
© Xephon plc 1999

3 MQSeries announcements
10 Using RACF and the OAM for end-

to-end security
19 MQSeries and Windows NT

security
23 Tackling enforced thread affinity
32 Recovery procedures
44 MQSeries news

July 1999

1

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 1999. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: +44 1635 550955
e-mail: HarryLewis@compuserve.com

North American office

Xephon/QNA
1301 West Highway 407, Suite 201-405
Lewisville, TX 75077-2150
USA
Telephone: +1 940 455 7050

Contributions
Articles published in MQ Update are paid for
at the rate of £170 ($250) per 1000 words and
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon’s Web site, where you
can download Notes for Contributors.

MQSeries Update on-line
Code from MQ Update is available from
Xephon’s Web site at www.xephon.com
(you’ll need the user-id shown on your ad-
dress label to access it). If you’ve a problem
with your user-id or password call Xephon’s
subscription department on +44 1635 33886.

Editor
Harry Lewis

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 3

MQSeries announcements

The MQSeries family is built on a messaging foundation that’s
provided by the base MQSeries product. This article describes the key
features of the latest MQSeries announcements, highlighting
improvements to the base messaging and infrastructure products. In
particular the discussion concentrates on the two major elements of
the latest releases: Dynamic Workload Distribution (which is available
for both OS/390 and a selected number of other platforms), and new
ground-breaking changes to the installation and administration of the
MQSeries for Windows NT product. Overall, the latest release of the
MQSeries messaging product offers improved usability, failover, and
availability compared with its predecessor.

The article is split into four sections, which focus on MQSeries for
OS/390 V2.1; general improvements for MQSeries V5.1 for AIX, NT,
Solaris, and HP-UX; details of specific improvements to the NT
product; and an in-depth examination of Dynamic Workload
Distribution (DWD). The DWD feature is delivered on both the OS/
390 product and across the board on MQSeries V5.1.

MQSERIES FOR OS/390 V2.1

A number of new features have been added to MQSeries specifically
for the OS/390 platform. These features generally integrate MQSeries
more closely with the underlying OS/390 operating system, making
use of the operating system’s facilities to improve availability, and are
part of the on-going support for Parallel Sysplex.

Resource Recovery Services (RRS)

In previous releases of the product, MQSeries for OS/390 operated as
a resource manager under either CICS or IMS control. This allowed
a single transaction to update both MQSeries resources and a database,
such as DB2, under CICS or IMS control. RRS extends this ability to
embrace MVS’s batch environment, TSO, DB2 stored procedures,
and Component Broker applications by providing the required sync
point manager function. MQSeries operates as a resource manager

4 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

under RRS in the same way as it previously operated under CICS or
IMS.

Automatic Restart Manager (ARM)

Using ARM allows a failed MQSeries Queue Manager and/or message
mover to be restarted automatically following a failure. The restart
may occur on the original MVS image or (if the original is unavailable)
a different MVS image. In addition, systems administrators can define
the order in which resources are recovered. This makes it possible, for
example, to restore CICS before MQSeries, should this be necessary.

General new developments

In previous releases of MQSeries for OS/390, the MQSeries Listener
Program stopped when TCP/IP was recycled. The latest release has
increased availability by being able to detect whether TCP/IP or
ACCP/MVS has returned, thereby eliminating the need for operator
intervention to restart the listener.

TCP/IP OE Sockets support, which was made available as a PTF on
V2.0, is now integrated into the main release. This high performance
API reduces CPU utilization for MQSeries TCP/IP message channel
agents.

MQSERIES V5.1

The latest version of MQSeries for distributed platforms (AIX, HP-
UX, Sun Solaris, Windows NT, and OS/2) has an important range of
new messaging features. In addition to the introduction of Dynamic
Workload Distribution (DWD) and some significant improvements to
the version for NT (both are discussed later in this article), MQSeries
V5.1 delivers improvements in:

• Performance

• Scalability

• Java capabilities

• Administration programming.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 5

Performance

A valuable performance improvement is the result of reducing the
amount of disk I/O that results from an MQGET WAIT call being
processed for a persistent message. This makes a considerable
difference to overhead associated with processing persistent messages
on local queues.

Performance improvements were also made to Unix versions of
MQSeries by reducing system memory requirements in terms of both
real and virtual memory. This was achieved by implementing
multithreaded client agents and multithreaded channels.

Scalability

The size of MQSeries implementations at customer sites has grown
significantly in the past two years. In order to provide still further
scalability, the maximum size of the disk file system used to store
messages has been extended from 320 MB to 2 GB. This allows larger
messages to be stored, also allowing the storage of a greater number
of messages.

Other scalability improvements have been brought about by the use
of threads. These include multithreaded agents for AIX, Sun Solaris,
and HP-UX, which allow up to two-thirds more MQ clients to run.
Multithreading has been implemented by enabling MQSeries channels
to make use of multithreading on Sun Solaris, AIX, and HP-UX.

Java capabilities

Java support is a vital part of MQSeries. Further improvements to it
were made in Version 5.1 by packaging both the MQSeries Java Client
and Bindings together. The MQSeries Java Client can now
communicate using IIOP in addition to the propriety TCP/IP-based
protocol. This function is especially important for sites that intend to
use MQSeries as a transport mechanism for Object Request Brokers.

Administration programming

IBM has received numerous requests from customers for a simple
way to create scripts for automating MQSeries administration and
write monitoring programs and process alerts. In order to address

6 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

these requests, the MQAI (MQSeries Administration Interface) was
created. This API is also useful in large-scale deployments and
unattended operations in distributed environments.

Windows NT enhancements

Windows NT is a popular platform on which to run MQSeries, so
significant new features were added to Version 5.1 to exploit NT’s
functionality and integrate MQSeries with the operating system. One
of the most visible changes concerns ease of use – the installation
procedure is changed so that a fully functioning MQSeries system
(including membership of a default cluster) is now in place as soon as
installation is complete. MQSeries can now be managed using the
Microsoft Management Console (MMC), which may be used to
manage queues and messages on queues. In addition, a Web
administration tool was developed to assist in the definition and
administration of the MQSeries infrastructure.

As well as improvements to ease of use, improvements were also
made to the product’s performance in a number of areas. These
include a reduction in CPU utilization of over 20% and a similar
improvement to the path length of non-persistent messages. By using
an improved operating system compiler, overall message throughput
performance has improved – while the improvement experienced
depends on a number of factors, an improvement of around 10% is
typical.

Publish-and-subscribe

Publish-and-subscribe is a natural step in the evolution of messaging.
Simple messaging is ‘point-to-point’, where one application sends
messages to another (known) application. MQSeries does not examine
the content of messages as part of a point-to-point connection.
However, in a publish-and-subscribe environment, applications issuing
messages identify the subject of the message when it’s published or
‘emitted’. A specialized MQSeries node then examines the subject of
the message and distributes it to applications subscribed to that topic
stream. Applications can subscribe to multiple topics, and, by using
MQSeries’s assured delivery (a fundamental part of the system),
subscriptions remain queued when the subscriber is disconnected.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 7

Subsequent reconnection by the application enables queued messages
to be retrieved.

Many messaging applications exhibit the attributes of publish-and-
subscribe. Any application that sends messages to more than one
application can be thought of as a publisher of messages. Subscribers
may require messages that are published by a variety of applications.

DYNAMIC WORKLOAD DISTRIBUTION (DWD)

This ground-breaking functionality is a new development in MQSeries
that allows a number of queue managers to be grouped, irrespective
of geography and operating system. The members of the cluster (a
group of MQSeries queue managers) can also discover each other’s
presence and self-define their interfaces, a major step forward for
setting up and configuring systems. However, DWD is not just about
administration – it also provides facilities for alternative routing and
workload balancing.

MQSeries clusters shouldn’t be confused with hardware clusters – an
MQSeries cluster is a logical grouping of queue managers. It can span
many operating systems and interconnectivity protocols over a wide
geography.

Key features of DWD are:

1 Automatic configuration and dynamic discovery of queue
managers and resources, including:

– Queue managers can now advertise their queues to other
queue managers. These queues then become public queues.

– Channel and queue definitions are removed or automated,
channels are defined automatically, and no remote queue
definitions are required for remote queues. This improves
the reliability of installations.

2 Automatic failover for queue managers within an MQSeries
cluster.

3 Dynamic workload distribution, allowing the same queue to be
available at multiple sites or on multiple machines.

8 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Within a cluster the need for MQSeries definitions is significantly
reduced. Previously, two queue managers wishing to communicate
remotely required a transmission queue, a channel to the remote queue
manager, and a remote queue for each target queue. In a DWD cluster
any queue manager can send a message to any other queue manager
in the same cluster without the need for explicit channel definitions,
remote-queue definitions, or transmission queues for each target
destination. This reduction in administrative overhead does not require
users to forgo MQSeries’s assurance of delivery for persistent messages.
Queue managers can be part of more than one MQSeries cluster,
thereby allowing a significant degree of flexibility in the system’s
configuration.

Essential to the operation of clusters of queue managers is the
‘repository’. There should be two or more queue managers in the
cluster defined as repository queue managers. These hold information
(such as names, locations, channels, and hosted queues) about queue
managers in the cluster. Each queue manager in the repository sends
information about itself to the repository queue managers (which
operate a mirroring system to remain synchronized). The repository
is a queue called SYSTEM.CLUSTER.REPOSITORY.QUEUE. In
addition to the two full repositories, all other queue managers host
partial repositories. This includes information on a limited set of
queue managers in the cluster that a given queue manager needs to
communicate with. When a queue manager requires more information
than is available locally, a request is made on the
SYSTEM.CLUSTER.COMMAND.QUEUE.

Using clusters changes the number of queues required for
communication significantly. Every queue manager in a cluster has
one transmission queue that it can use to transmit messages to any
other queue manager in the cluster. Each queue manager is required
to have only the following channel definitions:

• Cluster receiver channel
This is similar to an MQSeries receiver channel. When the cluster
receiver channel is defined, it’s added to the repositories along
with the owning queue manager. Defining this channel is part of
the process of introducing a queue manager to the cluster. When

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 9

other queue managers in the cluster become aware of a new queue
manager, they automatically add their own definitions for the
cluster sender channel.

• Cluster sender channel
This is similar to an MQSeries sender channel. The process of
defining the first cluster sender channel on a queue manager
introduces the queue manager to a cluster. Subsequently, all
required cluster-sender channels on the queue manager are started
automatically (they take their attributes from the corresponding
target cluster receiver channel, thereby reducing the administrative
overhead).

• Cluster transmission queue
Every cluster queue manager has a queue called
SYSTEM.CLUSTER.TRANSMIT.QUEUE, which holds all
messages from that queue manager to other queue managers in
the cluster.

Not only do MQSeries clusters simplify both administration and
installation, they can also offer increased availability and workload
balancing. Clusters may have more than one instance of a queue
spread across multiple queue managers. For example, multiple
instances of the same application in a System/390 Sysplex can be used
to read and/or update a shared DB2 database. This configuration can
provide greater message throughput and increased availability. If a
destination queue manager fails while there is a message on a
transmission queue for it, the system attempts to re-route the message
(without the risk either of losing it or of creating a duplicate). Only ‘in-
doubt’ messages are not re-routed (these are messages that have been
sent, but for which no acknowledgement has been received from the
target queue). Re-routing in-doubt messages could clearly lead to
duplicates.

The algorithm used to select a target queue manager in a cluster takes
into account such attributes as availability of the queue manager or
queue, the state of the channel, and the priority of the message. Using
the ‘cluster-workload’ exit, workload management within an MQSeries
cluster can be tailored. Such customization may take account of
network cost, system load, and the capacity of channels.

10 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

A word of caution: applications that rely on message sequence
(messages must arrive in strict order, this also known as ‘message
affinity’) are not suitable for MQSeries clusters without modification.

SUMMARY

The latest announcements from MQSeries (V2.1 for OS/390, and
V5.1 for NT, AIX, HP-UX, Sun Solaris, and OS/2) add significant
new functionality to the product set. In particular, Dynamic Workload
Distribution enhances the ease of administration, availability, and
workload balancing of the product. Major improvements were also
made to the installation and management of MQSeries for Windows
NT. Performance improvements were realized, particularly on local
queueing operations where the target application is available and can
accept messages. Finally, the availability of publish-and-subscribe
functionality as a Web download for MQSeries V5.1 brings message
queueing technology to a new range of applications.

Dr Dave Watson
MQSeries Technical Strategy Manager
IBM Hursley (UK) © Xephon 1999

Using RACF and the OAM for end-to-end security

It’s a commonly held view that MQSeries is not a secure product and
that to install it in your network infrastructure is to give hackers a free
rein. In this article I’ll demonstrate that this isn’t necessarily so.

Security is a general term that covers such tasks as sender and receiver
authentication, encryption and privacy, non-repudiation, and message
integrity and data authentication.

When communication between companies occurs, MACs, digital
signatures, and public key encryption may be employed to enforce
security, perhaps by means of third-party products, such as Baltimore

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 11

Secure MQ. However, many companies consider that, when it comes
to communication within an enterprise, such measures are not required
as all machines in their infrastructure are managed by administrators
whom they trust. All that’s required is to provide administrators with
the means to prevent unauthorized users from accessing the network
and creating messages, while still providing access to authorized
users.

This can be done using third-party products, many of which have the
potential to secure communications completely. Nevertheless, there
is a lot that can be achieved using just the security mechanisms
provided by MQSeries itself – that is, using RACF on MVS and the
Object Authority Manager (OAM) on distributed platforms.

This article covers the policies that a company would need to put in
place and the configuration that administrators would need to
implement in order to establish an acceptable level of security in an
environment where administrators are trusted but users are not.

EXAMPLE ENVIRONMENT

Consider the following example: for a number of years a large
company has successfully used techniques such as file transfer (FTP)
to carry out point-to-point communication. However, in order to
improve speed of development, they decide to move to an MQSeries-
based infrastructure, also deciding to use a central hub managed by a
trusted group, as this yields benefits in manageability and allows new
connections to be added quickly.

Most of the machines are based in a secure machine room (while it’s
possible to log on to the machines from outside the room, a discussion
of how to secure this type of access is beyond the scope of this article).
Each business unit owns one machine. Business units don’t trust users
(who could be disgruntled employees), and they don’t trust
administrators of machines belonging to other business units, though
they do trust their own administrators. Most security problems, such
as ‘sniffers’ on the communication lines, were addressed when FTP
was set up (possible solutions include using encryption at the
communications layer, splitting SNA packets into so many parts that

12 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

they are virtually impossible to read, and using security calls within
applications themselves).

Consider a situation in which A and B need to communicate with each
other using MQSeries, as do C and D (see Figure 1). Most of the
security issues that exist in this environment also apply to FTP, though
a major new one is introduced.

With the environment shown above, if business A decides that it needs
to talk to business D, the infrastructure is already in place and only the
application development needs to be done. This is a very strong reason
for using MQSeries and a hub environment. However, it also introduces
the problem that an unauthorized person on A could send a message
to D.

In order to secure the end-to-end connection, including preventing the
generation of unauthorized messages, it is necessary to carry out the
measures detailed in this article.

COMMUNICATIONS LAYER SECURITY

Firstly, security needs to be set up at the level of the communication
layer. SNA bind or session-level security can be used to ensure that,
when an SNA bind request comes from A, the hub knows that the
request really does originate at A. This is a default with most

A

C

B

D

Hub

Figure 1: An example network

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 13

communications packages (but not ones from Tandem) and involves
providing the same password at each end. Obviously the password
must be kept secret and should be accessible only by the machines’
administrator. Something similar can be done for TCP/IP using secure
domain units or some form of Virtual Private Network.

CHANNEL INITIATION SECURITY

We’ve now ensured that no boxes are connected to the hub that
shouldn’t be connected to it. However, it’s still possible for a user on
A to define a queue manager called C and a channel on A called
C.TO.HUB (for example, by knowing the naming convention or by
querying the hub’s command server), and then connect to the hub by
impersonating C and having messages routed to D.

If the channel is a sender/receiver channel, the only way around this
is to use a security exit provided by a third-party product (such as
Baltimore, mentioned earlier). However, if A is a secure machine,
users won’t have the authority necessary to add these definitions to the
system. An alternative is to use requester/sender channels. This is
similar to a call-back system: the hub acts as a requester and thus needs
to initiate the conversation. It calls out to the known LU/IP address
stating that it wants to start a channel. A, acting as the sender, would
then initiate the channel back to the hub. If A were to try to start a
channel to the wrong requester, the request would not be accepted.
Similarly D, acting as a requester, could initiate a conversation asking
the hub, as a sender, to call it back. As the hub’s sender channel
contains D’s CONNAME and calls it back, the most that A could do in
this set-up would be to get the hub to call D.

ROUTING SECURITY

So now we have a system where we can be confident that all messages
coming to the hub on any channel are from the machine that they
should be from.

The hub is merely a queue manager, looking after transmission queues
and running the associated channels. Each transmission queue is
named after the queue manager that it points to. The next problem, as

14 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

mentioned above, is that a user on A could, by default, do an MQPUT
specifying as its target the queue manager of D. The message would
be put on A’s default transmission queue (to the hub); when it reaches
the hub, it would automatically be put on transmission queue D, and
thus get to a destination that it shouldn’t be able to reach.

The way around this is to specify the MCAUSER parameter on the
receiver/requester channel definitions. By default the inbound channel
at the hub puts messages on its target transmission queue using the
userid running the channel. This userid has full access to put messages
on all queues. However, if you change the channel’s MCAUSER
parameter, the message will be put on the queue using the userid
specified by the parameter.

So, define one userid for each inbound channel on the hub. For
example, define a userid called A for the channel from A, a userid
called C for the channel from C, etc. Alter the inbound channels to put
messages on queues using their corresponding userid – for example:

ALTER CHL(A.TO.HUB) CHLTYPE(RQSTR) TRPTYPE(LU62) MCAUSER(A)
ALTER CHL(C.TO.HUB) CHLTYPE(RQSTR) TRPTYPE(LU62) MCAUSER(C)

Next set the permissions on the hub’s transmission queues to accept
only messages from authorized channels. How you do this depends on
your set-up – on distributed platforms, use the following commands:

SETMQAUT –M HUB –T QMGR –P A +CONNECT +SETALL
SETMQAUT –M HUB –T QMGR –P C +CONNECT +SETALL
SETMQAUT –M HUB –T Q –N B –P A +PUT +SETALL
SETMQAUT –M HUB –T Q –N D –P C +PUT +SETALL

If you use RACF, then the following commands are needed:

RDEFINE MQQUEUE HUB.B UACC(NONE)
PERMIT HUB.B CLASS(MQQUEUE) ID(A) ACCESS(UPDATE)
RDEFINE MQQUEUE HUB.D UACC(NONE)
PERMIT HUB.D CLASS(MQQUEUE) ID(B) ACCESS(UPDATE)

TARGET QUEUE SECURITY

So now B and D can be confident that all the messages they receive
are from authorized queue managers. The next problem is to make
sure that the right messages go to the right queues. For example, user
UserX on A might be allowed to send messages to queue QueueQ on

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 15

B, and user UserY on A might be allowed to send messages to queue
QueueR on B (see Figure 2). However, we need to ensure that UserX
cannot send messages to QueueR. To do so without either using
security exits or changing applications, business B needs to trust A’s
administrator (but not C’s, etc). Also a system-wide naming convention
of userids needs to be enforced.

By default, when a user on A sends a message, the user’s userid is put
in the USERID field of the message descriptor. The user is not allowed
to change this. Also, by default the inbound channel at the receiver (for
instance, B) puts messages on its target queue using the userid that’s
used to run the channel. This userid has sufficient access rights to put
messages on all queues. If you change the PUTAUT parameter of the
channel from PUTAUT(DEF) to PUTAUT(CTX), messages are placed
on the queue using the authority of the userid specified in the message
descriptor.

So queues can now be secured by defining userids on the receiving
machines that have the same names as the userids on the sending
machines. The receiving userids do not need authority to log on. So,
in this example, define two users, UserX and UserY, on B:

ALTER CHL(HUB.TO.B) CHLTYPE(RQSTR) TRPTYPE(LU62) PUTAUT(CTX)

TO.Q.ON.B

TO.R.ON.B

B

UserX

UserY

QueueQ

QueueR

UserR

UserQ

Figure 2: An example implementation using MQSeries

16 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

On distributed platforms, issue the following command:

SETMQAUT –M B –T QMGR –P UserX +CONNECT
SETMQAUT –M B –T Q –N QueueQ –P UserX +PUT +SETALL
SETMQAUT –M B –T QMGR –P UserY +CONNECT
SETMQAUT –M B –T Q –N QueueR –P UserY +PUT +SETALL

If you use RACF, the following commands are needed (assuming
MQM runs the channel):

RDEFINE MQQUEUE B.QueueQ UACC(NONE)
PERMIT B.QueueQ CLASS(MQQUEUE) ID(MQM) ACCESS(UPDATE)
PERMIT B.QueueQ CLASS(MQQUEUE) ID(UserX) ACCESS(UPDATE)
RDEFINE MQQUEUE B.QueueR UACC(NONE)
PERMIT B.QueueR CLASS(MQQUEUE) ID(MQM) ACCESS(UPDATE)
PERMIT B.QueueR CLASS(MQQUEUE) ID(UserY) ACCESS(UPDATE)

As mentioned previously, security is a bit more complex on Tandem
systems. On Tandem, the ‘userid’ in the message descriptor is actually
a groupid. For the above to work when a Tandem system is the
receiver, it is necessary to use a group that’s defined and authorized
with the same name as the sending userid. When a Tandem system is
the sender, the receiver needs a userid defined and authorized with the
same name as the sending group.

LOCAL QUEUE SECURITY AT THE SENDER

If users on the sender machine do not trust one another, some
additional work is necessary to set up security.

If QREMOTE queues are not used, and users specify the target queue
manager in the MQPUT call, then messages from UserX and UserY on
A are put directly on the transmission queue and there is no way for
MQSeries to stop them specifying one another’s target queues. It is
also possible, when the channel is not running, for them to remove one
another’s messages before the messages are sent.

The best way to solve this problem is to restrict access to transmission
queues (this is the default) and to allow users to put messages only on
QREMOTE queues that point to the target queues. Using this approach,
a secure structure can be set up such that UserX and UserY cannot put
messages on one another’s queues.

For instance, using RUNMQSC, enter the following definitions:

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 17

DEFINE QR(TO.Q.ON.B) RNAME(QueueQ) RQMNAME(B)
DEFINE QR(TO.R.ON.B) RNAME(QueueR) RQMNAME(B)

The commands below are the ones to use on distributed platforms.

SETMQAUT –M A –T QMGR –P UserX +CONNECT
SETMQAUT –M A –T QMGR –P UserY +CONNECT
SETMQAUT –M A –T Q –N TO.Q.ON.B –P UserX +PUT
SETMQAUT –M A –T Q –N TO.R.ON.B –P UserY +PUT

while the ones below are for use with RACF.

PERMIT A.BATCH CLASS(MQCONN) ID(UserX) ACCESS(READ)
PERMIT A.BATCH CLASS(MQCONN) ID(UserY) ACCESS(READ)
RDEFINE MQQUEUE A.TO.Q.ON.B UACC(NONE)
RDEFINE MQQUEUE A.TO.R.ON.B UACC(NONE)
PERMIT A.TO.Q.ON.B CLASS(MQQUEUE) ID(UserX) ACCESS(UPDATE)
PERMIT A.TO.R.ON.B CLASS(MQQUEUE) ID(UserY) ACCESS(UPDATE)

However, if you are happy to allow applications to write to the
transmission queue, you could use either the following commands on
distributed platforms:

SETMQAUT –M A –T Q –N B –P UserX +PUT
SETMQAUT –M A –T Q –N B –P UserY +PUT

or this one with RACF:

RDEFINE MQQUEUE A.B UACC(UPDATE)

LOCAL QUEUE SECURITY AT THE RECEIVER

If users on the receiving machine do not trust one another, then it’s
necessary to set up some additional security.

Say UserQ is able to read messages on queue QueueQ and UserR is
able to read messages on queue QueueR. If the users are not considered
trustworthy, then one needs to guard against the possibility that UserR
may put a message on queue QueueQ and for UserQ to receive it
believing it to have come from A. Similarly UserR could get messages
from queue QueueQ before UserQ gets them. To prevent this, it is
necessary to run the following OAM commands:

SETMQAUT –M B –T QMGR –P UserQ +CONNECT
SETMQAUT –M B –T QMGR –P UserR +CONNECT
SETMQAUT –M B –T Q –N QueueQ –P UserQ +GET
SETMQAUT –M B –T Q –N QueueR –P UserR +GET

18 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

With RACF, the following commands would be needed:

PERMIT B.BATCH CLASS(MQCONN) ID(UserQ) ACCESS(READ)
PERMIT B.BATCH CLASS(MQCONN) ID(UserR) ACCESS(READ)
RDEFINE MQQUEUE B.QueueQ UACC(NONE)
RDEFINE MQQUEUE B.QueueR UACC(NONE)
PERMIT B.QueueQ CLASS(MQQUEUE) ID(UserQ) ACCESS(UPDATE)
PERMIT B.QueueR CLASS(MQQUEUE) ID(UserR) ACCESS(UPDATE)

Note that on MVS a problem still remains. UserQ (or perhaps a
member of the same group) can run an application that puts messages
on queue QueueQ that the main UserQ application then reads off in
the belief that they came from A. On distributed platforms, the OAM
command SETMQAUT can be used to ensure that UserQ can get
messages from a queue but not put them on it. RACF does not have
this facility. A user is either able to both get and put messages on a
queue or neither. One solution to this is to use ‘alias’ queues.

For example:

DEFINE QA(ACCESS.BY.USERQ) TARGQ(QueueQ) PUT(DISABLED)

RACF could then be used to be used to prevent UserQ from directly
accessing queue QueueQ while giving the user full access to the
ACCESS.BY.USERQ alias queue. The PUT(DISABLED) attribute
ensures that the user can’t put messages on the queue. Note that the
PUT(DISABLED) attribute could not have been used directly on
queue QueueQ, as this would have stopped the channel from being
able to write messages.

While this method works, it’s a bit of overkill. As it’s common in MVS
for a user to have read/write access to a dataset, allowing them also to
have read/write access to a queue is usually seen as a natural extension.
Another consideration is that, in MVS, it’s less likely that the same
userid is used to run different applications.

Note that, on all platforms, such measures are unnecessary if the
administrator has secured the machine so that users cannot add or run
their own applications.

Sam Garforth
MQSeries Consultant
SJG Consulting Limited (UK) © S Garforth 1999

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 19

MQSeries and Windows NT security

This article concerns MQSeries Security in a Windows NT
environment. It contains information and suggestions provided by
IBM MQSeries Level 2 Support, whose assistance in clarifying this
confusing subject is much appreciated. For more information regarding
MQSeries, please try the following Web address:

http://www.software.ibm.com/ts/mqseries/support/tandts/

As you begin your foray into MQSeries 5.0 for Windows NT, there are
several important areas to be aware of: naming standards for queue
managers and related objects, system resources available on the
various Windows NT platforms where MQSeries is to run, and
network connectivity of these platforms are just three of the more
important that need to be considered before venturing too far down the
MQSeries road. The most important area, however, is to verify that
Windows NT security is properly set up. The set-up program takes
care of most of this on your behalf (as it did in version 2.0 of
MQSeries), but it may fail in some situations. The first indication of
a Windows NT security problem is that the MQSC command crtmqm ,
or one of the other MQSeries programs, abends, and creates a first-
failure support technology record (FFST) with a header similar to the
one below:

+--+
| |
| MQSeries First Failure Symptom Report |
| ===================================== |
| |
| Date/Time :- Thursday September 24 11:01 1998 |
| Host Name :- PRODMQ |
| PIDS :- 5697177 |
| LVLS :- 120 |
| Product Long Name :- MQSeries for Windows NT |
| Vendor :- IBM |
| Probe Id :- XY204105 |
| Application Name :- MQM |
| Component :- xcsCreateN |
| Build Date :- Sep 19 1997 |
| Userid :- MQUSR1 |
| Process Name :- C:\MQM\BIN\crtmqm.exe |
| Process :- 00000191 |

20 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

| Thread :- 00000000 |
| Major Errorcode :- xecF_E_UNEXPECTED_SYSTEM_RC |
| Minor Errorcode :- OK |
| Probe Type :- MSGAMQ6119 |
| Probe Severity :- 2 |
| Probe Description :- |
| Comment1 :- WinNT error 1332 from LookupAccountName. |
| |
+--+

In MQSeries for Windows NT, FFST information is recorded in a file
in the directory c:\mqm\errors. These errors are normally severe,
unrecoverable errors, and indicate either a configuration problem
with the system or an MQSeries internal error.

FFST files are named AMQnnnnn.mm.FDC, where:

nnnnn Is the ID of the process reporting the error

mm Is a sequence number, normally ‘0’.

When a process creates an FFST record it also sends a record to the
Event Log. The record contains the name of the FFST file to assist in
automatic problem tracking. The Event Log entry is made to the
‘application’ log.

It is important to remember, when setting up Windows NT security for
MQSeries v5.0, that MQSeries authenticates user-ids on the same
machine on which it itself is installed. Users wishing to have
administrative authority over MQSeries must have their user-ids
directly or indirectly in the local mqm group on the same physical
machine on which MQSeries is installed. In V2.0, MQSeries could
authenticate user-ids in different places, depending on how the user
logged in.

As your MQSeries environment grows, you will undoubtedly have
MQSeries installed on several different machines on the domain.
Maintaining user-ids on each of those machines can be an administrative
nightmare. This task can be avoided by including user-ids indirectly
in the local mqm groups on MQSeries machines. In other words, add
the user-ids to one or more global groups on the primary domain
controller (PDC) of the domain and these global groups may then be
included in the proper local mqm groups.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 21

As is usually the case with security administration, this method can
sound confusing. The following scenario should hopefully serve to
clear the fog. The steps below assume there are two Windows NT
systems in the same NT domain that have MQSeries v5.0 queue
managers installed. One of them, DEVLMQ, is used for MQSeries
development and testing by an application development group. The
other one, PRODMQ, is the MQSeries production machine. The users
MQUSR1, MQUSR2, MQUSR3, MQUSR4, and MQUSR5 need
administrative access to DEVLMQ, but only MQUSR1 and MQUSR2
are allowed to have administrative access to PRODMQ.

The steps below guide you through setting up the security structure
detailed above in a Windows NT security environment. Thanks again
to IBM MQSeries Level 2 for the procedure.

1 Let’s start from scratch to avoid confusion. First delete the local
groups called ‘mqm’ on DEVLMQ and PRODMQ.

2 On the Primary Domain Controller (PDC), use the User Manager
for Domains tool (usually found under Start, Programs,
Administrative Tools (Common) on Windows NT 4.0 machines).
Select New Global Group from the User menu to create a global
group with the name ‘MQDev’. Repeat this operation to create a
second global group called ‘MQProd’. (You can choose any other
names for these groups that are meaningful in your installation,
though MQDev and MQProd are used in the remainder of this
example.)

3 Highlight the MQDev global group and select the Add User
function from the User menu to add MQUSR1 to the MQDev
global group. Repeat this procedure to add MQUSR2, MQUSR3,
MQUSR4, and MQUSR5 to the MQDev global group. (As your
user base grows, as it undoubtedly will, you can add other user-
ids in this same manner.) On the successful completion of the
remaining steps, the user-ids included in the MQDev global
group will have administrative authority for all queue managers
on the DEVLMQ machine.

4 Highlight the MQProd global group and select Add User from the
User menu to add MQUSR1 to the MQProd global group. Repeat

22 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

this procedure to add MQUSR2 to the MQProd global group as
well. (As indicated in step 3, you can add other user-ids in this
same manner.) The user-ids included in the MQProd global group
will have administrative authority for all queue managers on the
PRODMQ machine at the successful completion of the remaining
steps.

5 On DEVLMQ, enter the User Manager for Domains tool (see
Step 2 above for its location). Select New Local Group from the
User menu to create a local group called mqm. This group name
is case-sensitive and must be lower-case only – I have seen
MQSeries administrators spend hours trying to debug an access
problem only to find that they set up the ‘mqm’ group as ‘MQM’.

6 Double-click the mqm group. In the window that pops up, select
the Add button and then the MQDev global group in the dialogue
that follows. Click the Add button in the middle of the pop-up
window, then OK.

7 On PRODMQ, launch User Manager for Domains as in step 2
above. Select New Local Group from the User menu to create a
local group called mqm. Again, the group name is case-sensitive
and must be lower-case only.

8 Double-click the mqm group; in the window that pops up, click
the Add button. Next select the MQProd global group, click the
Add button in the middle of the pop-up window, and select OK.

Steps 2-4 make administering MQSeries security easy. Instead of
maintaining and coordinating lists of user-ids in multiple local ‘mqm’
groups in a domain, only a single set of global groups (in some shops,
this will boil down to just one global group) needs to be administered.
It is still possible to add users directly to the individual ‘mqm’ groups,
though, and the exact way in which security is administered is left to
the discretion of the Windows NT domain administrator. Step 6
provides users in the global group MQDev with access to the
development MQSeries queue managers on DEVLMQ.

Step 8 provides users in the global group MQProd with access to the
production MQSeries queue managers on PRODMQ.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 23

There are a few other points that are important to check if you are
having difficulty setting up MQSeries 5.0 on Windows NT:

1 Make sure that your user-id contains 12 or fewer characters.
Anything longer than 12 characters (eg ‘ADMINISTRATOR’)
won’t work with MQSeries.

2 Make sure that the Server service is running. To do this, open up
the Control Panel and double-click on Services. The Server
service should be listed as Started and should also be Automatic.

3 If your machine is not on a domain, you simply need to create a
local group called ‘mqm’ on that machine (MQSeries v5.0 will
build this group during installation). All user-ids to be given
MQSeries rights can then just be added to the local ‘mqm’ group.

4 If you are running MQSeries v2.0, then you are looking at the
wrong set of instructions! The security set up that is required by
MQSeries v2.0 on Windows NT is different from that required by
MQSeries v5.0. Call IBM MQSeries support for the proper
instructions.

Terrence House, IBM Certified MQSeries Specialist
Senior Systems Software Engineer
Boole & Babbage (USA) © Xephon 1999

Tackling enforced thread affinity

MQSeries provides a simple, platform-independent API for moving
large amounts of data across heterogeneous networks. While the API
is simple, you may encounter some not-so-simple hurdles where you
least expect them. This article provides some insights into one of the
thorniest of them.

The quote below, from the MQSeries Programmers’ Reference Manual,
describes the connection handle returned by the MQCONN call.

24 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

“The scope of the handle is restricted to the smallest unit of
parallel processing within the environment concerned; the handle
is not valid outside the unit of parallel processing from which the
MQCONN call was issued.”

What this means is that a connection handle returned by an MQCONN
call can be used on subsequent MQ API calls only from within the
thread that made the original call to MQCONN. If an attempt is made
to use the connection handle on an MQOPEN call from another
thread, for example, the ‘reason code’ returned by MQOPEN will be
2018 (MQRC_HCONN_ERROR).

To see this for yourself try running the following program on Windows
NT (the code was developed for Microsoft Visual C++, but should
compile on other vendors’ C++ compilers with little modification).

PROG1.CPP

#define WIN32_LEAN_AND_MEAN
#include <Windows.h>
#include <iostream.h>
#include <cmqc.h>

VOID MQOpenInSecondThread(void* pHcon)
{
 // setup MQOPEN parameters
 MQHOBJ Hobj;
 MQLONG CompCode, Reason;
 MQLONG O_options;
 MQOD od = {MQOD_DEFAULT};
 ::CopyMemory(od.ObjectName, "SYSTEM.DEFAULT.LOCAL.QUEUE",
 MQ_Q_NAME_LENGTH);
 O_options = MQOO_OUTPUT + MQOO_FAIL_IF_QUIESCING;

 // What process and thread are we in?
 cout << "Process ID: " << ::GetCurrentProcessId() <<
 " Thread ID: " << ::GetCurrentThreadId() << endl;

 // attempt to open the system default local queue using the
 // handle from primary thread
 MQOPEN(*((MQHCONN*) pHcon), &od, O_options, &Hobj, &CompCode,
 &Reason);
 cout << "MQOPEN reason code: " << Reason << endl << endl;
}

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 25

int main(int argc, char* argv[])
{
 MQLONG CompCode, Reason;
 MQHCONN* pHcon = new MQHCONN;
 char QMName[50];
 QMName[0] = 0;
 HANDLE th1;

 // What process and thread are we in?
 cout << "Process ID: " << ::GetCurrentProcessId() <<
 " Thread ID: " << ::GetCurrentThreadId() << endl;

 // open a connection to the default queue manager
 MQCONN (QMName, pHcon, &CompCode, &Reason);
 cout << "MQCONN reason code: " << Reason << endl << endl;

 if(Reason == MQRC_NONE)
 {
 // Start a thread and pass it the connection handle
 th1 = CreateThread(NULL, 0,(LPTHREAD_START_ROUTINE)
 MQOpenInSecondThread,
 pHcon, 0, NULL);

 // wait for the second thread to complete
 ::WaitForSingleObject(th1, 2000);

 // now try it within the primary thread
 MQOpenInSecondThread(pHcon);
 }
 return 0;
}

The output for my run was:

Process ID: 254 Thread ID: 124
MQCONN reason code: 0

Process ID: 254 Thread ID: 89
MQOPEN reason code: 2018

Process ID: 254 Thread ID: 124
MQOPEN reason code: 0

As you can see, when an MQOPEN is attempted from the new thread
using the connection handle obtained from the primary thread,
MQSeries complains. However, when the same code is run from the
primary thread, the MQOPEN operation is successful. This behaviour
suggests that IBM made the API thread-safe simply by not allowing
calls from multiple threads.

26 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

WHEN IS ENFORCED THREAD AFFINITY A PROBLEM?

Enforced thread affinity for MQSeries connection handles is not a
problem for many applications. Many single-user GUI applications
generally don’t have multiple threads, and so don’t need to overcome
this limitation. Similarly, thread affinity may not be a problem for
server applications that are triggered by the receipt of a message they
need to service. Thread affinity is also not generally a problem for
applications running on platforms such as CICS, where the management
of connection handles is done under the covers.

Where this limitation really requires a solution is in the development
of multi-threaded server applications and components that use
component architectures such as MTS and COM, which handle
concurrence under the covers.

My experience of this type of problem has mostly been during the
development of Web-based systems that require multi-threaded server
applications conforming to the classic ‘boss/worker’ threading model.
Two principal cases occur: in one the server receives MQ messages as
requests in a boss thread and dispatches them to a worker thread
obtained from a thread pool – in such cases the worker thread services
the request and returns a reply to a reply-to-queue; in the other
scenario a worker thread sends an MQ message as a request to another
server and waits for the reply. The goal in both cases is to minimize
both the latency associated with obtaining MQ connections and the
total number of MQ connections required. If these were not issues,
each thread could simply maintain its own connection or establish a
new connection for each request. Minimizing the number of
connections facilitates scaling in applications where this is important.

SOLUTIONS

Three solutions come to mind:

1 If this limitation isn’t a problem for your application, you could
just live with it.

2 You could create a wrapper for the MQ API.

3 You could use Message Manager Objects that expose a few
methods to your application.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 27

I have used both the first and last options, with Message Manager
Objects being the preferred choice.

Live with it

If the number of connections or the time required to obtain them is not
a problem for your application, simply maintain a connection for
every thread that needs one, or obtain a new connection each time a
thread needs one. Messages can be passed between threads using the
heap.

Wrap the MQ API

Another solution is to maintain a pool of thread and MQ connection
pairs and wrap the MQ API with your own calls that hand out
connections from the pool. When programs call your wrapper functions,
parameter data is put on the heap and the thread associated with the
connection is sent an event. When the event wakes up the corresponding
thread, it looks at its input buffer on the heap to discover which
function needs to be implemented and to read the input parameters.
One warning: never try to pass data between threads using the stack.

Message Manager Objects (the preferred solution)

My solutions have always used ‘Message Manager Objects’. These
generally involve three types of object: a send manager, a receive
manager, and a send/receive manager (a send/receive manager contains
a send manager and a receive manager). Both the receive manager and
send manager maintain their own thread and MQ connection. The
send manager’s job is to send messages, the receive manager’s job is
to receive them. The send/receive manager’s job is to coordinate the
two efforts.

When worker threads need to send messages but don’t need replies,
they invoke the SendMessage method on the send/receive manager.
This causes the message to be added to a collection and the send
manager’s thread to be sent an event. The send manager finds the
message in the collection and calls MQPUT to put the message on the
appropriate queue.

When worker threads need to send messages requiring matching

28 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

responses, they invoke the talk method on the send/receive manager.
This causes the send manager to be sent an event, as before, though in
this instance a unique message identifier is entered into the collection
of messages waiting a response. The response is received by the
receive manager, which then uses the correlation identifier as an index
to the collection of messages waiting for a response. If the receive
manager finds a match, it passes the response to the waiting worker
thread.

The receive manager continually listens for messages and can receive
unsolicited messages in addition to message responses. Unsolicited
messages can be useful for unscheduled broadcasts to all application
servers, which can be used by client applications to request services
from the application servers.

The message manager approach isn’t as generic as the API wrapper
approach, but its benefits include allowing many worker threads to
share just two MQ connections, insulating threads from the MQ API,
and being more efficient as fewer synchronization calls are required.

The following sample code demonstrates how a thread that doesn’t
have affinity with an MQ connection handle can MQPUT a message.
While this is a trivial example, it nevertheless provides insights that
may help you to build the more complete solution using Message
Manager Objects. Note that, in this example, error handling and code
elegance have been sacrificed for brevity.

PROG2.CPP
#define WIN32_LEAN_AND_MEAN
#include <Windows.h>
#include <iostream.h>
#include <cmqc.h>

#pragma warning(disable:4786)
#include <vector>
using namespace std;

class CMQmessage
{
public:
 CMQmessage(const char* msg, long msgLen, const char* destQ);

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 29

 char m_msg[100];
 long m_msgLen;
 char m_destQ[MQ_Q_NAME_LENGTH];
};

typedef vector<CMQmessage> VECTMQMESSAGE;

CMQmessage::CMQmessage(const char* msg, long msgLen, const char* destQ)
{
 ::ZeroMemory(m_msg, sizeof(m_msg));
 ::ZeroMemory(m_destQ, sizeof(m_destQ));
 ::CopyMemory(m_msg, msg, msgLen);
 m_msgLen = msgLen;
 ::CopyMemory(m_destQ, destQ, strlen(destQ));
}

class CMQSendMgr
{

public:
 CMQSendMgr();

 static void statRun(void* pThis);
 void Run();
 void SendMessage(CMQmessage* msg);

 MQHCONN m_hConn;
 MQLONG m_CompCode, m_Reason;
 char m_QMName[50];
 HANDLE m_th1;
 HANDLE m_msgEvent;
 VECTMQMESSAGE m_msgs;
 CRITICAL_SECTION m_msgs_cs;
};

CMQSendMgr::CMQSendMgr()
{
 cout << "CMQSendMgr::CMQSendMgr" << endl;

 InitializeCriticalSection(&m_msgs_cs);

 // Start a thread and pass it a pointer to this object instance
 m_th1 = CreateThread(NULL, 0,
 (LPTHREAD_START_ROUTINE) CMQSendMgr::statRun,
 this, 0, NULL);
 // wait for the Run method to get going
 ::WaitForSingleObject(m_th1, 1000);
}

void CMQSendMgr::statRun(void* pThis)

30 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

{
 cout << "CMQSendMgr::statRun" << endl;
 // start waiting for requests
 ((CMQSendMgr*) pThis)->Run();
}

void CMQSendMgr::Run()
{
 // What process and thread are we in?
 cout << "CMQSendMgr::Run Process ID: " <<
 ::GetCurrentProcessId() << " Thread ID: " <<
 ::GetCurrentThreadId() << endl;

 m_QMName[0] = 0;

 // open a connection to the default queue manager
 MQCONN (m_QMName, &m_hConn, &m_CompCode, &m_Reason);
 cout << "CMQSendMgr::Run MQCONN reason code: " <<
 m_Reason << endl << endl;

 // create an event to wait for messages
 m_msgEvent = ::CreateEvent(NULL, FALSE, FALSE, NULL);

 // loop waiting for send requests
 while(1)
 {
 cout << "CMQSendMgr::Run Entering Run Loop..."
 << endl;

 // wait for a message to arrive
 ::WaitForSingleObject(m_msgEvent, INFINITE);

 cout << "CMQSendMgr::Run Message arrived..."
 << endl;

 EnterCriticalSection(&m_msgs_cs);

 VECTMQMESSAGE::iterator itmsgs;
 itmsgs = m_msgs.begin();
 if(itmsgs != m_msgs.end())
 {
 cout << "CMQSendMgr::Run Putting the message"
 << endl;
 MQOD ObjDesc = {MQOD_DEFAULT};
 strncpy(ObjDesc.ObjectName, (*itmsgs).m_destQ,
 MQ_Q_NAME_LENGTH);
 MQMD MsgDesc = {MQMD_DEFAULT};
 MQPMO PutMsgOpts = {MQPMO_DEFAULT};
 PutMsgOpts.Options = MQPMO_NO_SYNCPOINT +
 MQPMO_FAIL_IF_QUIESCING;

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 31

 MQPUT1(m_hConn, &ObjDesc, &MsgDesc, &PutMsgOpts,
 (*itmsgs).m_msgLen, (*itmsgs).m_msg,
 &m_CompCode, &m_Reason);
 cout << "CMQSendMgr::Run MQPUT1 reason code: "
 << m_Reason << endl << endl;

 m_msgs.erase(itmsgs);
 }
 LeaveCriticalSection(&m_msgs_cs);
 }
}

void CMQSendMgr::SendMessage(CMQmessage* pMsg)
{
 cout << "CMQSendMgr::SendMessage Process ID: " <<
 ::GetCurrentProcessId() << " Thread ID: " <<
 ::GetCurrentThreadId() << endl;

 EnterCriticalSection(&m_msgs_cs);
 m_msgs.insert(m_msgs.end(), *pMsg);
 LeaveCriticalSection(&m_msgs_cs);

 ::SetEvent(m_msgEvent);
}

int main(int argc, char* argv[])
{

 // What process and thread are we in?
 cout << "main Process ID: " <<
 ::GetCurrentProcessId() << " Thread ID: " <<
 ::GetCurrentThreadId() << endl;

 // Create a message to send - it must be on the heap
 CMQmessage* pMsg = new CMQmessage("TEST MESSAGE", 12,
 "SYSTEM.DEFAULT.LOCAL.QUEUE");

 // Instantiate a CMQSendMgr
 CMQSendMgr* pSender = new CMQSendMgr();

 // Send a message
 pSender->SendMessage(pMsg);

 // Continue the process long enough for send manager
 // to find the message
 Sleep(5000);

 return 0;
}

32 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

A sample output of this program is shown below.

main Process ID: 262 Thread ID: 217
CMQSendMgr::CMQSendMgr
CMQSendMgr::statRun
CMQSendMgr::Run Process ID: 262 Thread ID: 270
CMQSendMgr::Run MQCONN reason code: 0

CMQSendMgr::Run Entering Run Loop...
CMQSendMgr::SendMessage Process ID: 262 Thread ID: 217
CMQSendMgr::Run Message arrived...
CMQSendMgr::Run Putting the message
CMQSendMgr::Run MQPUT1 reason code: 0

CMQSendMgr::Run Entering Run Loop...

You can see from the above that a call to the SendMessage method
comes from the main thread, which is different from the thread used
to obtain the MQ connection handle used by the MQPUT1 call.

CONCLUSION

Evaluate your application and environment carefully before designing
your solution, as you may not need to invest significant effort to
overcome the enforced thread affinity hurdle. Develop ‘use cases’ for
your application – this will help you establish whether you’ll ever
need to send or receive messages from a thread that doesn’t establish
a connection to an MQSeries queue manager.

Neil Harvey
Independent Consultant
Neil Harvey Information Technologies (USA) © N Harvey 1999

Recovery procedures

This article presents a number of utilities for recovering MQSeries on
a mainframe. The utilities are concerned with such tasks as ensuring
that logging, log files, and datasets are handled correctly on restarting

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 33

MQSeries. Each utility is prefaced by a brief description of what it
does and there are also comments in the code that should be read
before any of the utilities are run. Note that some of the utilities rely
on the successful completion of others – for this reason it’s a good idea
to read through all the comments before using any of the utilities.

First, though, here are some general comments to give you some
background on the subject.

PAGE DATASETS

Page datasets are VSAM linear datasets (LDS) that are used to store
messages and object definitions (page set ‘00’ is used to store object
definitions).

LOG FILES

A log dataset is made up of data records, each of which is handled by
the system as a single unit, identified by the Relative Byte Address
(RBA) of the first byte of its header – the RBA is the offset from the
beginning of the log.

Three types of log record are written, which are associated with the
maintenance and recovery of the following:

• Unit of recovery
Any change to a queue is made within a unit of recovery.

• Checkpoint
Checkpoints are taken by the MQSeries subsystem at the end of
successful restarts, when the program terminates normally, and
during normal operation when a pre-defined number of log
records have been written.

• Page set control
These records register page sets that are known to the MQSeries
subsystem at each checkpoint.

If log files become corrupt, then back-up or archive logs (or new log
files) that are to be used must be validated to the page sets. MQSeries’
CSQUTIL utility handles this task.

34 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

BOOTSTRAP DATA SET (BSDS)

A BSDS is a VSAM keyed sequence (KSDS) dataset that stores
information about log files. This information allows the MQSeries
subsystem to locate log records so that it can handle restart processing
and satisfy log read requests during normal processing. For active
logs, the information kept shows which logs are full and which are
available for reuse.

MQSeries supports ‘dual BSDS’, with a copy being written to the
archive log.

ARCHIVE LOG

A copy of the BSDS is written to all archive logs. This comprises two
datasets written in one operation; the first is the most recent image of
the BSDS and the second is the archive itself. The names of the two
are the same except that the lowest-level qualifier name for the archive
log begins with ‘A’, while the BSDS copy begins with ‘B’. For
example:

Archive Log:

MQARCH.LOG1.D98279.T1016438.A0000021
 ^

BSDS copy name:

MQARCH.LOG1.D98279.T1016438.B0000021
 ^

Listed below are various sample utilities (which need customizing to
your installation’s needs) that may be used to handle failures in which
any of the above datasets become corrupted. As stated before, it’s
important to read all the comments in the JCL and perform the
necessary actions.

ADDLOG

If archiving is delayed or stopped, use this utility to add a new active
log. This enables MQSeries to continue logging and stops it from
terminating.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 35

ADDLOG
//JOBID JOB CLASS=S,NOTIFY=&SYSUID
//*
//***
//* Add new active log in case of excessive logging or delayed
//* archiving.
//*
//* Define LOG file
//***
//*
//ADDLOG EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE CLUSTER -
 (NAME (SYS1.MQS.LOGCOPY3.DS01) -
 LINEAR -
 VOLUMES(SYS000) -
 RECORDS(36750)) -
 DATA -
 (NAME(SYS1.MQS.LOGCOPY3.DS01.DATA))

 DEFINE CLUSTER -
 (NAME (SYS1.MQS.LOGCOPY3.DS02) -
 LINEAR -
 VOLUMES(SYS000) -
 RECORDS(36750)) -
 DATA -
 (NAME(SYS1.MQS.LOGCOPY3.DS02.DATA))

/*
//*
//***
//* Register new LOG file in the BSDS.
//*
//* Add to MQ start-up procedure.
//***
//*
//JU003 EXEC PGM=CSQJU003
//STEPLIB DD DSN=SYS1.SCSQANLE,DISP=SHR
// DD DSN=SYS1.SCSQSNLE,DISP=SHR
// DD DSN=SYS1.SCSQAUTH,DISP=SHR
//SYSUT1 DD DISP=OLD,DSN=SYS1.MQS.BSDS01
//SYSUT2 DD DISP=OLD,DSN=SYS1.MQS.BSDS02
//SYSPRINT DD SYSOUT=*,DCB=BLKSIZE=629
//SYSIN DD *
 NEWLOG DSNAME=SYS1.MQS.LOGCOPY3.DS01,COPY1
 NEWLOG DSNAME=SYS1.MQS.LOGCOPY3.DS02,COPY2
/*
//*

36 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

COPYPAGE

This may be used to define new page sets or expand existing ones.

COPYPAGE
//JOBID JOB CLASS=S,NOTIFY=&SYSUID
//*
//***
//* Define new page sets or expand existing ones.
//***
//*
 DEFINE CLUSTER -
 (NAME(SYS1.MQS.NEW.PSID00) -
 RECORDS(50000 2500) -
 LINEAR -
 VOLUMES(SYS000) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(SYS1.MQS.NEW.PSID00.DATA))

 DEFINE CLUSTER -
 (NAME(SYS1.MQS.NEW.PSID01) -
 RECORDS(50000 2500) -
 LINEAR -
 VOLUMES(SYS000) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(SYS1.MQS.NEW.PSID01.DATA))
/*
//*
//***
//* Format and copy old page sets to new.
//*
//* Amend page set reference in MQ start-up procedure.
//***
//*
//CSQUTIL EXEC PGM=CSQUTIL
//STEPLIB DD DSN=SYS1.SCSQANLE,DISP=SHR
//CSQP0000 DD DISP=OLD,DSN=SYS1.MQS.NEW.PSID00
//CSQP0001 DD DISP=OLD,DSN=SYS1.MQS.NEW.PSID01
//CSQS0000 DD DISP=OLD,DSN=SYS1.MQS.PSID00
//CSQS0001 DD DISP=OLD,DSN=SYS1.MQS.PSID01
//CSQT0000 DD DISP=OLD,DSN=SYS1.MQS.NEW.PSID00
//CSQT0001 DD DISP=OLD,DSN=SYS1.MQS.NEW.PSID01
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
* format new datasets (CSQP0000 and CSQP0001) as new page sets

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 37

FORMAT
/*
* copy old page sets CSQS0000 and CSQS0001 to new page sets
* CSQT0000 and CSQT0001.
COPYPAGE
/*

CSQ1LOGP

This job depends on the successful completion of job RECARCH.

When a BSDS is recovered from an archive log, the RBAs of the
active log in the BSDS are inconsistent and this prevents MQSeries
from starting. Run this job to print a summary report of the active logs
and record starting and ending RBAs.

CSQ1LOGP
//JOBID JOB CLASS=S,NOTIFY=&SYSUID
//*
//***
//* From job RECARCH
//***
//* When a BSDS is recovered from an archive log, the RBAs of the
//* active log in the BSDS are inconsistent and MQ will not start.
//*
//* Run this job to print a summary report of the active logs and
//* record starting and ending RBAs.
//*
//* Edit the JCL wherever necessary.
//***
//*
//LOGP EXEC PGM=CSQ1LOGP
//STEPLIB DD DSN=SYS1.SCSQANLE,DISP=SHR
// DD DSN=SYS1.SCSQLOAD,DISP=SHR
//ACTIVE1 DD DISP=OLD,DSN=SYS1.MQS.LOGCOPY1.DS01
//ACTIVE2 DD DISP=OLD,DSN=SYS1.MQS.LOGCOPY1.DS02
//SYSPRINT DD SYSOUT=*,DCB=BLKSIZE=629
//SYSSUMRY DD SYSOUT=*,DCB=BLKSIZE=629
//SYSIN DD *
Insert control cards here
/*
//***
//* Go to RECARCH1
//***

38 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

JOBCARD (THE JOB HEADER STATEMENT)
//JOBID JOB CLASS=S,NOTIFY=&SYSUID
//*

PRTBSDS

This job depends on the successful completion of job RCBSDS2.

PRTBSDS prints the contents of the BSDS. This enables RBAs to be
synchronized, which is a necessary step in the recovery process.

PRTBSDS
//JOBID JOB CLASS=S,NOTIFY=&SYSUID
//*
//***
//* From job RCBSDS2
//***
//* Print the contents of the BSDS.
//*
//* Edit the JCL wherever necessary.
//***
//*
//JU004 EXEC PGM=CSQJU004
//STEPLIB DD DSN=SYS1.SCSQANLE,DISP=SHR
// DD DSN=SYS1.SCSQSNLE,DISP=SHR
// DD DSN=SYS1.SCSQAUTH,DISP=SHR
//SYSPRINT DD SYSOUT=*,DCB=BLKSIZE=629
//SYSUT1 DD DISP=SHR,DSN=SYS1.MQS.BSDS01
//*
//*SYSUT2 DD DISP=SHR,DSN=SYS1.MQS.BSDS02
//*
//***
//* Go to job RECARCH
//***

RCBSDS1

If the BSDS is damaged and MQSeries has not terminated, delete the
existing BSDS and define a new one with the same name as the one
that’s damaged.

Issue command RECOVER BSDS after this job completes. A copy of
the valid BSDS is made in the newly allocated dataset.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 39

RCBSDS1
//JOBID JOB CLASS=S,NOTIFY=&SYSUID
//*
//***
//* Damaged BSDS: READ ALL COMMENTS BEFORE RUNNING THIS JOB
//***
//* Delete existing BSDS and define a new one with the same name as
//* the damaged one.
//*
//* Edit the JCL wherever necessary.
//***
//* Issue the command RECOVER BSDS after this job completes.
//*
//* A copy of the valid BSDS is created in the newly allocated dsn.
//***
//*
//RECBSDS EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE (SYS1.MQS.BSDS01) ERASE CLUSTER
 SET MAXCC = 0
 DEFINE CLUSTER -
 (NAME(SYS1.MQS.BSDS01) -
 VOLUMES(SYS000) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(SYS1.MQS.BSDS01.DATA) -
 RECORDS(3000 3000) -
 RECORDSIZE(4089 4089) -
 CONTROLINTERVALSIZE(4096) -
 FREESPACE(0 20) -
 KEYS(4 0)) -
 INDEX -
 (NAME(SYS1.MQS.BSDS01.INDEX) -
 RECORDS(5 5) -
 CONTROLINTERVALSIZE(1024))
/*
//

RCBSDS1N

If the BSDS is damaged and MQSeries terminated before it could be
recovered, the next attempt to restart MQSeries will also fail. So
delete the existing BSDS and define a new one with same name as the
damaged one. ‘REPRO’ the valid BSDS to the redefined BSDS.

40 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

RCBSDS1N
//JOBID JOB CLASS=S,NOTIFY=&SYSUID
//*
//***
//* Damaged BSDS: READ ALL COMMENTS BEFORE RUNNING THIS JOB
//***
//* If MQ terminates before the damaged BSDS can be recovered,
//* the next restart also fails. To correct this, delete the existing
//* BSDS and define a new one with same name as the damaged one.
//*
//* Edit the JCL wherever necessary.
//***
//*
//RECBSDS EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE (SYS1.MQS.BSDS01) ERASE CLUSTER
 SET MAXCC = 0
 DEFINE CLUSTER -
 (NAME(SYS1.MQS.BSDS01) -
 VOLUMES(SYS000 -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(SYS1.MQS.BSDS01.DATA) -
 RECORDS(3000 3000) -
 RECORDSIZE(4089 4089) -
 CONTROLINTERVALSIZE(4096) -
 FREESPACE(0 20) -
 KEYS(4 0)) -
 INDEX -
 (NAME(SYS1.MQS.BSDS01.INDEX) -
 RECORDS(5 5) -
 CONTROLINTERVALSIZE(1024))
/*
//
//***
//* Copy the valid BSDS to the redefined BSDS.
//*
//* Restart MQ subsystem
//***
//*
//REPBSDS EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//DD1 DD DISP=SHR,DSN=SYS1.MQS.BSDS02
//DD2 DD DISP=SHR,DSN=SYS1.MQS.BSDS01
//SYSIN DD *
 REPRO -
 INFILE(DD1) -

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 41

 OUTFILE(DD2)
/*
//

RCBSDS2

If both BSDSs are damaged, the several jobs have to be run in
sequence to recover the BSDSs (refer to ‘Order of jobs’ at the end of
this article for the order).

Locate the BSDS associated with the most recent archive log by
looking up the last occurrence of message CSQJ0031 in MQSeries’
STC output, which indicates whether off-loading completed
successfully.

For example:

BSDS01 ==> MQARCH.LOG1.xxxxxx.xxxxxxxx.Bxxxxxxx
BSDS02 ==> MQARCH.LOG2.xxxxxx.xxxxxxxx.Bxxxxxxx

Then either rename or delete and redefine the damaged BSDSs and
‘REPRO’ the BSDS from the archive log to one of the replacement
BSDSs.

RCBSDS2
//JOBID JOB CLASS=S,NOTIFY=&SYSUID
//*
//***
//* Both BSDS damaged: READ ALL COMMENTS BEFORE RUNNING THIS JOB.
//*
//* See also pages 306 to 308 of MQ Systems Management Guide
//***
//*
//* Locate the BSDS associated with the most recent archive log by
//* looking up the last occurrence of message CSQJ0031 in the MQ STC
//* output, which indicates whether off-loading was successful.
//*
//* eg BSDS01 ==> MQARCH.LOG1.xxxxxx.xxxxxxxx.Bxxxxxxx
//* BSDS02 ==> MQARCH.LOG2.xxxxxx.xxxxxxxx.Bxxxxxxx
//*
//***
//* Either rename the damaged BSDSs or delete and redefine them.
//*
//* Edit the JCL wherever necessary.
//***

42 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

//*
//RECBSDS EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE (SYS1.MQS.BSDS01) ERASE CLUSTER
 DELETE (SYS1.MQS.BSDS02) ERASE CLUSTER
 SET MAXCC = 0
 DEFINE CLUSTER -
 (NAME(SYS1.MQS.BSDS01) -
 VOLUMES(SYS000) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(SYS1.MQS.BSDS01.DATA) -
 RECORDS(3000 3000) -
 RECORDSIZE(4089 4089) -
 CONTROLINTERVALSIZE(4096) -
 FREESPACE(0 20) -
 KEYS(4 0)) -
 INDEX -
 (NAME(SYS1.MQS.BSDS01.INDEX) -
 RECORDS(5 5) -
 CONTROLINTERVALSIZE(1024))

 DEFINE CLUSTER -
 (NAME(SYS1.MQS.BSDS02) -
 VOLUMES(SYS000) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(SYS1.MQS.BSDS02.DATA) -
 RECORDS(3000 3000) -
 RECORDSIZE(4089 4089) -
 CONTROLINTERVALSIZE(4096) -
 FREESPACE(0 20) -
 KEYS(4 0)) -
 INDEX -
 (NAME(SYS1.MQS.BSDS02.INDEX) -
 RECORDS(5 5) -
 CONTROLINTERVALSIZE(1024))
/*
//*
//***
//* Copy the archive log's BSDS to one of the replacement BSDSs.
//***
//*
//REPBSDS EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//DD1 DD DISP=SHR,DSN=MQARCH.LOG1.xxxxxx.xxxxxxxx.Bxxxxxxx
//DD2 DD DISP=SHR,DSN=SYS1.MQS.BSDS01
//SYSIN DD *

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 43

 REPRO -
 INFILE(DD1)
 OUTFILE(DD2)
/*
//
//***
//* Go to job PRTBSDS
//***

RCBSDS3

This job depends on the successful completion of job RECLOG3.

If both BSDSs are damaged, copy the recovered BSDS to the second
replacement BSDS, pre-defined in job RCBSDS2.

RCBSDS3
//JOBID JOB CLASS=S,NOTIFY=&SYSUID
//*
//***
//* From job RECLOG3
//***
//* Both BSDSs damaged: READ ALL COMMENTS BEFORE RUNNING THIS JOB.
//*
//* Copy the recovered BSDS to the second replacement BSDS, which is
//* pre-defined in job RCBSDS2
//***
//*
//REPBSDS EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//DD1 DD DISP=SHR,DSN=SYS1.MQS.BSDS01
//DD2 DD DISP=SHR,DSN=SYS1.MQS.BSDS02
//SYSIN DD *

 REPRO -
 INFILE(DD1)
 OUTFILE(DD2)
/*
//

This article concludes in next month’s issue of MQ Update.

Saida Davies (UK) © Xephon 1999

MQSeries news

IBM has unveiled MQSeries 5.1, with
improvements to the base product and the
introduction of two new products: MQSeries
Integrator (the IBM-branded version of
NEON’s MQIntegrator product) and
MQSeries Workflow. Version 5.1 for AIX,
Solaris, HP-UX, NT, and OS/2 Warp
incorporates new dynamic workload
distribution across distributed platforms and
MVS. Also new are publish-and-subscribe
facilities.

Also announced was MQSeries for OS/390
Version 2.1 and MQSeries Workflow for
OS/390 Version 3.1.

For further details see the ‘MQSeries
announcements’ in this issue.

* * *

IBM’s Tivoli subsidiary has released Tivoli
Manager for MQSeries for OS/390 Version
2.2, which has added functionality and now
offers administrators the ability to manage a
company-wide MQSeries infrastructure
from a single desktop PC. Support for the
Tivoli Enterprise Console (TEC) Adapter
for OS/390 has also been improved to enable
NetView event notification and automation,
bringing the product more in line with the
versions available for Unix and Windows.

Tivoli Manager for MQSeries can correlate
data from components, such as network
hardware, with events generated by other
middleware and applications and present the
information in a unified context. The product
also allows MQSeries requests to pass to an
OS/390 system.

Out now, prices remain the same as the
previous version.

For further details contact:
Tivoli Systems, 9442 Capital of Texas
Highway, N Austin, TX 78759, USA
Tel: +1 512 436 8000
Fax: +1 512 794 0623
Web: http://www.tivoli.com

* * *

Convoy has announced Convoy/DM
Version 3.0, the latest version of its product
for developing and managing application
interfaces. It also announced the integration
of MQSeries into the product. Convoy/DM
uses meta data about business applications to
generate code for data conversion and
interfaces. New features in Version 3.0 are
aimed at merging multiple units of work to
multiple targets, extracting meta data from
ODBC-compatible sources, creating user-
definable code exits, and meta data
reporting.

Out now, Version 3.0 starts at US$32,000.

For further details contact:
Convoy Corporation, 2000 Powell Street,
Suite 1380, Emeryville, CA 94608, USA
Tel: +1 510 601 4950
Fax: +1 510 601 4940
Web: http://www.convoy.com

Convoy Corporation Limited, 268 Bath
Road, Slough, Berks, SL1 4DX, UK
Tel: +44 1753 708887
Fax: +44-1753 708810

x xephon

	MQSeries announcements
	Using RACF and the OAM for end-to-end security
	MQSeries and Windows NT security
	Tackling enforced thread affinity
	Recovery procedures
	MQSeries news

