
© Xephon Inc 2005

January 2005

67

In this issue

3 Generating and executing
commands in batch for MQ on
z/OS

10 Integrating COBOL applications
with Microsoft BizTalk Server
2004 – part 2

19 Display tool for WebSphere MQ
objects on Unix

31 Introduction to, and usage of,
the WebSphere MQ JMS Admin
tool

39 How to migrate Plug-In node
from WMQI to WBIMB

50 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon Inc 2005. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.

Printed in England.

Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Colin Smith
E-mail: info@xephon.com

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the material
it contains. Neither Xephon nor the contributing
organizations or individuals accept any liability of
any kind howsoever arising out of the use of such
material. Readers should satisfy themselves as to
the correctness and relevance to their
circumstances of all advice, information, code,
JCL, scripts, and other contents of this journal
before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in the
UK; £261.00 in Europe; £267.00 in Australasia
and Japan; and £265.50 elsewhere. In all cases
the price includes postage. Individual issues,
starting with the July 2000 issue, are available
separately to subscribers for $33.75 (£22.50)
each including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the rate
of $160 (£100 outside North America) per
1000 words and $80 (£50) per 100 lines of code
for the first 200 lines of original material. The
remaining code is paid for at the rate of $32 (£20)
per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues in
Acrobat PDF format, can be downloaded from
our Web site at www.xephon.com/mq; you will
need to supply a word from the printed issue.

 3© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Generating and executing commands in batch for
MQ on z/OS

Quite often you need to automate certain tasks within the
MQSeries environment. Examples include starting and
stopping channels, changing the BATCHSZ at certain times to
provide optimal performance for different types of workload,
and get/put enable/disable a local queue at certain times.
Although nearly every z/OS environment has a batch scheduler
installed, not everybody has an MQSeries management tool
to automate these tasks. If you have a tool that can trap
messages from the SYSLOG and can trigger a batch job, this
method could also be used to automatically resolve error
situations, for example to reset a channel sequence number
if it has got out of sync.

The following batch job together with the two REXX EXECs
allows you to create MQSeries commands based on wildcards
that can be used as input to the CSQUTIL batch utility. This is
a cheap and effective way to execute MQSeries commands at
scheduled times or in specific situations, while having a report
of what has happened at the same time. This is often required
for audit reasons and not every MQSeries management tool
records the actions it performs and provides a log. The JCL
consist of four steps:

• Step 1 – delete two datasets used by the REXX EXECs.
(If this job has to be run in parallel, the dataset names
must be modified to allow this; for example, a time stamp
within the dataset name.)

• Step 2 – MQGETOBJ EXEC. This EXEC produces a
dataset containing MQSeries object names that are
generated by using MQSeries DISPLAY commands. The
rules for MQSeries DISPLAY commands apply. The input
parameters for the EXEC are the queue manager name,
the parse-string, and an MQSeries DISPLAY command.
The EXEC runs the DISPLAY command against the

 4 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

specified queue manager and writes the SYSPRINT output
to a temporary dataset. The parse-string is then used to
scan the output. To find out what has to be specified for
parse-string you will need to know the output format of the
DISPLAY command and check the string before the
MQSeries object you want to display. If, for example, the
DISPLAY command is:

DIS QLOCAL(IVP.*)

the output looks like:

CSQ9Ø22I QTØ1 CSQMDRTS ' DISPLAY QLOCAL' NORMAL COMPLETION

 DISPLAY QLOCAL(IVP.INST.QL.TEST1)

CSQN2Ø5I COUNT= 3, RETURN=ØØØØØØØØ, REASON=ØØØØØØØØ

CSQM4Ø1I QTØ1

 QUEUE(IVP.INST.QL.TEST1)

 TYPE(QLOCAL)

 QSGDISP(QMGR)

In this case the parse-string has to be set to QUEUE
because the EXEC scans the SYSPRINT output for
‘QUEUE(’. Having found a line with this string and only this
string, the string behind ‘parse-string(’, up to the close
bracket ‘)’, is gathered and stored in another dataset. In
this example it would be IVP.INST.QL.TEST1.

• Step 3 – MQCRECMD EXEC. The dataset produced by
Step 2 is input to this step. Also, an MQSeries command
template has to be provided. This EXEC uses the template,
looks for the string <OBJNAME> within the template, and
replaces it with the MQSeries object names produced by
the previous step. For example, to start channels the
template looks like:

START CHANNEL(<OBJNAME>)

If, for instance, three channel names were produced as a
result of the second step, three START CHANNEL
commands would be created in this EXEC, one for each
channel object. It is also possible to generate a sequence
of commands by specifying a sequence of templates. For
example, some alterations for channels take place only

 5© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

when the channel is stopped and started again. In this
case you specify three templates in the order you want
them to be executed. For example:

STOP CHANNEL(<OBJNAME>)

RESET CHANNEL(<OBJNAME>) SEQNUM(1)

START CHANNEL(<OBJNAME>)

Nine MQSeries commands would be generated if three
channel names were produced in Step 2. All commands
are written to a sequential dataset.

• Step 4 – CSQUTIL. The output dataset from Step 3 can
simply be used as input for the CSQUTIL batch utility.

MQCRECMD JCL

//jobname JOB 'account',CLASS=1,MSGCLASS=S,

// MSGLEVEL=(1,1),NOTIFY=&SYSUID

//*

//DELETE EXEC PGM=IDCAMS

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DELETE CSQ.MQ.OBJ.TEMP

 DELETE CSQ.MQ.CMD.TEMP

 SET MAXCC = Ø

//*

//GETOBJS EXEC PGM=IKJEFTØ1,DYNAMNBR=3Ø,REGION=4Ø96K

//SYSPROC DD DSN=CSQ.EXEC,

// DISP=SHR

//SYSTSPRT DD SYSOUT=*

//OBJNAMES DD DSN=CSQ.MQ.OBJ.TEMP,

// DISP=(NEW,CATLG,DELETE),

// UNIT=SYSDA,

// SPACE=(CYL,(1,1)),

// DCB=(DSORG=PS,RECFM=FB,LRECL=8Ø,BLKSIZE=312Ø)

//*

//* Sample for SYSTSIN:

//* MQGETOBJ QTØ1 QUEUE DIS QLOCAL(IVP*)

//*

//SYSTSIN DD *

 MQGETOBJ qmgr parsestring MQSeries-display-cmd

//*

//CREACMD EXEC PGM=IKJEFTØ1

//SYSPROC DD DSN=CSQ.EXEC,

// DISP=SHR

//SYSTSPRT DD SYSOUT=*

 6 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

//*

//* Sample for CMDTPL:

//* ALTER QLOCAL(<OBJNAME>) GET('DISABLED')

//*

//CMDTPL DD *

 MQSeries-cmd(<OBJNAME>) optional-parameters

//*

//OBJNAMES DD DSN=CSQ.MQ.OBJ.TEMP,

// DISP=(SHR,DELETE)

//CMDOUT DD DSN=CSQ.MQ.CMD.TEMP,

// DISP=(NEW,CATLG,DELETE),

// UNIT=SYSDA,

// SPACE=(CYL,(1,1)),

// DCB=(DSORG=PS,RECFM=FB,LRECL=8Ø,BLKSIZE=312Ø)

//SYSTSIN DD *

 MQCRECMD

//*

//RUNCMD EXEC PGM=CSQUTIL,PARM=('QTØ1')

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 COMMAND DDNAME(INPUT) FAILURE(CONTINUE)

//INPUT DD DSN=CSQ.MQ.CMD.TEMP,

// DISP=(SHR,DELETE)

//*

MQCRECMD EXEC
/* REXX */

/*

 * This REXX reads all MQSeries object names provided by EXEC MQGETOBJ,

 * reads the command template, and creates the MQSeries commands.

 * The commands can then be used as input for CSQUTIL.

 *

 * Usage:

 * call MQCRECMD

 *

 *===

 *

 * DDname CMDTPL has to contain the MQSeries command template. The

 * MQSeries object name (OBJNAME) must be enclosed in <>. This will

 * be substituted later with all MQSeries objects from the dataset

 * allocated with DDname OBJNAMES and, for each object name provided,

 * an MQSeries command will be generated.

 *

 * Examples:

 * START CHANNEL(<OBJNAME>)

 * STOP CHANNEL(<OBJNAME>) MODE(QUIESCE)

 * DISPLAY CHANNEL(<OBJNAME>)

 * RESET CHANNEL(<OBJNAME>) SEQNUM(1)

 7© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 * ALTER CHANNEL(<OBJNAME>) CHLTYPE(SDR) BATCHSZ(1ØØØ)

 *

 * DISPLAY QSTATUS(<OBJNAME>)

 * ALTER QLOCAL(<OBJNAME>) GET('DISABLED')

 * DELETE QLOCAL(<OBJNAME>) PURGE

 *

 * DISPLAY PROCESS(<OBJNAME>)

 *

 *===

 *

 * The following DDnames have to be provided in the JCL:

 * OBJNAMES Contains the MQ object names created by MQGETOBJ

 * SYSPROC IKJEFTØ1 EXEC dataset

 * SYSTSPRT Will contain a informational log

 * SYSTSIN MQCRECMD

 * CMDTPL MQSeries command template (see above)

 * CMDOUT Will contain the MQSeries commands which are to be

 * used as input for CSQUTIL

 * (PS, FB, 8Ø)

 *

 *===

 */

trace off

"EXECIO * DISKR CMDTPL (STEM cmdtpl."

"EXECIO Ø DISKR CMDTPL (FINIS"

"EXECIO 1 DISKR OBJNAMES"

if rc ¬= Ø then do

 say "RC = " rc

 say "Error in EXECIO for DDNAme OBJNAMES"

 exit 99

end

i=Ø

do while rc ¬= 2

 pull qname

 qname = strip(qname,"B" , " ")

 do j = 1 to cmdtpl.Ø

 chgres = change(cmdtpl.j,"<objname>",qname)

 chgres = change(cmdtpl.j,"<OBJNAME>",qname)

 push chgres

 "EXECIO 1 DISKW CMDOUT"

 end

 "EXECIO 1 DISKR OBJNAMES"

 i = i + 1

end

say ""

say cmdtpl.Ø * i "MQSeries command(s) generated."

say ""

"EXECIO Ø DISKR OBJNAMES (FINIS"

"EXECIO Ø DISKW CMDOUT (FINIS"

exit Ø

 8 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

change: PROCEDURE

parse arg string, old, new

if old = "" then return new||string

out = ""

do while pos(old,string) ¬= Ø

 parse var string pre_part (old) string

 out = out||pre_part||new

end

return out||string

MQGETOBJ EXEC
/* REXX */

/*

 * This REXX returns all MQSeries object names matching the wildcard

 *

 * Usage:

 * call MQGETOB <qmgr> <parsestring> <command>

 *

 * <qmgr> the QueueManager to connect to

 * <parsestring> string to parse for the object name. Object name

 * is expected in a pair of parenthesis right after

 * the parsestring.

 * <command> the display command to execute

 *===

 *

 * Customization:

 *

 * The line near the end:

 *

 * "CALL 'SYS1.MQ.SCSQAUTH(CSQUTIL)' '"qmgr"' "

 *

 * must be modified to point to the dataset containing CSQUTIL.

 *===

 *

 * Examples:

 * call MQGETOB CSQ1 CHANNEL DIS CHANNEL(CSQ1.TO.*)

 * call MQGETOB CSQ1 QUEUE DIS QLOCAL(IVP.*)

 * call MQGETOB CSQ1 QUEUE DIS QMODEL(*)

 * call MQGETOB CSQ1 QUEUE DIS QREMOTE(IVP*)

 * call MQGETOB CSQ1 QUEUE DIS QALIAS(IVP.AL.*)

 * call MQGETOB CSQ1 PROCESS DIS PROCESS(*)

 *===

 *

 * The following DDnames are used/allocated by the REXX:

 * SYSPRINT for the output of the queue names

 * CSQUCMD for the DISPLAY COMMAND

 *

 * The following DDnames have to be provided in the JCL:

 9© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 * OBJNAMES Will contain the retrieved object names which can

 * be used as input for EXEC MQCRECMD

 * (PS, FB, 8Ø)

 * SYSPROC IKJEFTØ1 EXEC dataset

 * SYSTSPRT Will contain an informational log

 * SYSTSIN Call MQGETOBJ with parameter string (see above)

 *===

 */

trace off

parse arg qmgr parsestring command

command = strip(command,B," ")

qmgr = strip(qmgr,B," ")

parsestring = strip(parsestring,B," ")

say "Parameters for MQGETOBJ utility: "

say " QueueManager:" qmgr

say " Parsestring :" parsestring

say " MQCommand :" command

say " MQ objects retrieved:"

/* Call CSQUTIL to get objnames */

"ALLOC DD(SYSPRINT) NEW RECFM(F,B) LRECL(8Ø) BLKSIZE(312Ø) "

"ALLOC DD(CSQUCMD) NEW RECFM(F,B) LRECL(8Ø) BLKSIZE(312Ø) "

"ALLOC DD(SYSIN) NEW RECFM(F,B) LRECL(8Ø) BLKSIZE(312Ø) "

call csqutil qmgr command

parsestring = parsestring"("

ii = Ø

"EXECIO 1 DISKR SYSPRINT"

do while rc ¬= 2

 pull inrec

 ii = ii + 1

 if (index(inrec,parsestring) > Ø) then do

 /*

 * prefstr makes sure that nothing DIS CHANNEL(CSQ1.TO.*)

 * is being processed.

 */

 parsecmd1 = "parse var inrec prefstr '"parsestring"' objname ')'"

 interpret parsecmd1

 if prefstr = " " & objname ¬= "" then do

 say "" objname

 push objname

 "EXECIO 1 DISKW OBJNAMES"

 end

 end

 "EXECIO 1 DISKR SYSPRINT "

end

"EXECIO Ø DISKR SYSPRINT (FINIS"

"FREE DD(SYSPRINT) "

"FREE DD(CSQUCMD) "

"FREE DD(SYSIN) "

Exit(Ø)

csqutil: PROCEDURE

 10 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Integrating COBOL applications with Microsoft
BizTalk Server 2004 – part 2

This month we conclude the article describing how to integrate
COBOL applications with Microsoft BizTalk Server 2004.

HOW TO CREATE ORCHESTRATION

The following steps are to be performed:

• Get COBOL copybooks.

• Import copybooks into annotated XML schema.

• Edit XML schema.

• Generate C# code or assembly from the XML schema.

• Reference generated assembly in the BizTalk project.

• Optionally generate BizTalk XML schemas from generated
assemblies.

• Create pipelines in the BizTalk project.

• Create BizTalk orchestration.

• Create a port that uses the MQ adapter and pipelines
previously created.

parse arg qmgr command

push " COMMAND "

"EXECIO 1 DISKW SYSIN (FINIS"

push command

"EXECIO 1 DISKW CSQUCMD (FINIS"

"CALL 'SYS1.WEBS.MQ.SCSQAUTH(CSQUTIL)' '"qmgr"' "

Return(Ø)

Gerald Stark
Mainframe Technical Specialist
MQ Architect (UK) © Xephon 2005

 11© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

• Compile and deploy orchestration.

• Bind ports.

Get COBOL copybooks

The cycle starts with the identification of a host application
that BizTalk orchestration will communicate with. From the
perspective of a developer, a host application is a set of
COBOL copybooks (which represent data) and operations
(which represent data flow). To get a host’s application data
available to a BizTalk orchestration, COBOL copybooks are
retrieved.

Let’s say we have a COBOL copybook called cobtyp1.cob:

 Ø1 COB-TYPES-STRUCT.

 Ø3 CNAME PIC X(8) VALUE 'DUGTYP1'.

 Ø3 F1 COMP-1 VALUE Ø.111E+2.

 Ø3 B1 COMP-2 VALUE Ø.112E+2.

 Ø3 INT1 PIC 9(9) BINARY VALUE 1ØØ.

 Ø3 INT1S PIC S9(9) BINARY VALUE -1Ø1.

 Ø3 INT2 PIC 9(4) BINARY VALUE 1Ø2.

 Ø3 INT2S PIC S9(4) BINARY VALUE -1Ø3.

 Ø3 D1 PIC 9(5) VALUE 1Ø5.

 Ø3 D1S PIC S9(5) BINARY VALUE -1Ø6.

 Ø3 DP1 PIC 9(5) COMP-3 VALUE 1Ø5.

 Ø3 DP1S PIC S9(5) COMP-3 VALUE -1Ø6.

 Ø3 DV1 PIC 9(5)V99 VALUE ZEROS.

 Ø3 DV1S PIC S9(5)V99 BINARY VALUE -1Ø8.

 Ø3 DPV1 PIC 9(5)V9(2) COMP-3 VALUE 1Ø9.

 Ø3 DPV1S PIC S9(5)V9(2) COMP-3 VALUE -11Ø.

Import copybooks into annotated XML schema

Retrieved COBOL copybooks are converted to an XML form
(annotated XML schemas) before further processing. These
schemas provide a typed XML data view, preserving information
about the data layout. The CobolCopybookParser.exe design-
time tool is used to import COBOL copybooks:

CobolCopybookParser.exe /o:output-path /i:input-path\cobtyp1.cob /n:

Sample\cobtyp1

where:

 12 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• output-path is the path to output the generated XML
schema.

• input-path\cobtyp1.cob is the path to the COBOL copybook
to import.

• targetNmespace is the target namespace for the generated
XML schema.

The result produced (called cobtyp1.xsd) looks like:

 <?XML version="1.Ø" encoding="utf-8"?>

 <xsd:schema XMLns:xsd="http://www.w3.org/2ØØ1/XMLSchema"

 XMLns:cobol= "http://www.multiconn.com/cobol-schema/122ØØ3"

 XMLns:s="Sample\cobtyp1"

 targetNamespace="Sample\cobtyp1"

 attributeFormDefault="unqualified"

 elementFormDefault="qualified"

 id="COBTYP1">

 <xsd:group name="copybook">

 <xsd:sequence>

 <xsd:element ref="s:COB-TYPES-STRUCT" />

 </xsd:sequence>

 </xsd:group>

 <xsd:element name="COB-TYPES-STRUCT" type="s:COB-TYPES-STRUCT" />

 <xsd:complexType name="COB-TYPES-STRUCT">

 <xsd:attribute default="DUGTYP1" name="CNAME" type="xsd:string">

 <xsd:annotation>

 <xsd:appinfo>

 <cobol:info type="char" length="8" />

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute default="11.1" name="F1" type="xsd:float">

 <xsd:annotation>

 <xsd:appinfo>

 <cobol:info type="float" />

 </xsd:appinfo>

 </xsd:annotation>

 </xsd:attribute>

 <xsd:attribute default="11.2" name="B1" type="xsd:double">

 <xsd:annotation>

 <xsd:appinfo>

 <cobol:info type="double" />

 </xsd:appinfo>

 </xsd:annotation>

 13© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 </xsd:attribute>

 ...

 </xsd:complexType>

 </xsd:schema>

This document can be edited by any XML editor (XML schema
editor), where XML schema types can be customized.

Edit XML schema

Annotated XML schema allow some level of customization.
COBOL types can be mapped to different XML schema types.
Simple types can be converted to and from enumerations.
COBOL field direction (input/output) specification is available.

To view an original COBOL copybook you can insert the
following XML processing instruction after the declaration:

<?xml ... ?>

 <?xml-stylesheet type="text/xsl" href="<schema cobol view path>"?>

where <schema cobol view path> stands for <install
path>\Design-time tools\Annotated schema view\schema
cobol view.xslt, and <install path> is the Multiconn BizTalk
Extensibility installation path.

You can view a COBOL copybook if you open this XML
schema in a browser.

Generate C# code or assembly from XML schema

At this stage we generate C# code from the annotated XML
schema. The Cobol Importer.exe design-time tool is used to
generate C# code:

Cobol Importer.exe" /n:code-namespace o:output-path input-

path\cobtyp1.xsd

where:

• code-namespace is the namespace of the generated
code.

• output-path is the path to output the generated code.

 14 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• input-path\cobtyp1.xsd is the path to an annotated XML
schema from which to generate the code.

The code generated is a regular .NET class annotated with
XMLXxx attributes for XML serialization, and with CobolLayout
attributes for COBOL serialization.

To create assembly from the generated code you can either
create a C# project, which includes this code, or specify the /
assembly: option in the Cobol Importer.exe tool.

Reference generated assembly in the BizTalk project

To use generated assemblies in the BizTalk project, they need
to be referenced. Right-click a BizTalk project in solution
explorer and select the Add Reference option.

Types from generated assemblies are used in pipeline designer
to specify the data format in the CICS DPL serializer and
deserializer components. The messages based on these
types may also be used in BizTalk orchestration in order to
form data that is passed to a port.

Optionally generate BizTalk XML schemas from generated
assemblies

Generated assemblies can be used to create BizTalk XML
schemas. Right-click a BizTalk project in solution explorer and
select options Add and then Add Generated Items, select the
Generate Schemas template and click open. Select
Assembly schema generator in the Document type field,
and specify the assembly path in the Input file field. Click OK
to generate the BizTalk XML schemas from the assembly.

Use these XML schemas in BizTalk orchestration to create
messages. Note that messages based on a generated .NET
type and messages based on XML schema derived from this
type are compatible; however, only XML schema-based
messages can be used in the BizTalk map files.

 15© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Create pipelines in the BizTalk project

To communicate with a host application through the CICS DPL
bridge, you must create a port that uses CICS DPL pipelines,
which prepare raw data for the host application. You need to
create both a Send pipeline and Receive pipeline.

Drop the CICS DPL Serializer pipeline component from the
Toolbox at the Assemble stage of the Send pipeline, and the
CICS DPL Deserializer pipeline component at the
Disassemble stage of the Receive pipeline.

Note: if you do not see CICS DPL pipeline components on the
BizTalk pipeline components toolbox, right-click the toolbox
and select Add/Remove Items. In the dialog opened, select
the BizTalk pipeline components tab, and then check CICS
DPL Serializer and CICS DPL Deserializer. Press OK, and
these components will appear in the toolbox.

ContentEncoding property is the name of the encoding that
the CICS DPL pipeline components use to convert text data.
Default encoding is IBM500.

Documents collection allows users to specify a set of message
types that pipeline component can process. Items in this
collection have the DocumentSpec property, which allows the
selection of the available types that support COBOL layout
serialization. An item’s ContentLength property optionally
allows you to specify the raw data length. The ApplicationName
property is used to specify the DPL program name.

Create BizTalk orchestration

Create a BizTalk orchestration that implements your custom
logic. You can use the messages and variables based on the
types generated using design-time tools. Create a new Send-
Receive port on the port surface of the orchestration. This port
will be configured later. It will use the MQ adapter and
pipelines created earlier. Use this port to send requests and
receive responses from the host application.

 16 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Create a port that uses the MQ adapter and pipelines previously
created

In order to create and configure a port that uses MQ adapter
do the following:

• Drag and drop the Port component from the BizTalk
components ToolBox onto the orchestration. The Port
Configuration Wizard appears.

• Provide a name for the port.

• Select the port type.

• Select a communication pattern.

Note: a port that uses MQ adapter can use both the One-
Way and Request-Response communication patterns.

• Select the direction of communication and select either
Specify later or Direct for the port binding.

• Complete the wizard.

When the port is created, you can specify a message type of
Operation Message.

Compile and deploy orchestration

To bind ports, you need to compile and deploy the BizTalk
project.

Bind ports

After deployment you have to bind the orchestration’s ports to
the real send/receive ports.

To create and bind a send port, do the following in BizTalk
Explorer:

1 Right-click Send Ports and create a new port with the
communicating pattern corresponding to the port in the
orchestration.

 17© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

2 Rename it, if you wish.

3 Set Transport Type to MQ.

4 Select the Address property and then click the ‘...’ button.

5 Specify Queue manager, Input queue, and Output queue
properties if you are using MQSeries server and all other
properties if you are using MQSeries client.

6 Click OK.

7 Click the Send node from the left-hand side.

8 Set the property to Send Pipeline for the name of your
send CICS DPL pipeline.

9 For the solicit-response port, set the property to Receive
Pipeline for the name of your receive CICS DPL pipeline.

10 Click OK.

11 Select <server-name>.BizTalkMgmtDb.dbo database and
click the Refresh button on the BizTalk Explorer toolbar.

12 Expand the Orchestrations node. You will see your
orchestrations there.

13 Double-click on it and bind the orchestration’s send port to
the newly-created port.

To create and bind a receive port, do the following in BizTalk
Explorer:

1 Right-click Receive Ports and create a new port with the
communicating pattern corresponding to the port in the
orchestration.

2 Rename it, if you wish.

3 Click OK.

4 For a request-response port, set the property of the name
of your send CICS DPL pipeline to Send Pipeline.

 18 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

5 Right-click Receive Locations under the newly-created
receive port, and click Add Receive Location….

6 Set Transport Type to MQ.

7 Select the Address property and then click the ‘...’ button.

8 Specify Queue manager, Input queue, and Output queue
properties if you are using MQSeries server and all other
properties if you are using MQSeries client.

9 Click OK.

10 Select a Receive Handler from the drop-down list.

11 Set the property of the name of your receive CICS DPL
pipeline to Receive Pipeline.

12 Click OK.

13 Select <server-name>.BizTalkMgmtDb.dbo database and
click the Refresh button on the BizTalk Explorer toolbar.

14 Expand the Orchestrations node. You will see your
orchestrations there.

15 Double-click on it and bind the orchestration’s send port to
the newly-created port.

Now you can start your orchestration.

CONCLUSION

The integration of legacy applications with Microsoft BizTalk
Server 2004 broadens the horizons for both sides. For legacy
software this approach allows data to be obtained from
diverse sources. For BizTalk and its clients this approach
gives direct access to the reliable services provided by legacy
applications.

Arthur and Vladimir Nesterovsky (Israel) © Xephon 2005

 19© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Display tool for WebSphere MQ objects on Unix

For WebSphere MQ (WMQ) administrators on Unix systems
it is quite easy to view and modify WMQ objects using the
command line interface runmqsc or have a look at the
contents of queues using the IBM sample programs like
amqsbcg. It is also possible to use graphical user interfaces
such as MQMON (the IBM SupportPac MO71) for this task. In
general, a graphical interface is easier to use because users
are guided to the functions they need, but these tools mostly
need a running command server and a client channel definition,
which may be undesirable for security reasons.

Although WMQ administration tools are quite usable for
administrators, they are very difficult to use by business
people who want to have just a quick look at certain objects
and contents of queues. In this case you need a tool that
provides business people with the information they want,
without the need to train them on the WMQ administration
tools. Even when they are interested in technical details, they
usually will not be able to spend enough time using these tools
to become familiar with getting the information they want.

THE WMQ DISPLAY TOOL

Intention for a WMQ display tool

In the past, some of my customers wanted to have a quick look
at some WMQ objects and queue contents to see what was
going wrong when their applications fail. The tools described
above are quite useful for WMQ administrators, who use them
several times a day, but they may be unsuitable for business
people just wanting to have a brief look at WMQ objects only
once or twice per week. To provide these people with an easy-
to-use WMQ viewing tool, I wrote the script described in this
article. It is possible to configure this script in a secure way,
without opening any back doors, like WMQ client connections
would do.

 20 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

How the WMQ display tool works

The WMQ display tool is designed for Unix systems and is
developed as a Korn shell script. This script uses a configuration
file, which defines queues and channel to display or browse.
These objects are listed during the execution of the script and
the user may choose a queue or channel by entering a number
shown in front of the object. Business users now need to know
only the name of the queue or channel to have a look at it
(which, in fact, is often difficult enough for business people).

The script is designed as a substitute for the login shell. It has
to be used in the file /etc/passwd as the defined user shell:

mqusr1:x:12345:1234::/home/mqusr1:/home/mqusr1/mqview

mqusr2:x:23451:1234::/home/mqusr2:/home/mqusr2/mqview

mqusr3:x:34512:1234::/home/mqusr3:/home/mqusr3/mqview

The script itself captures control sequences such as Ctrl-C by
issuing the command trap:

trap "exec /bin/ksh -e $HOME/mqview" HUP INT ERR TERM

This command captures the signals HUP, INT, ERR, and
TERM, and runs the command in between the single quotes
instead (the script itself). If something goes wrong (eg the path
name in the script is wrong), the user will be logged off. There
is now a chance for a user to get a shell environment. On some
Unix derivatives the script must be defined as a valid login
shell before it can be used in /etc/passwd.

The users who will be enabled to look at the WMQ objects
have to be members of the same group. This group needs
permissions to the objects that they want to look at. The
permissions may be set using setmqaut. It is also possible to
add the users to the group mqm instead. Because these users
cannot get a normal shell environment, this avoids a security
hole.

Using the WMQ display tool

The WMQ display tool is very easy to use. The users just have
to log in (using telnet, rsh, ssh, or whatever) and follow the

 21© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

script instructions. In the first (main) menu the user is asked
to select a function. The following functions are available:

Select the script function:

q) display WebSphere MQ message queues

qc) display WebSphere MQ cluster queues

qs) display WebSphere MQ queue status

b) browse WebSphere MQ queues

c) display WebSphere MQ channel

cs) display WebSphere MQ channel status

e) exit

Select an option

When the user, for example, selects the letter q, he will get the
following menu:

The following queues may be displayed:

1) SYSTEM.DEFAULT.LOCAL.QUEUE

2) SYSTEM.DEFAULT.ALIAS.QUEUE

3) SYSTEM.DEFAULT.REMOTE.QUEUE

4) SYSTEM.DEFAULT.MODEL.QUEUE

5) SYSTEM.DEAD.LETTER.QUEUE

q) quit

Enter a queue number

The queue list displayed above is defined in the configuration
file (lines 23 to 28 in the sample configuration file below). Now
the user has to enter the number of the queue he wants to have
a look at. The script sets up a simple runmqsc command and
executes it:

echo "display queue(SYSTEM.DEFAULT.LOCAL.QUEUE)" | runmqsc TESTQM

5724-B41 (C) Copyright IBM Corp. 1994, 2ØØ2. ALL RIGHTS RESERVED.

Starting MQSC for queue manager TESTQM.

 1 : display queue(SYSTEM.DEFAULT.LOCAL.QUEUE)

AMQ84Ø9: Display Queue details.

 DESCR(WebSphere MQ Default Local Queue)

 PROCESS() BOQNAME()

 INITQ() TRIGDATA()

 CLUSTER() CLUSNL()

 QUEUE(SYSTEM.DEFAULT.LOCAL.QUEUE) CRDATE(2ØØ4-Ø5-28)

 CRTIME(11.26.54) ALTDATE(2ØØ4-Ø5-28)

 22 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 ALTTIME(11.26.54) GET(ENABLED)

 PUT(ENABLED) DEFPRTY(Ø)

 DEFPSIST(NO) MAXDEPTH(5ØØØ)

 MAXMSGL(41943Ø4) BOTHRESH(Ø)

 SHARE DEFSOPT(SHARED)

 HARDENBO MSGDLVSQ(PRIORITY)

 RETINTVL(999999999) USAGE(NORMAL)

 NOTRIGGER TRIGTYPE(FIRST)

 TRIGDPTH(1) TRIGMPRI(Ø)

 QDEPTHHI(8Ø) QDEPTHLO(2Ø)

 QDPMAXEV(ENABLED) QDPHIEV(DISABLED)

 QDPLOEV(DISABLED) QSVCINT(999999999)

 QSVCIEV(NONE) DISTL(NO)

 DEFTYPE(PREDEFINED) TYPE(QLOCAL)

 SCOPE(QMGR) DEFBIND(OPEN)

 IPPROCS(Ø) OPPROCS(Ø)

 CURDEPTH(Ø)

One MQSC command read.

No commands have a syntax error.

All valid MQSC commands were processed.

Press <RETURN> to continue

The user now has to press the Return key to return to the
selection menu.

SAMPLE CONFIGURATION

Example of a configuration file

This sample enables business users to have a look at some
default queues and channels (lines 23 to 28 and lines 56 to 61)
and one cluster queue (lines 34 and 35). The users will also
be able to browse the queues defined in lines 49 and 50. A
queue status is possible for local queues only (line 41 to 43).
These objects are visible only on the queue manager, TESTQM,
which is defined at the beginning of the configuration file (line
17).

 1 ###

 2 #

 3 # Configuration file for the script 'mqview'. This file

 4 # contains all system specific data and is used by

 5 # 'mqview'.

 6 #

 7 # October, 12th 2ØØ4

 8 # Hubert Kleinmanns

 23© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 9 # Senior Consultant

1Ø #

11 ###

12

13 #

14 # Define the name of the queue manager.

15 #

16

17 LOCAL_QMGR="TESTQM"

18

19 #

2Ø # Define a list of queues, which may be displayed.

21 #

22

23 MQSERIES_QUEUES="\

24 SYSTEM.DEFAULT.LOCAL.QUEUE \

25 SYSTEM.DEFAULT.ALIAS.QUEUE \

26 SYSTEM.DEFAULT.REMOTE.QUEUE \

27 SYSTEM.DEFAULT.MODEL.QUEUE \

28 SYSTEM.DEAD.LETTER.QUEUE"

29

3Ø #

31 # Define a list of cluster queues, which may be displayed.

32 #

33

34 MQSERIES_CL_QUEUES="\

35 MY.CLUSTER.QUEUE"

36

37 #

38 # Define a list of local queues, to display queue status.

39 #

4Ø

41 MQSERIES_LOCAL_QUEUES="\

42 SYSTEM.DEFAULT.LOCAL.QUEUE \

43 SYSTEM.DEAD.LETTER.QUEUE"

44

45 #

46 # Define a list of local queues, which may be browsed.

47 #

48

49 MQSERIES_BROWSE_QUEUES="\

5Ø SYSTEM.DEAD.LETTER.QUEUE"

51

52 #

53 # Define a list of channel, which may be displayed.

54 #

55

56 MQSERIES_CHANNEL="\

57 SYSTEM.DEF.SDR \

58 SYSTEM.DEF.RCVR \

 24 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

59 SYSTEM.DEF.CLUSSDR \

6Ø SYSTEM.DEF.CLUSRCVR \

61 SYSTEM.DEF.SVRCONN"

Example of a setmqaut script

When the read-only users get permissions by using the
program setmqaut, the lines below have to be executed by a
WMQ administrator. The permissions are set for all users who
are members of the group mqview. Instead of defining several
individual users, it is also possible to define one single
functional user, who is shared by all the business people. Last
but not least, it is also possible to add these users to the group
mqm (without opening a back door). Which solution has to be
used depends on the security policies of your company.

 1 #!/bin/ksh

 2

 3 # Include the configuration file.

 4 . $HOME/mqview.config

 5

 6 # Set the 'read-only' group.

 7 GROUP=mqview

 8

 9 # First allow access (connect and display) to the queue manager.

1Ø setmqaut -m $LOCAL_QMGR -t qmgr -g $GROUP +connect +dsp

11

12 # Now allow displaying of queue attributes.

13 for q in $MQSERIES_QUEUES

14 do

15 setmqaut -m $LOCAL_QMGR -t q -n $q -g $GROUP +dsp

16 done

17

18 # Now allow browsing of queues.

19 for q in $MQSERIES_LOCAL_QUEUES

2Ø do

21 setmqaut -m $LOCAL_QMGR -t q -n $q -g $GROUP +browse

22 done

DESCRIPTION OF THE CODE

The script code contains an endless loop (line 147 to 273),
which sets up the main menu. Then the script calls the
function mq_function (lines 58 to 139) and executes the
runmqsc commands.

 25© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Main loop

First the parameter COMMAND defines the action that has to
be performed by the script. If this parameter is set to browse
queue (line 203), the script will run the IBM sample program
amqbcg. In all other cases the parameter COMMAND contains
a valid runmqsc command (eg display queue in line 158). The
parameters OBJ_NAME and OBJ_NAMES contain strings
which are needed to set up the output messages in the
selection menu. These parameters have no other function.

The WMQ objects that have to be displayed or browsed are
stored as the array OBJ_ARR (eg in line 163). The first
member of this array is always the unused name DUMMY.
This is to start the numbering of the WMQ names with 1
instead of 0. In the next line, the script stores the number of
WMQ objects in the parameter OBJ_CNT.

Function mq_function

The function mq_function first displays a selection menu. It
first prints a headline, then it loops over the members of the
array OBJ_ARR (except the first dummy entry) and displays
a line for each object, beginning with a number followed by the
name of the WMQ object.

Next the script asks for an input value. The user may enter a
number of a WMQ object or q to quit and return to the main
menu. If the user enters a valid number, the runmqsc command
is executed, otherwise an error message is shown.

Possible extensions to the script

It is quite easy to extend this script by adding some non-WMQ
functionality. In fact, in my customers’ environments there
were some file browsing functions and the use of the top utility
implemented. I removed these functions from the sample
because this is an MQ journal. But it is quite easy to add such
functions or others like database requests to this script. But be
careful, do not implement tools that allow the calling of shell

 26 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

commands, such as vi or more! When you, for example, want
to implement a file-browsing tool, try the freeware tool less
instead of more. Re-compile less with the SECURE option to
disable shell commands.

LISTING OF THE WMQ DISPLAY TOOL

 1 #!/bin/ksh

 2 #

 3 ###

 4 #

 5 # Script for enabling restricted access to a system.

 6 # This script is used as a shell and prevents the user

 7 # from executing programs that are not explicitly allowed.

 8 # Some additional steps must be performed, to make

 9 # the restricted user secure:

 1Ø #

 11 # Entry in '/etc/group', create a new group:

 12 # mqview::1234:

 13 #

 14 # Entry in '/etc/passwd', create one or more users as

 15 # member of this group and give them this script instead

 16 # of a shell:

 17 # mqusr1:x:12345:1234:MQ display user:/home/mqusr1:/home/

mqusr1/mqview

 18 # mqusr2:x:23451:1234:MQ display user:/home/mqusr2:/home/

mqusr2/mqview

 19 # mqusr3:x:34512:1234:MQ display user:/home/mqusr3:/home/

mqusr3/mqview

 2Ø #

 21 # Copy this script and the configuration file to

 22 # the home directory of the users.

 23 #

 24 # October, 12th 2ØØ4

 25 # Hubert Kleinmanns

 26 # Senior Consultant

 27 #

 28 ###

 29

 3Ø # The script is called again when one of the signals

 31 # (eg CTRL-C) is received.

 32 trap "exec /bin/ksh -e $HOME/mqview" HUP INT ERR TERM

 33

 34 PATH="/usr/bin:/opt/mqm/samp/bin"

 35

 36 ###

 37 #

 38 # Include the configuration file, which contains the

 27© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 39 # system-specific attributes.

 4Ø #

 41 ###

 42

 43 . $HOME/mqview.config

 44

 45 ###

 46 #

 47 # The function below executes the required WebSphere

 48 # MQ commands. Which objects have to be displayed are

 49 # controlled by the parameters above. Nothing has to

 5Ø # be modified below.

 51 #

 52 ###

 53

 54 #

 55 # Function to display WebSphere MQ parameters.

 56 #

 57

 58 function mq_function

 59 {

 6Ø # Clear the screen.

 61 clear

 62

 63 # Display the menu head line.

 64 echo ""

 65 if ["$COMMAND" = "browse queue"]

 66 then

 67 echo "The contents of the following queues may be shown:"

 68 else

 69 echo "The following $OBJ_NAMES may be displayed:"

 7Ø fi

 71 echo ""

 72

 73 # Display the menu entries.

 74 let NUM=1

 75 while [$NUM -le $OBJ_CNT]

 76 do

 77 echo "$NUM) ${OBJ_ARR[$NUM]}"

 78

 79 let NUM+=1

 8Ø done

 81

 82 # Display the menu trailer.

 83 echo ""

 84 echo "q) quit"

 85 echo ""

 86 echo "Enter a $OBJ_NAME number"

 87

 88 # Read the input value.

 28 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 89 read NUM

 9Ø

 91 # Leave the menu with 'q'.

 92 if ["$NUM" = "q"]

 93 then

 94 FUNC=""

 95 # Check now the input.

 96 else

 97 # Now check whether the input number is valid.

 98 if ["$NUM" -ge 1 -a "$NUM" -le $OBJ_CNT]

 99 then

1ØØ # Clear screen again.

1Ø1 clear

1Ø2

1Ø3 # Browse a queue.

1Ø4 if ["$COMMAND" = "browse queue"]

1Ø5 then

1Ø6 # Perform the browse command and display the output to the screen.

1Ø7 CMD="amqsbcg ${OBJ_ARR[$NUM]}"

1Ø8 eval $CMD

1Ø9 # Perform a MQSC command.

11Ø else

111 type=""

112

113 # Make a dummy put on cluster queues (to be sure, it is visible).

114 if ["$OBJ_NAME" = "cluster queue"]

115 then

116 amqsput ${OBJ_ARR[$NUM]} > /dev/null 2>&1 <<EOF

117

118 EOF

119 elif ["$COMMAND" = "display qstatus"]

12Ø then

121 type=" type(handle)"

122 fi

123

124 # Perform the MQSC command and display the output to the screen.

125 CMD="echo \"$COMMAND(${OBJ_ARR[$NUM]})$type\" | runmqsc $LOCAL_QMGR"

126 echo $CMD

127 eval $CMD

128 fi

129 # Display an error message otherwise.

13Ø else

131 echo ""

132 echo "You entered an invalid number!"

133 fi

134

135 # Hold the function, to have a look at the output.

136 echo "Press <RETURN> to continue"

137 read ANSWER

138 fi

 29© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

139 }

14Ø

141 #

142 # Main loop of the MQ administration wrapper (endless loop).

143 #

144

145 FUNC=""

146

147 while [1]

148 do

149 case $FUNC in

15Ø # Leave the program with 'e'.

151 e)

152 exit Ø

153 ;;

154

155 # Display queues.

156 q)

157 # Set up the 'display queue' parameters.

158 COMMAND="display queue"

159 OBJ_NAME="queue"

16Ø OBJ_NAMES="queues"

161

162 # Set up the MQ objects to display.

163 set -A OBJ_ARR DUMMY $MQSERIES_QUEUES

164 OBJ_CNT='echo $MQSERIES_QUEUES | wc -w'

165

166 # Call now the function.

167 mq_function

168 ;;

169

17Ø # Display cluster queues.

171 qc)

172 # Set up the 'display cluster queue' parameters.

173 COMMAND="display qcluster"

174 OBJ_NAME="cluster queue"

175 OBJ_NAMES="cluster queues"

176

177 # Set up the MQ objects to display.

178 set -A OBJ_ARR DUMMY $MQSERIES_CL_QUEUES

179 OBJ_CNT='echo $MQSERIES_CL_QUEUES | wc -w'

18Ø

181 # Call now the function.

182 mq_function

183 ;;

184

185 # Display queue status.

186 qs)

187 # Set up the 'display queue status' parameters.

188 COMMAND="display qstatus"

 30 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

189 OBJ_NAME="queue status"

19Ø OBJ_NAMES="queue states"

191

192 # Set up the MQ objects to display.

193 set -A OBJ_ARR DUMMY $MQSERIES_LOCAL_QUEUES

194 OBJ_CNT='echo $MQSERIES_LOCAL_QUEUES | wc -w'

195

196 # Call now the function.

197 mq_function

198 ;;

199

2ØØ # Browse queues.

2Ø1 b)

2Ø2 # Set up the 'browse queue' parameters.

2Ø3 COMMAND="browse queue"

2Ø4 OBJ_NAME="queue"

2Ø5

2Ø6 # Set up the MQ queues to browse.

2Ø7 set -A OBJ_ARR DUMMY $MQSERIES_BROWSE_QUEUES

2Ø8 OBJ_CNT='echo $MQSERIES_BROWSE_QUEUES | wc -w'

2Ø9

21Ø # Call now the function.

211 mq_function

212 ;;

213

214 # Display channel.

215 c)

216 # Set up the 'display channel' parameters.

217 COMMAND="display channel"

218 OBJ_NAME="channel"

219 OBJ_NAMES="channel"

22Ø

221 # Set up the MQ objects to display.

222 set -A OBJ_ARR DUMMY $MQSERIES_CHANNEL

223 OBJ_CNT='echo $MQSERIES_CHANNEL | wc -w'

224

225 # Call now the function.

226 mq_function

227 ;;

228

229 # Display channel status.

23Ø cs)

231 # Set up the 'display channel status' parameters.

232 COMMAND="display chstatus"

233 OBJ_NAME="channel"

234 OBJ_NAMES="channel"

235

236 # Set up the MQ objects to display.

237 set -A OBJ_ARR DUMMY $MQSERIES_CHANNEL

238 OBJ_CNT='echo $MQSERIES_CHANNEL | wc -w'

 31© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

239

24Ø # Call now the function.

241 mq_function

242 ;;

243

244 # Print the main menu.

245 *)

246 # Clear screen.

247 clear

248

249 # Display the head line of the main menu.

25Ø echo ""

251 echo "Select the script function:"

252 echo ""

253

254 # Display the entries of the main menu.

255 echo "q) display WebSphere MQ queues"

256 echo "qc) display WebSphere MQ cluster queues"

257 echo "qs) display WebSphere MQ queue status"

258 echo "b) browse WebSphere MQ queues"

259 echo "c) display WebSphere MQ channel"

26Ø echo "cs) display WebSphere MQ channel status"

261

262 # Display the trailer of the main menu.

263 echo ""

264 echo "e) exit"

265 echo ""

266 echo "Select an option"

267

268 # Read the function.

269 read FUNC

27Ø FUNC="'echo $FUNC | tr '[:upper:]' '[:lower:]''"

271 ;;

272 esac

273 done

Hubert Kleinmanns
Senior Consultant
N-Tuition Business Solutions AG (Germany) © Xephon 2005

Introduction to, and usage of, the WebSphere MQ
JMS Admin tool

This article is ideal for those with some previous working
experience and knowledge of using WebSphere MQ, and

 32 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

some knowledge of the concepts of Sun’s Java Message
Service (JMS) spec, WebSphere Application Server, and the
Java Naming and Directory Interface (JNDI).

For more information about the Sun Java Message Service
spec and API visit http://java.sun.com/products/jms/
overview.html.

Note: the scope of the article covers distributed platforms like
Windows 2000/XP, Linux, HP, AIX, and Solaris. The snapshots
shown are specific to Windows. It does not take into account
z/OS and OS/390 specifications for the JMS Admin tool, which
may differ.

INTRODUCTION

WebSphere MQ provides an administration tool called JMS
Admin. This tool is primarily used to configure WebSphere MQ
as a JMS. The tool can be used to create and define the
properties of WebSphere MQ-administered JMS objects,
examples of which will be seen later on.

The JMS Admin tool has been around since the release of the
MA88 by IBM, a SupportPac that provides support for
developing WebSphere MQ applications in Java, and also
since the release of WebSphere MQ Version 5.2. It was
designed also to work with the IBM WebSphere Application
Server Version 3.5, Version 4.0 of JNDI, and also with other
JNDI providers.

USING THE JMS ADMIN TOOL

What is supported

Administrators can create up to eight types of WebSphere MQ
JMS object. These are listed below with their respective
keywords:

1 MQConnectionFactory * – CF

 33© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

2 MQQueueConnectionFactory – QCF

3 MQTopicConnectionFactory – TCF

4 MQQueue – Q

5 MQTopic – T

6 MQXAConnectionFactory * – XACF

7 MQXAQueueConnectionFactory – XAQCF

8 MQXATopicConnectionFactory – XATCF

9 JMSWrapXAQueueConnectionFactory** – WSQCF

10 JMSWrapXATopicConnectionFactory** – WSTCF

* These objects can be administered only with JMS 1.1
specification.

**These objects can be used only with a version of WebSphere
Application Server earlier than Version 5.

How to configure the tool for use
Any of the JMS objects listed above, once defined and
created, are stored within a JNDI namespace. You can
configure what type of JNDI service provider to use by editing
the JMSAdmin.config file in your WebSphere MQ root
installation directory under Java\bin (see Figure 1).

The INITIAL_CONTEXT_FACTORY section provides four
types of JNDI services provider. To use a particular type,
uncomment that line by removing the # from the beginning of
the line. In Figure 1, the
com.sun.jndi.fscontext.RefFSContextFactory JNDI provider
will be used to store the JMS object definitions once they are
created. This means that the file system will be used to store
the objects.

Next, to use your selected JNDI service provider, you have to
select the root of that provider’s Initial Context by selecting
one of the three options in the PROVIDER_URL section. The

 34 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

options are LDAP, FILE, and IIOP.

For example in Figure 1, the user has selected the FILE
context with the value of /C:/JNDI-Directory. This means that
all the naming and directory operations will point to this
directory on the file system. This option can be used only with
the initial context factory
com.sun.jndi.fscontext.RefFSContextFactory.

Similarly, to use an LDAP as the root of the Initial Context,
specify the location of the LDAP server or IIOP to access a
WebSphere Application Server namespace.

Basically when the JMS Admin tool is started, it starts a
session and that session needs an initial context. This initial
context will act as the root of all JNDI operations carried out
by the tool.

Figure 1: The JMSAdmin.config file

 35© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

The tool also provides a security authentication feature. This
feature is available and can be used only when an LDAP
service provider is used. There is a Security_Authentication
property in the JMSAdmin.config (see Figure 1) file, which can
take one of three values:

• None (default)

• Simple

• CRAM-MD5.

If no value is specified then none is used as the default.

How to create the supported JMS objects

First start the JMSAdmin tool by running the JMSAdmin.bat
file provided in your WebSphere MQ root installation directory
under Java\bin. If running on a Windows platform, you should
see a command prompt for the Initial Context displayed (see
Figure 2).

The tool accepts commands called ‘Administration
Commands’. The commands are also called verbs and eight
types of verb are available:

1 ALTER – change at least one property of an administered
object.

Figure 2: The Initial Context prompt

 36 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

2 DEFINE – create and store an administered object.

3 DISPLAY – display properties of one or more stored
administered object.

4 DELETE – remove one or more administered object.

5 CHANGE – change the current context.

6 COPY – make a copy of a stored administered object.

7 MOVE – alter the name of a stored administered object.

8 END – close the administration tool.

As mentioned earlier, you can create objects that will be
stored in a JNDI namespace using the following command
syntax:

DEFINE TYPE(name) [property]

For example:

DEFINE QCF(myQCF) qmanager(myQMgr)

In the above example, DEFINE is a verb and QCF is the
keyword for an MQQueueConnectionfactory JMS object.

Once objects are created, as shown in the previous step, we
can display the contents of the context using the DISPLAY

Figure 3: DISPLAY CTX command

 37© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

CTX command (see Figure 3).

After creating a QCF, when we display the contents of the
initial context we can see the details of what is in the context.
Figure 3 shows that there are two objects in context, one of
which has been created by the QCF.

The .bindings object is the bindings file that stores the objects
created. This is because the com.sun.jndi.fscontext.
RefFSContextFactory and /C:/JNDI-Directory settings were
selected in the JMSAdmin.config file to use the file system for
JNDI storage.

The .bindings file can be located in the directory specified in
the provider URL and in this case it is in /C:/JNDI-Directory. If
this file is deleted, then all objects created will be lost.

To end the JMSAdmin session simply use the END verb at the
InitCtx> command prompt.

There are a plethora of properties available to configure for the
supported MQ JMS objects. Which are used also depends on
what kind of JMS application is written to interact with them.

Covering all the properties is beyond the scope of this article,
but a more detailed and complete guidance on using the
JMSAdmin tool can be found in Chapter 5 of the WebSphere
MQ Using Java manual. This manual is available for free
download at www.elink.ibmlink.ibm.com/public/applications/
publications/cgibinpbi.cgi?CTY=US&FNC=SRX&PBL=
SC34606602.

Security titbit: how to use the WebSphere MQ JMSAdmin tool with
client-side security with WebSphere Application Server V4

It is possible to use the JMSAdmin application to provide
client-side security with WebSphere Application Server V4
with minor modifications to the JMSAdmin.bat script file
shown below to specify the use of a sas.client.props file:

**

@echo off

 38 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

rem --

rem IBM MQSeries JMS Admin Tool Execution Script

rem for Windows NT

rem

rem Note that the properties passed to the java

rem program are defaults, and should be edited

rem to suit your installation if necessary

rem --

SET CLIENTSAS=-Dcom.ibm.CORBA.ConfigURL=file:/C:/mqjava/sas.client.props

Echo Using: %CLIENTSAS%

java %CLIENTSAS% -DMQJMS_LOG_DIR="%MQ_JAVA_INSTALL_PATH%"\log -

DMQJMS_TRACE_DIR="%MQ_JAVA_INSTALL_PATH%"\trace -

DMQJMS_INSTALL_PATH="%MQ_JAVA_INSTALL_PATH%"

com.ibm.mq.jms.admin.JMSAdmin %1 %2 %3 %4 %5

**

The security can be provided by editing the properties file
named in the JMSAdmin.bat (in this case /C:/mqjava/
sas.client.props) to either prompt the user for a valid username
and password combination or embed the username and
password within the properties file. For example, to prompt the
user, the sas.client.props file should be edited to specify a
value:

com.ibm.CORBA.loginSource=stdin

When the JMSAdmin application executes, the user will be
prompted for a valid password as follows:

**

C:\mqjava>JMSAdmin -cfg jmsadmin3.config

Using : -Dcom.ibm.CORBA.ConfigURL=file:/C:/mqjava/sas.client.props

5648-C6Ø (c) Copyright IBM Corp. 2ØØ2. All Rights Reserved.

Starting MQSeries classes for Java(tm) Message Service Administration

InitCtx> DISPLAY CTX

 Contents of InitCtxRealm/Cell Name: myCellName

User Identity: myUserid

User Password: ******** // a password that is not displayed

 [D] oskararg javax.naming.Context

 a T com.ibm.mq.jms.MQQueue

 [D] domain javax.naming.Context

 [D] jta javax.naming.Context

 [D] ejsadmin javax.naming.Context

 39© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 a T1 com.ibm.mq.jms.MQQueue

 [D] jdbc javax.naming.Context

 SecurityCurrent

com.ibm.ejs.security.util.SecurityCurrentRef

 IncBean

com.ibm.websphere.examples.Inc._IncHome_Stub

 [D] jndi javax.naming.Context

 1Ø Object(s)

 6 Context(s)

 4 Binding(s), 2 Administered

InitCtx> END

Stopping MQSeries classes for Java(tm) Message Service Administration

**

If the user wants to embed the username and password
(myUserid and myPassword) in the properties file they can
use:

com.ibm.CORBA.loginSource=properties

com.ibm.CORBA.loginUserid=myUserid

com.ibm.CORBA.loginPassword=myPassword

The userid/password combination is now passed automatically
without user intervention.

Rohit Bhasin
Software Engineer, WebSphere MQI GUI Test Team
IBM Hursley (UK) © IBM 2005

How to migrate Plug-In node from WMQI to WBIMB

One of the limitations of message flow design is that it can
process messages from only one input queue specified in the
MQInput node. When the requirement is to read a ‘trigger’
message from one queue and then read the data message
from another queue, you will need the MQGet SupportPac
IA09 from WMQI. Unfortunately, at the time I was dealing with
this design requirement, IA09 was not refreshed on the

 40 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

SupportPac Web site (http://www-306.ibm.com/software/
integration/support/supportpacs/category.html#cat1) for use
in WBIMB. I could not even find it. So I had to migrate the node
myself.

Plug-In node written for the previous releases should work
under WBIMB because the API has not changed significantly,
only the representation of the node changes from Control
Center to the Eclipse plug-ins.

Step 1: create a simple message flow in Version 2.1 that
consists of the node. This is just a trick since the migration
utility provided works at the message flow level. The message
flow doesn’t even need to be working.

Step 2: detach the file and save it in a folder, for example,

c:\migratenode.

Step 3: shut down the WBIMB toolkit.

Step 4: run the mqsimigratemsgflows command as follows:

C:\Program Files\IBM\WebSphere Business Integration Message

Brokers\eclipse>mqsi

Figure 1: mqsimigratemsgflows command

 41© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

migratemsgflows -p MQGet -d c:\migratenode

Migrating export file c:\migratenode\Test.xml.

Figure 2: Resource Navigator in WBIMB toolkit

Figure 3: Project

 42 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Migrating message flow TEST.

Migrating message flow MQGet.

Migration completed with no errors.

Refer to the report file C:\Program Files\IBM\WebSphere
Business Integration Message
B r o k e r s \ e c l i p s e \ m q s i m i g r a t e m s g f l o w s .
report.txt for details of what was imported – see Figure 1.

Figure 4: New project

When opening the workbench, you need to refresh and rebuild
the project.

Step 5: start the WBIMB toolkit.

Step 6: the MQGet project will appear in the Resource

 43© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 5: Project names

Navigator. Open the project by right-clicking on Open Project
– see Figure 2.

Figure 6: Create a blank plug-in project

 44 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Step 7: the MQGet project will looks like Figure 3.

The following steps create a new Plug-In node project for our
migrated MQGet node.

Step 8: on the WBIMB toolkit, choose File/New/Other.

Step 9: in the New Project dialog choose Message Flow
Node Development and then Message Flow Plug-in Node
Project – see Figure 4.

Step 10: click the Next button; enter Migrated Nodes in the
Category name (this name will appear after the migration on
your toolkit).

Step 11: click Next; enter project names as com.ibm.MQGet,
leave the use default checked – see Figure 5.

Figure 7: Available projects

 45© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 8: The com.ibm.MQGet project

Figure 9: Move dialog box

 46 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Figure 10: Projects

Figure 11: Replace GIFs

 47© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Step 12: click Next, and check the Create a blank plug-in
project – see Figure 6.

Step 13: click Finish; the project will then appear in the
Resource Navigator as shown in Figure 7.

Step 14: open up the com.ibm.MQGet project – see Figure 8,

Step 15: move the MQGet.msgnode from the MQGet project

Figure 12: GIF location

into the com.ibm.MQGet by right-clicking on the
MQGet.msgnode and select move. In the move dialog box,
choose the com.ibm.MQGet project, as shown in Figure 9.

Step 16: click OK, the resource navigator should look like
Figure 10.

Step 17: next we need to move the tailored gif files from v2 to
replace the vanilla gif files of Version 5. Open up the NT files
folder form version v2 (in my case the path is C:\Documents
and Settings\alexau\My Documents\Gap\IA09 MQGet\NT)
and open the icon folder of Version 5 (the path is C:\Program
Files\IBM\WebSphere Business Integration Message
Brokers\eclipse\workspace\com.ibm.MQGet\icons\full\clcl16).
Replace the MQGet.gif of Version 5 in the folders clc16 and
obj16, with the MQGet.gif file from Version 2 – see Figure 11.

 48 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Step 17: also replace the MQGet.gif in the obj30 folder (path
is C:\Program Files\IBM\WebSphere Business Integration
M e s s a g e
Brokers\eclipse\workspace\com.ibm.MQGet\icons\full\obj30)
with the MQGet30.gif – see Figure 12.

Figure 13: Copy folder

Figure 14: Node available

 49© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Step 18: rename it to MQGet.gif after the move.

Step 19: copy the MQGet.lil from Version 2 to the bin lib (path
is C:\Program Files\IBM\WebSphere Business Integration
Message Brokers\bin) of Version 5.

Step 20: close the toolkit.

Step 21: copy the folder com.ibm.MQGet from C:\Program
Files\IBM\WebSphere Business Integration Message
Brokers\eclipse\workspace into the plug-in folder of eclipse,
C:\Program Files\IBM\WebSphere Business Integration
Message Brokers\eclipse\plugins – see Figure 13.

Step 22: restart the Configmgr and Broker services to refresh
the MQGet.lil file.

Step 23: start the toolkit; note the Migrated Node – you should
now have the MQGet node available for use – see Figure 14.

Step 24: you can delete the project com.ibm.MQGet and the
project MQGet, they are no longer needed.

Alex Au
IT Architect
IBM Global Services (USA) © Alex Au 2005

MQ news

ILOG has announced a new connector that will
enable its ILOG JRules (part of its BRMS
product line) to add business rule management
functionality to Business Process Management
(BPM) solutions built on WebSphere Business
Integration workflow software. The resulting
solution will allow business users to make policy
changes within a BPM application with minimal
IT involvement for faster business response
times to customer demands, regulations, and
competitive threats.

The new connector provides seamless
integration between ILOG JRules and
WebSphere Business Integration software,
including WebSphere MQ Workflow, allowing
users to simply link their business rules with
workflow tasks into the MQ Workflow
Buildtime tool.

For further information contact:
ILOG, 1080 Linda Vista Ave, Mountain View,
CA 94043, USA.
Tel: (650) 567 8000.
URL: www.ilog.com/corporate/releases/us/
041109_ibm.cfm.

* * *

Compuware has announced the extension of its
Vantage application service management
product to include two new tools that help
assure predictable service levels before a
newly-developed project is rolled out. The tools
are predictive analysis and full performance
assessment.

The Vantage product interoperates with the
company’s QACenter tools and displays results
from both on one console during performance

assessment. The products run on and measure
numerous platforms, including WebSphere and
WebSphere MQ, SAP, Peoplesoft, Citrix,
DB2, Oracle, BEA, Microsoft .Net, J2EE
applications, and some systems from HP.

For further information contact:
Compuware, One Campus Martius, Detroit,
MI 48226, USA.
Tel: (313) 227 7300.
URL: www.compuware.com/products/
vantage/default.htm.

* * *

Active Reasoning has announced the availability
of new IT compliance auditing capabilities for its
Compliance and Change Management
solutions.

The solutions provide companies with an audit
trail by monitoring and reporting internal
changes to critical IT components such as
database and messaging applications that
support financial flows and transactions.

Active Reasoning’s IT compliance capabilities
now report database schema changes to
Oracle, DB2, and Microsoft SQL Server
databases as well as detect internal
configuration changes to WebSphere’s
messaging server.

For further information contact:
Active Reasoning, 1005 Elwell Court, Palo
Alto, CA 94303, USA.
Tel: (650) 404 9900.
URL: www.activereasoning.com.

* * *

x xephon

	Generating and executing commands in batch for MQ on z/OS
	Integrating COBOL applications with Microsoft BizTalk Server 2004 - part 2
	Display tool for WebSphere MQ objects on Unix
	Introduction to, and usage of, the WebSphere MQ JMS Admin tool
	How to migrate Plug-In node from WMQI to WBIMB
	MQ news

