
© Xephon plc 1999

3 PCF programming in Java
25 Copying object definitions from

QMGR to QMGR
33 MQSeries stress testing
42 Recovering damaged or lost

circular logs on Unix
44 MQ news

September 1999

3

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 1999. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: +44 1635 550955
e-mail: HarryLewis@compuserve.com

North American office

Xephon/QNA
1301 West Highway 407, Suite 201-405
Lewisville, TX 75077-2150
USA
Telephone: +1 940 455 7050

Contributions
Articles published in MQ Update are paid for
at the rate of £170 ($250) per 1000 words and
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon’s Web site, where you
can download Notes for Contributors.

MQ Update on-line
Code from MQ Update is available from
Xephon’s Web site at www.xephon.com/
mqupdate.html (you’ll need the user-id
shown on your address label to access it). If
you’ve a problem with your user-id or pass-
word call Xephon’s subscription department
on +44 1635 33886.

Editor
Harry Lewis

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 3

PCF programming in Java

INTRODUCTION

As many people familiar with MQSeries will know, PCF is the
product’s command interface, which enables the development of
systems management software. It uses a machine-oriented format and
was originally implemented in the C language.

Anyone who’s had experience of using the MQSC (runmqsc) interface
has used PCF, as this is what the runmqsc program sends to queue
managers. Any action that is possible via the MQSC interface is also
possible via PCF. In fact, PCF goes beyond what is available via
MQSC, and has additional features that are not implemented in
MQSC. Another advantage of PCF is that it also tends to report error
conditions a little better. The main drawbacks of PCF are its (original)
rather static C implementation and the lack of support for PCF in
either MVS or OS/390.

I recently questioned IBM about the lack of OS/390 support at the
MQSeries user group. While they acknowledged that this is a long-
standing omission from the product, they did not give any information
about the possible future inclusion of this feature. Fortunately, a PCF
bridge for OS/390 has been developed by the New York-based
systems management company, Nastel. I have not had any experience
of using this product, though it sounds promising.

In this article I discuss the use of PCF in a systems management
strategy, focusing on the newer Java implementation of PCF, and
using our own implementation of it in a simple systems management
framework as an example.

SYSTEMS MANAGEMENT

I think that most people with operational experience of MQSeries will
acknowledge that keeping the whole infrastructure up and running is
something of a time consuming task. This is often aggravated by the
use of MQSeries in on-line systems that require MQ channels to run

4 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

continuously. Much of the administrative overhead of this stems from
MQSeries’ assured delivery features and the impact they have on
channels.

For example, if a transient break in communications has taken place,
resulting in a failure to ‘handshake’ across platforms, MQ channel
agents can get into a number of non-functional states. Such states
include ‘in-doubt messaging’ and message sequence errors. The
purpose of these states is to ensure that messages are not lost as a result
of network errors. While this is often a useful feature, many on-line
systems could benefit from ‘datagram’ style messaging, which is
about sending as many messages as possible, not worrying about
losing a few.

Another operational MQSeries concern is the notification of failures.
It is possible for a ‘fire and forget’ application to send thousands of
messages to a queue manager without their being forwarded to their
target queue manager. Processes need to be implemented to handle
both the detection of errors and their correction.

It is not generally viable to monitor and correct MQSeries problems
manually. Sites that run MQSeries must, therefore, decide whether to
purchase a third-party management solution or produce their own
tools. The recent release of the Java PCF support pack (it was released
in the last six months) has made in-house development a far more
attractive proposition.

PCF PROGRAMMING IN JAVA

Java is an excellent language for MQSeries development. Quite apart
from the usual arguments about object-orientation and Java’s relative
ease of use, Java’s cross platform nature makes it an ideal partner for
cross platform middleware like MQSeries.

Since PCF commands are little more than integer and character data
streams, it has always been possible from a technical point of view to
issue them from Java. I myself experimented with doing just this
before the release of the Java support pack. I found that using Java and
(more importantly) object-oriented wrappers increases the usability
of PCF significantly.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 5

The IBM support pack contains three main components (see
www.software.ibm.com/ts/mqseries/txppacs/ms0b.html):

1 A high-level agent that manages connections to MQSeries and
also sends and receives messages to and from the command
queues.

2 Java classes that map to the five PCF data structures, extending
the abstract class PCFParameter:

– MQCFH, the PCF header (for return codes etc).

– MQCFIN, for integer parameters.

– MQCFIL, for arrays of integer parameters.

– MQCFST, for string based parameters.

– MQCFSL, for arrays of string parameters.

3 The constants that must be used in PCF commands. These should
be placed in interfaces and may, therefore, be implemented by
your own code.

Using the IBM classes, a sample piece of code to start a named channel
could be as follows:

/**
* This method starts the channel specified.
*/
 public void startChannel(PCFAgent agent, String channelName) {

 PCFParameter [] iParameters = new PCFParameter [] {
 new MQCFST (MQCACH_CHANNEL_NAME, channelName),
 };

 try {
 MQMessage [] pcfResponses = agent.send
 (MQCMD_START_CHANNEL, iParameters);

 } catch (MQException ex) {
 // handle error
 }
 }

This method does not establish an agent connection (see the code
listings at the end of this article for examples of how this is done), nor

6 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

does it check the result of the start request (by reading the pcfResponses
messages into an MQCFH data structure). It does, however,
demonstrate two advantages of the Java classes: they are less verbose
and are higher level than their C equivalents. Another benefit of the
Java classes is that much of the tedium of using the C implementation
(such as length setting and response parsing) is eliminated.

INSTALLING AND RUNNING PCF JAVA

Unfortunately, the downloadable IBM PCF support pack that I got
was only available in tar format (this may have changed), which
meant that I had to unpack it on a Linux machine. Perhaps because of
this, the directory structure within the ‘jar’ that emerged was not
present. I was, therefore, forced to ‘unjar’ the product and manually
copy the components into their ‘com\ibm\mq\pcf’ hierarchy. Once
this was done, I was able to place the PCF classes and the base MQ
Java client classes into my classpath and run the sample code. Users
of different versions of Unix may not have the same difficulty.

In order to accept PCF commands, a queue manager must satisfy the
following criteria:

• The queue manager must be running.

• The default command queues must be in place (they are created
in the default MQSeries Version 5 installation).

• A route to the queues must be available. In this case, client
channels and the TCP channel listener (runmqlsr) are used.

• The command server must be started (using the command
STRMQCSV QueueManagerName).

MQ CRAWLER

Based on our organization’s requirements, I developed a basic
framework of Java classes to help monitor the availability of MQSeries
connections. MQSeries channels are invariably the weakest link in an
MQSeries infrastructure, as they are subject to the relative vagaries of
networking. I have, therefore, concentrated on automating the task of
querying queue managers for the names of their sender channels and

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 7

their status. In this way, any channel that is not in a ‘running’ or
‘inactive’ state is treated as a potential problem.

In addition to this, the topology of a network of interconnected queue
managers is often confusing. I have developed a technique, using
basic MQ standards, for the auto discovery of remote queue managers
and the clarification of the resource to which channels point that
involves ‘crawling’ around from one queue manager to another.

The classes that implement this are presented at the end of this article.
While they don’t include a front-end either to represent this data in a
meaningful manner or to raise alerts, this is only the first part of an on-
going project, and I intend to build on it in future articles.

MQ CRAWLER CLASSES

• PCFHashtable
This is simply a utility wrapper class. It is created using a
response message (for instance, the response from a ‘channel
details’ enquiry), and then walks through a message and splits its
components (such as MQCFINs or MQCFSTs) into entries in a
hash table. Other classes are then able to query values without
knowledge of parameter order. For example, if iChannelDetails
is an instance of PCFHashtable (again created in response to a
channel details query), the following code can be used to retrieve
the channel type:

int chltype = iChannelDetails.getIntValue(MQIACH_CHANNEL_TYPE);

• ChannelDetailsPCF
This class is used to generate the PCF request that queries a queue
manager for details of all its channels.

• ChannelStatusPCF
This class is similar to ChannelDetailsPCF, with the exception
that it generates a status query.

The remaining classes are wrappers for the main components of an
MQSeries infrastructure:

• MQInfrastructure
This class manages all queue managers. It is the initial class of the

8 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

MQ Crawler suite. Once the PCF classes are installed (as described
earlier), and the MQ Crawler classes are added to the classpath,
it may be executed using the command below (you have to
substitute appropriate values for QmgrName, port, and address).

java com.dmitri.pcf.MQInfrastructure QmgrName port address

The MQInfrastructure class is created with a start point queue
manager, and its job is to coordinate the discovery of all other
queue managers. Future refinements to this class will include the
ability to specify more than one start point.

• QmgrManager
This class manages connections and interactions with a single
queue manager. It opens the agent link to the queue manager and
queries it for channel details using the ChannelDetailsPCF and
ChannelStatusPCF classes. Once it has details of channels, it
creates ManagedChannel objects for further interaction.

• ManagedChannel
An instance of this class is created to handle each channel. It’s a
place-holder for future channel management, such as channel
starts and resets. Current functionality is limited, but includes the
ability to make a query about target queue managers. Target
queue manager details are passed up the class hierarchy to
MQInfrastructure as part of the auto discovery process.

FUTURE ENHANCEMENTS

MQ Crawler is a simple framework for implementing system
management functions. To be really useful, however, it needs some or
all of the following additional functionality:

• A graphical interface or a well-structured text interface. This
would give a clearer representation of queue managers and their
relationship to channels.

• The ability to add queue managers manually to the managed
infrastructure.

• The addition of threads to improve performance. MQ Crawler

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 9

currently queries queue managers sequentially, thus spending
much of its time waiting for replies.

• Facilities for generating alerts on channel failures etc. Such alerts
could be visual, audible, implemented using SNMP traps, e-mail,
etc.

• Facilities for correcting error conditions manually in response to
alerts. Such facilities could include ones to handle:

– Channel restarts

– Channel resets

– Channel commit/roll-back (for ‘in-doubt’ messages)

– Transmission queue re-enabling.

• Automatic recovery from pre-defined error conditions.

• Greater tolerance of errors when connecting to and dealing with
queue manager resources.

In addition to the system management features listed above, a full-
featured MQSeries tool should also provide facilities for handling
configuration. Most third-party system management products include
the following configuration features:

• Channel/queue creation and modification.

• Creation and modification of other MQSeries objects, such as
queue managers and processes.

• Facilities for copying resources from one queue manager to
another.

CONCLUSION

It should be clear by now that PCF programming (when wrapped to
a sufficient degree) is not an inordinately complex task. It should also
be clear, however, that a full-featured MQSeries system management
software can be large and time-consuming to write.

10 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

While an off-the-shelf package sounds inviting, one must be prepared
to deal with a solution that is generic. My own experience of the
MQSeries systems management market is not favourable. I saw
nearly all the products that were available last year at the Transaction
and Messaging Conference (September 1998) and concluded that
practically none succeed in balancing complexity with scope of
features.

So, if you have good development resources (Java in this case,
although wrapping in C++ should also be productive) it could be
viable to produce a simple system management suite internally. A full-
featured system does not, at present, seem appropriate. This article is
not the start of a Linux-like shareware solution, though I hope that it
(and follow-up articles) will help other developers to pursue a solution
along these lines.

SOURCE CODE FOR THE CLASSES

Note that some of the listings below include the continuation character,
‘➤ ’, to indicate that one line of code maps to several lines of print.

PCFHASHTABLE.JAVA
package com.dmitri.pcf;

import com.ibm.mq.pcf.*;
import com.ibm.mq.*;
import java.util.*;
/**
* @author Dmitri
*
* This class extends Hashtable to provide PCF-specific processing.
*/
public class PCFHashtable extends Hashtable {

 private int iReasonCode;

/**
* Constructor that sets up the data based on a message.
*/
 PCFHashtable(MQMessage message) {

 super();
 try {

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 11

 MQCFH cfh = new MQCFH(message);
 iReasonCode = cfh.reason;

 if (isValid()) {

 PCFParameter p;
 for (int i = 0; i < cfh.parameterCount; i++) {

 // Walk through the returned attributes
 p = PCFParameter.nextParameter (message);
 Integer key = new Integer(p.getParameter());
 put(key, p.getValue());
 }
 }
 } catch (Exception ex) {
 System.out.println(ex);
 }
 }

/**
* Is the PCF request valid and, hence, may it be used?
*/
 public boolean isValid() {
 return iReasonCode == 0;
 }

/**
* Returns the reason code for use by diagnostic processes.
*/
 public int getReasonCode(){
 return iReasonCode;
 }

/**
* Returns the int value represented by the key supplied.
*/
 public int getIntValue(int key) {
 Integer i = (Integer) get(new Integer(key));
 return i.intValue();
 }
/**
* Returns the int array represented by the key supplied.
*/
 public int [] getIntArray(int key) {
 return (int []) get(new Integer(key));
 }
/**
* Returns the string value represented by the key supplied.
*/
 public String getStringValue(int key) {

12 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 // mq returns padded strings.
 return ((String) get(new Integer(key))).trim();
 }
/**
* Returns the string array represented by the key supplied.
*/
 public String [] getStringArray(int key) {
 String [] paddedStrings = (String []) get(new Integer(key));
 String [] trimStrings = new String [paddedStrings.length];
 for (int i = 0; i < paddedStrings.length; i++) {
 trimStrings[i] = paddedStrings[i].trim();
 }
 return trimStrings;
 }
}

CHANNELDETAILSPCF.JAVA
package com.dmitri.pcf;
import com.ibm.mq.pcf.*;
import com.ibm.mq.*;

/**
* @author Dmitri
*
* This class is used to query queue managers for details of all
* the channels they own.
* This query is currently limited to sender channels.
*/
public class ChannelDetailsPCF implements CMQCFC {

 private PCFAgent iAgent;
 private PCFParameter [] iParameters;

/**
* This constructor requires a valid queue manager agent. This
* "channel details" request is currently only for sender channels
* (channel type of MQCHT_SENDER), though this may easily be
* changed to MQCHT_ALL.
*/
 public ChannelDetailsPCF(PCFAgent agent) {

 iAgent = agent;
 iParameters = new PCFParameter [] {
 new MQCFST (MQCACH_CHANNEL_NAME, "*"),
// new MQCFIN (MQIACH_CHANNEL_TYPE, CMQXC.MQCHT_SENDER),
 new MQCFIN (MQIACH_CHANNEL_TYPE, CMQXC.MQCHT_ALL),
 new MQCFIL (MQIACF_CHANNEL_ATTRS, new int [] {MQIACF_ALL}),
 };

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 13

 }

/**
* This method returns an array of PCFHashtables. Each hashtable
* represents a single channel. The hashtable holds all data
* pertaining to the channel, and the data varies according to the
* channel, so that, for example, the sender channel holds details
* of target queue manager, while the receiver channel doesn't.
*/
 public PCFHashtable [] getChannels() {

 try {
 MQMessage [] pcfResponses = iAgent.send (MQCMD_INQUIRE_CHANNEL,
 iParameters);
 PCFHashtable [] details = new PCFHashtable [pcfResponses.length];

 for (int i = 0; i < pcfResponses.length; i++) {
 details[i] = new PCFHashtable(pcfResponses[i]);
 }
 return details;

 } catch (Exception e) {
 e.printStackTrace();
 }
 return null;
 }
}

CHANNELSTATUSPCF.JAVA

package com.dmitri.pcf;
import com.ibm.mq.pcf.*;
import com.ibm.mq.*;
/**
* @author Dmitri
*
* This class is used to query channel status.
*/
public class ChannelStatusPCF implements CMQCFC {

 private PCFAgent iAgent;
 private PCFParameter [] iParameters;

/**
* Constructor (requires a valid queue manager agent).
*/
 public ChannelStatusPCF(PCFAgent agent) {

 iAgent = agent;

14 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 iParameters = new PCFParameter [] {
 new MQCFST (MQCACH_CHANNEL_NAME, "*"),
 new MQCFIL (MQIACH_CHANNEL_INSTANCE_ATTRS, new int []
 {MQIACF_ALL}),
 };
 }

/**
* This method returns an array of PCFHashtables. Each hashtable
* contains parameters describing channel status.
*/
 public PCFHashtable [] getChannelStatus() {

 try {
 MQMessage [] pcfResponses = iAgent.send
 (MQCMD_INQUIRE_CHANNEL_STATUS, iParameters);
 PCFHashtable [] details = new PCFHashtable [pcfResponses.length];

 for (int i = 0; i < pcfResponses.length; i++) {
 details[i] = new PCFHashtable(pcfResponses[i]);
 }
 return details;

 } catch (Exception e) {
 e.printStackTrace();
 }
 return null;
 }
}

MQINFRASTRUCTURE.JAVA

package com.dmitri.pcf;

import com.ibm.mq.*;
import java.util.*;
/**
* @author Dmitri
*
* This class is the top-level module for the MQ Infrastructure
* monitor suite. It is a coordination and look-up point for other
* classes, and makes use of a standard Singleton pattern to ensure
* that it is not duplicated.
*/
public class MQInfrastructure {

 private static MQInfrastructure cInstance;
 private Hashtable iAllQueueManagers = new Hashtable();

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 15

/**
* Singleton private constructor. This sets up the first queue manager
* (specified by a command line argument), then calls the method
* discoverAllQmgrs to crawl through the MQSeries infrastructure.
*/
 private MQInfrastructure(String startQmgrName, int startPort,
 String startAddress) {
 QMgrManager mgr = new QMgrManager(startQmgrName, startPort,
 startAddress);
 try {
 mgr.connect();
 mgr.queryChannels();

 iAllQueueManagers.put(mgr.getName(), mgr);
 mgr.discoverQmgrs(iAllQueueManagers);
 discoverAllQmgrs(iAllQueueManagers);

 } catch (MQException ex) {

 ex.printStackTrace();
 }
 }

/**
* Provides access to the singleton instance.
*/
 public static MQInfrastructure instance() {
 return cInstance;
 }

/**
* Provides access to the queue manager data.
*/
 public Hashtable getQueueManagers() {
 return iAllQueueManagers;
 }

/**
* Iterate through the listed queue managers, connecting and querying
* until no more are discovered. This could be described as a "crawler
* method", as it uses a queue manager's references to other queue
* managers for "auto discovery" (as long as conventions are followed
* and queue managers are running).
*
* I've opted for an interative rather than a recursive approach here
* as it makes everything a bit more explicit.
*/
 private void discoverAllQmgrs(Hashtable qmgrStore) {

 int currentSize = qmgrStore.size();

16 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 for (int i = 0; i != currentSize;) {

 i = currentSize;

 for (Enumeration enum = qmgrStore.elements();
 enum.hasMoreElements();) {

 QMgrManager current = (QMgrManager) enum.nextElement();
 if (!current.isConnected()) {
 // This is an area that needs to be improved. If a queue
 // manager refuses a connection for whatever reason, this
 // code attempts to re-connect on each sweep. While this
 // may be desirable, it imposes a processing overhead.
 try {
 current.connect();
 current.queryChannels();
 current.discoverQmgrs(qmgrStore);
 } catch (MQException ex) {
 System.out.println(ex);
 }
 }
 }
 currentSize = qmgrStore.size();
 }
 }

/**
* Bootstrap method. Requires a starting point (queue manager name
* and the port and address on which it's running.
*/
 public static void main(String [] args) {

 if (args.length != 3) {
 remindOfUsage();
 }
 try {
 int port = Integer.parseInt(args[1]);
 cInstance = new MQInfrastructure(args[0], port, args[2]);
 printAllQueueManagerDetails();

 } catch (NumberFormatException nex) {
 remindOfUsage();
 }
 }

/**
* A gentle reminder of how to use this program.
*/
 private static void remindOfUsage() {

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 17

 System.out.println("Usage:");
 System.out.println("java com.dmitri.pcf.MQInfrastructure
 QueueManagerName Port Address");
 System.out.println("Note: MQSeries will use port 1414 as default");

 System.exit(0);
 }

/**
* This is a very simple way of rendering all the data that is
* collected. It iterates through all queue manager data and dumps
* it to system out.
*/
 private static void printAllQueueManagerDetails() {

 for (Enumeration enum = instance().getQueueManagers().elements();
 enum.hasMoreElements();) {

 QMgrManager current = (QMgrManager) enum.nextElement();
 System.out.println("--
 ➤ -----------------");
 System.out.println("Queue manager : " + current.getName());
 System.out.println("");
 System.out.println("Has channels:");

 ManagedChannel [] chls = current.getChannels();
 for (int i = 0; i < chls.length; i++) {

 System.out.println(chls[i].getName() + " : " +
 chls[i].getChannelStatus());
 }
 }
 }
}

QMGRMANAGER.JAVA

package com.dmitri.pcf;

import com.ibm.mq.pcf.*;
import com.ibm.mq.*;
import java.util.*;
/**
* @author Dmitri
*
* This class is used to control all access to managed MQSeries
* queue managers. It controls access to resources.
*
* This class relies both on queue managers being accessible via

18 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

* client connections (TCP/IP) and the command server being running.
*/
public class QMgrManager implements CMQCFC {

 private String iHostname;
 private int iPort;
 private String iQmgrName;
 private String iClientChannel;
 private PCFAgent iAgent;
 private boolean iIsConnected = false;

 private ChannelDetailsPCF iDetailsPCF;
 private ChannelStatusPCF iStatusPCF;

 private Hashtable iManagedChannels = new Hashtable();

 public final static String CLIENT_CHANNEL = "SYSTEM.DEF.SVRCONN";

/**
* The constructor (it assumes the default CLIENT_CHANNEL is used
* to reach the destination qmgr).
*/
 public QMgrManager(String qmgrName, int port, String hostname) {
 this(qmgrName, hostname, port, CLIENT_CHANNEL);
 }

/**
* The full constructor.
*/
 public QMgrManager(String qmgrName, String hostname, int port,
 String clientChannel) {

 iQmgrName = qmgrName;
 iHostname = hostname;
 iPort = port;
 iClientChannel = clientChannel;
 }

/**
* Connects to the queue manager so that it can be queried. Also
* prepares PCF queries.
*/
 public void connect() throws MQException {

 iAgent = new PCFAgent(iHostname, iPort, iClientChannel);
 iDetailsPCF = new ChannelDetailsPCF(iAgent);
 iStatusPCF = new ChannelStatusPCF(iAgent);
 iIsConnected = true;
 }

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 19

/**
* Used to determine whether this is an active queue manager.
*/
 public boolean isConnected() {
 return iIsConnected;
 }

/**
* Returns the queue manager's name.
*/
 public String getName() {
 return iQmgrName;
 }

/**
* Query the queue manager for channel details.
*/
 public void queryChannels() {

 PCFHashtable [] details = iDetailsPCF.getChannels();
 PCFHashtable [] status = iStatusPCF.getChannelStatus();
 PCFHashtable current;
 String name;

 for (int i = 0; i < details.length; i++) {
 current = null;
 name = details[i].getStringValue(MQCACH_CHANNEL_NAME);

 for (int j = 0; j < status.length; j++) {
 // try to match status with details.
 if (name.equals(status[j].getStringValue(
 MQCACH_CHANNEL_NAME))) {
 current = status[j];
 break;
 }
 }
 ManagedChannel mchl = (ManagedChannel)
 iManagedChannels.get(name);

 //instantiation is requred the first time channel is found.
 if (mchl == null) {
 mchl = new ManagedChannel(iAgent);
 iManagedChannels.put(name, mchl);
 }
 mchl.refreshChannel(details[i], current);

 }
 }

/**

20 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

* This method may be called by a control object to query queue
* managers for details of other queue managers, thereby discovering
* ones not known to the control object. This is achieved by
* delegating the call to the managed channels and querying them
* for remote queue manager details. The hashtable returned is
* keyed by queue manager name, and the item is a QMgrManager
* object (not connected).
*/
 public void discoverQmgrs(Hashtable qmgrs) {

 ManagedChannel currentChl;

 for (Enumeration chls = iManagedChannels.elements();
 chls.hasMoreElements();) {

 currentChl = (ManagedChannel) chls.nextElement();
 currentChl.copyQmgrsInto(qmgrs);
 }
 }

/**
* Returns an array of managed channels.
*/
 public ManagedChannel [] getChannels() {

 ManagedChannel [] channels = new ManagedChannel
 [iManagedChannels.size()];
 int i = 0;
 for (Enumeration chls = iManagedChannels.elements();
 chls.hasMoreElements(); i++) {

 channels[i] = (ManagedChannel) chls.nextElement();
 }
 return channels;

 }
}

MANAGEDCHANNEL.JAVA

package com.dmitri.pcf;

import com.ibm.mq.pcf.*;
import com.ibm.mq.*;
import java.util.*;
/**
* @author Dmitri
*
* This class is used to control access to channels. It deals with a

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 21

* single channel and coordinates other facets of channel management.
*
* This is the main class that would be extended to provide a more
* complete system management solution. For example, from here it
* would be possible to add a channel renderer to represent a channel
* visually. It would also be appropriate to tag on classes to alter
* channels (eg by starting or resetting them).
*/
public class ManagedChannel implements CMQCFC, CMQXC {

 private PCFHashtable iChannelDetails;
 private PCFHashtable iChannelStatus;
 private String iName;
 private String iXmitQName;
 private PCFAgent iAgent;

 private QMgrManager iTargetQMgr;

 public static int DEFAULT_PORT = 1414;

 // lookup point to translate channel status into English.
 public static String [] CHANNEL_STATUS = {
 "Inactive",
 "Binding",
 "Starting",
 "Running",
 "Stopping",
 "Retrying",
 "Stopped",
 "Requesting",
 "Paused",
 "",
 "",
 "",
 "",
 "Initializing",
 };

/**
* Simple constructor that saves a reference to the queue manager's
* agent.
*/
 public ManagedChannel(PCFAgent agent) {
 super();
 iAgent = agent;
 }

/**
* This method is called by the QMgrManager class. This is done
* because calls to enquire channel details and status may return

22 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

* multiple channels.
*/
 public void refreshChannel(PCFHashtable details,
 PCFHashtable status) {

 iChannelDetails = details;
 iChannelStatus = status; // often null.

 iName = iChannelDetails.getStringValue(MQCACH_CHANNEL_NAME);
 refreshXmitQ();
 refreshTargetQmgr();
 }

/**
* Return the name of the managed channel.
*/
 public String getName() {
 return iName;
 }

/**
* Return the channel's status (string format).
*/
 public String getChannelStatus() {
 return CHANNEL_STATUS[getChannelStatusInt()];
 }

/**
* Return the channel's status (int format).
*/
 public int getChannelStatusInt() {

 try {
 return iChannelStatus.getIntValue(MQIACH_CHANNEL_STATUS);

 } catch (NullPointerException channelIsInactive) {
 return 0;
 }

 }

/**
* A possible future extension could be to get the depth of the XmitQ.
* An XmitQ with messages on is a good sign of problems in a system
* that requires channels to be running at all times.
*/
 private void refreshXmitQ() {

 try {
 iXmitQName = iChannelDetails.getStringValue(MQCACH_XMIT_Q_NAME);

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 23

 } catch (NullPointerException noXmitq) {
 }
 }

/**
* This is used to discover other queue managers on a network. It
* does this by querying sender/server channels for details of
* partner queue managers, and makes a number of assumptions:
*
* 1 That the connection is based on TCP/IP (the whole Java MQ
* interface relies on IP).
* 2 That the convention is followed whereby XMitQs have the same
* name as queue managers (MQSeries management becomes difficult
* if this convention is not followed).
* 3 That remote queue managers are accessible via the default
* client connection channel.
*/
 private void refreshTargetQmgr() {

 if (iXmitQName == null) return;

 // If already set up...
 if (iTargetQMgr != null &&
 TargetQMgr.getName().equals(iXmitQName)) {
 return;
 }
 int chltype = iChannelDetails.getIntValue(MQIACH_CHANNEL_TYPE);
 if (chltype != MQCHT_SENDER &&
 chltype != MQCHT_SERVER) { // we are unable to query
 // for connection name.
 return;
 }
 String conname =
 iChannelDetails.getStringValue(MQCACH_CONNECTION_NAME);
 int port = DEFAULT_PORT;

 if (conname.indexOf('(') > 0) { // port number is embedded
 port = Integer.parseInt(conname.substring(
 conname.indexOf('(') + 1, conname.indexOf(')')));
 conname = conname.substring(0, conname.indexOf('('));
 }

 iTargetQMgr = new QMgrManager(iXmitQName, port, conname);

 }

/**
* A method of accumulating all data about referenced queue
* managers in a common place.
*/

24 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 public void copyQmgrsInto(Hashtable qmgrs) {

 if (iTargetQMgr == null ||
 iTargetQMgr.getName().equals("") ||
 qmgrs.containsKey(iTargetQMgr.getName())) {
 return;
 }
 qmgrs.put(iTargetQMgr.getName(), iTargetQMgr);
 }
}

STARTCHANNELPCF.JAVA
package com.dmitri.pcf;
import com.ibm.mq.pcf.*;
import com.ibm.mq.*;

/**
* @author Dmitri
*
* This class is used to start channels. It is not linked to other
* classes and is included only as an example.
*/
public class StartChannelPCF implements CMQCFC {

 private PCFAgent iAgent;
 private PCFParameter [] iParameters;

/**
* The constructor, which requires a valid queue manager agent.
*/
 public StartChannelPCF(PCFAgent agent) {

 iAgent = agent;
 }

/**
* This method starts the channel specified.
*/
 public void startChannel(String channelName) {

 iParameters = new PCFParameter [] {
 new MQCFST (MQCACH_CHANNEL_NAME, channelName),
 };

 try {
 MQMessage [] pcfResponses = iAgent.send (MQCMD_START_CHANNEL,
 iParameters);

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 25

 // Assume only the one response.
 PCFHashtable response = new PCFHashtable(pcfResponses[0]);

 if (response.isValid()) {
 System.out.println("Channel " + channelName + " Started");

 } else {
 System.out.println("Channel " + channelName +
 " failed to start, reason code : " +
 response.getReasonCode());
 }

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

© Xephon 1999

Copying object definitions from QMGR to QMGR

Part of MQSeries for MVS/ESA is a set of operations and control
panels to construct and run commands for defining, displaying,
altering, and deleting MQSeries objects under ISPF. But I was missing
a function for copying object definitions from one queue manager to
another (for instance, from TEST to PROD). To plug this gap I wrote
MQSMAKE EXEC (it comprises one REXX EXEC and two ISPF
panels), which uses the COMMAND function of the CSQUTIL utility
program to produce a list of object DEFINE statements and pass them
to a target subsystem. As the CSQUTIL load module is called as an
external routine, the appropriate MQSeries libraries
(thlqual.SCSQAUTH and thlqual.SCSQANLE) must be included in
the TSO STEPLIB concatenation. Figure 1 overleaf shows the
processes involved.

Initially a selection panel (MQSMAKE) asks for the source and target
queue manager and also for the objects for which DEFINE statements
should be generated. After receiving the arguments, temporary data

26 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

sets for use by the utility program are allocated and CSQUTIL is
called for the first time to generate DEFINE statements from the
specified DISPLAY object commands. If any statements are generated,
the MQSMAKE2 panel prompts you to edit the MAKEDEF output
and execute the define step. Otherwise, the queue manager utility
SYSPRINT is displayed and the dialogue function returns to the
MQSMAKE panel. During editing, the DEFINE statements generated
can be modified before they are passed to the target queue manager via
a second call to CSQUTIL. If the return code from the call command
signals successful processing, SYSPRINT is displayed for verifying
the DEFINE object execution. Returning (PF3-End) to the selection
screen (MQSMAKE) deletes all temporary data sets.

Note the use of the continuation character (‘➤ ’) in the code below to
indicate that one line of code maps to more than one line of print. This
character is not present in the code downloadable from Xephon’s Web
site (www.xephon.com).

REXX SOURCE CODE
EXEC MQSMAKE
/* REXX */
/*==-/
/- Author : R.Kleebaur -/
/- Date : 10.01.1999 -/
/- Function: Copy object definitions from QMGR to QMGR via CSQUTIL -/
/- utility. The user is prompted before the selected -/
/- object(s) are defined in target QMGR. -/
/-===-*/
fqmgr = '' /* init panel fields */
tqmgr = ''
queue = ''
namelist = ''
process = ''
channel = ''

Source
QMGR

Generate

Object
definitions

MQSMAKE
Define

Object
definitions

Target
QMGR

Figure 1: Steps performed by MQSMAKE

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 27

msg = ''
lib = 'THQ.SCSQAUTH' /* CSQUTIL library */
do forever
 ADDRESS ISPEXEC 'DISPLAY PANEL (MQSMAKE)'
 if rc = 8 then
 leave /* pf3 - end */
 else
 do
 alloc_rc = 0
 x = outtrap(var.,'*')
 call alloc /* allocate temporary data sets */
 if alloc_rc = 0 then
 do
 call genstep /* generate object definitions */
 if genstep_rc = 0 then
 do
 call defprompt /* should defstep be performed ? */
 end
 else
 do
 call dealloc /* delete temorary data sets */
 msg = 'Generate step unsuccessful |'
 end
 end
 end
end
exit
/*---/
/- subroutine: allocate temporary data sets for utility execution -/
/- dsntemp1 = SYSIN -/
/- dsntemp2 = SYSPRINT -/
/- dsntemp3 = CMDINPUT input -/
/- dsntemp4 = MAKEDEF output -/
/---*/
alloc:
temp1 = 'SYSIN'
temp2 = 'SYSPRINT'
temp3 = 'CMDINPUT'
temp4 = 'MAKEDEF'
dsntemp1 = USERID() || '.MQSMAKE' || '.SYSIN'
dsntemp2 = USERID() || '.MQSMAKE' || '.SYSPRINT'
dsntemp3 = USERID() || '.MQSMAKE' || '.CMDINPUT'
dsntemp4 = USERID() || '.MQSMAKE' || '.MAKEDEF'

/* allocate temp dataset 1 */
ADDRESS TSO "ALLOC FI("temp1") DA('"dsntemp1"') OLD REUSE"
if rc = 0 then
 ADDRESS TSO "EXECIO 0 DISKW "temp1" (OPEN FINIS"
else
 ADDRESS TSO "ALLOC FI("temp1") DA('"dsntemp1"'),

28 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 NEW CAT REUSE UNIT(SYSTS),
 LRECL(80) BLKSIZE(27920) RECFM(F B) SPACE(1,1) TRACKS"
 if rc /= 0 then
 do
 msg = 'Temporary dataset 1 cannot be allocated |'
 alloc_rc = 1
 return
 end

/* allocate temp dataset 2 */
ADDRESS TSO "ALLOC FI("temp2") DA('"dsntemp2"') OLD REUSE"
if rc = 0 then
 ADDRESS TSO "EXECIO 0 DISKW "temp2" (OPEN FINIS"
else
 ADDRESS TSO "ALLOC FI("temp2") DA('"dsntemp2"'),
 NEW CAT REUSE UNIT(SYSTS),
 LRECL(133) BLKSIZE(27930) RECFM(F B) SPACE(1,1) TRACKS"
 if rc /= 0 then
 do
 msg = 'Temporary dataset 2 cannot be allocated |'
 alloc_rc = 1
 return
 end

/* allocate temp dataset 3 */
ADDRESS TSO "ALLOC FI("temp3") DA('"dsntemp3"') OLD REUSE"
if rc = 0 then
 ADDRESS TSO "EXECIO 0 DISKW "temp3" (OPEN FINIS"
else
 ADDRESS TSO "ALLOC FI("temp3") DA('"dsntemp3"'),
 NEW CAT REUSE UNIT(SYSTS),
 LRECL(80) BLKSIZE(27920) RECFM(F B) SPACE(1,1) TRACKS"
 if rc /= 0 then
 do
 msg = 'Temporary dataset 3 cannot be allocated |'
 alloc_rc = 1
 return
 end

/* allocate temp dataset 4 */
ADDRESS TSO "ALLOC FI("temp4") DA('"dsntemp4"') OLD REUSE"
if rc = 0 then
 ADDRESS TSO "EXECIO 0 DISKW "temp4" (OPEN FINIS"
else
 ADDRESS TSO "ALLOC FI("temp4") DA('"dsntemp4"'),
 NEW CAT REUSE UNIT(SYSTS),
 LRECL(80) BLKSIZE(27920) RECFM(F B) SPACE(1,1) TRACKS"
 if rc /= 0 then
 do
 msg = 'Temporary dataset 4 cannot be allocated |'

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 29

 alloc_rc = 1
 return
 end
return

/*---/
/- subroutine: reuse temp data sets for define step -/
/- dsntemp1 = SYSIN -/
/- dsntemp2 = SYSPRINT -/
/---*/
alloc_reuse:
ADDRESS TSO "ALLOC FI("temp1") DA('"dsntemp1"') OLD REUSE"
ADDRESS TSO "EXECIO 0 DISKW "temp1" (OPEN FINIS"
ADDRESS TSO "ALLOC FI("temp2") DA('"dsntemp2"') OLD REUSE"
ADDRESS TSO "EXECIO 0 DISKW "temp2" (OPEN FINIS"
return
/*---/
/- subroutine: dealloc and delete temp data sets -/
/---*/
dealloc:
ADDRESS TSO "FREE FI("temp1")"
ADDRESS TSO "FREE FI("temp2")"
ADDRESS TSO "FREE FI("temp3")"
ADDRESS TSO "FREE FI("temp4")"
ADDRESS TSO "DELETE ('"dsntemp1"')"
ADDRESS TSO "DELETE ('"dsntemp2"')"
ADDRESS TSO "DELETE ('"dsntemp3"')"
ADDRESS TSO "DELETE ('"dsntemp4"')"
return
/*---/
/- subroutine: generate MQS object definitions -/
/---*/
genstep:
queue 'COMMAND DDNAME(' || temp3 || ') MAKEDEF(' || temp4 || ')'
queue '' /* enter null line */
ADDRESS TSO "EXECIO * DISKW "temp1 /* write SYSIN */
ADDRESS TSO "EXECIO 0 DISKW "temp1" (FINIS" /* close SYSIN */
if queue ¨= '' then
 queue 'DISPLAY QUEUE(' || queue || ') ALL'
if namelist ¨= '' then
 queue 'DISPLAY NAMELIST(' || namelist || ') ALL'
if process ¨= '' then
 queue 'DISPLAY PROCESS(' || process || ') ALL'
if channel ¨= '' then
 queue 'DISPLAY CHANNEL(' || channel || ') ALL'
queue '' /* enter null line */
ADDRESS TSO "EXECIO * DISKW "temp3 /* write CMDINPUT */
ADDRESS TSO "EXECIO 0 DISKW "temp3" (FINIS" /* close CMDINPUT */
ADDRESS TSO "call '" || lib || "(CSQUTIL)' '" || fqmgr || "'"
genstep_rc = rc /* save return code */

30 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

return
/*---/
/- subroutine: define objects in target qmgr -/
/- 1. analyse genstep SYSPRINT -/
/- 2. display defstep execution prompt panel -/
/- 3. execute defstep -/
/---*/
defprompt:
call genstep_analyse
if cmdno = 0 then
 do
 ADDRESS ISPEXEC "VIEW DATASET('"dsntemp2"')" /* displ SYSPRINT */
 call dealloc /* del temp datasets */
 msg = 'No DEFINE commands generated |'
 return
 end
defmsg = cmdno 'DEFINE command(s) generated |'
makedef = 'Y'
defstep = 'Y'
ADDRESS ISPEXEC "ADDPOP"
ADDRESS ISPEXEC "DISPLAY PANEL(MQSMAKE2)" /* prompt exec'n */
ADDRESS ISPEXEC "REMPOP"
if makedef = 'Y' then /* edit MAKEDEF? */
 ADDRESS ISPEXEC "EDIT DATASET('"dsntemp4"')"
if defstep = 'Y' then /* execute define? */
 do
 call alloc_reuse /* reuse data sets */
 call defstep /* run utility */
 if defstep_rc = 0 then /* define executed */
 do /* displ SYSPRINT */
 ADDRESS ISPEXEC "VIEW DATASET('"dsntemp2"')"
 call dealloc /* del temp datasets */
 msg = 'Define step executed |'
 end
 else /* define unsuccessful */
 do
 call dealloc /* del temp datasets */
 msg = 'Define step unsuccessful |'
 end
 end
else /* define skipped */
 do
 call dealloc /* del temp datasets */
 msg = 'Define step skipped |'
 end
return
/*---/
/- subroutine: extract CSQU059I message from genstep SYSPRINT -/
/---*/
genstep_analyse:

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 31

ADDRESS TSO "EXECIO * DISKR "temp2" (STEM recin. FINIS"
cmdno = 0 /* no of define cmds made */
do i = 1 to recin.0
 if pos('CSQU059I',recin.i) ¨= 0 then
 do
 parse var recin.i 'CSQU059I' . cmdno .
 leave
 end
end
return
/*---/
/- subroutine: define MQS objects in target QMGR -/
/---*/
defstep:
queue 'COMMAND DDNAME(' || temp4 || ')'
queue '' /* enter null line */
ADDRESS TSO "EXECIO * DISKW "temp1 /* write SYSIN */
ADDRESS TSO "EXECIO 0 DISKW "temp1" (FINIS" /* close SYSIN */
ADDRESS TSO "call '" || lib || "(CSQUTIL)' '" || tqmgr || "'"
defstep_rc = rc /* save return code */
return

ISPF PANELS
PANEL MQSMAKE
)Body
% COPY OBJECT DEFINITION(S) User
➤ -+&ZUSER
% Date
➤ -+&date
% COMMAND ===> _ZCMD +%Time
➤ -+&ZTIME
%---
➤ ------------
+
+
+ %From:+ _FQMGR + %To:+ _TQMGR +
+
+ %For object(s):
+ %Queue:+ _QUEUE
➤ +
+ %Namelist:+ _NAMELIST
➤ +
+ %Process:+ _PROCESS
➤ +
+ %Channel:+ _CHANNEL +
+
+ %Note: Generic selection possible. There will be a prompt
➤ before

32 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

+ % the define step.
+
+
+
+ &MSG
%---
➤ ------------
%
%
)INIT
 .CURSOR = FQMGR
 &DATE = '&ZDAY..&ZMONTH..&ZSTDYEAR'
)PROC
 VER (&fqmgr,nb)
 VER (&tqmgr,nb)
 IF (&fqmgr = &tqmgr)
 .CURSOR=TQMGR
 .MSG=MQM000
 IF (&queue = '' & &namelist = '' & &process = '' & &channel = '')
 .CURSOR=QUEUE
 .MSG=MQM001
)END

PANEL MQSMAKE2
)Body window(65,10)
%COMMAND ===>_ZCMD
%--
+ &defmsg
+
+ %Edit MAKEDEF output:+ _makedef +
+ %Perform define step:+ _defstep +
%--
)INIT
 .CURSOR = ZCMD
)REINIT
 REFRESH(*)
)PROC
 VER (&makedef,list,Y,N)
 VER (&defstep,list,Y,N)
)END

MESSAGE MEMBER MQM00
MQM000 'INVALID SELECTION' .TYPE=WARNING
MQM001 'NO OBJECT SELECTED' .TYPE=WARNING

Raimund Kleebaur
MQSeries Programmer
Hugo Boss AG (Germany) © Xephon 1999

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 33

MQSeries stress testing

This months’s instalment concludes this article on MQSeries stress
testing using Java (the first part appeared in last month’s MQ Update).

MQCONSTANTS.JAVA (CONTINUED)
JPanel bottom = new JPanel();
 dlgContents.add(bottom, BorderLayout.SOUTH);
 bottom.setLayout(new FlowLayout());
 JButton btnOk = new JButton("Ok");
 bottom.add(btnOk);
 btnOk.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 iMessagedlg.setVisible(false);
 }
 });
 iMessagedlg.pack();
 iMessagedlg.setVisible(true);
 }

/**
* Return the singleton's instance
*/
 public static synchronized MQConstants getInstance() {

 if (cInstance == null) {

 try {
 cInstance = new MQConstants(); // Swing styles must be
 // re-instantiated.
 ObjectInputStream ois = new ObjectInputStream(new
 FileInputStream(PERSISTENCY_NAME));
 cInstance = (MQConstants) ois.readObject();
 cInstance.addListeners();
 ois.close();
 } catch (Exception e) {
 cInstance = new MQConstants();
 }

 cInstance.setVisible(true);
 cInstance.repaint();
 }
 return cInstance;
 }

/**

34 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

* Store a reference to any classes interested in the completion
* of the gathering of constants
*/
 public void addConstantsListener(ConstantsListener lis) {
 iListeners.addElement(lis);
 }
/**
* Notify listeners that all constants have now been gathered
*/
 public void notifyConstantsListeners() {
 for (Enumeration enum = iListeners.elements();
 enum.hasMoreElements();) {
 ((ConstantsListener) enum.nextElement()).constantsAvailable();
 }
 }
}

CONSTANTSLISTENER.JAVA
package com.dmitri.mqstress;
/**
* @author Dmitri
* Simple interface to notify that constants are now ready for use
*/
public interface ConstantsListener {

 public void constantsAvailable();
}

MQSTRESSTESTER.JAVA
package com.dmitri.mqstress;
import java.awt.event.*;
import com.sun.java.swing.*;
import java.awt.*;
/**
* @author Dmitri
*
* This is the top-level class of the MQStressTester package. It
* has overall responsibility for other classes.
*
* Its primary actions are:
*
* 1. Instantiate the constants window and wait for it to finish
* its information gathering and processing.
* 2. Instantiate an appropriate number of MQStressThreads.
* 3. Present the user with controls for starting and stopping
* the test.
* 4. Control the starting and stopping of the stress test.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 35

*/
public class MQStressTester implements ConstantsListener {

 private MQConstants iConstants = MQConstants.getInstance();

 private JFrame iFrmResults = new JFrame("MQStress Results");
 private JButton iBtnStart = new JButton("Start");
 private JButton iBtnStop = new JButton("Stop");
 private JButton iBtnExit = new JButton("Exit");

 private static long cRepaintInterval = 1000l;
 private MQStressThread [] iThreads; // An array of test threads

/**
* A simple constructor to register an interest in the completion
* of MQConstants. As we are dependent on constants being gathered,
* it is necessary to wait until they are all in place.
*/
 public MQStressTester() {
 super();
 iConstants.addConstantsListener(this);
 }

/**
* This method starts things off when the MQConstants class has
* finished gathering data.
*/
 public void constantsAvailable() {
 begin();
 }

/**
* This method initializes the window for displaying the results
* of the stress test while in progress.
*/
 private void begin() {

 int numberOfThreads = iConstants.getNumberOfInstances();
 iThreads = new MQStressThread[numberOfThreads];

 JPanel pnlContents = new JPanel();
 JPanel pnlMain = new JPanel();
 iFrmResults.getContentPane().add(pnlContents);
 pnlContents.setBorder(BorderFactory.createEmptyBorder(
 10, 10, 10, 10));
 pnlContents.setLayout(new BorderLayout());
 pnlContents.add(pnlMain);
 pnlMain.setLayout(new FlowLayout());

 for (int i = 0; i < numberOfThreads; i++) {

36 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 iThreads[i] = new MQStressThread();
 pnlMain.add(iThreads[i].getRenderer());
 }

 JPanel pnlButtons = new JPanel();
 pnlButtons.setLayout(new FlowLayout());
 pnlContents.add(pnlButtons, BorderLayout.SOUTH);
 pnlButtons.add(iBtnStart);
 pnlButtons.add(iBtnStop);
 pnlButtons.add(iBtnExit);

 addListeners();
 iFrmResults.pack();
 iFrmResults.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
 iFrmResults.setVisible(true);
 }

/**
* This method adds inner class listeners to all buttons.
*/
 private void addListeners() {

 iBtnStart.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 for (int i = 0; i < iThreads.length; i++) {
 new Thread(iThreads[i]).start();
 }
 }
 });

 iBtnStop.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 for (int i = 0; i < iThreads.length; i++) {
 iThreads[i].stopTest();
 }
 }
 });

 iBtnExit.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 for (int i = 0; i < iThreads.length; i++) {
 iThreads[i].exit();
 iFrmResults.setVisible(false);
 System.exit(0);
 }
 }
 });
 }

/**
* This is a standard main method to instantiate this class.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 37

*/
 public static void main(String[] args) {
 new MQStressTester();
 }
}

MQSERVICE.JAVA
package com.dmitri.mqstress;
import com.ibm.mq.*;
/**
* @author Dmitri
*
* This is a simple class that interfaces to MQSeries, putting
* and getting simple messages. It doesn't act on messages. This
* class is not capable of recovering from MQSeries errors (such
* as connection lost).
*/
public class MQService {

 private MQConstants iConstants = MQConstants.getInstance();
 private MQQueue iRequestQueue = null;
 private MQQueue iReplyQueue = null;
 private MQGetMessageOptions iGmo = new MQGetMessageOptions();
 private MQPutMessageOptions iPmo = new MQPutMessageOptions();
 private MQQueueManager iQmgr;

/**
* Initializes a new service to MQSeries
*/
 public MQService() {
 System.runFinalizersOnExit(true);
 }

/**
 * This method sets up the default message parameters. Some of these
 * are hard-coded, others are obtained from the constants class.
 */
 private MQMessage applyDefaults(String msg) {

 try {
 MQMessage mqmess = new MQMessage();
 mqmess.replyToQueueName = iReplyQueue.name;
 mqmess.format = MQC.MQFMT_STRING;
 mqmess.writeString(msg);

 return mqmess;

 } catch (java.io.IOException e) {
 e.printStackTrace();

38 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 }
 return null;
 }

/**
 * This method initializes the MQ component of the service.
 * This includes connection to the queue manager as well as the
 * opening queues.
 *
 * Note: for future expansion, it may be a good idea to measure
 * connection times etc, as this takes an appreciable time in a
 * stressed system.
 */
 public void mqStartup() {

 iGmo.options = MQC.MQGMO_WAIT | MQC.MQGMO_CONVERT |
 MQC.MQGMO_NO_SYNCPOINT | MQC.MQGMO_FAIL_IF_QUIESCING;
 iPmo.options = MQC.MQPMO_NO_SYNCPOINT | MQC.MQPMO_FAIL_IF_QUIESCING
 | MQC.MQPMO_SET_IDENTITY_CONTEXT;

 MQEnvironment.hostname = iConstants.getHostName();
 MQEnvironment.channel = iConstants.getChannelName();

// Connect to the specified queue manager
 try {
 iQmgr = new MQQueueManager(iConstants.getQueueManagerName());

 int openOptions = MQC.MQOO_OUTPUT | MQC.MQOO_FAIL_IF_QUIESCING
 | MQC.MQOO_SET_IDENTITY_CONTEXT;
// Open request queue
 iRequestQueue = iQmgr.accessQueue(
 iConstants.getRequestQueueName(),
 openOptions, null, null, null);

 openOptions = MQC.MQOO_INPUT_SHARED | MQC.MQOO_FAIL_IF_QUIESCING;

// Open reply queue
 iReplyQueue = iQmgr.accessQueue(iConstants.getReplyQueueName(),
 openOptions, null, null, null);
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

/**
 * This method places a message on a queue and waits for a reply
 * on the reply queue. It returns the time taken or -1 if it fails.
 */
 public long sendAndReceive(String ioutMessage, long timeOut) {

 iGmo.waitInterval = (int) timeOut;

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 39

 MQMessage outMess = applyDefaults(ioutMessage);
 long timeStart = System.currentTimeMillis();
 try {
 iRequestQueue.put(outMess, iPmo);
 iReplyQueue.get(outMess, iGmo,
 iConstants.getMaximumMessageLength());

 return System.currentTimeMillis() - timeStart;

 } catch (Exception e) {
 System.out.println("Put/Get error : " + e);
 }
 return -1;
 }

/**
* Close down the mq queues and connection
*/
 public void finalize() {

 try {
 iReplyQueue.close();
 iRequestQueue.close();
 iQmgr.disconnect();
 } catch (MQException tooLateToWorry) {}
 }
}

MQSTRESSTHREAD.JAVA

package com.dmitri.mqstress;
import java.awt.*;
import com.sun.java.swing.*;

/**
* @author Dmitri
*
* This class is the actual control object for the MQStress test
* package. It calls the MQService class and reports results back
* to the main class by supplying a component to hold results.
*
* In this implementation, a simple JLabel is supplied to show
* test results as they happen. This gives an on-line view that
* immediately highlights problem areas. This implementation does
* not store results of any kind. It could be appropriate to extend
* this class to do just that, enabling extensive analysis of
* results at a later stage.
*/
public class MQStressThread implements Runnable {

 private JLabel iRenderer = new JLabel("Inactive");

40 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 private MQService iService = new MQService();

 private boolean iStopRequested = false; // Flag to determine
 // whether the control module
 // has requested a stop.

 private MQConstants iConstants = MQConstants.getInstance();

 private long [] iAcceptable;
 private long [] iFailure;
 private long [] iPace;
 private String [] iMessage;

 private Color iClrAcceptable = new Color(0, 70, 0); // Dark green
 private Color iClrWarning = new Color(170, 170, 0); // Yellowish
 private Color iClrFail = Color.red;
 private Color iClrDefault = Color.black;

/**
* Constructor. Initializes local copies of runtime parameters to
* avoid delays when running.
*/
 public MQStressThread() {

 iRenderer.setPreferredSize(new Dimension(60,20));
 iRenderer.setForeground(iClrDefault);
 int messNo = iConstants.getNumberOfMesages();
 iAcceptable = new long[messNo];
 iFailure = new long[messNo];
 iPace = new long[messNo];
 iMessage = new String[messNo];

 for (int i = 0; i < messNo; i++) {
 iAcceptable[i] = iConstants.getAcceptableTime(i);
 iFailure[i] = iConstants.getFailureTime(i);
 iPace[i] = iConstants.getPaceTime(i);
 iMessage[i] = iConstants.getMessage(i);
 }
 iService.mqStartup();
 }

/**
* This method returns the 'renderer' that is used to display the
* results of the stress test as they happen.
*/
 public Component getRenderer() {
 return iRenderer;
 }

/**
* Starts the stress test. Records response times and paces

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 41

* according to pre-set parameters.
*/
 public void run() {

 iStopRequested = false;
 int numberOfRepetitions = iConstants.getNumberOfRepetitions();
 int numberOfMessages = iConstants.getNumberOfMesages();

 long startTime = 0;
 long response = 0;
 long sleepTime = 0;

 for (int i = 0; i < numberOfRepetitions && !iStopRequested; i++) {

 for (int j = 0; j < numberOfMessages && !iStopRequested; j++) {

 startTime = System.currentTimeMillis();
 response = iService.sendAndReceive(iMessage[j], iPace[j]);
 // Maximum time allowed is pace time.

 // Could log to disk here in future extensions.

 if (response < 0) { // Complete failure
 iRenderer.setForeground(iClrFail);
 iRenderer.setText("Failure");

 } else if (response < iAcceptable[j]) {
 iRenderer.setForeground(iClrAcceptable);
 iRenderer.setText(Long.toString(response));

 } else if (response < iFailure[j]) {
 iRenderer.setForeground(iClrWarning);
 iRenderer.setText(Long.toString(response));

 } else if (response > iFailure[j]) {
 iRenderer.setForeground(iClrFail);
 iRenderer.setText(Long.toString(response));

 }
 sleepTime = iPace[j] - (System.currentTimeMillis()
 - startTime);
 try {
 Thread.sleep(sleepTime);
 } catch (Exception ignored) {} // Could be an interrupt or
 // negative sleep
 }
 }
 }
/**
* Stops the stress test
*/

42 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 public void stopTest() {
 iStopRequested = true;
 iRenderer.setText("Stop");
 iRenderer.setForeground(iClrDefault);
 }
/**
* Prepares for exiting
*/
 public void exit() {
 stopTest();
 }
}

© Xephon 1999

Recovering damaged or lost circular logs on Unix

MQSeries builds its own log files in /var/mqm/log/QMGRNAME/
active. If the logs are defined as ‘circular’ you need never worry about
them – MQ will maintain them itself. To find out how your logs are
defined, check the LogType parameter in the /var/mqm/qmgrs/
QMGRNAME/qm.ini file (note that ‘CIRCULAR’ is the default).

Here’s an excerpt from qm.ini:

Log:
 LogPrimaryFiles=3
 LogSecondaryFiles=2
 LogFilePages=1024
 LogType=CIRCULAR
 LogBufferPages=17
 LogPath=/var/mqm/log/QMGRNAME/

This is the log file structure:

Path: /var/mqm/log/QMGRNAME:

drwxrwx--- 3 mqm mqm 512 May 26 1998 .
drwxrwxr-x 5 mqm mqm 512 Jul 16 14:41 ..
drwxrwx--- 2 mqm mqm 512 May 26 1998 active
-rw-rw---- 1 mqm mqm 7580 Jul 16 14:25 amqhlctl.lfh

Path: /var/mqm/log/QMGRNAME/active:

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 43

drwxrwx--- 2 mqm mqm 512 May 26 1998 .
drwxrwx--- 3 mqm mqm 512 May 26 1998 ..
-rw-rw---- 1 mqm mqm 4202496 Jul 16 14:25 S0000000.LOG
-rw-rw---- 1 mqm mqm 4202496 Jul 11 12:01 S0000001.LOG
-rw-rw---- 1 mqm mqm 4202496 Jul 14 09:23 S0000002.LOG

Occasionally, the logs are damaged or (if outside forces enforce a
rigorous log archiving routine) they may be removed. Whatever the
cause, the result is the same: MQ dies.

A quick way to make MQ operative again is to create a dummy queue
manager and steal its logs:

1 Stop MQSeries, if it is not already down:

endmqm –i QMGRNAME

2 Create a dummy queue manager:

crtmqm DUMQMGR

3 Back up (rename) existing log files:

mv old.fil /tmp/backup.name

4 Copy the log files and the log control record from the newly
created queue manager (note the use of the continuation character,
‘➤ ’, to indicate that one command line maps to several lines of
print):

cp –r /var/mqm/log/DUMQMGR/active /var/mqm/log/QMGRNAME/active
cp /var/mqm/log/DUMQMGR/amqhlctl.lfh /var/mqm/log/QMGRNAME/
 ➤ amqhlctl.lfh

5 Restart the queue manager:

strmqm QMGRNAME

The queue manager should restart without a problem. Of course, you
lose the data that was on the old logs, but that is better than not having
MQ at all.

This procedure is known to work on Sun Solaris and AIX Unix
systems but has not been tested on HP/UX or any other version of
Unix.

Christine Hills (USA) © Xephon 1999

MQ news

Candle has made a number of enhancements
to its Candle Command Center (CCC) to
boost support for MQSeries. New versions
of the company’s CCC Admin Pac (which
ships with MQSeries) and CCC
Management Pac support both MQSeries
V2.1 for OS/390 and MQSeries V5.1 for
other platforms, and a new Management Pac
for MQSeries Integrator adds support for
MQSeries Integrator Version 2.0. CCC
Management Pac for MQSeries Integrator
provides tools for MQSeries Integrator
configuration and also enables CCC to
process and manage MQSeries Integrator-
generated events.

Both Admin and Management Pacs are out
now, but no details on pricing were released.

For further details contact:
Candle Corp, 2425 Olympic Blvd, Santa
Monica, CA 90404, USA
Tel: +1 310 829 5800
Fax: +1 310 582 4287
Web: http://www.candle.com

Candle Ltd, 1 Archipelago, Lyon Way,
Frimley, Camberley, Surrey GU16 5ER, UK
Tel: +44 1276 4147000
Fax: +44 1276 414777

* * *

Willow Technology has announced new
products to add to its portfolio of clients and
servers for MQSeries. In addition to the
company’s existing MQSeries V2 clients for
Data General DG/UX, Silicon Graphics
IRIX, and Apple Mac OS, the company has

started shipping an MQSeries V2 client for
Hewlett-Packard MPE/ix. The new
MQSeries V2 server is for SGI IRIX (6.2 or
later), which joins existing MQSeries V2
servers for UnixWare (2.1.2 or later) and
SCO OpenServer (OSR5.0.2 or later).

The company also announced it has a
number of MQSeries V5 clients under
development: the IRIX client is now in beta,
while beta versions of clients for DG/UX,
MacOS, UnixWare, and SCO OpenServer
are expected in the near future.

For further information contact:
Willow Technologies Inc, PO Box 320005,
Los Gatos, CA 95032, USA
Tel: +1 408 377 7292
Fax: +1 408 377 7293
Web: http://www.willowtech.com

* * *

IBM has announced MQSeries for Tandem
NonStop Kernel V2.2.0.1, which has
improved performance and scalability and
also adds support for more Tandem NonStop
Kernel features. The product was developed
in conjunction with Tandem, a division of
Compaq, and Candle, an IBM business
partner. Other features are Euro symbol
support and Y2K compliance, and support
for both the TCP/IP and SNA protocols.

Out now, no details on pricing were released.

For further information contact your local
IBM representative.

x xephon

	PCF programming in Java
	Copying object definitions from QMGR to QMGR
	MQSeries stress testing
	Recovering damaged or lost circular logs on Unix
	MQ news

