
© Xephon Inc 2004

October 2004

64

In this issue

3 SSL in WebSphere MQ 5.3
7 WebSphere Translation Server

10 MQ V5.3 for z/OS page set
removal procedure

19 Setting up a WebSphere MQ
Integrator Broker in a parallel
Sysplex

31 Queue back-up and restore tool
for Unix

43 Java Message Service,
WebSphere Application Server,
and Message Driven Beans

47 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.

Printed in England.

Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Nicole Thomas
E-mail: nicole@xephon.com

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in the
UK; $380.00 in the USA and Canada; £261.00
in Europe; £267.00 in Australasia and Japan;
and £265.50 elsewhere. In all cases the price
includes postage. Individual issues, starting with
the July 2000 issue, are available separately to
subscribers for $33.75 (£22.50) each including
postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the rate
of $160 (£100 outside North America) per
1000 words and $80 (£50) per 100 lines of code
for the first 200 lines of original material. The
remaining code is paid for at the rate of $32 (£20)
per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

SSL in WebSphere MQ 5.3

WebSphere MQ security is now enhanced with the introduction
of support for Secure Sockets Layer (SSL), the Internet
standard for secure communication. This article describes
what SSL in WebSphere MQ 5.3 for z/OS offers and how to set
it up.

WHAT IS SSL?

Secure Sockets Layer (SSL) technology is the standard
Internet security protocol, designed to secure the data
transmission over an insecure network.

SSL makes use of digital certificates to establish the identity
of the two parties that want to establish an SSL connection.
With this process, typically referred to as SSL handshake, a
secure confidential communications ‘pipe’ is created between
these two entities.

SSL basically addresses the following security issues:

• Impersonation – SSL handshake allows the two parties
involved to be sure of each other’s identity (identification
and authentication service).

• Eavesdropping – data transmitted is encrypted to ensure
that someone in between doesn’t get access to the
information sent (confidentiality service).

• Tampering with information – hash functions are used to
detect whether someone has intercepted and changed
the information (data integrity service).

Of course, the extent of the protection offered depends on
whether the symmetric (secret) key or asymmetric (public and
private key) approach is used. Also the length of the key
influences this because it determines how quickly the key can
be broken using a brute force approach. The standards key
sizes (512, 768, and 1024 bit keys) provide low, medium, and

 4 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

high protection respectively (the larger the key size, the longer
it takes to break!).

WEBSPHERE MQ AND SSL

SSL can be used to provide link level security with both MCA
channels (for queue manager to queue manager
communication) and MQI channels (for client applications
connecting to a queue manager).

A digital certificate has to be obtained for each queue manager
and each client user ID that wishes to communicate over an
SSL secured channel. The digital certificates are maintained
in a key repository.

The CipherSpec, which includes the encryption/decryption
algorithm to be used by the SSL protocol, is specified in the
channel definition.

Whenever the channel is started, the certificate given to the
queue manager is used to prove its identity. After this handshake
(during channel start), the message exchanges are encrypted
using the algorithm specified in the CipherSpec defined for the
channel.

SETTING UP WEBSPHERE MQ SSL IN Z/OS

Setting up SSL tasks

On z/OS, the number of server subtasks used for processing
SSL calls is set up using the SSLTASKS parameter of the
ALTER QMGR command. At least two server subtasks are
required to use SSL channels. Though the range of values
could be zero to 9999, IBM recommends that the SSLTASKS
value doesn’t exceed 50 – otherwise it is expected to result in
storage allocation problems.

Associating key repository with queue manager

Having a key repository at each end of the connection is a

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

prerequisite for SSL. The key repository mainly contains:

1 CA certificates from various certification authorities, which
allow the queue manager to verify the certificates from its
partners (from the other end of the connection) to establish
their identity.

2 Personal certificate received from a certification authority.
Each queue manager and WebSphere MQ client gets
associated with a single certificate (using which they
establish their identity to the other partner).

On z/OS, digital certificates are stored in a key ring that is
managed by RACF (or other external security managers).
Each queue manager must have access to a key repository.
The steps to be followed in establishing this access are as
follows:

1 Create a new key ring for the queue manager using the
following command (userid is the user ID of the channel
initiator address space):

RACDCERT ID(userid) ADDRING(ring-name)

2 Connect the relevant CA certificates to it using the
command:

CONNECT(CERTAUTH LABEL('CA 1') RING(ring-name) USAGE(CERTAUTH))

3 Use the SSLKEYR parameter on the ALTER QMGR
command to associate a key repository with a queue
manager.

ALTER QMGR SSLKEYR(ring-name)

You need to add the personal certificate obtained from CA to
the key ring. The steps involved are:

1 Add the certificate to the RACF database, specifying a
label that would be used to associate the digital certificates
with the queue manager. On z/OS, WebSphere MQ uses
the ibmWebSphereMQ prefix followed by the name of the
queue manager for the label name:

 6 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

RACDCERT ID(userid) ADD(input-data-set-name) WITHLABEL('label-name')

2 Connect the personal certificate to the key ring created for
the queue manager using:

CONNECT(ID(userid) LABEL('label-name') RING(ring-name) USAGE(PERSONAL))

To know more about managing the certificates – adding new
certificates, deleting certificates, or transporting from another
key ring – refer to the RACDCERT command.

In this context the only important point to note is that the
changes to the certificates in the key ring and to the key
repository attribute become effective only when the channel
initiator is started or restarted.

Defining channels to use SSL

To use SSL, your channel must be defined accordingly using
the three SSL parameters – SSLCIPH, SSLPEER, and
SSLCAUTH – in the DEFINE CHANNEL command. Only the
SSLCIPH parameter is mandatory if you want your channel to
use SSL.

The SSLCIPH parameter is used to specify the CipherSpec
used on the channel. The CipherSpec actually determines the
hash algorithm (MD5/SHA), encryption algorithm (AES/DES/
3DES/RC2/RC4/none), and number of encryption bits.
Obviously, the CipherSpec used should be the same on both
ends of the channel – allowing the decryption of data encrypted
by the other partner. For the list of all possible values of
CipherSpec, refer to the WebSphere MQ Script (MQSC)
Command reference manual.

According to SSL protocol, it is mandatory for the SSL client
(the initiating end of the channel) to obtain and validate the
certificate of the SSL server during the SSL handshake,
whereas the SSL client authentication is optional.

In WebSphere MQ, SSL client authentication becomes
mandatory under the following conditions:

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• Specifying SSLCAUTH as ‘REQUIRED’.

• Specifying the SSLPEER parameter, which defines the
filter used to compare the identified name of the certificate
sent by the SSL client (peer). If the identified name
received from the peer doesn’t match the one specified,
the authentication fails and the channel does not start.

Note that the SSL server always validates the client certificate
if one is sent (even if SSLCAUTH is set as OPTIONAL).

CONCLUSION

The SSL support provided by WebSphere MQ provides
authentication, message integrity checking, and data
encryption for messages when they travel across the Internet.
It is important to understand that link level security offered by
WebSphere MQ protects messages while they are being
transferred from one queue manager to another (especially
useful when messages are transmitted over an insecure
network). But this doesn’t include protection of the messages
when they are stored in queues, and should be sufficient when
the queue managers are running in a controlled and trusted
environment.

Sasirekha Cota
Tata Consultancy Services (India) © Xephon 2004

WebSphere Translation Server

With more and more businesses being international in nature,
there will come a time when somebody in one of those
companies is presented with a document in a language they
do not understand. You can’t sell to someone if they don’t
know what you’re offering, and you daren’t buy from someone
if you don’t understand the contract!

 8 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Step forward IBM’s WebSphere Translation Server for
Multiplatforms, which is now at Version 5. This product provides
machine translation, and is specifically geared towards
companies that want to provide pages on their Web sites in the
reader’s native language. And, of course, it is designed to do
its job at a cost to the company that uses it that is much less
than a room full of human translators. The product is also
designed to perform its translation in real-time.

The IBM WebSphere Translation Server for Multiplatforms 5.0
is a machine translation (MT) offering that can help companies
remove language as a barrier to global communication and e-
commerce. WebSphere Translation Server (WTS) enables
enterprises to provide content in multiple languages in real
time. Specifically designed for enterprise use, the WebSphere
Translation Server allows companies to leverage their existing
Web infrastructure to provide content to users in their native
language, at a fraction of the cost of professional translation.

WebSphere Translation Server (WTS) is based on IBM
machine translation technology. It can run on a dedicated
server, using Java Remote Method Invocation (RMI) and Java
protocol to communicate with the WebSphere Application
Server. In addition, Web page HTML content can be translation-
enabled to support HTTP servers from Apache, IBM, Microsoft,
or Netscape – hence the ‘Multiplatform’ part of its name.

WTS consists of:

• Machine translation engines for translating text from one
language to another (eg French to English).

• User Dictionary Manager tools, which allow specific words
to be added to a domain. What this means is that slang or
technical terms can be added as a way of tuning for a
specific application.

• Support for WebSphere Application Server (WAS) and
HTTP servers from Apache, IBM, Microsoft, and Netscape.

So, before you rush out and buy it, you probably want to know

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

what languages the product can translate. The current list is:

• English-to-French/French-to-English

• English-to-German/German-to-English

• English-to-Italian/Italian-to-English

• English-to-Spanish/Spanish-to-English

• English-to-Chinese (traditional)/Chinese (traditional)-to-
English

• English-to-Chinese (simplified)/Chinese (simplified)-to-
English

• English-to-Japanese/Japanese-to-English

• English-to-Korean

• English-to-Brazilian Portuguese.

Could well be worth a look for companies that are trading (or
trying to trade) in areas where those languages are spoken.

Nick Nourse
Independent Consultant (UK) © Xephon 2004

E-mail alerts

Our e-mail alert service will notify you when new issues
of MQ Update have been placed on our Web site. If
you’d like to sign up, go to http://www.xephon.com/mq
and click the ‘Receive an e-mail alert’ link.

 10 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

MQ V5.3 for z/OS page set removal procedure

BACKGROUND

The administration tasks to manage page sets are described
in the IBM supplied System Administration Guide, specifically
Chapter 10, ‘Managing page sets’.

At one particular customer’s site, some page sets were hardly
used and had to be removed.

The addition of page sets is a well-known procedure, but their
removal was not described in any of the manuals. This article
aims to describe this procedure with the hope that IBM will add
it to their manuals.

PROCEDURE

This is not for the faint-hearted because it involves removing
recovery information from a system that is working fine, and
effectively ‘cold’ starting it!

The reasons for wanting and needing to remove page sets
were:

• Valuable disk space was being used. This is because
even an empty page set uses up space because it is pre-
formatted.

• Part of the back-up and recovery procedure demanded
that all page sets be backed up, which in the case of nearly
‘empty’ page sets means more wasted space and CPU
cycles.

The important part is to ensure that all queue definitions are
moved from the page set(s) to be removed to another page
set.

As a reminder, this is the mapping used by MQ for z/OS:

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• Queue definition to storage class

• Storage class to page set

• Page set to buffer pool.

It is assumed that the reader is already familiar with the way
that queue definitions can be moved, but here is a quick
summary:

• Find an appropriate storage class or define a new one.

• If messages reside on queues, back them up to a dataset
or move them to ‘back-up’ queues. Ensure the back-up
queues are not on the page sets to be emptied!

• Alter the queue definition to use the new storage class.

• Move any messages back onto the queue.

• Finally, alter the original storage class to point to a
different page set.

Note that in some cases this may report an error message like
‘STGCLASS(XXXX) IS CURRENTLY IN USE’.

Eventually, a stage will be reached where the page sets
selected to be removed will be devoid of queues. Double-
check this by issuing these commands:

• DIS QL(*) PSID(n) – where n is the pageset id, eg 18.

• DIS USAGE(*)

An important part to understand is that MQ maintains recovery
information within the page sets and even an empty page set
needs a recovery point.

This is true even if the page sets are ‘commented’ out of the
start-up.

The author prefers not to comment them out as they produce
‘OFFLINE’ warning messages and MQ is still ‘aware’ of them.

One way to see how MQ maintains recovery information is to
look at the joblog of the MQ master address space. At start-

 12 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

up, shutdown, and at periods of update activity, system
checkpoints are taken. These checkpoints record the state of
the system and include the so-called ‘recovery RBA’ of the
pagesets. The recovery RBA is stored in several places:

• Checkpoints on the log.

• On every physical (4K) page that has been changed. One
‘special’ place is the first page (page 0) of each page set,
which holds the lowest recovery RBA of all its pages and
this is used at system recovery time in order to see
whether recovery is required on that page set.

To remove the recovery information for the page set being
removed from the log, it is necessary to restart the queue
manager with new logs. This can be safely done only if the
queue manager has been shut down cleanly so that its entire
state is recorded consistently on the page sets.

In order to ensure that all recoverable resources were safely
on the archived logs and no activity was missed, the following
two-stage process was used.

SHUTDOWN PHASE 1

Step 01 – stop the queue managers. Use the STOP QMGR
MODE(FORCE) command and check that it worked by
ensuring there were no ‘in-doubt’ threads.

What we’re trying to achieve is a 100% clean shutdown of MQ
with all recoverable resources on the archived logs. At the
client’s site, however, this was not possible because a number
of applications (internal and external) had not been coded with
the ‘FAIL-IF-QUIESCING’ option, which would tell the
application that the system is shutting down.

So in order to force applications to detach from the queue
manager, we had no option but to use MODE(FORCE).

Step 02 – stop all external MQ activity. This includes batch,
CICS, IMS, and any automation products.

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

SHUTDOWN PHASE 2

Step 03 – restart the queue managers. As soon as they’re up,
stop the channel initiators. What we’re really doing here is
preventing any clients getting on to the queue manager (if the
CHIN won’t come down, CANCEL it). An alternative method to
ensure no-one uses the system is to alter the connection rules
in the external security manager.

Step 04 – copy active logs onto the archived logs. Use the
command ARCHIVE LOG.

Step 05 – stop the queue manager(s) with MODE(QUIESCE)
(if possible).

Step 06 – double-check that archived logs were created as
well as a back-up of the BSDS (see the archived ‘B’ datasets).

Step 07 – back up the current set of page sets – all of them!
During normal running, the normal back-up procedures ran
while the queue managers were active (so-called ‘fuzzy’ back-
ups) and was a multi-step job causing the page sets to be
backed up in single-stream mode.

At this point, however, in order to save time, each page set was
backed up by its own job, which ran in parallel.

Note: steps 8–11 can be done while step 7 is running.

Step 08 – back up all the active logs and BSDS, plus their
DUAL copies (eg via DFDSS).

Step 09 – back up the contents of any shared queues using the
command BACKUP CFSTRUCT(x) for each cfstruct(x) in the
queue sharing group. Performing the back-up on another
queue manager in the queue sharing group after the subject
queue manager has been stopped will ensure that recovery
from the back-up would not require any log data from the
subject queue manager.

Step 10 – delete and redefine the active log datasets and dual
copies. This is required because MQ will have written certain

 14 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

‘page set set control’ records, telling the system what RBA
ranges are required for media recovery. This information is not
wanted because we want to remove the page sets.

Note: the archived log datasets (on cartridge) are left ‘as is’.

Step 11 – delete and redefine the BSDS and its dual copy. This
is required because it is an inventory of checkpoints and logs
needed for recovery, and recovery is not what is wanted –
provided, of course, the queue manager came down cleanly!

Step 12 – run the BSDS log change utility, CSQJU003. This is
required to store the names of the (new) active logs in the
BSDS. It is, in fact, exactly the same job that was run when the
queue manager was first set up.

Step 13 – remove the recovery information from each of the
page sets (including the ones being removed). Use the
CSQUTIL command RESETPAGE FORCE.

This can take a relatively long time as the utility has to alter
each 4K page because each page has an associated recovery
RBA.

Note: steps 14–15 can be done while step 13 is running.

Step 14 – alter the MSTR start-up JCL by removing references
to the page sets to be removed.

Step 15 – alter the CSQINP1 members by removing references
to the page-set-to-bufferpool mapping for the relevant page
sets.

Step 16 – restart the queue manager. So what will happen at
restart? Here are some excerpts from the MQ MSTR joblog
that should be present:

08.49.50 STC04353 CSQJ127I ?QMP1 SYSTEM TIME STAMP FOR BSDS=**********

********.**

08.49.52 STC04353 CSQJ001I ?QMP1 CURRENT COPY 1 ACTIVE LOG DATA SET IS

874

 874 DSNAME=QMP1.LOGCOPY1.DS01, STARTRBA=000000000000

ENDRBA=00002BF1FFFF

08.49.52 STC04353 CSQJ001I ?QMP1 CURRENT COPY 2 ACTIVE LOG DATA SET IS

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

875

 875 DSNAME=QMP1.LOGCOPY2.DS01, STARTRBA=000000000000

ENDRBA=00002BF1FFFF

08.49.52 STC04353 CSQJ099I ?QMP1 LOG RECORDING TO COMMENCE WITH 876

876 STARTRBA=000000000000

08.49.53 STC04353 CSQR001I ?QMP1 RESTART INITIATED

08.49.53 STC04353 CSQR003I ?QMP1 RESTART - PRIOR CHECKPOINT

RBA=000000000000

08.49.53 STC04353 CSQR004I ?QMP1 RESTART - UR COUNTS - 910

 910 IN COMMIT=0, INDOUBT=0, INFLIGHT=0, IN BACKOUT=0

08.49.53 STC04353 CSQI049I ?QMP1 Page set 0 has media recovery 911

 911 RBA=000000000000, checkpoint RBA=FFFFFFFFFFFF

08.49.53 STC04353 CSQI049I ?QMP1 Page set 1 has media recovery 912

912 RBA=000000000000, checkpoint RBA=FFFFFFFFFFFF

etc – it is the same for the rest of the page sets.

08.49.54 STC04353 CSQR030I ?QMP1 Forward recovery log range 928

 928 from RBA=000000000000 to RBA=000000000000

08.49.54 STC04353 CSQR005I ?QMP1 RESTART - FORWARD RECOVERY COMPLETE -

929

 929 IN COMMIT=0, INDOUBT=0

08.49.54 STC04353 CSQR032I ?QMP1 Backward recovery log range 930

 930 from RBA=000000000000 to RBA=000000000000

08.49.54 STC04353 CSQR006I ?QMP1 RESTART - BACKWARD RECOVERY COMPLETE -

931

 931 INFLIGHT=0, IN BACKOUT=0

08.49.58 STC04353 CSQR002I ?QMP1 RESTART COMPLETED

08.49.58 STC04353 CSQP018I ?QMP1 CSQPBCKW CHECKPOINT STARTED FOR ALL

BUFFER POOLS

08.49.58 STC04353 ?QMP1 DISPLAY THREAD(*) TYPE(INDOUBT)

08.49.58 STC04353 CSQP021I ?QMP1 Page set 0 new media recovery 935

 935 RBA=0000000008A4, checkpoint RBA=0000000008A4

08.49.58 STC04353 S QMP1CHIN

08.49.58 STC04353 CSQP019I ?QMP1 CSQP1DWP CHECKPOINT COMPLETED FOR 937

 937 BUFFER POOL 2, 28 PAGES WRITTEN

08.49.58 STC04353 CSQP021I ?QMP1 Page set 1 new media recovery 938

 938 RBA=000000000000, checkpoint RBA=000000000000

08.49.58 STC04353 CSQP019I ?QMP1 CSQP1DWP CHECKPOINT COMPLETED FOR 939

 939 BUFFER POOL 3, 47 PAGES WRITTEN

08.49.58 STC04353 CSQP021I ?QMP1 Page set 2 new media recovery 940

940 RBA=000000000F66, checkpoint RBA=000000000F66

etc, followed by similar output for the rest of the page sets.

Step 17 – issue another BACKUP CFSTRUCT to establish a
new point of recovery for the messages in the CF structures.

 16 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

08.50.38 STC04353 CSQE105I ?QMP1 BACKUP task initiated for structure

CC1

08.50.38 STC04353 CSQE120I ?QMP1 Backup of structure CC1 started at

RBA=00000000DED8

08.50.38 STC04353 CSQ9022I ?QMP1 CSQELRBK ‘CFSTRUCT CC1’ NORMAL

COMPLETION

08.50.40 STC04353 CSQE121I ?QMP1 CSQELBK1 Backup of structure CC1 085

 085 completed at RBA=0000004E2BA1, size 5 MB

The output is similar for the other application structures.

08.51.06 STC04353 CSQJ310I ?QMP1 ASYNCHRONOUS ARCHIVE LOG COMMAND 114

 114 QUIESCE PROCESSING STARTING FOR MAXIMUM OF 5

SECONDS

08.51.06 STC04353 CSQJ002I ?QMP1 END OF ACTIVE LOG DATA SET 115

 115 DSNAME=QMP1.LOGCOPY1.DS01, STARTRBA=000000000000

ENDRBA=000000686FFF

08.51.06 STC04353 CSQJ001I ?QMP1 CURRENT COPY 1 ACTIVE LOG DATA SET IS

116

 116 DSNAME=QMP1.LOGCOPY1.DS02, STARTRBA=000000687000

ENDRBA=00002C5A6FFF

08.51.07 STC04353 CSQJ002I ?QMP1 END OF ACTIVE LOG DATA SET 117

 117 DSNAME=QMP1.LOGCOPY2.DS01, STARTRBA=000000000000

ENDRBA=000000686FFF

08.51.07 STC04353 CSQJ001I ?QMP1 CURRENT COPY 2 ACTIVE LOG DATA SET IS

118

 118 DSNAME=QMP1.LOGCOPY2.DS02, STARTRBA=000000687000

ENDRBA=00002C5A6FFF

08.51.07 STC04353 CSQJ311I ?QMP1 ASYNCHRONOUS LOG ARCHIVE (OFFLOAD)

TASK INITIATED

08.51.07 STC04353 CSQJ312I ?QMP1 ARCHIVE LOG QUIESCE ENDED, UPDATE 120

 120 ACTIVITY IS NOW RESUMED

Step 18 – testing.

Some suggestions follow. Check that:

• Existing messages can still be accessed (browse).

• New messages can be added and deleted (both via
batch and on-line).

Step 19 – update the regular page set back-up jobs and delete
the removed page sets and their back ups.

Do this only when the system has been up and running for a
day or so.

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

BACKOUT SCENARIO

If for some reason the change had to be backed out, use the
following procedure to keep the page sets that remained
allocated and add the ‘old’ page sets back in (even though
they are empty!).

Step B1 – shut down the queue manager using a standard
STOP FORCE.

Step B2 – reintroduce the page sets’ DD statements to
MSTR start-up JCL.

Step B3 – reintroduce the DEF PSID commands to CSQINP1.

Step B4 – start the queue manager.

There is no need to go through all the previous steps because
we want to retain the status of the page sets that remained
allocated and allow MQ to resolve any recoveries.

RECOMMENDATIONS

I recommend that you:

• Plan this operation carefully, including its back-out.

• Work out the longest part of the operation, namely the
back-up and ‘resetpage’ of the largest page set(s).

• Test it out in a pre-development environment.

• In a queue-sharing environment, perform the change on
one queue manager at a time. In this way, persistent
shared messages remain recoverable via the logs of other
queue managers in the queue sharing group.

• Keep one page set available for emergencies.

• Do the change in three stages: stage 1 to move all queues
and their contents off the page sets; stage 2 to remove the
page sets from MQ; and stage 3 to physically remove the
page sets after one or two days of successful runs.

 18 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Contributing to MQ Update

Why not share your expertise and earn money at the
same time? MQ Update is looking for program code,
JavaScript, REXX EXECs, etc, that experienced
users of WebSphere MQ have written to make their
life, or the lives of their users, easier. We are also
looking for explanatory articles, and hints and tips,
from experienced users. We would also like
suggestions on how to improve MQ performance.

We will publish your article (after vetting by our expert
panel) and send you a cheque, as payment, and two
copies of the issue containing the article once it has
been published. Articles can be of any length and
should be e-mailed to the editor, Trevor Eddolls, at
trevore@xephon.com.

A free copy of our Notes for Contributors, which
includes information about payment rates, is available
from our Web site at www.xephon.com/nfc.

• Update the disaster recovery procedures and re-test.

Ruud van Zundert (ruudvz@btclick.com)
Independent Consultant (UK) © Xephon 2004

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Setting up a WebSphere MQ Integrator Broker in a
parallel Sysplex

INTRODUCTION

WebSphere MQ messages can be processed using IBM’s
WebSphere MQ Integrator Broker product. The broker can be
used for a wide range of message volumes because the
broker is highly scalable by having multiple message flow
instances using threads and by multiple processes when
deploying the message flow to multiple execution groups. But
there are cases where the volume of messages that can be
processed on one computer is not high enough for the
business need. In this case a second broker is needed on
another computer to increase the throughput. But, in addition
to throughput, there are also other reasons for running a

Shared queue

Shared database

Broker 1

Message flow 1

Message flow 2

Message flow 3

Broker 2

Message flow 1

Message flow 4

Figure 1: WebSphere BI for FN Instance with two
WebSphere MQ Integrator Brokers

 20 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

message flow on another computer: for example the availability
of the service provided by a message has to be increased, or
the costs to access the message flow from another application
running on another computer are too high.

Such requirements arise for WebSphere Business Integration
for Financial Networks (hereafter called WebSphere BI for
FN). This product is designed for high message throughput
and high availability. WebSphere BI for FN allows a
configuration with message flows on multiple brokers as
shown in Figure 1. Message Flow 1 in this figure could be the
message flow that needs higher throughput or better availability.
The other message flow could be used for administration
purposes or for other low-volume message processing. The
concepts described here for two brokers apply also to
configurations with any higher number of brokers.

The WebSphere BI for FN product is divided into a base part
and network-specific extensions. WebSphere BI for FN Base
provides functionality to deliver products on top of WebSphere
MQ Integrator Broker and a set of common functions that are
required by different product extensions, like auditing, security,
or configuration. Configuration describes the run-time
behaviour of a message flow. This requires shared queues to
share the workload and a shared database to access the
same data as shown in Figure 1.

This article describes possible ways to set-up multiple
WebSphere MQ Integrator Brokers for z/OS in a parallel
Sysplex, and the decisions that have to be taken while
defining the system.

WEBSPHERE MQ

Each WebSphere MQ Integrator Broker requires its own
WebSphere MQ queue manager. Using WebSphere MQ there
are three possible ways to set up queue managers in a parallel
Sysplex. The first possibility is that the queue managers are
unrelated, the queue managers can be part of a cluster of

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

queue managers, and, thirdly, the queue managers can be
part of a queue-sharing group.

Unrelated queue managers

If the queue managers are unrelated, each broker is processing
just the workload that applications are addressing directly to
it. With this system set-up, the volume of messages being
processed can be increased, but there is no workload balancing
and no failover in case one of the brokers, the queue managers,
or an entire system, fails.

Queue manager clusters

A WebSphere MQ cluster, as shown in Figure 2, is a connection
between two independent computers. This is possible on
most WebSphere MQ-supported platforms including z/OS.

In a cluster, each WebSphere MQ Integrator broker is
connected to a separate WebSphere MQ queue manager.
This allows each broker to process the workload that is
addressed to its queue manager. Workload balancing between
both brokers can be achieved if applications sending the

System 1 System 2

Queue
manager
cluster

Application 2

Gateway QM2

QM 2

Broker 2

Application 1

Gateway QM1

QM 1

Broker 1

Figure 2: A WebSphere MQ cluster

 22 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

messages are connected to a separate queue manager,
named Gateway QM in Figure 2, which is also part of the same
WebSphere MQ cluster. The benefits of workload balancing
come from the costs for remote messaging. These costs are
processing costs and latency.

The system works as follows. The application, Application 1,
connects to the queue manager, Gateway QM1. It is sending
a message to the input queue of the message flow. The
address is just using the name of the queue with the queue
manager name left blank. The queue manager Gateway QM1
automatically finds out the name of the queue manager where
the queue is located. To be able to do this, the input queue of
the message flow must be defined as a cluster queue. This
way, the information about the availability of this queue is
distributed to all queue managers in the cluster. For additional
throughput and availability, a queue with the same name is
defined on both queue managers, QM 1 and QM 2. Since this
information is available to Gateway QM, this queue manager
can decide which one to use. The default behaviour in such a
case is that the queue manager selects the queue on the other
queue manager, in a round-robin sequence. This workload
distribution algorithm is only performed for all queues with the
same name on queue managers that are up and running and
connected to the cluster.

As long as everything is up and running, the system works
well. There are some drawbacks in the case of system failures
or the failure of a broker. If a complete system fails, eg System
2 falls down, the queue manager cluster detects this and will
not send any more messages to the system until it is started
again. But messages that are already on System 2 at the time
of the failure will no longer be processed. Also messages that
have already been routed to the queue manager on System 2
will stay in the transmission queue to this system. They will not
automatically be re-routed to any system that is active. The
situation is much worse if just the broker on the system fails.
In this case the Gateway QM1 continues to direct messages
to the queue manager on System 2 even if they are not

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

processed. In such a case, either an operator needs to shut
down the queue manager or, if the broker can be recovered,
the broker has to process a large backlog of messages. To
overcome the problem of messages that are still in the queue
and are not processed, you may configure the broker and the
queue manager in a way that they can be restarted on another
system, for example System 1. But this still has the problem
of a potentially large backlog of messages that need to be
processed at start-up time.

Figure 2 also shows an optional gateway queue manager,
Gateway QM2. This is not required for the availability of the
message flows, but having a second gateway queue manager
is a good choice to increase the availability and message
throughput of sending and receiving applications.

Queue sharing groups

A system with better availability and workload balancing
characteristics is a queue sharing group. Such a system is

System 1 System 2

Application 2

QM 2

Broker 2

Application 1

QM 1

Broker 1

Queue sharing group

Figure 3: A WebSphere MQ sharing group

 24 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

shown in Figure 3. What’s obvious when comparing this figure
to Figure 2 is that no gateway queue manager is required. A
queue-sharing group is available only on z/OS. All queue
managers in the sharing group share some common resources,
eg all queue managers must have access to common files
where messages in shared queues can be stored.

The applications are sending their messages directly into the
input queue of the message flow. This queue must be defined
as a sharing group queue in the queue managers. This way,
the queue appears to be a single local queue that spans
System 1 and System 2. The handling and coordination of
messages across the systems is achieved by WebSphere MQ
exploiting the coupling facility. The coupling facility can be
thought of as shared memory between both systems.

For the message flows, it appears as if each of their queue
managers has a local queue from which they get their
messages. Each message flow will take as many messages
as it can process. This means that there is an automated
workload distribution according to the processing capabilities
of each system.

This set-up has the advantage that if one broker fails, the
message flow in the second broker can process all the
messages, albeit with a lower throughput rate. If it’s just the
broker that is failing, then System 2 is able to recover messages
that were in-flight at the time of the failure, and these messages
can then be processed on the remaining broker. The broker
and the message flow in the available broker will not be aware
of the fact that the second broker is no longer available and
they do not have to take any action.

The behaviour is similar if a complete system fails. This is
detected by the remaining queue manager, which makes all
the messages available to the remaining system and those
messages can be processed. The only problem here might be
for those messages that were processing when the system
failed. If these messages cannot be recovered until System 2
is back, they get into an in-doubt status and cannot be
processed.

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

The implementation of the queue-sharing group has some
limitations, for example the total amount of data that can be
held in such queues and the maximum length of a message
in a sharing group queue. The total amount of data depends
on the available resources for the coupling facility that can be
used by WebSphere MQ. These coupling facility resources
may have to be shared with other resource managers, for
example a database. Messages in a sharing group queue are
currently limited in length to a maximum of around about
63KB.

If a broker application consists of multiple message flows, like
most WebSphere BI for FN extensions, you will need to check
which queues really need to be sharing group queues. Only
those that require high availability and fail-over capabilities
should be selected to reduce to a minimum the required
resources in the coupling facility.

Based on the advantages and disadvantages of all methods,

System 2System 1

System 3

Broker 1 Broker 2

Database

Figure 4: Sharing data in a distributed environment

 26 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

WebSphere BI for FN has decided to start with support of a
queue manager cluster. The main reasons for this decision
are that those messages, which are processed by the existing
extensions, can exceed 63KB and the cluster approach also
works on all other WebSphere BI for FN supported platforms.

DATABASE

If you are processing data with message flows in multiple
brokers, then all processing should work with the same data.
In distributed environments, this problem is usually solved by
having one database, which is referenced by all brokers. The
database for such a configuration could be on the system
where one of the brokers reside or a separate system, as
shown in Figure 4.

Such a system has the drawback that System 3 is a single
point of failure. To decrease the impact on availability if this
system fails, a standard mechanism (such as a cold standby

System 1 System 2

Application 2

Broker 2

Application 1

Broker 1

Figure 5: Broker with data sharing group

DSN1 DSN2

Data sharing group

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

system) can be applied. Another drawback with this set-up is
the communication costs involved for communicating from
the broker systems to the database system. For a low volume
of messages this may not be relevant, but, when processing
high volumes of messages with many database interactions,
the processing costs and latency introduced by a network
could be significant.

On z/OS there’s another possibility with DB2 (the only supported
database on this platform). Similar to a queue sharing group,
database subsystems can be organized into a data sharing
group as shown in Figure 5. In such a configuration there’s a
database running on each server but the databases can
communicate with each other using a coupling facility and
therefore process the same data in the same tables.

Each database in the data-sharing group has its own subsystem
id and its own ODBC data source name (DSN). Any application
could use this name to connect to this member of the data
sharing group as usual. The data-sharing group also has its
own identification and hence its own DSN. Any request
addressed to this DSN is then routed by the sharing group to
a sharing group member that can process it.

When setting up the broker in such an environment, the broker

Broker 1 Broker 2

Broker 1
database

Shared
database

Broker 2
database

Figure 6: Data distribution for a data sharing group

 28 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

tables could be located non-shared in the corresponding
database subsystem that is located on the same system as
the broker. For example Broker 1 would be customized to have
its broker database tables in DSN1. Database tables for
application message flows that are available to both brokers
need to be shared so they are accessible by both brokers.
They can be defined in any of the subsystems. The message
flows accessing such shared tables would reference them
using the DSN of the data-sharing group. Such a set-up is
shown in Figure 6.

WEBSPHERE MQ INTEGRATOR BROKER

In addition to the underlying subsystems, some precautions
also have to be taken for the broker. First of all, it must be
assured that all processing components for the message
flows are at the same level. In addition to the broker executables
this must also be assured for all plug-ins and libraries added
by the broker application – in this case WebSphere BI for FN.
In general this could be assured by always installing the same
level on both systems. This could be error prone so common
data could not be assured. It should be possible to install the
data on one system and also make this data available to all
other systems, for example by using Network File System
services (NFS). Such an approach has the disadvantage that
this introduces a new single point of failure. If the system
where the installation data is located fails, all the other
systems are unable to work.

z/OS supports the Hierarchical File System (HFS). This is a
single dataset on a disk that can be accessed by multiple
systems. Since all plug-in files and shared libraries used by
WebSphere MQ Integrator Broker and WebSphere BI for FN
are read-only, there are no sharing or locking problems. When
designing WebSphere BI for FN, attention was paid to the fact
that no files need to be accessed in write or update mode.

Having all executables at the same level is also required for
any other kind of program that is involved in the message

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

processing. One example is that WebSphere BI for FN uses
DB2 stored procedures to do some processing. Other examples
could be programs invoked by a flow or application used to
initiate messages or to process the result of the activities in
the message flows.

Not only the executables of the products have to be on the
same level, but so do the message flows processing the
messages. To ensure this, the flow should be administered in
such a way that, after every change to a main flow or a sub-
flow, all instances of the flow are brought to the new level. With
WebSphere MQ Integrator Broker this can be achieved by
doing a delta deploy on the topology level after any change to
a message flow. Deploying identical message flows to different
brokers is possible if the resources they access, mainly
WebSphere MQ queue and DB2 tables, have the same

System 1 System 2

Application 2

Gateway QM2

QM 2

Broker 2

Application 1

Gateway QM1

QM 1

Broker 1

DSN2DSN1

Data sharing group

Figure 7: Final multiple broker configuration

 30 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Code from individual articles of MQ Update, and
complete issues in PDF format, can be accessed on
our Web site, at:

www.xephon.com/mq

You will be asked to enter a word from the printed issue.

names. This is achieved by the use of shared queues and the
shared database.

SUMMARY

WebSphere Business Integration for Financial Networks has
shown that it is possible to set up WebSphere MQ Integrator
Broker in a parallel Sysplex. It was achieved with a WebSphere
MQ cluster and data in a data-sharing group as shown in
Figure 7.

With this configuration higher throughput and higher availability
are achieved. Nevertheless, use performance statistics to
validate whether this is achieved with a reasonable processing
overhead, compared with processing on a single server, are
still outstanding.

Michael Groetzner
IBM (Germany) © IBM 2004

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Queue back-up and restore tool for Unix

INTRODUCTION

Sometimes it is useful to copy or move WebSphere MQ
messages from one queue to another queue or to a file for
later use. The stored messages may be used for development
testing (to create the same input data several times) or for
analysing off-line after a problem has occurred. It may also be
used to extract test data from a production system, or to
rescue messages when a queue manager has to be recreated
– eg to increase the size of the log files.

THE QUEUE BACK-UP AND RESTORE TOOL

Intention for backupQ

I have worked for several years within a heterogeneous
WebSphere MQ environment. On z/OS there is a utility,
CSQUTIL, to back up and restore queue contents. The Unix
guys often asked for such a tool on their systems. So I created
the program backupQ, to enable the Unix administrators to
back-up and restore queue contents.

How backupQ works

The program backupQ will move or copy messages from one
queue to another queue or to a file, and from a file back to a
queue. The program has the following parameters:

• -f ...: – a function with the following possible values:

– q2q: – copy or move from an input queue to a target
queue.

– q2f: – copy or move from an input queue to a file.

– f2q: – copy from a file to a queue.

 32 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• -i ...: – the name of the input queue or file.

• -o ...: – the name of the output queue or file.

• -m ...: – optional; the name of the queue manager (if not
configured as the default queue manager).

• -d: – optional; move messages instead of copying them
(destructive get, not for input from a file and not in
combination with option -r).

• -r first,last: – optional; range of the messages to copy or
move (not in combination with option -d). If the last value
is not set, all messages up to the end of the queue or file
will be copied.

Files created by backupQ always contain the message
descriptor. This will be partially restored by backupQ when the
messages are copied back to a queue. Partially means that
attributes like persistency are preserved, whereas attributes
like the put time and date will be set by WebSphere MQ.
BackupQ creates a start and an end tag, to identify files
created by itself. If these tags are missing, backupQ returns
an error message. It is also possible to use manually-created
plain text files, eg to create some test data. Such a file needs
a manually-added start and an end tag
(BACKUPQ_START_OF_FILE and
BACKUPQ_END_OF_FILE respectively) in the first and the
last line, to be used by backupQ. BackupQ then reads the
contents, line by line, and puts each line as a new message on
the queue.

Building the program backupQ

The following lines create the binary – on non-DCE platforms
– from the file backupQ.c for AIX and Sun Solaris systems. I
assume that the GNU compiler gcc is installed in /usr/local/
bin.

AIX:

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

/usr/local/bin/gcc -o backupQ –lmqm backupQ.c

SunOS:

/usr/local/bin/gcc -o backupQ –lmqm -lmqmcs -lmqmzse -lsocket -lnsl -ldl

backupQ.c

How to build the software on further platforms is described in
the IBM document WebSphere MQ Application Programming
Guide.

Installation of the queue back-up and restore tool

There is nothing to install, just copy the binary to your program
search path.

EXAMPLES

Example 1

Copy the whole contents of a queue to another queue. Leave
the messages in the original queue. The program connects to
the default queue manager:

backupQ –f q2q –i InputQueue –o OutputQueue

Example 2

Move the whole contents of a queue to another queue. The
messages in the original queue are deleted. The program
connects to the default queue manager:

backupQ –f q2q –i InputQueue –o OutputQueue -d

Example 3

Move the whole contents of a queue to a file. The messages
in the queue are deleted. The program connects to the queue
manager TESTQM:

backupQ –f q2f –i InputQueue –o OutputFile –d –m TESTQM

 34 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Example 4

Copy the whole contents of a file to a queue. The messages
in the file are preserved. The program connects to the queue
manager TESTQM (the option -d is not available in combination
with a file as an input device):

backupQ –f f2q –i InputFile –o OutputQueue –m TESTQM

Example 5

Copy the 10th to 20th message of a file to a queue (this means
11 messages in total). The messages in the file are preserved.
The program connects to the default queue manager (the
option -d is not available in combination with a file as an input
device or the option -r):

backupQ –f f2q –i InputFile –o OutputQueue –r 10,20

Example 6

Copy the 30th to the last message of an input queue to an
output queue. The messages in the input queue are preserved.
The program connects to the queue manager TESTQM (the
option -d is not available in combination with the option -r):

backupQ –f q2q –i InputQueue –o OutputQueue –r 30 –m TESTQM

Example 7

Copy the 10th message of an input to an output queue. The
message in the input queue is preserved. The program
connects to the default queue manager (the option -d is not
available in combination with the option -r):

backupQ –f q2q –i InputQueue –o OutputQueue –r 10,10

DESCRIPTION OF THE CODE

The code consists of several parts.

Global parameters

Two groups of global parameters are used in the program. The

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

parameters beginning with FUNC define the types of input and
output device and whether read messages will be removed
(this is called the function of the program):

 62: /* Define some flags */

 63: #define FUNC_NONE 0 /* nothing to do */

 64: #define FUNC_Q2Q 1 /* copy or move from a queue to another

queue */

 65: #define FUNC_Q2F 2 /* copy or move from a queue to a file */

 66: #define FUNC_F2Q 4 /* copy from a file to a queue */

 67: #define FUNC_MOVE 8 /* move messages instead of copying them */

The parameters beginning with FILE define some strings that
are used as marks in the input or output file:

 69: /* Define some file parameters */

 70: #define FILE_MD_HEADER "MQMD" /* message line contains a

descriptor */

 71: #define FILE_MQ_START_TAG "BACKUPQ_START_OF_FILE" /* start tag of

files */

 72: #define FILE_MQ_END_TAG "BACKUPQ_END_OF_FILE" /* end tag of

files */

Function main

The function main first calls the function check_args, which
checks the command line parameters (line 877). If this check
is successful, the program connects to the queue manager
(line 881) and opens the input and output queue(s) or file (lines
894 and 903). Then the program calls the function
copy_messages (line 913), which copies or moves the
message(s) from the input to the output device. When the
copying or moving has finished, the program closes the input
and output devices (line 917) and disconnects from the queue
manager (line 923).

858: int main(int argc, char **argv)

859: {

...

877: function = check_args(argc, argv, input, output, QMName,

878: &first_msg, &last_msg);

879:

880: /* Connect to queue manager. */

881: MQCONN(QMName, /* queue manager */

 36 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

882: &Hcon, /* connection handle */

883: &CompCode, /* completion code */

884: &CReason); /* reason code */

...

893: /* Open the input device. */

894: open_input_device(function, input, Hcon, &OpenSrcCode,

895: &HobjSrc, &fp);

...

902: /* Open the output device. */

903: open_output_device(function, output, Hcon, &OpenDestCode,

904: &HobjDest, &fp);

...

911: /* Copy or move messages from the input device to the */

912: /* output device. */

913: copy_messages (function, first_msg, last_msg, Hcon, input,

914: &HobjSrc, output, &HobjDest, fp);

915:

916: /* Close the open devices. */

917: close_devices (function, Hcon, OpenSrcCode, &HobjSrc, OpenDestCode,

918: &HobjDest, fp);

919:

920: /* Disconnect from MQM if connected. */

921: if (CReason != MQRC_ALREADY_CONNECTED)

922: {

923: MQDISC(&Hcon, /* connection handle */

924: &CompCode, /* completion code */

925: &CReason); /* reason code */

...

928: }

929:

930: exit(0);

931: }

Function for checking the command line arguments

The function check_args checks the command line parameters
and displays an error message if invalid or duplicate parameters
are used. Check_args returns a number, which describes the
function of the program. For example the value:

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 FUNC_Q2Q | FUNC_MOVE

(bit wise OR) means, move messages from a queue to
another queue. The messages in the source queue will be
deleted.

Functions for opening and closing input and output devices

The functions open_input_device and open_output_device
open the queue(s) or the file using the calls of MQOPEN (for
a queue) or fopen (for a file), depending on the function of the
program. If the input device is a file, it will be opened in read-
only mode. If the output device is a file, it will be checked for
whether it already exists. When it exists, the user will be asked
whether the file should be overwritten or the messages should
be appended to the existing file.

The function close_devices closes the queue(s) or the file by
calling the functions MQCLOSE and fclose.

Function to copy or move messages

The central function, which does most of the work, is
copy_messages. This function contains a loop in which it
reads messages from a queue or file (lines 639 and 652) and
writes it back (lines 678 and 690). If no message range has
been specified (parameter first_msg is equal to 0), any
message is read from the input device (queue or file) and
written to the output device. When the input device is a queue,
the messages may be removed from the queue – if option -d
has been passed to backupQ on the command line. Otherwise
the messages are just browsed from the queue.

When a message range is specified (parameter first_msg is
greater than 0), only messages numbered between the
parameters first_msg and last_msg are copied. The program
stops reading after the last message, and exits (line 625).

589: static int copy_messages(int function, int first_msg, int last_msg,

590: MQHCONN Hcon, char *input, MQHOBJ *HobjSrc, char *output,

591: MQHOBJ *HobjDest, FILE *fp)

592: {

 38 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

...

620: /* Loop until an error occurs. */

621: while (CompCode != MQCC_FAILED)

622: {

623: /* Read when all messages have to be read (first_msg is 0) */

624: /* or the last message to copy or move has been reached. */

625: if ((first_msg == 0) || (pos_count <= last_msg))

626: {

...

636: /* Input device is a queue. */

637: if ((function & FUNC_Q2Q) || (function & FUNC_Q2F))

638: {

639: MQGET(Hcon, /* connection handle */

640: *HobjSrc, /* object handle */

641: &md, /* message descriptor */

642: &gmo, /* get message options */

643: buflen, /* buffer length */

644: buffer, /* message buffer */

645: &messlen, /* message length */

646: &CompCode, /* completion code */

647: &Reason); /* reason code */

648: }

649: /* Input device is a file. */

650: else

651: {

652: read_from_file(fp, /* file handle */

653: &md, /* message descriptor */

654: buflen, /* buffer length */

655: buffer, /* message buffer */

656: &messlen, /* message length */

657: &CompCode, /* completion code */

658: &Reason); /* reason code */

659: }

660:

661: /* Write the read message again, when position counter is */

662: /* greater than number of the first message. */

663: if ((CompCode != MQCC_FAILED) && (pos_count >= first_msg))

664: {

...

672: /* Put each buffer to the message queues. */

673: if (buflen > 0)

674: {

675: /* Output device is a queue. */

676: if ((function & FUNC_Q2Q) || (function & FUNC_F2Q))

677: {

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

678: MQPUT(Hcon, /* connection handle */

679: *HobjDest, /* object handle */

680: &md, /* message descriptor */

681: &pmo, /* default options (datagram) */

682: messlen, /* buffer length */

683: buffer, /* message buffer */

684: &CompCode, /* completion code */

685: &Reason); /* reason code */

686: }

687: /* Output device is a file. */

688: else

689: {

690: put_to_file(fp, /* file handle */

691: &md, /* message descriptor */

692: messlen, /* buffer length */

693: buffer, /* message buffer */

694: &CompCode, /* completion code */

695: &Reason); /* reason code */

696: }

...

703: }

704: /* Satisfy end condition when empty line is read. */

705: else

706: {

707: CompCode = MQCC_FAILED;

708: }

709: }

710:

711: pos_count++;

712: }

...

772: }

773: }

774:

775: return(0);

776: }

Functions for file input and output

I created two functions, read_from_file and put_to_file, which
work similarly to the functions MQGET and MQPUT, but read
or write to or from a file. First the function read_from_file tries
to read a line header (line 483). It compares the read data with
the global constant FILE_MD_HEADER (line 487). If the
strings are not equal, the file is interpreted as a manually-

 40 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

created test file. Then the function rewinds the file pointer and
reads a complete line out of the file (lines 494 and 497). In
lines 499 and 500 a trailing newline character is replaced by
a NULL character.

If the strings that have been compared in line 487 are equal,
the function branches to the else part (line 511). In this case
the file is interpreted as a data file that was created previously
by backupQ. The function now reads the characters up to the
next colon. This string is interpreted as the length of the stored
message descriptor and is written into the array len (lines 525
to 533). The following bytes up to the next colon are interpreted
as the length of the message, and this length is also written
into the array len in the same way.

Now the message descriptor and the message itself are read
(lines 537 and 542). The length of the message is returned by
copying it from the array len to the parameter messlen (line
539). In line 545, the trailing newline character is read – just
to set the file pointer. When the read string contains the end
mark of the file (line 549), the completion and reason codes
are set to MQCC_FAILED and MQRC_NO_MSG_AVAILABLE,
to satisfy the check in the calling function copy_messages
(line 551 and 552).

The write function put_to_file is much easier than the read
function. It first creates a string with a line mark and the sizes
of the message descriptor and the message, separated by
colons (line 568). Then it writes the message descriptor (line
571) and the message itself (line 574).

467: static void read_from_file(FILE *fp, MQMD *md, MQLONG buflen,

468: MQBYTE *buffer, MQLONG *messlen, MQLONG *CompCode, MQLONG *Reason)

469: {

...

482: /* Try to read a header string. */

483: fread (header, 1, sizeof(FILE_MD_HEADER), fp);

484: header[sizeof(FILE_MD_HEADER) - 1] = 0;

485:

486: /* Look for message descriptor mark. */

487: if (strncmp(header, FILE_MD_HEADER, sizeof(FILE_MD_HEADER) - 1)

!= 0)

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

488: md_flag = FALSE;

489:

490: /* Message descriptor mark not found, file is manually created. */

491: if (md_flag == FALSE)

492: {

493: /* Rewind the file pointer. */

494: fseek (fp, -sizeof(FILE_MD_HEADER), SEEK_CUR);

495:

496: /* Read one line from the file. */

497: if (fgets(buffer, buflen, fp) != NULL)

498: {

499: if (buffer[strlen(buffer) - 1] = ‘\n’)

500: buffer[strlen(buffer) - 1] = ‘\0’;

501:

502: *messlen = strlen(buffer);

503: }

...

509: }

510: /* File is created by this program (contains a message

descriptor). */

511: else

512: {

...

518: /* Read the beginning of the line (contains the lengths of the */

519: /* message descriptor and the message itself, separated by

colons). */

520: for (idx = 0; idx < 2; idx++)

521: {

522: c = 0;

523: buf[0] = 0;

524:

525: while (c != ‘:’)

526: {

527: c = getc(fp);

528:

529: if (c != ‘:’)

530: sprintf (buf, "%s%c", buf, c);

531: }

532:

533: len[idx] = atol(buf);

534: }

535:

536: /* Read the message descriptor. */

537: fread (md, 1, len[0], fp);

538:

539: *messlen = len[1];

540:

 42 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

541: /* Read now the message. */

542: fread (buffer, 1, *messlen, fp);

543:

544: /* Get the newline character (to set the file pointer). */

545: c = getc(fp);

546: }

547:

548: /* Check for an end tag. */

549: if (strncmp(buffer, FILE_MQ_END_TAG, strlen(FILE_MQ_END_TAG)) == 0)

550: {

551: *CompCode = MQCC_FAILED;

552: *Reason = MQRC_NO_MSG_AVAILABLE;

553: }

554: }

...

560: static void put_to_file(FILE *fp, MQMD *md, MQLONG messlen, MQBYTE

*buffer,

561: MQLONG *CompCode, MQLONG *Reason)

562: {

...

567: /* Write a mark and the lengths of message descriptor and

message. */

568: num = fprintf(fp, "\n%s:%ld:%ld:", FILE_MD_HEADER, sizeof(MQMD),

messlen);

569:

570: /* Write the message descriptor to the file. */

571: num += fwrite(md, 1, sizeof(MQMD), fp);

572:

573: /* Write the message itself to the file. */

574: num += fwrite(buffer, 1, messlen, fp);

...

587: }

LISTING OF BACKUPQ.C

The full listing of the program backupQ is too long to be written
here. The program code may be downloaded from Xephon’s
Web site at www.xephon.com/extras/backupQ.c. Parts of the
listing are shown in the text above.

Hubert Kleinmanns
Senior Consultant
N-Tuition Business Solutions AG (Germany) © Xephon 2004

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Java Message Service, WebSphere Application
Server, and Message Driven Beans

This article looks at Java Message Service, WebSphere
Application Server, and Message Driven Beans.

The good news is that Java Message Service (JMS) is now
easier to install, administer, and use. It is designed to provide
a robust asynchronous messaging model, which will deliver
services for constructing high-performance, encapsulated,
portable, and transactional applications.

WebSphere Application Server (WAS) 5.0 is Java 2 platform
Enterprise Edition (J2EE) 1.3 compliant – which means that
it comes with an integrated JMS provider. WAS 5.0 provides
support for both the JMS point-to-point and publish/subscribe
messaging models. WAS 5.0 also offers full support for
Message Driven Beans (MDBs).

MDBs are part of the Enterprise Java Bean (EJB) 2.0
specification, and their role is to provide asynchronous
messaging using base JMS functionality.

It was difficult to build messaging applications using J2EE
before MDBs were introduced as part of J2EE 1.3. MDBs are
good for application developers because they delegate the
responsibility of providing infrastructure for transactions,
security, and concurrently processing messages to the EJB
container.

So let’s take a look at each of these in detail.

If you want to access asynchronous messaging systems from
Java applications you need an API to do it. JMS is a Sun
Microsystems Java specification that defines just such an
API. As a consequence, JMS provides an asynchronous
messaging model with services for constructing encapsulated,
portable, and transactional applications that are high
performing.

 44 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Importantly, it is an integral part of the J2EE 1.3 specification.
Remember that WebSphere Application Server (WAS) is now
J2EE 1.3 compliant.

WAS 5.0 now includes an integrated JMS Provider with the
product, called the WebSphere JMS Provider. This delivers
the enhanced JMS integration with the application server.

Customers no longer need to purchase MQSeries 5.2 or
WebSphere MQ 5.3 for this functionality as they did with WAS
4.0; and even then, it only delivered the back-end messaging
support of the provider – the JMS implementation was obtained
through a separate download/install of the corresponding MQ
classes for Java and MQ classes for Java Message Service
LPP. There was then a long period of setting everything up.

WAS 5.0 now includes:

• WebSphere MQ 5.3 – providing the back-end messaging
server used to receive, store, and send asynchronous
messages.

• WebSphere MQ Classes for Java and JMS 5.3 – providing
Java classes and interfaces used to access the back-end
messaging server through JMS.

These products are installed by default during the WAS 5.0
installation process and provide the underlying JMS Provider
by WAS. All access is performed through the WAS user
interfaces (eg the administrative console), so users don’t
need to interact directly with these products.

Licensing restrictions mean that a full WebSphere MQ licence
has to be purchased if applications don’t integrate with WAS
5.0 JMS applications. Otherwise, for example, as long as a
WebSphere 5.0 JMS application receives and processes
these messages, an RPG application could use these products
to send messages to a WebSphere MQ queue using the
native APIs of the product.

In the same way, an RPG application could use the native
WebSphere MQ APIs to receive messages sent by a
WebSphere 5.0 JMS application.

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

The JMS server provides an integrated JMS security service.
This (not surprisingly) allows JMS resources to be secured. It
is similar to the security service used with other types of J2EE
component (such as servlets, JSPs, and EJBs) in WAS.

The JMS server can be found in the WAS 5.0 run-time. It
interacts with the WebSphere JMS Provider and the application
server run-time. It runs in the application server process/job,
although if the WAS 5.0 instance is part of a Network
Deployment cell, the JMS server runs as a separate process/
job and interacts with the application server process.

The JMS server is used by the application server to interact
with the WebSphere JMS Provider to send/receive and publish/
subscribe JMS messages. For backward compatibility, JMS
through WAS 5.0 continues to support the point-to-point
messaging models.

JMS resources, such as connection factories, queues, topics,
and message listeners, are administered by the WAS
administration tools using the JMS server. There are now
standard WAS administrative interfaces for this – the WAS
administrative console and the WAS administrative scripting
engine (wsadmin). This means that JMS resources can now
be administered in the same way as other resources (JDBC
drivers, data sources, etc) using these common interfaces.

Moving on to Message Driven Beans (MDBs), WAS 5.0 fully
supports MDBs, which are part of the EJB 2.0 specification.
They are a specialized form of session beans that wrap a JMS
resource such as a queue or topic.

In essence, an MDB gets activated when a message arrives
and listens to a message destination or a message endpoint.
MDBs are anonymous in nature and cannot be directly invoked
by a client. An MDB is invoked by sending a message to the
destination or endpoint to which it is listening.

An MDB does not have interfaces like other types of EJB; it
only has a bean-implementation class. MDBs implement two
interfaces – one is an EJB interface and the other is a JMS

 46 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

interface. The MDB bean class has to implement the
javax.ejb.MessageDrivenBean interface. It must also
implement the message listener interface required by the
messaging type that it supports. An MDB that supports JMS
must implement the javax.jms.MessageListener interface.

MDBs provide asynchronous messaging using base JMS
functionality. They are server-side components and are
basically stateless session beans. They are used to process
JMS messages, although they are capable of participating in
global transactions.

Part of the MDB implementation is the message listener
service. One or more listeners associated with a given MDB
are controlled and monitored by a listener manager in WAS
5.0. As soon as an incoming JMS message arrives, it is
passed on for processing. The listener then goes back to
listening – there is no waiting.

MDBs are thread-safe and capable of receiving many
messages from various applications and processing them
simultaneously. MDBs are only accessible via asynchronous
messages and can’t be accessed via standard EJB methods
such as the Java RMI/IIOP API.

Without WAS 5.0 there’s no JMS. Without JMS there’s no
MDB. Without MDB there’s no efficient processing of
asynchronous messages.

Nick Nourse
Independent Consultant (UK) © Xephon 2004

MQ news

DataPower Technology has announced the
XI50 Integration Appliance, a networking
device that makes XML and non-XML data
usable for mainframes, Enterprise Service
Buses (ESBs), and application integration.

The product supports a range of transport
protocols, including MQ Series, and can
perform translations between formats other than
XML. XI50 can parse and transform arbitrary
binary, flat text, and XML messages, including
COBOL CopyBook, CICS, ISO ASN.1, and
EDI.

For further information contact:
DataPower Technology, One Alewife Center,
4th Floor, Cambridge, MA 02140, USA.
Tel: (617) 864 0455.
URL: http://www.datapower.com/products/
xi50.html.

* * *

Compuware has announced Version 3.1 of
STROBE, which is designed to help users
improve the efficiency of their applications.

STROBE 3.1 provides support for WebSphere
Application Server, complementing its existing
support for Java, enabling users to manage and
improve the performance of Java and
WebSphere applications. It also provides
information on how Java and WebSphere
applications interact with CICS, DB2, and other
z/OS facilities.

For further information contact:
Compuware, One Campus Martius, Detroit,
MI 48226, USA.
Tel: (313) 227 7300.
URL: http://www.compuware.com/products/
strobe/default.htm.

* * *

IBM has announced CICS Interdependency
Analyzer for z/OS Version 1.3, which is used
with CICS Transaction Server on a mainframe
to identify the resources used by CICS
transactions and the relationships between
them. The product also reports on WebSphere
MQ, DB2, and IMS resources that are used by
CICS. The main resources that are identified
include those associated with transactions,
programs, BMS maps, files, temporary storage
queues, transient data queues, 3270 Bridge
facility, Web Services, CorbaServer, and
Enterprise JavaBeans.

For further information contact your local IBM
representative.
URL: www.ibm.com/software/htp/cics/
products/interdepanalyzer.

* * *

IBM has announced WebSphere Business
Integration Modeler Version 5, which can help
companies establish a more detailed map of the
flow of business processes across their IT
systems. This helps to identify slowdowns, and
respond faster to customer demand and
changing market conditions.

WebSphere Business Integration Modeler
provides support for WebSphere Business
Integration Server Foundation, WebSphere
MQ message queueing software, and Rational
Rose XDE development tools. Customers can
work with existing content based on standards
like XML, and extend it using WebSphere
Business Integration Modeler’s simulation and
modeling capabilities.

For further information contact your local IBM
representative.
URL: http://www-306.ibm.com/software/
integration/wbimodeler/library/quicktour.html.

x xephon

	SSL in WebSphere MQ 5.3
	WebSphere Translation Server
	MQ V5.3 for z/OS page set removal procedure
	Setting up a WebSphere MQ Integrator Broker in a parallel Sysplex
	Queue back-up and restore tool for Unix
	Java Message Service, WebSphere Application Server, and Message Driven Beans
	MQ news

