
© Xephon Inc 2005

April 2005

70

In this issue

3 z/OS and WMQ performance
information

4 Going beyond event-based MQ
monitoring

12 WebSphere MQ performance
15 Message validation with

WebSphere Business
Integration Message Broker

29 Creating error dumps on Unix
43 MQSeries checklist
47 MQ news

Current Support
 
Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.



    2

MQ Update

© Xephon Inc 2005. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.

Printed in England.

Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Colin Smith
E-mail: info@xephon.com

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the material
it contains. Neither Xephon nor the contributing
organizations or individuals accept any liability of
any kind howsoever arising out of the use of such
material. Readers should satisfy themselves as to
the correctness and relevance to their
circumstances of all advice, information, code,
JCL, scripts, and other contents of this journal
before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in the
UK; £261.00 in Europe; £267.00 in Australasia
and Japan; and £265.50 elsewhere. In all cases
the price includes postage. Individual issues,
starting with the July 2000 issue, are available
separately to subscribers for $33.75 (£22.50)
each including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the rate
of $160 (£100 outside North America) per
1000 words and $80 (£50) per 100 lines of code
for the first 200 lines of original material. The
remaining code is paid for at the rate of $32 (£20)
per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues in
Acrobat PDF format, can be downloaded from
our Web site at www.xephon.com/mq; you will
need to supply a word from the printed issue.



    3© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

z/OS and WMQ performance information

WebSphere MQ for z/OS provides facilities that collect statistics
and accounting information and record the information in SMF
records.

To identify performance problems, it can be useful to analyse
the data found in SMF type 115 records. Other SMF records
that can help identify problems are the accounting information
in type 116 records and Coupling Facility Activity information
in type 74 records (which can help to identify performance
problems with shared WebSphere MQ queues).

The areas where problems can occur are:

• Queue manager – there may be problems with the basic
queue manager parameter specifications, assignment of
queues to page sets, assignment of page sets to buffer
pools, applications commit activity, and incorrect queue
index specifications.

• Buffer pool manager – there may be problems with the use
and availability of buffers in each buffer pool, the size
specified for specific buffer pools, the I/O activity to
pagesets on DASD, synchronous and asynchronous write
activity (both exceeding thresholds and in-use pages
during commit), and the characteristics of messages
assigned to buffer pools.

• Log manager – there may be problems with backout
activity, allocation of active logs, messages written to
active logs, messages written to archive logs, and
checkpoint activity.

• Server – there may be problems with DB2 server calls,
DB2 server delays, DB2 server deadlocks and ABENDs,
and other areas that indicate DB2 performance problems.

• Shared queue and shared queue cluster – problems are
identified by examining SMF type 74 records, although



    4 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Going beyond event-based MQ monitoring

Every business transaction is a process comprising related,
interdependent, and often highly-complex events. A breakdown
within any event, at any point in the transactional process flow,
may set off a chain reaction that can disrupt business operations
and cost companies millions.

Ensuring the availability and reliability of transactional
processes is crucial for today’s real-time business. At a
minimum, this requires on-demand visibility into business
application process flows from end-to-end across the entire IT
infrastructure. Real-time event-based monitoring tools can
provide a degree of insight into transactions and the complex
events that comprise them start-to-finish.

To fully ensure near-zero latency, however, just seeing what’s
happening right now isn’t enough. What you need is the
equivalent of a crystal ball that lets you see what’s coming in
order to take pre-emptive action before failure strikes. While
there may not be actual crystal balls out there, today you can
get close to this kind of predictive ability by going beyond
simple event-based monitoring.

Going beyond event-based monitoring means re-thinking the
way events are defined and generated, and leveraging new
technologies that allow events from WebSphere MQ to be
dynamically correlated in a variety of ways with events from
other systems across the application infrastructure – such as

some initial evidence will be provided by type 115 records.
Coupling facility structure definitions and usage for
WebSphere MQ shared queue structures will be where
the problems lie.

Stephen Hare (USA) © Xephon 2005



    5© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

other middleware platforms, Enterprise Systems Management
tools (ESMs), databases, Web and application servers, and
even operating systems.

A SOLID FOUNDATION

Event-based monitoring has long been the foundation for
monitoring the individual technology components of the
complex infrastructures that support the flow of integrated
enterprise application processes. This approach relies on a
predefined set of events, which are generated from each IT
device or technology component in the IT infrastructure, such
as WMQ. These events can in turn trigger the generation of
other preconfigured events or alerts based on certain conditions
being met, thresholds reached, or rules applied.

In this model, each event is focused solely on the IT device or
technology that generated it, giving a view of only one narrow
segment of the overall infrastructure. Component-specific
monitoring tools track these events to provide insight into the
status of processes within that discrete component of the
infrastructure.

However, the complex heterogeneous IT infrastructures that
support today’s integrated enterprise business applications
typically incorporate a wide variety of disparate technology
components, ie WMQ, Oracle databases, an ERP system like
SAP, an ESM (like IBM’s Tivoli, HP OpenView, or CA Unicenter),
a network communications platform such as TIBCO, operating
systems (including Unix, Windows, Linux, and various
mainframe operating systems), assorted Web servers, etc.
Each one may generate thousands of static events and alerts,
which could, in a complex environment, spawn even more.

It’s easy to become inundated with too much information. The
problem is exacerbated because many of the events and
alerts are extraneous or non-mission critical given other
concurrent IT environment-related conditions. Consider the
volume of events and alerts generated by WMQ alone.



    6 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Thousands of staff-hours are spent dealing with the clutter of
non-essential alerts, but the effort required to get to the root
cause of the problems increases because of the lack of useful
information provided. When you multiply that by the number
of other infrastructure technology components in a typical
enterprise application environment, the number of hours
consumed by weeding through events and alerts is staggering.

Too much information is only part of the problem, though.
While all the pre-configured events that are churned out may
offer accurate data about individual components of the
infrastructure, they can’t provide meaningful insight into the
health and reliability of the overall infrastructure, nor the start-
to-finish integrity of the transactional processes that traverse
it, because they show only the status of processes within their
single technology component scope. So, while event-based
monitoring established a solid foundation, it is one with
inherent limitations when it comes to gaining the consolidated
‘big picture’ end-to-end view that is required for taking proactive
infrastructure management to the next level.

PREDICTIVE FAULT PREVENTION

In the simple event-monitoring paradigm, the event itself is the
primary element. In reality, though, the primary element is, in
fact, the metric or measurement, which may be technology
related but may also be business related. After all, the primary
function of IT is supporting business processes and the users
whose job functions rely on those processes. It’s not enough
simply to alert a front-line employee about a breakdown. In the
real-time business environment, the alert needs to be framed
in the context of the user’s business function so that s/he can
respond appropriately – and immediately.

The main goal of event-based monitoring is rapid problem
detection. While this is fine as far as it goes, it provides
business users with only pre-defined failure notifications,
usually after the service is already degrading, disabled, or
unavailable. Further, it can entirely miss problems that are



    7© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

caused by a convergence of disruptive conditions, bottlenecks,
disconnects, or failures in the interactions between
infrastructure components because these aren’t visible with
component-centric monitoring tools. This can result in non-
compliance with Service Level Agreements (SLAs) as well as
a loss of worker productivity, increased cost to the business,
and potentially lost revenues.

To predict and prevent performance problems, rather than
simply detect the failure after it occurs, it’s vital to understand
how a business process behaves and to track performance
trends associated with that behaviour. By examining the
performance metric trends over time, it’s possible to determine
the thresholds and conditions that presage the likelihood of
process degradation and failure. The ability to collect, correlate,
view, and analyse these performance metrics from the many
disparate systems across the infrastructure is the key to
gaining the deeper level of understanding that is required.

There are many event-based monitoring tools available today
for each of the most commonly deployed infrastructure
components, like WMQ. These component-specific event-
based monitoring systems do a very good job of capturing
events generated by the system they’re designed and built to
monitor. But typically they aren’t equipped to capture and
correlate events generated by external sources (eg other
software components or IT devices like databases, ESMs,
application servers, etc) with events generated by the monitored
component. Achieving any degree of cross-platform process
visibility is extremely complex and typically requires hardwired
event handling and sophisticated programming event-by-
event.

Another limitation of most event-based monitoring systems is
that they are too far removed from the primary or business
metric. After all, they’re designed to monitor technology
functions that may or may not map one-to-one (or at all) with
the business processes they support. Business processes
are made up of a series of transactions, which in turn are made



    8 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

up of a collection of complex events that may occur over a
wide variety of technologies and infrastructure components.

IT LOOKS SIMPLE ON THE SURFACE

In an example of a relatively simple real-time business
transaction, a business user may request a line of credit
inquiry. This can involve:

• Validating the customer’s existence in a DB2 database on
the mainframe, which in turn triggers:

– messages to be sent via WMQ to a SQL Server
database that stores archival customer data to retrieve
the customer’s historical credit rating.

– messages to the accounts receivable application
running on a Unix server to retrieve current account
balances and recent payments recorded in an Oracle
database.

• Delivering all these values to the credit processing
application, running on a Windows platform, which
calculates the available line of credit in real time.

• Returning the result to the business user’s desktop.

This seemingly simple business process transaction requires
over 30 discrete interactions to be successfully completed,
including numerous inter-system messages being generated,
launched, and delivered via the WMQ middleware, and multiple
database accesses and calculations successfully executed
by various applications on five different hardware platforms
running three different operating systems.

All of this is transparent to the business user – he wants just
the results he needs to give to the customer. But if the
transaction is painfully slow in delivering the results to the
business user’s desktop, is it because the server running the
credit application is down, or because the Oracle database is
inundated with table access requests because the accounts



    9© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

payable department always processes its main cheque run on
this day of the month, or is it because the initial WMQ
message to the DB2 database on the mainframe for the
customer ID validation is languishing in a message queue
somewhere?

In the event-based monitoring environment, there would need
to be an event-related alert for each of the 30-plus discrete
inter-system interactions in order to instantly know the answer
to that question. That’s why it’s so difficult and time-consuming
to tailor alerts to meet business users’ needs. It’s also too
time-consuming and labour intensive to accommodate the
real-time pace of business today.

To gain the business metric perspective that will allow predictive
fault prevention requires:

• A consolidated view of business processes end-to-end.

• Drill-down visibility into the actual or root cause of problems.

• The ability to see and interpret the effect of events on the
business.

• The means to capture historical trends and map them to
current activities to predict behaviour changes.

• The agility to adapt quickly.

UNDERSTANDING THE BUSINESS IMPACT

Understanding the business impact of systems requires viewing
them from a holistic, enterprise-wide, business perspective –
how the systems fit together and interoperate to support the
business. The monitoring technology that will provide the
necessary understanding of business processes must view
enterprise systems in terms of how they’re used, rather than
in terms of how they’re built.

Event-based monitoring, by its nature, can view systems only
in terms of how they’re built – because it can view only the
individual component building blocks, not the entire structure.



    10 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

It requires manually combing through all the different
components’ log files to find the intersections of alerts that
represent the root cause of a problem. Plus, there’s typically
so much data that it can be virtually impossible to see the
relationship between events, or determine which combination
of events may share a common cause.

To see systems from the business perspective requires
monitoring and management technology that has the ability to
automatically harvest and correlate deeply granular data from
a wide variety of sources and apply any possible combinations,
permutations, and rules.

DYNAMIC EVENT CREATION

Business perspective monitoring also requires the ability to
dynamically create new events based on business-relevant
criteria. These events need to be user-definable to map to
individual business users’ informational needs. They will
typically comprise related events and alerts generated from
various systems, and should have the ability to incorporate
user-defined business rules, thresholds, conditions, and filters.
Business perspective monitoring technology must also have
the ability to turn correlated results and dynamically-generated
events into actionable policies that deliver precise and relevant
information while simultaneously invoking corrective actions.

In the line of credit transaction example described above,
monitoring technology operating from the business perspective
would be able to gather process status and performance
metrics simultaneously from WMQ, the mainframe OS, the
DB2 database, the Unix server, the SQL Server database, the
Oracle database, and the Windows systems, and to correlate
them in real-time to provide visibility across all the systems
involved.

When the relevant events and alerts from WMQ are correlated
with related events from the other systems involved in the
process, the root cause is instantly visible. If the problem
were, in fact, the WMQ message stalled in the queue, the



    11© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Why not share your expertise and earn money at the
same time? Send us an article. When we publish it, we
will send you a cheque, as payment, and two copies of
the issue containing the article. E-mail the editor,
Trevor Eddolls, at trevore@xephon.com.

monitoring and management technology should also have the
ability to automatically launch the appropriate corrective
measures, whether they be re-routing the message or re-
starting the queue manager, to enable the completion of the
transaction.

To enable predictive prevention of the same problem in the
future, the symptoms and conditions that triggered the problem
can also be correlated and used to anticipate and pre-
emptively preclude an impending problem of the same nature.

BUSINESS AGILITY

Business needs change quickly and constantly. The monitoring
of business-critical metrics must continually adapt to changes
as they occur in order to remain effective.

The right business perspective monitoring technology, with
event correlation and dynamic event creation capabilities,
enables adaptations to be made quickly and easily, even to
processes in live production, to keep pace with changing
business processes. Together, these capabilities provide the
equivalent of a crystal ball to let you see not just what’s
happening now, but to predict and pre-empt costly system
failures and ensure business agility.

David Mavashev
CEO
Nastel Technologies Inc (USA) © Nastel Technologies 2005



    12 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

WebSphere MQ performance

When it comes to deciding which areas are the best ones to
look at as potential ways to improve performance, it usually
boils down to a common set, even though there could be a
number of different platforms involved, from a z/OS mainframe,
almost any sized Unix box, to smaller Windows machines.

NETWORK ISSUES

It doesn’t matter how fast your processor is or how much disk
space is available on the different platforms, if your network is
slow then WMQ will run slowly. The three key areas you’re
interested in here are:

• How fast is the network?

• How much traffic does it have?

• How large are the messages you’re trying to send?

The simple way to increase network speed is to buy higher-
speed networks. Internally this is a possible solution,
particularly as the prices seem to decrease.

You could always try to reduce other network traffic!
Alternatively, you could try to reduce the size of the messages
being sent. A number of vendors supply software that can help
with this.

An application that expects messages from a remote queue
manager that uses a temporary dynamic queue for the reply
queue may cause performance problems if it terminates
before the response is received. That can create a dead-letter
situation. With dead-letter processing, the normal channel
flow is disrupted. WMQ clustering can eliminate many common
causes of dead-letter failures, including queue not found and
queue disabled.

The batchint channel tuning parameter can affect performance.



    13© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

MQ batches up messages and then sends them. Batching
them up reduces the amount of channel processing required
(so that’s a good thing). Typically, if the associated transmission
queue is empty, MQ will end the batch. However, you might
want it to wait a little longer so it can send a larger batch – it
depends on the message arrival rate. So, using the batchint
parameter, you specify that MQ should wait until the specified
batch size is reached before sending the batch. However, if
the message arrival rate is slow, using this parameter can
cause delays.

PROCESSOR ISSUES

The type and number of MQI calls issued impact on the
processor consumption of WMQ applications.

The MQI calls are shown below with the largest consumers of
CPU resources first:

• MQCONN – connects to the queue manager and creates
the required task structures and control blocks.

• MQOPEN – opens a specific queue for processing, may
lock the required resources, and acquires control blocks.

• MQCLOSE – closes the queue, commits resources, frees
locks, and releases control blocks.

• MQPUT – puts a message on a queue (recovery processing
may be required).

• MQGET – gets a message from a queue (recovery
processing may be required).

The simplest way to reduce usage of the CPU is not to make
MQI calls, wherever possible. There are a variety of ways of
doing this, but the most appropriate solution usually depends
on the arrival rate of messages.

It’s also a good idea, where possible, to reduce the size of
messages or to compress messages before they are placed
on a queue.



    14 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Another approach is to cut down the number of messages
sent. If an application is producing a number of messages
fairly frequently, it may improve performance to combine them
into one, single, larger message.

Performance improvements can also be realized by using
intermediate commits for large numbers of messages. Using
periodic commits will make the messages available to the
server application, rather than their all appearing at once with
a single commit. It also reduces the impact on other
applications.

The general consensus of opinion is that sharing queues
within an application domain can be good for performance.

I/O ISSUES

It doesn’t matter how fast the processor is – if an application
is waiting for a disk I/O to complete, the performance will be
poor.

One of the main I/O concerns with WMQ is logging. So that
messages are delivered, and delivered only once, every
message must be logged. And WMQ must ensure that the log
has been committed prior to the work unit’s completion.

Logging is performed only for persistent messages, so the
use of non-persistent messages eliminates logging activity.
The downside, of course, is that non-persistent messages
may never be delivered. Non-persistent messages are not
maintained across a restart of the queue manager. However,
there are good examples where non-persistent messages can
be used.

Smaller or compressed messages need less buffer space to
hold the message, both for message data and for logging.

For large numbers of messages it’s best to perform intermediate
commits. If the number of messages within a unit of work
increases, WebSphere MQ will be unable to keep all the data



    15© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

in internal buffers and will have to write some of it to disk,
which has a negative impact on performance.

Separating logging volumes from data volumes improves
performance by reducing contention on the disks. It also
means that there is not just one single potential point of failure.

CONTENTION ISSUES

A variety of factors can cause contention issues for WMQ
applications.

WMQ supports multiple servers per queue. If you find that
messages are arriving faster than the server can process
them, the solution would be to add servers.

If the number of servers required is greater than the platform’s
capacity then the solution is clustering to provide servers
across multiple systems. This requires that the application be
able to process across multiple servers.

CONCLUSION

There are a number of areas that contribute to the overall
performance of WebSphere MQ. A closer examination will
help you identify where to concentrate your resources.

Nick Nourse
Independent Consultant (UK) © Xephon 2005

Message validation with WebSphere Business
Integration Message Broker

This article gives an overview of message validation. It provides
a general discussion of different kinds of message validation
and how to implement them with WebSphere Business
Integration Message Broker (hereafter called WebSphere BI
MB).



    16 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

INTRODUCTION

WebSphere BI MB is a message broker that deals with
application-defined messages. For many scenarios it is
necessary to validate the messages and their contents before
processing them, after creating them, or before forwarding
them to another application. Message validation in WebSphere
BI MB has been examined as part of the WebSphere Business
Integration for Financial Networks  (abbreviated to WebSphere
BI for FN) product development (for details see http://
www.ibm.com/software/integration/wbifn). WebSphere BI for
FN consists of a base part providing functionality and services
that can be used to more easily create and deliver products on
top of WebSphere BI MB. In addition there are multiple
product extensions that provide value-added functionality. For
example, the Extension for SWIFTNet provides access to the
Secure IP Network, a private network operated by SWIFT (for
details about SWIFT see http://www.swift.com).

SWIFT not only provides the private network, it is also a
standards body that defines standards for messages
interchanged between financial institutions. One such standard
is the FIN standard covering many different messages for
various financial operations – for example payments and
securities.

MESSAGES AND MESSAGE STRUCTURES

Physically, a message is a series of bytes. It is the information
that is exchanged between applications. The messages are
usually interpreted by application programs. To allow this, it is
assumed that the message has a logical structure that is
defined as an interface between the applications. There are
different ways to describe the structure of a message, for
example C or COBOL data structures, tagged data structures,
or self-defining data structures like XML, which is described
by Data Type Definitions (DTDs) or XML schemas.

The data structure usually defines the elements in the byte



    17© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

stream and their logical hierarchy. There can be different
kinds of element within the structures. Elements can be
mandatory or optional. There can be single elements, lists
with a defined number of elements, or lists with an undefined
number of elements. An element may also be a structure of
elements. With this definition, a message in general can
logically be seen as a tree of message elements.

Within a data structure, any element usually also defines
which values can be stored in it. Some ranges for an element
may be defined by the type of element used, for example a 2-
byte positive binary number ranges between 0 and 65,535.
The message definition may further reduce the possible
range.

An actual message then has values for each of the elements
in the structure. The task of message validation is to verify
whether this message content conforms to the defined format
described by the structure. Such data structures are defined
either by the application or by standards organizations.

DIFFERENT KINDS OF MESSAGE VALIDATION

A message can be validated against different criteria. These
can be categorized into the following kinds of message
validation:

• Structural validation

• Field content validation

• Cross-field validation

• Validation against directory information.

Which validation is actually required depends on the business
problem that you need to solve. The following sections describe
each of the message validation forms.

Structural validation

The task of structural message validation is to check whether



    18 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

the message conforms to the physical structure as defined in
the message format. There are different ways that such
validation can be performed. The simplest form for structural
validation is to check the length of the data. It is simple for
fixed-length data structures, like those defined using C or
COBOL structures. Depending on the elements in the data
structure, each element may have to be checked to get the
total length.

Some tag-delimited data structures may have defined field
delimiters – begin tags, end tags, and fill characters. Structural
message validation checks whether these elements in the
byte stream are at the defined place and have the correct
constants.

Further validation can be to check whether all the required
message elements are available, or whether there are elements
in the data that are not allowed. If the structure contains lists
of elements and the number of elements is dynamic, it can be
validated that the number conforms to the allowed range.

Field content validation

Field content validation checks the value of all the fields in a
message. An individual field can have different restrictions
defined:

• A predefined value – this is like a constant or a delimiter
within the message. The values depend on the data type
of the element, for example a number or a character
constant. This kind of data is usually used to identify the
type of the message, or its version number.

• A predefined list of values – there are many fields in
messages that are allowed to carry only a value from a list
of predefined values. Depending on the data type of an
element, this can be character constants or number
constants. For example, an integer field may be limited to
the values 1, 3, and 7.

• A predefined range – this is similar to a predefined list, but



    19© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

it is a simplification to express a set of allowed values,
usually for numbers; for example, the content of an integer
field must have a value in the range from 1 to 13.

• A predefined pattern – for character fields, this is a
common method to describe an open list of elements that
have to conform to a standard, for example a value that
consists of only characters. More sophisticated patterns
are usually needed for other common data structures like
a date, time, or timestamp values.

• A check for correct data type – in many messages that are
exchanged between applications, numbers or binary data
are encoded in characters. A simple check for the correct
data type is usually the test whether a character string
represents an integer. Usually, this could be a combined
test with a predefined pattern, for example five digits and
a range check – a value between 0 and 65,535 for a
positive 2-byte integer.

To allow these checks, the message must first conform to the
structure. The field content validation is then performed on the
logical level of the message.

Cross-field validation

Often the allowed value of one field depends on the content of
other fields. There are different ways that such dependencies
could be defined. Examples are that one element is allowed
only if another field has a specific value. There are also
situations where one field has to contain a value that is
calculated based on other fields, for example one fields has to
contain the sum of all the values within a list. A third example
is a field that contains the number of elements within a
dynamic list of elements.

Cross-field validation checks that such kinds of dependency
between different fields, potentially in different hierarchy levels
of a message, are satisfied for a message.



    20 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Validation against directory information

Some message standards contain elements that are allowed
to contain values, which have to be in a list of constants
published elsewhere. Examples are currencies or country
codes. The allowed values for these elements are usually
defined by an international standard, for example, the
International Standards Organization (ISO) (for details about
ISO and ISO-defined standards see http://www.iso.org). In
other situations, the values have to be in customer-managed
databases. For example, a message can contain the trading
partner of the originator of the message. In this case the
trading partner has to be in the list of allowed trading partners
for the originator.

For validation against such data it is necessary to know the
location of the information and how to access it. There are
many possible locations for such directory information, for
example a flat file, a database table, or an LDAP directory.

MISCELLANEOUS MESSAGE VALIDATION REQUIREMENTS

Beside the different kinds of message validation, there are
other things that have to be taken into account when working
on a message validation solution. These items are:

• Validation standards

• Error codes

• Complete validation.

These topics are further discussed in the following sections.

Validation standards

Some message formats, like the SWIFT FIN format, are
defined as an international standard. Parts of this standard
include message validation rules. These rules define, for
example, which fields are optional. Such standard messages
are also used in different user groups, or within a company for



    21© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

internal communication purposes. In some cases like this,
extended validation rules apply. Such additional rules are
usually stricter than the standard rules, for example the user
group can make a field that is optional in the standard
mandatory for its own purposes.

This means that for validating messages it is not sufficient to
have one set of validation rules for all messages. Instead,
during the processing of any message there must be a
criterion to determine which set of validation rules has to be
used for that message. Such criteria can be coded, as  in
cases where one message flow processes only one kind of
message, or the message must be enriched – for example,
with information in some message headers that allows you to
determine whether it is to be validated against the standard
rules set or a private rules set.

Validation error codes

If the message validation processing concludes that a message
does not conform to the validation rules for any reason, an
error has to be returned to the originating user of the application.
In most cases, the error codes that have to be issued can
freely be defined. But in the case of validation rules in a
standard, the standard sometimes also defines the error
codes that relate to the rule that is violated. Usually an error
code uniquely identifies the incorrect part of the message and
informs all users what is wrong with the message (without
them needing to know about the application). This allows the
error code to be communicated to other applications, even if
these applications belong to a different organization or
company.

Complete validation

Most messages are sent by applications and you can be sure
that only a few of them, if any, contain errors. But there are
situations in which messages are inserted manually, for
example if a message of a certain type is sent only in error



    22 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

situations or very rarely (for example the message once a
month).

In these situations, a message can contain not only one error
but multiples of it. If this is the case, the message must be
corrected. Message repair in most situations is done manually.
To be able to correct the message at once, all errors within the
messages should be reported. Otherwise the same message
may come to the message repair function more than once.
This kind of manual processing is usually very expensive and
takes a long time.

WEBSPHERE BI MB MESSAGE VALIDATION

Message validation capabilities were provided from the
beginning of the WebSphere MQ Integrator Broker product,
the predecessor of WebSphere BI MB. It is steadily improving
with each new version and sometimes also within one release.
Nevertheless, it still does not offer full message validation
capabilities as described in the previous sections. This section
describes what message validation capabilities are already
built into the WebSphere BI MB product.

Message sets

The structure of a message in WebSphere BI MB is defined by
creating a message set. Such a message set can be defined
from scratch. But it is also possible to import definitions, for
example, from C/C++ header files, COBOL copybooks, XML
DTDs, or XML schemas. A message set describes both the
logical structure of the messages and what they look like as
bit streams (their physical structure).

A message set can contain descriptions of one or more
messages or formats.

Message set validations

Once you have defined your message set and you receive a
message that should conform to one of the message formats



    23© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

in the message set, you have different ways to validate the
message. The first and simplest one is to access the message
using the logical tree. To allow this, the parser in the broker
reads the message set and uses this to convert the bit stream
of the message into the logical message tree. If the parser is
able to do this, the message conforms to the physical structure
defined by the message set. WebSphere BI MB delivers a set
of different parsers, called message domains. This set includes
parsers for most WebSphere MQ formats, MRM, XML, and
others.

Be aware that the parser usually parses only up to the element
in the bit stream that corresponds to the element in the logical
message tree that you are accessing. In some situations this
can result in invalid messages passing the system. To be sure
that the complete message conforms to the definition in the
message set, you have to access the last element in the
message. This is usually very easy. Either you know the
structure of the message completely and know which element
to access, or you can write a small algorithm to navigate to the
last element in the message. A simple implementation in
ESQL could look like:

DECLARE LAST_PTR REFERENCE TO InputRoot;

WHILE (LASTMOVE (LAST_PTR)) DO

      MOVE LAST_PTR LASTCHILD;

END WHILE;

The same algorithm also works for self-defining data structures,
like XML. In such a case, no message set is strictly required.
If the last element can be accessed, the message conforms
to the XML standard and is called ‘well formed’.

Besides the information about the physical structure in the
message set, you can also define most of the restrictions on
single fields, as discussed for message content validation.
WebSphere BI MB can also perform validations to ensure that
such restrictions are met. To allow this, you need to turn on
validations. For message flows started by an MQInput node,
this is done by setting attributes in the validation tab of the



    24 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

properties dialog for this node. Most other input nodes have
similar properties.

By using properties in the validation tab, you can decide, for
example, whether validation needs to be performed at all,
what actions should be performed if a message doesn’t
comply with the message set, whether messages need to be
checked before leaving the input node, or whether the message
should be validated while you access elements in the message
flow. For a detailed list of validation properties, their possible
values, and their meanings, refer to the WebSphere BI MB
documentation.

If the parser cannot match a message against the message
set or the parser detects other kinds of problem, for example
tags not matching correctly, the parser throwing a WebSphere
BI MB exception. Such an exception consists of a WebSphere
BI MB error number, for example BIP5431. The message text
and the associated parameters usually provide sufficient
information for a programmer to understand what’s wrong with
the message. There are no ways to define error codes for such
predefined situations. A mapping of the parser exceptions to
the required validation error codes has to be done within the
message flow, for example, in a Compute node that is
connected from the catch terminal of a Try-Catch node.
Whether a complete mapping of WebSphere BI MB exceptions
to any standard defined error codes is possible depends
greatly on the complexity of the message set and the kind of
problem that is in the message.

Errors that result from message validations against a message
set behave in the same way as the matching problems. Once
stopped, there is no way to let the parser continue with parsing
and validating the message. In cases where the message
contains more than one problem, the second problem cannot
easily be detected before the first problem is resolved.

With properties on the input nodes, for example the MQInput
node, you can define the message set that should be used to
parse and optionally validate the input message of the message



    25© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

flow. If you have to validate a message according to different
standards and the validation capabilities of the provided
WebSphere BI MB parser are sufficient to fulfil the
requirements, there are different ways of overriding the
message set that is used.

The first method is for the application sending the message to
provide the information about the message set that has to be
used for parsing and validation. For this, the application has
to provide the corresponding information in the message
content descriptor (mcd), a WebSphere BI MB-defined folder
in the MQRFH2. The mcd information overrides any message
set information provided in the MQInput node.

Usually an application does not know about the broker or it
doesn’t provide an MQRFH2. In a message flow, you can
choose a different message set for parsing the message. One
way to change the message set is by using a
ResetContentDescriptor node. With this node you can force
the broker to use another message set or format. But the new
parameters have to be set statically as properties. If you have
to support multiple message sets you need multiple
ResetContentDescriptor nodes and some processing to
determine which one to use. Another drawback of this node is
that you cannot force validation of the message.

Dynamically parsing a message and forcing message validation
can be done in Compute nodes using ESQL. For example, the
statement:

CREATE LASTCHILD of OutputRoot Domain MRM

PARSE (InputRoot.Blob.Blob

SET YourSet

TYPE YourType

FORMAT YourFormat

OPTIONS ... );

allows you to parse a message that is received as binary large
object (BLOB), saying no message set is associated with the
message. Using the SET, TYPE, and FORMAT options of the
PARSE clause you can define which message set and format
to use for parsing. These parameters allow variables to be



    26 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

used, so you could choose the message set that suits the
messages. With the OPTIONS option, you can define whether,
when, and how the message is validated in this process. For
details on the PARSE clause, its options, and possible values,
refer to the WebSphere BI MB documentation.

Both possibilities, the ResetContentDescriptor and the ESQL
CREATE path, require that you have a criterion to decide
which message set and format to use. Such information could
either be retrieved from the content of the message or passed
in from the application.

EXTENDED MESSAGE VALIDATION WITH WEBSPHERE BI MB

The message validation capabilities built into WebSphere BI
MB end with message content validation. Cross-field
validations and validations against directory information are
not supported by the standard parsers. But this kind of
message validation can easily be implemented with standard
WebSphere BI MB nodes, for example the Compute node. In
ESQL you can code most of the tests. For instance, the next
ESQL code fragment shows how to validate a simple
dependency between two fields:

If InputRoot.MRM.MyStruct.AField = "ABC" THEN

      IF InputRoot.MRM.MyStruct.Field2 IS NOT = "XYZ" THEN

            /* Illegal cross-field dependency detected */

            ...

      END IF;

END IF;

In cases where the validation rules are much more complex,
you have to write much more ESQL code. ESQL provides
many ways to access messages for validation, for example
CAST statements can be used to check for correct date or
time formats.

For validations against directory information, you can easily
access any database table using standard message broker
capabilities. For information in other directories, there are
support packs that can be used, for example for information



    27© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

in an LDAP directory you can use WebSphere BI MB support
pack IA08. (You can find WebSphere BI MB support packs at
h t tp : / /www. ibm.com/so f tware / in tegra t ion /suppor t /
supportpacs.) Just in case you need to access other directories,
you may have to write your own plug-in node that can access
the information it that directory.

As long as the validations that you need to code yourself using
such techniques are limited in the number of rules that you
have to check and the number of different message types you
have to validate is low, you would code them in ESQL. The
SWIFT FIN standard, for example, knows more than 300
different message types and for most of them many different
rules have to be checked. For this reason, WebSphere BI for
FN has implemented its own message validation node. This
node validates messages based on sets of rules. All rules
apply always to a specific location in the message tree and are
based on conditions.

To validate the message, the node traverses the complete
message tree. This requires that a WebSphere BI MB parser
can parse the complete message. In the case of messages
that are not self-defining, a message set is required that
describes the mapping from the physical stream to the logical
structure. Using the parser, the message has been checked
for conformity to the message structure. The WebSphere BI
for FN validation engine checks at each element in the tree
whether there is a validation rule for this element. A rule can
validate a single element, or it can refer to elements that have
to occur before or after the current element.

Even with this method, there are some drawbacks. To allow
this kind of processing node and to define the validation rules,
the complete message tree structure that is generated based
on the message set must be known. Therefore, there is a tight
coupling between these two usually independent parts. Another
drawback with this method is that some errors are reported the
WebSphere BI MB way using parser exceptions, while others
are validation error codes conforming to the message standard.



    28 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

In the validation node, the parser exceptions may be caught,
but, in some situations, the information reported with the
exception is not sufficient to map to the specific standard
defined error code. In such cases, a mapping to a more
general error code must be used, if possible. A third problem
is that the parser stops parsing with the first parser problem.
In this situation further errors cannot be detected.

If such disadvantages are not acceptable, there is still the
possibility to parse the message yourself. There are two ways
to do this. The first and easiest way is to write a plug-in node
that parses and validates the bit stream. With this approach
there have to be explicit invocations of this node in a message
flow. Another, better but more complex, way would be writing
your own validating message parser. Such a parser can parse
and validate the message in many different ways. Whatever
the requirement, validation can always be performed.

CONCLUSION

WebSphere BI MB already provides much functionality to
validate messages that are processed in message flows.
Messages can be checked for correct syntax and there are
already many ways to check messages for correct content.
Nevertheless, in many situations this is not sufficient.
Depending on your requirements for message validation, you
may need to do further checking. This has to be implemented
by you, for example using a Compute node that validates
dependencies across different fields in the message, checks
values against the content of a database table, or just converts
broker exceptions into error codes defined for the messages
that you process. Other ways to implement message validation
are by using plug-in nodes or plug-in parsers.

The capabilities of the message broker are steadily improving.
This may reduce the effort that you have to make with your
own programming.

Michael Groetzner
IBM (Germany) © IBM 2005



    29© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Creating error dumps on Unix

INTRODUCTION

WebSphere MQ (WMQ) includes several features that discover
problems and errors within applications using WMQ or within
WMQ itself. There are three paths where error logs may be
found, and it is possible to use runmqsc or other tools to
check the WebSphere MQ configuration and functionality.

The error logging mechanism is very useful, but there are still
situations where the level of knowledge of the WMQ
administration people may not be sufficient to solve the
problem. In such a case, help from the software vendor, IBM,
is needed. The script described in this article is designed to
collect all the data that is required by the IBM support staff.
Following the naming convention on mainframes, I called this
data collection ‘error dump’.

THE ERROR DUMP SCRIPT

Aims for an error dump script

In the past, I have supported several hundred WebSphere MQ
queue managers on different platforms – mostly Unix. In such
a large environment there are always some queue managers
that cause a lot of trouble with a high number of insoluble
errors. In these cases I called IBM support to assist me in
solving the problem. The IBM support staff need several items
of information about the queue manager, as well as about the
system where the queue manager resides.

To simplify and hasten the collection of the error dump data
required by IBM, and in order to collect the complete data
without missing any necessary files, I created this script. It
may take a lot of time – and cost a lot of money – if IBM has
to defer the problem solution because some error data is



    30 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

missing. You will have to wait another week or two for the
failure to occur again to give you your next chance to collect
the missing data.  Then perhaps on this occasion you will omit
different data – and the problem solving is deferred again.

How the error dump script works

The script described here runs very quickly (it needs less than
one minute). The script copies any error log file, FFST files,
and any helpful system information to a temporary directory.
Then the script counts and lists the whole process and thread
list, any IPC segment such as shared memory or semaphores,
and prints out information about the version of the operating
system and so on. I know from experience that in nearly every
situation this information satisfies the requirements of the IBM
support staff.

The script collects some useful data that is available on any
Unix system. On AIX and Sun Solaris systems, in addition to
this general information, some error dump data is collected. If
you use WebSphere MQ on other platforms, such as Linux or
HP-UX, it is very easy to extend this script. The error dump
data, specific to AIX and Sun Solaris, is collected and written
within its own functions. Just create another function for your
operating system and extend the case switch in line 351.

The options to display processes and threads using the tool
ps differ between AIX and Sun Solaris, so the specific options
are set in the operating system-specific functions. Nevertheless
on Unix systems other than AIX or Sun Solaris at least a
simple process list is created using the command ps –ef. This
command is defined in the function dump_data_other.

Using the error dump script

An application failure that affects a WebSphere MQ queue
manager, or a failure of the queue manager itself, requires
information about the system during the failure. In such cases,
the error dump script should be available on the machine. For
my systems, I created a default environment containing



    31© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

(among other things) this error dump script, so this script will
always be available when an insoluble error occurs. Otherwise,
you will need to copy this script to the machine when the failure
occurs; this is possible, but, of course, takes up some precious
minutes.

The script itself runs very quickly and normally takes less than
one minute to collect all the required error dump data.
Afterwards the system may be restarted (or whatever is
needed to enable your business to run again). You have to
open a problem record (PMR) at IBM and then send the
created file to the IBM support address, referring to the PMR
number. IBM will then have the necessary data and should be
able to solve your problem.

If available, you should specify the name of the queue manager
experiencing the problem when you run the error dump script.
It is also possible to specify the parameter --noqmgr (written
with two leading dashes) instead, but less information will be
collected. For example the error files in /var/mqm/qmgrs/
your_queuemanager/errors (replace your_queuemanager with
the real name of your queue manager experiencing problems)
are not copied to the error dump file. But the attribute --
noqmgr is useful when you have problems not specific to a
queue manager, eg when you are not able even to create a
queue manager.

SAMPLE ERROR DUMPS

This section lists the contents of the error dump files on AIX
and Sun Solaris to show the differences between these two
operating systems. Some files are the same (eg, the error log
files) and some are similar (process and thread list, output of
the top utility – if available). The other output files are completely
different because of the system-specific commands, such as
lslpp and pkinfo. Additional commands specific to AIX are
errpt, oslevel, lsdev, lsattr, and instfix. Sun Solaris-specific
commands are sysdef, prtdiag, showrev, and prtconf. On
Sun Solaris the file /etc/system, which is not available on AIX,
is archived as well.



    32 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Listing of a sample error dump created on AIX with option --
noqmgr

The following lines are created on an AIX system using the
command error_dump --noqmgr:
-rw-r—r—    1 mqm mqm         74Ø 2ØØ5-Ø2-Ø7 Ø8:59 df-k.txt

-rw-r—r—    1 mqm mqm       26768 2ØØ5-Ø2-Ø7 Ø8:59 errpt-a.txt

-rw-r—r—    1 mqm mqm        928Ø 2ØØ5-Ø2-Ø7 Ø8:59 ipcs-a.txt

-rw-r—r—    1 mqm mqm        1566 2ØØ5-Ø2-Ø7 Ø8:59 lsattr-E-l_sysØ.txt

-rw-r—r—    1 mqm mqm        294Ø 2ØØ5-Ø2-Ø7 Ø8:59 lsdev-C.txt

-rw-r—r—    1 mqm mqm        1413 2ØØ5-Ø2-Ø7 Ø8:59 lslpp-h.txt

-rw-r—r—    1 mqm mqm       19917 2ØØ5-Ø2-Ø7 Ø8:59 ls-lR.txt

-rw-r—r—    1 mqm mqm           8 2ØØ5-Ø2-Ø7 Ø8:59 oslevel.txt

-rw-r—r—    1 mqm mqm       18Ø56 2ØØ5-Ø2-Ø7 Ø8:59 ps-efmo.txt

-rw-r—r—    1 mqm mqm          29 2ØØ5-Ø2-Ø7 Ø8:59 uname-a.txt

-rw-r—r—    1 mqm mqm       922Ø5 2ØØ5-Ø2-Ø7 Ø9:ØØ instfix-i.txt

var:

total Ø

drwxr-xr-x    4 mqm mqm         12Ø 2ØØ5-Ø2-Ø7 Ø9:ØØ mqm

var/mqm:

total 5

-rw-r—r—    1 mqm mqm        2222 2ØØ5-Ø2-Ø7 Ø8:57 mqs.ini

drwxr-xr-x    2 mqm mqm         688 2ØØ5-Ø2-Ø7 Ø8:59 errors

drwxr-xr-x    3 mqm mqm          72 2ØØ5-Ø2-Ø7 Ø9:ØØ qmgrs

var/mqm/errors:

total 1Ø6Ø

-rw-r—r—    1 mqm mqm           Ø 2ØØ4-Ø9-1Ø 1Ø:59 AMQERRØ2.LOG

-rw-r—r—    1 mqm mqm           Ø 2ØØ4-Ø9-1Ø 1Ø:59 AMQERRØ3.LOG

-rw-r—r—    1 mqm mqm       28361 2ØØ4-Ø9-1Ø 1Ø:59 AMQ14372.Ø.FDC

-rw-r—r—    1 mqm mqm       1987Ø 2ØØ4-Ø9-13 18:16 AMQ14198.Ø.FDC

-rw-r—r—    1 mqm mqm       2Ø571 2ØØ4-1Ø-Ø1 17:Ø4 AMQ12318.Ø.FDC

-rw-r—r—    1 mqm mqm      168Ø95 2ØØ5-Ø2-Ø7 Ø8:59 AMQØ2286.Ø.FDC

-rw-r—r—    1 mqm mqm       539Ø8 2ØØ5-Ø2-Ø7 Ø8:59 AMQ138Ø6.Ø.FDC

-rw-r—r—    1 mqm mqm       63Ø65 2ØØ5-Ø2-Ø7 Ø8:59 AMQ13944.Ø.FDC

-rw-r—r—    1 mqm mqm       643Ø2 2ØØ5-Ø2-Ø7 Ø8:59 AMQ17868.Ø.FDC

-rw-r—r—    1 mqm mqm       37531 2ØØ5-Ø2-Ø7 Ø8:59 AMQ1861Ø.Ø.FDC

-rw-r—r—    1 mqm mqm       21Ø92 2ØØ5-Ø2-Ø7 Ø8:59 AMQ19Ø98.Ø.FDC

-rw-r—r—    1 mqm mqm       54392 2ØØ5-Ø2-Ø7 Ø8:59 AMQ19352.Ø.FDC

-rw-r—r—    1 mqm mqm       5Ø253 2ØØ5-Ø2-Ø7 Ø8:59 AMQERRØ1.LOG

var/mqm/qmgrs:

total Ø

drwxr-xr-x    3 mqm mqm          72 2ØØ5-Ø2-Ø7 Ø9:ØØ @SYSTEM

var/mqm/qmgrs/@SYSTEM:

total Ø



    33© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

drwxr-xr-x    2 mqm mqm          48 2ØØ4-Ø9-Ø9 15:42 errors

var/mqm/qmgrs/@SYSTEM/errors:

total Ø

Listing of a sample error dump created on Sun Solaris with option
--noqmgr

The following lines are created on a Sun Solaris system using
the command error_dump --noqmgr:
-rw-r—r—    1 mqm mqm         768 2ØØ5-Ø2-Ø7 Ø8:12 df-k.txt

-rw-r—r—    1 mqm mqm        28Ø4 2ØØ5-Ø2-Ø7 Ø8:12 etc_system.txt

-rw-r—r—    1 mqm mqm        9314 2ØØ5-Ø2-Ø7 Ø8:12 ipcs-a.txt

-rw-r—r—    1 mqm mqm       273Ø6 2ØØ5-Ø2-Ø7 Ø8:12 ls-lR.txt

-rw-r—r—    1 mqm mqm         53Ø 2ØØ5-Ø2-Ø7 Ø8:12 pkginfo-l.txt

-rw-r—r—    1 mqm mqm        3133 2ØØ5-Ø2-Ø7 Ø8:12 prtconf.txt

-rw-r—r—    1 mqm mqm        13Ø2 2ØØ5-Ø2-Ø7 Ø8:12 prtdiag-v.txt

-rw-r—r—    1 mqm mqm       3Ø74Ø 2ØØ5-Ø2-Ø7 Ø8:12 ps-efPL.txt

-rw-r—r—    1 mqm mqm       24433 2ØØ5-Ø2-Ø7 Ø8:12 showrev-a.txt

-rw-r—r—    1 mqm mqm       13194 2ØØ5-Ø2-Ø7 Ø8:12 sysdef-i.txt

-rw-r—r—    1 mqm mqm          61 2ØØ5-Ø2-Ø7 Ø8:12 uname-a.txt

var:

total Ø

drwxr-xr-x    4 mqm mqm         12Ø 2ØØ5-Ø2-Ø7 Ø8:12 mqm

var/mqm:

total 5

-rw-r—r—    1 mqm mqm        2275 2ØØ5-Ø2-Ø7 Ø8:1Ø mqs.ini

drwxr-xr-x    2 mqm mqm        1Ø72 2ØØ5-Ø2-Ø7 Ø8:12 errors

drwxr-xr-x    3 mqm mqm          72 2ØØ5-Ø2-Ø7 Ø8:12 qmgrs

var/mqm/errors:

total 5122

-rw-r—r—    1 mqm mqm      256578 2ØØ3-12-Ø2 1Ø:48 AMQERRØ3.LOG

-rw-r—r—    1 mqm mqm       25972 2ØØ5-Ø1-19 Ø9:5Ø AMQØ8915.Ø.FDC

-rw-r—r—    1 mqm mqm       1Ø225 2ØØ5-Ø1-2Ø 21:ØØ AMQ23ØØ3.Ø.FDC

-rw-r—r—    1 mqm mqm      25621Ø 2ØØ5-Ø2-Ø3 11:48 AMQERRØ2.LOG

-rw-r—r—    1 mqm mqm       43723 2ØØ5-Ø2-Ø7 Ø8:12 AMQ26Ø8Ø.Ø.FDC

-rw-r—r—    1 mqm mqm       28289 2ØØ5-Ø2-Ø7 Ø8:12 AMQ26Ø81.Ø.FDC

-rw-r—r—    1 mqm mqm       19178 2ØØ5-Ø2-Ø7 Ø8:12 AMQ26Ø82.Ø.FDC

-rw-r—r—    1 mqm mqm       25461 2ØØ5-Ø2-Ø7 Ø8:12 AMQ26Ø83.Ø.FDC

-rw-r—r—    1 mqm mqm       2Ø856 2ØØ5-Ø2-Ø7 Ø8:12 AMQ26Ø84.Ø.FDC

-rw-r—r—    1 mqm mqm       2Ø349 2ØØ5-Ø2-Ø7 Ø8:12 AMQ26Ø85.Ø.FDC

-rw-r—r—    1 mqm mqm      1Ø4759 2ØØ5-Ø2-Ø7 Ø8:12 AMQ26Ø87.Ø.FDC

-rw-r—r—    1 mqm mqm       64952 2ØØ5-Ø2-Ø7 Ø8:12 AMQERRØ1.LOG

var/mqm/qmgrs:



    34 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

total Ø

drwxr-xr-x    3 mqm mqm          72 2ØØ5-Ø2-Ø7 Ø8:12 @SYSTEM

var/mqm/qmgrs/@SYSTEM:

total Ø

drwxr-xr-x    2 mqm mqm          48 2ØØ3-Ø8-22 12:24 errors

var/mqm/qmgrs/@SYSTEM/errors:

total Ø

Listing of a sample error dump with queue manager specified

The output of the command is nearly the same when a valid
and running queue manager is specified. In addition to the
samples above, some files specific to the queue manager
(named TEST in this sample) are listed too:

...

var/mqm/qmgrs:

total Ø

drwxr-xr-x    3 mqm mqm          72 2ØØ5-Ø2-Ø7 Ø8:12 @SYSTEM

drwxr-xr-x    3 mqm mqm          96 2ØØ5-Ø2-Ø7 Ø8:12 TEST

...

var/mqm/qmgrs/TEST:

total 4

drwxr-xr-x    2 mqm mqm         144 2ØØ5-Ø2-Ø7 Ø8:1Ø errors

-rw-r—r—    1 mqm mqm        1253 2ØØ5-Ø2-Ø7 Ø8:1Ø qm.ini

var/mqm/qmgrs/TEST/errors:

total 4

-rw-r—r—    1 mqm mqm        1218 2ØØ5-Ø2-Ø7 Ø8:1Ø AMQERRØ1.LOG

-rw-r—r—    1 mqm mqm           Ø 2ØØ5-Ø2-Ø7 Ø8:1Ø AMQERRØ2.LOG

-rw-r—r—    1 mqm mqm           Ø 2ØØ5-Ø2-Ø7 Ø8:1Ø AMQERRØ3.LOG

DESCRIPTION OF THE CODE

The script runs in several steps. First the function initialise
checks whether the queue manager specified as a parameter
on the command line exists. This check happens in the
function check_qmgr. If the queue manager is not available,
a usage message is shown. Otherwise the function checks
the data path if it is not /var/mqm/qmgrs/
name_of_the_queuemanager and defines a parameter



    35© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

containing the name of this data path. Then the script extends
the program search path and looks for the top utility. If
present, the path to this tool is stored in the parameter TOP.

The next step of the script is to collect some operating system-
independent data. Within the function dump_data_all, first the
signal USR2 is sent – using the kill command – to all processes
containing the string amq, as well as the name of the
troublesome queue manager. This signal ensures that the
processes dump their actual state in the form of FFST files.
The processes will then continue running.

If your operating system is AIX or Sun Solaris, the script will
collect some further error dump data, such as processes and
threads, version of the operating system, device configuration,
and installed WebSphere MQ version and patches. If you use
additional Unix versions such as HP-UX or Linux, you may
create similar functions and add the case value in line 351 of
the script. Use only lower case letters (eg linux instead of
Linux), because the parameter $OS, which is filled in the
function initialise, contains the output of the command uname
-s, but translated with the tool tr to lower case characters only.

Next some files (error files, ini files) are copied to the temporary
directory within the function copy_files. Then the error dump
data is collected and stored in one single output file using the
tar program. The tar file is compressed afterwards, to save
disk space. The error dump file may now be sent to the IBM
support staff.

LISTING OF THE ERROR DUMP SCRIPT

  1 #!/bin/ksh

  2 #

  3 ###########################################################

  4 #

  5 #   Script to create an error dump for WebSphere MQ.

  6 #

  7 ###########################################################

  8 #

  9 #   DESCRIPTION

 1Ø #



    36 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 11 #   This script creates a WebSphere MQ error dump, to

 12 #   open a problem record at IBM. The script collects

 13 #   all relevant data, which IBM needs for input.

 14 #

 15 #   May, 13th 2ØØ4

 16 #   Hubert Kleinmanns (N-Tuition AG)

 17 #

 18 ###########################################################

 19

 2Ø #

 21 # Show a usage message.

 22 #

 23

 24 function show_usage

 25 {

 26    ret=$1

 27

 28    # Display specific error message.

 29    case $ret in

 3Ø       1)

 31          echo "Invalid number of parameters..."

 32          ;;

 33       2)

 34          echo "Parameter \"$2\" invalid..."

 35          ;;

 36       3)

 37          echo "Queue manager \"$2\" not found..."

 38          ;;

 39    esac

 4Ø

 41    # Specify a queue manager, if possible.

 42    echo "usage\t`basename $PROG_NAME` queuemanager"

 43    echo "usage\t`basename $PROG_NAME` —noqmgr"

 44

 45    exit $ret

 46 }

 47

 48 #

 49 # Check whether a specified queue manager exists and store the

 5Ø # prefix of this queue manager.

 51 #

 52

 53 function check_qmgr

 54 {

 55    # Initialize the data path of the queue manager.

 56    QMGR_DATA_PATH=""

 57

 58    # Initialize some local parameters.

 59    name=""

 6Ø    prefix=""



    37© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 61    dir=""

 62    new_stanza="n"

 63

 64    # Read all lines of the file 'mqs.ini'.

 65    cat /var/mqm/mqs.ini | while read line

 66    do

 67       # The stanza 'QueueManager' was found.

 68       if [ "$line" = "QueueManager:" ]

 69       then

 7Ø          # Mark the beginning of the stanza.

 71          new_stanza="y"

 72

 73          # Read next line.

 74          continue

 75       fi

 76

 77       # Read the values of this stanza.

 78       if [ "$new_stanza" = "y" -a "X$line" != "" ]

 79       then

 8Ø          # Read the label of the stanza attribute.

 81          label='echo "$line" | awk -F'=' '{print $1}''

 82

 83          # Read the value of the stanza attribute.

 84          value='echo "$line" | awk -F'=' '{print $2}''

 85

 86          # Store the stanza attribute.

 87          case $label in

 88             # Attribute is the queue manager name.

 89             Name)

 9Ø                name="$value"

 91                ;;

 92

 93             # Attribute is the queue manager prefix.

 94             Prefix)

 95                prefix="$value"

 96                ;;

 97

 98             # Attribute is the queue manager directory.

 99             Directory)

1ØØ                dir="$value"

1Ø1                ;;

1Ø2          esac

1Ø3

1Ø4        # Check whether all three stanza attributes have been filled.

1Ø5          if [ "X$name" != "X" -a "X$prefix" != "X" -a "X$dir" != "X"

]

1Ø6          then

1Ø7   # Check whether the stanza belongs to the specified queue manager.

1Ø8             if [ "$name" = "$1" ]

1Ø9             then



    38 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

11Ø                # Store the queue manager name in a global parameter.

111                QMGR_NAME="$name"

112

113                # Store the data path of the queue manager.

114                QMGR_DATA_PATH="$prefix/qmgrs/$dir"

115

116                # Return successfully.

117                return Ø

118             else

119                # Initialize the local parameters for the next

stanza.

12Ø                name=""

121                prefix=""

122                dir=""

123

124                # Read next line.

125                continue

126             fi

127          fi

128       fi

129    done

13Ø

131    # Return with error.

132    return 3

133 }

134

135 #

136 # Initialize the script parameters.

137 #

138

139 function initialise

14Ø {

141    # If no qmgr is specified set dummy value.

142    case $1 in

143       —noqmgr)

144          QMGR_NAME="noqmgr"

145          ;;

146       -*)

147          show_usage 2 $1

148          ;;

149       *)

15Ø          # Check whether the specified queue manager exists.

151          check_qmgr $1

152          ret=$?

153

154          [ $ret -ne Ø ] && show_usage $ret $1

155          ;;

156    esac

157

158    # Get the operating system.



    39© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

159    OS='uname -s | tr '[:upper:]' '[:lower:]''

16Ø

161    # Define some directories, which have to be included in the

search path.

162    REQ_DIRS="/usr/bin /usr/sbin /etc /usr/local/bin"

163

164    # Store the actual path and separate the directories.

165    path='echo $PATH | tr ':' ' ' | sed -e "s/^/ /" | sed -e "s/$/ /

"'

166

167    # Check, whether the directories defined above are already part

of the path ...

168    for dir in $REQ_DIRS

169    do

17Ø       chk='echo "$path" | grep " $dir "'

171

172       # ... append the directory to the path otherwise.

173       [ "X$chk" = "X" ] && PATH=$PATH:$dir

174    done

175

176    # Find the 'top' utility.

177    TOP='which top'

178    [ -e "$TOP" ] || TOP=""

179

18Ø    # Set the output file name.

181    OUT_FILE=$HOME/${QMGR_NAME}_'date +"%Y%d%m-%H%M"'.tar

182

183    # Specify the root directory for storing the dump data.

184    ERRDUMP="$TEMP_DIR/errdump"

185

186    # Create the dump directory.

187    mkdir -p $ERRDUMP

188 }

189

19Ø #

191 # Function to dump data, which is relevant on all operating systems.

192 #

193

194 function dump_data_all

195 {

196    # Send the signal USR2 to all MQ processes. The processes create

an FDC file

197    # in /var/mqm/errors and dump their actual state. Then the

processes continue.

198    if [ "$QMGR_NAME" != "noqmgr" ]

199    then

2ØØ       proc_list='ps -ef | grep amq | grep $QMGR_NAME | awk '{print

$2}''

2Ø1

2Ø2       [ "X$proc_list" != "X" ] && kill -USR2 $proc_list



    40 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

2Ø3    fi

2Ø4

2Ø5    # Store some system information.

2Ø6    uname -a > $ERRDUMP/uname-a.txt

2Ø7

2Ø8    # List all available IPC segments.

2Ø9    ipcs -a > $ERRDUMP/ipcs-a.txt

21Ø

211    # List all files in the MQ data and ignore duplicate files.

212    ls -lR /var/mqm $QMGR_DATA_PATH | sort -u > $ERRDUMP/ls-lR.txt

2>/dev/null

213

214    # Display the disk configuration.

215    df -k > $ERRDUMP/df-k.txt

216 }

217

218 #

219 # Function, which collects data using AIX-specific tools.

22Ø #

221

222 function dump_data_aix

223 {

224    # Count all active processes.

225    echo "`ps -ef | wc -l` processes found" > $ERRDUMP/ps-efmo.txt

226

227    # Count all active threads.

228    echo "`ps -efmo THREAD | wc -l` threads found\n" >> $ERRDUMP/ps-

efmo.txt

229

23Ø    # List all active processes and threads.

231    ps -efmo THREAD >> $ERRDUMP/ps-efmo.txt

232

233    # If available, run the 'top' command.

234    [ "$TOP" != "" ] && $TOP -Count 1 > $ERRDUMP/top-Count1.txt

235

236    # Store the level of the operating system.

237    oslevel > $ERRDUMP/oslevel.txt

238

239    # List all known devices.

24Ø    lsdev -C > $ERRDUMP/lsdev-C.txt

241

242    # List some system attributes.

243    lsattr -E -l sysØ > $ERRDUMP/lsattr-E-l_sysØ.txt

244

245    # Display installed MQ software packages.

246    lslpp -h "mq*" > $ERRDUMP/lslpp-h.txt

247

248    # Display messages created by the error reporter tool.

249    errpt -a > $ERRDUMP/errpt-a.txt

25Ø



    41© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

251    # Show the installed fix level.

252    instfix -i > $ERRDUMP/instfix-i.txt

253 }

254

255 #

256 # Function, which collects data using Sun Solaris-specific tools.

257 #

258

259 function dump_data_sunos

26Ø {

261    # Count all active processes.

262    echo "`ps -efP | wc -l` processes found" > $ERRDUMP/ps-efPL.txt

263

264    # Count all active threads.

265    echo "`ps -efPL | wc -l` threads found\n" >> $ERRDUMP/ps-efPL.txt

266

267    # List all active processes and threads.

268    ps -efPL >> $ERRDUMP/ps-efPL.txt

269

27Ø    # If available, run the 'top' command.

271    [ "$TOP" != "" ] && $TOP -d 1 -n 4ØØ > $ERRDUMP/top-d1-n4ØØ.txt

272

273    # List some system attributes.

274    sysdef -i > $ERRDUMP/sysdef-i.txt

275

276    # List all known devices.

277    /usr/platform/sun4u*/sbin/prtdiag -v > $ERRDUMP/prtdiag-v.txt

278

279    # Show the installed system patches.

28Ø    showrev -a > $ERRDUMP/showrev-a.txt

281

282    # List the system configuration.

283    prtconf > $ERRDUMP/prtconf.txt

284

285    # Copy the file '/etc/system'.

286    cp /etc/system $ERRDUMP/etc_system.txt

287

288    # Display installed MQ software packages.

289    pkginfo -l 'pkginfo | grep mq | awk '{print $2}'' > $ERRDUMP/

pkginfo-l.txt

29Ø }

291

292 #

293 # Function, which creates a system-independent process list.

294 #

295

296 function dump_data_other

297 {

298    # Count all active processes.

299    echo "`ps -ef | wc -l` processes found" > $ERRDUMP/ps-ef.txt



    42 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

3ØØ

3Ø1    # List all active processes.

3Ø2    ps -ef >> $ERRDUMP/ps-ef.txt

3Ø3 }

3Ø4

3Ø5 #

3Ø6 # Copy relevant MQ files to the error dump path.

3Ø7 #

3Ø8

3Ø9 function copy_files

31Ø {

311    # Copy queue manager independent files.

312    mkdir -p $ERRDUMP/var/mqm/qmgrs/@SYSTEM

313    cp -rp /var/mqm/mqs.ini /var/mqm/errors $ERRDUMP/var/mqm

314    cp -rp /var/mqm/qmgrs/@SYSTEM/errors $ERRDUMP/var/mqm/qmgrs/

@SYSTEM

315

316    # Copy the files, which belong to the specified queue manager.

317    if [ "$QMGR_NAME" != "noqmgr" ]

318    then

319       mkdir -p $ERRDUMP$QMGR_DATA_PATH

32Ø       cp -rp $QMGR_DATA_PATH/errors $QMGR_DATA_PATH/qm.ini

$ERRDUMP$QMGR_DATA_PATH

321    fi

322 }

323

324 ###########################################################

325 #

326 #   MAIN function.

327 #

328 ###########################################################

329

33Ø # Define a directory to store temporary files.

331 TEMP_DIR="/tmp"

332

333 # Store the name of the script.

334 PROG_NAME=$Ø

335

336 # Invalid number of parameters.

337 [ $# -ne 1 ] && show_usage 1

338

339 # Run the initialization function.

34Ø initialise $*

341

342 # Change to the standard MQ data path.

343 cd $TEMP_DIR

344

345 # Dump OS independent data.

346 dump_data_all

347



    43© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

348 # Dump data specific to the operating systems AIX and Sun Solaris.

349 case $OS in

35Ø    aix|sunos)

351       dump_data_$OS

352       ;;

353

354    *)

355       dump_data_other

356       ;;

357 esac

358

359 # Copy some files to the temporary directory.

36Ø copy_files

361

362 # Archive the stored files.

363 tar cvf $OUT_FILE errdump

364

365 # Compress the output file.

366 compress $OUT_FILE

367

368 cd -

369

37Ø # Clean-up the dump directory.

371 rm -rf $ERRDUMP

372

373 exit Ø

374

375 ###########################################################

376 #

377 #   End of error dump script.

378 #

379 ###########################################################

Hubert Kleinmanns
Senior Consultant
N-Tuition Business Solutions (Germany) © Xephon 2005

MQSeries checklist

Our shop runs MQSeries for VSE Version 2 Release 1.2. We
have VSE/ESA Version 2 Release 5, with CICS/VSE Version
2 Release 3 and VTAM for VSE/ESA Version 4 Release 2.
MQSeries has been running stably on our machines for over
half a decade, but recently we noticed that it was becoming



    44 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

unstable. As with any system that was once stable but is no
longer, we looked for what had changed. The checklist that we
followed is shown below.

CHANGES TO HARDWARE

Our first check was to see if there were any changes to our
hardware. The reason for checking is that sometimes the
installation of new hardware can cause changes to the timing
of some application programs. Obviously, if your application
system is reliant on a processing sequence and that sequence
changes there could be problems. In our shop there were no
hardware upgrades that were relevant.

SOFTWARE CHANGES

The installation of new software or software updates is probably
the biggest reason for problems with application systems.
Obviously, make sure that no software has been downloaded
from the Internet onto the live production system. Software
should be run and checked on your test system first. PTFs can
be a big source of problems, one of the biggest issues being
their incorrect application. Usually, applying a service is
straightforward; however, sometimes IBM hides additional
instructions in the PTF service cover letter, or even in the JCL
of the PTF. These can be quite important, and problems will
occur if they are not carried out. Examples include:

• Modify CSD – applying a PTF can result in changes to the
CICS CSD. This includes programs, files, or changes to
entries. You should apply the modifications provided in
MQJCSD.Z or application instability could result.

• MQJSETUP.Z and MQSU – PTFs can sometimes include
a change to the configuration file in MQSeries. This is
found in SYSIN.Z. Along with any updates, the file is
reloaded by the MQJSETUP.Z job. Once loaded, the
MQSU transaction applies the new version of the file to the
MQSeries configuration file. It is evident that if these



    45© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

instructions are not followed, the configuration can be out
of sync and this can be a cause of system instability. One
way to check this is to see whether the number of records
loaded (which is displayed when the MQSU transaction is
completed) corresponds to the number printed in the job
output of MQJSETUP.

• Modify DCT – there are some occasions when installing a
PTF can cause changes to MQSeries DCT entries or new
entries. These can be found in part MQCICDCT.Z. If the
CICS DCT is not rebuilt to incorporate the changes when
instructed, instability could ensue.

KNOWN MQSERIES ISSUES

IBM has a list of known problems with MQSeries for VSE.
These include:

• Abends with AFCL, AFCP, or AJCN during execution of
MQSeries. This is a well-known, widely-reported problem
that results from configuration problems with the CICS
system journal (the CICS system journal needs to be
properly defined using buffer values that are applicable to
the biggest VSAM record that MQSeries will access).

• TP names in channel definitions. The MQSeries for VSE
sender channel definitions created by MQMT option 1.3
require a reference to a TP Name field. This TP Name field
needs to be precisely defined. This is very important when
a partner system is located on a Windows, OS/2, or Unix
system, because it could be case sensitive. The profile
definition on the partner needs to reference a valid program
name in an actual directory.

• Starting and stopping TCP/IP. Shutting down TCP/IP with
MQSeries active will cause the TCP/IP Listener transaction
(MQTL) and any active TCP/IP channels to abend. In
reverse, if TCP/IP is not active when MQSeries is started,
the TCP/IP Listener program will not start. This is because
the TCP/IP socket services are stopped when TCP/IP is



    46 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

shut down. In order to restart the TCP/IP channels both
TCP/IP and the Listener program need to be restarted.

WORKLOAD CHANGES

In our shop it was found that there had been a significant
increase in workload. A major new project had gone live on a
partner system and this was transmitting to our MQSeries for
VSE system, which was made evident by increases in network
traffic. Furthermore, the system was catering for the
international market, which meant that there were increases
in the overnight workloads, and some new data types had
been introduced. In our case it was necessary to increase our
disk and processor resources to cater for the increased
workload.

CONCLUSION

The overall conclusion with problem determination in systems
that have been stable and begin to exhibit signs of instability
is that you must determine what has changed. Following the
simple categories above is a useful way of getting to the root
of the problem. Check the software, hardware, known problems,
and workload to determine where the problem is.

John Edwards
Systems Administrator (UK) © Xephon 2005



MQ news

Fiorano Software has announced Version 8.0 of
FioranoMQ, its stand-alone Java Message
Service (JMS) server.

The product delivers enhancements for
enterprise-grade messaging in a number of key
areas, from improved enterprise management
capabilities and new administrative/
configuration tools to a new Component
Assembly Framework that allows for more
efficient in-process message routing and
dispatching.

For further information contact:
URL: www.fiorano.com/downloads/fmq/
fmqreleasenotes.pdf.

* * *

Capitalware has announced Version 1.3 of MQ
Visual Edit, its tool for letting developers and
administrators view, manipulate, and manage
messages in a WebSphere MQ queue and
presenting the data in a simplified format similar
to a database utility or spreadsheet program.

Version 1.3 of the Java-based tool offers a
number of user-interface enhancements and bug
fixes, including a single shell script for running it
on Linux, Mac OS X, and Unix.

MQ Visual Edit can be used by application
programmers, JMS developers, quality
assurance testers, and production support
personnel. The tool allows for quick problem
solving because the data is presented in a very

logical and insightful manner, they claim.

MQ Visual Edit can run on any platform that
supports Java Version 1.3 (or higher).

For further information contact:
URL: www.capitalware.biz/
products.html#mqve.

* * *

IBM has announced WebSphere Studio Asset
Analyzer, which helps IT executives analyse and
understand their existing application code.

The company has also announced Version 5.1.2
of WebSphere Enterprise Developer (WSED),
which contains enhancements that are intended
to make Web, traditional, and integrated
development faster, and developer communities
more productive. WSED consists of a common
workbench, and integrated set of tools that
support end-to-end, model-based, application
development, run-time testing, and rapid
deployment of e-business applications. WSED
Version 5.1.2 supports new industry standards
that simplify the development of Web user
interfaces, and business logic. It includes
productivity tools for business-oriented
developers, new to Java, that integrate zSeries
COBOL and PL/I processing via Web
Services.

For further information contact your local IBM
representative.

* * *

x xephon


	z/OS and WMQ performance information
	Going beyond event-based MQ monitoring
	WebSphere MQ performance
	Message validation with WebSphere Business Integration Message Broker
	Creating error dumps on Unix
	MQSeries checklist
	MQ news

