further
steps to configure an automatic start and stop script and a
channel listening via inetd.

Perform the following steps as user ‘root’:

1 Add the contents of the file TESTQM.postinstall/
mqs_start_script to your WebSphere MQ start-up script (eg
/etc/rc2.d/S98mqm).

2 Add the contents of the file TESTQM.postinstall/
mqs_stop_script to your WebSphere MQ stop script (eg /etc/
rc0.d/K18mqm).

3 Add the contents of the file TESTQM.postinstall/etc_services
t o
/etc/services.

4 Add the contents of the file TESTQM.postinstall/etc_inetdconf
to /etc/inetd.conf.

5 Re-initialize inetd with:

kill -HUP 'ps -ef | grep inetd | grep -v grep | awk '{print $2}''

The steps above require root privileges, so they have to be
performed by a Unix administrator, whereas the other steps
described before require only mqm privileges. If a WMQ
administrator is not able to get root privileges, he or she can
provide the system administrator with these files. When the
queue manager configuration is executed by software distribution,
these steps have to be included in a postinstall script.

The lines below show the postinstall files created my mkqmgr for
a Sun Solaris system.

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Start-up script:

if [-e /opt/mqm/bin/strmqm]

then

 echo "starting WebSphere MQ daemons"

 /bin/su - mqm -c "/opt/mqm/bin/strmqm TESTQM"

 /bin/su - mqm -c "/opt/mqm/bin/strmqcsv TESTQM"

fi

Stop script:

if [-e /opt/mqm/bin/endmqm]

then

 echo "stopping WebSphere MQ daemons"

 /bin/su - mqm -c "/opt/mqm/bin/endmqm -i TESTQM"

fi

Entry for /etc/services:

WMQ1418 1418/tcp # WMQ channel listener for qmgr TESTQM

Entry for /etc/inetd.conf:

WMQ1418 stream tcp nowait mqm /opt/mqm/bin/

amqcrsta amqcrsta -m TESTQM

MAIN part

The ‘main’ part of mkqmgr consists of only a few lines, which call
the script parts I to VI described above:

1417: ###

1418: #

1419: # MAIN part:

142Ø: #

1421: # Calling the other script parts described above.

1422: #

1423: ###

1424:

1425: # Initialize the script environment.

1426: initialise $Ø $*

1427:

1428: # Start the script logging.

1429: log_start

143Ø:

1431: # Prepare the qmgr configuration.

1432: prepare_qmgr_configuration

1433:

1434: # Execute the qmgr configuration.

1435: execute_qmgr_configuration

 18 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

1436: ret=$?

1437:

1438: # Create some system configuration and README files.

1439: [$ret -eq Ø] && create_sysfiles

144Ø:

1441: # Finish the script logging and exit the program.

1442: log_finish Ø

DESCRIPTION OF THE FILES

The script mkqmgr uses several specific file extensions for its
task. The name of the template file should point to the application.
All other file names contain the queue manager with a specific
ending. In the samples below an application named APPL
(perhaps a shortcut) and a queue manager TESTQM are
assumed:

• APPL.tpl – template file for an application APPL.

• APPL.TESTQM.cfg – actual configuration file of the
application APPL for the queue manager TESTQM.

• APPL.TESTQM.cfg.N (N = 0 to 9) – previous versions of the
configuration file.

• APPL.TESTQM.def – created definition file of the application
APPL for the queue manager TESTQM.

• TESTQM.log – log file of the script mkqmgr.

• TESTQM.postinstall – directory containing the steps to be
performed by a Unix administrator.

The directory TESTQM.postinstall contains several files, which
describe further tasks to be performed by a system administrator.
The file README.txt lists the next steps whereas the other files
contain sample lines, which have to be added to some system
files.

Listing of mkqmgr

The full listing for the script mkqmgr is too long to be written here.
The script and a sample template and configuration file may be

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

List all the queues in the queue manager

Here is a Java application that will list all the queues in the queue
manager. This supports wildcard usage for queue name and it
will also list the system queues on request. Additionally, the
program will display the queue type and the current depth of the
queue.

/**/

/* Program name: ListAllQs */

/* mail Id: balaji_srajan@yahoo.com */

/**/

/* Function: */

/* This program list all the queues in the queue manager. This */

/* supports wildcard usage for queue name and will also list the */

/* system queues upon request */

/* The program will also display the queue type and the current */

/* depth of the queue */

/* */

/* Command line arguments: */

/* java ListAllQs - <-m queue manager name > */

/*<-q queuetype (local,remote,alias,model)>*/

/* <-w wildcard (use # instead of *, ABC#)> */

/* <-s system queues (Y/N)> */

/* - This application can be executed on the MQ Server */

/* environment. Pls make sure that the MQ jar files are */

/* in the class path (com.ibm.mq.jar, com.ibm.mq.pcf.jar) */

/* */

/* Sample command line parameter: */

/* ListAllQs -m QMGR -q LOCAL -w ABC# -s N */

/********************+***/

trevore@xephon.com

import java.io.*;

import java.util.*;

import com.ibm.mq.*;

import com.ibm.mq.pcf.*;

downloaded from Xephon’s Web site at www.xephon.com/extras/
uqm.zip. Parts of the files are shown in the text above.

Hubert Kleinmanns
Senior Consultant
N-Tuition Business Solutions (Germany) © Xephon 2004

 20 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

public class ListAllQs

{

 private String qmgrName;

 // for storing the Queue manager name

 private String systemqueues; // options

 private String queueType; // queue types

 private String wildcard; // for wildcard search

 public static void main (String arg[])

 {

 try

 {

 if (arg.length != 8)

 {

 System.out.println("Please enter the arguments in, <-m queue

manager name > <-q queuetype(use # instead of *)> <-w wildcard (use #

instead of *)> <-s system queues (Y/N)> \n");

 System.exit(1);

 }

 ListAllQs listallqueue = new ListAllQs();

 listallqueue.Init(arg);

 } // end of try

 catch (Exception exp)

 {

 System.out.println("error in main.....");

 exp.printStackTrace();

 }

 } // end of main

 private void Init(String[] arg1)

 {

 try

 {

 Hashtable params = new Hashtable(4);

 if (arg1.length > Ø && (arg1.length % 2) == Ø)

 {

 for (int i = Ø; i < arg1.length; i+=2)

 {

 params.put(arg1[i], arg1[i+1]);

 } //end of for

 if (!(params.containsKey("-m") && params.containsKey("-q") &&

 params.containsKey("-w") && params.containsKey("-s")))

 {

 throw new IllegalArgumentException() ;

 }

 }

 qmgrName = (String) (params.get("-m"));

 queueType = (String) (params.get("-q"));

 wildcard = (String) (params.get("-w"));

 systemqueues = (String) (params.get("-s"));

 wildcard = wildcard.replace('#','*');

 queueType = queueType.replace('#','*');

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

System.out.println("--

------");

 System.out.println("Queue manager Name : " + qmgrName);

System.out.println("System queues (Y/N) : " + systemqueues);

 System.out.println("Queue type : " + queueType);

 System.out.println("Wildcard (use # for all) : " + wildcard);

System.out.println("--

-----");

 queueList();

 } //end of try - Init

 catch (IllegalArgumentException IglExp)

 {

 System.out.println(" <-m queue manager name > <-q queuetype> <-w

wildcard (use # instead of *)> <-s system queues (Y/N)>");

 System.exit(1);

 }

 catch(Exception exp)

 {

 System.out.println("error in Init...");

 exp.printStackTrace();

 }

 } //end of Init

 private void queueList()

 {

 try

 {

 PCFMessageAgent pcfAgent; // PCF agent

 PCFMessage pcfRequest; // PCF request

 PCFMessage pcfResponse[]; // PCF response

 System.out.println("qmgrName..." + qmgrName);

 pcfAgent = new PCFMessageAgent (qmgrName);

 System.out.println ("Queue Manager connect successfull... ");

 System.out.println ("Building PCF request....");

 pcfRequest = new PCFMessage (CMQCFC.MQCMD_INQUIRE_Q);

 pcfRequest.addParameter (CMQC.MQCA_Q_NAME, wildcard);

 if ((queueType.compareToIgnoreCase("*") == Ø))

 {

 System.out.println("in all queue type....");

 pcfRequest.addParameter (CMQC.MQIA_Q_TYPE, CMQC.MQQT_ALL);

 }

 else if ((queueType.compareToIgnoreCase("local") == Ø))

 {

 System.out.println("in queue type local....");

 pcfRequest.addParameter (CMQC.MQIA_Q_TYPE, CMQC.MQQT_LOCAL);

 }

 else if ((queueType.compareToIgnoreCase("remote") == Ø))

 {

 System.out.println("in queue type remote....");

 pcfRequest.addParameter (CMQC.MQIA_Q_TYPE, CMQC.MQQT_REMOTE);

 }

 22 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 else if ((queueType.compareToIgnoreCase("alias") == Ø))

 {

 System.out.println("in queue type alias....");

 pcfRequest.addParameter (CMQC.MQIA_Q_TYPE, CMQC.MQQT_ALIAS);

 }

 else if ((queueType.compareToIgnoreCase("model") == Ø))

 {

 System.out.println("in queue type model....");

 pcfRequest.addParameter (CMQC.MQIA_Q_TYPE, CMQC.MQQT_MODEL);

 }

 else

 {

System.out.println("Invalid queue type, displaying all the queues....");

 }

 System.out.println ("requesting... ");

 pcfResponse = pcfAgent.send(pcfRequest);

 System.out.println ("got the response ... ");

 System.out.println ("displaying queues name.....\n");

 displayPCFAttributes(pcfResponse);

 } // end of try

 catch (PCFException pcfExp)

 {

 System.out.println ("PCF exception...");

 System.out.println ("CC : " + pcfExp.completionCode);

 System.out.println ("RC : " + pcfExp.reasonCode);

 System.out.println (pcfExp.exceptionSource);

 } // end of PCFException catch

 catch (MQException mqExp)

 {

 System.out.println("MQ Exception");

 System.out.println ("CC : " + mqExp.completionCode);

 System.out.println ("RC : " + mqExp.reasonCode);

 } //end of MQException

 catch (IOException ioExp)

 {

 System.out.println("IO exception");

 }

 catch(Exception exp)

 {

 System.out.println("error in queue list...");

 exp.printStackTrace();

 }

 } //end of queueList

 private void displayPCFAttributes(PCFMessage[] pcfResp) throws

PCFException

 {

 try

 {

 int qType; // queue type

 int qDepth; // for current depth

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 String qName; // for queue name

System.out.println("Queue name QType QDepth \n");

 for (int i =Ø; i < pcfResp.length; i++)

 {

 qDepth=Ø;

 qName = "";

 qName = pcfResp [i].getStringParameterValue (CMQC.MQCA_Q_NAME);

 qType = ((Integer)

(pcfResp[i].getParameterValue(CMQC.MQIA_Q_TYPE))).intValue();

 switch (qType)

 {

 case 1: // local queues

 if (systemqueues.compareToIgnoreCase("N") ==Ø)

 {

 if (!

(qName.substring(Ø,6).equals("SYSTEM")))

 {

 qDepth = pcfResp[i].getIntParameterValue (CMQC.MQIA_CURRENT_Q_DEPTH);

System.out.println(pcfResp[i].getStringParameterValue(CMQC.MQCA_Q_NAME)

 + " \t" + queueType(qType) +

 " \t" + pcfResp[i].getIntParameterValue(CMQC.MQIA_CURRENT_Q_DEPTH)) ;

 }

 }

 else

 {

 qDepth = pcfResp[i].getIntParameterValue (CMQC.MQIA_CURRENT_Q_DEPTH);

System.out.println(pcfResp[i].getStringParameterValue(CMQC.MQCA_Q_NAME)

 + " \t" + queueType(qType) +

 " \t" + pcfResp[i].getIntParameterValue(CMQC.MQIA_CURRENT_Q_DEPTH)) ;

 }

 break;

 case 6: // remote queues

 if (systemqueues.compareToIgnoreCase("N") ==Ø)

 {

 if (! (qName.substring(Ø,6).equals("SYSTEM")))

 {

System.out.println(pcfResp[i].getStringParameterValue(CMQC.MQCA_Q_NAME)

 + " \t" + queueType(qType)) ;

 }

 }

 else

 {

System.out.println(pcfResp[i].getStringParameterValue(CMQC.MQCA_Q_NAME)

 + " \t" + queueType(qType)) ;

 }

 break;

 case 3: // alias queues

 if (systemqueues.compareToIgnoreCase("N") ==Ø)

 {

 24 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 if (!

(qName.substring(Ø,6).equals("SYSTEM")))

 {

System.out.println(pcfResp[i].getStringParameterValue(CMQC.MQCA_Q_NAME)

 + " \t" + queueType(qType)) ;

 }

 }

 else

 {

System.out.println(pcfResp[i].getStringParameterValue(CMQC.MQCA_Q_NAME)

 + " \t" + queueType(qType)) ;

 }

 break;

 case 2: // model queues

 if (systemqueues.compareToIgnoreCase("N") ==Ø)

 {

 if (! (qName.substring(Ø,6).equals("SYSTEM")))

 {

System.out.println(pcfResp[i].getStringParameterValue(CMQC.MQCA_Q_NAME)

 + " \t" + queueType(qType)) ;

 }

 }

 else

 {

System.out.println(pcfResp[i].getStringParameterValue(CMQC.MQCA_Q_NAME)

 + " \t" + queueType(qType)) ;

 }

 break;

 default: //

 if (systemqueues.compareToIgnoreCase("N") ==Ø)

 {

 if (! (qName.substring(Ø,6).equals("SYSTEM")))

 {

System.out.println(pcfResp[i].getStringParameterValue(CMQC.MQCA_Q_NAME)

 + " \t" + queueType(qType)) ;

 }

 }

 else

 {

System.out.println(pcfResp[i].getStringParameterValue(CMQC.MQCA_Q_NAME)

 + " \t" + queueType(qType)) ;

 }

 } // end of switch

 } // end of for loop

 }

 catch (PCFException pcfExp)

 {

 System.out.println ("PCF exception in displayPCFAttributes...");

 System.out.println ("CC : " + pcfExp.completionCode);

 System.out.println ("RC : " + pcfExp.reasonCode);

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 System.out.println (pcfExp.exceptionSource);

 }

 } // end of displayPCFAttributes

 private String queueType(int qTypeInt)

 {

 try

 {

 //Queue Types

 if (qTypeInt == 1)

 {

 return "Local" ;

 }

 else if (qTypeInt == 3)

 {

 return "Alias";

 }

 else if (qTypeInt == 6)

 {

 return "Remote";

 }

 else if (qTypeInt == 2)

 {

 return "Model";

 }

 //return "qType not supported";

 }

 catch (Exception e)

 {

 System.out.println("Error in qType function ");

 e.printStackTrace();

 }

 return "qType not supported";

 } //end of queueType

 private void readPropertyFile(String fileName) throws Exception

 {

 try

 {

 System.out.println("Reading from the file name....");

 Properties mqProperties = new Properties();

 mqProperties.load(getClass().getResourceAsStream(fileName));

 qmgrName = mqProperties.getProperty("qmgrname");

 systemqueues = mqProperties.getProperty("systemqueues");

 queueType = mqProperties.getProperty("queuetype");

 wildcard = mqProperties.getProperty("wildcard");

 }

 catch (Exception exp)

 {

 System.out.println("Error in reading the property file ..." +

fileName);

 exp.printStackTrace();

 26 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 System.exit(Ø);

 }

 }

}

Balaji SR (balaji_srajan@yahoo.com)
MQ Administrator
eFunds International (India) © Xephon 2004

Using WebSphere MQ as a JNDI repository for JMS
administrable objects – part 2

This month we conclude the article looking at using WMQ as a
JNDI repository for JMS administrable objects.

ME01 can be used to create real objects on the messaging
transport as well. For example, if you were to bind() a queue type
destination into the namespace then a real underlying WMQ
queue will be created with the name that you supply. You would
then, of course, be able to perform a lookup() on that name and
ME01 will again generate a queue type destination for you to use.
Note that any additional properties you set on the queue that was

Figure 1: Example screen

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

bound will be lost in basic mode. Also in basic mode, you will be
unable to bind in objects of any type except WMQ JMS Queue
destination objects.

This can easily be seen by using the JMSAdmin program with
ME01. See the Set-up section below for information on how to set
up JMSAdmin to use ME01. If I were to create a queue manager
called QM1, start it, start the command server and define my
three queues, I would see something similar to Figure 1.

Without performing any JMS administration, I can now start the
JMSAdmin tool and I will see Figure 2.

Note that ME01 will display only non-temporary local queues
whose names do not start with ‘SYSTEM.’.

In advanced mode, ME01 can do everything that it can do in basic
mode, but it also boasts the ability to allow you to change the JMS
properties of the administrable objects and persist them as well
as allowing you to bind any other type of object (such as a topic
type destination for example). ME01 does this by storing a
serialized copy of the administrable object on a special queue.
This means that, if you delete your queue manager, you will lose
any modified definitions of administrable objects that ME01 had
stored for you.

ME01 will still allow you to create real WMQ queues in advanced
mode by binding in a WMQ JMS Queue administrable object.
The only difference being that in advanced mode, all the properties
on the object will persist and the default ones will not be used.

HOW DOES ME01 WORK?

At the heart of ME01 is the use of Programmable Control Format
(PCF) messages. PCF messages are used to administer and
monitor a WMQ queue manager programmatically. This is how
ME01 can gather information on what queues you have available.
Note that because of this, you will need to have the command
server started on your queue manager for ME01 to function
correctly.

 28 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

In basic mode, ME01 maps the common JNDI commands to the
following WMQ operations:

• bind() – if a WMQ JMS Queue object is passed in, ME01 will
send a PCF command to the queue manager asking it to
create a local queue. Any other object type will be rejected.

• lookup() – if the name passed into lookup() matches the
name of the queue manager, ME01 will generate a
QueueConnectionFactory providing a connection to the
queue manager, and will return it. Otherwise, ME01 sends a
PCF message to the queue manager asking for specific
properties about the named queue. If the queue exists,
ME01 will construct a WMQ JMS Queue object and return it.
Otherwise, a NamingException will be thrown.

• list() – the queue manager will be asked for a list of all the
non-temporary non-system queues, and these will be returned
along with a QueueConnectionFactory definition for the
queue manager.

In advanced mode, things are slightly more complicated:

• bind() – the object passed in will be serialized and stored on

Figure 2: JMSAdmin tool

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

the ME01 admin queue. If a WMQ JMS Queue object is
passed in, ME01 will also send a PCF command to the queue
manager asking it to create a local queue.

• lookup() – if the name passed into lookup() matches the
name of the queue manager, ME01 will generate a
QueueConnectionFactory providing a connection to the
queue manager, and will return it. Otherwise, ME01 will look
for a matching object on its admin queue. If one is found it is
returned; otherwise a PCF message is sent to the queue
manager asking for specific properties about the named
object. If a queue exists with that name, ME01 will construct
a WMQ JMS Queue object and return it. Otherwise, a
NamingException will be thrown.

• list() – the queue manager will be asked for a list of all the
messages on the ME01 admin queue and will then add (if not
already on the list) any non-temporary non-system queues,
and these will be returned along with a
QueueConnectionFactory definition for the queue manager.

EXAMPLES OF USE

If you are unfamiliar with JNDI there is an excellent tutorial from
Sun, which can be found at http://java.sun.com/products/jndi/
tutorial. This explains not only how to use JNDI in a Java
program, but it also gives details of how to implement the JNDI
interface to become a name service provider. Essentially, ME01
is just another JNDI implementation.

Below are some examples of how to use the JNDI interface with
ME01. To get these examples working, refer to the Set-up section
below.

This first example shows how a Java application can use ME01
to do a simple bind and then look-up on a queue manager of a
queue object. This can be run on a queue manager with no prior
administration needed. The result will be that a real WMQ queue
will be created and JMS programs can perform look-ups on it.

 30 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

import java.util.Hashtable;

import javax.jms.JMSException;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import com.ibm.mq.jms.MQQueue;

/**

 * Simple Demo to show how MEØ1 and JNDI can be used to create a WMQ

 * queue and do a look-up to get a JMS administrable object back.

 *

 * @author Gareth Matthews

 */

public class MEØ1Demo1

{

 public static void main (String[] args)

 {

 MEØ1Demo1 demo = new MEØ1Demo1();

 demo.go();

 }

 public void go()

 {

 // First set up the properties of the JNDI connection

 Hashtable props = new Hashtable();

 props.put(Context.INITIAL_CONTEXT_FACTORY,

 // This is what kind of repository we want

 "com.ibm.mq.jms.context.WMQInitialContextFactory");

// MEØ1

 props.put(Context.PROVIDER_URL,

 // This is how to connect to the repository

 "QM1"); // Bindings connect to 'QM1'

 try

 {

 // First connect to the queue manager

 System.out.print("Connecting....");

 Context qmContext = new InitialContext(props);

 System.out.println("done");

 // Now programatically create an administrable object to bind

 // into the queue manager that points to a called called QUEUE1

 MQQueue mqQueueAdminObj = new MQQueue("QUEUE1");

// Now bind in the new queue. Note that if we give the queue a different

// name here (on the bind call), then this will overwrite the queue name

 // we just set in the administrable object above.

 // This will now cause a real WMQ queue called 'QUEUE1' to be created.

 System.out.print("Binding admin object...");

 qmContext.bind("QUEUE1", mqQueueAdminObj);

 System.out.println("done");

 // Now try and look up the administrable object

 System.out.print("Looking up...");

 MQQueue lookedUpAdminObj = (MQQueue) qmContext.lookup("QUEUE1");

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 System.out.println("done");

 // Lets see if the objects are equal - they should be

 if (lookedUpAdminObj.equals(mqQueueAdminObj))

 {

 System.out.println("** The objects were equal");

 }

 // Always make sure we shut down the connection to the queue manager

 System.out.print("Closing connection...");

 qmContext.close();

 System.out.println("done");

 }

 catch (JMSException je)

 {

 // Can be thrown when we programatically create the MQQueue

 System.out.println();

 System.err.println("Caught a JMS exception:");

 je.printStackTrace();

 }

 catch (NamingException ne)

 {

 // Can be thrown if the connect, bind, lookup or close fail.

 System.out.println();

 System.err.println("Caught a naming exception:");

 ne.printStackTrace();

 }

 }

}

So, this program first of all makes a bindings connect to the
queue manager. As such the queue manager must be on the
same machine as the program being run. Making ME01 run over
a client connection is very simple though, and can be done by
changing the provider URL. The syntax is ‘hostname:port/
SVRCONN channel name’. For example:

props.put(Context.PROVIDER_URL, "myqm.mycompany.com:1414/

MY.SVRCONN.CHL");

will connect to the queue manager running on the host
myqm.mycompany.com on port 1414, using the SVRCONN
channel called MY.SVRCONN.CHL. You will need a listener
running on the specified port for that to work. See the Set-up
section below for more information.

Then we connect to the queue manager by creating a new
InitialContext and passing the properties. We then

 32 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

programmatically create an MQQueue administrable object and
bind it into the context. This:

• Creates a real WMQ queue called ‘QUEUE1’.

• Updates the queue name in the administrable object to be
the same as the actual WMQ queue.

• Saves the administrable object on the admin queue.

Then the look-up is done. Typically this will be the only JNDI
operation that will be done in your JMS application and you will
get returned the corresponding administrable object.

Note: if you create a WMQ queue directly (with runmqsc, for
example), ME01 will dynamically generate an administrable
object when you do a look-up on the queue name. If you create
it by binding a JMS MQ Queue with JMSAdmin or by using this
test program, ME01 will save the administrable object on the
admin queue and so no dynamic generation willbe performed.

Observe what happens if this program is run twice, though –
when we try the bind() again, you see ‘javax.naming.
NameAlreadyBoundException: The alias is already bound to
another object’ because the queue already exists. Now, using a
tool such as runmqsc or the MQ Explorer, delete the queue called
QUEUE1 that ME01 created. Running the program will still
produce exactly the same results – this is because while we have
deleted the queue that ME01 dynamically created for us, the
administrable object is still saved on the admin queue. As such,
lookup() will still work and bind() will still fail. To completely
remove the object you should modify your program to remove the
object by using the JNDI unbind() call. You could also use the
JMSAdmin program to do this.

If this program were used with ME01 in basic mode, the behaviour
would be slightly different. Of course, no administrable properties
set on our object would persist. But if after running the program
we delete the underlying queue, the program could be run
straight away because no administrable object was stored on the
admin queue. ME01 can be put into basic mode in two ways:

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• Add the following item in the properties hashtable passed to
new InitialContext:

props.put("MQCONTEXTMODE", "BASIC");

• Add a Java system property MQCONTEXTMODE with the
value ‘BASIC’. This can be done on the Java command line.
For example:

java –DMQCONTEXTMODE=BASIC

Let’s look at another piece of code that demonstrates how to use
the list() call. This example puts ME01 into basic mode and asks
it for a list of all the objects it knows about. You should find you
get returned a list of all the non-system non-temporary queues,
and a QueueConnectionFactory that represents the queue
manager.

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NameClassPair;

import javax.naming.NamingEnumeration;

import javax.naming.NamingException;

/**

 * Simple Demo to show how MEØ1 in basic mode can be used to display a

 * list of all the non-system non-temporary queues on a queue manager.

 *

 * @author Gareth Matthews

 */

public class MEØ1Demo2

{

 public static void main (String[] args)

 {

 MEØ1Demo2 demo = new MEØ1Demo2();

 demo.go();

 }

 public void go()

 {

 // First set up the properties of the JNDI connection

 Hashtable props = new Hashtable();

 props.put(Context.INITIAL_CONTEXT_FACTORY,

 // This is what kind of repository we want

 "com.ibm.mq.jms.context.WMQInitialContextFactory");

// MEØ1

 props.put(Context.PROVIDER_URL,

 // This is how to connect to the repository

 "QM1"); // Bindings connect to 'QM1'

 34 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 props.put("MQCONTEXTMODE", // Specifies the WMQContext mode

 "BASIC");

// Basic mode

 try

 {

 // First connect to the queue manager

 System.out.print("Connecting....");

 Context qmContext = new InitialContext(props);

 System.out.println("done");

 // Now ask the queue manager for its list of queues

 NamingEnumeration enum = qmContext.list("");

 while (enum.hasMoreElements())

 {

 NameClassPair ncp = (NameClassPair) enum.nextElement();

 System.out.println(" - Got object of name: " + ncp.getName() +

 " - Class: " + ncp.getClassName());

 }

 // Always make sure we shut down the connection to the queue manager

 System.out.print("Closing connection...");

 qmContext.close();

 System.out.println("done");

 }

 catch (NamingException ne)

 {

 // Can be thrown if the connect, list or close fail.

 System.out.println();

 System.err.println("Caught a naming exception:");

 ne.printStackTrace();

 }

 }

}

Note that if you get an object returned in the NamingEnumeration
then you can use lookup() to get this object back. An object that
appears here will never cause a NameNotFoundException to
occur on lookup().

This last code snippet shows how to use ME01 in your JMS
application. This simple program will put and get a message from
a queue called QUEUE1 on queue manager QM1. Note that this
queue will need to exist before this program is run:

import java.util.Hashtable;

import javax.jms.JMSException;

import javax.jms.Queue;

import javax.jms.QueueConnection;

import javax.jms.QueueConnectionFactory;

import javax.jms.QueueReceiver;

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

import javax.jms.QueueSender;

import javax.jms.QueueSession;

import javax.jms.Session;

import javax.jms.TextMessage;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

/**

 * This demo shows how you can use MEØ1 in the context of a real JMS

 * application.

 *

 * @author Gareth Matthews

 */

public class MEØ1Demo3

{

 public static void main(String[] args)

 {

 MEØ1Demo3 demo = new MEØ1Demo3();

 demo.go();

 }

 public void go()

 {

 // First set up the properties of the JNDI connection

 Hashtable props = new Hashtable();

 props.put(Context.INITIAL_CONTEXT_FACTORY,

 // This is what kind of repository we want

 "com.ibm.mq.jms.context.WMQInitialContextFactory");

// MEØ1

 props.put(Context.PROVIDER_URL,

 // This is how to connect to the repository

 "QM1"); // Bindings connect to 'QM1'

 try

 {

 // First connect to the queue manager

 System.out.print("Connecting....");

 Context qmContext = new InitialContext(props);

 System.out.println("done");

 // Now lookup the connection factory and destination that we will need

 System.out.print("Performing lookups...");

 QueueConnectionFactory qcf = (QueueConnectionFactory)

qmContext.lookup("QM1");

 Queue q = (Queue) qmContext.lookup("QUEUE1");

 System.out.println("done");

 // Now connect to the queue manager JMS style

 System.out.print("Creating connection...");

 QueueConnection conn = qcf.createQueueConnection();

 QueueSession sess = conn.createQueueSession(false,

Session.AUTO_ACKNOWLEDGE);

 QueueSender sender = sess.createSender(q);

 QueueReceiver receiver = sess.createReceiver(q);

 36 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 conn.start();

 System.out.println("done");

 // Now send a message

 System.out.print("Sending message...");

 TextMessage mess = sess.createTextMessage("Hello from MEØ1Demo3");

 sender.send(mess);

 System.out.println("done");

 // And get it back

 System.out.print("Receiving message...");

 TextMessage rcvMess = (TextMessage) receiver.receiveNoWait();

 System.out.println("done");

 if (rcvMess != null) System.out.println("Message text was: " +

rcvMess.getText());

 else System.out.println("*** No message was received ***");

 // Now close down

 System.out.print("Closing down...");

 sender.close();

 sess.close();

 conn.close();

 qmContext.close();

 System.out.println("done");

 }

 catch (JMSException je)

 {

 // Can be thrown by a JMS call

 System.out.println();

 System.err.println("Caught a JMS exception:");

 je.printStackTrace();

 }

 catch (NamingException ne)

 {

 // Can be thrown if the connect, lookup or close fail.

 System.out.println();

 System.err.println("Caught a naming exception:");

 ne.printStackTrace();

 }

 }

}

OTHER JNDI CALLS

There are many other JNDI calls that can be used with ME01:

• rebind() – this call will replace an existing object. The call will
fail in basic mode, but in advanced mode can be used to
update the administrable object properties.

• unbind() – this call will remove an object. In basic mode just

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

the WMQ queue is deleted, but in advanced mode the
administrable object is also removed. Note that a real WMQ
queue cannot be deleted if it has messages on it. However,
to override this protection you can set the Java system
variable MQJMS_PURGE_
ON_DELETE. Setting this to ‘YES’ will cause the queue to
be deleted with the purge option set.

• rename() – this call will rename an object. If the object is a
queue then the WMQ queue is renamed along with the base
queue name in the administrable object.

Note that all other calls will fail with an
OperationNotSupportedException.

SET-UP

For ME01 to work with a queue manager it needs to be started
and the command server needs to have been started (use the
command strmqcsv). If you are connecting to a remote queue
manager, it needs a listener running and a suitable SVRCONN
channel defined.

To use ME01 with JMSAdmin or another suitable application you
need to ensure that the mqcontext.jar and com.ibm.pcf.jar (the
MS0B Support Pac) is located in your classpath along with all the
WMQ classes for Java class file that are located in the Java\lib
directory of your WMQ installation.

Your JMSAdmin.config file should then be updated with the
following information:

The following line specifies which JNDI service provider is in use.

It currently indicates an LDAP service provider. If a different

service provider is used, this line should be commented out and the

appropriate one should be uncommented.

#

INITIAL_CONTEXT_FACTORY=com.ibm.mq.jms.context.WMQInitialContextFactory

#

The following line specifies the URL of the service provider's

initial context. It currently refers to an LDAP root context.

Examples of a file system URL and WebSphere's JNDI namespace are

also shown, commented out.

 38 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

#

PROVIDER_URL=QM1

Of course, the provider URL parameter should be changed to
match the settings on your system and all other parameters
should be commented out.

To compile the samples, simply copy and paste them into your
favourite text editor and save them as the appropriate name (ie
the first demo needs to be ME01Demo1.java etc). Then ensure
that all the JAR files that come with the WMQ classes for Java,
the ME01 Support Pac, and the MS0B Support Pac are located
in your classpath. Then compile them by typing javac *.java.

Gareth Matthews
WebSphere Platform Messaging Developer
IBM (UK) © IBM 2004

IGQ in practice

This article will explain how IGQ works in both theory and practice
and is relevant to Versions 5.2 and 5.3 of WebSphere MQ for z/
OS.

DEFINTION AND THEORY

IGQ stands for Intra Group Queueing, which was introduced with
Version 5.2.

It forms part of the Shared Queue infrastructure (and hence is
only available on z/OS) and allows messages targeted at remote
or cluster queues (which are normally transferred between
queue managers using traditional sender-receiver, server-
requestor, or cluster channels) to use the coupling facility instead.
It does this through a special shared transmission queue called
SYSTEM.QSG.TRANSMIT.QUEUE.

As a shared queue, it is available to all queue managers that form

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

part of the given QSG (Queue Sharing Group), and, as such,
provides a cheaper way of transferring messages compared with
using the channel initiator and the IP network. When a queue
manager is started, the IGQ agent starts as well – see the
following message:

CSQM050I ?QM1P CSQMIGQA Intra-group queuing agent starting, TCB=00895810

This agent starts regardless of whether IGQ is switched on or not.

Functionally, each agent (on each of the queue managers in the
QSG) issues an MQGET on the shared queue with a CORRELID
(correlation ID) equal to its queue manager name. To ensure
good performance, an index based on CORRELID is defined on
SYSTEM.QSG.TRANSMIT.QUEUE.

It must be noted, however, that the usual Shared Queue restrictions
apply, namely:

• Messages must be less than or equal to 63KB (64,512 bytes)
in length. This refers to the ‘payload’ only and includes the
transmission header.

• The Coupling Facility has a finite size and has most probably
been sized for a set of predetermined Shared Queues. The
last thing an MQ administrator wants is to flood the CF with
IGQ-eligible messages.

So what happens if a batch of messages destined for remote
queue managers has a mix of sizes, some less than 63KB and
some greater?

Fortunately, MQSeries is clever enough to detect this situation,
and will, on a message-by-message basis, choose the most
appropriate route. Those larger than 63KB will be sent via the
traditional route using standard traditional channels for ‘normal’
queues, and cluster channels for cluster queues. Those less
than or equal to 63KB go via the CF.

Unfortunately, there is currently no logic within MQSeries that will
detect whether the CF is full or nearly full and redirect messages
via the traditional route.

 40 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

It would, however, be possible for an automated process to check
the status of the CF and, if a structure is nearing its capacity and
no further growth is possible, the IGQ could be (temporarily)
switched off via the following command:

ALTER QMGR IGQ(DISABLED)

What is the exact size at which point the IGQ route is chosen?

The answer lies in the way messages are routed between queue
managers and this is the same for remote and cluster queues.
Basically, MQ adds a ‘transmission’ header (XQH) at the front of
the original message payload as shown here:

Message sent to a local queue:

|… MQMD 324 bytes …|… Message data …|

Message sent to a remote or cluster queue via a transmit queue:

|.. MQMD 324 bytes ..|.. XQH 1Ø4 bytes ..|.. ORIG MQMD 324 bytes ..|..

Message data ..|

Remember that the IGQ route goes via a Shared Transmission
Queue, which is restricted to a payload size of 63KB (or 64,512
bytes).

Therefore, if the payload is less than or equal to (64,512-XQH
header) = (64,512-104-324) = 64,084 bytes, the IGQ route is
chosen.

Of course, all this is transparent to the application, and, unless
you use the method shown later on (by checking the RESET
QSTATS), the administrator wouldn’t know either.

Note that the usual cluster workload balancing takes place
provided the DEFBIND flag is set to ‘N’, meaning that MQ will
decide (on a message-by-message basis) where to place the
message. Even if the IGQ route is chosen, it is the cluster
workload exit that determines the target queue.

Could the IGQ route be chosen for administration commands, eg
when using the TSO panels to list all local queues in the QSG?
Internally it issues the equivalent of this command:

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

DIS QLOCAL(*) CMDSCOPE(*)

The CMDSCOPE(*) tells MQ to issue this command to all queue
managers in the QSG, so how does it do that? Does it use the IGQ
to place the command on the SYSTEM.COMMAND.QUEUE of
each of the queue managers?

No, an internal method is used that is invisible to the administrator.

TESING TO ‘PROVE’ IGQ WORKS

Here, two queue managers exist called QM1 and QM2. Only
high-level steps are shown, which are not exhaustive. Traffic is
assumed to travel from QM2 to QM1.

• On QM2 define a sender channel to QM1, a transmit queue,
and a remote queue.

• On QM1 define a receiver channel from QM2 and a local
queue.

• On QM1 define a cluster receiver channel pointing at itself
and a cluster queue.

• On QM2 define a cluster receiver channel pointing at itself
and a cluster sender channel pointing at QM1.

• Ensure IGQ=Y on both queue managers. If the ‘sending’
queue manager does not have IGQ switched on, then all
messages end up on the standard transmit queue.

• Check that the Shared Transmission Queue is defined, its
CF structure is large enough and has been defined to
automatically grow.

• Create some test data, for example 100 records with every
odd record of size 64,085 and every even record 64,084.

• Issue reset qstats(xxx) cmdscope(*) on one of the queue
managers in the QSG in order to reset the queue statistics
counters where xxx are the queues:

– SYSTEM.QSG.TRANSMIT.QUEUE

 42 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

– SYSTEM.CLUSTER.TRANSMIT.QUEUE

– the transmit queue on QM2.

• Add the 100 records to the remote queue on QM2.

• Display the status of the standard channel.

The test shows that 50 messages were transmitted – as expected:

Channel name Connection name

State

 Start time Messages Last message time Type

Disposition

QM1.TO.QM2 CHANNEL ALL

QSG1

QM1.TO.QM2 123.45.38.17Ø RUN

 2ØØ4-Ø2-24 13.16.24 5Ø 2ØØ4-Ø2-24 13.16.28 RECEIVER PRIVATE

QM2

QM1.TO.QM2 123.45.38.198 RUN

 2ØØ4-Ø2-24 13.16.24 5Ø 2ØØ4-Ø2-24 13.16.28 SENDER PRIVATE

QM1

 ******** End of list ********

• Display which processes have queue ‘open’.

It shows the channel initiator, which would have been used
for the traditional channel route, as well as ‘QM2 SYSTEM’,
which denotes the IGQ route:

Queue name Disposition Access

 Application ASID Application information User ID

QL* ALL QSG1

QLOCAL1 QMGR QM2 O - - -

 QM2 SYSTEM

QLOCAL1 QMGR QM2 O - - -

 QM2CHIN CHINIT ØØ6B QM1.TO.QM2 QM2CHIN

 123.45.38.17Ø

 ******** End of list ********

• Issue the same ‘reset’ command as above.

It shows that 50 messages were taken from the shared
transmission queue and 100 messages added to the local
queue:

QSTATS(SYSTEM.QSG.TRANSMIT.QUEUE)

QSGDISP(SHARED)

RESETINT(392)

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

HIQDEPTH(Ø)

MSGSIN(Ø)

MSGSOUT(5Ø)

QSTATS(QLOCAL1)

QSGDISP(QMGR)

RESETINT(392)

HIQDEPTH(1ØØ)

MSGSIN(1ØØ)

MSGSOUT(Ø)

This same exercise can be repeated for cluster queues.

EFFECT ON DIFFERENT ROUTES

As with all MQ traffic, if there is more than one route to a given
queue, the order is not maintained. This can be seen clearly
using the same 100 records.

The checks showed that 50 messages went via the cluster
channel route, and 50 went via the QSG route. It is also known
that the QSG route uses less of the processor, so it was expected
that the order would be different, but also that the messages ‘at
the front’ of the target queue would be the ‘even’ numbered ones.
The actual order was found to be:

Records 2-18, then Record 1

Records 2Ø-24, then Record 3

Records 26-3Ø, then Record 5

Records 32-36, then Record 7

Records 38-44, then Record 9

Records 46-52, then Record 11

Records 54-58, then Record 13

Records 6Ø-7Ø, then Record 15

Records 72-78, then Record 17

Records 8Ø-84, then Record 19

Records 86-9Ø, then Record 21

Records 92-96, then Record 23

Records 98-1ØØ, then Records 25-99

This showed that messages going via the QSG route completed
leaving the cluster route still to process 38 messages, or, put
another way, the QSG processed 50 and the cluster 12, making
the QSG route four times faster. Care has to be taken, however,
on how to define ‘faster’ because this was an isolated test.

 44 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

In fact, the test was repeated with 1000 records, again with
alternative sizes. This time, however, the result was a little
different. The 500 messages sent via IGQ completed leaving the
traditional route still to do 248. The ratio is 500:252, or roughly
double the rate.

Another effect is that error situations can occur. Imagine that the
above mixed file of 100 records came in a different order, eg 50
of the larger messages followed by 50 of the smaller ones.
Delivering the first 50 may not pose a problem via the traditional
channel route, but imagine the situation where the CF has a
(temporary) space problem and code 2192 was returned to the
application – an incomplete ‘set’ could be the result. If this set of
records was processed as a batch – ie under syncpoint and a
commit issued at the end – then there is no issue because all
updates should be/could be backed out. As always, keep the
number of updates within an LUW small (the IBM manual
suggests <100).

The 2192 code can be returned in a busy system in which the
time taken by the system to automatically increase the structure
size is longer than the time MQ is prepared to wait.

What if the target queue was full or not defined? Normal rules
apply and messages that could not be delivered would be stored
in the Dead Letter Queue. If the DLQ was not defined or was full,
then messages would remain on the transmit queue. For traditional
channels that would mean the normal transmit queue, which
uses the pagesets to store messages; and for those going via the
QSG, messages would be stored in the CF with potentially
serious results if the CF structure becomes full.

In fact, as is true with a normal transmission queue, if messages
back up on the shared transmission queue, no further messages
can be delivered to the target queue manager until the first
problem (queue full) is resolved – even if messages are destined
for a different queue on the same queue manager.

What if the shared transmission queue itself becomes full? In this
instance the application gets a non-zero return code.

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

RECOMMENDATIONS

1 If the reduction of CPU costs is important, as well as faster
delivery to the target queues, switch on IGQ but check the
other recommendations. If possible, use SMF to measure
the CPU cost using both traditional and IGQ routes.

2 Define a separate CF structure for queue
SYSTEM.QSG.TRANSMIT.QUEUE (and possibly allow
SYSTEM.QSG.CHANNEL.SYNCQ as well) and size it
properly. Remember, however, that the IGQ is either ‘on’ or
‘off’ and is used for all remote and cluster queues whose
payload is less than 64,084 bytes. If the majority of messages
are below 64,084 then an assessment needs to be made of
how risky the switchover to IGQ is going to be. I can’t stress
this too much: check what proportion of messages will go via
the IGQ route.

In fact, when figures were checked on the client system, it
was discovered that between 550,000 and 650,000 messages
were being sent via the cluster channel, amounting to 750–
830MB per day. It was decided, because of storage constraints
in the CF, to wait until the IGQ could be controlled at a more
granular level, or more storage was added.

An idea was sent to IBM to request an enhancement so that
queues can be chosen by the administrator to be ‘eligible’ for
IGQ in a similar way to CICS programs which have the
‘eligible for LPA’ flag. Whichever method is chosen, a more
granular method of selecting IGQ is required.

3 If the order of messages sent in a ‘batch’ is important, and the
sizes of the messages fall on both sides of 64,084 bytes, do
not use IGQ; or use an alternative method to re-establish the
original order.

4 Ensure that a Dead Letter Queue is defined to ensure that
messages do not stack up on the IGQ transmit queue.

5 Review how applications issue updates when adding a batch
of messages that could use both traditional and IGQ routes.

 46 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

The number of updates within an LUW should be kept to a
small number – the IBM recommendation is to issue a
commit every 100 updates.

In fact, the MQ ‘system’ CF structure (called CSQ_ADMIN)
is used to track LUWs, so care has to be taken with large
LUWs. Here is an excerpt from the MP16 Support Pac:

CSQ_ADMIN usage is affected by the number of messages
in each unit of work, but only for the duration of the commit
for each UOW. This need only be a concern for extremely
large UOWs as the minimum size structure is enough for a
UOW of about 40000 messages. This is larger than the
default maximum size UOW of 10000, defined by
MAXUMSGS. The use of UOWs with very large numbers of
messages is NOT recommended.

6 For all CF structures, define a monitoring process that
detects whether a structure is nearing its maximum size. In
addition, include specific processes to detect whether shared
queues are near their maximum queue depth. Unless this is
done, and the application does not send out an alert when it
gets 2192 return codes (to MQ, this is just an application
issue and so it does not send out any alerts), error situations
will be missed.

Ruud van Zundert (ruudvz@btclick.com)
Independent Consultant (UK) © Xephon 2004

MQ news

IBM has announced WebSphere Extended
Deployment, which is designed to automatically
optimize the performance of a company’s
software and hardware, on demand, particularly
during unexpected spikes in usage or changing
market conditions.

The product runs on WebSphere Application
Server infrastructure software, and more
efficiently utilizes, balances, and shares the
workload among applications and application
servers. It helps allow IT resources to adjust on-
the-fly to the demands of critical business
applications.

In concert with IBM Tivoli Intelligent
Orchestrator, the new software monitors the
efficiency of the network, constantly re-
balancing and farming out unexpected
workloads to underutilized hardware and
software. Network managers have the option to
manually confirm suggested optimizations
before they take place.

It also partitions large jobs over many
processors, databases, application software,
and application servers.

For further information contact your local IBM
representative.
URL: http://www.ibm.com/websphere.

* * *

Open Terra is partnering with Novell to deliver
mobile and wireless business solutions to
customers. Through this partnership, Open
Terra will offer its mSolve Enterprise Mobility
Suite solution using Novell technology to
customers pursuing mobile business integration
strategies.

Novell’s SUSE LINUX and NetWare
customers can now create mobile applications
with Open Terra’s mSolve Enterprise Mobility
Suite. The mSolve suite provides a robust
mobility framework for rapid application
development and deployment that is always
online, allowing for seamless integration to all
major databases, Web services, MQ systems,
EJB, and existing business applications and
logic.

For further information contact:
Openterra, 20 Reddington Drive, Matawan, NJ
07747, USA.
Tel: (732) 765 9600.
URL: http://www.openterra.com/
NewsAndEvents/Press_060904.jsp.

* * *

DataPower has announced firmware release
Version 3.0 for its XML-aware networking
hardware, ie DataPower XS40 XML Security
Gateway and DataPower XA35 XML
Accelerator.

Version 3.0 includes integration with Eclipse
and WebSphere Studio Web services
development environments, enhanced MQ
support, and additional security for SOAP with
Attachments (SwA).

For further information contact:
DataPower Technology, One Alewife Center,
4th Floor, Cambridge, MA 02140, USA.
Telephone: (617) 864 0455.
URL: http://www.datapower.com/newsroom/
pr_060704_3dot0.html.

* * *

x xephon

	Customizing Unix queue managers in an enterprise
	List all the queues in the queue manager
	Using WebSphere MQ as a JNDI repository for JMS administrable objects - part 2
	IGQ in practice
	MQ news

