
© Xephon Inc 2005

May 2005

71

In this issue

3 WebSphere MQ Extended
Security Edition

7 Prevent queues from jamming
your queue manager

23 WAS 6 and autonomic
computing

26 WebSphere MQ on high-
capacity Unix servers: access
control

32 Defining WebSphere MQ roles
using sudo

44 WebSphere MQ Integrator
ControlCenter tracing

45 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon Inc 2005. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.

Printed in England.

Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Colin Smith
E-mail: info@xephon.com

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the material
it contains. Neither Xephon nor the contributing
organizations or individuals accept any liability of
any kind howsoever arising out of the use of such
material. Readers should satisfy themselves as to
the correctness and relevance to their
circumstances of all advice, information, code,
JCL, scripts, and other contents of this journal
before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in the
UK; £261.00 in Europe; £267.00 in Australasia
and Japan; and £265.50 elsewhere. In all cases
the price includes postage. Individual issues,
starting with the July 2000 issue, are available
separately to subscribers for $33.75 (£22.50)
each including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the rate
of $160 (£100 outside North America) per
1000 words and $80 (£50) per 100 lines of code
for the first 200 lines of original material. The
remaining code is paid for at the rate of $32 (£20)
per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues in
Acrobat PDF format, can be downloaded from
our Web site at www.xephon.com/mq; you will
need to supply a word from the printed issue.

 3© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

WebSphere MQ Extended Security Edition

IBM WebSphere MQ Extended Security Edition is a single
package that consolidates WebSphere MQ Version 5.3 and
IBM Tivoli Access Manager for Business Integration (TAMBI).
Basically this provides you with an option to implement
application-level data protection without changing or even re-
compiling your existing WebSphere MQ applications.

WebSphere MQ Extended Security Edition enables a high
level of security for sensitive transactions across the messaging
environment, irrespective of the platforms that the message
traverses. It provides an end-to-end, application-level, data
protection model and allows the administrators to perform
enterprise-wide remote management of security policies on
queues and queue managers.

WHAT IS TAMBI?

TAMBI is an integrated component of the IBM identity
management solution that provides:

1 Identity life-cycle management (user self-care, enrolment,
and provisioning).

2 Identity control (access and privacy control, single sign-
on, and auditing).

3 Identity federation (sharing user authentication and
attribute information between trusted Web services
applications).

4 Identity foundation (directory and workflow).

TAMBI also provides an authorization plug-in for the IBM
WebSphere Business Integration brokers, which replaces the
native authorization services provided earlier. TI shares the
following set of services with other Tivoli Access Manager
products including TAM for eBusiness and TAM for Operating
Systems:

 4 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

1 Central Security Policy Manager

2 Central Credential directory.

3 Web-based administration tool.

This new plug-in and the common set of services together
simplify the administration process. Now, the security policy
across WebSphere MQ queues, WebSphere BI broker publish/
subscribe topics, Web resources, and Unix/Linux resources
can be consolidated and managed via a single administration
tool.

To use TAMBI, it is not necessary to license the Tivoli Enterprise
Management Framework.

WEBSPHERE MQ AND TAMBI

The link and channel-level data protection offered by
WebSphere MQ ensures the integrity and confidentiality of the
messages only when the message is in transit. For applications
that use WebSphere MQ for highly-sensitive data (like personal
information and high-value financial transactions), an end-to-
end security solution is required. With additional application-
level data protection, this could be achieved without complex
security-related coding.

TAMBI provides application-level data protection for
WebSphere MQ-based applications, so that sensitive
messages can be digitally signed and encrypted even before
they get to WebSphere MQ, so that the integrity and
confidentiality of the messages when under the control of
WebSphere MQ can be ascertained.

Customers currently having WebSphere MQ can upgrade to
this Security edition of WebSphere MQ by getting a licence for
TAMBI. TAMBI supports systems running IBM WebSphere
MQ Server as well as systems running WebSphere MQ Client.
Applications written using the WebSphere MQ Native API as
well as the JMS API are supported.

 5© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

TAMBI Host Edition provides extended security services for
mainframe applications using WebSphere MQ for z/OS. Also
for the mainframe SSL, IBM Policy Director Authorization
Services for
z/OS and RACF or equivalent should be installed. TAMBI Host
edition supports WebSphere MQ applications running under
CICS and IMS/DC, as well as batch.

HOW DOES APPLICATION DATA PROTECTION WORK?

Queue put/get permissions

TAMBI allows you to define policies that control which
applications can put or get messages from specific queues or
queue managers. TAMBI uses public key-based credentials
to establish application authorization. When an application
makes a call to the WebSphere MQ interface to put a
message in a queue, the call gets intercepted by TAMBI.
TAMBI analyses the call to verify whether this specific
application is authorized to do a put to the requested queue.
If not authorized, it doesn’t allow the call to proceed further.

Data protection

If the application is authorized to do a put, TAMBI proceeds to
determine whether the message should be:

• Passed on unchanged

• Digitally signed

• Signed and encrypted.

This decision is based on what has been set as the data
protection policy. The options allowed are:

1 No data protection required

2 Message signing only

3 Message signing and encryption.

TAMBI uses the application’s private key to digitally sign the

 6 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

message data, which allows later verification that the message
has not been tampered with while being processed by
WebSphere MQ (both while in a queue and while in transmission
to a destination server). Attaching digital signatures to individual
messages also allows messages to be traced to their point of
origin.

Message encapsulation is performed using PKCS #7 standard
and the message data can be unwrapped only by a process
that has access to the application’s private key. The encryption
strength (RC2 128, DES 64, Triple DES 128, AES 128, or AES
256) can be chosen during policy definition, depending on the
specific security need.

Message-level audit functions

TAMBI also provides a message-level audit function, and
generates audit records that can demonstrate specific
compliance with the defined security policy.

Remote administration of security policies

Since this application’s data protection is handled externally
and managed remotely by TAMBI, a single security
management solution can be used to protect the messages
even though the messages can traverse both mainframe and
distributed servers.

CONCLUSION

Because the messages can now be protected, even while
they are in the queue, the exposure of sensitive data even to
internal employees can be controlled. With the growing data
privacy and protection requirements of HIPAA, SOX, etc, this
enables the existing applications to be made compliant in a
non-intrusive fashion. If Tivoli is used at the Enterprise level,
security management of the messaging applications can also
be integrated seamlessly.

Sasirekha Cota
Tata Consultancy Services (India) © Xephon 2005

 7© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Prevent queues from jamming your queue manager

INTRODUCTION

One of the more awkward situations you might run into when
administering MQ is your queue manager data volume
becoming full. If a receiving application, for whatever reason,
stops getting messages from its queue, the queue might
accumulate messages until your disk volume is completely
filled up – a very delicate situation because the queue manager
will then be blocked. It refuses even to get messages from its
queues! The only way to get it operational again would be to
free at least several hundred kilobytes of disk space.

In order to prevent a situation like this, MQ allows the setting
of an individual threshold for the maximum number of messages
that may accumulate in each queue. A concept of event
messages generated by the queue manager in various
situations allows, for example, the queue manager to alert you
even before the queue fills up. These mechanisms are outlined
briefly in what follows. The weaknesses of this concept are
pointed out and a tool to cope with them is presented.

MQ STANDARD MECHANISM AND ITS DISADVANTAGES

If the filesystem containing your queue manager data should
run full, your queue manager blocks, and you have no chance
to get it running again unless you manage to free at least
several hundred kilobytes. In order to prevent this situation,
MQ allows the setting of a threshold for the maximum number
of messages that may accumulate in each queue: the attribute
MAXDEPTH of a local queue. If a local queue reaches the
threshold, any future MQPUT will fail with a reason code 2053
(MQRC_Q_FULL).

If a completely filled queue is being fed from a remote queue
manager, the receiving channel agent consequently cannot

 8 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

deliver any more messages to this queue. Since the channel
processes the messages first in first out, it would now be
blocked unless you have a dead letter queue defined on the
receiving queue manager. The dead letter queue – if configured
in the queue manager’s properties – now receives the
messages as dead letter messages that might easily be re-
delivered to the failing queue at a later time. Unless the dead
letter queue runs full as well, the channel may still correctly
deliver messages to other receivers of this queue manager.

In order to alert you well before any queue runs full, you may
activate a queue depth high event on any queue using the
queue attributes QDPHIEV, QDPLOEV, QDEPHI, and QDEP-
LO. When a queue reaches the high-water mark QDEPHI (by
default set at 80%), the queue manager – if you set
QDPHIEV(ON) – puts an event message to an event queue
(SYSTEM.ADMIN.QMGR.EVENT). This event message can
be processed in order to alert you by mail or by a monitoring
application such as, for example, Tivoli. If correctly configured,
in a similar way, the queue manager sends an event message
when the queue depth reaches the low-water mark QDEPLO
(default is 20%).

What do you do if you don’t have an infrastructure large
enough to justify an expensive monitoring tool such as Tivoli?
What if you don’t have available the skills or the resources to
develop a monitoring application that would process the event
messages and, for example, send you an e-mail?

The concept of the maximum depth of queues has one great
disadvantage – it is entirely based on the number of messages.
Hence you need to be able to estimate the size of a message
at the time of configuration. If the messages at run-time differ
from your estimate, your configuration is inappropriate. If your
application happens to receive messages of various sizes –
very large ones as well as very small ones – setting a high-
water mark based on the number of messages might not be
suitable at all. Suppose you set the maximum number of
messages based on the size of the largest messages, your

 9© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

queue might run full much too early, when the queue contains
an increasing number of small messages. But if you instead
set the size of the queue based on the smaller messages
received, your disk volume might run full nevertheless, even
though you limited the number of messages on the queue.

THE DISK FULL SITUATION AND MAKESHIFTS TO COPE WITH IT

It is very important to prevent the disk volume containing your
queue manager data from running full. As pointed out above,
your queue manager would be blocked. When a queue
manager cannot write its messages, and especially not log
data any more, it will still appear to be running. However, it will
not be truly operational. Even in order to remove a persistent
message from a queue, it would have to be able to write
information to the log before destroying the message.

This redundant storage mechanism is vitally important for
recovery from a failure, and is very similar to a database. If the
queue manager could not document the destructive get
operation in its logs, its data would become inconsistent, and
the queue manager would not be able to reconstruct its queue
data after a fatal termination. Hence the queue manager will
not accept any commands until you manage to free at least
several hundred kilobytes on the filesystem.

In order to make sure you remain capable of action in an
emergency, you could write a large dummy file (eg 1MB or
even several megabytes in size) to the queue manager
volume, which you could delete if the disk volume should run
full. However, MQ delivers messages very quickly. You would
have to make sure that the queue manager does not receive
so much data within seconds that it fills up your disk again
before you’ve had a chance to intervene.

DISK SPACE MANAGEMENT BASED ON THE PHYSICAL SIZE

A different way to cope with your disk volume running full
would be to automatically set a queue PUT(DISABLED)

 10 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

before it fills up your disk volume. Applications trying to put
more messages now would fail with a reason code 2051
(MQRC_PUT_INHIBITED) instead of 2053 (MQRC_Q_FULL).
The result for the writing application, logically, is equivalent –
it fails to put messages to the queue. However, your queue
manager now remains operational and you have a chance to
cope with the situation before it’s definitely too late. Any other
queue for this queue manager remains operational and may
continue to receive and deliver messages (as long as it does
not run full).

In what follows, a concept of MQ disk space management is
discussed, which is based on the physical size of the queue
file as compared with the remaining space available on the
disk volume containing the queue data.

MQ (on non-z/OS systems) stores the message data of a
particular queue in a random access file located at:

<MQ root>/qmgrs/<qmgr name>/queues/<queue name>/q

where:

• <MQ root> – Websphere MQ data directory of your
installation, on Unix, eg /var/mqm.

• <qmgr name> – your queue manager’s name.

• <queue name> – your queue’s name (some special
characters translated in order make the queue name
compatible with file names).

In the following, 100% denotes the current number of bytes
available on the disk volume hosting the queue file, provided
this particular queue file was not there, ie:

fsize + free = 1ØØ%

where:

• fsize – number of bytes currently occupied by this particular
queue file

~

 11© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

• free – number of bytes currently available on the disk
volume hosting the queue file.

Similarly (but opposed) to the concept of queue depth high
and queue depth low events of MQ, a relative headroom is
defined:

hr = 1ØØ% – fsize / (fsize + free)

When queues are monitored, the condition for regular operation
then is:

hr ≥≥≥≥≥ hrlo

Should a queue’s fsize increase such that its headroom drops
below this hrlo limit, it will be disabled for put and a warning will
be issued. When its size decreases again, such that its
headroom exceeds the hrhi limit again, ie:

hr ≥≥≥≥≥ hrhi

the queue might automatically be re-enabled for put, while
again sending a warning to the MQ administrator.

DISK SPACE MANAGEMENT PROGRAM FOR UNIX OR WINDOWS

The Perl program amqfsmon.pl uses the concept addressed
in the previous section. The monitoring of disk space usage at
present is supported for Unix and Windows (Win32) systems.
Unix systems generally contain a Perl interpreter in their
original distribution. In order to operate amqfsmon.pl on
Windows systems, however, a Perl interpreter must be installed
(eg ActiveState ActivePerl, freely downloadable, currently
V5.8). For other types of operating system, amqfsmon.pl
could easily be extended by the user.

The utility does not depend on any MQ for Perl module. The
MQ interactions are programmed by the aid of calls to MQ
control commands such as runmqsc or dspmqfls. Hence a
plain, regular Perl distribution is sufficient.

The program amqfsmon.pl is called as follows:

 12 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

amqfsmon.pl -l hrlo [-m qmgr] [-h hrhi] [-w wait]

[-n] [-r rcpt [, rcpt ...]] [-s svr] [-x]

[-v]

where

• -l hrlo – relative headroom [%] of queues to be kept free
(required).

• -m qmgr – queue manager to be monitored (default = MQ
default queue manager).

• -h hrhi – relative headroom [%] of queues, threshold at
which queues previously disabled are re-enabled (default
= hrlo).

• -r rcpt – mail recipient(s) to report warnings (default =
none).

• -s svr – DNS name of the mail (SMTP) server (default =
localhost).

• -n – never re-enable queues (optional; the queues must
be re-enabled manually).

• -v – (verbose) in addition to the logging and the (optional)
mailing by SMTP, write messages and warnings to standard
out (optional).

• -w wait – seconds to wait between headroom checks
(default = 600).

• -x – monitor transmission queues only (default = all
queues).

The utility monitors the space occupied in the filesystem by
each queue of the queue manager qmgr (transmission queues
only if flagged by -x; see below). It periodically polls all local
queues at the interval specified by the flag -w and sets a
queue PUT(DISABLED) if its relative headroom decreases
below the threshold hrlo. When the headroom exceeds hrhi ≥
hrlo again, the queue is re-enabled (unless flagged by -n).

 13© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

If a local default queue manager is defined, the only parameter
required is the lower threshold, hrlo. If hrhi is omitted, it is
assumed to be equal to hrlo. It is, however, recommended to
change hrhi to a value >hrlo, for example hrhi = 20% and hrlo
= 10%. These definitions will keep an individual relative
headroom of at least 10% for each queue. Once a queue
reaches the low limit, hrlo, it is automatically re-enabled for
put, but not before the headroom exceeds the high limit, hrhi,
again.

Messages about the disabling and the re-enabling of queues
are written to the file amqfsm01.log in the errors directory of
the queue manager. Three log files are maintained. Once it
reaches 256KB, amqfsm01.log becomes amqfslog02.log and
then amqfslog03.log and the primary log file, amqfslog01.log,
is re-allocated.

If the optional flag -r rcpt is specified, the warnings are sent
to the mail recipient(s) rcpt (comma-separated list of
addresses). If the local host does not provide a mail (SMTP)
server, a different server IP address or DNS name, svr, needs
to be specified with the aid of the (optional) flag -s.

The flag -v sends all warnings and messages to standard
output as well to the log and the mail receivers. It was
introduced for analysis and configuration purposes. For
additional safety, the flag -n may be used. It prevents
automatically disabled queues from being automatically re-
enabled. If the flag -n is specified, the MQ administrator must
manually re-enable any queues that were disabled for put.

The flag -x is designed to monitor just the outgoing queue
connections of a queue manager. The transmission queues,
exclusively monitored by specifying -x, receive any messages
that are sent to remote queues. They are the (last and only)
local physical queues that accept these messages before
they are transmitted across the channel to the remote queue
manager.

 14 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

CONCLUSIONS

The problems with queue manager data volumes running full
have been addressed and weaknesses have been identified
in the IBM concepts of queue depth limitation and event
generation. Methods to cope with them have been presented.
The script published with this article allows you to manage the
occupation of queue manager data volumes based on the
physical space used and available. Using the methods and
the tool presented, an administrator should always be in a
position to successfully operate their MQ environment and
cope with the possibility of a queue filling up the filesystem.

AMQFSMON.PL
#!/usr/local/bin/perl

#

Name: amqfsmon.pl (perl 5.Ø script)

#

Version: 1.1.Ø

#

Author: Dr. Johannes Boehm, ISDD

Giessenstrasse 11, CH-86Ø8 Bubikon, Switzerland

mailto: j.boehm@gmx.ch

#

Purpose: Monitors the sizes of queue files in the filesystem and sets

a queue PUT(DISABLED) if its headroom decreases below a user-

defined threshold. Further details see help string below.

use diagnostics;

use warnings;

use strict;

use Sys::Hostname;

use POSIX;

use Net::SMTP;

$SIG{__DIE__} = \&errorExit; # set up simple trap

sub errorExit { print shift; exit 1 }

my $nl="\n "; # new line including indent of 1Ø spaces

my $help="\n" .

"Usage: amqfsmon.pl -m <qmgr> -l <hrlo> [-h <hrhi>] [-w <wait>

]" . $nl .

" [-r <rcpt> [,<rcpt>...]] [-s <svr>] [-n] [-x] [-v

 15© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

]\n\n" .

"Options: -l <hrlo> Relative headroom [%] of queues to be kept free

(required)" . $nl .

"-h <hrhi> Relative read room [%] of queues, threshold at which queues"

. $nl .

" previously disabled are re-enabled (default = <hrlo>)"

. $nl .

"-m <qmgr> Queue manager to be monitored (default = MQSeries default)"

. $nl .

"-r <rcpt> mail recipient(s) to report warnings (default = none)"

. $nl .

"-s <svr> dns name of the mail (smtp) server (default = localhost)"

. $nl .

"-n Never re-enable queues (they must be re-enabled manually)"

. $nl .

"-v Verbose, write messages and warnings to stdout (optional)"

. $nl .

"-w <wait> Seconds to wait between size checks (default = 6ØØ)"

. $nl .

"-x Monitor transmission queues only (default = all queues)" .

"\n\n" .

"Synopsis: " .

"Monitors the space occupied in the filesystem by each (transmission)" .

$nl .

"queue of the queue manager <qmgr> and sets the queue to PUT(DISABLED)"

. $nl .

"if its relative headroom decreases below the threshold <hrlo>. This" .

$nl .

"headroom is defined as 1ØØ * fr / (sz + fr) where 'sz' denotes the" .

$nl .

"space in kB occupied by the queue and 'fr' the space left. When the"

. $nl .

"headroom exceeds <hrhi> >= <hrlo> again, the queue is re-enabled" .

$nl .

"(unless flagged by -n)." . $nl .

"Messages about the enabling and the disabling of queues are written"

. $nl .

"to the file amqfsmØ1.log in the errors directory of the queue manager"

. $nl .

"and, if specified, to the mail recipient(s) <rcpt> (comma separated"

. $nl .

"list of addresses). If the local host does not provide a mail (smtp)"

. $nl .

"server, a different server <svr> may be specified. Three log files"

. $nl .

"are maintained. At a size of 256 KB amqfsmØ1.log the log files" .

$nl .

"are moved down to amqfslogØ2.log and amqfslogØ3.log and the primary"

. $nl .

 16 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

"log file amqfslogØ1.log is re-allocated.\n";

my %arg = (# preset argument defaults:

 m => '', # queue manager name = empty (required)

 l => '', # headroom low = empty (required)

 h => '', # headroom high (default = headroom low, see getArgs)

 n => Ø, # noEnable = off

 r => '', # mail address(es) = empty

 s => hostname(), # mail (smtp) server, default = localhost

 v => Ø, # verbose = off

 w => 6ØØ, # wait = 6ØØ seconds

 x => 'NORMAL|XMITQ' # monitor all types of queues

);

%arg = getArgs(@ARGV); # get cmd line args/options to global hash %arg

if ($arg{p}) { # if internal flag -p present (see sub runmqsc)

 print "$arg{p}"; # then simply print the argument

 exit Ø; # and exit without error return code

}

my %qs; # declare global hash of queue names/attributes

my $logf = getQmDir($arg{m}); # get log file path (qmgr directory)

while (1) { # do forever (until interrupt)

 getQattr('usage', '*', $arg{m}, \%qs); # get q usage for all qs

 if ($arg{v}) {

 my $noqs = scalar keys %qs;

 print (

 strftime "%d.%b.%Y, %H:%M:%S, qmgr $arg{m} ($noqs queues):\n",

 localtime

);

 }

 foreach (keys %qs) { # for all queues found in qmgr $arg{m}

 checkQ($_, \%arg, \%qs) # check the q size if q usage

 if $qs{$_}{usage} =~ /$arg{x}/; # found in usage from the cli

 }

 sleep $arg{w}; # wait for the interval received from the command line

} # end: while forever

###############

Subroutines

###############

sub checkQ # purpose: Checks the size of the q file & writes a warn-

########## # ing to the log if the headroom drops below the

 # threshold $arg{l}.

 17© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 # Uses predef. string $logf (log files).

 # arguments: 1. queue name

 # 2. reference to hash of arguments

 # 3. reference to hash of queues/attributes

{

 my ($q, $arg, $qs) = @_; # get q name & args hash & q hash refs.

 my @qf = grep(/queues/i, 'dspmqfls -m $$arg{m} -t q $q');

 # get q file path from dspmqfls

 my $qf = pop @qf; # current q directory = last (only) entry

 chomp $qf;

 if (-d $qf) { # if queue directory exists

 if ($^O eq 'MSWin32') { # if OS = Windows

 my $free = 'dir "$qf"'; # get free space at q directory

 $free =~ s/^.*\s(\S+)\s+bytes\s+free/$1/s;

 # extract value 'bytes free'

 $free =~ s/\D//g; # remove group separators

 $$qs{$q}{free} = $free / 1Ø24; # bytes -> kB

 $qf .= '\\Q'; # append file name to directory

 } else { # Unix

 $$qs{$q}{free} = 'df -b $qf | # get free filesystem kB at q

 tail -1 | awk '{print \$2}'`; # file & extract size (2nd col)

 chomp $$qs{$q}{free};

 $qf .= '/q'; # append file name to directory

 } # end if $^O

 $$qs{$q}{fsize} = (stat $qf) [7]; # get q file size in bytes

 $$qs{$q}{fsize} /= 1Ø24; # queue file size, bytes -> kB

 $$qs{$q}{hroom} = $$qs{$q}{free} * 1ØØ / # headroom

 ($$qs{$q}{fsize} + $$qs{$q}{free});

 $$arg{v} and print "$q: $$qs{$q}{fsize} kB, " . # verbose ->

 "$$qs{$q}{free} kB free ($$qs{$q}{hroom}%).\n"; # print comment

 if ($$qs{$q}{hroom} < $$arg{l}) { # if rel.headroom < threshold

 disableQ($q, $arg, $qs); # => put disable the queue

 } else { # else, if rel.headroom >= hi thresh.

 reEnableQ($q, $arg, $qs); # => re-enable q or warn if exceeded

 } # end if headroom < threshold

 } else {

 $$arg{v} and print "$q: No file $qf found.\n";

 } # end if q dir exists

} # end: checkQ ==

sub disableQ # purpose: Set a queue to PUT(DISABLED) and warn

############ # arguments: 1. queue name

 18 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 # 2. reference to hash of arguments

 # 3. reference to hash of queues/attributes

{

 my ($q, $arg, $qs) = @_; # get arguments

 getQattr('put', $q, $$arg{m}, $qs); # get put attr. of curr. q

 if ($qs{$q}{put} eq 'ENABLED') { # if q still enabled, then

 my $cmd = "alt ql($q) put(disabled)"; # mqsc to put-disable the q

 my ($rc) = runmqsc($cmd, $$arg{m}, "^AMQ");

 # run cmd, keep MQRC only

 chomp $rc;

 $$qs{$q}{disabl} = 1; # keep q disabled indicator

 warning("disabled for put", $rc, $q, $arg, $qs);

 # write warning to log & mail

 } # end if enabled

} # end: disableQ ==

sub reEnableQ # purpose: Re-enable a queue if its high threshold is

############# # exceeded again and warn if not.

 # arguments: 1. queue name

 # 2. reference to hash of arguments

 # 3. reference to hash of queues/attributes

{

 my ($q, $arg, $qs) = @_;

 if [$hr -lt $hrhi]; then # if rel. headroom < thresh.

lo

 [$hr -lt ${lsthr[$2]}] && # relative headroom

decreasing

 warn "filling up the filesystem!" # -> issue a warning

 elif [${disabl[$2]} -eq 1]; then # if $hr >= thresh. & q was

disabled

 if ($$qs{$q}{hroom} > $$arg{h}) { # if rel. headroom > thresh. hi

 if ($$qs{$q}{disabl}) { # if q is disabled

 $$qs{$q}{disabl} = Ø; # reset q disabled indicator

 $$arg{n} and return; # re-enable flagged off -> return

 my $cmd = "alt ql($q) put(enabled)"; # mqsc to set q put enabled

 my ($rc) = runmqsc($cmd, $$arg{m}, "^AMQ"); # run cmd, keep MQRC

 chomp $rc;

 warning("re-enabled for put", $rc, $q, $arg, $qs);

 # write warning to log & mail

 } # end if q is disabled

 } else {

 warning('filling up the filesystem!', 'none', $q, $arg, $qs);

 } # end if rel. headroom > threshold high

 19© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

} # end: reEnableQ ===

sub getQattr # purpose: Get an attribute of a queue

############ # arguments: 1. attribute name

 # 2. queue name

 # 3. queue manager name

 # 4. reference to hash of queues/attributes

{

 my ($a, $q, $qm, $qs) = @_; # get q attr & name, qmgr, & q hash ref.

 my ($k, $v); # local key/value pair for return hash

 foreach (runmqsc("dis ql($q) $a", $qm)) { # display attr $a of q $q

 chomp;

 ($k=$_) =~ s/^.*QUEUE\(([^)]+).*$/$1/ # extract q name as key

 if /QUEUE\(/; # if 'QUEUE' found

 ($v=$_) =~ s/^.*$a\(([^)]+).*$/$1/i # extract attribute as value

 if /$a\(/i; # if attribute found

 if ($k and $v ne '') { # if both key & val. defined

 $$qs{$k}{$a} = $v; # then assign to q hash

 $k = $v = ''; # and flush key/value

 } # end if

 } # end for

} # end: getQattr ==

sub getQmDir # purpose: Extract properties of the current queue

############ # manager from mqs.ini and set mq attributes

 # used by setQs()/checkQ().

 # argument: queue manager name

 # returns: $logf<n> (path to log files 1/2/3 of amqfsmon)

{

 my $qm = shift;

 ($_) = runmqsc('ping qmgr', $qm, 'AMQ8146|AMQ8118');

 # check if qmgr is running

 s/manager/manager '$arg{m}'/; # insert qmgr name into msg

 die $_ if $_; # die if not running

 ($_) = grep /qmanager.qmanager/i, 'dspmqfls -m $qm qmgr';

 # get mq path by dspmqfls

 chomp;

 s/qmanager/errors/i; # repl. 1st occ. of 'qmanager' by errors dir

 s/qmanager/amqfsmon/i; # repl. 2nd occ. of 'qmanager' by log name

 return $_; # return resulting log file path

 20 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

} # end: getQmDir ==

sub runmqsc # purpose: Run mqsc commands by runmqsc and return their

########### # output.

 # arguments: 1. mqsc command(s)

 # 2. queue manager name

 # 3. grep pattern for filtering (optional)

{

 my ($cmd, $qm, $grp) = @_; # get arguments

 my @out = '$Ø -p "$cmd" | runmqsc $qm'; # echo $Ø to pipe -> OS-in-

 # dependent, no double pipes

 @out = grep(/$grp/, @out) if $grp; # filter lines if required

 return @out if @out; # return @out only if its not empty

 return (''); # return array of 1 empty string if @out undef

} # end: runmqsc ===

sub warning # purpose: Write a warning to the log file, the mail reci-

 # pient, and stdout

########### # argument: 1. Message to display (use other vars from

 # checkQ below without passing them)

 # 2. MQ reason code from previous mqsc

 # 3. Current queue name

 # 4. Reference to argument hash

 # 5. Reference to queue hash

{

 my ($msg, $rc, $q, $arg, $qs) = @_;

 my $logfs = (stat "${logf}Ø1.log") [7] or Ø; # get log file size

 if ($logfs > 262144) { # if log file exists & > 256 kB

 rename "${logf}Ø2.log", "${logf}Ø3.log"; # move log file 2 to 3

 rename "${logf}Ø1.log", "${logf}Ø2.log"; # move log file 1 to 2

 } # if log file too large

 getQattr('curdepth', $q, $$arg{m}, $qs); # get depth of current queue

 my $host = hostname();

 my $out = # set up message

 strftime("%d.%b.%Y, %H:%M:%S", localtime) . # with date/time,

 ", qmgr $$arg{m} on host $host:\n" . # qmgr name/host name,

 " Queue '$q' $msg (rc=$rc)\n" . # warning with q name,

 " File size = $$qs{$q}{fsize} kB,\n" . # current file size,

 " Queue depth = $$qs{$q}{curdepth} messages,\n" . # q depth, &

 " Headroom = $$qs{$q}{free} kB / " . # headroom info

 "$$qs{$q}{hroom}% left, $$arg{l}% required.\n";

 21© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 open (LOG, ">>${logf}Ø1.log");

 print LOG $out; # write message to log

 close LOG;

 if ($$arg{r}) { # recipient ok -> send mail

 my $smtp = Net::SMTP->new($$arg{s}); # open socket to smtp server

 $smtp->mail("amqfsmon\@$host"); # initiate sending of a message

 # by passing sender address

 $smtp->to($$arg{r}); # notify server about recipients

 $smtp->data(); # initiate sending of the data

 $smtp->datasend("To: $$arg{r}\n"); # send data: receiver identific.

 $smtp->datasend("Subject: Warning: Queue $q $msg!\n");

 # send subject specification

 $smtp->datasend($out); # send message

 $smtp->dataend(); # end sending data

 $smtp->quit; # close socket connection

 }

 print $out if $$arg{v}; # verbose -> msg to STDOUT too

} # end: warning ===

sub getArgs # purpose: Get the arguments/flags from the command line.

########### # arguments: none

 # returns: hash of all flags

{

 $_ = join(" ", @_); # get all cmd line args

 my $flg = 'hlmnprsvwx'; # set of all valid flags

 my $sfl = 'nvx'; # subset of valid simple flags

 /-[$sfl]*([^$flg])/ and # if an invalid flag is encountered

 die "\nInvalid option: -$1.\n$help"; # die with help

 while (s/-([$sfl])([$flg])/-$1 -$2/) {} # separate simple flags

 s/(^|\s+)-([$sfl])/$1-$2 1/g; # add value 1 to simple flags

 s/(^|\s+)-([$flg])\s*/\e$2\e/g; # '-<flag> <val>' -> '\e<flag>\e<val>'

 # and add ' ' for simple flags

 s/x\e1/x\eXMITQ/g; # set value for simple flag: -x

 s/^\e//; # remove leading delimiter

 %arg = (%arg, split "\e"); # overwr. defaults hash by avail.args

 if (not $arg{p}) { # if internal print flag is not set, then

 / (\S+)/ and die "\nCannot interpret argument: $1.\n$help";

 # die if stand-alone argument found

 die "\nRequired argument missing: <hrlo>.\n$help" unless $arg{l};

 # die if required flag -l missing

 die "\nRequired argument missing: <qmgr>.\n$help" unless $arg{m};

 22 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 # die if required flag -m missing

 die "\nArgument <hrlo> must be numeric.\n$help"

 unless $arg{l} =~ /\d+/; # die if <headroom lo> not numeric

 die "\nArgument <wait> must be numeric.\n$help"

 unless $arg{w} =~ /\d+/; # die if <wait> not numeric

 }

 $arg{h} = $arg{l} unless $arg{h}; # dflt. headroom hi = headroom lo

 return %arg;

} # end: getArgs ===

Dr sc nat Johannes P Boehm
IBM certified MQSeries Specialist,
IBM certified MQSeries Developer,
IBM certified MQSeries Solutions Expert (Switzerland) © Xephon 2005

Contributing to MQ Update

Why not share your expertise and earn money at the
same time? MQ Update is looking for program code,
scripts, REXX EXECs, JavaScript, etc, that
experienced users of MQ have written to make their
life, or the lives of their users, easier. We are also
looking for explanatory articles, and hints and tips,
from experienced users. We would also like
suggestions on how to improve MQ performance.

We will publish your article (after vetting by our expert
panel) and send you a cheque, as payment, and two
copies of the issue containing the article once it has
been published. Articles can be of any length and
should be e-mailed to the editor, Trevor Eddolls, at
trevore@xephon.com.

A free copy of our Notes for Contributors, which
includes information about payment rates, is available
from our Web site at www.xephon.com/nfc.

 23© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

WAS 6 and autonomic computing

IBM announced WebSphere Application Server Version 6 in
October last year. It contains support for various Java and
Web services standards – the Web services specification,
WS-I Basic Profile 1.1, J2EE 1.4, the Java API for building
Web services and clients using RPC and XML, and JAX-RPC.
It also included improvements in autonomic computing for
WebSphere.

In this article I will look first at some of the more significant
announcements and then at why autonomic computing is
important for a company.

SIGNIFICANT ANNOUNCEMENTS

There is now greater consistency in the WAS family from top
to bottom, including in the Express version. Gone is the need
for customized builds of the Application Server for WAS
Express, Base, Network Deployment, and Enterprise.
WebSphere 6 Express/Base Single Server CDs now provide
one set of images that install Express or a Single Base Server,
and offer full J2EE 1.4.2 support for both versions, which
makes it easier to develop and deploy applications using
industry-standard tools. Also included with the Express/Base
product are some features that were previously only available
in the Enterprise Edition – including Workmanager (previously
known as Asynchronous Beans) and Application Profiles.

The inclusion of better scaling means that more users can
access an application simultaneously. This will, therefore,
provide better flexibility, and means that licensing and
administrative costs will be reduced.

Versions 5.0 and 5.1 allowed the creation of multiple instances
of WAS using the wsinstance command. With Version 6 this
is enhanced and called Server Profiles.

 24 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

The Web services standards have been updated and there
are some additional features. Web services standards are
more automated, which provides cross-platform computing.
WS-I Basic Profile 1.1, WS-Transactions, and WS-Security
are all supported. A standards-based approach allows
companies to respond efficiently and speedily to any changes
in their business, and this can all be incorporated into their
Service-Oriented Architecture (SOA) strategy.

SOA allows a company to interconnect business functions,
processes, and services using industry-standard software
components rather than manually-coded ones. It allows a
huge flexibility in the combinations that are possible.

Associated with SOA is an Enterprise Service Bus (ESB). This
is basically a connection infrastructure allowing business
transactions to flow from one application to the next. WAS
Version 6 makes it simpler to connect WebSphere applications
to an ESB. It now has a faster messaging capability and
connects easily with the IT infrastructure that already exists.

Service Data Objects (SDO) simplify and unify the way that
applications handle data. Using SDO, application programmers
can uniformly access and manipulate data from heterogeneous
data sources, including relational databases, XML data
sources, Web services, and enterprise information systems.

Java Server Faces (JSF) is a component-based framework
bringing user interface development methods for building
Java fat client user interfaces to Java-based Web application
development.

The ASTK (Application Server Toolkit) has been updated in
Version 6. The ASTK provides WebSphere developers and
administrators with a set of Eclipse-based tools for assembling,
deploying, debugging, and profiling J2EE applications.

For developers there are a number of new wizards and a drag-
and-drop environment. This automates what can be routine
and tedious steps in the development and deployment of an

 25© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

application. Eliminating hand coding reduces the number of
programming steps needed to build an application. WebSphere
Rapid Deployment has improvements in annotation-based
programming, deployment automation, and change-triggered
processing.

AUTONOMIC COMPUTING

WebSphere Version 6 is designed to detect problems
automatically. It can also save and process Web-based
business transactions automatically. Previously, this could
have been a long process.

IBM has produced a lot of figures explaining how much
downtime costs, quoting averages of $6.5 million per hour in
the retail brokerage industry, $2.6 million in credit card
authorizations, $90,000 in airline reservation centres, $27,000
in manufacturing, and $17,000 in banking.

Autonomic self-healing software is a route that IBM started to
go down with DB2 a while ago, and has continued development
in with its recent DB2 announcements.

WAS Version 6 is able to configure, optimize, heal, and protect
itself. IBM explains the need for autonomic software by saying
that the management of systems is getting so complex, it is
easier to let the software do it and let companies get on with
what they know best – running their businesses.

When it detects an outage, WAS Version 6 redirects data to a
different designated ‘failover’ server automatically. This second
server will usually be within the same data centre, but, should the
failure be more serious in nature (like a local disaster!), WAS can
move the information via the Internet to a completely different
location.

Nick Nourse
Independent Consultant (UK) © Xephon 2005

 26 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

WebSphere MQ on high-capacity Unix servers:
access control

ABSTRACT

This article is about controlling access to WebSphere MQ
administration facilities in a multi-user Unix environment.
Subject to the local IT policies, this task may pose some
operational challenges, solutions for which are not readily
available in WebSphere MQ or third-party products known to
me. The article describes a simple and practical solution to
those problems.

IBM WebSphere MQ (formerly known as MQSeries) allows
users easily to exchange information across different platforms,
integrating new and existing business applications. Further in
this article, we will refer to it just as MQ.

PROBLEM

Often, organizations choose to host a lot of queue managers
on a high-capacity Unix server. Such a strategy, commonly
known as server consolidation, allows companies to reduce
some costs, including MQ licensing costs, better leverage the
purchased computing power, and save on Unix system
administration and some other data centre costs.

In such an environment, it is common to find queue managers
belonging to distinct application support groups (hereinafter
called simply application groups), often from different
departments or business lines. It is often the case that, before
migrating their queue managers into the consolidated
environment, many of these application groups managed
their queue managers using their internal resources. For a
number of more or less valid reasons the application groups
may prefer to keep administrative access to their queue

 27© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

managers rather than organize a dedicated MQ administration
group and surrender their access to this group.

Among the valid reasons are the significant differences in the
support levels expected by different groups, the high cost of
the dedicated 24x7 centralized MQ administration group, and
the large amount of MQ expertise that can be accumulated by
the application groups, who can integrate MQ support with
their other responsibilities.

As soon as it is decided that the application groups will
continue to manage their queue managers, they discover the
operational risk caused by the absence of the necessary
access control safeguards that prevent one group from affecting
other groups’ queue managers. To see the problem more
clearly, let us list some facts about MQ system administration
techniques on Unix:

1 The main means of MQ administration on Unix platforms
is so-called control commands, which are simply Unix
executables. Some operations, like queue manager
creation or deletion, can be performed only by control
commands.

2 The access to MQ control commands is managed by
means of the Unix operating system. Specifically, in order
to run any control command, the user of the calling
process must be allowed in Unix group mqm.

3 Anyone permitted to run a control command can apply it
to any queue manager on the machine. There is no
documented way to restrict the access of one person who
is allowed to run control commands on a given list of
queue managers.

To summarize, the standard MQ installation on Unix does not
have any way of restricting administrative privileges to a
specific set of queue managers, and this becomes a problem
for many IT departments.

 28 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

THE IDEA BEHIND THE SOLUTION

Before any further discussion, it is essential to know that every
time a control command is executed, it operates on one, and
only one, queue manager. The name of this queue manager
is always specified by one of the control command arguments.
For example, the following is the generalized syntax of the
control command creating a new queue manager:

$ crtmqm [<options>] <queue-manager-name>

Other commands have a similar syntax. There are slight
differences in where the <queue-manager-name> is to be
specified in the command line and whether it must be given as
the value of an option (usually, -m) or just in a file argument
style, as in crtmqm.

(Strictly speaking, it is possible to designate a queue manager
‘default’, in which case it is possible to omit its name from the
control command calls. The concept of the default queue
manager is rather more harmful than useful in the environments
we are interested in [with multiple queue managers belonging
to independent owners it is clearly problematic to nominate
any particular one as more equal than others]. From further
discussion it will become obvious that our approach prevents
default queue managers from ever being created.)

Given that, one could think of constraining the control command
syntax for every member of an application group with the
requirement to use only the names of the queue managers
owned by their application group. Such a requirement is not
directly enforceable in Unix, but the idea is still fruitful and here
is one approach that works:

1 Bar any application group from executing control
commands directly.

2 Allow any application owner to call control commands via
some trusted agent that will pass only the command lines
referring to the owner’s queue managers. Of course, the

 29© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

agent must allow its user to enter any useful combination
of other control command argument.

An additional requirement of the agent is that it (and its
configuration, if any) must be protected from being tampered
with by application group members.

Non-functional requirements:

1 Ease of use. This includes a minimal possible learning
curve for seasoned MQ administrators (ideally, a zero
learning curve).

2 Minimal burden and learning curve for Unix SAs to set up
the agent.

3 Low total cost of ownership.

4 Low implementation cost.

SOLUTION

Here is the precise architecture of the solution I implemented
based on the principles above:

1 Unix SAs do not allow any application owner in the group
mqm.

2 Unix SAs designate a separate group for every subset of
queue managers owned by a distinct application group,
for example ‘agroup’.

3 For every new queue manager on the system, Unix SAs
generate a set of shell scripts with names that resemble
control commands. Each script ‘wraps’ the call to its
respective control command. Before executing the control
command, the script validates its arguments using the
syntax of the control command documented by IBM.
Additionally, the script validates that the queue manager
name is present and is equal to the script’s target queue
manager name. If any of the validations fails, the script

 30 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

exits without executing the command; otherwise, the
command is executed.

4 The system must have the open source tool sudo installed.
Sudo is used to let an ‘agroup’ member execute the
control command with the credentials of user mqm. In
order to avoid introducing application groups to the sudo
command and make their work as similar to the regular
MQ administration as possible, the wrapper scripts
recursively call themselves with sudo, like this:

test "X$SUDO_COMMAND" = "X$cmd" || exec /usr/bin/sudo -u cmd $cmd

5 For every new queue manager on the system, Unix SAs
add the fragment to the /etc/sudoers file, similar to the
following:

This section is for 'groupa' to administer queue manager QM.A

(MQ core control commands)

%groupa myhost = (mqm) NOPASSWD: /usr/mqm/wrappers/QM.A/w_crtmqm

%groupa myhost = (mqm) NOPASSWD: /usr/mqm/wrappers/QM.A/w_dltmqm

...

This example refers to the standard MQ installation path
on an AIX operating system.

6 The scripts are put in the subdirectory wrappers/<queue-
manager-name>/ of the MQ installation directory. The
wrappers/ directory is owned by user and group mqm and
has read and execute permissions only for the user and
the group. The wrappers/<queue-manager-name>/
directory is owned by user mqm and group agroup and
has read and execute permissions for the user and the
group. It is essential that this directory does not have write
permissions for the group.

The scripts, with the names resembling the control
command names, like ‘w_crtmqm’, are owned by the user
mqm and group agroup and have read and execute
permissions for the user and the group. Again, it is
essential that the scripts are not writable by the group.

 31© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

7 The application group members add the subdirectory
wrappers/<queue-manager-name>/ of the MQ installation
directory to their system PATH and use wrappers as they
would use regular MQ control commands, with the following
two small differences:

– the name of every control command needs to be
prefixed with ‘w_’.

– the control command syntax employing the default
queue manager is prohibited.

There are quite a few things to take care of in the wrappers to
make sure they cannot be hacked by submitting unusual
arguments to them or running them in a ‘poisoned’ environment.
Also, quite a bit of work is required from Unix SAs to install
wrappers and configure sudo. Therefore, I wrote a program in
Perl to automate this task. Given the application group name
and queue manager name, the program generates and installs
the set of wrappers for core MQ control commands or MQ
PubSub extension control commands, depending on the
user’s choice. Also, the program generates the commented
fragment of /etc/sudoers for granting the group members the
sudo access to the wrappers with the credentials of mqm
user. The current version supports AIX and Solaris operating
systems and adding support for another version of Unix
should not be difficult.

Some control commands are inherently capable of affecting
multiple queue managers with the privileges of mqm, even
though they are run for a particular queue manager. These are
the commands operating with the MQ trigger monitor and
default DLQ handler. To stay on the safe side, the wrappers for
these commands are intentionally not generated. In the shared
environment, without centralized MQ administration, my
recommendation is to make a copy of the respective runmqtrm
and runmqdlq commands without the setuid bit and make
them available for any user on the system to run with their own
credentials rather than those of mqm.

 32 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

CONCLUSION

The solution discussed in this article has been used
successfully in our organization for more than three years. No
real problem has ever been reported and the application
owners seem to be happy with it.

Ironically, no commercial package providing the analogous
functionality seems to be available. Most of the solutions for
MQ administration are based on the command server and
PCF commands. These are powerful tools. However, their use
requires that at least one queue manager be up and running
on the system, which defeats the purpose of decentralizing
MQ administration.

You are welcome to send your questions and comments about
this article to me at paultolk@yahoo.com.

Pavel Tolkachev
Software Architect (USA) © Author 2005

Defining WebSphere MQ roles using sudo

INTRODUCTION

In most companies certain tasks have to be performed by
more than one team. On Unix systems these teams may be
Unix groups. In the context of WebSphere MQ, it is quite easy
to define several groups with different permissions on
WebSphere MQ objects – eg by using the default Object
Authority Manager (OAM) of WebSphere MQ. It is more
complicated to restrict access to WebSphere MQ programs in
a detailed way. Some Unix derivatives provide Access Control
Lists (ACL) to enable a more detailed structure than Unix
generally has. But such mechanisms are not available on
every Unix derivative.

 33© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

This article describes a solution that makes use of a very
popular freeware tool named sudo. The name of this tool
contains the Unix tool su (stands for ‘set user’) and the word
‘do’. This means sudo allows users to execute (do) programs
under a different user id from the caller – without needing to
know the password of this other user. The tool sudo maps the
user id, checks the permissions of the user, and executes the
specified program – if the caller is allowed. In addition, if
configured, sudo logs the usage of the commands defined in
the sudo configuration.

THE SUDO TOOL

Reasons for using sudo

There are several reasons to use sudo on Unix platforms. It
is available on any Unix platform – at least by translating the
free sources to your particular system. There is one single
configuration file containing all the information about which
user or group may run which commands. The tool is very
flexible and easy to use. Sudo is able to control any program
and run it using any user for execution. The only trick is to
create a proper configuration file.

This article describes a configuration specific to WebSphere
MQ. Nevertheless sudo is able to control any other program,
like a database or whatever. Because of this, sudo is probably
available and in use on most Unix systems. In this case, it is
very easy to extend it for WebSphere MQ needs; otherwise, it
is very easy to install or configure it for WebSphere MQ needs.

Sudo allows users to run programs using other user ids,
without needing to have the password for this other user id.
Users may execute these programs using their own private
password or even without any password – depending on the
configuration and your security requirements. It is also possible
to enable users for a list of programs, for only a single
program, or even for a single program with specific parameters.
Execution permissions may be defined in a generic form too.

 34 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Because of this flexibility of sudo, it is very important to think
about the permissions that are needed in your environment
before the sudo tool is configured. This article describes a
solution that should prove very useful for most companies.
However, the configuration may need to be adapted for your
own needs.

How sudo works

The program sudo is a freeware solution that provides standard
users with extended privileges in special cases. The tool
executes specified programs using a privileged user id – like
root or the WebSphere MQ system user mqm. There is no
need to know the password of this special user, so users may
be added to the group without publication of a password. Also,
it is very easy to remove users from these groups without
changing the password afterwards. Sudo itself runs with root
privileges, so it is able to run any other program.

Sudo checks the configuration, defined in the file /etc/sudoers,
to see whether or not an action is allowed for a user. Any
actions performed by sudo are stored in a log file – if one has
been specified. The following line defines the file /var/adm/
sudolog, which is then used by sudo to log its actions:

Defaults logfile = /var/adm/sudolog

If no logfile is specified, the actions are not reported. So it
makes sense always to have a log file. Sudo is able to handle
four kinds of alias definition. Two of them are used in this
article – Host_Alias and Cmnd_Alias.

Host_Alias is a flag to create a list of host names that have the
same sudo configuration. If it not necessary to have different
configurations on different hosts; it is possible to use the value
ALL instead of a host list. In this article I use different lists for
AIX platforms and other systems (Sun Solaris and Linux)
because the program paths differ on these systems.

The second alias, Cmnd_Alias, is used to create several
groups of commands, which have to be enabled for a special

 35© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Unix group. In fact most of these aliases are defined twice,
once with an extension _AIX for AIX systems, and then without
this extension for any other platform. The WebSphere MQ
sample programs by default are located in different directories
(/usr/mqm/samp/bin and /opt/mqm/samp/bin), whereas the
other WebSphere MQ tools are linked to the path /usr/bin. The
samples below use the direct paths to the program’s directories
(directories /usr/mqm/bin and /opt/mqm/bin) instead of the
links.

SAMPLE CONFIGURATION

Setting up the sudo configuration

Before you start to configure the sudo tool, you have to think
about your security requirements and about the user groups
and what application they should be able to get access to. It
is possible to enable specific user names to execute the
programs. But in most cases there will be a team that performs
specific tasks and all team members need the same
permissions. Design your roles and clarify the needed
permissions before you set up the sudo configuration file.

When the role structure is defined, create a Unix group for
each sudo role you need. Now create some command aliases
containing the programs and tools that have to be enabled for
this sudo role. If possible, use wildcards for the command
aliases (eg by grouping the commands in special directories
or by using name spaces). More sudo roles means more Unix
groups, which means more administration work. Fewer sudo
roles means fewer Unix groups, which means less granularity
in your security configuration. You have to come up with a
solution that fits the following maxim:

‘As much as necessary, as little as possible.’

Description of the sample sudo configuration

The sample configuration below is divided into four parts. Part

 36 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

I defines global parameters. In this sample there is only one
definition, which sets up the log file for sudo (line 52). This
parameter assures the logging of any sudo call.

Part II defines some lists of host names. In this sample four
host lists are defined: one per operating system (lines 67, 71,
and 75) and a fourth one, which includes all other host lists
(line 78). The host lists are necessary because the program
paths differ on different platforms.

Part III now defines several command aliases. This is the
biggest part of the configuration file and it defines several
command groups that have to be used by the different roles
defined below. The scenario described in this article uses four
different roles to control access to WebSphere MQ resources.
The first role is called mqshow. Members with this role have
only a few permissions on WebSphere MQ objects (lines 96
to 98 and lines 102 to 104). In fact they are allowed only to
show authorities, and the WebSphere MQ version (using
mqver) and WebSphere MQ error codes (using mqrc).

The next role is named mqoper (see lines 111 to 121 and lines
125 to 135). Members of this role are the operators of the
WebSphere MQ queue managers. This means that, in addition
to the functions of the role mqshow, they may start and stop
queue managers and they are able to manage permissions
using dspmqaut and setmqaut. They are also able to start
listeners and trigger monitors, and to save WebSphere MQ
objects as well as WebSphere MQ permissions. Members of
the role are also able to browse queue contents. Operators are
also allowed to run the command line interface, runmqsc, to
configure and manage WebSphere MQ objects.

The third role I defined is named mqadm (see lines 142 to 155
and lines 159 to 172). I assumed that, in addition to the role
mqoper, members of this role should be enabled to create and
delete WebSphere MQ queue managers and to dump the
WebSphere MQ active logs. This group is also able to get and
put messages (it depends on your personal requirements

 37© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

whether or not you create two different roles for administration
and operation).

A sort of ‘master’ role is the predefined group mqm. Members
of this group already have nearly any privilege they need. It is
not possible to restrict these users in any way. Nevertheless
there is one difference between members of this group and
the system user mqm. Members of the group mqm – except
the user mqm itself – are not able to stop WebSphere MQ
processes or clean up IPC segments like shared memory or
semaphores. Therefore sudo allows members of the group
mqm to change to the user mqm using su (it could also make
sense to allow users of the role mqadm to change to the user
mqm and therefore to not put users to the group mqm).

Special situation for the program runmqsc

It is not very helpful to configure the usage of the program
runmqsc using sudo. Runmqsc itself controls access to
WebSphere MQ objects. Since Version 5.3 of WebSphere MQ
on distributed systems, it has been possible to create generic
profiles (on hosts this feature already existed in earlier
versions). Nevertheless it makes sense to let users (at least
members of the role mqoper) call runmqsc only through
sudo. The advantage is that these calls are reported. So, if
something happens within the WebSphere MQ configuration,
it is possible to find out who was running runmqsc and who
may be responsible for the problem.

File permissions

After a default installation, most of the WebSphere MQ tools
are executable by the whole world. When sudo is used to
enable the execution of these programs, it is not necessary to
have privileges on these programs for users other than mqm.
These programs are owned by user and group mqm. Any
‘world’ permissions have to be removed. Only the program
runmqsc should be executable by the world, because this
program has its own permission management. Use generic

 38 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

profiles, using setmqaut, to configure the permissions on the
WebSphere MQ objects.

The configuration file, sudoers, must be owned by user root
and have the group id 0. It also has to be readable by user and
group and must not have any further permissions.

How to execute sudo commands

It is quite easy to execute the WebSphere MQ commands
using sudo. You need to know only where sudo resides or
have the file location in your search path. Then you have to call
the sudo program with one of the permitted commands as a
parameter. The command has to be entered as shown by
sudo -l. Sudo -l displays all permitted commands. See the
output below for the user dummy as a member of the group
mqshow:

$ sudo -l

User dummy may run the following commands on this host:

(mqm) NOPASSWD: /opt/mqm/bin/dsp*, /opt/mqm/bin/mqrc, /opt/mqm/bin/mqver

The user dummy may now execute one of the allowed programs
as shown below:

$ sudo -u mqm /opt/mqm/bin/mqver

Name: WebSphere MQ

Version: 53Ø

CMVC level: pØØØ-LØ2Ø617

BuildType: IKAP - (Production)

LISTING OF THE SAMPLE SUDOERS FILE
 1 ###

 2 #

 3 # Sample configuration for sudo to configure roles for

 4 # WebSphere MQ administration. This sample defines four

 5 # different roles with varying permissions. Each role

 6 # defines its own Unix group. The roles used

 7 # here are:

 8 #

 9 # mqshow: This role is allowed only to look

 39© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 1Ø # at the WebSphere MQ permissions and may

 11 # see the WebSphere MQ version and the error

 12 # codes. Members of this role cannot change

 13 # anything or even browse a queue.

 14 #

 15 # mqoper: This role is designed to perform 'normal'

 16 # WebSphere MQ operation tasks. Members of

 17 # this role may start and stop a queue

 18 # manager or a trigger monitor and listener.

 19 # They cannot create or remove a whole queue

 2Ø # manager. Operators are allowed to run the

 21 # 'browse' sample program, but not the 'put'

 22 # or 'get' samples.

 23 #

 24 # mqadm: This role is designed to perform any task

 25 # that is needed during the administration

 26 # of WebSphere MQ systems. Some privileges

 27 # of the role 'mqm', which are not needed for

 28 # administration but only for solving

 29 # WebSphere MQ problems, are missing. Members

 3Ø # of the role 'mqadm' are able to run the

 31 # 'put' or 'get' sample programs.

 32 #

 33 # mqm: This group is predefined in WebSphere MQ.

 34 # Members of this role have all permissions

 35 # in WebSphere MQ.

 36 #

 37 # Author: Hubert Kleinmanns

 38 # Date: April 7th, 2ØØ4

 39 #

 4Ø ###

 41

 42

 43 ###

 44 #

 45 # Part I: Definition of the default parameters.

 46 #

 47 ###

 48

 49 ###

 5Ø # Definition of the sudo log file.

 51

 52 Defaults logfile = /var/adm/sudolog

 53

 54

 55 ###

 56 #

 57 # Part II: Definition of the host aliases.

 58 #

 40 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 59 ###

 6Ø

 61 ###

 62 # Definition of your Unix server.

 63 ###

 64

 65 # AIX systems (has to contain a comma separated list of

 66 # your AIX host names or a dummy value)

 67 Host_Alias HOSTS_AIX=my_aix.my.domain

 68

 69 # Linux systems (has to contain a comma separated list of

 7Ø # your Sun Solaris host names or a dummy value)

 71 Host_Alias HOSTS_SUN=my_1st_sun.my.domain,my_2nd_sun.my.domain

 72

 73 # Sun systems (has to contain a comma separated list of

 74 # your Linux host names or a dummy value)

 75 Host_Alias HOSTS_LINUX=unknown

 76

 77 # All Unix systems (sum of all systems above)

 78 Host_Alias HOSTS_SERVER=HOSTS_AIX,HOSTS_LINUX,HOSTS_SUN

 79

 8Ø

 81 ###

 82 #

 83 # Part III: Definition of the command aliases.

 84 #

 85 ###

 86

 87 ###

 88 # Definition of the command aliases for WebSphere MQ.

 89 ###

 9Ø

 91 ###

 92 # Command aliases for members of the sudo role 'mqshow'.

 93

 94 # Definition of all WebSphere MQ display commands on

 95 # AIX systems.

 96 Cmnd_Alias MQM_SHOW_AIX= /usr/mqm/bin/dsp*, \

 97 /usr/mqm/bin/mqrc, \

 98 /usr/mqm/bin/mqver

 99

1ØØ # Definition of all WebSphere MQ display commands on

1Ø1 # Sun Solaris or Linux systems.

1Ø2 Cmnd_Alias MQM_SHOW= /opt/mqm/bin/dsp*, \

1Ø3 /opt/mqm/bin/mqrc, \

1Ø4 /opt/mqm/bin/mqver

1Ø5

1Ø6 ###

1Ø7 # Command aliases for members of the sudo role 'mqoper'.

 41© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

1Ø8

1Ø9 # Definition of all WebSphere MQ operation commands on

11Ø # AIX systems.

111 Cmnd_Alias MQM_OPER_AIX= /home/mqm/bin/saveqmgr, \

112 /usr/mqm/bin/amqoamd -s, \

113 /usr/mqm/bin/dsp*, \

114 /usr/mqm/bin/end*, \

115 /usr/mqm/bin/runmqlsr, \

116 /usr/mqm/bin/runmqtrm, \

117 /usr/mqm/bin/set*, \

118 /usr/mqm/bin/str*, \

119 /usr/mqm/bin/mqrc, \

12Ø /usr/mqm/bin/mqver, \

121 /usr/mqm/samp/bin/amqsbcg

122

123 # Definition of all WebSphere MQ operation commands on

124 # Sun Solaris or Linux systems.

125 Cmnd_Alias MQM_OPER= /home/mqm/bin/saveqmgr, \

126 /opt/mqm/bin/amqoamd -s, \

127 /opt/mqm/bin/dsp*, \

128 /opt/mqm/bin/end*, \

129 /opt/mqm/bin/runmqlsr, \

13Ø /opt/mqm/bin/runmqtrm, \

131 /opt/mqm/bin/set*, \

132 /opt/mqm/bin/str*, \

133 /opt/mqm/bin/mqrc, \

134 /opt/mqm/bin/mqver, \

135 /opt/mqm/samp/bin/amqsbcg

136

137 ###

138 # Command aliases for members of the sudo role 'mqadm'.

139

14Ø # List of all WebSphere MQ administration commands on

141 # AIX systems.

142 Cmnd_Alias MQM_ADMIN_AIX= /home/mqm/bin/saveqmgr, \

143 /usr/mqm/bin/amqoamd -s, \

144 /usr/mqm/bin/crt*, \

145 /usr/mqm/bin/dlt*, \

146 /usr/mqm/bin/dmp*, \

147 /usr/mqm/bin/dsp*, \

148 /usr/mqm/bin/end*, \

149 /usr/mqm/bin/runmqlsr, \

15Ø /usr/mqm/bin/runmqtrm, \

151 /usr/mqm/bin/set*, \

152 /usr/mqm/bin/str*, \

153 /usr/mqm/bin/mqrc, \

154 /usr/mqm/bin/mqver, \

155 /usr/mqm/samp/bin/*

156

 42 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

157 # List of all WebSphere MQ administration commands on

158 # Sun Solaris or Linux systems.

159 Cmnd_Alias MQM_ADMIN= /home/mqm/bin/saveqmgr, \

16Ø /opt/mqm/bin/amqoamd -s, \

161 /opt/mqm/bin/crt*, \

162 /opt/mqm/bin/dlt*, \

163 /opt/mqm/bin/dmp*, \

164 /opt/mqm/bin/dsp*, \

165 /opt/mqm/bin/end*, \

166 /opt/mqm/bin/runmqlsr, \

167 /opt/mqm/bin/runmqtrm, \

168 /opt/mqm/bin/set*, \

169 /opt/mqm/bin/str*, \

17Ø /opt/mqm/bin/mqrc, \

171 /opt/mqm/bin/mqver, \

172 /opt/mqm/samp/bin/*

173

174 ###

175 # Command aliases for members of the sudo role 'mqm'.

176

177 # Set the user id to the "mqm" user.

178 Cmnd_Alias MQM_SET_USER= /usr/bin/su - mqm

179

18Ø # List of all WebSphere MQ commands on AIX systems.

181 Cmnd_Alias MQM_ALL_AIX= /usr/mqm/bin/*, \

182 /usr/mqm/samp/bin/*

183

184 # List of all WebSphere MQ commands on Sun Solaris or

185 # Linux systems.

186 Cmnd_Alias MQM_ALL= /opt/mqm/bin/*, \

187 /opt/mqm/samp/bin/*

188

189

19Ø ###

191 #

192 # Part IV: Definition of the sudo roles.

193 #

194 ###

195

196 ###

197 # Members of the group "mqm" may change to the user "mqm"

198 # by entering their own password (not the "mqm" password).

199 # Other sudo specifications are not necessary, because

2ØØ # members of the group mqm have any permission they

2Ø1 # need, except stopping processes or removing IPC segments

2Ø2 # directly - which may be necessary, to stop a 'hanging'

2Ø3 # WebSphere MQ queue manager. Therefore members of the group

2Ø4 # mqm are able to become user mqm.

2Ø5

 43© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

2Ø6 %mqm HOSTS_SERVER=(root) PASSWD: MQM_SET_USER

2Ø7 %mqm HOSTS_AIX=(mqm) NOPASSWD: MQM_ALL_AIX

2Ø8 %mqm HOSTS_LINUX,HOSTS_SUN=(mqm) NOPASSWD: MQM_ALL

2Ø9

21Ø ###

211 # Members of the group "mqadm" are allowed to execute some

212 # WebSphere MQ commands without entering a password.

213

214 %mqadm HOSTS_AIX=(mqm) NOPASSWD: MQM_ADMIN_AIX

215 %mqadm HOSTS_LINUX,HOSTS_SUN=(mqm) NOPASSWD: MQM_ADMIN

216

217 ###

218 # Members of the groups "mqoper" are allowed to run only

219 # some WebSphere MQ display, stop, and start commands without

22Ø # entering a password.

221

222 %mqoper HOSTS_AIX=(mqm) NOPASSWD: MQM_OPER_AIX

223 %mqoper HOSTS_LINUX,HOSTS_SUN=(mqm) NOPASSWD: MQM_OPER

224

225 ###

226 # Members of the groups "mqshow" are allowed to run only

227 # some WebSphere MQ display commands without entering a

228 # password.

229

23Ø %mqshow HOSTS_AIX=(mqm) NOPASSWD: MQM_SHOW_AIX

231 %mqshow HOSTS_LINUX,HOSTS_SUN=(mqm) NOPASSWD: MQM_SHOW

Hubert Kleinmanns
Senior Consultant
N-Tuition Business Solutions (Germany) © Xephon 2005

MQ Update on the Web

Code from individual articles of MQ Update, and
complete issues in PDF format, can be accessed on
our Web site, at:

www.xephon.com/mq

You will be asked to enter a word from the printed issue.

 44 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

WebSphere MQ Integrator ControlCenter tracing

The simplest (only?) way to trace the WMQI ControlCenter is
to call the ControlCenter from the command line. The command
to use is:

mqsilcc n

The mqsilcc.bat file is located in the <mqsi-install>\Tool
directory. The n refers to a trace level in the range 0-2, where
0 means no tracing, 1 is for normal tracing, and 2 is for debug
tracing.

Once the required trace information has been collected in the
log file, <mqsi-install>\log, tracing can be stopped. The log file
can be formatted by entering:

mqsireadlog ControlCenter -t -b ControlCenter -f -o <file>.xml

mqsiformatlog -i <file>.xml

Old trace files can be deleted from the <mqsi-install>\log
directory.

Susan Alnutt
WMQ Consultant (UK) © Xephon 2005

If you have ever experienced any difficulties with MQ,
or made an interesting discovery, you could receive
a cash payment simply by telling us about it.

More information about contributing an article, plus
an explanation of our terms and conditions, can be
found at www.xephon.com/nfc.

If you have an idea for an article, please contact the
editor, Trevor Eddolls, at trevore@xephon.com.

MQ news

SAS has announced a new version of its
Enterprise ETL Server, which includes features
that simplify core functions in the extraction,
transformation, and load (ETL) process, and
shorten the time required to make information
available to a company.

The product has a wizard-driven user interface,
which simplifies how meta data is captured at the
transformation level. It also enables ETL
routines in the development cycle to be
performed in real-time using message queueing
products such as WebSphere MQ, as well as
through Web services.

For further information contact:
URL: www.sas.com/technologies/dw/
entetlserver.

* * *

IBM has announced Version 8.3 of DB2
Content Manager. The new version has
enhancements to its content management
platform, and new workflow capabilities that
help clients automate processes using graphical
tools.

Document routing integrates with workflow
capabilities to help streamline business
processes. The capture and management of
XML documents in a common content
repository can be automated.

The product integrates with Version 4.1.1 of
DB2 Records Manager. Integrating records
management with content management allows
users to find and access documents, even if they
aren’t located in the system’s own repository.
Content Manager 8.3 includes middleware
allowing content management to be built into the
workflow systems of different corporate
business processes, including WebSphere MQ
messaging system, WebSphere Application
Server, and Tivoli Storage Manager.

For further information contact your local IBM
representative.
URL: www.software.ibm.com/data/cm.

* * *

Based on Candle’s technology, IBM has
announced the Tivoli OMEGAMON XE
solution suite, which includes products that
monitor and manage zSeries operating systems
and subsystems including WebSphere
Application Server (WAS), WebSphere
Integration Brokers, and WebSphere MQ. It
can also monitor and manage z/OS Unix System
Services and Parallel Sysplex, z/VM, Unix
System Services, CICS, DB2, IMS, zSeries
networks, and storage.

For further information contact:
URL: www.ibm.com/ondemand.

* * *

x xephon

	WebSphere MQ Extended Security Edition
	Prevent queues from jamming your queue manager
	WAS 6 and autonomic computing
	WebSphere MQ on high-capacity Unix servers: access control
	Defining WebSphere MQ roles using sudo
	WebSphere MQ Integrator ControlCenter tracing
	MQ news

