
© Xephon plc 1999

3 MQSeries in an OS/390 client/
server environment

10 Closing the holes in MQ security
17 MQSeries for MVS and TCP/IP
18 Recovery procedures
31 Stress-testing
44 MQ news

August 1999

2

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 1999. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: +44 1635 550955
e-mail: HarryLewis@compuserve.com

North American office

Xephon/QNA
1301 West Highway 407, Suite 201-405
Lewisville, TX 75077-2150
USA
Telephone: +1 940 455 7050

Contributions
Articles published in MQ Update are paid for
at the rate of £170 ($250) per 1000 words and
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon’s Web site, where you
can download Notes for Contributors.

MQ Update on-line
Code from MQ Update is available from
Xephon’s Web site at www.xephon.com
(you’ll need the user-id shown on your ad-
dress label to access it). If you’ve a problem
with your user-id or password call Xephon’s
subscription department on +44 1635 33886.

Editor
Harry Lewis

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 3

MQSeries in an OS/390 client/server environment

INTRODUCTION

MQSeries applications are typically designed to function
asynchronously. The programs that comprise an MQSeries application
might be running on different computers, on different operating
systems, and at different locations and times. However, many
installations now wish to use MQSeries for their on-line OS/390
client/server applications. This article explores the implications of
implementing this architecture and recommends a number of options
to make the implementation successful.

MQSeries’ original design objective was to provide assured (but
eventual) message delivery in asynchronous environments. In many
cases, messages were expected to be stored and forwarded when a
connection was later made or when the application that was to process
the message became available. An example might be a retailing
system that queues restocking requests to be transmitted to a warehouse
system at the end of the day.

To many people the idea of using MQSeries in a client/server
application, where a near-synchronous response is required, seems
wrong. However, in spite of MQSeries’ apparent unsuitability for this
role, it’s nevertheless very attractive to installations to standardize on
a single communications programming interface across all applications
and platforms. Also, even with client/server, it’s possible to overlap
front-end processing with back-end responses, so that the asynchronous
nature of MQSeries can still be exploited.

PROBLEMS WITH MQSERIES IN CLIENT/SERVER APPLICATIONS

A client/server application in this context might be a Java GUI
program running on a user’s Windows NT workstation that sends
requests and receives replies from a CICS/DB2 application running
on an OS/390 mainframe. The two communicate over a LAN or WAN
using MQSeries messages.

4 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

While client/server applications require real-time communication of
a largely synchronous nature, programmers could still overlap the
GUI processing, thus partially exploiting the asynchronous nature of
MQSeries. The connection needs to be reliable since (in most cases)
the program will not be able to perform any work unless messages are
flowing properly.

It’s quite likely that a system built with MQSeries and intermediate
Windows NT class servers will not achieve the reliability of the back-
end CICS system (which may typically deliver 99.75% or better
availability). This is because such systems use new, sometimes
unproven technology, introduce new points of failure, involve more
physical servers, and require a long code-path. Therefore using
MQSeries instead of direct APPC or TCP/IP connections could
impact the reliability of a critical client/server system.

It is also possible that, unless the right options are selected, the
performance in terms of end-to-end response time could be worse
using MQSeries than is acceptable in an on-line client/server
application. Hints for avoiding this are provided later in this article.

Finally, the plethora of MQI options means that the application
programmers should follow strict guidelines, or use a standard wrapper
to ensure that appropriate MQI options are chosen.

THE PROBLEM OF INTERMEDIATE SERVER UNRELIABILITY

Despite the marketing power of Microsoft, the fact remains that
Windows NT servers do not approach the reliability of OS/390
systems. While an extremely well-tuned Unix system may come close
to mainframe reliability, many mainframe-based large enterprises
don’t have experience of making Unix highly resilient. In addition,
the up-front cost of such a Unix system is often prohibitive at the start
of a new project.

There are many MQSeries system management packages on the
market, an example of an excellent one being MQControl from Nastel
Technologies. However, these products are really meant for addressing
the symptoms of problems rather than their cause, despite the fact that
they’re very useful for administration. My advice is to avoid distributed

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 5

MQSeries servers except where they are essential to the application
and client/server processing is rarely carried out on any of them.

MQSeries version 1.2 on OS/390 allows the direct attachment of
MQSeries clients via TCP/IP (which is my recommendation) or
APPC. By using direct attachment one can achieve much greater
levels of reliability. IBM is addressing the reliability issue in other
ways, and MQSeries 5.1 will permit the clustering of distributed
servers, thus providing an alternative (albeit complex) solution.

While some administrators may be concerned about the effect of
directly attached clients on OS/390 CPU consumption, our tests have
shown that the overhead is actually similar to that of using server
channels. Note that the client attach feature is a chargeable option on
the OS/390 version of MQSeries.

Some other benefits of direct attachment to OS/390 are listed below.

• Savings in the purchase of Distributed Server, including licence
costs and costs associated with deployment, OR and DR, etc.

• Savings in the cost of supporting Distributed Server (skills, time
required, etc).

• Savings in the cost of Distributed Server system management
software (which may no longer be required).

• Easier Distributed Server performance management and tuning
(which may not be required).

ISSUES CONCERNING DIRECT ATTACHMENT TO OS/390

Below is a list of some of the issues that you may like to consider
before deciding to implement direct attachment to OS/390.

• The number of reply queues must be considered.

It is necessary to decide whether to use one reply queue on the
MVS queue manager for all clients or a number of reply queues
(or, alternatively, to use dynamic reply queues, one per PC).

• The number of concurrent client connections is limited.

6 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

There are limits in MVS to how many direct connections can be
accommodated per queue manager. These limits are related to the
storage available in the channel initiator address space. This
restriction may be alleviated by applying the PTF for APAR
PQ06157, though you should still expect a limit of around 10,000
connections.

In addition, the SYSTEM.CHANNEL.SYNC queue needs the
INDEX(MSGID) option to avoid an exponential increase in the
costs in terms of CPU usage for a large number of client channels.
Paging space should be checked as 150 KB of EPVT region is
used by each channel.

It is important to consolidate connections by ensuring that all
MQSeries applications on a given PC share the same MQSeries
connection handle, if at all possible.

• Ensuring that client applications support direct attachment.

1 Use ‘get message’ and ‘put message’ options to specify
whether syncpointing is required, as the default syncpointing
option varies from one platform to another.

2 All programs that issue MQGETs should specify the
CONVERT option to ensure messages are presented in the
appropriate character set (ASCII or EBCDIC).

3 The maximum message size in MVS is currently 4 MB,
while that on NT is 100 MB.

HOW TO AVOID END-TO-END PERFORMANCE PROBLEMS

MQSeries is surprisingly fast for both direct and indirect attachment,
and end-to-end message performance should not be a problem (even
if sub-second response is required) provided that some key
recommendations are followed:

• Use non-persistent, ‘fast’ messages for everything other than
database updates.

To avoid the severe performance overhead associated with
persistent messages, it is recommended that such messages are

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 7

not used, with the exception of updating host information or
where the application has no error recovery. This avoids most
disk logging associated with message traffic, which is often the
worst performance bottleneck.

• Use ‘fast’ mode channels where both client and server ends
support them (MQSeries 5).

This is a new performance feature in MQSeries Version 5 that
applies to non-persistent messages. Fast mode channels result in
further performance improvements by eliminating all disk logging.

• Reduce the number of messages passed to and from MQSeries for
a given transaction.

The processing of each message by MQSeries code includes a
fixed overhead. Hence, consolidating traffic into fewer, bigger
messages generally improves performance. However, it’s
important not to overdo this.

• Time-out values should be stored in parameters so they can be
changed easily by applications.

It is necessary for the application to be able to decide when to
‘give up’ waiting for a response from MQSeries. For this reason,
I recommend that time-out intervals are not hard-coded.

• Message expiry intervals should be used.

Messages can be left on queues and not retrieved for a number of
reasons, one being that the client ‘times out’ before the host is able
to respond. To avoid the growth of ‘orphaned’ messages, specify
a message expiry interval so that these messages are deleted.

• When reading messages from the queue, the message back-out
count should be inspected.

This prevents ‘abend loops’ where an errant message causes a
program error again and again. Messages with a back-out count
of more than one should be sent to a ‘poison letter’ queue.

• Use TCP/IP as the network protocol if the underlying network is
IP router-based.

8 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

This will vary by installation, but in most cases TCP/IP is the most
efficient protocol to use.

WHAT TO DO AT THE CICS ‘BACK-END’

The subject of processing MQSeries messages in CICS is a large one,
which I intend to explore in future articles. However, one misconception
I commonly encounter concerns the need for triggering.

Triggering is mentioned so often in relation to MQSeries that many
people believe it is the normal way to deal with MQSeries messages.
This may be true in a ‘classic’ asynchronous design, where a message
may turn up at odd times and require an application to be started to
process it. However, in a normal high-volume client/server
environment, the CICS application is always running and should not
be triggered by the arrival of the message for reasons of performance.

Triggering is an inefficient process that results in additional internal
MQPUTs and MQGETs to and from the initiation queue. This means
that the CICS/MQSeries overhead for each client/server request is
more than doubled for no good reason.

The best set-up is to keep your CICS application running all the time
and to keep an outstanding MQGET on the request queue. This means
that, when a client/server request arrives, the outstanding MQGET is
satisfied and the CICS program receives the data in a single MQI call.
You may want the initial CICS program to perform a ‘request broker’
type function and route the data to another transaction – you can use
the CICS comms area for this purpose. The original transaction can
then immediately proceed to receive the next message, and so on. You
may want more than one of these outstanding MQGETs, or even
multiple CICS regions, for dealing with really high volumes of traffic.

When you examine your CICS MQSeries logic, it’s important to bear
in mind that you may need to handle a large number of messages per
second, so it’s important to ensure that you are not building in a
bottleneck and that you provide proper user-oriented security by
running the end-application transaction using the end-user’s RACF
authority, where appropriate. I intend to explain this in more detail in
a later article.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 9

SOME RECOMMENDED MQI OPTIONS

In many instances, the decision may be taken to make all application
programmers use a simple API ‘wrapper’ to shield them from the large
array of MQI options and prevent them from choosing wrong ones.
This is another subject that I intend to explore in a later article, but for
now here are some essential ones to include in your standards.

MQOPEN
MQOO_INPUT_SHARED for input queues
MQOO_OUTPUT for output queues
MQOO_FAIL_IF_QUIESCING

MQGET

MQGMO_WAIT
MQGMO_NO_SYNCPOINT or MQGMO_SYNCPOINT
MQGMO_CONVERT
MQGMO_FAIL_IF_QUIESCING

MQPUT
MQPMO_NO_SYNCPOINT or MQPMO_SYNCPOINT
MQPMO_FAIL_IF_QUIESCING

DESCRIPTOR – MQMD

Set up message type fields, for example ‘MQMT_REQUEST’ and
‘MQMT_REPLY’. The reply-to-queue should be set on requests,
while on replies this field specifies the appropriate queue to open. The
format should be set to ‘MQFMT_STRING’ to enable ASCII to
EBCDIC conversion.

MESSAGE HEADERS

I recommend that a standard installation header is placed at the front
of all messages. This should include such fields as the application
name, origin user-id, the function of the message, and so on. This aids
debugging and message routing in the event of errors. You should
define the installation header at the outset and, as with MQI options,
the best way to enforce this standard is by using an API wrapper layer.

10 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

CONCLUSION

This article provides critical information for making successful use of
MQSeries in a high-volume, client/server environment. My experience
suggests that many new MQSeries applications are not truly
asynchronous but have a synchronous element, and that client/server
applications are the main reason for this trend.

The suggestion that directly attached MQSeries clients should be used
for critical, real-time client/server applications is, perhaps, radical,
but it does avoid most of the potential and inevitable problems
inherent with using MQSeries in this way. It also reduces support
effort and costs.

Adding System Management adds further complexity to your set-up,
so this step should be undertaken only to add value, and not to
overcome an unsuitable middleware architecture. An alternative to
this approach may be to implement MQSeries 5.1 once it becomes
available on all required platforms (assuming that it lives up to its
promise of better distributed MQSeries server administration and
operational reliability).

However, those sites that currently use a two-tier (in a physical sense)
client/server architecture and wish to standardize on MQSeries APIs
may still prefer to use direct attachment.

Peter A Toogood
MQSeries Solutions Expert and Developer (UK) © Xephon 1999

Closing the holes in MQ security

In choosing the default settings for MQSeries, IBM has had to strike
a balance between making the product easy to use as quickly as
possible and making it secure straight out of the box. In more recent
releases, it has put more emphasis on ease of use and so relaxed the

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 11

default security settings. This is one of the reasons why administrators
must now reconfigure their systems if they require them to be secure.
This article examines some of the potential security holes of which
administrators should be aware, and also describes ways in which
administrators can close these holes.

DEFAULT CHANNEL DEFINITIONS

There are a number of objects, such as SYSTEM.DEF.SVRCONN
and SYSTEM.DEFAULT.LOCAL.QUEUE, that are created by default
when you install and configure a queue manager. These are really
intended only as definitions to be cloned for their default attributes in
the creation of new objects. However, a potential infiltrator can
exploit the fact that they are also well-defined objects that probably
exist on your system.

Originally, on distributed platforms, the definition of channel
SYSTEM.DEF.SVRCONN had its MCAUSER parameter set to
‘nobody’. IBM had so many complaints from users who couldn’t get
clients connected that it has now changed this parameter to blank (‘ ’).

The MCAUSER parameter specifies the userid that is checked when
an inbound message is put on a queue. Setting this field to blank means
that the authority of the userid running the channel (usually ‘mqm’)
is checked. In other words, messages are always authorized to be put
on all queues.

The thinking behind putting ‘nobody’ in this field is that no one should
be allowed to put messages on queues unless the administrator
actually changes settings to allow them to do so. Unfortunately this
default setting was not documented and so users could not work out
how they were required to change things.

There are many users who don’t need client channels and so haven’t
even read this section of the manual. They’re unaware that nowadays,
with default settings in place, anyone who can connect to their
machine (for instance, someone on the same LAN) can start a client
channel to them called SYSTEM.DEF.SVRCONN and have access to
put messages on any of their queues and – often more importantly –
to get messages from any of their queues.

12 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

This is not an entirely new problem – even the original systems
suffered from it, as there are other channels, such as
SYSTEM.DEF.RECEIVER and SYSTEM.DEF.REQUESTER, that
have always had a blank MCAUSER. With a little effort, users have
always been able to connect to these and put messages on queues using
full authority. If the queue manager is the default one, the infiltrator
needs no prior knowledge of the system.

As previously mentioned, these definitions are used to provide
defaults for the creation of new channels. This means that, in many
systems, newly created channels also have MCAUSER set to blank.

It is recommended that the following commands be executed using
RUNMQSC to close this loophole (note the use of the continuation
character, ‘➤ ’, in the code below to show that one line of code maps
to more than one line of print):

alter chl(SYSTEM.DEF.SVRCONN) chltype(SVRCONN) trptype(LU62) +
➤ Mcauser(NOBODY)
alter chl(SYSTEM.DEF.RECEIVER) chltype(RCVR) trptype(LU62) +
➤ Mcauser(NOBODY)
alter chl(SYSTEM.DEF.REQUESTER) chltype(RQSTR) trptype(LU62) +
➤ Mcauser(NOBODY)
...

DO NOT START MQ USING ROOT

It’s worth noting that much of this section is described in Unix terms,
though it’s applicable to most platforms, once Unix terms are replaced
by their equivalents.

All MQSeries components should be started using the MQSeries
administration userid (mqm). Many system administrators like to
make the system administration userid (root) a member of the mqm
group. This is understandable, as all administrative commands, not all
of which are for MQ, can be run as root. However, this is a very
dangerous thing for them to do as they are effectively giving root
authority to all of the members of the mqm group.

For example, if the trigger monitor of the default queue manager is
started by root using default parameters, a member of the mqm group

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 13

whose workstation has IP address ‘myhost’ can enter the following
commands using RUNMQSC:

DEFINE QL(MYQUEUE) TRIGGER PROCESS(MYPROCESS) +
INITQ(SYSTEM.DEFAULT.INITIATION.QUEUE)
DEFINE PROCESS(MYPROCESS) APPLICID('xterm –display myhost:0 &')

and then enter the command:

echo hello | amqsput MYQUEUE

This causes a terminal to appear on their screen giving them a
command line with root authority from which they have full control
of the system.

Similarly, if a channel is started by root, or the channel initiator starts
a channel and the channel initiator is started by root, then any exits
called by the channel will run as root. So the mqm member could write
and install an exit that again spawns a root-authorized xterm.

The receiver channel could have the same problems, for example, if
started as root by the listener, inetd, or Communications Manager. A
good start to overcoming this problem is to remove root from the mqm
group. However, on some systems root will still have access to the
strmqm command and, while it may look as though it has started the
queue manager, there may be unexpected errors later when it performs
commands for which the OAM checks authority.

The system administrator may find it useful to create commands that
only root is authorized to run, which switch to the mqm userid before
performing the instruction. For example the following shell script
could be called strmqm and put higher in root’s path than the real
strmqm.

#!/bin/ksh
su - mqm -c /usr/lpp/mqm/bin/strmqm $1

ONLY USE GROUPS ON UNIX OAM

The setmqaut command is used to set access to MQSeries objects.
Among its parameters you may specify ‘-p PrincipalName’ or ‘-g
GroupName’ to indicate to which users you intend this command to
apply.

14 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

For example, the following command specifies that all members of
the group tango are to be allowed to put messages on queue
orange.queue on queue manager saturn.queue.manager

setmqaut -m saturn.queue.manager -n orange.queue -t queue
➤ -g tango +put

Similarly, the command:

setmqaut -m saturn.queue.manager -n orange.queue -t queue
➤ -p theuser +put

specifies that the userid theuser should be allowed to put messages on
queue orange.queue on queue manager saturn.queue.manager. On
most platforms this works fine. However, the implementation on Unix
systems:

setmqaut -m saturn.queue.manager -n orange.queue -t queue
➤ -p theuser +put

specifies that all of the members of theuser’s primary group are
allowed to put messages on queue orange.queue on queue manager
saturn.queue.manager.

This can be very dangerous, as a system administrator can give access
to a particular user unaware that in doing so he has accidentally also
given access to many other users. User theuser may also be unhappy
to be blamed by administrators for actions that they believe only he is
authorized to have carried out.

The way around this problem is never to use the ‘-p’ parameter on
Unix. The same effect can be obtained by specifying ‘-g PrimaryGroup’,
which is a lot clearer.

ONLY CREATE OBJECTS AS MQM ON UNIX

As described above, MQSeries on Unix does all of its security using
the primary group of a userid rather than the userid itself, as you would
expect. This has other knock-on effects.

When a queue is created, access to it is automatically granted to the
mqm group and to the primary group of the userid that created it. It’s
quite reasonable for someone designing the security of an MQSeries
infrastructure to assume that access to all queues has been forbidden

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 15

to all users except members of the mqm group. From here, the
administrator specifies additional security settings that are needed.

This works fine when queues are created either by the mqm user or by
someone whose primary group is mqm. The problem arises when
another user whose primary group is, for instance, staff, but who is
also a member of mqm, defines the queue. In this case authority is also
granted automatically and unintentionally to all members of the staff
group.

This also applies to the creation of queue managers. If a queue
manager is created by a userid whose primary group is staff, then all
members of staff by default have access to the queue manager.

The simplest solution to this problem is to enforce a policy whereby
no userid other than mqm may create MQSeries objects or queue
managers. An alternative policy is never to make a userid a member
of the mqm group unless this is its primary group.

OAM USES UNION

The Object Authority Manager uses the union of the authority settings
that it finds. So, to take the example above a step further, suppose a
queue, orange.queue, is created by a userid whose primary group is
staff. At some point later it is found that another userid, worker, who
shouldn’t have access to the queue, is nevertheless able to access it.
worker is a member of staff but has team as his primary group. To
resolve this problem an administrator might try running:

setmqaut -m saturn.queue.manager -n orange.queue -t queue
➤ -p worker –all

However, this will not solve the problem. While it will remove team
from the authorization list, members of staff, including worker, still
have access to the queue.

This also applies to other platforms, such as NT, that implement the
‘-p’ parameter. Although the problem of primary groups is not present,
it should be realized that, while:

setmqaut -m saturn.queue.manager -n orange.queue -t queue
➤ -p worker +all

16 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

gives full access to worker,

setmqaut -m saturn.queue.manager -n orange.queue -t queue
➤ -p worker –all

only forbids all access if worker is not a member of any authorized
groups.

CACHING

On some platforms, such as Unix, group membership is cached by
MQSeries. This means that, if a new user joins a group and needs
access to MQSeries objects, the queue manager needs to be restarted.
Similarly (and probably more importantly), if a user leaves the team
or company, it is not sufficient just to remove them from the group.
The user retains access to objects until such time as the queue manager
is restarted.

ONLY ENABLE THINGS IF YOU NEED THEM

This is no more than common sense, and the defaults are such that this
won’t cause problems, but for the sake of completeness the following
points are worth mentioning:

• Automatic channel definition
Enabling the automatic definition of channels increases the
ability of machines to connect to your queue manager with little
prior knowledge of your system, so this should be enabled only
if definitely required.

• Command server
The command server is very powerful and can render weak
security even weaker. For instance, on a system running MQSeries
version 2 in which users do not have the authority to use the client
channel, they could still connect using a sender channel called
SYSTEM.DEF.RECEIVER. This could put messages on the
command server’s input queue requesting it to create a channel
and transmission queue back out. This could then be used for
further breaches of security. If you’re not confident of your
system’s security, it’s advisable to start the command server only

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 17

when it is needed and to grant users only the minimum required
levels of authority to it.

Sam Garforth
SJG Consulting Ltd (UK) © S Garforth 1999

MQSeries for MVS and TCP/IP

MQSeries for MVS is supplied with built-in LU 6.2 support to enable
it to communicate with such remote platforms as MQSeries on OS/2.
Further customization is necessary, however, if the same functionality
is required using TCP/IP. All relevant information about this is
available in the program directory – please refer to dataset
MQM.SCSQINST, member CSQ8DQM3, and make the necessary
TCP/IP-related changes.

NOT DOCUMENTED

TCP/IP DDNAMEs and dataset references need to be added to the
MQxxCHIN procedure (STC). On SYSD, the following statements
are added:

//PROFILE DD DSN=.PROFILE(PROFILE),DISP=SHR and
//SYSTCPD DD DSN=TCPIP.TCPPARMS(TCPDATA),DISP=SHR

Note that, once TCP/IP is defined as the communication protocol on
MQSeries for MVS, all relevant CHANNELS, etc, will become
inactive in the event of TCP/IP being de-activated. These then have to
be RESET or, alternatively, task MQxxCHIN needs to be stopped and
then re-started.

In the event that maintenance is carried out to MQSeries and to
products with which it has SMP/E cross dependencies (and which it
cross references, such as LE/370 and TCP/IP), then CALLIB job
CSQ8CLIB in MQM.SCSQINST has to be executed.

Saida Davies (UK) © Xephon 1999

18 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Recovery procedures

This month’s instalment concludes this article on MQSeries recovery
procedures (the first part appeared in last month’s MQ Update).

RECARCH

This job depends on the successful completion of job PRTBSDS.

This utility records information about the archive log in the BSDSs.
If the active log files were added or deleted since the last operation to
recover BSDSs from the archive log, then the changes have to be
reflected in the replaced BSDS.

Use the DELETE function to remove additional log file information
and the NEWLOG function if a new log file needs to be added.

RECARCH
// JOBID JOB CLASS=S,NOTIFY=&SYSUID
//*
//***
//* From job PRTBSDS
//***
//* Record information about the archive log in the BSDSs.
//*
//* If active log files were added or deleted since BSDS recovery
//* from the ARCHIVE LOG, then changes have to be reflected in the
//* replaced BSDS.
//*
//* Use:
//* DELETE to remove additional LOG FILE information
//* NEWLOG to add a new LOG FILE.
//***
//*
//JU003 EXEC PGM=CSQJU003
//STEPLIB DD DSN=SYS1.SCSQANLE,DISP=SHR
// DD DSN=SYS1.SCSQSNLE,DISP=SHR
// DD DSN=SYS1.SCSQAUTH,DISP=SHR
//SYSUT1 DD DISP=OLD,DSN=SYS1.MQS.BSDS01
//SYSPRINT DD SYSOUT=*,DCB=BLKSIZE=629
//SYSIN DD *
 NEWLOG DSNAME=MQARCH.LOG1.xxxxxx.xxxxxxxx.Bxxxxxxx
 DELETE DSNAME=SYS1.MQS.LOGCOPY3.DS01.COPY1

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 19

 DELETE DSNAME=SYS1.MQS.LOGCOPY3.DS02.COPY1
/*
//***
//* Go to CSQ1LOGP
//***

RECARCH1

This job depends on the successful completion of job CSQ1LOGP.

Compare the RBA detail listed in job CSQ1LOGP with the RBA detail
listed in job PRTBSDS.

If there is a mismatch, then use the DELETE function to remove
additional log file information from each active log dataset in the
inventory of the replacement BSDS, and use the NEWLOG function
to add new log files.

RECARCH1
//JOBID JOB CLASS=S,NOTIFY=&SYSUID
//*
//***
//* From job CSQ1LOGP
//***
//* Compare the RBA detail listed in job PRTBSDS with RBA detail in
//* CSQ1LOGP.
//*
//* If there is a mismatch, then use the DELETE function on each
//* active log to remove additional information or the NEWLOG
//* function to add the inventory in the replacement BSDS.
//*
//* Edit the JCL wherever necessary
//***
//*
//JU003 EXEC PGM=CSQJU003
//STEPLIB DD DSN=SYS1.SCSQANLE,DISP=SHR
// DD DSN=SYS1.SCSQSNLE,DISP=SHR
// DD DSN=SYS1.SCSQAUTH,DISP=SHR
//SYSUT1 DD DISP=OLD,DSN=SYS1.MQS.BSDS01
//SYSPRINT DD SYSOUT=*,DCB=BLKSIZE=629
//SYSIN DD *
 DELETE DSNAME=SYS1.MQS.LOGCOPY3.DS01,COPY1
 DELETE DSNAME=SYS1.MQS.LOGCOPY3.DS02,COPY1
 DELETE DSNAME=SYS1.MQS.LOGCOPY3.DS01,COPY2
 DELETE DSNAME=SYS1.MQS.LOGCOPY3.DS02,COPY2
 NEWLOG DSNAME=SYS1.MQS.LOGCOPY4.DS01,COPY1

20 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 NEWLOG DSNAME=SYS1.MQS.LOGCOPY4.DS02,COPY1
 NEWLOG DSNAME=SYS1.MQS.LOGCOPY4.DS01,COPY2
 NEWLOG DSNAME=SYS1.MQS.LOGCOPY4.DS02,COPY2
/*
//***
//* Go to RECLOG3
//***

RECLOG1

In case one active log is corrupt or lost, recover from another log file
file. Delete, redefine, and copy the affected file.

RECLOG1
//JOBID JOB CLASS=S,NOTIFY=&SYSUID
//*
//***
//* Recover one lost active log from another log file
//***
//***
//* Delete corrupt log file, redefine and copy
//*
//* Edit the JCL wherever necessary
//***
//*
//RECLOG1 EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//DD1 DD DISP=SHR,DSN=SYS1.MQS.LOGCOPY2.DS02
//DD2 DD DISP=SHR,DSN=SYS1.MQS.LOGCOPY1.DS02
//SYSIN DD *
 DELETE (SYS1.MQS.LOGCOPY1.DS02) ERASE CLUSTER
 SET MAXCC = 0

 DEFINE CLUSTER -
 (NAME (SYS1.MQS.LOGCOPY1.DS02) -
 LINEAR -
 VOLUMES(SYS000) -
 RECORDS(36750)) -
 DATA -
 (NAME(SYS1.MQS.LOGCOPY1.DS02.DATA))

 REPRO -
 INFILE(DD1) -
 OUTFILE(DD2)
/*
//*

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 21

RECLOG1N

In case one active log is corrupt or lost, recover from another log file.
DEFINE NEW and COPY.

RECLOG1N
//JOBID JOB CLASS=S,NOTIFY=&SYSUID
//*
//***
//* Recover an active log that's lost from another log file.
//***
//***
//* Define new log file and copy it.
//*
//* Edit the JCL wherever necessary.
//***
//*
//RECLOG1 EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//DD1 DD DISP=SHR,DSN=SYS1.MQS.LOGCOPY2.DS02
//DD2 DD DISP=SHR,DSN=SYS1.MQS.LOGCOPY3.DS02
//SYSIN DD *
 DEFINE CLUSTER -
 (NAME (SYS1.MQS.LOGCOPY3.DS02) -
 LINEAR -
 VOLUMES(SYS000) -
 RECORDS(36750)) -
 DATA -
 (NAME(SYS1.MQS.LOGCOPY3.DS02.DATA))

 REPRO -
 INFILE(DD1) -
 OUTFILE(DD2)
/*
//*
//***
//* Delete old log file and record information on new log file in the
//* BSDS.
//*
//* Amend LOG FILE reference in the MQ start-up procedure
//***
//*
//JU003 EXEC PGM=CSQJU003
//STEPLIB DD DSN=SYS1.SCSQANLE,DISP=SHR
// DD DSN=SYS1.SCSQSNLE,DISP=SHR
// DD DSN=SYS1.SCSQAUTH,DISP=SHR
//SYSUT1 DD DISP=OLD,DSN=SYS1.MQS.BSDS01

22 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

//SYSUT2 DD DISP=OLD,DSN=SYS1.MQS.BSDS02
//SYSPRINT DD SYSOUT=*,DCB=BLKSIZE=629
//SYSIN DD *
 DELETE DSNAME=SYS1.MQS.LOGCOPY1.DS02,COPY2
 NEWLOG DSNAME=SYS1.MQS.LOGCOPY3.DS02,COPY2
/*
//

RECLOG2

If both active logs are corrupt or lost, this job recovers them using the
page datasets. It is necessary to ensure that the QMGR task is not
executing at the time. This job performs the following:

• Verify old datasets to ensure they were properly closed when MQ
terminated. The datasets will close properly, despite the error
messages.

• Define new page datasets, one for each existing one, and ensure
they are larger than the old ones.

RECLOG2
//JOBID JOB CLASS=S,NOTIFY=&SYSUID
//*
//***
//* Loss of both active logs - recover from Page datasets.
//***
//* Verify old datasets to ensure they closed properly when MQ
//* terminated.
//*
//* This will close datasets properly even in the event of errors.
//*
//* Edit the JCL wherever necessary.
//***
//*
//VERIFY EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 VERIFY DATASET(SYS1.MQS.PSID00)
 VERIFY DATASET(SYS1.MQS.PSID01)
 VERIFY DATASET(SYS1.MQS.PSID02)
 VERIFY DATASET(SYS1.MQS.PSID03)
/*
//*
//***
//* Ensure QMGR task is not executing.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 23

//*
//* Ensure new datasets are larger than the old.
//*
//* Define a new page dataset to correspond to each existing one.
//***
//*
//DEFINE EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE CLUSTER -
 (NAME(SYS1.MQS.NEW.PSID00) -
 RECORDS(50000 2500) -
 LINEAR -
 VOLUMES(SYS000) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(SYS1.MQS.NEW.PSID00.DATA))

 DEFINE CLUSTER -
 (NAME(SYS1.MQS.NEW.PSID01) -
 RECORDS(50000 2500) -
 LINEAR -
 VOLUMES(SYS000) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(SYS1.MQS.NEW.PSID01.DATA))

 DEFINE CLUSTER -
 (NAME(SYS1.MQS.NEW.PSID02) -
 RECORDS(50000 2500) -
 LINEAR -
 VOLUMES(SYS000) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(SYS1.MQS.NEW.PSID02.DATA))

 DEFINE CLUSTER -
 (NAME(SYS1.MQS.NEW.PSID03) -
 RECORDS(50000 2500) -
 LINEAR -
 VOLUMES(SYS000) -
 SHAREOPTIONS(2 3)) -
 DATA -
(NAME(SYS1.MQS.NEW.PSID03.DATA))
/*
//*
//***
//* FORMAT and RESETPAGE new datasets.
//*
//* Use RESET function to generate consistent page sets to be used

24 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

//* with clean BSDS and log datasets.
//***
//* Note that MQ cannot restart if page set zero is not available.
//*
//* Amend page set reference in MQ start-up procedure.
//***
//*
//RESET EXEC PGM=CSQUTIL
//STEPLIB DD DSN=SYS1.SCSQANLE,DISP=SHR
// DD DSN=SYS1.SCSQSNLE,DISP=SHR
// DD DSN=SYS1.SCSQAUTH,DISP=SHR
//CSQP0000 DD DISP=OLD,DSN=SYS1.MQS.NEW.PSID00
//CSQP0001 DD DISP=OLD,DSN=SYS1.MQS.NEW.PSID01
//CSQP0002 DD DISP=OLD,DSN=SYS1.MQS.NEW.PSID02
//CSQP0003 DD DISP=OLD,DSN=SYS1.MQS.NEW.PSID03
//CSQS0000 DD DISP=OLD,DSN=SYS1.MQS.PSID00
//CSQS0001 DD DISP=OLD,DSN=SYS1.MQS.PSID01
//CSQS0002 DD DISP=OLD,DSN=SYS1.MQS.PSID02
//CSQS0003 DD DISP=OLD,DSN=SYS1.MQS.PSID03
//CSQT0000 DD DISP=OLD,DSN=SYS1.MQS.NEW.PSID00
//CSQT0001 DD DISP=OLD,DSN=SYS1.MQS.NEW.PSID01
//CSQT0002 DD DISP=OLD,DSN=SYS1.MQS.NEW.PSID02
//CSQT0003 DD DISP=OLD,DSN=SYS1.MQS.NEW.PSID03
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
FORMAT
RESETPAGE
/*
//***
//* Delete and redefine log files and BSDS
//***
//*
//RECLOG2 EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DELETE (SYS1.MQS.BSDS01) ERASE CLUSTER
 DELETE (SYS1.MQS.BSDS02) ERASE CLUSTER
 DELETE (SYS1.MQS.LOGCOPY1.DS01) ERASE CLUSTER
 DELETE (SYS1.MQS.LOGCOPY1.DS02) ERASE CLUSTER
 DELETE (SYS1.MQS.LOGCOPY2.DS01) ERASE CLUSTER
 DELETE (SYS1.MQS.LOGCOPY2.DS02) ERASE CLUSTER
 SET MAXCC = 0
 DEFINE CLUSTER -
 (NAME(SYS1.MQS.BSDS01) -
 VOLUMES(SYS000) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(SYS1.MQS.BSDS01.DATA) -
 RECORDS(3000 3000) -
 RECORDSIZE(4089 4089) -

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 25

 CONTROLINTERVALSIZE(4096) -
 FREESPACE(0 20) -
 KEYS(4 0)) -
 INDEX -
 (NAME(SYS1.MQS.BSDS01.INDEX) -
 RECORDS(5 5) -
 CONTROLINTERVALSIZE(1024))

 DEFINE CLUSTER -
 (NAME(SYS1.MQS.BSDS02) -
 VOLUMES(SYS000) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(SYS1.MQS.BSDS02.DATA) -
 RECORDS(3000 3000) -
 RECORDSIZE(4089 4089) -
 CONTROLINTERVALSIZE(4096) -
 FREESPACE(0 20) -
 KEYS(4 0)) -
 INDEX -
 (NAME(SYS1.MQS.BSDS02.INDEX) -
 RECORDS(5 5) -
 CONTROLINTERVALSIZE(1024))

 DEFINE CLUSTER -
 (NAME (SYS1.MQS.LOGCOPY1.DS01) -
 LINEAR -
 VOLUMES(SYS000) -
 RECORDS(36750)) -
 DATA -
 (NAME(SYS1.MQS.LOGCOPY1.DS01.DATA))

 DEFINE CLUSTER -
 (NAME (SYS1.MQS.LOGCOPY1.DS02) -
 LINEAR -
 VOLUMES(SYS000) -
 RECORDS(36750)) -
 DATA -
 (NAME(SYS1.MQS.LOGCOPY1.DS02.DATA))

 DEFINE CLUSTER -
 (NAME (SYS1.MQS.LOGCOPY2.DS01) -
 LINEAR -
 VOLUMES(SYS000) -
 RECORDS(36750)) -
 DATA -
 (NAME(SYS1.MQS.LOGCOPY2.DS01.DATA))

DEFINE CLUSTER -
 (NAME (SYS1.MQS.LOGCOPY2.DS02) -

26 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 LINEAR -
 VOLUMES(SYS000) -
 RECORDS(36750)) -
 DATA -
 (NAME(SYS1.MQS.LOGCOPY2.DS02.DATA))
/*
//*
//***
//* Record information of the redefined LOG file in the BSDS
//***
//*
//JU003 EXEC PGM=CSQJU003
//STEPLIB DD DSN=SYS1.SCSQANLE,DISP=SHR
// DD DSN=SYS1.SCSQSNLE,DISP=SHR
// DD DSN=SYS1.SCSQAUTH,DISP=SHR
//SYSUT1 DD DISP=OLD,DSN=SYS1.MQS.BSDS01
//SYSUT2 DD DISP=OLD,DSN=SYS1.MQS.BSDS02
//SYSPRINT DD SYSOUT=*,DCB=BLKSIZE=629
//SYSIN DD *
 NEWLOG DSNAME=SYS1.MQS.LOGCOPY1.DS01,COPY1
 NEWLOG DSNAME=SYS1.MQS.LOGCOPY1.DS02,COPY1
 NEWLOG DSNAME=SYS1.MQS.LOGCOPY2.DS01,COPY2
 NEWLOG DSNAME=SYS1.MQS.LOGCOPY2.DS02,COPY2
/*
//

RECLOG3

This job depends on the successful completion of RECARCH1.

If only two active log datasets are listed for each copy of the active log,
MQ may still not restart. In this case add a new active log file for each
copy of the active log and define the replacement in the BSDS.

RECLOG3
//JOBID JOB CLASS=S,NOTIFY=&SYSUID
//*
//***
//* From job RECARCH1
//***
//* If only two active log datasets are listed for each copy of
//* the active log, MQ may still not restart.
//*
//* In this case, add a new active log file for each copy of the
//* active log and define the replacement in the BSDS.
//*

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 27

//* Edit the JCL wherever necessary.
//***
//*
//RECLOG2 EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DEFINE CLUSTER -
 (NAME (SYS1.MQS.LOGCOPY1.DS01) -
 LINEAR -
 VOLUMES(SYS000) -
 RECORDS(36750)) -
 DATA -
 (NAME(SYS1.MQS.LOGCOPY1.DS01.DATA))

 DEFINE CLUSTER -
 (NAME (SYS1.MQS.LOGCOPY1.DS02) -
 LINEAR -
 VOLUMES(SYS000) -
 RECORDS(36750)) -
 DATA -
 (NAME(SYS1.MQS.LOGCOPY1.DS02.DATA))

 DEFINE CLUSTER -
 (NAME (SYS1.MQS.LOGCOPY2.DS01) -
 LINEAR -
 VOLUMES(SYS000) -
 RECORDS(36750)) -
 DATA -
 (NAME(SYS1.MQS.LOGCOPY2.DS01.DATA))

 DEFINE CLUSTER -
 (NAME (SYS1.MQS.LOGCOPY2.DS02) -
 LINEAR -
 VOLUMES(SYS000) -
 RECORDS(36750)) -
 DATA -
 (NAME(SYS1.MQS.LOGCOPY2.DS02.DATA))

/*
//***
//* Record information on the newly defined log file in the BSDS.
//***
//*
//JU003 EXEC PGM=CSQJU003
//STEPLIB DD DSN=SYS1.SCSQANLE,DISP=SHR
// DD DSN=SYS1.SCSQSNLE,DISP=SHR
// DD DSN=SYS1.SCSQAUTH,DISP=SHR
//SYSUT1 DD DISP=OLD,DSN=SYS1.MQS.BSDS01
//SYSPRINT DD SYSOUT=*,DCB=BLKSIZE=629

28 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

//SYSIN DD *
 NEWLOG DSNAME=SYS1.MQS.LOGCOPY1.DS01,COPY1
 NEWLOG DSNAME=SYS1.MQS.LOGCOPY1.DS02,COPY1
 NEWLOG DSNAME=SYS1.MQS.LOGCOPY2.DS01,COPY2
 NEWLOG DSNAME=SYS1.MQS.LOGCOPY2.DS02,COPY2
/*
//***
//* Go to RCBSDS3
//***

RECNLOG

Define additional log datasets and then record information about them
in the BSDS.

RECNLOG
//JOBID JOB CLASS=S,NOTIFY=&SYSUID
//*
//***
//* Define new log datasets
//***
//*
 DEFINE CLUSTER -
 (NAME (SYS1.MQS.LOGCOPY3.DS01) -
 LINEAR -
 VOLUMES(SYS000) -
 RECORDS(36750)) -
 DATA -
 (NAME(SYS1.MQS.LOGCOPY3.DS01.DATA))
/*
//*
//***
//* Record information about new log datasets in the BSDSs
//***
//*
//JU003 EXEC PGM=CSQJU003
//STEPLIB DD DSN=SYS1.SCSQANLE,DISP=SHR
// DD DSN=SYS1.SCSQSNLE,DISP=SHR
// DD DSN=SYS1.SCSQAUTH,DISP=SHR
//SYSUT1 DD DISP=OLD,DSN=SYS1.MQS.BSDS01
//SYSUT2 DD DISP=OLD,DSN=SYS1.MQS.BSDS02
//SYSPRINT DD SYSOUT=*,DCB=BLKSIZE=629
//SYSIN DD *
 NEWLOG DSNAME=SYS1.MQS.LOGCOPY3.DS01,COPY1
 NEWLOG DSNAME=SYS1.MQS.LOGCOPY3.DS02,COPY1
/*

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 29

RECPAG1

Define new page datasets to replace any existing ones that may be
corrupted.

RECPAG1
//JOBID JOB CLASS=S,NOTIFY=&SYSUID
//*
//***
//* Define new page sets if any existing ones are corrupted.
//*
//* Edit the JCL accordingly wherever necessary.
//***
//*
 DEFINE CLUSTER -
 (NAME(SYS1.MQS.NEW.PSID00) -
 RECORDS(50000 2500) -
 LINEAR -
 VOLUMES(SYS000) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(SYS1.MQS.NEW.PSID00.DATA))

 DEFINE CLUSTER -
 (NAME(SYS1.MQS.NEW.PSID01) -
 RECORDS(50000 2500) -
 LINEAR -
 VOLUMES(SYS000) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(SYS1.MQS.NEW.PSID01.DATA))

 DEFINE CLUSTER -
 (NAME(SYS1.MQS.NEW.PSID02) -
 RECORDS(50000 2500) -
 LINEAR -
 VOLUMES(SYS000) -
 SHAREOPTIONS(2 3)) -
 DATA -
 (NAME(SYS1.MQS.NEW.PSID02.DATA))

 DEFINE CLUSTER -
 (NAME(SYS1.MQS.NEW.PSID03) -
 RECORDS(50000 2500) -
 LINEAR -
 VOLUMES(SYS000) -
 SHAREOPTIONS(2 3)) -
 DATA -

30 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 (NAME(SYS1.MQS.NEW.PSID03.DATA))
/*
//*
//***
//* FORMAT new page sets
//***
//*
//CSQUTIL EXEC PGM=CSQUTIL
//STEPLIB DD DSN=SYS1.SCSQANLE,DISP=SHR
//CSQP0000 DD DISP=OLD,DSN=SYS1.MQS.NEW.PSID00
//CSQP0001 DD DISP=OLD,DSN=SYS1.MQS.NEW.PSID01
//CSQP0002 DD DISP=OLD,DSN=SYS1.MQS.NEW.PSID02
//CSQP0003 DD DISP=OLD,DSN=SYS1.MQS.NEW.PSID03
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
FORMAT
/*
//*
//***
//* Recover from another page set.
//*
//* Amend page set reference in MQ start-up procedure.
//***
//*
//RECPAG1 EXEC PGM=IDCAMS,REGION=4M
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//DD1 DD DISP=SHR,DSN=SYS1.MQS.PSID00
//DD2 DD DISP=SHR,DSN=SYS1.MQS.NEW.PSID01
//SYSIN DD *

 REPRO -
 INFILE(DD1) -
 OUTFILE(DD2)
/*
//

ORDER OF JOBS

The order in which jobs should be run to recover if both BSDSs are
corrupted is listed below:

1 RCBSDS2

2 PRTBSDS

3 RECARCH

4 CSQ1LOGP

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 31

5 RECARCH1

6 RECLOG3

7 RCBSDS3.

Saida Davies (UK) © Xephon 1999

Stress-testing

INTRODUCTION

MQSeries has become an industry standard for robust messaging.
Once an installation has got to grips with MQSeries’ architectural
implications, it is then necessary to understand how its use affects
operations and, in particular, how it affects performance in a production
environment. When planning a release of MQSeries-dependent
software, it is necessary to gain an understanding of its requirement
for server capacity and its impact on throughput. As the release of
software under development approaches, stress-testing and
performance tuning become important.

The two phases – planning a roll-out and stress-testing in the lead-up
to implementation – can be tackled separately. MQSeries performance
figures are freely available from IBM’s Web site and from White
Papers, while it’s possible to stress test an application simply by
running it repeatedly.

Alternatively, the two issues can be tackled together, and it is this
approach that I intend to discuss in this article. While adopting this
approach does not preclude the use of the above techniques, it does
help to provide a fuller picture of performance and scalability. Firstly,
while IBM’s figures are undoubtedly accurate, it is difficult to
extrapolate from them to your own environment. The performance
constraints of MQSeries (for instance, those arising from disk IO
performance or queue manager configuration) can be extremely

32 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

difficult to predict. In my opinion, it is better to try out your own
infrastructure as soon as possible. Secondly, when dealing with
application performance, it is impractical to ask hundreds of users to
test your system. It is even harder to do so under controlled conditions
from which accurate conclusions may be drawn. Simulations of your
system are usually a more useful tool.

What I present here is a working example of techniques similar to
those I have found to be useful in my day-to-day work. It is only an
example (for contractual reasons, I can’t provide actual data) but, if
extended, it should be useful to others.

ARCHITECTURE AND TESTING STRATEGIES

The strategy that I employ for testing is to mimic proposed systems.
To do this, I need to understand the following factors:

1 What messages are to be sent (size and data)

2 The frequency of messaging

3 What response times are deemed to be acceptable

4 How many concurrent users are to be supported.

Once the above is known, it is possible to model the system on the
proposed server/network infrastructure.

What I have produced is a simple module that does this. The system
requires an array of messages to be specified (the messages represent
the typical ‘message life-cycle’ of your proposed system). The system
also requires pacing information to allow it to space the messages
accurately. Also needed are acceptable response times (ie the delay in
response from your server, via MQSeries, that has been deemed
reasonable). Finally, the application requires the number of instances
of the test model that are to run concurrently. Using this strategy, it is
relatively straightforward to establish how response times degrade as
a system approaches capacity.

With the test model defined, it is then possible to run tests under traced
conditions. The application in this article measures response times,
which is clearly useful to know. A more complete picture can be

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 33

obtained using this in conjunction with system resource monitors,
such as NT’s Performance Monitor, Omegamon, or even network
‘sniffers’, depending on where your constraints may be.

From an MQSeries point of view, there are three basic queue
configurations that are testable. It is possible to study these using the
software in the code listings. My application simply puts messages on
one queue and gets a ‘reply’ message from another queue (using the
MsgId). Depending on the queues used, three scenarios are possible:

1 If your system is primarily composed of MQClients writing to
and reading from queues, it is possible to put and get messages
using a single local queue. This gives you an indication of the
performance of your network and the number of clients that your
queue manager can support.

2 If your system uses local queue managers to communicate with
remote queue managers, or if it uses a ‘hub and spoke’ topology,
channel throughput can be studied by writing to a remote queue
on ‘ServerA’, which points to a remote queue on ‘ServerB’,
which in turn points back to a local queue on ‘ServerA’. The final
local queue is the queue to be read by the stress tester.

3 Finally, if a server system is available (in whole or in part), it is
possible to write messages to a queue that is serviced by your
server software. Replies are then read in a way that closely
approximates normal client/server applications.

IMPLEMENTING THE TESTING TOOLS

For reasons of object orientation, portability, and my own personal
fondness for the language, I have coded my testing tools in Java. This
has been achieved using four modest classes and one very simple
interface. I have used the com.ibm.mq MQSeries client classes in this
example as I have assumed that most people use MQSeries via clients.
If direct connection to a queue manager is required, it is possible to
substitute the com.ibm.mq package with the com.ibm.mqbind package,
which maps all calls to the standard C API.

I should note that the performance and memory requirements of Java
may be a concern in some installations. I am generally able to run

34 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

between 50 to 100 instances of my test on a single Pentium II under
NT without problems. If you run the queue manager on the same
machine, it obviously reduces capacity. All in all, with just a handful
of borrowed PCs (possibly running more than one operating system),
it should be possible to test systems that are intended for thousands of
users. Alternatively, a larger midrange system could be used to drive
the tests. As it’s usually easier to carry out performance tests out of
peak user hours, when network traffic is less variable, unused machines
are often available.

The code I have written is not full-featured (various MQSeries
facilities have been omitted), and it also carries out very little data
validation (I guessed that no-one would be interested in reading pages
of validation rules). It should, therefore, either be used with care or
enhanced according to your own requirements.

MQCONSTANTS

This class prompts the user for the runtime data constants to be used
during the test. It uses a GUI built using Java Swing components to
gather data, but makes no effort to validate the data. All fields are
obligatory. The following data is gathered:

• Queue manager name.

• Queue manager address (either its TCP/IP address or name, as the
Java client supports only IP).

• Client channel name (that is, the SVRCONN channel that’s to be
used).

• Request queue name (local or remote).

• Reply queue name (local only).

• Maximum message length (this is used only for client buffers,
and shouldn’t affect queue manager performance).

• Number of instances to run (from one upwards, depending on
your machine’s capacity).

• Number of repetitions (the number of times to loop through the
message set).

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 35

• Number of messages.

Once this data is gathered, a second window is displayed prompting
the user to enter the following array of message profile data, which
makes up a message set:

• Message source, which is either a file name (that is, the message
is generated from the contents of the file) or a message length. If
you specify a message length, then a message of that length is
generated that contains only spaces. This will lead to inaccurate
results if compression exits, or SNA channels using SNA
compression, are used.

• Acceptable time for message pair to complete, specified in
milliseconds.

• Failure time (after which message is said to have failed, perhaps
as a result of an over-stressed system) in milliseconds.

• Pacing time (again in milliseconds), the interval (excluding the
time taken to generate and transfer messages) during which the
test pauses before resuming messaging.

As a fairly sizeable amount of data is required to run the program,
basic serialization is used to save users from repeatedly having to key
in parameters. The serialized file (MQConstants.ser) can be copied to
other systems only if identical Java versions are used. Once all data is
captured, the interface ConstantsListener is used to notify other
classes that they may continue (in this case, only MQStressTester is
interested).

MQSTRESSTESTER

This class is the suite’s control object. It instantiates other objects and
controls the starting and stopping of tests. It uses a window with a
basic response-time feedback area. Each instance of the test (each
MQStressThread) has a visual component in this area, reporting on
how it is progressing. To clarify the mass of numbers reported, colour
coding is used as follows:

36 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

• Green
The response time is less than the acceptable time.

• Yellow
The response time is less than the failure time.

• Red
The response time is greater than the failure time (or messaging
has totally failed).

It’s not my intention to produce a system for generating figures for
statistical analysis (though the figures may be logged to disk by
extending this system). The way I envisage the system being used is
that the user should increase the number of simulated users until the
systems starts showing ‘yellow’ warning responses, then tune from
there. When the system cannot be tuned further, it is then in its optimal
state and the maximum load is also established.

MQSERVICE

This class interfaces to MQSeries. It handles connections and queue
opening. It also sets up message parameters (the subset that are used)
and handles the putting and getting of messages to and from the
queues. It assumes all messages exist in request-reply pairs. The time
taken to handle messages is recorded here and returned to the calling
class. Several extensions could be made to this class, for example, by
introducing persistent messaging and error recovery.

MQSTRESSTHREAD

An object of this class is instantiated for each simulated user. The class
calls the MQService class directly and renders the response time data
accordingly. Rendering is achieved by use of a GUI label containing
the response time in milliseconds. The label is colour-coded to
improve clarity. Each instance of this class runs in its own separate
thread.

CONCLUSION

Using the tools and the methods that I have described, it should be

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 37

possible to stress test both queue managers and server applications. It
may be necessary to extend the classes provided, or to re-write them
totally. I am sure, however, that the general principle of testing a
system by matching the intended messaging structure as closely as
possible is valid. I also think that, by using a multi-threaded
environment, a close approximation of user input can be achieved. It
is important, however, to be aware of the resource limitations on the
test machine. If a test machine (client not server) is over-utilized it will
slip below the prescribed messaging rate and under-stress the server
being tested.

MQCONSTANTS.JAVA
package com.dmitri.mqstress;
import com.sun.java.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;
import java.util.*;
/**
* @author Dmitri
*
* This class prompts for various parameters that are thereafter
* used to control the test. To save users the trouble of repeatedly
* typing in data, the class persists itself to disk using standard
* serialization.
*/
public class MQConstants extends JFrame implements Serializable {

// The constants
 private JTextField iQueueManagerName = new JTextField();
 private JTextField iHostName = new JTextField();
 private JTextField iChannelName = new JTextField();
 private JTextField iRequestQueueName = new JTextField();
 private JTextField iReplyQueueName = new JTextField();
 private JTextField iMaxMessageLength = new JTextField();
 private JTextField iNumberOfInstances = new JTextField();
 private JTextField iNumberOfRepetitions = new JTextField();
 private JTextField iNumberOfMessages = new JTextField();

// Arrays of 'textfields' for message details
 private JTextField [] iMessageLenthOrFile; // The length of a blank
 // message or a file
 private JTextField [] iAcceptableTime; // Acceptable time
 private JTextField [] iFailureTime; // Time after which
 // message is deemed to

38 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 // have failed
 private JTextField [] iPaceTime; // Time used to delay
 // between messages

// The text that is to be used for messaging.
 private String [] iMessages;

// Buttons
 private JButton iBtnMessages = new JButton("Messages");
 private JButton iBtnReset = new JButton("Reset");
 private JButton iBtnOk = new JButton("Ok");

// Messsage capture dialogue box
 private JDialog iMessagedlg;

 protected static MQConstants cInstance;
 private transient Vector iListeners = new Vector();
 private static final String PERSISTENCY_NAME = "MQConstants.ser";

/**
* Return the name of the queue manager
*/
 public String getQueueManagerName() {
 return iQueueManagerName.getText();
 }
/**
* Return the host name
*/
 public String getHostName() {
 return iHostName.getText();
 }
/**
* Return the channel name
*/
 public String getChannelName() {
 return iChannelName.getText();
 }
/**
* Return the name of the request queue
*/
 public String getRequestQueueName() {
 return iRequestQueueName.getText();
 }
/**
* Return the name of the reply queue
*/
 public String getReplyQueueName() {
 return iReplyQueueName.getText();
 }
/**

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 39

* Return the maximum message length
* Note : no effort is made to validate numeric values entered
*/
 public int getMaximumMessageLength() {
 return Integer.parseInt(iMaxMessageLength.getText());
 }
/**
* Return the number of instances of the stress tester to run
* Note : no effort is made to validate numeric values entered
*/
 public int getNumberOfInstances() {
 return Integer.parseInt(iNumberOfInstances.getText());
 }
/**
* Return the number of repetitions to make
* Note : no effort is made to validate numeric values entered
*/
 public int getNumberOfRepetitions() {
 return Integer.parseInt(iNumberOfRepetitions.getText());
 }
/**
* Return the number of messages requested
*/
 public int getNumberOfMesages() {
 try {
 return Integer.parseInt(iNumberOfMessages.getText());
 } catch (NumberFormatException ex) {}
 return 0;
 }
/**
* Return the time (in milliseconds) that is specified as acceptable
* Note : no effort is made to validate numeric values entered
*/
 public int getAcceptableTime(int index) {
 return Integer.parseInt(iAcceptableTime[index].getText());
 }
/**
* Return the time (in milliseconds) that represents a failure
* Note : no effort is made to validate numeric values entered
*/
 public int getFailureTime(int index) {
 return Integer.parseInt(iFailureTime[index].getText());
 }
/**
* Return the time (in milliseconds) that to be used to pace
* MQ polling
* Note : no effort is made to validate numeric values entered
*/
 public int getPaceTime(int index) {
 return Integer.parseInt(iFailureTime[index].getText());

40 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 }
/**
* Return the message specified by the index supplied
*/
 public String getMessage(int index) {
 return iMessages[index];
 }

/**
* Standard singleton pattern constructor that takes care of the
* capture of runtime parameters
*/
 protected MQConstants() {

 super("MQPing Constants");
 setDefaultCloseOperation(DO_NOTHING_ON_CLOSE);

 JPanel contents = new JPanel();
 getContentPane().add(contents);
 contents.setBorder(BorderFactory.createEmptyBorder(15,15,15,15));
 contents.setLayout(new BorderLayout());

 JPanel middle = new JPanel();
 middle.setLayout(new GridLayout(10, 2, 10, 10)); // Panel to
 // capture constants
 contents.add(middle);

 middle.add(new JLabel("Queue Manager Name:"));
 middle.add(iQueueManagerName);
 middle.add(new JLabel("Host Name:"));
 middle.add(iHostName);
 middle.add(new JLabel("Client Channel Name:"));
 middle.add(iChannelName);
 middle.add(new JLabel("Request Queue Name:"));
 middle.add(iRequestQueueName);
 middle.add(new JLabel("Reply Queue Name:"));
 middle.add(iReplyQueueName);
 middle.add(new JLabel("Max message Length:"));
 middle.add(iMaxMessageLength);
 middle.add(new JLabel("Number of Instances:"));
 middle.add(iNumberOfInstances);
 middle.add(new JLabel("Number of Repetitions:"));
 middle.add(iNumberOfRepetitions);
 middle.add(new JLabel("Number of Messages:"));
 middle.add(iNumberOfMessages);

 JPanel buttons = new JPanel();
 contents.add(buttons, BorderLayout.SOUTH);
 iBtnOk.setEnabled(false);
 buttons.setLayout(new FlowLayout());

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 41

 buttons.add(iBtnMessages);
 buttons.add(iBtnReset);
 buttons.add(iBtnOk);

 addListeners();
 pack();

 }

/**
* Handle hiding of the prompter frame and persisting data, which
* is also a convenient point at which to calculate messages
*/
 private void closeEvent() {
 try {
 ObjectOutputStream oos = new ObjectOutputStream(new
 FileOutputStream(PERSISTENCY_NAME));
 oos.writeObject(this);
 oos.flush();
 oos.close();
 } catch (IOException ex) {
 ex.printStackTrace();
 }

 iMessages = new String [iMessageLenthOrFile.length];

 for (int i = 0; i < iMessageLenthOrFile.length; i++) {

 try {
 int buffLen =
 Integer.parseInt(iMessageLenthOrFile[i].getText());
 char [] buffer = new char [buffLen];
 for (int j = 0; j < buffLen; j++) buffer[j] = ' ';
 iMessages[i] = new String(buffer);

 } catch (NumberFormatException ex) { // The user has
 // specified a filename

 try {
 BufferedReader reader = new BufferedReader(
 new FileReader(iMessageLenthOrFile[i].getText()));
 iMessages[i] = reader.readLine();
 } catch(IOException ioex) {
 System.out.println(ioex);
 System.out.println("Message length set to 1");
 iMessages[i] = " ";
 }
 }
 }
 setVisible(false);

42 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 notifyConstantsListeners();
 }

/**
* Adds appropriate inner classes for listening to buttons
*/
 private void addListeners() {

 iListeners = new Vector();
 iBtnMessages.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {
 setUpMessages();
 iBtnOk.setEnabled(true);
 }
 });

 iBtnReset.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {
 setVisible(false);
 cInstance = new MQConstants();
 cInstance.setVisible(true);
 }
 });

 iBtnOk.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {
 closeEvent();
 }
 });
 }
/**
* Sets up the visual fields to capture message data
*/
 private void setUpMessages() {

 iMessagedlg = new JDialog(this, "Messages", true); // modal popup.
 iMessagedlg.setDefaultCloseOperation(DO_NOTHING_ON_CLOSE);

 JPanel dlgContents = new JPanel();
 iMessagedlg.getContentPane().add(dlgContents);
 dlgContents.setBorder(
 BorderFactory.createEmptyBorder(10,10,10,10));
 dlgContents.setLayout(new BorderLayout());

 JPanel key = new JPanel();
 key.setBorder(BorderFactory.createEmptyBorder(5,5,5,5));
 key.setLayout(new GridLayout(1, 5, 5, 5));

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 43

 dlgContents.add(key, BorderLayout.NORTH);

 key.add(new JLabel("Message Number"));
 key.add(new JLabel("Message length/src"));
 key.add(new JLabel("Acceptable Time"));
 key.add(new JLabel("Failure Time"));
 key.add(new JLabel("Pace Time"));

 int msgNumbers = getNumberOfMesages();
 JPanel messageParms = new JPanel();
 JScrollPane scrPane = new JScrollPane();
 scrPane.getViewport().add(messageParms);
 dlgContents.add(scrPane);
 messageParms.setLayout(new GridLayout(msgNumbers, 5, 5, 5));

 // Instantiate the array of parameters only if the number
 // requested has changed
 if (iMessageLenthOrFile == null || iMessageLenthOrFile.length
 != msgNumbers) {
 iMessageLenthOrFile = new JTextField [msgNumbers];
 iAcceptableTime = new JTextField [msgNumbers];
 iFailureTime = new JTextField [msgNumbers];
 iPaceTime = new JTextField [msgNumbers];
 }

 for (int i = 0; i < msgNumbers; i++) {

 messageParms.add(new JLabel(Integer.toString(i + 1) + "."));
 if (iMessageLenthOrFile[i] == null) iMessageLenthOrFile[i]
 = new JTextField();
 messageParms.add(iMessageLenthOrFile[i]);
 if (iAcceptableTime[i] == null) iAcceptableTime[i]
 = new JTextField();
 messageParms.add(iAcceptableTime[i]);
 if (iFailureTime[i] == null) iFailureTime[i] = new JTextField();
 messageParms.add(iFailureTime[i]);
 if (iPaceTime[i] == null) iPaceTime[i] = new JTextField();
 messageParms.add(iPaceTime[i]);
 }

The remainder of the code for this class and the code for other classes
used for MQSeries stress-testing appear in next month’s issue of MQ
Update.

MQSeries Specialist (UK) © Xephon 1999

MQ news

BMC Software has announced Patrol for
MQ, the latest member of the company’s
family of system and network management
products and the first to benefit from the
company’s recent (November 1998)
acquisition of Boole & Babbage. Patrol for
MQ manages the MQSeries layer, managing
both MQSeries objects and hardware and
software components that affect MQSeries
availability.

The product provides managers with
facilities for monitoring, automating, and
managing the MQSeries layer, also
providing numerous facilities for managing
messages by content, including the ability to
search and browse messages. Also provided
is end-to-end message compression for
improved performance and throughput.
Another benefit of Patrol for MQ (one that
the company seems to think hardly worth
mentioning) is its ability to manage both
Microsoft’s MSMQ and IBM’s MQSeries.

It’s out now, and standard packages start at
US$25,000.

For further information contact:
BMC Software, 2101 CityWest Blvd,
Houston, TX 77042, USA
Tel: +1 713 918 8800
Fax: +1 713 918 8000
Web: http://www.bmc.com

BMC Software Limited, Compass House,
207-215 London Road, Camberley, Surrey,
GU15 3EY, UK
Tel: +44 1276 24622
Fax: +44 1276 61201

IBM has announced MQSeries Integrator
V2.0, the latest version of the company’s
message broker, which now supports
dynamic publish/subscribe based on
message content (bringing the product in line
with the same facilities in the MQSeries
V5.0 base product), integration with
databases, allowing MQSeries Integrator to
query databases such as DB2 and SQL
Server for content for message
transformation and creation, support for
XML, and new APIs, including the
Application Messaging Interface (AMI)
V1.0 API that makes message transport
functionality transparent to applications.
MQSeries Integrator V2 is to be available in
December this year for AIX and NT, with
versions for other platforms to follow.

For further information contact your local
IBM representative.

* * *

Vision Software Tools is to bundle JADE 4.1
with IBM’s MQSeries (the product also
ships with DB2 Connect and WebSphere
Enterprise Edition). JADE includes the
Vision Business Logic Server, Vision
Developer Studio, and Vision Business
Server Manager, which handles Web
application development and deployment.

For further details contact:
Vision Software Tools Inc, 2101 Webster
Street, 8th Floor, Oakland, CA 94612, USA
Tel: +1 510 238 4100
Fax: +1 510 238 4118
Web: http://www.vision-soft.com

x xephon

	MQSeries in an OS/390 client/server environment
	Closing the holes in MQ security
	MQSeries for MVS and TCP/IP
	Recovery procedures
	Stress-testing
	MQ news

