
© Xephon Inc 2005

November 2005

77

In this issue

3 Control client connections using
WebSphere MQ Internet Pass-
Thru

9 Effective ways of debugging
WebSphere MQ on distributed
platforms

16 Obtain MQ queue statistics on
the Linux platform

26 WebSphere Business
Integration Message Broker –
simplified functional validation:
part 2

50 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon Inc 2005. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.

Printed in England.

Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Colin Smith
E-mail: info@xephon.com

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the material
it contains. Neither Xephon nor the contributing
organizations or individuals accept any liability of
any kind howsoever arising out of the use of such
material. Readers should satisfy themselves as to
the correctness and relevance to their
circumstances of all advice, information, code,
JCL, scripts, and other contents of this journal
before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in the
UK; £261.00 in Europe; £267.00 in Australasia
and Japan; and £265.50 elsewhere. In all cases
the price includes postage. Individual issues,
starting with the July 2000 issue, are available
separately to subscribers for $33.75 (£22.50)
each including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the rate
of $160 (£100 outside North America) per
1000 words and $80 (£50) per 100 lines of code
for the first 200 lines of original material. The
remaining code is paid for at the rate of $32 (£20)
per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues in
Acrobat PDF format, can be downloaded from
our Web site at www.xephon.com/mq; you will
need to supply a word from the printed issue.

 3© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Control client connections using WebSphere MQ
Internet Pass-Thru

INTRODUCTION

One of the features of WebSphere MQ is the ability of an
application to connect to a WebSphere MQ server using an
MQI channel.

This article explains how, by implementing an MQIPT security
exit, WebSphere MQ Internet Pass-Thru (MQIPT) can be
used to control when client connections are allowed to be
made to a queue manager. Many configuration features are
available to MQIPT, but this article focuses only on its security
exit. An MQIPT security exit has a different interface from a
WebSphere MQ channel exit and does not require a
corresponding security exit at the other end of the channel.

By their very nature, client connections are normally short
lived, and it is very common to have many client connections
active at the same time.

WHAT IS MQIPT?

MQIPT is a category 3 WebSphere MQ SupportPac, which
means it is fully supported and can be downloaded for free
from http://www.ibm.com/software/integration/support/
supportpacs. It was designed to be installed in the Demilitarized
Zone (DMZ) of a firewall and act as a ‘proxy’ for WebSphere
MQ traffic. It will accept a connection request from the
WebSphere MQ client and route it to the desired destination
based on its predefined configuration data. Once MQIPT has
established the connection and the handshaking process has
completed, WebSphere MQ messages are sent and received
as on any other WebSphere MQ channel connection.

The only change required in order to use MQIPT is to the

 4 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

WebSphere MQ CONNAME of the channel that’s being started.
In this example, the CONNAME of the CLNTCONN channel
must point to the remote MQIPT instead of the WebSphere
MQ server. The MQIPT will be configured to connect to the
destination queue manager.

The sample set-up is shown in Figure 1.

For this sample, the following assumptions are made:

• You are familiar with defining queue managers, queues,
and channels on WebSphere MQ.

• You have already installed a WebSphere MQ client and
server.

• The client, QM, and MQIPT are installed on separate
machines.

• MQIPT is installed in a directory called C:\mqipt.

• You are familiar with putting messages on a queue using
the amqsputc command.

• The Java SDK is installed on the MQIPT machine.

CONFIGURING WEBSPHERE MQ

On the WebSphere MQ server you need to do the following:

Figure 1: Sample set-up

Internet DMZ intranet

WebSphere
MQ client

Firewall Firewall

14141414

MQIPT
(10.20.3.1)

WebSphere
MQ server
(10.20.9.2)

 5© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

• Define a queue manager called MQIPT.QM1.

• Define a server connection channel called
MQIPT.CONN.CHANNEL.

• Define a local queue called MQIPT.LOCAL.QUEUE.

• Start a TCP/IP listener for MQIPT.QM1 on port 1414.

SAMPLE SECURITY EXIT

The security exit will be called when a connection request is
received on a specific MQIPT route and the response from the
security exit determines whether the connection request is
accepted or rejected. For the purposes of this example,
change the START_TIME and END_TIME variables to control
when client connections are allowed.

This sample code is stored in a file called ChannelAccess.java
and should be copied to c:\mqipt\exits on the MQIPT machine

/*

 * Sample program for use with IBM WebSphere MQ internet pass-thru

 * 5639-L92

 * (C) COPYRIGHT International Business Machines Corp., 2ØØ5

 * All Rights Reserved * Licensed Materials - Property of IBM

 * This sample program is provided AS IS and may be used, executed,

 * copied and modified without royalty payment by customer

 * (a) for its own instruction and study,

 * (b) in order to develop applications designed to run with an IBM

 * WebSphere product, either for customer's own internal use or for

 * redistribution by customer, as part of such an application, in

 * customer's own products.

 */

import java.io.*;

import java.util.*;

import com.ibm.mq.ipt.IPTException;

import com.ibm.mq.ipt.SecurityExit;

import com.ibm.mq.ipt.SecurityExitResponse;

/**

 * This is a sample test program to show how to use a WebSphere MQ

 * Internet Pass-Thru (MQIPT) security exit to control connections

 * based on the time

 * of day and the name of the channel.

 */

public class ChannelAccess extends SecurityExit {

 /** Only control connections to this channel */

 6 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 private static final String CHANNEL_NAME = "MQIPT.CONN.CHANNEL";

 /** Start of business */

 private static final int START_TIME = 8;

 /** Close of business */

 private static final int END_TIME = 22;

 /**

 * Default constructor used by MQIPT to create a new instance of this

 * class when a route is started.

 */

 public ChannelAccess() {

 }

 /**

 * This method is called when a route is being started and should be

 * used to perform any initialization (eg reading configuration data)

 * and place itself in a ready state to validate connection requests.

 * @throws IPTException to signal a failure

 */

 public void init() throws IPTException {

 // Trace useful info

 System.out.println("ChannelAccess ready for work");

 // Perform any initialization here

 return;

 }

 /**

 * This method is called to validate a connection request.

 * @return SecurityExitResponse

 */

 public SecurityExitResponse validate() {

 SecurityExitResponse secExitResponse = null;

 // Get channel name

 String channelName = getChannelName();

 try {

 // Check channel name

 if (channelName.equalsIgnoreCase(CHANNEL_NAME)) {

 // Get the current timestamp

 Calendar d = Calendar.getInstance();

 // Get the hour of day

 int hh = d.get(Calendar.HOUR_OF_DAY);

 // Open for buiness ?

 if ((hh > START_TIME) && (hh < END_TIME)) {

 // Allow the connection request

 secExitResponse = new SecurityExitResponse(SecurityExitResponse.OK);

 // Trace result

System.out.println("Connection allowed\n" + secExitResponse.toString());

 }

 else {

 // Reject the connection request

 secExitResponse = new SecurityExitResponse(

 SecurityExitResponse.NOT_AUTHORIZED);

 // Trace result

 7© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 System.out.println("Connection not allowed - not open for business");

 }

 }

 // Channel name not known

 else {

 // Reject the connection request

 secExitResponse = new SecurityExitResponse(

 SecurityExitResponse.NOT_AUTHORIZED);

 // Trace result

 System.out.println("Connection not allowed - unknown channel name" +

 channelName);

 }

 }

 catch (IPTException ie) {

 // Trace result

 System.out.println("Error creating SecurityExitResponse\n" +

ie.toString());

 }

 return secExitResponse;

 }

}

The security exit needs to be compiled before it is used. This
is achieved by opening a command prompt:

c:

cd \mqipt\exits

set CLASSPATH=.;c:\mqipt\lib\MQipt.jar

javac ChannelAccess

CONFIGURING MQIPT

MQIPT needs to have a route defined to the target WebSphere
MQ server.

Note that the Destination and DestinationPort properties need
to reflect your own server and port address.

1 Define a route with a security exit:

Edit c:\mqipt\mqipt.conf and add a route definition:

[route]

ListenerPort=1415

Destination=1Ø.2Ø.9.2

DestinationPort=1414

SecurityExit=true

SecurityExitName=ChannelAccess

 8 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

2 Start MQIPT by opening a command prompt:

c:

cd \mqipt\bin

mqipt ..

The following messages will be seen on the MQIPT
console:

5639-L92 (C) Copyright IBM Corp. 2ØØØ, 2ØØ4 All Rights Reserved

MQCPIØØ1 WebSphere MQ internet pass-thru Version 1.3.2 starting

MQCPIØØ4 Reading configuration information from C:\mqipt\mqipt.conf

MQCPIØ11 The path C:\mqipt\logs will be used to store the log files

MQCPIØØ6 Route 1415 has started and will forward messages to :

MQCPIØ341Ø.2Ø.9.2(1414)

MQCPIØ35using MQ protocols

MQCPIØ79using security exit c:\mqipt\exits\ChannelAccess

MQCPIØ8Øand timeout of 5 second(s)

MQCPIØ78 Route 1415 ready for connection requests

CONFIGURING WEBSPHERE MQ CLIENT

The queue manager and MQIPT have both been configured
and are now ready to accept connections. Note that the IP
address defined in MQSERVER needs to reflect your own
server address. The WebSphere MQ client can be started by:

• Opening a command prompt:

SET MQSERVER=TEST.CONN.CHANNEL/TCP/1Ø.2Ø.3.1

• Putting a WebSphere MQ message on the queue by
issuing the command:

amqsputc MQIPT.LOCAL.QUEUE MQIPT.QM1

Depending on the values defined for the START_TIME
and END_TIME, this command will succeed or fail.

SUMMARY

Using a specially written security exit, MQIPT can be used to
control when client connections to a queue manager are
allowed.

 9© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Idle connections can be disconnected by using the IdleTimeout
property.

Removing active connections (after close of business for the
day) is probably not recommended and these should be
allowed to naturally terminate, either by inactivity after a
predefined idle timeout or by the client ending the application.

This scenario can be extended so that MQIPT can be used for
QM-to-QM connections as well as client connections.

Phil Blake
Software Engineer
IBM (UK) © IBM 2005

Effective ways of debugging WebSphere MQ on
distributed platforms

ABSTRACT

WebSphere MQ, formerly MQ Series, has come a long way
since its launch in 1993 as a middleware product from IBM.
With its vast amount of functionality – supporting multi-
platforms, protocols, databases, and programming languages
– it is critically important to obtain debug information whenever
WebSphere MQ applications fail or don’t perform to their
specifications. Since the tools and procedures will vary from
platform to platform, depending on the problem/situation, it’s
difficult for an individual or team to have the expertise and
appropriate tools on all platforms. In this case, an insight into
efficient methods or procedures for debugging WebSphere
MQ on distributed platforms is very much required.

Even though WebSphere MQ provides First-Failure Support
Technology (FFST – usually called FDC) and trace facility, it
will not be much use in the following problematic situations:

 10 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• Application hangs

• Memory leaks

• Interoperability problems.

This article gives very detailed procedures for the above-
mentioned situations, which will help customers who are
working on WebSphere MQ applications. All the required
scripts (referred to in this article) are also provided.

PROBLEMATIC SCENARIOS

As mentioned already, WebSphere MQ applications will support
several environments, and the problems vary from one
environment to another. However, most problems encountered
are application hangs, WebSphere MQ command hangs,
dumping core files, interoperability issues, and WebSphere
MQ API memory leaks. This article does not cover customer-
written application problems.

SOLUTION

Detailed information for debugging WebSphere MQ
applications during problems and hangs is given by platform.
First let us look at application or WebSphere MQ command
hangs and core file generation. In these situations even
tracing will not help to debug. So, OS-specific commands or
debuggers (like dbx and dde) need to be used. Memory leaks
and interoperability problems will be covered in later sections.

APPLICATION HANGS

AIX

In AIX, the debugger dbx can be used to find the command
that is hanging and the function that is causing the problem.
The following dbx command sequence will help to identify the
problem in depth.

 11© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Syntax:

dbx -a <process id>

1 (dbx)where

2 (dbx)map

3 (dbx)thread

4 (dbx)thread info <threadid>

Repeat this for all the threads.

5 (dbx)thread current <threadid>

6 (dbx)where

Repeat step 5 and 6 for all the threads.

7 (dbx) detach.

Please note that if you quit, dbx kills the running process. So
use the detach command to detach the process instead of
killing it.

In the case of core file generation, the core file will be passed
to the debugger along with the command that is responsible
for the core. The command can be found by looking at the core
file header.

Syntax:

dbx <exe file with full path> <corefile>

dbx> where

dbx>thread

dbx>registers (not must)

dbx>list

dbx> what is $t<no> // for getting thread no 'no' information

dbx> dump // only for analysis because lot of

 information will be displayed.

dbx> detach

Solaris

The Solaris platform also provides a dbx debugger. In addition
to that, the pstack and pmap commands are available to track
the command flow.

Syntax:

dbx -a <process id>

dbx> where

dbx>thread

 12 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

dbx>registers (not must)

dbx>list (or)listi

dbx> what is $t<no> // for getting thread no 'no' information

dbx> dump // only for analysis because lot of

 information will be displayed.

dbx> detach

Usage of the pstack and pmap commands:

/usr/proc/bin/pstack <process id> <output file>

/usr/proc/bin/pmap -rlx <process id> <output file>

HP-UX

HP Unix provides the dde debugger and tusc tools to monitor
the command flow. The procedure is given below.

Syntax:

dde -ui line -attach <process id> <exe file full path>

dde> tb

dde> list thread -full

dde> tb -thread all

dde> quit

Tusc can be used as shown below.

Syntax:

tusc -aeEvlpT -o <output.file> <pid>

#Eg: /opt/tusc/bin/tusc -aeEvlpT -o /mqdata/tusc.rcdmqimg.out 23Ø88

Linux

All Linux operating systems provide the GNU debugger gdb,
which can be invoked to monitor the command flow.

Syntax:

gdb <exe file with full path> <corefile>

gdb>where

gdb>info threads

gdb>info sharedlibrary

gdb>info @t<no> // where no is thread number.

gdb>detach

Please use the detach command to detach the process,

 13© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

instead of using quit, which kills the running process.

Compaq Tru64 v4.x or v5.x

Tru64 Unix platforms support the dbx debugger and the
procedure is given here.

Syntax:

dbx -pid <pid of the Qmgr process> <executable>

>where

>tlist

>tstack

>plist

>detach

Repeat the dbx command for all queue managers and
application processes.

Windows

Dr Watson is the tool to be used for debugging on Windows.
In the command prompt type drwtsn32 -i to initialize Dr
Watson as the default debugger:

1 Invoke Dr Watson by clicking Start, selecting Run..., and
typing drwtsn32.exe.

2 Adjust all the parameters in the dialog box to suit your
needs, eg the number of instructions to save, number of
errors to save, log file path, etc. These settings are stored
i n
\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\DrWatson.
View the log file once an application error has occurred.

The log file contains the following information:

1 Error number.

2 System information.

3 Task list.

4 List of modules that the program had loaded.

 14 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

5 Processor and memory-related information like stack
trace, contents of register, etc.

6 And finally, the symbol table.

Looking at the above information, the exact location of an
error can be found to debug the MQ application.

MEMORY LEAKS

It’s important to monitor the product or application processes
to find memory leaks, which impact on the stability and
reliability of the product or application. The following procedure
helps to find memory leaks of the processes.

AIX

To find memory leaks from any process on the AIX platform,
attach the process id to the svmon command and send the
output to a file (svmon supports AIX V5.0 onwards). This
command captures and analyses a snapshot of virtual memory.
Although the ps command provides data to monitor process
memory usage, it is better to use the svmon command
provided by AIX.

Syntax:

svmon -P <pid of queue manager>

Note: svmon should be run as root.

Solaris, HP-UX, and Linux

Most of the Unix platforms provide the ps command to monitor
the process details, including memory usage. Using the ps –
eal <pid> or ps-eaf <pid> commands, we can collect the
memory usage of the process. The script below will help you
to collect data for one or more processes on different platforms:

#!/bin/ksh

while true

do

ps -elf | grep <Process id> | awk '{ print $1Ø }' >> <pid.out>

 15© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

ps -aux | grep <Process id> | awk '{ print $1Ø }' >> <pid.out>

 // for Linux.

sleep 1Ø

done

Note: change the frequence of sleep xx based on the
monitoring time.

Compaq Tru64

On Tru64 platforms, memory leaks of any process can be
obtained using the vmstat or ps commands.

Syntax:

vmstat -i <pid>

or:

ps -eal (m) -p <pid>

Windows

Tools are available from third parties to find the memory leaks
from processes running on Windows systems.

INTEROPERABILITY PROBLEMS

Most of the WebSphere MQ applications are used to interact
with different operating environments through available channel
types. It’s very difficult to locate interoperability problems
because they will arise for a variety of reasons including
authentication, protocols, and operating system-specific
issues. If the problems are authentication or operating system-
related, MQ provides error logs with specific information. Also,
the methods described above can be used for debugging. If
the problems are related to the protocol, then you need to
debug on both protocol (TCP/IP) and application views. All
major platforms provide netstat -a to check the ports’ status
and the TCP/IP trace facility allows you to take a protocol trace
at both ends.

 16 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

BIBLIOGRAPHY

• TCP/IP error codes: http://www-3.ibm.com/cgi-bin/
d b 2 w w w / d a t a / d b 2 / u d b / w i n o s 2 u n i x / s u p p o r t /
document.d2w/report?fn=db2m0db2tcp.htm.

• HP-UX tusc tool (HP specific): http://eigen.ee.ualberta.ca/
hppd/hpux/Sysadmin/tusc-6.5.

• Dr Watson tool: http://www.microsoft.com/resources/
documentat ion/windows/xp/a l l /proddocs/en-us/
drwatson_overview.mspx.

• All platform commands: http://www.bhami.com/
rosetta.html.

Srihari Kulkarni and Mekala V Reddy
IBM (India) © IBM 2005

Obtain MQ queue statistics on the Linux platform

Not all IT departments have the luxury of having a commercial
product to benchmark their MQSeries set-up. This article
shows a simple but effective way to obtain the following
statistical data from MQ queues on the Linux platform:

• Run date and time

• Queue manager name

• Queue name

• Number of MQPUTs during the last interval

• Number of MQGETs during the last interval

• The current queue depth

• The highest queue depth reached during the last interval

• Interval time.

 17© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

The interval in this context is either the period between
running the statistics utility or, if it is the first time, the time
since starting the queue manager.

ENVIRONMENT

The utility was specifically written for MQ on the Linux operating
system, but also runs under Windows. It was tested under:

• Suse Linux V9.2, kernel 2.6.8-24.17.

• Redhat Enterprise Linux AS release 3 (Taroon Update 4),
kernel 2.4.21-27.0.2.

• Windows XP.

• IBM WebSphere MQSeries V5.3, CSD 10 (also tested
from CSD6 upwards).

SOURCE

The attached source code, Linux_qstats.c, can be compiled
using either MS Visual C++ or the GNU C compiler. If using the
GNU compiler, compile and link the source code as follows:

gcc –o Linux_qstats Linux_qstats.c –lmqm

The interface to MQ is the so-called MQAI, which is an
administration interface on top of the PCF interface. This
article will not explain how the MQAI works.

The comments in the source code should make it self-
explanatory.

RUNNING THE UTILITY

The utility basically takes as input the following parameters:

• Queue manager

• Input file (list of queue names)

• Output file.

 18 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Please make sure that the queue names in the input file do not
exceed the maximum length of 48 characters. As an
enhancement you could allow an ‘*’ to mean ‘all queues’, but
be aware that although this works under Windows, you will
need to use ‘*’ for Unix environments.

The output file is a CSV file, and this has been done deliberately.
It can then be imported into a spreadsheet and analysed, or,
as we have done, can be used as input to a database utility
(either DB2 or Oracle) to store in a database.

The command used is basically RESET QSTATS and it
seems strange that only MQ on the IBM mainframe has this
command as part of the standard MQSC. On the distributed
platforms it has to be done programmatically.

An alternative to this utility is to write an API exit.

Whenever the utility is run, the various counters are zeroed,
but note that in addition to the RESET QSTATS fields, an
inquiry is made into the ‘current’ queue depth as well.

Be aware that if you do have a third-party product (like QPasa
for example), it too issues RESET QSTATS and this cannot be
switched off, so you cannot run both this utility and another
one issuing the same command. (Well, you can, but the
results would be confusing!)

SAMPLE RUN

Linux_qstats T84ØA mqstats_queues.txt stats.out

Linux_qstats: Obtain MQ Queue Statistics

No. of records read 2 & written 2

Linux_qstats - end of processing.

Input File mqstats_queues.txt

RUUD1

RUUD2

Output File stats.out

2ØØ5-Ø8-15,19.53.12,T84ØA,RUUD1,Ø,Ø,2,2,8

2ØØ5-Ø8-15,19.53.12,T84ØA,RUUD2,Ø,Ø,Ø,Ø,8

2ØØ5-Ø8-15,2Ø.23.45,T84ØA,RUUD1,1Ø,Ø,12,12,1832

2ØØ5-Ø8-15,2Ø.23.45,T84ØA,RUUD2,Ø,Ø,Ø,Ø,1832

 19© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

CONCLUSION

You don’t need an expensive third-party product to obtain
MQSeries statistics. In fact, it is often difficult to extract that
sort of information from external products.

By running the supplied utility on a regular basis (using, for
example, the Unix CRON facility) data can either be stored by
appending it onto a CSV file for later analysis in MS Excel, or
it can be stored in a database against which SQL statements
can be issued.

LINUX_QSTATS.C
/**/

/* Program name: Linux_qstats.c */

/* Description : Extract and display MQ Queue Statistics */

/* Date : August 2ØØ5 by Ruud van Zundert */

/* Includes */

/**/

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <ctype.h>

#include <time.h>

#include <cmqc.h> /* MQI */

#include <cmqcfc.h> /* PCF */

#include <cmqbc.h> /* MQAI */

/* Function prototypes */

void CheckCallResult(MQCHAR *, MQLONG , MQLONG);

void get_QDepth(MQCHAR *);

void get_Timestamp(char*);

void mqstuff();

MQLONG qDepth; /* point-in-time queue depth */

MQHCONN hConn,hInq; /* handle to MQ connection */

MQLONG reason; /* reason code */

MQLONG connReason; /* MQCONN reason code */

MQLONG compCode; /* completion code */

MQHBAG adminBag = MQHB_UNUSABLE_HBAG; /* admin bag for mqExecute */

MQHBAG responseBag = MQHB_UNUSABLE_HBAG;/* response bag for mqExecute */

MQHBAG qAttrsBag; /* bag containing q attributes*/

MQHBAG errorBag; /* bag containing cmd server error */

MQLONG mqExecuteCC; /* mqExecute completion code */

MQLONG mqExecuteRC; /* mqExecute reason code */

MQLONG i,n; /* loop counter */

MQLONG numberOfBags; /* number of bags in response bag */

MQLONG qNameLength; /* Actual length of q name */

 20 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

MQLONG O_options,C_options; /* MQOPEN/MQCLOSE options */

MQOD odG = {MQOD_DEFAULT}; /* Object Descriptor for GET */

MQOD odI = {MQOD_DEFAULT}; /* Object Descriptor (INQUIRE)*/

MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */

MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */

MQLONG Select[2]; /* attribute selectors */

MQLONG IAV[2]; /* integer attribute values */

char buffer[1ØØ]; /* message buffer */

MQLONG buflen; /* buffer length */

MQLONG messlen; /* message length received */

char run_timestamp[27]; /* full run timestamp */

char mq_timestamp[27]; /* first mq msg put date/time */

int This_Queue_OK,readIn=Ø,readOut=Ø;

char ioarea[49],*p;

int ignore_errors=Ø;

FILE *fileout = NULL, *filein = NULL;

MQCHAR qmName[MQ_Q_MGR_NAME_LENGTH+1]=""; /* default QMgr name */

MQLONG qTime,qHiDepth,qPuts,qGets; /* returned values */

MQCHAR qName[MQ_Q_NAME_LENGTH+1]; /*name of queue extracted from bag*/

int readrc=Ø;

char c;

/* Function: main */

int main(int argc, char *argv[])

{

 printf("Linux_qstats: Obtain MQ Queue Statistics\n\n");

 if (argc < 4) {

 printf("Please supply 3 parms: 1=qmgr, 2=input file, 3=output

file.\n*");

 printf("Optional 4th parm, 4=ignore errors y/n(default n)\n");

 exit(4);

 }

 // Connect to the queue manager */

 strncpy(qmName, argv[1], (size_t)MQ_Q_MGR_NAME_LENGTH);

 MQCONN(qmName, &hConn, &compCode, &connReason);

 // Report the reason and stop if the connection failed. */

 if (compCode == MQCC_FAILED) {

 CheckCallResult("Queue Manager connection", compCode, connReason);

 exit((int)connReason);

 }

 memset (ioarea, '\Ø', sizeof(ioarea)); /* initialize

ioarea */

 fileout = fopen(argv[3], "a"); /* open, append, create*/

 get_Timestamp(run_timestamp);

 if (argc > 4) { /* should errors be ignored?*/

 if (strncmp(argv[4],"y",1) == Ø)

 ignore_errors = 1;

 }

 filein = fopen(argv[2], "r"); /*open input file read-only*/

 if (filein == NULL) {

 printf("unable to open file %s\n", argv[2]);

 21© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 exit(9);

 }

 p=ioarea; /* point at io area */

 n=Ø; /* intialize counter */

 do {

 c = fgetc (filein); /* get 1 char at a time */

 if (c == '\n') { /* newline? yes,process */

 readIn++; /* incr queue input count */

 mqstuff(); /* get the mq statistics */

 p=ioarea; /* repoint to io area */

 memset (p, '\Ø', 2); /* init first part */

 n=Ø; /* reinit counter */

 }

 else {

 p=c; / store char in io area */

 p++; /* bump up the pointer */

 n++; /* increment counter */

 }

 } while (c != EOF); /* read until end of file */

 fclose(filein);

 /* Disconnect from the queue manager */

 MQDISC(&hConn, &compCode, &reason);

 CheckCallResult("Disconnect from Queue Manager", compCode, reason);

 fclose(fileout);

 printf("No. of records read %d & written %d\n", readIn, readOut);

 printf("Linux_qstats - end of processing.\n");

 return Ø;

} /* end main */

//---------------------------

void mqstuff()

{

 mqTrim(MQ_Q_MGR_NAME_LENGTH, qmName, qmName, &compCode, &reason);

 /* Create an admin bag for the mqExecute call */

 mqCreateBag(MQCBO_ADMIN_BAG, &adminBag, &compCode, &reason);

 CheckCallResult("Create admin bag", compCode, reason);

 /* Create a response bag for the mqExecute call */

 mqCreateBag(MQCBO_ADMIN_BAG, &responseBag, &compCode, &reason);

 CheckCallResult("Create response bag", compCode, reason);

 /* Put the generic queue name into the admin bag */

 mqAddString(adminBag, MQCA_Q_NAME, MQBL_NULL_TERMINATED, ioarea,

&compCode, &reason);

 CheckCallResult("Add q name", compCode, reason);

 /***/

 /* Send the command to find all the local queue names and queue */

 /* depths. The mqExecute call creates the PCF structure required, */

 /* sends it to the command server, and receives the reply from the */

 /* command server into the response bag. The attributes are */

 /* contained in system bags that are embedded in the response bag, */

 /* one set of attributes per bag. */

 /***/

 22 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 mqExecute(hConn, /* MQ connection handle */

 MQCMD_RESET_Q_STATS,

 MQHB_NONE, /* No options bag */

 adminBag, /* Handle to bag containing commands */

 responseBag, /*Handle to bag to receive the response*/

 MQHO_NONE, /* Put msg on SYSTEM.ADMIN.COMMAND.QUEUE*/

 MQHO_NONE, /* Create a dynamic q for the response */

 &compCode, /* Completion code from the mqexecute */

 &reason); /* Reason code from mqexecute call */

 /* Check the command server is started. If not exit. */

 if (reason == MQRC_CMD_SERVER_NOT_AVAILABLE)

 {

 printf("Please start the command server: <strmqcsv QMgrName>\n");

 MQDISC(&hConn, &compCode, &reason);

 CheckCallResult("Disconnect from Queue Manager", compCode, reason);

 exit(98);

 }

 /***/

 /* Check the result from mqExecute call. If successful find the */

 /*current depths of all the local queues. If failed find the error.*/

 /***/

 if (compCode == MQCC_OK) /* Successful mqExecute */

 {

 mqTrim(MQ_Q_NAME_LENGTH, qmName, qmName, &compCode, &reason);

 /* Count the number of system bags embedded in the response bag */

 /* from the mqExecute call. The attributes for each queue are in */

 /* a separate bag. */

 mqCountItems(responseBag, MQHA_BAG_HANDLE, &numberOfBags,

&compCode, &reason);

 CheckCallResult("Count number of bag handles", compCode, reason);

 for (i=Ø; i<numberOfBags; i++)

 {

 /***/

 /* Get the next system bag handle out of the mqExecute response*/

 /* bag. This bag contains the queue attributes */

 /***/

 mqInquireBag(responseBag, MQHA_BAG_HANDLE, i, &qAttrsBag,

&compCode, &reason);

 CheckCallResult("Get the result bag handle", compCode, reason);

 /* Get the queue name out of the queue attributes bag */

 mqInquireString(qAttrsBag, MQCA_Q_NAME, Ø, MQ_Q_NAME_LENGTH, qName,

 &qNameLength, NULL, &compCode, &reason);

 CheckCallResult("Get queue name", compCode, reason);

 /* Get the time since last reset out of the queue attributes bag */

 mqInquireInteger(qAttrsBag, MQIA_TIME_SINCE_RESET, MQIND_NONE, &qTime,

 &compCode, &reason);

 CheckCallResult("Get resettime", compCode, reason);

 /* Get the depth out of the queue attributes bag */

 mqInquireInteger(qAttrsBag, MQIA_HIGH_Q_DEPTH, MQIND_NONE, &qHiDepth,

 &compCode, &reason);

 23© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 CheckCallResult("Get depth", compCode, reason);

 /***/

 /* Get the no. of MQPUTs since last reset out of the queue attr bag*/

 /***/

 mqInquireInteger(qAttrsBag, MQIA_MSG_ENQ_COUNT, MQIND_NONE, &qPuts,

 &compCode, &reason);

 CheckCallResult("Get MQPUTs", compCode, reason);

 /***/

 /* Get the depth out of the queue attributes bag */

 /***/

 mqInquireInteger(qAttrsBag, MQIA_MSG_DEQ_COUNT, MQIND_NONE, &qGets,

 &compCode, &reason);

 CheckCallResult("Get MQGETs", compCode, reason);

 /***/

 /* Use mqTrim to prepare the queue name for printing. */

 /* Print the result. */

 /***/

 get_QDepth(qName);

 if (This_Queue_OK) {

 mqTrim(MQ_Q_NAME_LENGTH, qName, qName, &compCode, &reason);

 fprintf(fileout, "%s,%s,%s,%d,%d,%d,%d,%d\n",

run_timestamp,qmName,qName,qPuts,qGets,qDepth,qHiDepth,qTime);

 readOut++;

 } /* end-if */

 } /* end for loop */

 } /* end-if exec */

 else /* Failed mqExecute */

 if (!ignore_errors) {

 printf("Call to get queue attributes failed: Completion Code = %d :

Reason = %d\n",

 compCode, reason);

 /***/

 /* If the command fails, get the system bag handle out of the */

 /* mqexecute response bag. This bag contains the reason from the */

 /* command server why the command failed. */

 /***/

 if (reason == MQRCCF_COMMAND_FAILED)

 {

 mqInquireBag(responseBag, MQHA_BAG_HANDLE, Ø, &errorBag,

&compCode, &reason);

 CheckCallResult("Get the result bag handle", compCode, reason);

 /***/

 /* Get the completion code and reason code, returned by the */

 /* command server, from the embedded error bag. */

 /***/

 mqInquireInteger(errorBag, MQIASY_COMP_CODE, MQIND_NONE, &mqExecuteCC,

 &compCode, &reason);

 CheckCallResult("Get the completion code from the result bag",

compCode, reason);

 mqInquireInteger(errorBag, MQIASY_REASON, MQIND_NONE, &mqExecuteRC,

 24 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 &compCode, &reason);

 CheckCallResult("Get the reason code from the result bag",

compCode, reason);

 printf("Error returned by the command server: Completion Code =

%d : Reason = %d\n",

 mqExecuteCC, mqExecuteRC);

 } /* end-if reason */

 } /* end-if ignore errors */

 /***/

 /* Delete the admin bag if successfully created. */

 /***/

 if (adminBag != MQHB_UNUSABLE_HBAG)

 {

 mqDeleteBag(&adminBag, &compCode, &reason);

 CheckCallResult("Delete the admin bag", compCode, reason);

 }

 /***/

 /* Delete the response bag if successfully created. */

 /***/

 if (responseBag != MQHB_UNUSABLE_HBAG)

 {

 mqDeleteBag(&responseBag, &compCode, &reason);

 CheckCallResult("Delete the response bag", compCode, reason);

 }

} /* end mqstuff */

/**/

void CheckCallResult(char *callText, MQLONG cc, MQLONG rc)

{

 if (cc == MQCC_OK) This_Queue_OK=1;

 if (reason == MQRC_OBJECT_IN_USE) This_Queue_OK=1;

 if ((cc != MQCC_OK) &&

 (reason != MQRC_UNKNOWN_OBJECT_NAME) &&

 (reason != MQRC_OBJECT_IN_USE))

 printf("%s failed: Completion Code = %d : Reason = %d\n", callText,

cc, rc);

}

/**/

/* get current timestamp from the Operating System */

/**/

void get_Timestamp(char* str)

{

struct tm *ptr;

time_t tm;

char str2[4];

tm = time(NULL);

ptr = localtime(&tm);

strftime(str ,1ØØ , "%Y-",ptr);

strftime(str2 ,1ØØ , "%m-",ptr);

strncat(str, str2,3);

strftime(str2 ,1ØØ , "%d,",ptr);

 25© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

strncat(str, str2,3);

strftime(str2 ,1ØØ , "%H.",ptr);

strncat(str, str2,3);

strftime(str2 ,1ØØ , "%M.",ptr);

strncat(str, str2,3);

strftime(str2 ,1ØØ , "%S",ptr);

strncat(str, str2,2);

}

/* get current queue depth for relevant queue */

void get_QDepth(MQCHAR *qName)

{

 qDepth=Ø;

 This_Queue_OK=Ø; /* assume this is a 'problem' que */

 memset(mq_timestamp,'\Ø',sizeof(mq_timestamp));

 strncpy(odI.ObjectName, /* name of queue from message */

 qName, MQ_Q_NAME_LENGTH);

 O_options = MQOO_INQUIRE /* open to inquire attributes */

 + MQOO_BROWSE /* in order to browse 1st msg */

 + MQOO_INPUT_SHARED

 + MQOO_FAIL_IF_QUIESCING;

 MQOPEN(hConn, /* connection handle */

 &odI, /* object descriptor for queue */

 O_options, /* open options */

 &hInq, /* object handle for MQINQ */

 &compCode, /* completion code */

 &reason); /* reason code */

 CheckCallResult("MQOPEN Open Queue", compCode, reason);

 if (compCode == MQCC_OK) {

 Select[Ø] = MQIA_CURRENT_Q_DEPTH;

 MQINQ(hConn,

 hInq, /* object handle */

 1, /* Selector count */

 Select, /* Selector array */

 1, /* integer attribute count */

 IAV, /* integer attribute array */

 Ø, /* character attribute count */

 NULL, /* character attribute array */

 /* note - can use NULL because charattr count is zero */

 &compCode, /* completion code */

 &reason); /* reason code */

 CheckCallResult("MQINQ Inquire on Queue Depth", compCode, reason);

 qDepth = IAV[Ø];

 }

 C_options = Ø; /* no close options */

 MQCLOSE(hConn, /* connection handle */

 &hInq, /* object handle */

 C_options,

 &compCode, /* completion code */

 &reason); /* reason code */

 26 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

WebSphere Business Integration Message Broker –
simplified functional validation: part 2

This month we continue our look at creating a test message
flow.

Alternatively if you have a flow chart fetish, you can change
the orientation to a top-down approach.

But enough of formatting tricks…

Figure 1: Top-down flowchart

} /* end get_QDepth */

/* end of program **/

Ruud van Zundert (ruudvz@btclick.com)
Independent Consultant (UK) © Xephon 2005

 27© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 2: Connection option

Figure 3: Moving function

 28 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Once you have the nodes in place you need to connect them.
Just as you did to place the node, you need to click the
Connection option on the editor menu – see Figure 2. When
you move the cursor around the editor screen it will be in the
form of a crossed circle when you cannot connect anything
and it will change to a plug symbol when you reach an
appropriate target and can connect.

Move the cursor to the middle tab on the MQInput icon and left-
click to attach the source to the Out function of the MQInput
process; then left-click the tab on the left-hand side of the
MQOutput icon to have the message move from the MQInput
function into the MQOutput function – see Figure 3.

Now, you need to add the logic for the two icons, so that
WBIMB knows what you want to do with the messages that
arrive on the first queue, and that they are to be redirected to
the follow-on queue.

First, you need to change the highlighted menu option in the

Figure 4: Selection function

 29© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 5: Selecting the queue name

Figure 6: Selecting Default

 30 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

editor back to the Selection function by left-clicking the menu
entry – see Figure 4.

Left-click the MQInput icon and open the Properties dialogue.
Each of the dialogue panel menu entries represents a specific
function. The basic feature of a message mover is the name
of the queue that incoming messages will be arriving on – see
Figure 5.

The incoming messages for the MQInput function will be
arriving on the WBI_TRAIN_INCOMING queue, so we add
that to the Queue Name* input field in the dialogue panel.

If you want to change the default values that the message flow
will use, highlight the Default menu option and make the
appropriate changes as indicated – see Figure 6.

The same goes for the Advanced features of a message flow
– see Figure 7.

The same with Validation – see Figure 8.

All WBI technologies from IBM provide users with the ability

Figure 7: Advanced features

 31© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 8: Validation

Figure 9: Adding descriptive detail

 32 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Figure 10: Finishing customization

Figure 11: Customizing MQOutput node

 33© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 12: Customizing the Advanced option

Figure 13: Customizing the Request dialog

 34 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Figure 14: Customizing the Description dialog

Figure 15: Saving the update

 35© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

to add documentation to any object that is created. It is highly
recommended that you add appropriate descriptive detail for
the benefit of subsequent users – see Figure 9.

After you are finished with the details that you want to modify,
press Apply and then OK to finish the customization – see
Figure 10.

Now, you need to repeat the process of customizing the
properties for the MQOutput node in the same fashion as
above. First you will see the Basic details, including the
Queue Manager Name and the target Queue Name – see
Figure 11.

As before, the Advanced dialogue can be customized – see
Figure 12.

The same applies to the Request dialogue – see Figure 13.

Finally the Description dialogue should be customized for the

Figure 16: Saving the changes

 36 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

benefit of subsequent users – see Figure 14.

As before, clicking Apply and OK will save the updates that
you have made to the objects – see Figure 15.

You will notice that the WBI_Train_MF.msgflow label in the
message flow editor screen has an asterisk in front of the
name. This indicates that the flow has been modified and has
not yet been saved. Pressing the Save button will flush the
editor contents to disk and make sure that your changes are
completely preserved – see Figure 16.

DEPLOYING THE TEST MESSAGE FLOW

In order to execute a message flow, you must have a message
flow project and its subcomponent, a message flow, defined.
In the outline above, a message flow project and message
flow were created using the Broker ADP utility. The message
flow project was stored in a file during the execution of the final

Figure 17: Destination file definition

 37© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 19: Dialog panel

Figure 18: Destination file definition

 38 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Figure 20: Existing project selection

Figure 21: Highlighting Message Flow

 39© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

save. In Figures 17 and 18, the complete destination file
definition is shown.

At this point, I would like to point out that the alternative to
creating a message flow of your own is to deploy a message
flow that has been provided to you by your application or
middleware development teams for execution on the Broker
instance.

In the same way that you saved the message flow project
above to a disk file, if you have been provided with a message
flow project to deploy, you will need to import the project into
your Toolkit environment in order to deploy it, by left clicking
the File/Import… option in Message Broker Toolkit. This will
start the dialog panel shown in Figure 19.

Click on the Existing Project into Workspace entry and
press Next – see Figure 20.

Figure 22: Run on server option

 40 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Figure 23: Create a new server

Clicking the Browse button will allow you to select the
message flow project file from the location where you have
stored it. Ensure that the project name is the same as the
message flow project name, and press Finish to import the

Figure 24: New server panel

 41© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

contents into your Broker Administration Navigator pane.

Moving back to the test message flow project and its
accompanying message flow, which were created above – in
order to run the message flow in the WBI Message Broker
instance, you must first highlight the message flow in the
Resource Navigator dialog panel – see Figure 21.

Right-click the message flow, and select the option to Run on
Server…, which will bring up a Server Selection dialog panel
– see Figure 22.

At this point, since you are creating a Test message flow
deployment, I would suggest that you select the Create a new
server radio button and in the Folder entry put the name of a

Figure 25: Modification completed

 42 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Figure 26: Execution group

Figure 27: Processing graph

 43© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 28: Server ready for testing

Figure 29: Highlighting WBI_Train_Server

 44 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Server group of your choice and then press Next – see
Figure 23.

When you see the prompt press Yes to continue. The message
flow must be defined to the Configuration Manager. The
Configuration Manager validates the message flow resources
and then allows you to deploy the message flow to the
Message Broker.

Figure 24 shows the next screen that starts.

Fill in the configuration parameters for the WBI Configuration
Manager Queue Manager, and tick the box to Create a
Configuration Manager connection file. Once you have
completed the modifications, press Next – see Figure 25.

You will be prompted to create an execution group in the
Broker instance. Enter an appropriately descriptive name and

Figure 30: New components visible

 45© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

press Next – see Figure 26.

You need to select the message flow (or flows) that are to be
part of the execution group, and then press Finish. You will
see intermediate messages come up indicating the results of
processing by the Configuration Manager – see Figure 27.

Figure 31: Ensuring that queue managers are connected

When it is finished, you will see the server deployed and ready
for testing – see Figure 28.

Next, highlight the WBI_Train_Server that you have created –
see Figure 29.

Right-click the server and select the drop down menu option
to Run Validation. You will see a series of intermediate
dialogue panels indicating the status of the Validation process.

By switching back to the Broker Administration dialogue,
you will see the new components that you have added in the
system – see Figure 30.

 46 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Figure 33: Forwarding messages

Figure 32: Linked queues

TESTING A MESSAGE FLOW

You are now ready to test your message flow. If you are using
remote queue manager connections to move messages into

 47© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 34: Messages routed back correctly

Figure 35: Correct messages on local queue

 48 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

and out of the WBI Message Broker queue manager
environment, make sure that your queue managers are
connected – see Figure 31.

In Figure 31, both the Sender and Receiver channels between
HUBBRK5 and WBI_BRK5 are connected and running. You
will also need to ensure that the WMQ Queues are defined
correctly on the remote queue manager for message
movement. In the example below, the WBI_TRAIN_INCOMING
queue is local and the WBI_TRAIN_OUTGOING queue is a
remote queue pointing to the remote WBI Message Broker
queue manager – see Figure 32.

You are now ready to test the new message flow. To do this,
put one or more messages on the WBI_TRAIN_OUTGOING
queue (if you are using a remote definition). This should send
the messages to the WBI Message Broker queue manager
WBI_TRAIN_INCOMING. If you are not using a remote queue
manager, put the messages directly onto the local queue
WBI_TRAIN_INCOMING on the WBI Message Broker queue
manager. In Figure 33, we are using the remote queue
manager to forward messages to the WBI Message Broker
queue manager queue.

When the utility puts the three messages above onto the
remote queue definition, the messages are transmitted to the
Broker-based queue manager. Upon arrival on the
WBI_TRAIN_INCOMING queue on the Broker queue manager,
the message flow that we have defined picks up the messages
and moves them onto the Broker queue manager queue
WBI_TRAIN_OUTGOING, which is the WBI Message Broker
remote queue definition back to our local queue manager.

If you check the WBI_TRAIN_INCOMING queue on the
remote queue manager, you will find the messages have been
routed back to you by the Message Broker – see Figure 34.

Browsing the local queue, we find the messages as we
created them – see Figure 35.

 49© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Why not share your expertise and earn money at the
same time? MQUpdate is looking for shell scripts,
program code, JavaScript, etc, that experienced
users of WebSphere MQ have written to make their
life, or the lives of other users, easier. Articles can be
of any length and should be e-mailed to the editor,
Trevor Eddolls, at trevore@xephon.com.

CONCLUSIONS

When you have defined a new WBI Message Broker instance
and are ready to deploy application message flow projects for
your user community, it is a good idea to have at least
deployed a test message flow to the instance. This ensures
that any subsequent problems are not with the infrastructure
itself.

With an environment that can be as complex as WebSphere
Business Integration Message Broker, eliminating as many
possible sources of an error is not only sensible, it is critical
to your efforts to maintain a stable service to your end user
community. Having a standard message flow project that you
can deploy to new or existing servers is just one tool that will
help you validate any WBIMB environment.

Aaron Cain
Independent Consultant
3-INGs Limited (UK) © 3-INGs Limited 2005

MQ news

Cape Clear Software has announced ESB for
WebSphere, a WebSphere-specific, single-
solution Enterprise Service Bus (ESB) that
provides a framework for integrating internal
applications and data and linking with partners
using Service-Oriented Architecture (SOA)
and Web services.

ESB is fully integrated and optimized for
WebSphere, DB2, the WebSphere Studio
family of application development tools, and the
Tivoli product suite on the iSeries and other IBM
platforms, the company claims. The product is
designed to reduce the time, cost, and
complexity of building a SOA for an enterprise’s
WebSphere-related applications.

For further information contact:
URL: www.capeclear.com/news/archives/
2005/09/cape_clear_rele_3.shtml.

* * *

IBM has announced a new Tivoli branded
Composite Application Management
(ITCAM) family of solutions. These are based
on its Cyanea acquisition, which had a tool for
monitoring composite applications.

The ITCAM suite will mediate and monitor
Web services, response time tracking, and
problem tracking for WebSphere Application
Server and Business Integration, CICS
transaction management, MQ messaging, and
IMS databases. It integrates data from a number
of IBM acquisitions, including Cyanea, Candle,
and Rational.

The products will track performance and
response of composite applications. The first
one is the Tivoli Enterprise Portal, which
provides different views (workspaces) for
system administrators, database administrators,
and application development teams. Using

Tivoli’s Change Configuration Management
(CCM) database as the primary source, the
portals can present information from the
Omegamon monitoring tools for WebSphere
and MQSeries, Rational code profiling, and
Tivoli event consoles. The portal provides the
front end for all the data delivered by the
ITCAM products.

ITCAM for WebSphere Business Integration
uses the existing capabilities of the Omegamon
tools to drill down on problem ‘channels’ in
MQ. Users can view MQ message object
definitions prior to deployment and at run time,
regardless of whether the MQ server is based on
mainframes or distributed platforms.

For further information contact:
URL: www-306.ibm.com/software/tivoli/
services/ consulting/offerings/offers-
composite-app-mgmt.html.

* * *

Oracle and IBM have announced a partnership
to ensure that Oracle’s packaged applications
run natively on the majority of IBM’s
WebSphere-branded middleware, including its
application server and portal, plus IBM’s
recently announced Process Server.

The plan is that there will be compatibility
between WebSphere and Oracle’s Project
Fusion middleware.

IBM and Oracle expect to enable existing
Oracle applications (Oracle JD Edwards,
Oracle PeopleSoft Enterprise, and Oracle E-
Business Suite) to support WebSphere and
Tivoli in the areas of identity management, single
sign-on, and directories.

For further information contact:
URL: www.oracle.com.

x xephon

	Control client connections using WebSphere MQ Internet Pass-Thru
	Effective ways of debugging WebSphere MQ on distributed platforms
	Obtain MQ queue statistics on the Linux platform
	WebSphere Business Integration Message Broker - simplified functional validation: part 2
	MQ news

