
© Xephon Inc 2005

March 2005

69

In this issue

3 Connecting queue managers
using Internet Pass Thru

15 Directing SYSPRINT output to
an HFS file

17 CICS TS 3.1 and WebSphere
Studio Enterprise Developer

18 Start/stop message flow from
another message flow

33 WebSphere Studio Asset
Analyzer

43 Optimizing a WebSphere MQ
Workflow environment

46 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon Inc 2005. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.

Printed in England.

Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Colin Smith
E-mail: info@xephon.com

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the material
it contains. Neither Xephon nor the contributing
organizations or individuals accept any liability of
any kind howsoever arising out of the use of such
material. Readers should satisfy themselves as to
the correctness and relevance to their
circumstances of all advice, information, code,
JCL, scripts, and other contents of this journal
before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in the
UK; £261.00 in Europe; £267.00 in Australasia
and Japan; and £265.50 elsewhere. In all cases
the price includes postage. Individual issues,
starting with the July 2000 issue, are available
separately to subscribers for $33.75 (£22.50)
each including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the rate
of $160 (£100 outside North America) per
1000 words and $80 (£50) per 100 lines of code
for the first 200 lines of original material. The
remaining code is paid for at the rate of $32 (£20)
per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues in
Acrobat PDF format, can be downloaded from
our Web site at www.xephon.com/mq; you will
need to supply a word from the printed issue.

 3© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Connecting queue managers using Internet
Pass Thru

INTRODUCTION

Since Version 5.3, WebSphere MQ (WMQ) has been able to
encrypt messages when transferring them from one queue
manager to another. Messages that are held in queues are still
not encrypted. This may be sufficient for WMQ systems in the
intranet of a company, because it is much easier to sniff
network transfers than to break into a WMQ system and have
a look at the queue contents. But if a queue manager has to
be connected to queue managers at other companies, the
situation is much more complicated.

This article describes a solution to the problem of connecting
the WMQ queue managers of two companies in a secure way,
via the Internet. The solution uses the IBM SupportPac MS81
(WMQ Internet Pass Thru – IPT) to connect the systems.

THE SUPPORT PAC MS81

Reasons for using Internet Pass Thru

In general, connections between different companies have to
pass several firewalls and demilitarized zones (DMZ). A DMZ
is an area belonging to a company network, but it is separated
from the intranet and Internet by firewalls. Connections through
the DMZ should never pass both firewalls at once. Instead of
direct connections, a system within the DMZ should act as a
hub. This hub needs two network interfaces – one to the
internal and one to the external firewall. Direct routes between
the two firewalls should never exist.

One solution to setting up a WMQ hub within the DMZ would
be a single queue manager on a DMZ system (see Figure 1).
This queue manager may route messages from the corporate

 4 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

network to the customer through the Internet and back. During
the transfer over the network, messages may be (and should
be) encrypted. At least the connection through the Internet
has to be encrypted – eg using a Virtual Private Network
(VPN). Solutions using VPNs are possible for any version of
WMQ. Nevertheless a hub queue manager needs transmission
queues, to hold messages, until these can be sent to the
destination queue manager. Messages in these transmission
queues are not encrypted.

A DMZ is, by definition, an insecure network, whose job is to
capture intruders and prevent them for entering the intranet.
In such an environment it is not acceptable to store messages
anywhere without encryption. Several companies provide
solutions that are able to encrypt messages in WebSphere
MQ queues, but mostly these are quite expensive. The use of
SSL channel security in WMQ 5.3 encrypts messages during
the transmission, but these are still readable when stored in

Figure 1: Securing the Internet connection with VPN

 5© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

the queues. This may be OK for the sending and receiving
queue managers in the intranet of your own company and on
the customer site, but it is not acceptable at all for hub queue
managers in a DMZ.

How Internet Pass Thru works

The IBM SupportPac MS81 (WMQ Internet Pass Thru) is a
tool that acts like a proxy server for WebSphere MQ connections
and does not store any messages locally. It is free of charge,
and it could solve our problem. It pretends to be a WMQ queue
manager but maps IP addresses and ports, so the participating
queue managers do not need to know the real connection data
of the partner systems. The IPT is also able to encrypt
messages on the way to other IPTs – even queue managers
with Version 5.2 and lower may use this selection. Additionally,
IPT does not store any messages on the system as a hub
queue manager would do in transmission queues.

Figure 2: Securing the connection to the customer using IPTs

 6 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

The configuration shown in Figure 2 describes a WMQ queue
manager – not necessarily a Version 5.3 system – which
connects to a local IPT. This IPT encrypts and transfers the
messages to another IPT on a DMZ system. The DMZ IPT
itself is connected to a third IPT on the customer’s side. We
do not need to know whether there is another DMZ (although
usually there will be) on the customer’s side.

If the customer is not able, or does not want, to set up his own
IPT, it is also possible to use a VPN connection through the
Internet to the customer. The DMZ IPT will then connect to the
customer’s queue manager using an unencrypted channel
through the VPN (see
Figure 3). VPN connections between companies often exist
already for other applications like FTP, whereas VPN
connections to the corporate network are unusual. So the
situation described in Figure 3 may be the most used.

Figure 3: Securing the connection using IPTs and VPNs

 7© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Installation of the SupportPac

Download the SupportPac MS81 from the IBM home page and
follow the instructions in the documentation to install the
software. WebSphere MQ Internet Pass Thru comes as a
platform-specific installable package, such as lpp for AIX or
pkg for Sun Solaris.

Configure Internet Pass Thru

It is quite easy to configure the WebSphere MQ Internet Pass
Thru. Define the listener port for incoming requests and the
destination address and port for outgoing connections in a
configuration file, as described in the samples below. Identify
the listener port to the sending queue manager and start the
IPT with this configuration. The destination parameter must fit
the attributes of the channel listener on the receiving queue
manager. Create channels on both queue managers as usual,
but use the address and port of the IPT instead of the channel
listener on the receiving side.

SAMPLES: CONNECTING TWO QUEUE MANAGERS VIA WMQ-IPT

The sample configuration consists of two queue managers,
which have to be connected via one or more IPTs. The first
sample uses one IPT as a gateway between two queue
managers. In the second sample both queue managers are
connected to separate IPTs. The IPTs themselves are
connected together using SSL.

Configure two test queue managers

I created two queue managers on a Windows system. The
queue managers are named QM1 and QM2 and listen to the
ports 1421 and 1422 respectively. WebSphere MQ Internet
Pass Thru is installed on a Sun Solaris system. Each queue
manager has a sender channel to the IPT listener port and a
transmission queue, a receiver channel, a remote queue for
requests, and a local queue for answers. The configuration
files are listed below.

 8 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

QM1
DEFINE QLOCAL (RCVR.FROM.QM2) +

 REPLACE

DEFINE QREMOTE (SND.TO.QM2) +

 DEFPSIST(YES) +

 RNAME(RCVR.FROM.QM1) +

 RQMNAME(QM2) +

 XMITQ(QM2) +

 REPLACE

DEFINE QLOCAL (QM2) +

 USAGE(XMITQ) +

 TRIGGER +

 TRIGTYPE(FIRST) +

 TRIGDATA(QM1.QM2) +

 INITQ(SYSTEM.CHANNEL.INITQ) +

 REPLACE

DEFINE CHANNEL (QM1.QM2) CHLTYPE(SDR) +

 TRPTYPE(TCP) +

 CONNAME('1Ø.1Ø.1Ø4.42(1492)') +

 XMITQ(QM2) +

 REPLACE

DEFINE CHANNEL (QM2.QM1) CHLTYPE(RCVR) +

 TRPTYPE(TCP) +

 REPLACE

QM2
DEFINE QLOCAL (RCVR.FROM.QM1) +

 REPLACE

DEFINE QREMOTE (SND.TO.QM1) +

 DEFPSIST(YES) +

 RNAME(RCVR.FROM.QM2) +

 RQMNAME(QM1) +

 XMITQ(QM1) +

 REPLACE

DEFINE QLOCAL (QM1) +

 USAGE(XMITQ) +

 TRIGGER +

 TRIGTYPE(FIRST) +

 TRIGDATA(QM2.QM1) +

 INITQ(SYSTEM.CHANNEL.INITQ) +

 REPLACE

 9© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

DEFINE CHANNEL (QM2.QM1) CHLTYPE(SDR) +

 TRPTYPE(TCP) +

 CONNAME('1Ø.1Ø.1Ø4.42(1491)') +

 XMITQ(QM1) +

 REPLACE

DEFINE CHANNEL (QM1.QM2) CHLTYPE(RCVR) +

 TRPTYPE(TCP) +

 REPLACE

One Internet Pass Thru used as a hub

In the first sample scenario (see Figure 4) the IPT acts as a
proxy between the two queue managers. There are two route
definitions in the IPT configuration file, to route messages
from QM1 to QM2 and back. In the global section access is
allowed for queue managers (QMgrAccess=true) and client
access is prohibited (ClientAccess=true). See the listing of
the configuration files below for more details.

[global]

CommandPort=1881

Figure 4: Sample with one IPT

 10 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

RemoteShutDown=true

MinConnectionThreads=5

MaxConnectionThreads=1ØØ

IdleTimeout=2Ø

ClientAccess=false

QMgrAccess=true

HTTP=false

HTTPChunking=false

Trace=5

ConnectionLog=true

MaxLogFileSize=5Ø

AccessPW=MQIPT

#

First route definition:

#

[route]

Name=Connection to QM1

Active=true

ListenerPort=1491

Destination=1Ø.1Ø.117.224

DestinationPort=1421

#

Second route definition:

#

[route]

Name=Connection to QM2

Active=true

ListenerPort=1492

Destination=1Ø.1Ø.117.224

DestinationPort=1422

In the sample described above, the IPT acts simply as a router
or proxy. The channels are not encrypted, but the queue
managers need to know the real addresses and ports of their
partner system.

WebSphere MQ Internet Pass Thru requires the Version 1.4
Java run-time environment. WebSphere MQ itself comes with
Java Version 1.3, so you usually have to install the higher
version. On my test system, Java 1.4 was installed in /usr/
j2sdk1.4.2_05. A small script called runipt includes this
directory in the search path and starts WebSphere MQ Internet
Pass Thru. The configuration file is located in the directory /

 11© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

home/mqm/ipt. IPT expects its configuration always in a file
named mqipt.conf.

runipt
The following script starts one IPT instance, which routes
messages between the WebSphere MQ queue managers
QM1 and QM2:

#!/bin/ksh

PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/home/mqm/bin:/usr/bin/X11:/sbin:/

opt/local/bin:/usr/local/bin:.:/usr/j2sdk1.4.2_Ø5/bin

export PATH

nohup /opt/mqipt/bin/mqipt /home/mqm/ipt &

Using two IPTs with a secured connection between

In the second sample I set up an SSL connection between two

Figure 5: Sample with two IPTs

 12 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

IPTs (this is illustrated in Figure 5). Now each queue manager
is connected to a separate IPT. The queue managers do not
see any difference, because both IPTs run on the same Sun
Solaris system. I just created two directories, each with an IPT
configuration file. The IPTs are now connected to a queue
manager on one side and the other IPT on the other side. The
SSL configuration allows any connection, but it is possible to
restrict the access by using attributes like SSLServerDN_O …
etc. See the IPT documentation for all available attributes. I
used the SSL test certificates shipped with WebSphere MQ
Internet Pass Thru, but I also tested it with my own private
certificate. It is also possible to use different certificates for
both IPTs when they are signed by the same Certification
Authorization (CA) body. Keep in mind that the command port
of the second IPT has been changed in order to run two
instances of WebSphere MQ Internet Pass Thru on the same
Sun Solaris system.

Corporate IPT
[global]

CommandPort=1881

RemoteShutDown=true

MinConnectionThreads=5

MaxConnectionThreads=1ØØ

IdleTimeout=2Ø

ClientAccess=false

QMgrAccess=true

HTTP=false

HTTPChunking=false

Trace=5

ConnectionLog=true

MaxLogFileSize=5Ø

AccessPW=MQIPT

#

First route definition:

#

[route]

Name=Connection to QM1

Active=true

ListenerPort=1481

Destination=1Ø.1Ø.117.224

DestinationPort=1421

 13© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

SSLClient=false

SSLServer=true

SSLServerKeyRing=/home/mqm/sslSample.pfx

SSLServerKeyRingPW=/home/mqm/sslSample.pwd

SSLServerCipherSuites=SSL_RSA_WITH_RC4_128_SHA

SSLServerDN_O=*

#

Second route definition:

#

[route]

Name=Connection to DMZ IPT

Active=true

ListenerPort=1492

Destination=1Ø.1Ø.1Ø4.42

DestinationPort=1482

SSLClient=true

SSLClientKeyRing=/home/mqm/sslSample.pfx

SSLClientKeyRingPW=/home/mqm/sslSample.pwd

SSLClientCipherSuites=SSL_RSA_WITH_RC4_128_SHA

SSLClientDN_O=*

SSLServer=false

DMZ-IPT
[global]

Command port changed to run two IPTs

CommandPort=1882

RemoteShutDown=true

MinConnectionThreads=5

MaxConnectionThreads=1ØØ

IdleTimeout=2Ø

ClientAccess=false

QMgrAccess=true

HTTP=false

HTTPChunking=false

Trace=5

ConnectionLog=true

MaxLogFileSize=5Ø

AccessPW=MQIPT

#

First route definition:

#

[route]

Name=Connection to corporate IPT

Active=true

ListenerPort=1491

 14 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Destination=1Ø.1Ø.1Ø4.42

DestinationPort=1481

SSLClient=true

SSLClientKeyRing=/home/mqm/sslSample.pfx

SSLClientKeyRingPW=/home/mqm/sslSample.pwd

SSLClientCipherSuites=SSL_RSA_WITH_RC4_128_SHA

SSLClientDN_O=*

SSLServer=false

#

Second route definition:

#

[route]

Name=Connection to QM2

Active=true

ListenerPort=1482

Destination=1Ø.1Ø.117.224

DestinationPort=1422

SSLClient=false

SSLServer=true

SSLServerKeyRing=/home/mqm/sslSample.pfx

SSLServerKeyRingPW=/home/mqm/sslSample.pwd

SSLServerCipherSuites=SSL_RSA_WITH_RC4_128_SHA

SSLServerDN_O=*

Run the Internet Pass Thru

Both IPTs are started with another small script called run2ipt.

run2ipt
#!/bin/ksh

PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/home/f992953/bin:/usr/bin/X11:/

sbin:/opt/local/bin:/usr/local/bin:.:/usr/j2sdk1.4.2_Ø5/bin

export PATH

nohup /opt/mqipt/bin/mqipt /home/mqm/ipt1 &

nohup /opt/mqipt/bin/mqipt /home/mqm/ipt2 &

More than two IPTs

To set up more than two IPTs is quite easy. Additional IPTs
would have connections only to other IPTs, not to queue
managers. The configuration is similar to the sample above
for the IPT-IPT connection.

 15© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Files

The following files and directories are used in the samples
above:

/home/mqm/ipt

/home/mqm/ipt/errors

/home/mqm/ipt/logs

/home/mqm/ipt/mqipt.conf

/home/mqm/ipt1

/home/mqm/ipt1/errors

/home/mqm/ipt1/logs

/home/mqm/ipt1/mqipt.conf

/home/mqm/ipt2

/home/mqm/ipt2/errors

/home/mqm/ipt2/logs

/home/mqm/ipt2/mqipt.conf

/home/mqm/run2ipt

/home/mqm/runipt

/home/mqm/sslSample.pfx

/home/mqm/sslSample.pwd

Hubert Kleinmanns
Senior Consultant
N-Tuition Business Solutions (Germany) © Xephon 2005

Directing SYSPRINT output to an HFS file

I have found that WebSphere for z/OS customers who are
used to a Unix or NT environment are reluctant to use the
facilities of SDSF, or IOF, to view the SYSPRINT output from
their Application Server regions. They prefer to use vi in a
TELNET session to view the STDOUT and STDERR streams.
These streams have been redirected to SYSPRINT, and it is
possible to redirect them to files in the HFS for viewing using
such an editor.

The JCL below is for an Application Server region that uses

 16 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

this facility. A new SET statement has been added to point to
the LOGPATH directory, and the SYSPRINT DD statement
has been changed to point to a file in the LOGPATH/servername
directory, in this case named:

thx.log.d&LYYMMDD..t&LHHMMSS

Note that the extra period (full stop) between the date and time
variables is not an error, but rather a requirement of the JCL
syntax, and is necessary to terminate the first variable, where
&LYYMMDD will be replaced with the local date in YYMMDD
format and &LHHMMSS will be replaced by the local time in
HHMMSS format. Using the local date and time ensures a
unique file for each instance of the Application Server region
that is started. The PATHMODE subparameter sets the file
mode to 775, the PATHOPTS subparameter OWRONLY
opens the file for WRITE access, and the subparameter
OCREAT indicates that if the file does not already exist, it will
be created.

The JCL for the Application Region is:

//JXB7884S PROC IWMSSNM='JXB7884S',PARMS='-ORBsrvname '

// SET CBCONFIG='/WebSphere/TSDCONF'

// SET LOGPATH='/WebSpherelogs'

// SET RELPATH='controlinfo/envfile'

//WSDAS1S EXEC PGM=BBOSR,REGION=ØM,TIME=NOLIMIT,

// PARM='/ &PARMS &IWMSSNM'

//BBOENV DD PATH='&CBCONFIG/&RELPATH/&SYSPLEX/&IWMSSNM/current.env'

//CEEDUMP DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSPRINT DD PATHMODE=(SIRWXU,SIRWXG,SIROTH),

// PATHOPTS=(OWRONLY,OCREAT),

// PATH='&LOGPATH/JXB7884S/thx.log.d&LYYMMDD..t&LHHMMSS'

In the above example, if the file specified by the SYSPRINT
DD statement is created on 03 June 2004 at 3:30:40pm, the
PATH parameter will resolve to /WebSphere/logs/JXB7884S/
thx.log.d030604.t153040, which will be a unique file for this
execution of this server instance.

John Bradley
Systems Programmer
Meerkat Computer Services (UK) © Xephon 2005

 17© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

CICS TS 3.1 and WebSphere Studio Enterprise
Developer

While IBM was celebrating the 35th birthday of its popular
transaction monitor, CICS, it also continued to enhance its
functionality. On 30 November 2004, IBM announced a new
release of CICS Transaction Server, Version 3.1, with a
general availability date of 25 March 2005.

IBM also announced, as a statement of direction, an intention
to add CICS TS 3.1 support to WebSphere Studio Enterprise
Developer (WSED) during 2005. This is meant to allow
developers with skills in COBOL, PL/I, Java, and Web services
to reuse, build, and deploy components that integrate into an
enterprise-wide SOA (Service-Oriented Architecture). WSED
is to provide the visual development environment supporting
Web services, SOAP for CICS, and aggregation of CICS
resources.

IBM considers WSED to be a strategic development
environment, now with added CICS TS V3 support. An
optimized CICS data exchange capability and the ability to
use a single development tool (such as WSED) provides
enhanced application transformation capabilities and increases
developer productivity.

New application development tools will extend WSED to allow
the composition of CICS application assets to form business
service functions that can be used as Web services. This will
enable an external business process engine, such as
WebSphere Business Integration Server Foundation, to
externally orchestrate business service functions implemented
in CICS. This means that sites can extend the use of their
CICS applications in a service-oriented manner, integrating
their CICS investments into other parts of the business.

IBM will provide a batch program for use by automated
software build procedures, such as JCL, which will input the

 18 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

XML Schema Definition (XSD) or language structure
declaration to generate client Web Services Description
Language (WSDL) and converters for the CICS Web services
implementation.

Elena Nanos
IBM Certified Solution Expert in CICS Web Enablement and MQSeries
Zurich NA (USA) © Xephon 2005

Start/stop message flow from another message
flow

Message flows process messages as they arrive on the input
queue. This is how message flows are built to work. However,
some clients would like the message flow to process the
messages only after a certain event has occurred. This event
might be the input queue reaching a certain depth, a trigger
message arriving, or a certain time occurring. For requirements
like these, we have to alter the behaviour of message flows
and find a way to start/stop the message flow when the event
occurs.

The most common approach, as far as stopping the message
flow is concerned, is to act on the input queue, making it get-
inhibited (or get-enabled to start it). This means that the
message flow is as good as stopped because it cannot get any
messages from the input queue. Refer to MQ Update, issue
28, October 2001 for details of issuing a PCF command from
a message flow to change the attribute of the input queue.

The problem with this approach is that we are not really
stopping or starting the message flow, we are just manipulating
the input queue’s attribute to mimic the message flow start/
stop. Because the input queue’s attribute was changed to get-
inhibited, and the message flow is still running and trying

 19© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

constantly to read messages from it, we will have quite a
number of complaining mqrc2016 log messages issued.
These messages may (or may not) be undesirable, depending
on how the monitoring tool is set up.

To avoid this pitfall, we need to really stop and start the
message flow, not mimic the action, by actually issuing the
start/stop commands. We know this can be done because we
can start/stop message flows from the toolkit. We just have to
figure out where to issue the command and what the command
looks like!

In the manual Messagebroker Application Programming we
read that the mqsicreatebroker command is sent to the
SYSTEM.BROKER.ADMIN.QUEUE – so this is where we will
issue the command. The next thing we need to figure out is
what the command looks like. This of course can be done by
the trick of changing the attribute of the
SYSTEM.BROKER.ADMIN.QUEUE to get-inhibited, such that
the broker will not be able to get the command message from
the queue. On the toolkit, open the Broker Administration
perspective, right-click on the message flow, and issue a stop
command on the Domain view. We can then use the RfhUtil
to read the message, which looks like:

<Broker label="WBRKBKR" uuid="589ebc8a-ffØØ-ØØØØ-ØØ8Ø-d315c1bØ6539"

version="1">

 <ExecutionGroup uuid="599ebc8a-ffØØ-ØØØØ-ØØ8Ø-d315c1bØ6539">

 <Stop>

 <MessageFlow uuid="17Ø8ecb3-ØØØ1-ØØØØ-ØØ8Ø-

bf6cb11a439Ø"/>

 </Stop>

 </ExecutionGroup>

</Broker>

Similarly, we can use the same method to get the start
command syntax:

<Broker label="WBRKBKR" uuid="589ebc8a-ffØØ-ØØØØ-ØØ8Ø-d315c1bØ6539"

version="1">

 <ExecutionGroup uuid="599ebc8a-ffØØ-ØØØØ-ØØ8Ø-d315c1bØ6539">

 <Start>

 <MessageFlow uuid="17Ø8ecb3-ØØØ1-ØØØØ-ØØ8Ø-

bf6cb11a439Ø"/>

 20 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 </Start>

 </ExecutionGroup>

</Broker>

As shown above, the command is very simple and
straightforward. The outermost tag is <Broker>, with
<ExecutionGroup> as child, and then the command either
<Start> or <Stop>, followed by the <MessageFlow>.

The only challenge left is to figure out what are the uuids for
a given Broker name, ExecutionGroup name, and the
MessageFlow name. This can be done in two ways: either by
issuing queries to the Broker to find out all the uuids, or by
simply querying the CMDB database directly.

To query the uuids from the Broker is not difficult, but it is an
iterative process. First we have to find out the uuid of the
Broker, and with the information returned from the reply
message we can then query the uuids of the ExecutionGroup,
and then, in turn, that of the MessageFlow.

To start the process, issue a command as follows:

<Broker uuid="?"/>

The command is to be issued as a request message, and it
specifies the replyToQueue to retrieve the reply. Be careful
when doing this with the RfhUtil. The RfhUtil is a wonderful
tool, but there is a little bug in it (the latest version may have
fixed this bug!). Even after you specify the MsgType as ‘1
Request’ on the MQMD panel, it still issues the message as
a ‘8 Datagram’ – see Figure 1.

The result of issuing the command as a datagram instead of
request is that the reply message will fail as indicated by the
<OverallCompletionCode result="failure"> tag. The simplest
way may be by using a simple message flow to put the
command.

A successful reply message will be as follows:

<Broker uuid="589ebc8a-ffØØ-ØØØØ-ØØ8Ø-d315c1bØ6539" label="WBRKBKR"

version="1">

 21© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 <OverallCompletionCode result="failure">

 <LogEntry catalog="BIPv5ØØ" number="2Ø45">

 <Insert type="string" text="WBRKBKR"/>

 <Insert type="string" text="589ebc8a-ffØØ-ØØØØ-

ØØ8Ø-d315c1bØ6539"/>

 <Insert type="string" text="WBRKQM"/>

 <Insert type="string" text="?"/>

 </LogEntry>

 <LogEntry catalog="BIPv5ØØ" number="2Ø87">

 <Insert type="string" text="WBRKBKR"/>

 <Insert type="string" text="589ebc8a-ffØØ-ØØØØ-

ØØ8Ø-d315c1bØ6539"/>

 </LogEntry>

 </OverallCompletionCode>

</Broker>

Note that even though the <OverallCompletionCode
result="failure">, this is OK for the Broker uuid query since the

Figure 1: The MQMD panel

 22 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Broker uuid is returned.

With the Broker uuid found, we can then query the uuids for
the ExecutionGroup, as follows:

<Broker uuid="589ebc8a-ffØØ-ØØØØ-ØØ8Ø-d315c1bØ6539" label="WBRKBKR"

version="1">

 <Report recursive="no">

 <AllExecutionGroups/>

 </Report>

</Broker>

The reply message will look like this:

<Broker uuid="589ebc8a-ffØØ-ØØØØ-ØØ8Ø-d315c1bØ6539" label="WBRKBKR"

version="1">

 <OverallCompletionCode result="success">

 <LogEntry catalog="BIPv5ØØ" number="2Ø56">

 <Insert type="string" text="WBRKBKR"/>

 <Insert type="string" text="589ebc8a-ffØØ-ØØØØ-ØØ8Ø-

d315c1bØ6539"/>

 </LogEntry>

 </OverallCompletionCode>

 <ExecutionGroupCompletionCode uuid="599ebc8a-ffØØ-ØØØØ-ØØ8Ø-

d315c1bØ6539" result="success">

 <LogEntry catalog="BIPv5ØØ" number="4Ø4Ø">

 <Insert type="string" text="default"/>

 <Insert type="string" text="599ebc8a-ffØØ-ØØØØ-ØØ8Ø-

d315c1bØ6539"/>

 </LogEntry>

 </ExecutionGroupCompletionCode>

 <ReportResponse>

 <ExecutionGroup uuid="599ebc8a-ffØØ-ØØØØ-ØØ8Ø-d315c1bØ6539"

userTraceLevel="debugTrace" traceLevel="none"

userTraceFilter="debugTrace" traceFilter="none" label="default"

unnamedUserTraceLevel="none" unnamedTraceLevel="none" consoleMode="off"/

>

 </ReportResponse>

</Broker>

I have only the default execution group defined in my Broker.
(As a sidetrack, something that you may or may not have
noticed: once you create an ExecutionGroup and deploy
message flows to it, even though the message flow within it
may not be running or may have been removed, each
DataFlowEngine can still take up to 57KB of memory. This
uses up a lot of memory on my workstation, and that’s why I
keep only one ExecutionGroup.) With the uuid of the

 23© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

ExecutionGroup (in my case it’s the default), we then further
query the uuids for the MessageFlows that run in that
ExecutionGroup:

<Broker uuid="589ebc8a-ffØØ-ØØØØ-ØØ8Ø-d315c1bØ6539" label="WBRKBKR"

version="1">

 <ExecutionGroup uuid="599ebc8a-ffØØ-ØØØØ-ØØ8Ø-d315c1bØ6539">

 <Report recursive="no">

 <AllMessageFlows/>

 </Report>

 </ExecutionGroup>

</Broker>

The reply message will look like this:

<Broker uuid="589ebc8a-ffØØ-ØØØØ-ØØ8Ø-d315c1bØ6539" label="WBRKBKR"

version="1">

 <OverallCompletionCode result="success">

 <LogEntry catalog="BIPv5ØØ" number="2Ø56">

 <Insert type="string" text="WBRKBKR"/>

 <Insert type="string" text="589ebc8a-ffØØ-ØØØØ-ØØ8Ø-

d315c1bØ6539"/>

 </LogEntry>

 </OverallCompletionCode>

 <ExecutionGroupCompletionCode uuid="599ebc8a-ffØØ-ØØØØ-ØØ8Ø-

d315c1bØ6539" result="success">

 <LogEntry catalog="BIPv5ØØ" number="4Ø4Ø">

 <Insert type="string" text="default"/>

 <Insert type="string" text="599ebc8a-ffØØ-ØØØØ-ØØ8Ø-

d315c1bØ6539"/>

 </LogEntry>

 </ExecutionGroupCompletionCode>

 <ExecutionGroup uuid="599ebc8a-ffØØ-ØØØØ-ØØ8Ø-d315c1bØ6539">

 <ReportResponse>

 <MessageFlow uuid="Ød59c48a-ffØØ-ØØØØ-ØØ8Ø-

bf6cb11a439Ø" userTraceLevel="none" traceLevel="none"

userTraceFilter="debugTrace" traceFilter="none" label="Test_failure"

additionalInstances="Ø" commitCount="1" commitInterval="Ø"

coordinatedTransaction="no" StatsArchivalOn="inactive"

StatsArchiveThreadDataLevel="none" StatsArchiveNodeDataLevel="none"

StatsSnapPublicationOn="inactive" StatsSnapThreadDataLevel="none"

StatsSnapNodeDataLevel="basic" StatsArchiveOutputFormat="usertrace"

StatsSnapOutputFormat="xml" StatsArchiveReset="no"

StatsArchiveAccountingOrigin="none" StatsSnapAccountingOrigin="none"/>

 <MessageFlow uuid="6c6fcdb3-ØØØ1-ØØØØ-ØØ8Ø-

bf6cb11a439Ø" userTraceLevel="none" traceLevel="none"

userTraceFilter="debugTrace" traceFilter="none" label="Test_failure"

additionalInstances="Ø" commitCount="1" commitInterval="Ø"

coordinatedTransaction="no" StatsArchivalOn="inactive"

 24 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

StatsArchiveThreadDataLevel="none" StatsArchiveNodeDataLevel="none"

StatsSnapPublicationOn="inactive" StatsSnapThreadDataLevel="none"

StatsSnapNodeDataLevel="none" StatsArchiveOutputFormat="usertrace"

StatsSnapOutputFormat="usertrace" StatsArchiveReset="no"

StatsArchiveAccountingOrigin="none" StatsSnapAccountingOrigin="none"/>

 <MessageFlow uuid="Configuration"

userTraceLevel="none" traceLevel="none" userTraceFilter="debugTrace"

traceFilter="none" label="ConfigurationMessageFlow"

additionalInstances="Ø" commitCount="1" commitInterval="5"

coordinatedTransaction="no" StatsArchivalOn="inactive"

StatsArchiveThreadDataLevel="none" StatsArchiveNodeDataLevel="none"

StatsSnapPublicationOn="inactive" StatsSnapThreadDataLevel="none"

StatsSnapNodeDataLevel="none" StatsArchiveOutputFormat="usertrace"

StatsSnapOutputFormat="usertrace" StatsArchiveReset="no"

StatsArchiveAccountingOrigin="none" StatsSnapAccountingOrigin="none"/>

 <MessageFlow uuid="PubSubControl"

userTraceLevel="none" traceLevel="none" userTraceFilter="debugTrace"

traceFilter="none" label="PubSubControlMsgFlow" additionalInstances="Ø"

commitCount="1" commitInterval="5" coordinatedTransaction="no"

StatsArchivalOn="inactive" StatsArchiveThreadDataLevel="none"

StatsArchiveNodeDataLevel="none" StatsSnapPublicationOn="inactive"

StatsSnapThreadDataLevel="none" StatsSnapNodeDataLevel="none"

StatsArchiveOutputFormat="usertrace" StatsSnapOutputFormat="usertrace"

StatsArchiveReset="" StatsArchiveAccountingOrigin="none"

StatsSnapAccountingOrigin="none"/>

 </ReportResponse>

 </ExecutionGroup>

</Broker>

As you can see, using message flow to issue the command
and interpret the reply messages can be quite complicated.
The other approach is much simpler. We first query the CMDB
database for the uuid for the Broker, and then that of the
ExecutionGroup, and the MessageFlow.

The uuid of Broker can be found in the table CBROKER; the
uuid of ExecutionGroup can be found in the table CEG; and
the uuid of the MessageFlow can be found in table
CMSGFLOW.

Armed with this information, we can begin coding the message
flow. The input to this message flow will consist of the name
of the Broker, the ExecutionGroup, and the MessageFlow,
and the action (whether we want to start or stop it). The
simplest form will be in XML format as shown:

 25© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

<MFCmd>

 <BrokerName>WBRKBKR</BrokerName>

 <EGName>default</EGName>

 <MFName>StopMsgFlow</MFName>

 <Action>Stop</Action>

</MFCmd>

or:

<MFCmd>

 <BrokerName>WBRKBKR</BrokerName>

 <EGName>default</EGName>

 <MFName>StopMsgFlow</MFName>

 <Action>Start</Action>

</MFCmd>

The message flow itself is very simple and is shown in Figure
2.

The compute node Read_Config_MFCmd will have the CMDB
specified as Data Source; if you are running the Broker in the
same box as the ConfigMgr, the ODBC has already been
defined – see Figure 3.

The ESQL is also very simple; first we set up the message as
a request and specify where the ReplyToQ the Broker will put
the reply:

CALL CopyMessageHeaders();

 -- CALL CopyEntireMessage();

 -- make sure MQMD is set correctly

 -- MsgType = request

 -- ReplyToQ specified

 SET OutputRoot.MQMD.MsgType = 1;

 SET OutputRoot.MQMD.ReplyToQ = 'ALEX.RESP';

The next task is to get the uuids from the CMDB database
tables:

Declare BKUUID, EGUUID, MFUUID char;

 -- database read to get the UUIDs from CMDB

 SET Environment.Variables.Result[] = (SELECT B.CUUID FROM

Database.alexau.CBROKER AS B where B.CNAME =

InputBody.MFCmd.BrokerName);

 SET BKUUID = Environment.Variables.Result[1].CUUID;

 SET Environment.Variables.Result[] = (SELECT E.CUUID FROM

 26 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Database.alexau.CEG AS E where E.CBROKERCUUID = BKUUID and E.CNAME =

InputBody.MFCmd.EGName);

 SET EGUUID = Environment.Variables.Result[1].CUUID;

 SET Environment.Variables.Result[] = (SELECT M.CUUID FROM

Database.alexau.CMSGFLOW AS M where M.CBROKERCUUID = BKUUID and

M.CEGCUUID = EGUUID and M.CNAME = InputBody.MFCmd.MFName);

 SET MFUUID = Environment.Variables.Result[1].CUUID;

The final thing is to create the command:

-- make the command now

 SET OutputRoot.XML.Broker.(XML.attr)label =

InputBody.MFCmd.BrokerName;

 SET OutputRoot.XML.Broker.(XML.attr)uuid = BKUUID;

 SET OutputRoot.XML.Broker.(XML.attr)version = '1';

 SET OutputRoot.XML.Broker.ExecutionGroup.(XML.attr)uuid =

Figure 2: The message flow

 27© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

EGUUID;

 case InputBody.MFCmd.Action

 when 'Stop' then

 SET

OutputRoot.XML.Broker.ExecutionGroup.Stop.MessageFlow.(XML.attr)uuid =

MFUUID;

 when 'Start' then

 SET

OutputRoot.XML.Broker.ExecutionGroup.Start.MessageFlow.(XML.attr)uuid =

MFUUID;

 else

 SET

OutputRoot.XML.Broker.ExecutionGroup.Status.MessageFlow.(XML.attr)uuid =

MFUUID;

 end case;

The command message will then be output to the
SYSTEM.BROKER.ADMIN.QUEUE. We can read the reply
message from the specified ReplyToQ and interpret the
result. A successful stop command will have the following

Figure 3: Compute Node Properties

 28 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

response from the Broker:

<Broker uuid="589ebc8a-ffØØ-ØØØØ-ØØ8Ø-d315c1bØ6539" label="WBRKBKR"

version="1">

 <OverallCompletionCode result="success">

 <LogEntry catalog="BIPv5ØØ" number="2Ø56">

 <Insert type="string" text="WBRKBKR"/>

 <Insert type="string" text="589ebc8a-ffØØ-ØØØØ-ØØ8Ø-

d315c1bØ6539"/>

 </LogEntry>

 </OverallCompletionCode>

 <ExecutionGroupCompletionCode uuid="599ebc8a-ffØØ-ØØØØ-ØØ8Ø-

d315c1bØ6539" result="success">

 <LogEntry catalog="BIPv5ØØ" number="4Ø4Ø">

 <Insert type="string" text="default"/>

 <Insert type="string" text="599ebc8a-ffØØ-ØØØØ-ØØ8Ø-

d315c1bØ6539"/>

 </LogEntry>

 </ExecutionGroupCompletionCode>

 <ExecutionGroup uuid="599ebc8a-ffØØ-ØØØØ-ØØ8Ø-d315c1bØ6539">

 <StopResponse>

 <MessageFlow uuid="17Ø8ecb3-ØØØ1-ØØØØ-ØØ8Ø-

bf6cb11a439Ø"/>

 </StopResponse>

 </ExecutionGroup>

</Broker>

Similarly for the start command:

<Broker uuid="589ebc8a-ffØØ-ØØØØ-ØØ8Ø-d315c1bØ6539" label="WBRKBKR"

version="1">

 <OverallCompletionCode result="success">

 <LogEntry catalog="BIPv5ØØ" number="2Ø56">

 <Insert type="string" text="WBRKBKR"/>

 <Insert type="string" text="589ebc8a-ffØØ-ØØØØ-ØØ8Ø-

d315c1bØ6539"/>

 </LogEntry>

 </OverallCompletionCode>

 <ExecutionGroupCompletionCode uuid="599ebc8a-ffØØ-ØØØØ-ØØ8Ø-

d315c1bØ6539" result="success">

 <LogEntry catalog="BIPv5ØØ" number="4Ø4Ø">

 <Insert type="string" text="default"/>

 <Insert type="string" text="599ebc8a-ffØØ-ØØØØ-ØØ8Ø-

d315c1bØ6539"/>

 </LogEntry>

 </ExecutionGroupCompletionCode>

 <ExecutionGroup uuid="599ebc8a-ffØØ-ØØØØ-ØØ8Ø-d315c1bØ6539">

 <StartResponse>

 <MessageFlow uuid="17Ø8ecb3-ØØØ1-ØØØØ-ØØ8Ø-

bf6cb11a439Ø"/>

 29© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 </StartResponse>

 </ExecutionGroup>

</Broker>

As you may have noticed in the case statement of the ESQL,
we can also display the status of the message flow by issuing
the following command:

 <MFCmd>

 <BrokerName>WBRKBKR</BrokerName>

 <EGName>default</EGName>

 <MFName>StopMsgFlow</MFName>

 <Action>Status</Action>

</MFCmd>

The reply message will be as follows:

<Broker uuid="589ebc8a-ffØØ-ØØØØ-ØØ8Ø-d315c1bØ6539" label="WBRKBKR"

version="1">

 <OverallCompletionCode result="success">

 <LogEntry catalog="BIPv5ØØ" number="2Ø56">

 <Insert type="string" text="WBRKBKR"/>

 <Insert type="string" text="589ebc8a-ffØØ-ØØØØ-

ØØ8Ø-d315c1bØ6539"/>

 </LogEntry>

 </OverallCompletionCode>

 <ExecutionGroupCompletionCode uuid="599ebc8a-ffØØ-ØØØØ-ØØ8Ø-

d315c1bØ6539" result="success">

 <LogEntry catalog="BIPv5ØØ" number="4Ø4Ø">

 <Insert type="string" text="default"/>

 <Insert type="string" text="599ebc8a-ffØØ-ØØØØ-

ØØ8Ø-d315c1bØ6539"/>

 </LogEntry>

 </ExecutionGroupCompletionCode>

 <ExecutionGroup uuid="599ebc8a-ffØØ-ØØØØ-ØØ8Ø-d315c1bØ6539">

 <StatusResponse>

 <MessageFlow uuid="Ød59c48a-ffØØ-ØØØØ-ØØ8Ø-

bf6cb11a439Ø" status="Started"/>

 </StatusResponse>

 </ExecutionGroup>

</Broker>

Voila! It is this simple.

Of course, we can enhance the message flow to read the reply
message from the ReplyToQ and evaluate the response as
successful or not, this can be done by extending the message
flow as shown in Figure 4.

 30 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

The compute node copy_MsgID_CorrelID copies the MsgId to
the CorrelId such that we can use the MQGet node to read the
reply message with the same CorrelId (remember we issue
our command as a request. The Broker will copy the MsgId to
the CorrelId of the MQMD and generate a new MsgId for the
reply message). We will also simulate some delay to give the
Broker enough time to execute the command and issue a
reply message:

-- CALL CopyMessageHeaders();

 CALL CopyEntireMessage();

 SET OutputRoot.MQMD.CorrelId = OutputRoot.MQMD.MsgId;

 -- do some delay here for the response message to appear in

the RESP queue

 DECLARE I,J INTEGER;

 SET I = 1;

 SET J = 5ØØØ;

 WHILE I < J DO

 SET I = I + 1;

 END WHILE;

To use the MQGet PlugIn node in WBIMB, refer to MQ Update
January 2005, issue 67, How to migrate Plug-In node from
WMQI to WBIMB. On the MQGet Node, we check the

Figure 4: Extended message flow

 31© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

selectByCorrelId box, as shown in Figure 5.

The compute node Check_CompCode will check the status of
the command reply and route the reply message to either the
success or failure queue:

CALL CopyMessageHeaders();

 -- CALL CopyEntireMessage();

 CREATE LASTCHILD OF Environment.Variables.InRecord DOMAIN

'XML' PARSE

(InputRoot.BLOB.BLOB,InputRoot.MQMD.Encoding,InputRoot.MQMD.CodedCharSetId);

 If

Environment.Variables.InRecord.XML.Broker.OverallCompletionCode.(XML.attr)result

= 'success' then

 SET

OutputLocalEnvironment.Destination.MQ.DestinationData.queueName =

'ALEX.MFCMD.OK';

 else

 SET

OutputLocalEnvironment.Destination.MQ.DestinationData.queueName =

'ALEX.MFCMD.FAIL';

Figure 5: Checking the selectByCorrelId box

 32 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 end if;

 -- switch the message body to that read from RESP queue

 SET OutputRoot.XML = null;

 SET OutputRoot.BLOB.BLOB = InputRoot.BLOB.BLOB;

The project provided serves only as an example; you can
modify it according to your design requirements.

Alex Au
IT Architect
IBM Global Services (USA) © Alex Au 2005

Why not share your expertise and earn money at the
same time? MQ Update is looking for program code,
JavaScript, REXX EXECs, etc, that experienced
users of WebSphere MQ have written to make their
life, or the lives of their users, easier. We are also
looking for explanatory articles, and hints and tips,
from experienced users. We would also like
suggestions on how to improve MQ performance.

We will publish your article (after vetting by our expert
panel) and send you a cheque, as payment, and two
copies of the issue containing the article once it has
been published. Articles can be of any length and
should be e-mailed to the editor, Trevor Eddolls, at
trevore@xephon.com.

A free copy of our Notes for Contributors, which
includes information about payment rates, is available
from our Web site at www.xephon.com/nfc.

 33© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

WebSphere Studio Asset Analyzer

WebSphere Studio Asset Analyzer is in essence an asset
management product. The WebSphere Studio Asset Analyzer
consists of a number of components. Its main engine is a DB2
database that contains over 100 tables. It is also a set of
parsers that scan source code, on-line resources, and Web
components, along with a set of programs that take the
scanned information and load it into the database tables.
While performing the load, various relationships are formed
through the various components. You can then view all of the
collected information using a Web browser.

To use WebSphere Studio Asset Analyzer, first of all identify
the production resources at your site. You can then let
WebSphere Studio Asset Analyzer scan the resources that
you want to know more about. MVS resources and non-MVS
(Web-based) resources can be scanned. MVS resources
consist of source code, JCL, IMS, and CICS region information.
These resources can exist in partitioned datasets or in source
code change management systems. Scanners for MVS
resources execute on MVS itself. Non-MVS resources consist
of J2EE applications (including WAR and EAR files), Java
source and byte code, XML, HTML, and others. These
resources can reside on the appropriate native file system or
in Rational ClearCase. The distributed scanners, termed
crawlers, for non-MVS resources run on Microsoft Windows
machines.

After WebSphere Studio Asset Analyzer has stored the
information about these resources in the database, the
information can be shared across an enterprise by all of your
application development teams. As a WebSphere application,
WebSphere Studio Asset Analyzer uses JavaServer Pages
(JSP), servlets, and HTML to display information in a Web
browser for you. This interface keeps the details of the
database queries hidden from view, allowing you to concentrate

 34 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

on the information you are looking for and freeing you from the
task of writing detailed queries to obtain it. When you view the
information in the database, the pages displayed in a Web
browser reflect the logical organization of the various
applications in your company. Through a series of links built
on the relationships between the components that WebSphere
Studio Asset Analyzer discovered during the scan, you can
drill down from the highest level of your application to a single
data element at the very lowest level of the application. Visual
representations show how your programs, data files, batch
jobs, and transactions are related. WebSphere Studio Asset
Analyzer should help your application development teams to:

• Understand components and their relationships.

• Analyse the impact of a proposed change.

• Scope and develop project plans.

• Gather connector information for MVS programs.

• Extract business logic from existing code.

The product is aimed at members of the following groups
querying the database to obtain information that can help
them do a better job: project managers, programmer analysts,
application developers, and quality assurance testers.

They can use WebSphere Studio Asset Analyzer in any phase
of the application development process. For companies that
are looking at expansion of existing applications to a Web-
based audience, either internally or externally, WebSphere
Studio Asset Analyzer provides the ability to fully explore the
inter-relationships between components in an application so
that application development project leaders or group
managers can prepare project plans and make the appropriate
assignment of resources.

Application programmers can then use the information that
was gathered, initially by their team leaders, to manage their
workload. They can complete their assignments more quickly
because of the easy way in which WebSphere Studio Asset

 35© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Analyzer enables them to drill down to understand the details
of their application programs.

As you would expect, WebSphere Studio Asset Analyzer
requires a number of other program products to support it.
WebSphere Studio Asset Analyzer has four core functions
that can be accessed using a Web browser. They are:

• Inventory collection.

• Application exploration with change impact analysis.

• Connector building.

• Help.

Inventory collection forms the foundation of WebSphere Studio
Asset Analyzer. You identify all of the production application
resources at your site. You can then ask WebSphere Studio
Asset Analyzer to process your site’s application code and
load it. During inventory collection, WebSphere Studio Asset
Analyzer’s parsers scan the resources that you specify.

The information is then stored in a DB2 database. WebSphere
Studio Asset Analyzer collects inventory information for both
mainframe and distributed applications. Inventory is collected
for OS/390 or z/OS components by examining source code
from partitioned datasets (either PDS or PDSE), IBM Source
Control Library Manager (SCLM), or ChangeMan. The types
of source code that can be scanned are COBOL, PL/I, and
Assembler, including copybooks and macros, JCL, procs, and
control cards, CICS and IMS on-line regions, transactions,
and subsystems. The mainframe scanners execute as batch
jobs, which are submitted from either a Web browser or an
ISPF session.

Inventory for Web-based components is collected from
filesystems, including the hierarchical file system of Unix
System Services, any accessible WebDAV server, or Rational
ClearCase. The distributed scanners are crawlers that run on
Windows workstations.

 36 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

As components are scanned into the database, WebSphere
Studio Asset Analyzer establishes the logical connections that
exist among them.

For example, copybooks are related to the programs that use
them. In addition, programs are related to the batch jobs or on-
line transactions that execute them. Ultimately, application
data files are linked to both.

By using the Explore function to view application components
and their relationships after they have been loaded into the
database, you can start at a very high level to obtain an
overview of the general characteristics of your application.
You can also drill down into the details of specific components.
This can go down as far as the data element (that is a
WORKING-STORAGE field) level of an application.

You can search for components by looking for a specific one
or by selecting one from a list of components. If you need to,
you can search for components by their name, application
name, project name, or site. You can then use WebSphere
Studio Asset Analyzer’s Explore function to perform a change
impact analysis. You can determine what components are
affected based on changes to field declarations, a section of
program source code, an entry point signature, etc. You can
create projects within WebSphere Studio Asset Analyzer to
save the results of your exploration.

By having the ability to explore how the components of your
application fit together, you can gain a better understanding of
how you can maintain or improve your application. The ease
with which you can generate a list of components that are
affected by a change can reduce your project determination
time and resulting maintenance or new development costs.

You can also use WebSphere Studio Asset Analyzer to obtain
and build connector information for CICS and IMS programs.
It is easy to gather input and output data structures of
transactions. For each transaction, WebSphere Studio Asset
Analyzer generates a summary report, a COBOL copybook

 37© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

containing the input/output data structures, and then allows
you to format this information into a form that you can import
into a connector-building tool, such as WebSphere Studio
Application Developer. Connectors provide the interface
through which data moves between a Web interface and your
business logic on MVS. Your business logic can be in
applications such as COBOL, PL/I, or Assembler. By using
connectors, you can enable authorized users on the Web to
obtain their account data from a database on the host.
Frequently, connectors drive existing transactions and provide
input and output data to them. To build those connectors, you
need an easy way to find useful transactions, and to quickly
identify the input and output data structures of those
transactions. WebSphere Studio Asset Analyzer helps you
quickly gather this information and puts it in a form that you
can import into a connector-building tool such as WebSphere
Studio Application Developer Integration Edition. For each
transaction, WebSphere Studio Asset Analyzer generates a
summary report and a COBOL copybook containing the
transaction’s input/output data structures.

WebSphere Studio Asset Analyzer also provides you with
extensive on-line help information. There is a product overview,
a reference, tutorials, set-up information, PDF manuals, and
a variety of general information such as a glossary.

There are several unique words and phrases associated with
WebSphere Studio Asset Analyzer that you need to be familiar
with. The four I will discuss briefly are:

• Site.

• Application.

• Concatenation set.

• Asset or artefact, as it is sometimes termed.

A site is the focal point or name by which an organization
wants to be known to accommodate that organization’s
production application source code.

 38 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

During inventory collection, WebSphere Studio Asset Analyzer
associates the site with each of the components that are
scanned into the database. It then organizes the components
based on a hierarchy, which is built as a tree structure below
the declared site.

WebSphere Studio Asset Analyzer on-line help defines an
application as, ‘a user-defined grouping of components. This
can have CICS transactions, IMS transactions, and members
as part of an application.’

An application is another level that WebSphere Studio Asset
Analyzer builds as part of its hierarchy. An application name
will exist below the site name in the logical hierarchy. The
application entry represents any grouping of source, JCL,
CICS, and other components that you choose. It is possible to
build application names in WebSphere Studio Asset Analyzer
that include cross-application groupings as needed by your
site’s requirements.

WebSphere Studio Asset Analyzer gives you the ability to
define components and associate them with these corporate
entities either when you load the database or afterwards.
WebSphere Studio Asset Analyzer even allows you to create
hierarchies of applications.

A concatenation set is an ordered list of libraries to be
searched to resolve references to included source. An example
would be JCL procs, Assembler macros, or COBOL copybooks.
During inventory collection, WebSphere Studio Asset Analyzer
attempts to resolve the location of each of the included
components found in the main programs. A concatenation set
is the equivalent of the datasets used in a SYSLIB DD in a
batch compile or specified in the ORDER parameter of a
JCLLIB statement. In a similar manner, WebSphere Studio
Asset Analyzer uses a top-down search through the libraries
defined in the concatenation set to determine the appropriate
member to use.

 39© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

WebSphere Studio Asset Analyzer’s online help defines an
asset as, ‘a programming asset, such as a file, an object,
documentation, or code’.

They include, but are not limited to:

• Programs.

• Run units – batch jobs.

• CICS transactions.

• Datasets.

• Data stores.

• DDnames.

WebSphere Studio Asset Analyzer even considers applications,
concatenation sets, and projects to be assets.

When you take an inventory of distributed assets, tools like
scanners and analysers identify, analyse, and classify
components such as Java and HTML files and then store
information about these components in a database.
WebSphere Studio Asset Analyzer uses scanners to find
distributed assets on enterprise servers where code
components are maintained:

• Filesystems including local and remote Windows
filesystems, the hierarchical filesystem of Unix System
Services, and mapped AIX filesystems.

• Configuration management systems including Rational
ClearCase, PVCS, CVS, and CMVC.

• WebSphere Application Server 4.0 Advanced Edition
installations.

A scanner will start searching at predefined locations on an
enterprise server and scan recursively from these locations.
These initial start points are termed ‘scanning roots’. The scan
process can be started by user command or as part of a
schedule set by the administrator. WebSphere Studio Asset

 40 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Analyzer provides over 40 analysers that understand the
structure and contents of distributed assets, including Java
sources, Java bytecode, C++, JavaServer Pages (JSP) files,
HTML, XML, and text files. These domain-specific analysers
examine the structure of physical components, files for
example, and logical components such as Java classes to
determine various pieces of information. Some examples are:

• Resource-specific semantic attributes.

• Textual information.

• Keywords and relations among the components.

• The Java analyser extracts semantic features like class
name, imports, package, and methods from Java
components.

These are then stored in attributes such as the package
attribute, so that you can query about all classes that are part
of a specific Java package. There will also be stored the free-
text attribute, which has the textual information delimited by
spaces that you might want to search for. These words are
indexed so that you can quickly retrieve resources containing
them.

After the structure and contents of assets have been analysed,
the assets are organized into categories such as containers,
Java assets, or Web assets. Users can explore the categories
to discover what is available in the enterprise server and to
find reuse candidates and code examples that are relevant to
their work.

For WebSphere Studio Asset Analyzer you need certain
software on the host, certain software on each client, and, if
you use the distributed assets support in WebSphere Studio
Asset Analyzer, certain software on a Windows server.

To install and use WebSphere Studio Asset Analyzer, you
must have the following software installed on your host with
WebSphere Studio Asset Analyzer. You need z/OS Version 1

 41© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Release 1 or later, or OS/390 Version 2 Release 10 or later. In
either case, you must install the optional feature Security
Server or an equivalent security product before people use
WebSphere Studio Asset Analyzer.

You also need DB2 for OS/390 Version 7 or later, with its
optional feature Net.Data for OS/390 Version 2.2 with PUT0112
or higher applied. If you use Version 7.1 of DB2 and Net.Data
7.1, you need to apply PTF UQ62108. You must also install
and configure the JDBC application support by using the RRS
attachment facility (RRSAF). Or you need DB2 for z/OS
Version 8 or later.

You also need one of the following, but remember that this
software is optional if your install configuration includes
WebSphere Application Server for Windows on your Windows
server:

1 WebSphere Application Server for OS/390 Version V4.0.0,
including Java Development Kit V1R3 with PTF UQ62958.

2 DB2 access using JDBC WebSphere Application Server
for z/OS V5.0.0 enabled.

If you plan to use the IMS support in WebSphere Studio Asset
Analyzer, the following software must be installed on the host
system. You need IMS/ESA Database Manager Version 5 or
later, and IMS/ESA Transaction Manager Version 5 or later.
You also need one of the following:

• IMS Library Integrity Utilities for z/OS V1 or later.

• IMS Library Management Utilities Version 1 or later.

If you intend to use the CICS support in WebSphere Studio
Asset Analyzer, CICS Transaction Server Version 1 Release
3 or later with PTF UQ48250 must be installed on the host
system.

If you are going to use the distributed assets support in
WebSphere Studio Asset Analyzer then you need a number of
pieces of software installed on your Windows server as well.

 42 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

You must have one of the following versions of Windows:

• Microsoft Windows XP Professional with Service Pack 1
or later.

• Windows 2000 Professional.

• Windows NT Version 4 with SP4 or later.

You also need:

• The IBM DB2 Universal Database for Windows Runtime
Client Version V7 or V8 as required by WebSphere
Application Server. The level of this client should be the
same as that of your host system. IBM recommends that
you use the V8 client with the V8 database. You need DB2
Connect Personal Edition.

• The Java Runtime Environment (JRE) V1.3.1 or later.

If you want to run WebSphere Studio Asset Analyzer with a
configuration that does not require WebSphere Application
Server on MVS, you must have the following software installed
as well – WebSphere Application Server Advanced Edition
V4.0.3 or later, or WebSphere Application Server Enterprise
V5.0, fixpack 3 or later, or IBM HTTP Server.

You must have Microsoft Internet Explorer 5.5 or later installed
on your workstation to access WebSphere Studio Asset
Analyzer. ActiveX must be enabled to support scalable vector
graphics.

Below is a list of useful publications, and their publication
numbers, from IBM that relate to the WebSphere Studio Asset
Analyzer :

• Brochure – GC18-9126-00

• Program Directory – GI10-8546-00

• Getting Started – GC18-9290-01

• Quick Tour – GC18-9291-01

• Taking an Inventory – SC18-9292-01

 43© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Optimizing a WebSphere MQ Workflow
environment

IBM’s WebSphere MQ Workflow product (currently at Version
3.5) is designed to support long-running business process
workflows as they interact with systems and people. IBM
claims that it allows users to bring systems and people into a
managed process integration environment for EAI, B2Bi,
BAM, and BPM solutions, built to a service-oriented architecture
based on standards. It runs on z/OS, AIX, HP-UX, Sun Solaris,
and Windows platforms.

Something that is associated with business integration
methodologies, process automation, and business-level
monitoring in real-time is going to turn into a cumbersome
beast – and it’s quite likely that there are going to be
performance issues. This article looks at just a few areas that
can be addressed to, hopefully, improve performance.

• Messages and Codes – SC31-8959-00

• Size and Implement Code Changes – SC18-9298-00

• Create Connector Information for a COBOL CICS
Application – SC18-9295-01

• Create Connector Information for a COBOL IMS Application
– SC18-9296-01

• Searching Distributed Assets for Reuse – SC18-9297-01

• Configuration and Migration Guide – SC18-9108-02

• License Information – GC18-7913-00.

John Bradley
Systems Programmer
Meerkat Computer Services (UK) © Xephon 2005

 44 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Performance issues usually come down to two simple areas
– did you design properly in the first place, and are you using
it now in the way it was designed?

The initial design is very important. Moving away from the
initial test system to a live system really involves spreading
things out. If files and logs are on the same physical disk, there
will be contention on the disk and performance will suffer. If the
logs fill up, Workflow itself can be abended. In fact, it’s best to
install Workflow on a different node (or filesystem) from the
one WebSphere is on.

Where a large number of clients connect to the default queue
manager it is better to create a separate queue manager to act
as a host to the clients. This queue manager then passes the
requests to the Workflow queue manager.

Should you use blocks or subprocesses? A subprocess is a
piece of executable code designed to be called from other
processes. In general, blocks are better in performance terms
than subprocesses.

What database are you using? If it’s DB2, then it needs to be
optimized. That means running runstats and rebinds regularly.
If you are using Oracle, perform DBMS schema analysis on a
regular basis and ensure that there is enough space for table
spaces.

Once everything is up and running, it is important to monitor
what is happening to maintain optimum performance.

There is a performance capacity planning measurement called
the Basic Workflow Unit (BWU). IBM provides a SupportPac
to help users understand how expensive their source is. This
allows users to make changes in order to reduce this value –
and then test their change.

Associated with this is the fact that the BWU calculation allows
users to calculate their Flow Definition Language (FDL) costs.

If performance is below what you anticipated, MQSeries
tracing can be turned on.

 45© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Code from individual articles of MQ Update, and
complete issues in PDF format, can be accessed on
our Web site, at:

www.xephon.com/mq

You will be asked to enter a word from the printed
issue.

As well as tracing, you can use logging to identify problems.
Your choices are circular logging or linear logging. With
circular logging, the old logs are re-used after a period of time.
Linear logging just keeps writing the log files. This means that
space calculations must be performed to ensure that the log
space is large enough.

Using WMQ monitoring means that you are informed when
important queues (eg EXEXMLINPUTQ) are full or channels
are in a state other than active. It’s also possible to monitor the
MQ processes, the listeners, and queue managers. This
helps with error handling.

Databases can also be monitored. This will identify when they
are filling up. Database processes, and database instances,
can also be monitored.

WAS (WebSphere Application Server) can be monitored too
– again to identify errors and recover from them.

Auditing can also be an issue. With FULL auditing, it can be
better to write the information to a database rather than MQ.

There are, of course, other areas to consider, but these
provide a good place to start.

Independent Consultant (UK) © Xephon 2005

MQ news

Systinet has announced the release of Systinet
Server for IBM WebSphere MQ, the latest
addition to the company’s standards-based
Web services enablement platform for Java, C/
C++, and Message-Oriented Middleware
(MOM) applications.

The Systinet Server will interoperate
WebSphere MQ applications with Web
services without the need to install any
proprietary middleware hardware or software.

Systinet Server for IBM WebSphere MQ adds
an abstraction layer that preserves all of the
functionality of the MQ application while
providing unique support for important Web
service standards, including WS-
ReliableMessaging, WS-Eventing, WS-
Addressing, and WS-Security. Customers also
have the option to incorporate SOA governance
and business services life-cycle management
with the latest release of the Systinet Registry.

The latest version also features a Content-
Based Routing (CBR) Web service that creates
routing scenarios based on message content.

For further information contact:
URL: www.systinet.com/news/in_the_news/
article&id_ele=70.

* * *

Entrust has announced Version 7.0 of TruePass
for WebSphere. The Entrust 7.0 system, a
component of the Entrust Secure Identity
Management Solution, provides authentication,
digital signatures, and encryption for

WebSphere Application Server 5.0 and
WebSphere Portal Server 5.0.

The Entrust Secure Identity Management
Solution provides a tightly-integrated security
solution for identity and access management.

The Entrust TruePass software is a zero-
footprint solution for strongly authenticating
users and protecting transactions with digital
signatures and encryption.

For further information contact:
URL: www.entrust.com/identity_management/
index.htm.

* * *

IBM has renamed DB2 Information Integrator
products. In future they will be known as IBM
WebSphere Information Integrator.

There are no product changes: ie no technology
change, nor changes in product prerequisites,
nor any changes in product packaging, licensing,
or pricing.

DB2 Information Integrator Content Edition
becomes WebSphere Information Integrator
Content Edition; DB2 Information Integrator
Classic Federation becomes WebSphere
Information Integrator Classic Federation, and
so on.

For further information contact your local IBM
representative.

* * *

x xephon

	Connecting queue managers using Internet Pass Thru
	Directing SYSPRINT output to an HFS file
	CICS TS 3.1 and WebSphere Studio Enterprise Developer
	Start/stop message flow from another message flow
	WebSphere Studio Asset Analyzer
	Optimizing a WebSphere MQ Workflow environment
	MQ news

