
© Xephon Inc 2005

December 2005

78

In this issue

3 Sample dead-letter queue
handler message flow

11 Communication with legacy
applications

20 A Java toolkit for WebSphere
MQ

41 How to write an authentication
routine in WebSphere MQ
Version 6.0

51 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon Inc 2005. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.

Printed in England.

Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Colin Smith
E-mail: info@xephon.com

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the material
it contains. Neither Xephon nor the contributing
organizations or individuals accept any liability of
any kind howsoever arising out of the use of such
material. Readers should satisfy themselves as to
the correctness and relevance to their
circumstances of all advice, information, code,
JCL, scripts, and other contents of this journal
before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in the
UK; £261.00 in Europe; £267.00 in Australasia
and Japan; and £265.50 elsewhere. In all cases
the price includes postage. Individual issues,
starting with the July 2001 issue, are available
separately to subscribers for $33.75 (£22.50)
each including postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the rate
of $160 (£100 outside North America) per
1000 words and $80 (£50) per 100 lines of code
for the first 200 lines of original material. The
remaining code is paid for at the rate of $32 (£20)
per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues in
Acrobat PDF format, can be downloaded from
our Web site at www.xephon.com/mq; you will
need to supply a word from the printed issue.

 3© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Sample dead-letter queue handler message flow

The following project illustrates a quick and easy way to
develop a sample dead-letter queue handler type of program
using WMQI message flow.

First let’s look at some background and the message format
on the dead-letter queue.

SYSTEM.DEAD.LETTER.QUEUE

From the MQ manual:

Each queue manager should have a local queue to be used as
a dead-letter queue so that messages that cannot be delivered
to their correct destination can be stored for later retrieval. You
must explicitly tell the queue manager about the dead-letter
queue. You can do this by specifying a dead-letter queue on
the crtmqm command or you can use the ALTER QMGR
command to specify one later. You must also define the dead-
letter queue before it can be used.

A sample dead-letter queue called
SYSTEM.DEAD.LETTER.QUEUE is supplied with the product.
This queue is automatically created when you run the sample.
You can modify this definition, if required. There is no need to
rename it.

“A dead-letter queue has no special requirements except that

• It must be a local queue.

• Its MAXMSGL (maximum message length) attribute must
enable the queue to accommodate the largest messages
that the queue manager has to handle plus the size of the
dead-letter header (MQDLH).

MQSeries provides a dead-letter queue handler that allows
you to specify how messages found on a dead-letter queue
are to be processed or removed.

 4 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

MESSAGE FORMAT ON THE SYSTEM.DEAD.LETTER.QUEUE

Messages can be put on the DLQ by queue managers, by
message channel agents (MCAs), and by applications. All
messages on the DLQ should be prefixed with a dead-letter
header structure, MQDLH. Messages put on the DLQ by a
queue manager or by a message channel agent always have
an MQDLH; applications putting messages on the DLQ are
strongly recommended to supply an MQDLH. The Reason
field of the MQDLH structure contains a reason code that
identifies why the message is on the DLQ.

The MQDLH structure

In order to process a message in the dead-letter queue, we
must know what the structure of the MQDLH header is like. A
detailed description of the MQDLH can be found in Chapter 6

of the MQ Application Programming Reference – see Figure
1.

Figure 1: MQDLH description

 5© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

The DLQ_Handler message flow

The processing logic of the message flow is based on the
settings in the MQDLH header, particularly the Reason field.
This field tells us why the message got sent to the dead-letter
queue in the first place. By interrogating this Reason field, we
can determine the action on the message. In this example, we
will resend all the messages in the dead-letter queue whose
Reason code is mqrc=2503, assuming that the queue-full
problem had been fixed.

The message coming into the message flow may have the
following structure:

InputRoot – Properties

 MQMD

 MQDLH

 MQHRF2 or InputBody

Because we don’t exactly know whether the message will
contain headers other than the MQDLH, we need to parse the
message as a BLOB – see Figure 2.

Figure 2: Setting the default to BLOB

 6 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

In the next compute node, we will first copy the message
header to the output, and then we will parse the MQDLH
header into the environment variables for access:

CREATE COMPUTE MODULE DLQ_handler_Compute

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 CALL CopyMessageHeaders();

SET wholeMsgBLOB = InputRoot.BLOB.BLOB;

 -- the first 172 characters which is MQDLH

 -- Parse the MQDLH structure in the Environement Variable

 SET tempBLOB = substring(wholeMsgBLOB from 1 for 172);

Create LASTCHILD of Environment.Variables.MQDLHOut DOMAIN('MQDLH')

Parse(tempBLOB, InputRoot.MQMD.Encoding, InputRoot.MQMD.CodedCharSetId);

Then we will check for the Reason code that is MQRC_Q_FULL.
If the Reason code is Q_FULL, we will write the message back
to the queue specified by the DestQName and DestQMgrName.
Otherwise, we will write the message out to a local application
dead-letter queue ADLQ.OUT for further action.

-- check for the Q Full condition

If Environment.Variables.MQDLHOut.MQDLH.Reason = MQRC_Q_FULL then

-- Process Q_FULL

Else

CALL CopyEntireMessage();

 Set

OutputLocalEnvironment.Destination.MQ.DestinationData.queueName =

'ADLQ_OUT';

End If; -- Done Sample DEAD LETTER HANDLER

Here is the processing logic for Q_FULL:

SET beginMsg = 173;

-- check what is following the MQDLH

-- is it the MQHRF2 (for jms message)

If Environment.Variables.MQDLHOut.MQDLH.Format = 'MQHRF2 ' then

-- restore the MQHRF2 header from the BLOB

-- first find out the total length of MQHRF2 header

SET bitHolder = X'ØØØØØØØØ';

-- The length field is at the 8th bytes of the MQHRF2 header

Set BigEn = bitHolder || SUBSTRING(wholeMsgBLOB FROM 181 FOR 4);

Set MQHRF2HeaderLength = CAST(BigEn AS INT CCSID I

nputRoot.MQMD.CodedCharSetId);

-- If the platform is Windows, we need to convert the significant bytes

 7© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

for the actual length

 If Environment.Variables.MQDLHOut.MQDLH.Encoding = 546 then

 -- Windows

Set BigEn = SUBSTRING(wholeMsgBLOB FROM 181 FOR 4) || bitHolder;

Set MQHRF2HeaderLength = CAST(ConvertEndian(BigEn) AS INT CCSID

InputRoot.MQMD.CodedCharSetId);

 End If;

-- with this length, we can parse the MQHRF2 header to the environment

tree

Set tempBLOB = SUBSTRING(wholeMsgBLOB from beginMsg FOR

MQHRF2HeaderLength);

CREATE LASTCHILD OF Environment.Variables.MQRFH2Out DOMAIN('MQRFH2')

PARSE(tempBLOB, Environment.Variables.MQDLHOut.MQDLH.Encoding,

Environment.Variables.MQDLHOut.MQDLH.CodedCharSetId);

 -- Override the MQMD.Format field first

 Set OutputRoot.MQMD.Format = 'MQHRF2 ';

 -- write the MQHRF2 header

 Set OutputRoot.MQRFH2 = Environment.Variables.MQRFH2Out.MQRFH2;

 -- write the rest of the message as BLOB out

 Set beginMsg = beginMsg + MQHRF2HeaderLength;

 Set tempBLOB = Substring(wholeMsgBLOB from beginMsg);

 Set OutputRoot.BLOB.BLOB = tempBLOB;

 -- set the Destination queue and queue manager accordingly

Set OutputLocalEnvironment.Destination.MQ.DestinationData.queueName =

Environment.Variables.MQDLHOut.MQDLH.DestQName;

Set OutputLocalEnvironment.Destination.MQ.DestinationData.queueMgrName =

Environment.Variables.MQDLHOut.MQDLH.DestQMgrName;

Else

 -- no MQHRf2 header

 -- just write message out as BLOB

 Set OutputRoot.MQMD.Format = 'MQSTR ';

 -- set the Destination queue and queue manager accordingly

SET OutputRoot.BLOB.BLOB = substring(InputRoot.BLOB.BLOB from 173);

Set OutputLocalEnvironment.Destination.MQ.DestinationData.queueName =

Environment.Variables.MQDLHOut.MQDLH.DestQName;

Set

OutputLocalEnvironment.Destination.MQ.DestinationData.queueManagerName =

Environment.Variables.MQDLHOut.MQDLH.DestQMgrName;

End If;

The procedure to convert Little and Big Endian is as follows:

CREATE FUNCTION ConvertEndian (Value BLOB)

 RETURNS BLOB BEGIN

 DECLARE LittleEn BLOB;

 DECLARE FieldLength INT;

 8 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 SET FieldLength = LENGTH(Value);

 SET LittleEn = substring(Value from FieldLength for 1);

 SET FieldLength = FieldLength - 1;

 WHILE FieldLength >= 1 DO

SET LittleEn = LittleEn || substring(Value from FieldLength for 1);

 SET FieldLength = FieldLength - 1;

 END WHILE;

 SET Value = LittleEn;

 RETURN Value;

 END;

Somehow, when we restore the message, the mcd>MSD is
not set correctly, we need to add more filter logic to reset the
message domains – see Figure 3.

If upper(Environment.Variables.MQRFH2Out.MQRFH2.mcd.Msd) = 'JMS_TEXT'

then

 RETURN TRUE;

Else

RETURN FALSE;

End If;

Figure 4 is a snapshot of the sample message flow.

Downloadable from the Xephon Web site are a sample dlq

Figure 3: Message domain

 9© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 5: Snapshot of dlqmsg1 message

Figure 4: Message flow

 10 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

message, the message flow project, and the bar file. The files
to download are www.xephon.com/extras/0512Dlqmsg1,
www.xephon.com/extras/0512DLQ_Handler.zip, and
www.xephon.com/extras/0512DLQ_Handler.bar.

To run the sample, download the files, create a local queue
ADLQ.OUT and ALEX_TEST_IN. Put the sample dlq message
(dlqmsg1) in the SYSTEM.DEAD.LETTER.QUEUE with rfhutil
and deploy the bar file.

Figure 5 is a snapshot of the dlqmsg1 message.

The restored/re-sent message is shown in Figure 6.

Have fun.

Alex Au
IT Architect
IBM Global Services (USA) © Alex Au 2005

Figure 6: Restored/re-sent message

 11© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Communication with legacy applications

INTRODUCTION

The aim of this article is to show how to communicate with
legacy applications from applications on other platforms. The
example used is an implementation of intercommunication
between a .NET application and a COBOL application using
MQSeries and CICS DPL bridge.

OVERVIEW

A lot of organizations have invested years of effort in homegrown
applications on IBM mainframes. Business rules and processes
are defined on them, staff have been trained on them, the
systems are valuable, and they work. The natural wish of such
organizations is to extend the useful life of existing legacy
applications. This can be done by exposing the functionality of
these applications to new applications on diverse platforms,
including the Web and mobile devices. And, what is more
important, this task should be done without redevelopment of
the existing applications.

Although many companies provide sophisticated solutions to
this problem, no-one can suggest a universal one. Thus, the
solution implemented in this article is no panacea; it just
shows a simple approach to exposing some legacy functionality
to .NET platforms without using additional middle-level software
like SNA, HIS, or BizTalk Servers, etc.

WHY MQSERIES AND CICS?

Many legacy applications were developed using transaction
monitoring and control systems such as IBM’s CICS. CICS
gives developers a single entry point to execute an atomic
transaction that will be managed by the host, but can participate
in a broader transaction initiated by a controlling host.

 12 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

The MQSeries-CICS bridge is the component of MQSeries for
OS/390 that allows direct access from MQSeries applications
to applications on a CICS system.

So, the answer is obvious – this is the simplest way to
communicate with legacy applications.

HOW DOES THIS WORK?

The test .NET application starts a legacy application by
sending a structured message via MQSeries to the CICS
bridge request queue and retrieves a response from a reply
queue.

Here is the sequence of events that happen when you put such
a structured message on the request queue:

1 A message with a request is transmitted to the request
queue on a mainframe.

2 The CICS bridge monitor task, which is constantly browsing
the queue, recognizes it.

3 After some authentication checks, the CICS DPL bridge
task is started with the appropriate authority.

4 This task removes the message from the request queue.

5 It builds a COMMAREA from the data in the message and
issues an EXEC CICS LINK for the program requested in
the message.

6 The program returns the response in the COMMAREA
used by the request.

7 The CICS DPL bridge task reads the COMMAREA, creates
a response message (whether it is a normal response
from an application or a system error), and puts it on the
reply-to queue specified in the request message.

8 The CICS DPL bridge task ends.

Please note several important things:

 13© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

• The bridge monitor task recognizes requests by their
CorrelationId – it should be equal to
AMQ!NEW_SESSION_CORRELID in the content coding
of the message.

• It’s possible to provide a user name and password for the
CICS DPL bridge task from a client application through the
request MQ message and control header.

• The ReplayToQueue and ReplayToQueueManager fields
of the request MQ message should contain the correct
queue and queue manager names.

• The requested COMMAREA should be big enough to
contain any requests or responses.

THE MESSAGE STRUCTURE

The structure of the request message differs slightly depending
on the legacy application. There are four types of request
message structure:

1 An application running a single DPL program uses the
default processing options, and does not send or receive
COMMAREA data. A message with this structure contains
only the legacy program name (eight bytes in length).

2 An application running a single DPL program uses the
default processing options, and sends and receives
COMMAREA data. A message with this structure has a
program name followed by the user data (COMMAREA).

3 An application that runs one or more DPL programs within
a unit of work, or needs specific authorization to run the
program, but does not send or receive COMMAREA data.
A message with this structure contains a control header (a
system header, which is described below) and the program
name.

4 An application that invokes one or more DPL programs
within a unit of work, or needs specific authorization to run
the program, and sends and receives COMMAREA data.

 14 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

A message with this structure contains the control header,
the program name, and the user data (COMMAREA).

The response message structure can be one of the following
types:

• The normal response structure, which contains the control
header, the program name, and, optionally, the output
COMMAREA data.

• If a bridge task running a DPL program ends abnormally,
the response is returned to the reply queue. The structure
of such a message is the control header followed by an
error message indicating the error type.

Pay attention to the following details:

• When you want to send only a program name, and no
COMMAREA data, the program name must be eight
characters long. It must not be padded to the right with
spaces; if it is, the bridge will report a COMMAREA
negative length error.

• When you want to send COMMAREA data, you must then
pad the program name with spaces to the right to give a
total length of eight characters.

THE CONTROL HEADER

The messages for CICS DPL bridge can contain a standard
control header, MQCIH. This header contains additional
information for CICS bridge that helps the bridge to start a
legacy application properly. If MQCIH header is present in the
message, the format of the MQ message should be
MQFMT_CICS. Take a look at the MQCIH header structure:

Offset: Type: Length: Name:

ØØØØ CHARACTER 4 MQCIH-STRUCID

ØØØ4 FULLWORD 4 MQCIH-VERSION

ØØØ8 FULLWORD 4 MQCIH-STRUCLENGTH

ØØØC BINARY 8 reserved

ØØ14 CHARACTER 8 MQCIH-FORMAT

ØØ1C BINARY 4 reserved

 15© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

ØØ2Ø BINARY 4 MQCIH-RETURNCODE

ØØ24 BINARY 4 MQCIH-COMPCODE

ØØ28 BINARY 4 MQCIH-REASON

ØØ2C BINARY 4 MQCIH-UOWCONTROL

ØØ3Ø FULLWORD 4 MQCIH-GETWAITINTERVAL

ØØ34 BINARY 4 MQCIH-LINKTYPE

ØØ38 BINARY 4 MQCIH-OUTPUTDATALENGTH

ØØ3C FULLWORD 4 MQCIH-FACILITYKEEPTIME

ØØ4Ø FULLWORD 4 MQCIH-ADSDESCRIPTOR

ØØ44 FULLWORD 4 MQCIH-CONVERSATIONALTASK

ØØ48 FULLWORD 4 MQCIH-TASKENDSTATUS

ØØ4C CHARACTER 8 MQCIH-FACILITY

ØØ54 CHARACTER 4 MQCIH-FUNCTION

ØØ58 CHARACTER 4 MQCIH-ABENDCODE

ØØ5C CHARACTER 8 MQCIH-AUTHENTICATOR

ØØ64 CHARACTER 8 reserved

ØØ6C CHARACTER 8 MQCIH-REPLYTOFORMAT

ØØ74 CHARACTER 4 MQCIH-REMOTESYSID

ØØ78 CHARACTER 4 MQCIH-REMOTETRANSID

ØØ7C CHARACTER 4 MQCIH-TRANSACTIONID

ØØ8Ø CHARACTER 4 MQCIH-FACILITYLIKE

ØØ84 CHARACTER 4 MQCIH-ATTENTIONID

ØØ88 CHARACTER 4 MQCIH-STARTCODE

ØØ8C CHARACTER 4 MQCIH-CANCELCODE

ØØ9Ø CHARACTER 4 MQCIH-NEXTTRANSACTIONID

ØØ94 CHARACTER 16 reserved

ØØA4 FULLWORD 4 MQCIH-CURSORPOSITION

ØØA8 FULLWORD 4 MQCIH-ERROROFFSET

ØØAC FULLWORD 4 MQCIH-INPUTITEM

ØØBØ BINARY 4 reserved

Actually, in order to start a program via CICS DPL bridge, it’s
enough to use just a few fields of this header, ie MQCIH-
FORMAT, MQCIH-LINKTYPE, MQCIH-AUTHENTICATOR,
MQCIH-OUTPUTDATALENGTH, MQCIH-RETURNCODE,
MQCIH-COMPCODE, MQCIH-REASON, and, optionally,
MQCIH-UOWCONTROL and MQCIH-TRANSACTIONID.

THE SOLUTION

Now, let’s overview the solution. First of all, it is implemented
as a Microsoft Visual Studio .NET 2003 solution, and it
consists of four projects. One of them is a demo project, which
demonstrates how to use the bridge component through
MQSeries from a .NET console applications. So, let’s look at
the solution’s file inventory, with the file’s location followed by
a description:

 16 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• /Demo – the demo project.

• ./COBOL/CALC.cob – defines the COBOL copybook,
which is used by the legacy application.

• ./App.config – the demo configuration file. It contains MQ
settings, content encoding, etc.

• ./AssemblyInfo.cs – the project information file.

• ./Calc.cs – defines class, which can be serialized and
deserialized to/from the CALC.cob copybook.

• ./CicsDplBridgeDemo.cs – defines the main entry point
for the demo.

• /NesterovskyBros.Common – this library contains the
common interface for serializable classes and auxiliary
classes.

• ./AssemblyInfo.cs – the library information file.

• ./HexEncoder.cs – defines a byte array to a hex string, and
a hex string to a byte array converter.

• ./ICobolSerializableData.cs – defines a common interface
for each class that can be serialized/deserialized to/from
COBOL records.

• ./MemoryDump.cs – defines an auxiliary class for printing
memory dumps.

• /NesterovskyBros.MQ.CicsDplBridge – this library
contains a class that implements communication to CICS
DPL bridge through MQSeries.

• ./AssemblyInfo.cs – the library information file.

• ./Bridge.cs – defines a class that implements a common
communication pattern with CICS DPL bridge through
MQSeries.

• NesterovskyBros.MQ.Connector – this library contains
classes for general MQSeries communication.

 17© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

• ./AssemblyInfo.cs – the library information file.

• ./IBM MQSeries Library for .NET/amqmdnet.dll – the IBM
.NET library for communication with MQSeries.

• ./ConnectorProperties.cs – defines MQ connector
properties.

• ./Installer.cs – defines the installer for COM+ components.

• ./Mqcih.cs – defines the control header class (MQCIH).
The class implements the ICobolSerializableData
interface, and it is an example of how to serialize instances
to COBOL records.

• ./MQConnector.cs – defines the MQ connector class. It’s
implemented as a COM+ component in order to allow it to
run under a different user identity. This class implements
request-response, one-way send and receive
communication patterns with MQSeries.

• ./MQConstants.cs – some MQ-related constants that were
not included in the IBM.WMQ.MQC class.

• ./SerializableMQMessage.cs – defines a serializable
wrapper for a standard MQ message.

The MQ connector class is implemented as a COM+ server-
activated component in order to allow the MQSeries library to
be used under a specified user identity. Such an approach
allows the use of MQSeries not only from stand-alone
applications, but also from ASP.NET applications (Web
applications and Web services). Note that
SerializableMQMessage wraps an IBM MQMessage class;
this is done because the original MQMessage class cannot be
serialized to stream. There is another tricky thing – use of the
ConnectorProperties class in order to set MQ properties (MQ
queue manager name, input and output queues, etc) to MQ
connectors. Since each method call is a round-trip to a server
component, this approach allows an improvement in
performance of the COM+ component.

 18 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

You can get more detailed information about the solution
implementation from the source files attached to this article.

THE DEMO

The demo was conceived as a simple client for a real (also
simple) COBOL application, which is working on mainframe
under CICS’ control. The legacy application accepts as input
a COMMAREA, which is defined in the /COBOL/CALC.cob
copybook. In this copybook, CALC-REQ is an input structure,
and CALC-RESP is an output one. In a few words the legacy
application does the following:

1 It receives a COMMAREA and performs one of four
arithmetical operations (add, subtract, divide, or multiply)
followed by two decimal arguments.

2 When the operation finishes successfully, the legacy
application returns CALC-RESP structure with RESP-
CODE equal to 0, otherwise it returns 1.

– When RESP-CODE is 0, the RESULT field contains
the answer.

– When RESP-CODE is 1, the ERR-CODE and ERR-
MSG fields contain an error code and an appropriate
error message.

The App.config (Demo.exe.config after compilation) file
contains settings for the MQ connector component, a legacy
application name, content encoding, etc.

In order to execute the demo against the real legacy application,
do the following:

1 Open the solution in Microsoft Visual Studio .NET 2003.

2 Modify the settings in the App.config file to fit your
environment.

3 Do Rebuild Solution.

4 Start Demo.exe.

 19© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Note: by default the input and output XML file names will be
taken from the configuration file.

The first time, when the input XML file with the serialized
CALC-REQ structure doesn’t exist, it will be created
automatically. The next time you can modify and use the
existing file.

The CicsDplBridgeDemo.cs file is the main class of the demo
project. Let’s look at its Run() method:

private static int Run(string[] args)

{

 /* some content was skipped */

 try

 {

 // set MQ settings

 ConnectorProperties properties = new ConnectorProperties();

 /* some content was skipped */

 // create an CicsDplBridge instance

 Bridge bridge = new Bridge(properties, encoding,

userName, password, useTransaction);

 // read XML input file and deserialize it in CalcReq instance.

 XmlSerializer serializer = new XmlSerializer(typeof(CalcReq));

 CalcReq request = null;

 using (Stream stream = new FileStream(inputFile, FileMode.Open,

FileAccess.Read, FileShare.Read))

 {

 request = serializer.Deserialize(stream) as CalcReq;

 }

 // create an empty response instance

 ICobolSerializableData response = new CalcResp();

 // make a call of a legacy application

 bridge.Invoke(applicationId, request, ref response);

 if (response != null)

 {

 // serialize CALC-RESP structure to XML file

 serializer = new XmlSerializer(typeof(CalcResp));

 using (Stream stream = new FileStream(outputFile,

FileMode.CreateNew))

 {

 serializer.Serialize(stream, response);

 }

 /* some content was skipped */

 }

 else

 {

 Console.WriteLine(

"There is no response from legacy application \"{Ø}\".",

 20 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

applicationId);

 }

 }

 catch (Exception e)

 {

 Error(e, "Error: ");

 return 1;

 }

 return Ø;

}

This method shows how to create a ConnectorProperties
instance and fill it in, create a bridge instance, read from the
XML file CALC-REQ request structure, invoke a bridge method
(to make a call to the legacy application), and write a CALC-
RESP response to an XML file.

CONCLUSION

This article demonstrates how easy it is to use a legacy
application from a .NET console application. Even the creation
of a Web service that, in turn, calls a legacy application, will
take about half an hour to implement using the components
from this solution. So, we see how contemporary technologies
extend the life of a legacy application without making any
changes to it.

All the files mentioned in this article are available to download
in one zip file from www.xephon.com/extras/0512sources.zip.

Arthur Nesterovsky
Software Developer (Israel) © Xephon 2005

A Java toolkit for WebSphere MQ

If you are a WebSphere MQSeries (WMQ) systems
administrator and reading this article, I have to assume it is
because you are one of the following:

• An incurable insomniac and have been driven to desperate
measures.

 21© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

• Need to learn more about WMQ and/or improve your
understanding of one of IBM’s hottest technologies.

• Tired of trying to prove to your application development
client community that their inability to send messages
across your network is the result of their application
problems and not your infrastructure design/
implementation.

• Sadly sadomasochistic with nothing better to do than try
to comprehend the incomprehensible.

Regardless of why you are reading this, the fact is that you are
about to embark on a journey that would make the most
hardened and cynical adventurer think twice. Most of us have
become WMQ systems administrators solely to avoid the
requirement to deal with programming languages, and the
client communities that try to control anyone who attempts to
write code for a living.

THE OBLIGATORY HISTORICAL REMINISCENCES

If you have been in this industry as long as I have (I can still
remember watching my mother hardwire the front panel of the
Iliac IV at the University of Illinois), then you probably have not
escaped the requirement to spend some time as a programmer.
My first paying job as a programmer was with the University of
Kentucky Department of Psychology. I started coding
FORTRAN, and then rapidly moved into the procedural
languages like GPSS and SPS. This unfortunate upbringing
culminated in my writing Basic Assembler Language programs
for IBM in Poughkeepsie.

However, I rapidly moved from programming into database
administration, and then progressed through the years to the
day when I became an independent consultant, working with
WebSphere Business Integration (WBI). Long gone were the
days when I would spend hours writing and debugging program
code.

As a WBI systems administrator, I have progressed from

 22 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

creating WMQ objects that others have designed to generating
middleware infrastructure designs of my own. Implementing
hub and spoke architectures, using multiple queue managers
on multiple platforms, as well as publish-and-subscribe
environments using WBI Message Broker have enabled me to
create some fairly sophisticated environments. Those
environments are active today in some of the world’s leading
financial, technical, and industrial organizations.

However, as I have progressed along the path of my technical
career, I discovered a need to be able to do more than design
and implement the infrastructures themselves. I have found a
need to be a user of those infrastructure components from
time to time.

THE PREMISE BEHIND THIS SERIES OF ARTICLES

As WBI environments become more complex, it becomes
necessary to enter messages into the front, and watch them
fall out of the back of the pipes that we are building. At first, I
used the standard WMQ utilities like amqsput to introduce
messages into queues and pass them along paths, proving
that I have correctly defined paths from A to B.

Then, users began to ask more pointed questions like, “What
about moving multiple messages in a batch from A to B?” and
“I need to be able to read my messages from B, but my
application is not ready yet to process those messages”.

As the requirements of my consumers became more
sophisticated, I progressed to using freeware tools and the
IBM Support Packs like MA01 (The Q program) and RFHUTIL,
as well as tools from CapitalWare and others. These tools
enabled me to move messages more easily, and in a greater
variety of configurations, but my clients wanted ever more
facilities. Still, I was able to meet most requests with one of the
tools that became a standard part of my kit bag.

Then, as I moved more into the complex design and application
integration roles, which pay the larger stipends, my clients
began to make comments like:

 23© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

• “My application can’t pass messages into WMQ.”

• “I write my messages, but they don’t end up where they
should be.”

• “My message flows are not triggering when messages
arrive on the queue.”

• “My message sets don’t transform as I expected them to.”

• and so on…

Not surprisingly, in each case the problem is always with WBI
and never with the application programs themselves. Even as
you would prove that messages, created and written with the
utilities, moved as expected, the applications teams would
always insist, “Well, you aren’t using programs, you are using
the WMQ utilities and they are not as sophisticated as my
application…” or words to that effect.

So, I went back to basics, and figured that I would learn one
of the ‘new’ programming languages and show those
applications guys that it really wasn’t my infrastructure that
had the problem.

They say that, ‘the road to Hell is paved with good intentions’.
Well, I didn’t really intend to become a source of utility
programs for the benefit of my customers. All I really wanted
to do was be able to prove that connectivity problems were not
my fault. However, I have started to find that every client site
that I work at has the same basic set of problems, and that a
kit bag of basic WBI programs can drastically reduce the time
to resolution for a communications problem.

CAVEAT(S)

Starting in this issue and, hopefully, continuing in future
articles, I will be publishing some of the basic Java utility
applications that I have created for use in a WBI environment.
These applications have been created to be freely distributed,
and are available on my corporate Web site, distributed as a
Java Archive (JAR) file. Xephon, in cooperation with 3-INGs

 24 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Limited, will be incorporating the Java programs into a JAR file
that will be accessible to their client base at www.xephon.com/
extras/0512xephon.jar.

Let me state, categorically, I am not the world’s best Java
programmer. Some of you will look at my code and wonder
who in their right mind would create programs like these.
However, I can say that the programs themselves have all
been extensively used in real client environments, and work
as designed.

The programs that I will be publishing in this series are what
I call ‘integration’ programs. They do not use a GUI (Graphical
User Interface), but are instead ‘command line’ programs that
accomplish a specific purpose. Since the programs are
designed to work with WMQ, their content can be taken and
moved into other applications and reused in that fashion, but
I personally wouldn’t know an IDE or a widget if they came and
slapped me in the face.

If anyone would like to take the time to recommend
improvements to these programs, I will be happy to hear your
comments and suggestions. You can contact me at
Aaron.Cain@3ings.com, with your thoughts and ideas, and I
will see what can be incorporated into both the 3-INGs and
Xephon program libraries.

LET’S GET STARTED

In order to run the Java applications in this series, you will
need to ensure that you have a working Java environment on
the workstation or server that you wish to use. Since WBI runs
on a variety of platforms, your particular requirements may be
unique. However, most environments can be broken down
into the following categories:

• Mainframes

• Windows environments

• Unix environments.

 25© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

I will not be addressing the mainframe environments (z/OS or
iSeries) in the context of these articles, though I don’t rule out
the possibility in the future.

Windows

Windows environments are usually fairly consistent, but I do
make some assumptions:

• You are using Windows 32-bit environments.

• You are running Windows 2000 or above.

I am not saying that the programs won’t run in Windows
environments other than these, but I have not tested them
extensively in environments that do not match these basics.

Unix

Unix environments are fairly consistent in the way in which
they execute Java programs, but can vary widely depending
on the flavour you are running. The programs have been used
extensively in Linux (RedHat and Suse), AIX (4.x and above),
and Solaris (2.6 and above).

As above, the programs will probably run in other environment,
but you may need to make some adjustments.

Java

The last piece that has to be in place for these programs to
work is Java. The programs have been developed using the
Java Software Development Kit 1.4.2, and have been run
successfully using Java Runtime Environment 1.3.1 and
above. Again, if you have a version of Java pre-dating these
environments, you may find some program inconsistencies.

SETTING UP THE SERVER ENVIRONMENT

Running a Java program requires you to identify two
components to your server:

 26 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• The location of the Java Runtime Environment

• The location of the Java program.

To do this, you need to have a way of changing the environment
variables on the server you will be working with.

The Java program that is listed below is contained in the
0512xephon.jar file (which can be downloaded from
www.xephon.com/extras) or the 3INGs.jar file (which can be
downloaded from www.3ings.com/3INGs_Mentoring.htm).

Windows

In order to use the Java program on a Windows server, you will
need to copy the JAR file to a directory. For all our development
and testing in our laboratory environment, we use:

C:\Java

However, you can choose any location you want.

To run the programs on a Windows workstation or server, you
will need to start a command window (the old DOS prompt). To
do this, you can execute ‘cmd’ from Run in the Start menu.
This will open a command prompt dialogue box. To test
whether you have Java installed on the Windows server, run
the command:

java -version

You should see output similar to:

C:\Documents and Settings\Aaron Cain>java -version

java version "1.5.Ø_Ø2"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.Ø_Ø2-bØ9)

Java HotSpot(TM) Client VM (build 1.5.Ø_Ø2-bØ9, mixed mode, sharing)

If Java has not been installed on your workstation, you can
download it from http://java.sun.com/j2se/1.5.0/download.jsp.
The programs that will be included in this series have been
developed using the Java Development Kit 1.4.2, but they
have been used commercially on JDK Versions from 1.3.1 to
1.5. Other versions may be compatible, but it will be up to you
to verify the compatibility of your version of Java.

 27© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

You can list the server environment variables, by running the
Windows command set:
C:\Java>set

. . .

. . .

. . .

CLASSPATH=C:\Program Files\IBM\WebSphere

MQ\Java\lib\providerutil.jar;C:\Program Files\IBM\WebSphere

MQ\Java\lib\com.ibm.mqjms.jar;C:\Program Files\IBM\WebSphere

MQ\Java\lib\ldap.jar;C:\Program Files\IBM\WebSphere

MQ\Java\lib\jta.jar;C:\Program Files\IBM\WebSphere

MQ\Java\lib\jndi.jar;C:\Program Files\IBM\WebSphere MQ\

Java\lib\jms.jar;C:\Program Files\IBM\WebSphere

MQ\Java\lib\connector.jar;C:\Program Files\IBM\WebSphere

MQ\Java\lib\fscontext.jar;C:\Program Files\IBM\WebSphere

MQ\Java\lib\com.ibm.mq.jar;.;C:\PROGRA~1\IBM\SQLLIB\java\db2java.zip;C:\PROGRA

~1\IBM\SQLLIB\java\db2jcc.jar;C:\PROGRA~1\IBM\SQLLIB\java\sqlj.zip;C:\PROGRA~1\I

BM\SQLLIB\java\db2jcc_license_cisuz.jar;C:\PROGRA~1\IBM\SQLLIB\java\db2jcc_licen

se_cu.jar;C:\PROGRA~1\IBM\SQLLIB\bin;C:\PROGRA~1\IBM\SQLLIB\tools\db2XTrigger.ja

r;C:\PROGRA~1\IBM\SQLLIB\java\common.jar

. . .

. . .

. . .

The environment variable that you need to be concerned with
is CLASSPATH. The CLASSPATH has to include the Java
program(s) along with the WMQ Java support libraries.

To set the CLASSPATH variable, you can concatenate the
directory paths to the various WMQ JAR files manually, or you
can use the following Windows JSetLt.bat file after ensuring
that the directory path names for each of the components in
the script are corrected for your server environment:

C:\Java>type JSetLT.bat

@ECHO OFF

SET JAVA_HOME=C:\Program Files\IBM\WebSphere MQ\Java

SET PATH=%PATH%;C:\j2sdk1.4.2_Ø4\bin

SET PATH=%PATH%;C:\Program Files\IBM\WebSphere MQ\Java\lib

SET LD_LIBRARY_PATH=C:\j2sdk1.4.2_Ø4\lib;%JAVA_HOME%\lib

SET CLASSPATH=%CLASSPATH%;.;C:\j2sdk1.4.2_Ø4\lib;C:\Java

SET CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\dt.jar

SET CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\htmlconverter.jar

SET CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\com.ibm.mq.jar

SET CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\com.ibm.mqbind.jar

SET CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\com.ibm.mqjms.jar

SET CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\com.ibm.mq.pcf.jar

 28 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

SET CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\connector.jar

SET CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\jta.jar

SET CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib\tools.jar

SET CLASSPATH=%CLASSPATH%;%JAVA_HOME%\lib

SET CLASSPATH=%CLASSPATH%;C:\Program Files\IBM\WAS\jmxc.jar

SET CLASSPATH=%CLASSPATH%;C:\Program Files\IBM\WAS\admin.jar

SET CLASSPATH=%CLASSPATH%;C:\Program Files\IBM\WAS\wsexception.jar

SET CLASSPATH=%CLASSPATH%;C:\Java\3INGs.jar

Note: the JSetLT.bat file is also included in the Xephon.jar and
3INGs.jar files.

Once you have executed the JSetLT.bat file from the command
line you will be ready to run the programs in the JAR file from
the command window.

When you close the command window, you will lose the
customization to the CLASSPATH variable that was made by
the JSetLT.bat file. Each time you open a command window
to run Java programs from, you must run the batch file again
to make the changes to the environment variables. Alternatively,
you can customize the server environment variables with the
libraries, and these will then be available to all users of the
environment.

Unix

In order to use the Java program on a Unix server, you will
need to copy the JAR file to a directory. In our laboratory
environment, for all of our development and testing, we use a
directory off the user’s home directory named WMQ_tools:

caina:/home/caina/WMQ_tools> ls -al

total 1232

drwxr-xr-x 3 caina staff 4Ø96 Ø6 Oct 16:26 .

drwxr-xr-x 11 caina staff 4Ø96 1Ø Oct 1Ø:53 ..

-rw-r--r-- 1 caina staff 1128Ø5 29 Sep 17:48 3INGs.jar

-rwxr-xr-x 1 caina staff 376387 22 Sep Ø9:Ø8 q

-rwxr-xr-x 1 caina staff 86256 Ø1 Oct 2ØØ4 saveqmgr.aix

However, you can specify any location that you require. The
programs run from the command line in the Unix environment.

To test whether you have Java installed on the Unix server, run
the command:

 29© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

java -version

You should see output similar to:

caina:/home/caina/WMQ_tools> java -version java version "1.4.1"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.1) Classic

VM (build 1.4.1, J2RE 1.4.1 IBM AIX build ca1411ifx-2ØØ4Ø81Ø

(141SR3) (JIT enabled: jitc))

If Java has not been installed on your workstation, as outlined
above, you can download it from http://java.sun.com/j2se/
1.5.0/download.jsp. You can list the server environment
variables by running the Unix command env:

caina:/home/caina/WMQ_tools> env

_=/usr/bin/env

LANG=en_GB

. . .

. . .

. . .

CLASSPATH=/usr/mqm/java/lib/com.ibm.mq.jar:/usr/mqm/java/lib/

com.ibm.mqbind.jar:/usr/mqm/java/lib/connector.jar:.:/home/caina/

WMQ_tools/3INGs.jar

. . .

. . .

. . .

The environment variable that you need to be concerned with
is CLASSPATH. The CLASSPATH has to include the Java
program(s) along with the WMQ Java support libraries.

To set the CLASSPATH variable for a Unix user, you can
concatenate the directory paths to the various WMQ JAR files
manually, or you can use the following Unix export
CLASSPATH commands after ensuring that the directory path
names for each of the components in the commands are
corrected for your server environment:

export CLASSPATH=$CLASSPATH:/home/caina/WMQ_tools/3INGs.jar:.

export CLASSPATH=$CLASSPATH:/usr/mqm/java/lib/com.ibm.mqbind.jar

export CLASSPATH=$CLASSPATH:/usr/mqm/java/lib/com.ibm.mq.jar

export CLASSPATH=$CLASSPATH:/usr/mqm/java/lib/com.ibm.mqjms.jar

export CLASSPATH=$CLASSPATH:/usr/mqm/java/lib/connector.jar

export CLASSPATH=$CLASSPATH:/usr/mqm/java/lib/fscontext.jar

export CLASSPATH=$CLASSPATH:/usr/mqm/java/lib/rmm.jar

If you update the user’s login profile with the export commands,
then each time you log back onto the server, the userid will be

 30 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

ready to run the programs. If you execute these commands
from a user session, when you log out, the changes will be
lost, and must be re-entered the next time that you want to use
the programs.

TESTING THE ENVIRONMENT

Regardless of whether you have downloaded the Xephon.jar
or the 3INGs.jar, a Java program has been included that will
display the version of the JAR file and ensure that you have
completed your environment customization correctly. When
you have executed the necessary customization steps and
are ready to test your environment, you can check to see
whether your installation is correct by running the Hello World
program from the JAR file.

Windows

From the command window where you have executed the
JSetLT.bat file, issue one of the following commands as
appropriate:

C:\Java> java org.Xephon.HW (Xephon.jar)

C:\Java> java com.THREEINGs.HW (3INGs.jar)

If you have downloaded the Xephon.jar file, you should see
output that is similar to the following:

C:\Java>java org.Xephon.HW

Hello world from the Xephon - WMQ Java Library revision 1Ø October 2ØØ5

If you have downloaded the 3INGs.jar file, you should see
output that is similar to the following:

C:\Java> java com.THREEINGs.HW

Hello world from the 3-INGs - WMQ Java Library revision Ø8 October 2ØØ5

Unix

From the command line using the userid where you have set
the CLASSPATH environment variable, issue one of the
following commands as appropriate:

 31© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

caina:/home/caina/WMQ_tools> java org.Xephon.HW (Xephon.jar)

caina:/home/caina/WMQ_tools> java com.THREEINGs.HW (3INGs.jar)

If you have downloaded the Xephon.jar file, you should see
output that is similar to the following:

caina:/home/caina/WMQ_tools> java org.Xephon.HW

Hello world from the Xephon - WMQ Java Library revision 1Ø October 2ØØ5

If you have downloaded the 3INGs.jar file, you should see
output that is similar to the following:

caina:/home/caina/WMQ_tools> java com.THREEINGs.HW

Hello world from the 3-INGs - WMQ Java Library revision Ø8 October 2ØØ5

PROGRAM NUMBER 1 – GETQDEPTH.JAVA

The first program that we will be reviewing is getQDepth.java.
This program checks the queue depth for a specific local
queue on a queue manager. Our first program does two
things:

1 Connects to a WMQ queue manager

2 Accesses a local queue.

Given that about half the phone calls I get are related to
programs having problems accessing queues, this simple
test is very effective.

The properties file for getQDepth.java

Each of the Java programs in this series will use a properties
file to find the queue manager, queue, and other objects that
are required for execution. The properties file is contained in
the JAR file, along with the source code and Java class for the
program.

To extract the properties file, choose the command below that
matches the JAR file you have downloaded:

jar xvf 3INGs.jar com/THREEINGs/WMQ/getQDepth.properties

jar xvf Xephon.jar org/Xephon/getQDepth.properties

The commands are exactly the same on both Windows and

 32 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Figure 1: Output showing two queues

Unix. The properties file will be extracted, and put into local
subdirectories starting with ‘com’ on your server. So, for
example, if you execute the command using the Xephon JAR
file from C:\Java, the getQDepth.properties file will be found
in the directory C:\Java\org\Xephon\getQDepth.properties.

Move the getQDepth.properties file to your local directory, and
edit it as indicated in the documentation within the file. The file
will be similar to the following:

##

getQDepth.properties

This file contains the general properties entries for the

3-INGs WebSphere MQSeries Library get WMQ queue depth program

which is available from www.3ings.com as a Java Exemplar

and as part of the 3-INGs WebSphere MQSeries Simplified

Technology Guide.

##

Name of the queue manager to connect to

##

 33© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

queueManager=<queue manager name>

##

A list of queue names to process separated by blank spaces

##

listOfQueues=<queue name> <queue name> <queue name>

##

Name of the host that the Queue Manager runs on

##

hostName=<host name>

##

Name of a SVRCONN channel that the program can use

to communication with the queue manager

##

channelName=<Application connection channel name>

##

TCPIP port number to be used to connect to the channel

##

portNumber=<port number>

##

Specify a server userid and password that can access the MQ

environment

##

useridMQ=<user id>

passwordMQ=<password>

Modify the values in brackets to match those that are applicable
to your environment, and save the changes.

Running getQDepth.java

Now that you have updated the properties file, and set the
environment, you are ready to execute the program. The
commands will work from either a Windows command prompt
or from a Unix command line. To run the program contained
in the JAR file, enter the command that is appropriate to the
JAR file that you downloaded:

java com.THREEINGs.WMQ.getQDepth getQDepth.properties

java com.Xephon.getQDepth getQDepth.properties

The program will then:

1 Connect to the queue manager identified in the
getQDepth.properties file.

2 Open the queue for inquiry specified in the
getQDepth.properties file.

 34 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

3 Retrieve the queue depth and display it to the screen.

4 Repeat the above for all the other queues specified in the
getQDepth.properties file.

On our test Windows WMQ instance, we have created two
queues, 3INGS_Q1 and 3INGS_Q2 – see Figure 1.

When the getQDepth program is run on this server against
both queues, the output is:

C:\Java\>java com.THREEINGs.WMQ.getQDepth getQDepth.properties

Q_Name> 3INGS_Q1

Q_Depth> 2

Q_Name> 3INGS_Q2

Q_Depth> 3

Your output will obviously differ depending on the queue
names and the number of messages that are resident when
you run the program.

The program code

The program code contains documentation for each section.
This documentation should be sufficient for anyone who is
familiar with Java and has a basic familiarity with WMQ. In
future articles, we will break down each section and fully
describe its purpose and syntax.

The listing for the getQDepth.java program is as follows:

/**

** getQDepth.java **

** This module is part of the 3-INGs WebSphere MQSeries Java **

** Library collection. This Java program is designed to attach to a **

** WebSphere MQSeries (WMQ) Queue, and then get the queue depth **

** by querying the WMQ attributes **

** Copyright 2ØØ4 - 2ØØ5 3-INGs Limited **

** All rights reserved **

** This program is owned by 3-INGs Limited and is copyrighted and **

** licensed, not sold. **

** You may execute, copy, and modify this program in any form **

** without payment to 3-INGs Limited, for any purpose including **

** developing, using, marketing or distributing programs that **

** include or are derivative works of the program. **

**/

 35© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

/**

** Establish the Java Package and Class structures necessary to **

** run this method on any platform where the 3INGs_WMQ.jar file is **

** installed. **

** This program is invoked using the command: **

** java com.THREEINGs.getQDepth <Properties File Name> **

** Where <Properties File Name> is a customized properties file, **

** which is similar to the getQDepth.Properties found in the **

** 3INGs_WMQ.jar file and which has been edited to reflect the **

** WBI attributes of the target server environment **

**/

package com.THREEINGs.WMQ;

import java.util.*;

import java.io.*;

import com.ibm.mq.*;

public class getQDepth {

/**

** Declare the routine that will access the properties file, which **

** has been passed to this program **

**/

 private static Properties loadProperties(String fName)

 {

 Properties props = null;

 try

 {

 FileInputStream fis = new FileInputStream(fName);

 props = new Properties();

 props.load(fis);

 }

 catch (FileNotFoundException fnfx)

 {

 System.out.println("Properties file name " + fName + " not

 found. Make path absolute or check relative path.");

 }

 catch (SecurityException sex)

 {

 System.out.println("Read access denied to file: " + fName + "

 check security rights.");

 }

 catch (IOException iox)

 {

 System.out.println("IOException opening Properties

 configuration.");

 }

 return props;

 }

 public static void main(String args[]) {

/**

** Declare the program variables used within the method **

**/

 36 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 int _msgNum = 1;

 int _msgs2Process = 1;

 int _prtNum = 1414;

 int _qDepth = Ø;

 int _msglngth = Ø;

 String _qmgrName;

 String _qList;

 String _qName;

 String _hostName;

 String _chnlName;

 String _usridMQ;

 String _pwdMQ;

 GregorianCalendar _cal;

 Date _dtime;

 Calendar _today = new GregorianCalendar();

/**

** Test to see whether the correct number of arguments have been **

** passed to the program from the command line, if not then print **

** usage instructions for the user and end the program **

**/

 if (args.length < 1) {

 System.out.println(" ");

 System.out.println("Usage is java

 com.THREEINGs.getQDepth <parm file nm>");

 System.out.println(" ");

 System.out.println(" Where <parm file nm> is the

 name of the parameter");

 System.out.println(" file that controls the

 execution of the program");

 System.out.println(" ");

 return;

 } /* if args.length */

/**

** Use the parameter file name passed in to the program to set up **

** the Java parsing mechanism to get the values needed to continue **

** processing **

**/

 Properties config = loadProperties(args[Ø]);

/**

** Retrieve the values of the variables required from the **

** parameter file and assign them to the appropriate variables for **

** execution **

**/

 _qmgrName = config.getProperty("queueManager");

 _qList = config.getProperty("listOfQueues");

 _hostName = config.getProperty("hostName");

 _chnlName = config.getProperty("channelName");

 String pn = config.getProperty("portNumber");

 _usridMQ = config.getProperty("useridMQ");

 _pwdMQ = config.getProperty("passwordMQ");

 37© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

/**

** Check the configuration parameter file variables to ensure that **

** appropriate values have been found, if not then error and return **

**/

 if (_qmgrName == null)

 {

 System.out.println("Error in configuration file queueManager

 property is missing or null");

 return;

 }

 if (_qList == null)

 {

 System.out.println("Error in configuration file listOfQueues

 property is missing or null");

 return;

 }

 if (_hostName == null)

 {

 System.out.println("Error in configuration file hostName

 property is missing or null");

 return;

 }

 if (_chnlName == null)

 {

 System.out.println("Error in configuration file channelName

 property is missing or null");

 return;

 }

 if (pn == null)

 {

 System.out.println("Error in configuration file portNumber

 property is missing or null");

 return;

 }

 if (_usridMQ == null)

 {

 System.out.println("Error in configuration file useridMQ

 property is missing or null");

 return;

 }

 if (_pwdMQ == null)

 {

 System.out.println("Error in configuration file passwordMQ

 property is missing or null");

 return;

 }

/**

** Modify the retrieved values as appropriate for further **

** processing **

**/

 38 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 try

 {

 _prtNum = Integer.parseInt(pn);

 }

 catch (NumberFormatException nfe)

 {

 System.out.println("Format error for Port Number.

 Expected an integer and got => " + pn);

 return;

 }

 MQEnvironment.hostname = _hostName;

 MQEnvironment.channel = _chnlName;

 MQEnvironment.port = _prtNum;

 MQEnvironment.userID = _usridMQ;

 MQEnvironment.password = _pwdMQ;

 try

 {

 StringTokenizer lstOfQs = new StringTokenizer(_qList);

 while (lstOfQs.hasMoreElements())

 {

 _qName = lstOfQs.nextToken();

/**

** Connect to the queue manager that has been identified creating a **

** new object, which can be passed along for processing **

**/

 MQQueueManager qm = new MQQueueManager(_qmgrName);

 MQQueue qInquire =

 qm.accessQueue(_qName,MQC.MQOO_INQUIRE |

 MQC.MQOO_SET | MQC.MQOO_BROWSE |

 MQC.MQOO_FAIL_IF_QUIESCING |

 MQC.MQOO_INPUT_SHARED);

 _qDepth = qInquire.getCurrentDepth();

 System.out.println("Q_Name> " + _qName);

 System.out.println("Q_Depth> " + _qDepth);

 qInquire.close();

 } /* end of StringTokenizer while */

 } /* end of try */

 catch (MQException mqe) {

/**

** This catch block will handle any MQSeries exceptions that occur **

** and attempt to provide some hints as to what may be going wrong **

** when an exception occurs **

**/

System.out.println("\nA WebSphere MQ error occurred : Completion code "

 + mqe.completionCode + " Reason code " + mqe.reasonCode);

/**

** The switch will attempt to map reasons why the program may have **

** failed during MQSeries processing. This diagnostic can be used **

** to help debug failures **

**/

 39© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

switch(mqe.reasonCode) {

case 2ØØ9 :

System.out.println("\n**");

System.out.println("* Hint: *");

System.out.println("* The channel you specified may not be active *");

System.out.println("* *");

System.out.println("**");

break;

case 2Ø33 :

System.out.println("\n**");

System.out.println("* Hint: *");

System.out.println("* During a read of the target queue, the program*");

System.out.println("* reached the end of the messages available *");

System.out.println("* *");

System.out.println("**");

break;

case 2Ø35 :

System.out.println("\n**");

System.out.println("* Hint: *");

System.out.println("* The userid listed in the properties file has *");

System.out.println("* failed the security check while attaching to *");

System.out.println("* the queue manager. Make sure that the userid *");

System.out.println("* is part of the mqm group *");

System.out.println("* *");

System.out.println("**");

break;

case 2Ø58 :

System.out.println("\n**");

System.out.println("* Hint: *");

System.out.println("* The Queue Manager Name is incorrect. Please *");

System.out.println("* check to make sure that the entry in the *");

System.out.println("* properties file is correct *");

System.out.println("* *");

System.out.println("**");

break;

case 2Ø59 :

System.out.println("\n**");

System.out.println("* Hint: *");

System.out.println("* The queue manager you are trying to access *");

System.out.println("* may not be active, or the listener for the *");

System.out.println("* port you are attempting to use may be stopped *");

System.out.println("* *")

System.out.println("**");

break;

case 2Ø79 :

System.out.println("\n***");

System.out.println("* Hint: *");

System.out.println("* This is a normal message indicating that this *");

System.out.println("* program has accepted one or more truncated *");

System.out.println("* messages during queue processing *");

 40 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

System.out.println("* *");

System.out.println("**");

break;

default :

System.out.println("\n**");

System.out.println("* *");

System.out.println("* The error you encountered is not documented *");

System.out.println("* in this process. The WebSphere MQSeries (WMQ) *");

System.out.println("* error code should be reviewed using either the*");

System.out.println("* IBM documentation or the mqrc utility from the*");

System.out.println("* command line using the syntax 'mqrc <rc>' *");

System.out.println("* where rc is the return code from WMQ message *");

System.out.println("* *");

System.out.println("**");

} /* end of switch */

} /* end of catch */

}/* main method */

} /* public class */

A PREVIEW OF COMING ATTRACTIONS...

The bulk of this article has been geared towards getting your
environment set to run the programs that will be delivered in
future issues. The getQDepth.java program is a good basic
example of a Java WebSphere MQSeries application.

As the series progresses, in-depth reviews of the sections of
queue manager programs will be covered, and new functions
will be delivered in the published JAR files. We will also cover
some of the basic features of delivering code in JAR files of
your own creation.

The next program in this series will be the WMQ Get application,
which will allow you to browse or read WMQ messages from
queues.

Aaron Cain
Independent Consultant
3-INGs Limited (UK) © 3-INGs Limited 2005

 41© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

How to write an authentication routine in
WebSphere MQ Version 6.0

Version 6.0 of WebSphere MQ introduces a mechanism
whereby user IDs and passwords supplied via the MQCONNX()
call may be authenticated. In order to facilitate this, the
authorization pluggable service interface has been extended
to allow a user to provide their own authentication routine. This
article will take a close look at how to use this extended
interface to write an authentication routine, and includes
some sample code. The implementation of the authorization
function provided by the default authorization service will also
be considered.

SUPPLYING THE USER ID AND PASSWORD TO BE
AUTHENTICATED

The user ID and password to be authenticated are supplied by
the application when connecting to the queue manager using
the MQCONNX() call. First, note that the connection options
structure (or MQCNO) has been extended in this release to
allow a new structure, known as a connections security
parameters structure (or MQCSP), to be specified:

 MQCNO = { ...,

 PMQCSP SecurityParmsPtr,

 MQLONG SecurityParmsOffset }

The SecurityParmsPtr and SecurityParmsOffset fields of the
MQCNO structure allow an MQCSP to be specified either via
a direct pointer or via an offset in typical WMQ fashion. For a
full description of all of the fields of the MQCNO structure,
please refer to the Application Programming Reference. The
MQCSP structure itself is defined in the following way:

 MQCSP = { MQCHAR4 StrucId,

 MQLONG Version,

 MQLONG AuthenticationType,

 MQBYTE4 Reserved1,

 MQPTR CSPUserIdPtr,

 42 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 MQLONG CSPUserIdOffset,

 MQLONG CSPUserIdLength,

 MQBYTE8 Reserved2,

 MQPTR CSPPasswordPtr,

 MQLONG CSPPasswordOffset,

 MQLONG CSPPasswordLength }

The StrucId and Version fields are the usual WMQ structure
identity and version fields, and the reserved fields are simply
present to preserve pointer alignment. The key fields of
interest are those that allow a user ID and password to be
supplied either via a direct pointer reference or via an offset.
These strings are not required to be null-terminated, but the
length of both the user ID and password must be specified
explicitly. This allows the user ID and password to be,
theoretically, of unlimited length. The AuthenticationType field
indicates the type of authentication to be performed. Valid
values are:

• MQCSP_AUTH_NONE – do not authenticate user ID and
password fields.

• MQCSP_AUTH_USER_ID_AND_PWD – authenticate
user ID and password fields.

The intention is that the user supplied authorization routine
will typically authenticate the user ID and password in cases
where a value of MQCSP_AUTH_USER_ID_AND_PWD is
specified, but will perform no authentication in the case of
MQCSP_AUTH_NONE.

The following sample code, written in C, shows a typical
invocation of the MQCONNX() call specifying both a user ID
and password to be authenticated:

int main(int argc, char **argv)

{

 ...

 /* Declare MQI structures needed */

 MQCNO ConnectOptions = {MQCNO_DEFAULT}; /* Connection Options */

 MQCSP SecParms = {MQCSP_DEFAULT}; /* Security Parameter */

 MQHCONN Hcon; /* connection handle */

 MQLONG CompCode; /* completion code */

 MQLONG Reason; /* reason code */

 MQCHAR QMName[5Ø]; /* queue manager name */

 43© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 MQCHAR username[13]; /* username to be authenticated */

 MQCHAR password[13]; /* password to be authenticated */

 strcpy(QMName, "QM1"); /* queue manager name is QM1 */

 strcpy(username, "smith"); /* username is "smith" */

 strcpy(password, "mypass"); /* password is "mypass" */

 /* Set up the content of the MQCSP structure */

 SecParms->CSPUserIdPtr = &username;

 SecParms->CSPUserIdLength = strlen(username);

 SecParms->CSPPasswordPtr = &password;

 SecParms->CSPPasswordLength = strlen(password);

 SecParms->AuthenticationType = MQCSP_AUTH_USER_ID_AND_PWD;

 ConnectOptions->SecurityParmsPtr = &SecParms;

 ConnectOptions->SecurityParmsOffset = Ø;

 /* Connect to queue manager */

 MQCONNX(QMName, /* queue manager */

 &ConnectOptions /* connection options */

 &Hcon, /* connection handle */

 &CompCode, /* completion code */

 &Reason); /* reason code */

 /* report reason and stop if it failed */

 if (CompCode == MQCC_FAILED)

 {

 printf("MQCONN ended with reason code %d\n", Reason);

 exit((int)Reason);

 }

 ...

}

THE AUTHENTICATE USER INTERFACE

To implement the authentication routine, the user must provide
a service component that conforms to the authorization service
interface. In particular, the user-written service component
should implement the new MQZ_AUTHENTICATE_USER
function. General information on installable services and
instructions on how to write and use your own service
component are provided in Chapters 19 and 20 of the System
Administration Guide. The aim of this section is to focus on the
parts of the interface, and related structures, provided
specifically for the task of performing authentication. Having
considered these, it will then be useful to consider some
sample code for a service component that implements the
MQZ_AUTHENTICATE_USER function.

The MQZ_AUTHENTICATE_USER function is invoked by the

 44 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

queue manager to authenticate the user ID and password
supplied by an application via the MQCONNX() call. It also
allows identity context fields to be set. The function is defined
as follows:

MQZ_AUTHENTICATE_USER (MQCHAR48 QMgrName,

 MQCSP SecurityParms,

 MQZAC ApplicationContext,

 MQZIC IdentityContext,

 PMQPTR CorrelationPtr,

 PMQBYTE pComponentData,

 PMQLONG pCompCode,

 PMQLONG pReason)

Each parameter passed into the function supplies information
that may be used when performing the authentication. The
key parameters of interest are:

• MQCSP SecurityParms – this is a copy of the structure
that was supplied by the application when performing the
MQCONNX() call. This contains the user ID and password
to be authenticated. The main function of the authentication
routine, which the user writes, should be to examine the
user ID and password, and determine whether these
supplied credentials are valid. If so, an OK return condition
should be generated by setting the completion code
(CompCode) to a value of MQCC_OK, and setting the
reason to a value of MQRC_NONE. If the supplied
credentials are not valid, a completion code of value
MQCC_FAILED and a reason of value
MQRC_NOT_AUTHORIZED should be returned.

• MQZAC ApplicationContext – this structure contains a
variety of information relating to the calling application.
The authentication routine may make use of this information
when considering whether or not to authenticate a particular
set of credentials, or when modifying the identity context
data. The information supplied includes the application’s
process and thread IDs, the application name, the real
and effective user ID of the application, the application
bindtype, and also some contextual information that helps
identify at what point this call to the authentication function
was made.

 45© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

• MQZIC IdentityContext – in addition to performing
authentication, the MQZ_AUTHENTICATE_USER
interface allows the authentication routine to manipulate
the application’s current identity context. The identity
context is a group of three fields which, when an application
puts a message to a queue, are written into the message
header as part of the message context. This message
context information allows any application that retrieves
the message to determine information about the originator
of the message. The three fields that constitute the
identity context are as follows:

– UserIdentifier – typically this is the user identifier that
is associated with the process under which the
application is running.

– AccountingToken – this field is used to flow a security
identifier on the Windows platforms, which is a
representation of the Windows SID of the
UserIdentifier.

– ApplicationData – this may be set to any identity-
related value.

More information on identity context and the way in which
it is used may be found in Chapter 5 of the WMQ Security
manual.

The authentication routine may set any of the identity
context fields in the MQZIC structure if it so chooses. So,
for example, if the routine alters the UserIdentifier field,
the identity context information associated with the
application will be altered to reflect this change. Any
subsequent messages put by the application containing
queue-manager-generated identity context information
will contain this changed user ID in the message header.

It is important to note that the UserIdentifier field of the
identity context is not necessarily related to the user ID
supplied by the application via the MQCSP structure.
Typically the identity context’s UserIdentifier field will

 46 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

contain the user ID associated with the application’s
process, whereas the user ID supplied for authentication
via MQCONNX() may be any user ID string as desired. If
a relationship between the user ID supplied for
authentication and that written into the identity context is
required, it is the responsibility of the calling application
and the authentication routine to maintain this.

• MQPTR CorrelationPtr – the correlation pointer allows the
user’s authorization service to pass resources between
the various implemented functions. This pointer may be
set to any address during the
MQZ_AUTHENTICATE_USER function, and this value is
then passed into subsequent calls to the
M Q Z _ C H E C K _ A U T H O R I T Y ,
MQZ_CHECK_AUTHORITY_2, MQZ_GET_AUTHORITY,
MQZ_GET_AUTHORTIY_2, MQZ_SET_AUTHORITY,
and MQZ_SET_AUTHORITY_2 calls. The value is
maintained on a per connection to the queue manager
basis, and is also passed into the
MQZ_FREE_AUTHORITY function to allow resources to
be freed – see the next section for details.

THE FREE USER INTERFACE

If the user ’s implementation of the
MQZ_AUTHENTICATE_USER function allocates any
resources that are required to be freed, then the
MQZ_FREE_USER function must also be implemented. The
MQZ_FREE_USER function is typically invoked by the queue
manager during a disconnect call.

The MQZ_FREE_USER function is defined as follows:

MQZ_FREE_USER (MQCHAR48 QMgrName,

 PMQZFP FreeParms,

 PMQBYTE ComponentData,

 PMQLONG Continuation,

 PMQLONG CompCode,

 PMQLONG Reason)

The correlation pointer initially set by the

 47© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

MQZ_AUTHENTICATE_USER function is passed into the
MQZ_FREE_USER function via the FreeParms structure.
This pointer should be used to reference any resources such
as allocated storage, and these resources should then be
freed by the function.

WRITING AN AUTHENTICATION ROUTINE

The following is a sample authorization service module showing
the basic requirements of how to write an authentication
routine. Note that the following code does not actually perform
any authentication; however, it provides a framework that can
be used as a basis for the user’s own implementation.

Each function implementing the authorization service interface
will need to return a completion code, a reason code, and a
continuation flag. The continuation flag can be one of three
values:

• MQZCI_DEFAULT – continuation dependent on queue
manager. For MQZ_CHECK_AUTHORITY_2 this has the
same effect as MQZCI_STOP.

• MQZCI_CONTINUE – continue with the next component
if one exists.

• MQZCI_STOP – do not continue with the next component.
Hence, return to the queue manager and user application.

More details on chaining authorization service will be explained
next month.

/**/

/* BEGIN MODULE */

/**/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <cmqc.h>

#include <cmqxc.h>

#include <cmqcfc.h>

#include <cmqzc.h>

/* Define the name of this authorization service module */

#define COMPONENT_NAME "Custom.MQTest.auth.service"

 48 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

int primary_process = Ø;

MQLONG correlationData = 1ØØØ;

/**/

/* Function: MQTEST_AUTHENTICATE_USER */

/* Description: */

/* An implementation of the new MQZ_AUTHENTICATE_USER interface. */

/* The user name and password is passed into this function via the */

/* pSecurityParms structure. */

/**/

static void MQENTRY MQTEST_AUTHENTICATE_USER(

 MQCHAR48 QMgrName,

 PMQCSP pSecurityParms,

 PMQZAC pApplicationContext,

 PMQZIC pIdentityContext,

 PMQPTR pCorrelationPtr,

 PMQBYTE pComponentData,

 PMQLONG pContinuation,

 PMQLONG pCompCode,

 PMQLONG pReason)

{

 switch (pSecurityParms->AuthenticationType)

 {

 case MQCSP_AUTH_NONE:

 /* No authentication is required so return. */

 *pContinuation = MQZCI_CONTINUE;

 *pCompCode = MQCC_OK;

 *pReason = MQRC_NONE;

 break;

 case MQCSP_AUTH_USER_ID_AND_PWD:

 /***/

 /* Authentication required. */

 /* This is where the main routine to perform the */

 /* authentication should be placed. */

 /***/

 break;

 default:

 /* Error authentication type incorrectly set. */

 break;

 }

 /* If there is any correlation data, return the pointer to the data.*/

 *pCorrelationPtr = &correlationData;

 *pContinuation = MQZCI_CONTINUE;

 *pCompCode = MQCC_OK;

 *pReason = MQRC_NONE;

 return;

}

/**/

/* Function: MQTEST_FREE_USER */

/* Description: */

/* An implementation of the new MQZ_FREE_USER interface. */

 49© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

/**/

static void MQENTRY MQTEST_FREE_USER(MQCHAR48 QMgrName,

 PMQZFP pFreeParms,

 PMQBYTE pComponentData,

 PMQLONG pContinuation,

 PMQLONG pCompCode,

 PMQLONG pReason)

{

 /***/

 /* Free user function: */

 /* Release all required resources here. */

 /***/

 *pContinuation = MQZCI_CONTINUE;

 *pCompCode = MQCC_OK;

 *pReason = MQRC_NONE;

 return;

}

/**/

/* Function: MQStart */

/* Description: */

/* An implementation of the new MQZ_INIT_AUTHORITY interface. */

/* We need to define the functions used in the module that map */

/* to the interface. This function should be exported when */

/* compiling the module. */

/**/

void MQENTRY MQStart(MQHCONFIG hc,

 MQLONG Options,

 MQCHAR48 QMgrName,

 MQLONG ComponentDataLength,

 PMQBYTE pComponentData,

 PMQLONG pVersion,

 PMQLONG pCompCode,

 PMQLONG pReason)

{

 MQLONG CC = MQCC_OK;

 MQLONG Reason = MQRC_NONE;

 /* Set primary process flag */

 if ((Options & MQZIO_PRIMARY) == MQZIO_PRIMARY)

 primary_process = 1;

 /**/

 /* Initialize the entry point vectors. This is performed for */

 /* both global and process initialization, ie whatever the */

 /* value of the Options field. */

 /**/

 if (CC == MQCC_OK)

 MQZEP(hc, MQZID_INIT_AUTHORITY,(PMQFUNC)MQStart,&CC,&Reason);

 if (CC == MQCC_OK)

 MQZEP(hc,MQZID_AUTHENTICATE_USER,(PMQFUNC)MQTEST_AUTHENTICATE_USER,&CC,&Reason);

 if (CC == MQCC_OK)

 MQZEP(hc,MQZID_FREE_USER,(PMQFUNC)MQTEST_FREE_USER,&CC,&Reason);

 50 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 /**/

 /* Set the version number. */

 /**/

 *pVersion = MQZAS_VERSION_5;

 /**/

 /* Set the return codes. */

 /**/

 *pCompCode = CC;

 *pReason = Reason;

 return;

}

#if MQ_PLATFORM == OS4ØØ

void *MQPlugInit()

{

 return (void *)MQStart;

}

#endif

Editor’s note: this article will be concluded next month.

May Leung and David Postlethwaite
Software Engineers
IBM (UK) © IBM 2005

MQ news

Cressida Technology has announced that
OpenDemand Systems has announced Version
5.0 of OpenLoad, its browser-based,
enterprise-functional, load-testing and
monitoring solution for dynamic Web sites,
applications, and services.

OpenLoad uses WebSphere and DB2 UDB.
Its User Scenario Session Finder is an intelligent,
script-free wizard that allows users to build
dynamic data-driven tests without having to
code and debug, or understand, the inner
workings of the applications they are testing.

The product also allows users to proactively
manage the performance of their critical Web
applications from a single browser-based
console. This new feature enables users to
leverage real-world user scenarios developed
for functional and load testing to continually
monitor customer transactions and correlate
them with their back-end systems to identify and
fix problems before they impact Web site
visitors.

For further information contact:
URL: www.opendemand.com/openload.

* * *

ReQuest for WebSphere MQ now runs on
z/OS. ReQuest currently supports Windows,
AIX, Solaris, HP-UX, and SUSE Linux
platforms.

Request for WebSphere MQ is a message
tracking, message reporting, message replay,
point-in-time message recovery, charge-back,
accounting, and auditing solution. ReQuest uses
filtering technology to analyse critical message
activity information already contained in WMQ
logs.

For further information contact:

URL: www.cressida.info/
products_cressida_ReQuest.htm.

* * *

IFS has announced that Version 7 of IFS
Applications allows companies to use IFS
Applications’ content and processes directly
within IBM WebSphere Portal. This capability
complements the personal portals available in
IFS Applications. It adds the ability to build
scalable portals using WebSphere, which
improves employee productivity and increases
customer loyalty.

IFS now enables companies to include all IFS
portlets in an enterprise-wide WebSphere
Portal.

For further information contact:
URL: www.ifsworld.com/uk/solutions/
ifs_applications.

* * *

ILOG has announced it is the first Business Rule
Management Systems (BRMS) software
vendor to offer integration with WebSphere
Process Server Version 6.0. The integration
allows users to better manage their policy-
intensive business processes.

A new connector developed by ILOG provides
seamless integration between ILOG JRules and
WebSphere Process Server 6.0. The
combination of the IBM and ILOG products will
allow users to make policy changes themselves
when creating and using business process
automation platforms.

For further information contact:
URL: www.ilog.com/corporate/releases/us/
050914_ibm.cfm.

x xephon

	Sample dead-letter queue handler message flow
	Communication with legacy applications
	A Java toolkit for WebSphere MQ
	How to write an authentication routine in WebSphere MQ Version 6.0
	MQ news

