
© Xephon Inc 2004

December 2004

66

In this issue

3 WMQI Version 2 and WBIMB
differences

9 WMQ and MDBs
14 Removing a queue manager

from a WMQ cluster
33 Identifying any MQ in-doubt

units of work
38 Integrating COBOL applications

with Microsoft BizTalk Server
2004

46 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.

Printed in England.

Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Bob Thomas
E-mail: info@xephon.com

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the material
it contains. Neither Xephon nor the contributing
organizations or individuals accept any liability of
any kind howsoever arising out of the use of such
material. Readers should satisfy themselves as to
the correctness and relevance to their
circumstances of all advice, information, code,
JCL, scripts, and other contents of this journal
before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in the
UK; £261.00 in Europe; £267.00 in Australasia
and Japan; and £265.50 elsewhere. In all cases
the price includes postage. Individual issues,
starting with the July 2000 issue, are available
separately to subscribers for $33.75 (£22.50)
each including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the rate
of $160 (£100 outside North America) per
1000 words and $80 (£50) per 100 lines of code
for the first 200 lines of original material. The
remaining code is paid for at the rate of $32 (£20)
per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues in
Acrobat PDF format, can be downloaded from
our Web site at www.xephon.com/mq; you will
need to supply a word from the printed issue.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

WMQI Version 2 and WBIMB differences

This article deals mainly with the cosmetic differences between
the two versions of IBM’s strategic message broker system.
They have become known as WMQI Version 2 and WMQI
Version 5, although Version 5 should now be referred to as the
WebSphere Business Integration Message Broker (WBIMB).

To the experienced developer and administrator of WMQI
Version 2, the main differences can be seen in the development
and administration interface. The old control centre has been
replaced by a completely new open source Eclipse-based
toolkit. For anyone who has already become familiar with
Eclipse, such as Java developers, the transition may not be
too radical; however, the introduction of Eclipse as the
development interface introduces a whole new set of working
practices. Here, I have highlighted some of the main differences
between the two versions rather than given a comprehensive
overview of the product. The reader must be familiar with
WMQI Version 2 in order to appreciate the content, and
anyone wishing either to learn WBIMB or to migrate their skill
set should attend an appropriate course such as IBM’s MQ66.

ECLIPSE

The use of Eclipse as the toolkit lays the foundation for a
superior method of development and a more comprehensive
means of source management. All resources under
development are now held in the local file system. Eclipse
manages resources around a project structure, and most
resources, such as message flows, must belong to a project.
This can lead to problems not experienced in WMQI Version
2 as will be seen later.

Eclipse organizes resource control under different
perspectives. For example there is a development perspective
for message flow creation and ESQL editing; an administration
perspective for message flow deployment; and a debug

 4 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

perspective for problem diagnosis. Within each perspective
there are different windows and tab settings so that all
functions available under the WMQI Version 2 tabs can be
found somewhere within the appropriate perspective. Finding
them can, at first, seem a little tricky, so perseverance and
practice are essential.

SOURCE MANAGEMENT

One of the main criticisms of WMQI Version 2 is the lack of any
comprehensive source control system. Eclipse allows strategic
source control facilities such as Rational Clear Case and
Microsoft CSV to be plugged in. The workspace refers to
source files in the same way as WMQI Version 2, but far more
of the WBIMB resources are now held as source; amongst
them ESQL and deployable BAR files (discussed later).

There is now no inherent source control in WBIMB, so without
a plugged-in resource control system there is no necessity to
perform checkout prior to resource modification and check-in
prior to deployment. These functions now form part of the
plugged-in resource control facility.

CONFIGURATION MANAGER CONNECTION

One significant difference with WBIMB is the ability to carry
out development without the need to connect to a configuration
manager. The WMQI Version 2 control centre insists that a
configuration manager is available before it will start.
Nominating a different configuration manager requires the
cumbersome practice of starting the control centre, connecting
(or failing to connect) to the configuration manager last used
by the control centre, and then connecting to the intended
configuration manager if it differs from the previous one.
WBIMB requires no such prior connection since all resources
are held in the file system. The configuration manager is
needed only in the administration perspective to configure
broker execution groups and to perform deployments. Any
number of configuration managers may be included in the

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

administration perspective and they may all be connected at
the same time provided the appropriate WebSphere MQ
connectivity is established.

COMPREHENSIVE ESQL EDITOR

Eclipse contains all those desirable features that should be
included in a comprehensive editor such as colour schemes,
search and replace, and content assist (context-based
prediction). The WMQI Version 2 control centre contains none
of these facilities and anyone working with large amounts of
ESQL will be all too familiar with the frustration caused by its
lack of finesse.

ESQL FILES

The ESQL relating to compute nodes, filter nodes, or any of
the database nodes is no longer held as a property of the
particular node, but is now held collectively as an ESQL file
relating to the entire message flow. No matter how many
compute nodes, filter nodes, or database nodes, there is only
one ESQL file for the flow. The ESQL is separated by module
delimiters, and the module name is referred to in the node
properties. For large ESQL files, module selection is facilitated
either by direct access from the node properties or by selecting
the module from a list held in one of the development
perspective windows.

WBIMB now allows the facility to share common ESQL. The
project properties allow any other project to be nominated as
a potential library of sharable modules. This allows for a more
robust organization of source and a more conventional
approach to application development than the linear method
necessitated by the primitive nature of the WMQI Version 2
ESQL editor.

BAR FILES

In WMQI Version 2, message flows are dragged into an

 6 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

appropriate execution group as an administration task under
the assignments tabs. A deploy operation is then performed to
ensure that these message flows are made available to the
run-time broker. It is possible to nominate non-deployable
message flows, which will cause the deploy operation to fail.

In WBIMB, a file known as a broker archive or BAR file is used
to hold a selection of compiled deployable message flows,
chosen from a list of acceptable candidates. Non-deployable
flows such as sub-flows will not be included in this list and
hence cannot be selected.

In WBIMB there is a downside caused by the use of Eclipse.
It is not possible to deploy a message flow if that flow belongs
to a project having errors, even though the errors are unrelated
to the flow in question. This can be frustrating and is because
of Eclipse’s organization of resources. If a source management
facility is in place, project rebuild and refresh may be needed
to remove another developer’s errors from the workspace,
although even this can be unreliable and may prevent testing
until the unrelated error is resolved.

Once a BAR file is created and is contained within the local or
managed file system, it can be propagated to any other file
system and hence be deployed to an appropriate broker.

THE MESSAGE REPOSITORY MANAGER (MRM)

There is no longer any requirement for a message repository
database. Like all other resources, MRM definitions are held
in the local file system.

Perhaps the most significant difference between the two
versions, and one that affects the run-time broker, is the
nomination of message sets. In WMQI Version 2, under the
assignments tab, the message set is dragged into the broker
outside of any execution group and hence belongs to the
broker itself. In WBIMB the message set is included in the new
BAR file, along with any message flows. The entire BAR file
is then deployed to an execution group. This means that the

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

message set now forms part of an execution group rather than
the broker, therefore it is possible to have different versions of
the message set being used by different message flows if
those message flows are in different execution groups. Care
must be taken to redeploy to every execution group that
requires the new message set and this can lead to an
administration overhead.

Support for XML schema import and generation has been
included.

RAPID APPLICATION DEVELOPMENT (RAD)

In WMQI Version 2, anyone wishing to perform a deploy
operation needs appropriate authorization. This presents a
potential security exposure in that developers who needed
authority to deploy to a test broker may automatically have the
right to deploy to a production broker. This exposure can be
prevented in Version 2 either by having separate broker
domains, with all the appropriate facilities to migrate from one
broker to another, or by restricting the authority of the developer
to disallow deploy operations. Some other means of requesting
a deploy must then be invoked, such as an operator request
by telephone, which inhibits a smooth development process.

In WBIMB, the developer is given the opportunity to select
message flows that may be transferred and run on the broker
without the need to access the administration perspective and
perform a specific deploy. Developer authority is sufficient to
allow this activity and gives a restricted administration capability
for test purposes. It makes modification and re-testing of
message flows much more streamlined. For the purpose of
rapid application development, control files are created the
first time the facility is invoked. These control files may be
modified, as the developer’s needs change.

REMOVAL OF THE COMMAND ASSISTANCE

WMQI Version 2.1 provides assistance from the start/programs
menu with the creation of components such as the configuration

 8 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

manager, broker, or username server in a Windows
environment. This assistance has been removed from the
start panel, and component creation must be carried out using
the command line functions.

DEBUGGING

The WMQI Version 2 control centre debugger is both
cumbersome and unreliable, and can lead to potential broker
problems. WBIMB has a vastly superior debugging capability
using the agent controller and includes the ability to single
step through ESQL source. If message flows experience
problems, it is possible simply to disconnect from the debugger
in order to ‘clean up’. Die-hard developers who rely on the
WMQI Version 2 usertrace still have the option available
under WBIMB, but the superior debugging capability may
make this a necessity only in the most extenuating
circumstances.

SECURITY

WBIMB has introduced many new security features.

ADDITIONAL MESSAGE PROTOCOLS

Support now exists within the broker to start a flow instance
from input received via HTTP and WebSphere MQ Everyplace.

CONCLUSION

There are many other differences between the WMQI Version
2 and WBIMB as well as those that have been highlighted
here. Only practice with the new control centre and re-learning
will give a sufficient insight into all of these new features and
differences. The experienced WMQI Version 2 developer will
find the new WBIMB toolkit extremely versatile.

Ken Marshall
Middleware Consultant
MQSolutions (UK) Limited © Xephon 2004

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

WMQ and MDBs

It all started with the Java Message Service (JMS). This is the
Java API that enables loosely-coupled Java clients to make
asynchronous interactions with messaging systems such as
WebSphere MQ.

JMS is basically a low-level API enabling applications to
connect to messaging systems. To make coding for message
consumption simpler, J2EE 1.3 introduced a new kind of
enterprise bean, based on the JMS API, called the Message-
Driven Bean (MDB). MDBs are part of the EJB 2.0 specification,
and they act as JMS message listeners in the application
server container.

WebSphere Studio Application Developer 5.0 supports the
J2EE 1.3 specification, which includes EJB 2.0. With EJB 2.0,
users can create MDBs, which let EJB containers receive
messages asynchronously. Client components can send
messages to an EJB container without having to wait for a
reply. The ability to send messages to an EJB container rather
than a Java object makes the application more efficient. An
EJB container can send out distributed transactions when it
receives a message. WebSphere MQ can then push updates
into an EJB system and participate in a distributed transaction
with other resources, for example a database. Without MDBs
or EJBs it was necessary to code logic to browse a queue and
then start a transaction.

Let’s first look at JMS – WebSphere MQ provides messaging
services based on the JMS API.

Implementing JMS messaging requires a JMS provider (ie
WMQ) and JMS clients that use the messaging system. The
clients can be message producers or message receivers. The
producers identify the receivers by a destination object. So,
the message producer uses a JMS provider to create a
message containing a destination address, and the message

 10 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

is sent to a message receiver having that particular destination
address – simple!

To make things slightly more complex, there are two ways for
JMS to send a message to a receiver. They are:

• Publish-and-subscribe – a single message producer sends
a message to many receivers. This uses a channel called
‘topic’ to publish the message, which is broadcast to all
receivers subscribed to the topic.

• Point-To-Point (PTP) messaging allows clients to send
and receive messages synchronously and asynchronously
through channels called queues. Although multiple
receivers could be attached to a queue, the message is
delivered to only the one receiver it was intended for.

JMS supports five message types:

• BytesMessage – allows users to send a message as a
stream of bytes. This can be used for wrapping existing
message formats.

• MapMessage – allows users to store data as name/value
pairs. Users can manipulate the MapMessage via
msg.setString(key, value) and msg.getString(key).

• ObjectMessage – allows serializable Java objects to be
stored as part of a message. Users manipulate the
ObjectMessage via msg.setObject(Object o) and
msg.getObject().

• StreamMessage – allows users to send a message as a
stream of primitives.

• TextMessage – holds a simple string message. Users can
manipulate the TextMessage via msg.setText("foo") and
msg.getText().

Now let’s see where MDBs fit in. Message driven beans are
enterprise beans that act as message receivers. They are
different from other JMS clients that act as message receivers
in that they can look after security, concurrency, transaction,

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

etc. The standard message receiver is a Java client program
that receives and processes the message. It waits for a
message to be delivered by the message producer. The
length of time it has to wait can tie up system resources. To
overcome this problem, what’s needed is a client that will poll
frequently for a message and if no message is received,
timeout the request. This is what MDBs do.

MDBs are different from session beans and the entity beans.

Like stateless session beans:

• MDBs do not maintain conversational state between
requests. They may have instance variables throughout
their life cycle, but because of the pooling of bean instances
by the EJB container, the bean instances that consume
the messages may be different between requests. That is
why the conversational state may not be stored properly.

• The EJB container maintains many bean instances of the
same type in a pool. This enables concurrent message
consumption and processing when several messages are
delivered at the same time. This allows MDBs to deliver
better performance and scalability.

Unlike session and entity beans:

• MDBs do not have remote or home interfaces, nor do they
have a component interface. An MDB is a listener – it is not
a remote process call component.

• MDBs do not expose any business methods that can be
invoked by clients, such as a servlet, EJB, or Java
application.

Like session and entity beans, MDBs must use the JMS API
manually to send messages when they need to act as a
message producer. However, sending messages from MDBs
is not recommended – MDBs should delegate this task to the
business logic layer.

MDBs have the flexibility of a JMS client and the enterprise

 12 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

features of a stateless session bean. MDBs implement the
MessageDrivenBean interface. This extends the
javax.ejb.Enterprisebean interface, ensuring that the MDB
can be controlled by the ejb container – just like any other
enterprise bean. MDBs also implement the
javax.jms.MessageListener interface. This helps them to
adhere to the JMS messaging API. It’s worth noting that the
EJB2.0 specification allows MDBs to support only JMS-based
messaging systems. The EJB2.1 specification allows them to
support other kinds of messaging system.

An MDB has two states:

• Does not exist

• Method-ready.

To begin with, the bean exists in the ‘does not exist’ state.
When the container starts up, it may load a few instances into
memory so that they can be in the ‘ready’ state to consume
messages. When a bean moves from the ‘does not exist’ state
to the ‘method-ready’ state, the container first invokes the
Class.newInstance() method to instantiate (create a new
instance of) the bean. It then invokes the
setMessageDrivenContext() method to set the reference to
the ejbContext. This provides a reference to the
MessageDrivenContext Interface, which is in turn used to
handle transaction and security issues in the MDB. Finally the
ejbCreate() method is invoked by the container. MDBs have
only one ejbCreate() method and they are called only once in
the lifetime of an MDB.

When the bean is in the ‘method-ready’ state, it is ready to
receive messages. The container allocates a bean to receive
a message when it arrives in the container. When a bean is
servicing one message it cannot service another, so
subsequent messages are delegated to other instances that
exist in the pool. Once the bean has serviced a message it is
again returned to ‘method-ready’ and is ready to process a
new message. If the container cannot find a bean in the pool

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

to service a message it converts another bean from the ‘does
not exist’ state to the ‘method-ready’ state.

Bean instances leave the ‘method-ready’ pool for the ‘does
not exist’ state when the server no longer needs them. This
occurs when the server decides to reduce the total size of the
‘method-ready’ pool by removing one or more instances from
memory. The process begins by invoking the ejbRemove()
method on the instance. At this time, the bean instance should
perform any clean-up operations, such as closing open
resources. The ejbRemove() method is invoked only once in
the life-cycle of an MDB instance – when it is about to convert
to the ‘does not exist’ state. During the ejbRemove() method,
the MessageDrivenContext and access to the JNDI ENC are
still available to the bean instance. Following the execution of
the ejbRemove() method, the bean is dereferenced and
eventually goes when the garbage is collected.

WebSphere uses an extension called a listener port, which
allows users to bind an MDB bean to a JMS queue or topic.
The two most important attributes of a port are:

• The JNDI name of the JMS queue connection factory.

• The JNDI name of the JMS queue or topic.

A listener port is configured at the application server level.
Listener ports are managed by the Message Listener Service
of an application server. Ports can be created in WSAD
(WebSphere Studio Application Developer) or using the Web-
based administrative console. The listener port can be bound
to an MDB using the EJB deployment descriptor editor. The
binding information is stored in the ibm-ejb-jar-bnd.xmi file.

In order to set up a development environment, it’s necessary
to install WebSphere Studio Application Developer without the
embedded messaging support. Then install WebSphere MQ
separately. WebSphere MQ requires a custom installation in
order to select the Java Messaging component.

With this arrangement, it’s possible to run a distributed

 14 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

transaction from an MDB between WebSphere MQ and DB2,
for example.

MDBs reduce the amount of coding necessary to achieve
asynchronous message processing that is fast and efficient.
MDBs work with WebSphere MQ (and other messaging
software) and can help integrate it with other mainframe-
based applications as well as having many uses in distributed
environments.

Nick Nourse
Independent Consultant (UK) © Xephon 2004

Removing a queue manager from a WMQ cluster

INTRODUCTION

WebSphere MQ (WMQ) has included a feature called clustering
since Version 5.1 of the product. This feature simplifies the
administration of WMQ because it allows queues and channels
to be defined automatically. Other benefits are some form of
fail-over and workload mechanism. It is quite easy to join a
queue manager to a cluster, but a lot more difficult to remove
it smoothly.

Since Version 5.2 it has been possible to remove a queue
manager forcibly out of a cluster, but only if you have access
to one of the full repositories. This article describes a script
that removes a queue manager from a cluster without the
need to have access to a full repository queue manager, or
enlist the help of someone else who has access.

THE CLUSTER REMOVAL SCRIPT

Aim of the cluster removal script

The cluster removal script allows the owner of a queue

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

manager, which is not a full repository, to remove it from a
cluster. Because several steps are necessary to remove
queues, a channel, and the queue manager, it is better to run
these commands in a script, in order to perform the steps in
the right order without missing anything.

How the cluster removal script works

The script simply performs the steps described in the IBM
document Queue Manager Clusters. The required command
line options are the name of the queue manager and the
cluster to remove from. The script checks for cluster, channel,
and name lists, which contain the name of the specified WMQ
cluster.

First the script suspends the queue manager from the cluster.
Then it alters any queue that is a member of the specified
WMQ cluster name. If cluster membership is set by using a
name list – eg when a queue is a member of more than one
cluster – the name list will be replaced by another one that
does not contain the specified cluster name. The next step is
to alter the cluster receiver channel in the same way. In fact,
this step removes the queue manager finally from the WMQ
cluster. The last step is to alter the cluster sender channel in
the same way, to interrupt the connection to the full repositories,
and to clean up the local (partial) repository.

Using the cluster removal script

If you want to recreate the queue manager and its cluster
membership at some point, be sure you have a configuration
file (eg created with saveqmgr, which is available as SupportPac
MS03 on the home page of IBM). To remove the queue
manager from a WMQ cluster, run the script as follows:

ClusterRM queuemanager clustername

The script now checks that the user is a member of the group
mqm and that the queue manager is a member of the cluster.
Last but not least, the script asks the user to start the cluster
removal. If the user answers ‘Y’, the removal will start.

 16 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

SAMPLE CONFIGURATION

Description of the sample configuration

To test the script and see how it works, I created a sample
configuration. This configuration consists of two WMQ queue
manager clusters, named CL_1 and CL_2. The queue
managers CLREPO1 (for CL_1) and CLREPO2 (for CL_2) act
as full repository queue managers for these clusters. Another
queue manager, named CLQMGR, is set up as a member of
both clusters. Several queues are defined on CLQMGR as
members of one or both clusters. The repository queue
managers are not connected directly.

Setting up the sample configuration

Create three queue managers with the names CLREPO1,
CLREPO2, and CLQMGR. Configure them with the MQSC
files below, using the following command (replace qmgr by the
names above):

runmqsc qmgr < qmgr.mqsc

Now start the channel listeners by issuing the following
commands (replace port in this sample by 1414, 1415, and
1416):

nohup runmqlsr –m qmgr –t tcp –p port &

The queues are defined as members of one cluster (queues
TEST.CL*) or both (via name list, queues TEST.NL.*).

MQSC definition files for the sample configuration

CLREPO1:

 ALTER QMGR +

 REPOS('CL_1') +

 FORCE

 DEFINE CHANNEL ('TO.CLREPO1') CHLTYPE(CLUSRCVR) +

 DISCINT(6Ø) +

 CLUSTER('CL_1') +

 CONNAME('127.Ø.Ø.1(1414)') +

 REPLACE

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

CLREPO2:

 ALTER QMGR +

 REPOS('CL_2') +

 FORCE

 DEFINE CHANNEL ('TO.CLREPO2') CHLTYPE(CLUSRCVR) +

 DISCINT(6Ø) +

 CLUSTER('CL_2') +

 CONNAME('127.Ø.Ø.1(1415)') +

 REPLACE

CLQMGR:

 DEFINE QALIAS('TEST.CL1.QA') +

 TARGQ('TEST.1.QL') +

 CLUSTER('CL_1') +

 REPLACE

 DEFINE QALIAS('TEST.CL2.QA') +

 TARGQ('TEST.2.QL') +

 CLUSTER('CL_2') +

 REPLACE

 DEFINE QALIAS('TEST.NL.QA') +

 TARGQ('TEST.QL') +

 CLUSNL('CL_LIST_1') +

 REPLACE

 DEFINE QLOCAL('TEST.1.QL') +

 REPLACE

 DEFINE QLOCAL('TEST.2.QL') +

 REPLACE

 DEFINE QLOCAL('TEST.QL') +

 REPLACE

 DEFINE QLOCAL('TEST.CL1.QL') +

 CLUSTER('CL_1') +

 REPLACE

 DEFINE QLOCAL('TEST.CL2.QL') +

 CLUSTER('CL_2') +

 REPLACE

 DEFINE QLOCAL('TEST.NL.QL') +

 CLUSNL('CL_LIST_1') +

 REPLACE

 DEFINE CHANNEL ('TO.CLQMGR') CHLTYPE(CLUSRCVR) +

 18 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 DISCINT(6Ø) +

 CLUSNL('CL_LIST_1') +

 CONNAME('127.Ø.Ø.1(1423)') +

 REPLACE

 DEFINE CHANNEL ('TO.CLREPO1') CHLTYPE(CLUSSDR) +

 DISCINT(6Ø) +

 CLUSTER('CL_1') +

 CONNAME('127.Ø.Ø.1(1421)') +

 REPLACE

 DEFINE CHANNEL ('TO.CLREPO2') CHLTYPE(CLUSSDR) +

 DISCINT(6Ø) +

 CLUSTER('CL_2') +

 CONNAME('127.Ø.Ø.1(1422)') +

 REPLACE

 DEFINE NAMELIST ('CL_LIST_1') REPLACE +

 NAMES('CL_1','CL_2')

 DEFINE NAMELIST ('CL_LIST_2') REPLACE +

 NAMES('CL_1','CL_2','CL_3')

 DEFINE NAMELIST ('CL_LIST_3') REPLACE +

 NAMES('CL_1')

 DEFINE NAMELIST ('CL_LIST_4') REPLACE +

 NAMES('CL_2')

Removing the sample configuration

To remove the sample, stop all queue managers and delete
them using the following commands:

endmqm –i qmgr

dltmqm qmgr

DESCRIPTION OF THE CODE

The code consists of two main parts.

Part 1

Part 1 contains some functions to prepare the cluster removal.
Nothing will really happen in this part of the script. The
functions first check whether the queue manager is running

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

and a member of the specified cluster (functions
check_qmgr_running and check_cluster_member). The queue
manager is a cluster member, when a cluster sender channel
has been found, which contains either the cluster name in the
attribute CLUSTER or a name list in the attribute CLUSNL,
which itself contains the cluster name in the attribute NAMES.
Name lists, which contain the cluster names, are found in the
function find_cluster_namelists.

In general, a manually-defined cluster sender should not
belong to more than one WMQ cluster because otherwise you
would have several queue managers with the same name. It
is recommended by IBM to have unique queue manager
names. Nevertheless it is possible to define a cluster sender
using a cluster name list, and the script ClusterRM takes care
of it.

Part 2

In the second part, the cluster removal will be executed. The
user must accept this removal by answering the question
‘Start the cluster removal now’? with ‘Y’. First the queue
manager is suspended from the specified WMQ cluster to
disable any queues defined on this queue manager as usable
by the cluster. Now each name list that contains the cluster
name will be copied to a temporary name list without this entry
(function create_temp_namelists). Then the
remove_queues_from_cluster function removes any queue
from the cluster by altering the attribute CLUSTER (set it to a
space character) or by replacing the original name list in the
attribute CLUSNL by the temporary one created before.

The steps described above remove the queues from the WMQ
cluster. Now it is time to remove the queue manager itself from
the cluster. This goal is reached by altering the manually-
defined cluster receiver in the same way as described for the
queues (altering the attributes CLUSTER or CLUSNL). Now
the queue manager is finally removed from the cluster, although
you still have a cluster sender channel to the full repository

 20 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

defined (and running). This channel (there may be more than
one, if you have multiple full repositories) must still be defined
for the cluster because all other cluster modifications, described
above, have to be transmitted to the full repositories using the
cluster sender channel.

Now ClusterRM cleans up the queue manager by altering this
cluster sender in a similar way to the previous steps, and
finally drops the cluster information by issuing the command:

REFRESH CLUSTER(clustername) REPOS(YES)

LISTING OF THE CLUSTER REMOVAL SCRIPT

#!/bin/ksh

###

TITLE

#

Script to remove a queue manager from a

WebSphere MQ cluster.

###

DESCRIPTION

#

This script automates the removing of a queue

manager from a WebSphere MQ cluster. The script

follows the steps described in the IBM document

"Queue Manager Clusters".

#

Hubert Kleinmanns

Senior Consultant

###

###

Part I:

Prepare cluster removal.

###

Initialize the script environment.

#

function initialise

{

 $DEBUG

 # Set the program name and path.

 PROG_NAME=$(basename $1)

 DIR_NAME=$(cd $(dirname $1); pwd)

 # This script must be executed as group mqm.

 g='groups | grep -w mqm'

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 if ["$g" = ""]

 then

 echo "\n*** ERROR: You need to be a member of group \"mqm\" to run

this program!\n"

 return 1

 fi

 # Store the actual date and time.

 DATE='date "+%Y%m%d%H%M%S"'

 # Initialize a flag.

 QMGR_EXISTS="n"

 # Setting the operating system.

 OS='uname -s'

 # Define a separator line.

 SEP_LINE="---

---------------"

 # Check the command line parameters.

 if [$# -eq 3]

 then

 QMGR_NAME=$2

 CLUS_NAME=$3

 else

 echo "usage: $PROG_NAME queue_manager mq_cluster"

 return 1

 fi

 # Set retry parameters for channel reccle.

 WAIT_SEC=5

 MAX_RETRY=1Ø

 # Define the name of the log.

 LOG_FILE="ClusterRM.log"

 # Create a log file and write a time stamp.

 echo

"***" >

$LOG_FILE

 echo "*" >> $LOG_FILE

 echo "* Cluster removal started at `date`" >> $LOG_FILE

 echo "*" >> $LOG_FILE

 echo

"***" >>

$LOG_FILE

 echo "" >> $LOG_FILE

 return Ø

}

#

Remove queue manager from WebSphere MQ cluster

#

function check_qmgr_running

{

 22 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 $DEBUG

 echo " Checking queue manager $QMGR_NAME."

 # Run a dummy command.

 chk='echo "dis qmgr" | runmqsc $QMGR_NAME | grep QMGR'

 # Output must be not-empty.

 if ["X$chk" = "X"]

 then

 echo " ERROR: Queue manager $QMGR_NAME is not running, start it

first!"

 return 1

 fi

 echo " Queue manager $QMGR_NAME is running."

 return Ø

}

#

Find the name lists, which contain the cluster name,

from which the queue manager shall be removed.

#

function find_cluster_namelists

{

 $DEBUG

 cnt=Ø

 CL_NAMELIST=""

 cl_nl=""

 cl_nl_tmp=""

 echo " Look for name lists which contain the cluster name

$CLUS_NAME."

 # Display all existing name lists (except system name lists).

 namelist='echo "DIS NL(*)" | runmqsc $QMGR_NAME | grep NAMELIST |

grep -v SYSTEM | sed -e "s/^.*(\(.*\)).*$/\1/"'

 # Loop and extract name lists, which contain the cluster name.

 for nl in $namelist

 do

 # Display the value of the NAMES attribute and look for the

cluster name.

 chk='echo "DIS NL($nl) NAMES" | runmqsc -e $QMGR_NAME | grep -v

"^[a-zA-ZØ-9].*" | sed -e "s/.*NAMES(//" | sed -e "s/).*$//" | grep -w

$CLUS_NAME'

 # If name list contains cluster name...

 if ["$chk" != ""]

 then

 # Set up a name for a temporary name list.

 tmp_nl="TEMP_${DATE}_${cnt}"

 # Store the name of the name list.

 cl_nl="cl_nlnl "

 cl_nl_tmp="cl_nl_tmptmp_nl "

 # Increase the counter.

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 let cnt=$cnt+1

 fi

 done

 # Store the name lists in two arrays.

 set -A CL_NAMELIST $cl_nl

 set -A CL_NAMELIST_TEMP $cl_nl_tmp

 # Count the entries in the arrays.

 NL_COUNT='echo $cl_nl | wc -w'

}

#

Check, whether a cluster sender channel exists (otherwise the

queue manager cannot be a member of the cluster.

#

function check_cluster_member

{

 $DEBUG

 echo " Check if \"$QMGR_NAME\" is a member of cluster

\"$CLUS_NAME\"."

 # Initialize the test value.

 tst_val=1

 # Find a cluster sender channel, which contains the cluster name...

 chk='echo "DIS CHL(*) CHLTYPE(CLUSSDR) CLUSTER" | runmqsc $QMGR_NAME

| grep -w $CLUS_NAME'

 # ...and set test value to OK if channel was found...

 ["$chk" != ""] && tst_val=Ø

 # ...otherwise look for name lists in the channel definition.

 idx=Ø

 while [$idx -lt $NL_COUNT]

 do

 # Get the name list name.

 nl=${CL_NAMELIST[$idx]}

 # Find cluster sender channel, which contain the name list...

 chk='echo "DIS CHL(*) CHLTYPE(CLUSSDR) CLUSNL" | runmqsc

$QMGR_NAME | grep -w $nl'

 # ...and set test value to OK if a channel was found.

 ["$chk" != ""] && tst_val=Ø

 # Increase the counter.

 let idx=$idx+1

 done

 if [$tst_val -ne Ø]

 then

 echo " ERROR: Queue manager \"$QMGR_NAME\" is not a member of

cluster \"$CLUS_NAME\"!"

 return 1

 fi

 24 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 echo " Queue manager \"$QMGR_NAME\" is a member of cluster

\"$CLUS_NAME\"."

 return Ø

}

#

Prepare the cluster removal

#

function prepare_remove_cluster

{

 $DEBUG

 initialise $*

 ret=$?

 [$ret -ne Ø] && return $ret

 echo "$SEP_LINE"

 echo "Prepare the cluster removal."

 # Check whether the queue manager is active.

 check_qmgr_running

 ret=$?

 [$ret -ne Ø] && return $ret

 # Find name lists that contain the cluster name.

 find_cluster_namelists

 # Check whether the qmgr is a member of the cluster.

 check_cluster_member

 ret=$?

 [$ret -ne Ø] && return $ret

 return Ø

}

###

Part II:

#

Execute cluster removal.

###

Function that checks whether all channels are down. If

at least one channel is in state RUNNING or STOPPING,

the return value is NOT OK. This function checks several

times (defined by the first argument) and waits a while

(defined by the second argument) before the next test.

#

function wait_channels_down

{

 $DEBUG

 # Store the test counter and the wait interval.

 max_cnt=$1

 wait_tm=$2

 shift 2

 cnt=1

 # Loop over the test counter.

 while [$cnt -le $max_cnt]

 do

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 down="Y"

 # Test any channel.

 for chl in $*

 do

 chk='echo "DIS CHS($chl) STATUS" | runmqsc $QMGR_NAME | grep

STATUS | egrep 'RUNNING|STOPPING''

 # Set check value to NOT OK, if any channel is running or stopping.

 ["$chk" != ""] && down="N"

 done

 # Return OK when all channel are down.

 ["$down" = "Y"] && return Ø

 # Increase the counter.

 let cnt=$cnt+1

 echo " Waiting until the channels are down."

 # Wait a while.

 sleep $wait_tm

 done

 # Return NOT OK when at least one channel is running or

 # stopping after the specified time-out.

 return 1

}

#

This function stops a list of channels, waits a while, and checks

whether all channels are stopped, and starts the channels again.

#

function recycle_channel

{

 $DEBUG

 chl_type=$1

 # Stop now the interval.

 for chl in $*

 do

 echo "STOP CHL($chl) MODE(FORCE)" | runmqsc $QMGR_NAME >>

$LOG_FILE 2>&1

 done

 # Wait until the channels are down.

 wait_channels_down $MAX_RETRY $WAIT_SEC $*

 ret=$?

 if [$ret -ne Ø]

 then

 echo " ERROR: Unable to restart channel."

 return $ret

 fi

 # Start the channel again.

 for chl in $*

 do

 echo "START CHL($chl)" | runmqsc $QMGR_NAME >> $LOG_FILE 2>&1

 done

 26 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 return Ø

}

#

Create temporary name lists without the cluster, where

the queue manager has to be removed from.

#

function create_temp_namelists

{

 $DEBUG

 nl_empty=""

 echo " Create temporary name lists without cluster $CLUS_NAME."

 # Loop over all name lists.

 idx=Ø

 while [$idx -lt $NL_COUNT]

 do

 sep=""

 nl=${CL_NAMELIST[$idx]}

 tmp_nl=${CL_NAMELIST_TEMP[$idx]}

 # Get the names of the name list. Ignore the cluster name,

 # where the queue manager shall be removed from.

 names='echo "DIS NL($nl) NAMES" | runmqsc -e $QMGR_NAME | grep -v

"^[a-zA-ZØ-9].*" | grep -v "^$" | sed -e "s/.*NAMES(//" | sed -e "s/

).*$//" | sed -e "s/ *,//" | grep -v -w $CLUS_NAME'

 new_names=""

 # Loop over the found names and store these in a new list.

 for name in $names

 do

 new_names="new_namessep$name"

 sep=","

 done

 # If the new list would be empty...

 if ["$new_names" = ""]

 then

 # ...mark the name list as 'empty', to be deleted later.

 empty="yes"

 else

 # ...otherwise define the temporary name list...

 echo "DEFINE NL($tmp_nl) NAMES($new_names)" | runmqsc

$QMGR_NAME > /dev/null 2>&1

 # ...and mark the name list as 'not empty'.

 empty="no"

 fi

 # Store the 'empty' flag.

 nl_empty="nl_emptyempty "

 # Increase te counter.

 let idx=$idx+1

 done

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 # Store the 'empty' flags in an array.

 set -A CL_NAMELIST_EMPTY $nl_empty

}

#

Remove queues from WebSphere MQ cluster

#

function remove_queues_from_cluster

{

 $DEBUG

 echo " Remove queues from cluster $CLUS_NAME."

 # Loop over all queue types.

 for type in QLOCAL QALIAS QREMOTE QMODEL

 do

 # Get the queues which have the cluster attribute set

 # to the cluster, to be removed from.

 q_list='echo "DIS $type(*) CLUSTER" | runmqsc $QMGR_NAME | grep -w

$CLUS_NAME | sed -e "s/^.*QUEUE(\(.*\)).*$/\1/"'

 # Alter now the queues by removing the cluster attribute.

 for queue in $q_list

 do

 echo "ALTER $type($queue) CLUSTER(' ')" | runmqsc $QMGR_NAME >>

$LOG_FILE 2>&1

 done

 done

 # Loop now over all name lists.

 idx=Ø

 while [$idx -lt $NL_COUNT]

 do

 nl=${CL_NAMELIST[$idx]}

 empty=${CL_NAMELIST_EMPTY[$idx]}

 # Loop over all queue types with this name list set.

 for type in QLOCAL QALIAS QREMOTE QMODEL

 do

 q_list='echo "DIS $type(*) CLUSNL" | runmqsc $QMGR_NAME | grep

-w $nl | sed -e "s/^.*QUEUE(\(.*\)).*$/\1/"'

 # For each queue...

 for queue in $q_list

 do

 # ...if the 'empty' flag is set...

 if ["$empty" = "yes"]

 then

 # ...remove the cluster name list attribute.

 echo "ALTER $type($queue) CLUSNL(' ')" | runmqsc

$QMGR_NAME >> $LOG_FILE 2>&1

 else

 # ...otherwise alter the attribute to the temporary name list.

 tmp_nl=${CL_NAMELIST_TEMP[$idx]}

 28 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 echo "ALTER $type($queue) CLUSNL($tmp_nl)" | runmqsc

$QMGR_NAME >> $LOG_FILE 2>&1

 fi

 done

 done

 # Increase the counter.

 let idx=$idx+1

 done

}

#

Remove queue manager from WebSphere MQ cluster

#

function alter_cluster_receiver

{

 $DEBUG

 echo " Alter cluster receiver channel."

 # Get a list of cluster receiver channel, which contain the cluster

name.

 rcvr_list='echo "DIS CHL(*) CHLTYPE(CLUSRCVR) CLUSTER" | runmqsc

$QMGR_NAME | grep -w $CLUS_NAME | awk '{print $1}' | sed -e "s/

^.*CHANNEL(\(.*\)).*$/\1/"'

 echo " Alter the cluster attribute."

 # Remove now the cluster attribute from the channel.

 for rcvr in $rcvr_list

 do

 echo "ALTER CHL($rcvr) CHLTYPE(CLUSRCVR) CLUSTER(' ')" | runmqsc

$QMGR_NAME >> $LOG_FILE 2>&1

 done

 # Restart the channel.

 recycle_channel $rcvr_list

 ret=$?

 [$ret -ne Ø] && return $ret

 echo " Alter the cluster name list attribute."

 # Loop over all name lists.

 idx=Ø

 while [$idx -lt $NL_COUNT]

 do

 nl=${CL_NAMELIST[$idx]}

 empty=${CL_NAMELIST_EMPTY[$idx]}

 # Get a list of cluster receiver channel, which contains

 # the cluster name list.

 rcvr_list='echo "DIS CHL(*) CHLTYPE(CLUSRCVR) CLUSNL" | runmqsc

$QMGR_NAME | grep -w $nl | awk '{print $1}' | sed -e "s/

^.*CHANNEL(\(.*\)).*$/\1/"'

 # Loop over all cluster receiver channel.

 for rcvr in $rcvr_list

 do

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 # ...if the 'empty' flag is set...

 if ["$empty" = "yes"]

 then

 # ...remove the cluster name list attribute.

 echo "ALTER CHL($rcvr) CHLTYPE(CLUSRCVR) CLUSNL(' ')" |

runmqsc $QMGR_NAME >> $LOG_FILE 2>&1

 else

 # ...otherwise alter the attribute to the

 # temporary name list.

 tmp_nl=${CL_NAMELIST_TEMP[$idx]}

 echo "ALTER CHL($rcvr) CHLTYPE(CLUSRCVR) CLUSNL($tmp_nl)" |

runmqsc $QMGR_NAME >> $LOG_FILE 2>&1

 fi

 done

 # Restart the channel to activate the modifications above.

 recycle_channel $rcvr_list

 ret=$?

 [$ret -ne Ø] && return $ret

 # Increase the counter.

 let idx=$idx+1

 done

}

#

Remove queue manager from WebSphere MQ cluster

#

function alter_cluster_sender

{

 $DEBUG

 echo " Alter cluster sender channel."

 # Get a list of cluster sender channel, which contain the cluster

name.

 sdr_list='echo "DIS CHL(*) CHLTYPE(CLUSSDR) CLUSTER" | runmqsc

$QMGR_NAME | grep -w $CLUS_NAME | awk '{print $1}' | sed -e "s/

^.*CHANNEL(\(.*\)).*$/\1/"'

 # Extend the list by displaying the cluster queue managers - in order

 # to get automatically defined cluster sender channel.

 sdr_list="$sdr_list 'echo \"DIS CLUSQMGR(*) CLUSTER($CLUS_NAME)\" |

runmqsc $QMGR_NAME | grep -w CHANNEL | sed -e 's/^.*CHANNEL(\(.*\)).*$/

\1/''"

 echo " Alter the cluster attribute."

 # Remove the cluster attribute from the channel.

 for sdr in $sdr_list

 do

 echo "ALTER CHL($sdr) CHLTYPE(CLUSSDR) CLUSTER(' ')" | runmqsc

$QMGR_NAME >> $LOG_FILE 2>&1

 done

 # Restart the channel to activate the modifications above.

 recycle_channel $sdr_list

 30 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 ret=$?

 [$ret -ne Ø] && return $ret

 echo " Alter the cluster name list attribute."

 # Loop over all name lists.

 idx=Ø

 while [$idx -lt $NL_COUNT]

 do

 nl=${CL_NAMELIST[$idx]}

 empty=${CL_NAMELIST_EMPTY[$idx]}

 # Get a list of cluster sender channel, which contain

 # the cluster name list.

 sdr_list='echo "DIS CHL(*) CHLTYPE(CLUSSDR) CLUSNL" | runmqsc

$QMGR_NAME | grep -w $nl | awk '{print $1}' | sed -e "s/

^.*CHANNEL(\(.*\)).*$/\1/"'

 for sdr in $sdr_list

 do

 # ...if the 'empty' flag is set...

 if ["$empty" = "yes"]

 then

 # ...remove the cluster name list attribute.

 echo "ALTER CHL($sdr) CHLTYPE(CLUSSDR) CLUSTER(' ')" |

runmqsc $QMGR_NAME >> $LOG_FILE 2>&1

 else

 # ...otherwise alter the attribute to the

 # temporary name list.

 tmp_nl=${CL_NAMELIST_TEMP[$idx]}

 echo "ALTER CHL($sdr) CHLTYPE(CLUSSDR) CLUSNL($tmp_nl)" |

runmqsc $QMGR_NAME >> $LOG_FILE 2>&1

 fi

 done

 # Restart the channel to activate the modifications above.

 recycle_channel $sdr_list

 ret=$?

 [$ret -ne Ø] && return $ret

 # Increase the counter.

 let idx=$idx+1

 done

}

#

Function to replace the temporary name lists by the - modified -

original name lists.

#

function replace_modified_namelists

{

 $DEBUG

 # Loop over all name lists.

 idx=Ø

 while [$idx -lt $NL_COUNT]

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 do

 empty=${CL_NAMELIST_EMPTY[$idx]}

 nl=${CL_NAMELIST[$idx]}

 tmp_nl=${CL_NAMELIST_TEMP[$idx]}

 # If name list is marked as empty...

 if ["$empty" = "yes"]

 then

 # ...Delete the name list.

 echo "DELETE NL($nl)" | runmqsc $QMGR_NAME > /dev/null 2>&1

 else

 # ...Otherwise redefine original name list.

 echo "DELETE NL($nl)" | runmqsc $QMGR_NAME > /dev/null 2>&1

 echo "DEFINE NL($nl) LIKE($tmp_nl)" | runmqsc $QMGR_NAME > /

dev/null 2>&1

 # Replace temporary name list in all queues by the - modified -

 # original name list.

 for type in QLOCAL QALIAS QREMOTE QMODEL

 do

 q_list='echo "DIS $type(*) CLUSNL" | runmqsc $QMGR_NAME |

grep -w $tmp_nl | sed -e "s/^.*QUEUE(\(.*\)).*$/\1/"'

 for queue in $q_list

 do

 echo "ALTER $type($queue) CLUSNL($nl)" | runmqsc

$QMGR_NAME >> $LOG_FILE 2>&1

 done

 done

 # Replace temporary name list in all channel by the - modified -

 # original name list.

 for type in CLUSRCVR CLUSSDR

 do

 chl_list='echo "DIS CHL(*) CHLTYPE($type) CLUSNL" | runmqsc

$QMGR_NAME | grep -w $tmp_nl | awk '{print $1}' | sed -e "s/

^.*CHANNEL(\(.*\)).*$/\1/"'

 for chl in $chl_list

 do

 echo "STOP CHL($chl) MODE(FORCE) STATUS(INACTIVE)" |

runmqsc $QMGR_NAME >> $LOG_FILE 2>&1

 echo "ALTER CHL($chl) CHLTYPE($type) CLUSNL($nl)" |

runmqsc $QMGR_NAME >> $LOG_FILE 2>&1

 echo "START CHL($chl)" | runmqsc $QMGR_NAME >> $LOG_FILE 2>&1

 done

 done

 # Delete temporary name list.

 echo "DELETE NL($tmp_nl)" | runmqsc $QMGR_NAME > /dev/null 2>&1

 fi

 # Increase the counter.

 let idx=$idx+1

 32 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 done

}

#

Remove the queue manager from the cluster

#

function execute_remove_cluster

{

 $DEBUG

 echo "$SEP_LINE"

 echo "Start the cluster removal."

 # Ask, if the cluster removal shall be started.

 ans=""

 echo " Start the cluster removal now (y/n) ? \c"

 read ans

 if ["$ans" != "y" -a "$ans" != "Y"]

 then

 echo "INFO: Cluster removal cancelled by user!"

 return 1

 fi

 # Suppress some escape charaters (CTRL-C, CTRL-D ...).

 trap '' HUP INT ERR TERM

 # First now suspend the queue manager from the cluster.

 echo " Suspend queue manager."

 echo "SUSPEND QMGR CLUSTER($CLUS_NAME)" | runmqsc $QMGR_NAME >>

$LOG_FILE 2>&1

 # Then create new name lists without the cluster name, from

 # which the queue manager shall be removed, for later use.

 create_temp_namelists

 # Remove now the queues from the cluster by altering the

 # cluster attributes.

 remove_queues_from_cluster

 # Remove now the queue manager from the cluster by altering the

 # cluster receiver channel.

 alter_cluster_receiver

 ret=$?

 [$ret -ne Ø] && return $ret

 # Interrupt now the connection between the queue manager and the

 # full repositories by altering the cluster sender channel.

 alter_cluster_sender

 ret=$?

 [$ret -ne Ø] && return $ret

 # Replace the temporary name lists by the -

 # modified - original lists.

 echo " Replace modified name lists."

 replace_modified_namelists

 # Last but not least drop the data of the own partial repository.

 echo " Dropping cluster data."

 echo "REFRESH CLUSTER($CLUS_NAME) REPOS(YES)" | runmqsc $QMGR_NAME >>

$LOG_FILE 2>&1

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 return Ø

}

###

MAIN program

###

#DEBUG="set -x"

Initialize the script environment

Prepare the deinstallation

prepare_remove_cluster $Ø $*

ret=$?

Execute the deinstallation

if [$ret -eq Ø]

then

 execute_remove_cluster

 ret=$?

fi

Finish the script logging and exit the program.

echo "$SEP_LINE"

exit $ret

Hubert Kleinmanns
Senior Consultant
N-Tuition Business Solutions AG (Germany) © Xephon 2004

Identifying any MQ in-doubt units of work

The MQUOWS REXX EXEC is designed to identify any MQ in-
doubt units of work at CICS shutdown. This program is meant
to be added to the end of the CICS PROC as a step after
DFHSIP. The program reads the CICS SYSIN and scrapes out
the INITPARM for MQ and the APPLID to format a valid MQ
command to display all in-doubt units of work for that particular
CICS region. If any in-doubts are found, the messages are
written to the console so automation can pick them up. This
can help avoid a CICS COLD or INIT start if any in-doubts are
found. A CICS INIT start while in-doubt units of work exist can
cause pageset corruption. Sample JCL is included in the
program comments.

 34 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

MQUOWS REXX EXEC
/***/

/* REXX */

/***/

/* Purpose: Check for MQ indoubt units of work at CICS shutdown */

/*---*/

/* Syntax: mquows */

/*---*/

/* Parms: N/A - N/A */

/* */

/* Notes: Add as a step at the end of the CICS PROC */

/* Depends on finding the CICS INITPARM SN= value in the CICS */

/* SYSIN parms. The CICSPARM DD must point to the correct */

/* CICS SYSIN. */

/* */

/* Sample execution JCL: */

/* */

/* //MQUOWS EXEC PGM=IKJEFTØ1,PARM='MQUOWS' */

/* //STEPLIB DD DSN=mq.csqauth,DISP=SHR */

/* // DD DSN=mq.csqanle,DISP=SHR */

/* //SYSEXEC DD DSN=rexx.exec.pds,DISP=SHR */

/* //CICSPARM DD DSN=cics.sysin.pds,DISP=SHR */

/* //SYSTSPRT DD SYSOUT=* */

/* //SYSTSIN DD DUMMY */

/* */

/***/

/* Change Log */

/* */

/* Author Date Reason */

/* -------- -------- -- */

/***/

/* Ensure all required DDs are present */

/***/

EXITRC = listdsi('STEPLIB' 'FILE')

if EXITRC <> Ø then

 do

 say 'STEPLIB is missing RC='EXITRC

 signal shutdown

 end

EXITRC = listdsi('SYSEXEC' 'FILE')

if EXITRC <> Ø then

 do

 say 'SYSEXEC is missing RC='EXITRC

 signal shutdown

 end

EXITRC = listdsi('CICSPARM' 'FILE')

if EXITRC <> Ø then

 do

 say 'CICSPARM is missing RC='EXITRC

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 signal shutdown

 end

/***/

/* Read the CICS SYSIN dataset */

/***/

"EXECIO * DISKR CICSPARM (STEM CICSPARM. FINIS"

EXITRC = RC

if EXITRC <> Ø then

 do

 say 'EXECIO error on CICSPARM RC='EXITRC

 signal shutdown

 end

/***/

/* Parse the CICS SYSIN looking for the QMGR */

/***/

do i=1 to cicsparm.Ø

 select

 when pos("'SN=",cicsparm.i) <> Ø then

 parse var cicsparm.i . "'SN=" qmgr "," .

 when pos("APPLID=",cicsparm.i) <> Ø then

 parse var cicsparm.i "APPLID=" applid .

 otherwise nop

 end

end

/***/

/* Allocate required datasets to VIO (SYSPRINT SYSIN CMDIN) */

/***/

"ALLOC F(SYSPRINT) UNIT(VIO) SPACE(1 5) CYLINDERS NEW"

EXITRC = RC

if EXITRC <> Ø then

 do

 say 'ALLOC error on SYSPRINT RC='EXITRC

 signal shutdown

 end

"ALLOC F(SYSIN) UNIT(VIO) SPACE(1 5) CYLINDERS NEW LRECL(8Ø)"

EXITRC = RC

if EXITRC <> Ø then

 do

 say 'ALLOC error on SYSIN RC='EXITRC

 signal shutdown

 end

"ALLOC F(CMDIN) UNIT(VIO) SPACE(1 5) CYLINDERS NEW LRECL(8Ø)"

EXITRC = RC

if EXITRC <> Ø then

 do

 say 'ALLOC error on CMDIN RC='EXITRC

 signal shutdown

 end

/***/

/* Load records into SYSIN and CMDIN using EXECIO */

 36 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

/***/

sysin.1 = 'COMMAND DDNAME(CMDIN)'

"EXECIO * DISKW SYSIN (STEM SYSIN. FINIS"

EXITRC = RC

if EXITRC <> Ø then

 do

 say 'EXECIO error on SYSIN RC='EXITRC

 signal shutdown

 end

cmdin.1 = 'DISPLAY THREAD('applid') TYPE(INDOUBT)'

"EXECIO * DISKW CMDIN (STEM CMDIN. FINIS"

EXITRC = RC

if EXITRC <> Ø then

 do

 say 'EXECIO error on CMDIN RC='EXITRC

 signal shutdown

 end

/***/

/* Report what the EXEC will do */

/***/

say 'Checking' qmgr 'for indoubts from' applid

say

say 'Issuing MQ command:' cmdin.1

say

/***/

/* Run CSQUTIL */

/***/

address ATTCHMVS 'CSQUTIL' 'QMGR'

EXITRC = RC

if EXITRC <> Ø then say 'CSQUTIL error RC='EXITRC

/***/

/* Read CSQUTIL output */

/***/

"EXECIO * DISKR SYSPRINT (STEM SYSPRINT. FINIS"

EXITRC = RC

if EXITRC <> Ø then

 do

 say 'EXECIO error on SYSPRINT RC='EXITRC

 signal shutdown

 end

/***/

/* Parse CSQUTIL output */

/***/

do o=1 to sysprint.Ø

 select

/***/

/* Exclude all extraneous lines */

/***/

 when word(sysprint.o,2) = 'CSQUØØØI' then iterate

 when word(sysprint.o,2) = 'CSQUØØ1I' then iterate

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 when word(sysprint.o,1) = 'COMMAND' then iterate

 when word(sysprint.o,2) = 'CSQU127I' then iterate

 when word(sysprint.o,2) = 'CSQU12ØI' then iterate

 when word(sysprint.o,1) = 'CSQU121I' then iterate

 when word(sysprint.o,2) = 'CSQUØ55I' then iterate

 when word(sysprint.o,1) = 'DISPLAY' then iterate

 when word(sysprint.o,1) = 'ØCSQN2Ø5I' then iterate

 when word(sysprint.o,1) = 'CSQV4Ø1I' then iterate

 when word(sysprint.o,1) = 'CSQ9Ø22I' then iterate

 when word(sysprint.o,2) = 'CSQUØ57I' then iterate

 when word(sysprint.o,2) = 'CSQUØ58I' then iterate

 when word(sysprint.o,2) = 'CSQU143I' then iterate

 when word(sysprint.o,2) = 'CSQU144I' then iterate

 when word(sysprint.o,2) = 'CSQU148I' then iterate

/***/

/* Print the expected lines */

/***/

/* GOOD response RC=Ø */

/***/

 when word(sysprint.o,1) = 'CSQV412I' then

 do

 "SEND" "'"strip(sysprint.o,'T')"'"

 say strip(sysprint.o,'T')

 EXITRC = Ø

 end

/***/

/* "BAD" response RC=2Ø */

/***/

 when word(sysprint.o,1) = 'CSQV4Ø6I' then

 do

 "SEND" "'"strip(sysprint.o,'T')"'"

 say strip(sysprint.o,'T')

 EXITRC = 2Ø

 end

/***/

/* Print anything unexpected */

/***/

 otherwise say strip(sysprint.o,'T')

 end

end

/***/

/* Shutdown */

/***/

shutdown: nop

 call outtrap trash. Ø

 "FREE F(SYSPRINT)"

 "FREE F(SYSIN)"

 "FREE F(CMDIN)"

 exit(EXITRC)

Robert Zenuk
Systems Programmer (USA) © Xephon 2004

 38 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Integrating COBOL applications with Microsoft
BizTalk Server 2004

INTRODUCTION

Recently we completed a project, Multiconn BizTalk
Extensibility, that provides an easy approach to integrating
legacy COBOL applications into the Microsoft BizTalk Server
2004. This article describes the approach used by us.

OVERVIEW

Sometime software developers face the challenge of integrating
two or more different systems into one solution to provide a
wider service to their clients, or to expose some functionality
of one system to the other one. One such example is the
integration of a COBOL application that works on a legacy
system (eg mainframe OS/390) into Microsoft BizTalk Server
2004.

On the one hand, the current legacy systems provide external
interfaces for communication. One such interface is CICS.
This is an application-programming interface that enables a
client program to call a server program running in a CICS
region and to pass and receive data. To use these legacy
applications, MQSeries is used as a transport mechanism. A
client application (that can run on any platform) starts a CICS
application by sending a structured message to the CICS
Bridge through MQSeries. Any data required by the CICS
application can be included in the request message. Similarly,
the CICS application can send data back to the client application
in a message that is sent to a reply queue.

On the other hand, the Microsoft BizTalk Server 2004 provides
an easy way to create complex business processes without
excessive effort. It enables users to seamlessly integrate
diverse applications and then use services exposed by those
applications in a homogeneous environment.

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

To retrieve and send messages from/to an external system,
the BizTalk Server requires the existence of a corresponding
adapter that supports a transport mechanism to that system.
And, in order to take full advantage of BizTalk Server
processing, the messages must be transformed from their
native format into its XML representation. BizTalk Server
pipelines perform this transformation of incoming and outgoing
messages.

Hence, it is necessary to implement the corresponding adapter
and pipeline components that can deliver and then convert
COBOL records to/from XML documents in order to integrate
legacy COBOL applications into Microsoft BizTalk Server
2004.

The Multiconn BizTalk Extensibility project provides an
implementation of an MQ adapter and pipeline components
that support a CICS DPL conversation.

ABOUT THE MULTICONN BIZTALK EXTENSIBILITY PROJECT

This project provides an easy way to integrate legacy COBOL
applications that access Microsoft BizTalk Server 2004
orchestrations through a CICS DPL bridge. The project includes
the following components:

• The MQ adapter, which supports both the MQSeries
server and client connections. It supports receive, send,
solicit-response, and request-response communication
patterns.

• Pipeline components that do run-time data transformations
and support the CICS DPL conversation protocol.

• Design-time tools to generate annotated XML schemas
and C# source from COBOL copybooks. The assemblies
generated from these sources are used by CICS DPL
pipeline components at run-time to transform XML to and
from COBOL raw data messages.

The project includes documentation, executable files, and

 40 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

sources of the adapter, pipeline components, and examples
that demonstrate their capabilities. The project is arranged as
a Microsoft Visual Studio solution and can be downloaded
from http://workspaces.gotdotnet.com/
MulticonnBiztalkExtensibility.

PREREQUISITES

The project requires the following components to be installed
before it can start:

• .NET Framework Version 1.1.

• Microsoft BizTalk Server 2004 (the evaluation version can
be downloaded from www.microsoft.com/biztalk/
evaluation/trial/default.asp).

• Either MQSeries Version 5.3 server or client.

• Support pack MA7P for MQSeries V5.3 (MQ classes for
Microsoft .NET). You can download this support pack free
of charge from www-1.ibm.com/support/
d o c v i e w . w s s ? r s = 2 0 3
&uid=swg24004732&loc=en_US&cs=utf-8&lang=en.

Optionally, to build the solution and samples, the Microsoft
Visual Studio .NET 2003 is required.

The project works under Windows 2000/XP/2003.

INSTALLATION

The following procedure walks you through the installation
and configuration of the project:

1 Right-click the Multiconn BizTalk Extensibility.msi file.
Select the Install menu item.

2 Specify the folder in which to install run-time files, source,
and samples.

3 Follow the wizard’s instructions.

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

4 Click the Start button, select the Programs menu item,
select the Microsoft BizTalk Server 2004 menu item,
and then select the BizTalk Server Administration
application.

5 In the BizTalk Administration Console, double-click the
Microsoft BizTalk Server 2004 (local) node, expand
Hosts, and then select the BizTalkServerApplication in
the left pane.

6 In the results pane, right-click the host instance (typically,
the computer name), and then click Stop. The status of
the host instance changes to Stopped.

7 In the results pane, right-click the host instance, and then
click Start. The status of the host instance changes to
Start pending. You must click Refresh, or right-click the
host instance and then click Refresh, to change the status
to Running.

Multiconn BizTalk Extensibility.msi installs and registers the
following components:

• MQ adapter.

• CICS DPL pipeline components.

• Design-time generating tools.

• Registers the cobol-schema.xsd file, which allows the
editing of annotated XML files in Microsoft Visual Studio
.NET 2003.

• Sources of the Multiconn BizTalk Extensibility project.

• Samples for the adapter and pipeline components testing.

Note: it’s strongly recommended that you read the
documentation carefully before starting to work with this
adapter and pipeline components.

HOW IT WORKS

The MQ adapter is the first and last BizTalk components that

 42 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

touch a message within the BizTalk system and is used to
exchange messages between applications and BizTalk Server
2004 through either the MQSeries server or client. It is a
component written in Microsoft Visual C# .NET. The adapter
is created and hosted within the BizTalk service process. This
means that BizTalk creates and manages the lifetime of the
adapter, initializes it, services the adapter requests, and
terminates the adapter on service shutdown.

Actually the project provides two implementations of an MQ
adapter – the receive adapter (receiver), and the send adapter
(transmitter).

The receive adapter listens to the MQ queue for an incoming
message. When a message is received, the receive adapter
hands off the message to the Messaging Engine, which
passes the message through a receive pipeline, and then
persists it in the MessageBox database. When the receive
adapter works in request-response mode, it receives a request
message from the client, submits it to the BizTalk server, waits
for a response, and then sends the response back to the
client.

The send adapter gets a message from a send pipeline and
puts it to the destination queue as is. The pipeline’s
responsibility is to serialize a BizTalk message to a
corresponding MQ record. When the send adapter works in
solicit-response mode, it puts a request message to the
destination queue, waits for a response message, and then
submits the response message back to the BizTalk server.

For a BizTalk Server 2004 application to execute a business
process, it must be able to correctly process messages
containing documents in the format of the application. A
message pipeline performs this processing. Incoming
messages are processed through a receive pipeline, while
outgoing messages go through a send pipeline.

Internally BizTalk Server uses XML as the format for processing
all documents. To handle the task of unifying different document

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

formats, the BizTalk Server 2004 provides pipeline components
(receive and send) that developers can create to customize
the conversion of XML messages to and from messages in the
format of the application.

Our CICS DPL pipeline components (DplSerializer and
DplDeserializer) allow XML messages to be transformed to a
raw data format that corresponds to the format of
communication of the CICS DPL bridge. The DplSerializer
pipeline component is intended for use in the assemble stage
of a receive pipeline, and the DplDeserializer pipeline
component is used in the disassemble stage of a send
pipeline.

The schema of their work is quite simple: when DplSerializer
gets an XML message to convert, it transforms the XML it
contains into an instance of a class (the type of class that
corresponds to XML is stored in a property of the DplSerializer).
The next operation is to convert the instance of the type into
raw data for COBOL. For this the COBOL serializer component
is used.

DplDeserializer works in quite the opposite way. It uses a
COBOL serializer component to transform a raw data stream
into an instance of a class, and then a standard component
called XmlSerializer is used to convert the instance to XML.

But where did we get such nice types that can be serialized in
to both XML and COBOL raw data? The answer is that our
design-time tools can generate such types!

Please note that the correct contact address for Xephon
Inc is PO Box 550547, Dallas, TX 75355, USA. The
phone number is (214) 340 5690, the fax number is
(214) 341 7081, and the e-mail address to use is
info@xephon.com.

 44 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

There are two of them – the COBOL copybook parser and the
COBOL importer. The COBOL copybook parser generates
annotated XML schemas from COBOL copybooks. A developer
can edit these schemas using an appropriate XML schema
editor (eg Microsoft Visual Studio) in order to tune outgoing
types. The COBOL importer consumes these annotated XML
schemas and generates C# source and optionally assemblies.
Classes generated using these tools contain annotation
attributes for XML serialization and attributes for COBOL
serialization (that the COBOL serializer component performs).

As for the COBOL serializer component, we see it as a
counterpart (in some sense) to XmlSerializer. It inspects class
meta-data, and creates and caches plans for COBOL
serialization and deserialization. The next time that COBOL
serialization is invoked, the cached plan is used.

The following workflow describes the BizTalk Server behaviour
at run-time:

1 A user-defined business process (orchestration) generates
a request message for a COBOL application and transmits
it to the send port.

2 Then the produced message goes into the send CICS
DPL pipeline. The pipeline serializes the properly-filled
MQCIH header and this message to an MQ record, and
passes it to an MQ transmitter (send MQ adapter).

3 The transmitter establishes a connection to the specified
endpoint and sends the request through MQ to the CICS
DPL bridge on a legacy system.

4 Then BizTalk starts the MQ receiver, if it is not yet started.
The receiver is implemented as an MQ listener that listens
to the incoming MQ queue. The listener waits for a
response from the COBOL application.

5 When the response is received by the MQ adapter, it
hangs off to receive the CICS DPL pipeline.

6 This pipeline deserializes messages from the received

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Why not share your expertise and earn money at the
same time? MQ Update is looking for program code,
JavaScript, REXX EXECs, etc, that experienced
users of WebSphere MQ have written to make their
life, or the lives of their users, easier. We are also
looking for explanatory articles, and hints and tips,
from experienced users. We would also like
suggestions on how to improve MQ performance.

We will publish your article (after vetting by our expert
panel) and send you a cheque, as payment, and two
copies of the issue containing the article once it has
been published. Articles can be of any length and
should be e-mailed to the editor, Trevor Eddolls, at
trevore@xephon.com.

A free copy of our Notes for Contributors, which
includes information about payment rates, is available
from our Web site at www.xephon.com/nfc.

MQ record to the XML document, and transmits it to the
orchestration through the receive port.

Note: the serialization/deserialization of MQCIH header and
BizTalk messages are performed by assemblies that were
generated at design-time.

Editor’s note: this article will be concluded next month.

Arthur and Vladimir Nesterovsky (Israel) © Xephon 2004

MQ news

MKS has announced that it has expanded the
integration of MKS Integrity Manager with
Eclipse, WebSphere, and Mercury Quality
Center.

MKS Integrity Manager is a process and
workflow solution. It allows an organization to
define and implement a repeatable development
process. Integration with Eclipse and
WebSphere development environments brings
the capabilities of the product directly to the
developer’s desktop. Using the MKS
‘WorkTray’, developers on distributed,
mainframe, and iSeries platforms can receive
work assignments (tasks), run queries, review,
and update, without ever stepping outside their
integrated development environment (IDE). All
software changes are easily linked to approved
development tasks, providing complete
traceability of all development work.

For further information contact:
MKS, 410 Albert Street, Waterloo, ON N2L-
3V3, Canada.
Tel: (519) 884 2251.
URL: www.mks.com/press/index.jsp?action=
readarticle&article_id=8714.

* * *

Willow Technology has announced its Ectropyx
integration platform for sensors. Ectropyx is
designed to provide online, secure, and reliable
integration between sensors and enterprise
applications and databases, allowing centralized
administration and control of sensors and
controllers, as well as the processing of
collected sensor data. For sensors such as
RFID readers, this permits true online
transaction processing.

Supported environments include WebSphere
MQ, WebSphere Integration Broker, and JMS
providers such as WebSphere, BEA
WebLogic, and the open source JBoss
Application Server. Supported Integration
Server platforms are AIX, HP-UX, Linux,
Solaris, and Windows.

For further information contact:
Willow Technology, 900 Lafayette Street, Suite
604, Santa Clara, CA 95050-4967, USA.
Tel: (408) 296 7400.
URL: www.willowtech.com.

* * *

Ember, a maker of ZigBee chips, and Arcom
have created a network gateway that can sit
between a firm’s ZigBee-powered wireless
sensor network and its WebSphere
middleware. ZigBee is a wireless technology
allowing electronic devices to connect to the
Internet.

Basically, it provides an end-to-end telemetry
communications gateway that pumps ZigBee
network data from remote devices to
WebSphere MQ Integrator. The gateway itself
is a single piece of equipment, powered by a
400MHz Intel RISC processor. It runs an
embedded version of Linux, as well as an
embedded version of Java.

For further information contact:
Ember, 343 Congress St, 5th Floor, Boston,
MA 02210, USA.
Tel: (617) 951 0200.
URL: www.ember.com/company/press/press-
101204.html.

* * *

x xephon

	WMQI Version 2 and WBIMB differences
	WMQ and MDBs
	Removing a queue manager from a WMQ cluster
	Identifying any MQ in-doubt units of work
	Integrating COBOL applications with Microsoft BizTalk Server 2004
	MQ news

