3

September 1999

In this issue

3 PCF programming in Java
25 Copying object definitions from
QMGR to QMGR

33 MQSeries stresstesting

42 Recovering damaged or |ost
circular logs on Unix

44 MQ news

© Xephon plc 1999

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

MQ Update

Published by

Xephon

27-35 London Road

Newbury

Berkshire RG14 1JL

England

Telephone: +44 1635 550955

e-mail: HarryL ewis@compuserve.com

North American office

Xephon/QNA

1301 West Highway 407, Suite 201-405
Lewisville, TX 75077-2150

USA

Telephone: +1 940 455 7050

Contributions

ArticlespublishedinMQ Updatearepaidfor
at therate of £170 ($250) per 1000 wordsand
£90 ($140) per 100 lines of code. For more
information about contributing an article,
please check Xephon's Web site, where you
can download Notes for Contributors.

MQ Update on-line

Code from MQ Update is available from
Xephon's Web site at www.xephon.com/
mqupdate.html (you’'ll need the user-id
shown on your address label to accessiit). If
you' ve a problem with your user-id or pass-
word call Xephon’s subscription department
on +44 1635 33886.

Editor

Harry Lewis

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information inthisjournal giveany warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organi zations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues

A year’'s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsawhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.50) each
including postage.

© Xephon plc 1999. All rights reserved. None of the text in this publication may be
reproduced, stored in aretrieval system, or transmitted in any form or by any means, without
theprior permission of thecopyright owner. Subscribersarefreeto copy any codereproduced
inthispublication for useintheir owninstallations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promation, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
applicationtoindividual copies. A pack of 240 |abels costs $36 (£24), giving acost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.
Printed in England.

PCF programming in Java

INTRODUCTION

As many people familiar with MQSeries will know, PCF is the
product’s command interface, which enables the development of
systemsmanagement software. It usesamachine-oriented format and
was originally implemented in the C language.

Anyonewho'’ shad experienceof usingtheM QSC (runmgsc) interface
has used PCF, as thisis what the runmqgsc program sends to queue
managers. Any action that is possible viathe MQSC interfaceisalso
possible via PCF. In fact, PCF goes beyond what is available via
MQSC, and has additional features that are not implemented in
MQSC. Another advantage of PCF isthat it also tendsto report error
conditionsalittlebetter. The main drawbacksof PCF areits(original)
rather static C implementation and the lack of support for PCF in
either MVS or OS/390.

| recently questioned IBM about the lack of OS/390 support at the
MQSeries user group. While they acknowledged that thisis along-
standing omissionfromtheproduct, they did not giveany information
about the possible futureinclusion of thisfeature. Fortunately, a PCF
bridge for OS/390 has been developed by the New York-based
systems management company, Nastel. | have not had any experience
of using this product, though it sounds promising.

In this article | discuss the use of PCF in a systems management
strategy, focusing on the newer Java implementation of PCF, and
using our own implementation of it in asimple systems management
framework as an example.

SYSTEMS MANAGEMENT

| think that most peoplewith operational experienceof M QSerieswill
acknowledge that keeping the wholeinfrastructure up and running is
something of atime consuming task. Thisis often aggravated by the
use of MQSeriesin on-line systems that require MQ channelsto run

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 3

continuously. Much of theadministrative overhead of thisstemsfrom
MQSeries assured delivery features and the impact they have on
channels.

For example, if atransient break in communications has taken place,
resulting in a failure to ‘handshake’ across platforms, MQ channel
agents can get into a number of non-functional states. Such states
include ‘in-doubt messaging’ and message sequence errors. The
purposeof these statesisto ensurethat messagesarenot lost asaresult
of network errors. While thisis often a useful feature, many on-line
systems could benefit from ‘datagram’ style messaging, which is
about sending as many messages as possible, not worrying about
losing afew.

Another operational MQSeries concernisthe notification of failures,
It is possible for a‘fire and forget’ application to send thousands of
messages to a queue manager without their being forwarded to their
target queue manager. Processes need to be implemented to handle
both the detection of errors and their correction.

It is not generally viable to monitor and correct MQSeries problems
manually. Sitesthat run M QSeries must, therefore, decidewhether to
purchase a third-party management solution or produce their own
tools. Therecent rel ease of the JavaPCF support pack (it wasrel eased
in the last six months) has made in-house development a far more
attractive proposition.

PCF PROGRAMMING IN JAVA

Javaisan excellent language for MQSeries devel opment. Quite apart
from the usual arguments about object-orientation and Java' srelative
ease of use, Java'scross platform nature makesit an ideal partner for
cross platform middleware like MQSeries.

Since PCF commands are little more than integer and character data
streams, it has always been possible from atechnical point of view to
issue them from Java. | myself experimented with doing just this
beforetherel ease of the Javasupport pack. | found that using Javaand
(more importantly) object-oriented wrappers increases the usability
of PCF significantly.

4 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

The IBM support pack contains three main components (see
www.software.ibm.comvts/mgseries/txppacs/msOb.html):

1 A high-level agent that manages connections to MQSeries and
also sends and recelves messages to and from the command
gueues.

2 Javaclassesthat map to the five PCF data structures, extending
the abstract class PCFParameter:

— MQCFH, the PCF header (for return codes €tc).
— MQCFIN, for integer parameters.

— MQCFIL, for arrays of integer parameters.

— MQCEFST, for string based parameters.

— MQCF4,, for arrays of string parameters.

3 Theconstantsthat must be used in PCF commands. These should
be placed in interfaces and may, therefore, be implemented by
your own code.

Usingthel BM classes, asampl epieceof codeto start anamed channel
could be asfollows:

/**
* This method starts the channel specified.
*/
public void startChannel(PCFAgent agent, String channelName) {

PCFParameter [] iParameters = new PCFParameter [] {
new MQCFST (MQCACH CHANNEL NAME, channelName),
};

try {
MQMessage [] pcfResponses = agent.send
(MQCMD_START_CHANNEL, iParameters);

} catch (MQException ex) {
// handle error
}
}

This method does not establish an agent connection (see the code
listingsat the end of thisarticlefor examplesof how thisisdone), nor

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 5

doesit check theresult of thestart request (by reading the pcfResponses
messages into an MQCFH data structure). It does, however,
demonstrate two advantages of the Javaclasses. they arelessverbose
and are higher level than their C equivalents. Another benefit of the
Javaclassesisthat much of thetedium of using the Cimplementation
(such as length setting and response parsing) is eliminated.

INSTALLING AND RUNNING PCF JAVA

Unfortunately, the downloadable IBM PCF support pack that | got
was only available in tar format (this may have changed), which
meant that | had to unpack it on aLinux machine. Perhaps because of
this, the directory structure within the ‘jar’ that emerged was not
present. | was, therefore, forced to ‘unjar’ the product and manually
copy the components into their ‘com\ibm\mag\pcf’ hierarchy. Once
thiswas done, | was able to place the PCF classes and the base MQ
Javaclient classesinto my classpath and run the sample code. Users
of different versions of Unix may not have the same difficulty.

In order to accept PCF commands, a queue manager must satisfy the
following criteria:

» The queue manager must be running.

» Thedefault command queues must bein place (they are created
in the default MQSeries Version 5 installation).

A route to the queues must be available. In this case, client
channels and the TCP channel listener (runmqlsr) are used.

e The command server must be started (using the command
STRMQCSV QueueManager Name).

MQ CRAWLER

Based on our organization’s requirements, | developed a basic
framework of Javaclassesto helpmonitor theavailability of MQSeries
connections. MQSerieschannelsareinvariably theweakest link inan
MQSeriesinfrastructure, asthey are subject totherelativevagaries of
networking. | have, therefore, concentrated on automating the task of
guerying queue managersfor the names of their sender channelsand

6 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

their status. In this way, any channel that is not in a ‘running’ or
‘inactive’ stateistreated as a potential problem.

In addition to this, thetopol ogy of anetwork of interconnected queue
managers is often confusing. | have developed a technique, using
basic M Q standards, for theauto discovery of remote queue managers
and the clarification of the resource to which channels point that
involves ‘ crawling’ around from one queue manager to another.

Theclassesthat implement thisare presented at theend of thisarticle,
Whilethey don’t include afront-end either to represent thisdatain a
meaningful manner or toraisealerts, thisisonly thefirst part of anon-
going project, and | intend to build on it in future articles.

MQ CRAWLER CLASSES

« PCFHashtable

This is simply a utility wrapper class. It is created using a
response message (for instance, the response from a ‘ channel
details’ enquiry), and then walksthrough amessage and splitsits
components (such as MQCFINs or MQCFSTSs) into entriesin a
hash table. Other classes are then able to query values without
knowledge of parameter order. For example, if iChannelDetails
is an instance of PCFHashtable (again created in response to a
channel detailsquery), thefollowing code canbeusedtoretrieve
the channel type:

int chltype = iChannelDetails.getIntValue(MQIACH_CHANNEL_TYPE);

e ChannelDetail sSPCF
Thisclassisusedto generatethe PCF request that queriesaqueue
manager for details of al its channels.

e ChannelSatusPCF
Thisclassis similar to Channel Detail SPCF, with the exception
that it generates a status query.

The remaining classes are wrappers for the main components of an
MQSeries infrastructure:

 MQInfrastructure
Thisclassmanagesall queuemanagers. Itistheinitial classof the

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 7

MQ Crawler suite. Oncethe PCF classesareinstalled (asdescribed
earlier), and the MQ Crawler classes are added to the classpath,
it may be executed using the command below (you have to
substitute appropriate valuesfor QmgrName, port, and address).

java com.dmitri.pcf.MQInfrastructure QmgrName port address

The MQInfrastructure class is created with a start point queue
manager, and its job is to coordinate the discovery of all other
gueue managers. Futurerefinementsto thisclasswill includethe
ability to specify more than one start point.

QmgrManager
This class manages connections and interactions with a single

gueue manager. It opensthe agent link to the queue manager and
gueriesit for channel details using the Channel Detail sPCF and
Channel SatusPCF classes. Once it has details of channels, it
creates ManagedChannel objects for further interaction.

ManagedChannel

Aninstance of thisclassis created to handle each channel. It'sa
place-holder for future channel management, such as channel
startsand resets. Current functionality islimited, but includesthe
ability to make a query about target queue managers. Target
gueue manager details are passed up the class hierarchy to
MQInfrastructure as part of the auto discovery process.

FUTURE ENHANCEMENTS

MQ Crawler is a simple framework for implementing system
management functions. To bereally useful, however, it needssomeor
all of the following additional functionality:

A graphical interface or a well-structured text interface. This
would give aclearer representation of queue managersand their
relationship to channels.

The ability to add queue managers manually to the managed
Infrastructure.

The addition of threads to improve performance. MQ Crawler

© 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

currently queries queue managers sequentially, thus spending
much of its time waiting for replies.

Facilitiesfor generating alertson channel failuresetc. Such alerts
couldbevisual, audible, implemented using SNM Ptraps, e-mail,
etc.

Facilitiesfor correcting error conditions manually in responseto
alerts. Such facilities could include ones to handle:

— Channel restarts

— Channel resets

— Channel commit/roll-back (for ‘in-doubt’ messages)
— Transmission queue re-enabling.

Automatic recovery from pre-defined error conditions.

Greater tolerance of errors when connecting to and dealing with
gueue manager resources.

In addition to the system management features listed above, a full-
featured MQSeries tool should also provide facilities for handling
configuration. M ost third-party system management productsinclude
the following configuration features:

Channel/queue creation and modification.

Creation and modification of other MQSeries objects, such as
queue managers and processes.

Facilities for copying resources from one queue manager to
another.

CONCLUSION

It should be clear by now that PCF programming (when wrapped to
asufficient degree) isnot aninordinately complex task. It should also
be clear, however, that afull-featured M QSeries system management
software can be large and time-consuming to write.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 9

Whilean off-the-shelf package soundsinviting, one must be prepared
to deal with a solution that is generic. My own experience of the
MQSeries systems management market is not favourable. | saw
nearly all the productsthat were availablelast year at the Transaction
and Messaging Conference (September 1998) and concluded that
practically none succeed in balancing complexity with scope of
features.

So, if you have good development resources (Java in this case,
although wrapping in C++ should also be productive) it could be
viableto produceasimplesystem management suiteinternally. A full-
featured system does not, at present, seem appropriate. Thisarticleis
not the start of aLinux-like shareware solution, though | hope that it
(andfollow-up articles) will help other devel opersto pursueasolution
along these lines.

SOURCE CODE FOR THE CLASSES

Notethat someof thelistingsbel ow includethecontinuation character,
‘0’7, to indicate that one line of code maps to severa lines of print.

PCFHASHTABLE.JAVA

package com.dmitri.pcf;

import com.ibm.mq.pcf.*;

import com.ibm.mq.*;

import java.util.*;

/**

* @author Dmitri

*

* This class extends Hashtable to provide PCF-specific processing.
*/

public class PCFHashtable extends Hashtable {

private int iReasonCode;

/**

* Constructor that sets up the data based on a message.
*/
PCFHashtable(MQMessage message) {

super();
try {

10 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

MQCFH cfh = new MQCFH(message);
iReasonCode = cfh.reason;

if (isValid()) {

PCFParameter p;
for (int i = 0; i < cfh.parameterCount; i++) {

// Walk through the returned attributes
p = PCFParameter.nextParameter (message);
Integer key = new Integer(p.getParameter());
put(key, p.getValue());
}
}
} catch (Exception ex) {
System.out.printin(ex);
}
}

/**
* Is the PCF request valid and, hence, may it be used?
*/
public boolean isValid() {
return iReasonCode == 0;
}

/**
* Returns the reason code for use by diagnostic processes.
*/
public int getReasonCode()({
return iReasonCode;
}

/**
* Returns the int value represented by the key supplied.
*/
public int getIntValue(int key) {
Integer i = (Integer) get(new Integer(key));
return i.intValue();
}
/**
* Returns the int array represented by the key supplied.
*/
public int [] getIntArray(int key) {
return (int []) get(new Integer(key));
}
/**
* Returns the string value represented by the key supplied.
*/
public String getStringValue(int key) {

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 11

// mq returns padded strings.
return ((String) get(new Integer(key))).trim();
}
/**
* Returns the string array represented by the key supplied.
*/
public String [] getStringArray(int key) {
String [] paddedStrings = (String []1) get(new Integer(key));
String [] trimStrings = new String [paddedStrings.lengthl];
for (int i = 0; i < paddedStrings.length; i++) {
trimStrings[i] = paddedStrings[i].trim();
}
return trimStrings;

CHANNELDETAILSPCFJAVA

package com.dmitri.pcf;
import com.ibm.mqg.pcf.*;
import com.ibm.mqg.*;

This class is used to query queue managers for details of all
the channels they own.
This query is currently Timited to sender channels.

*/

public class ChannelDetailsPCF implements CMQCFC {

/**

* @author Dmitri
*

*

*

*

private PCFAgent iAgent;
private PCFParameter [] iParameters;

/**
* This constructor requires a valid queue manager agent. This
* "channel details"™ request is currently only for sender channels
* (channel type of MQCHT_SENDER), though this may easily be
* changed to MQCHT_ALL.
*/
public ChannelDetailsPCF(PCFAgent agent) {

iAgent = agent;
iParameters = new PCFParameter [] {
new MQCFST (MQCACH_CHANNEL_NAME, "*"),
!/ new MQCFIN (MQIACH_CHANNEL_TYPE, CMQXC.MQCHT_SENDER),
new MQCFIN (MQIACH_CHANNEL_TYPE, CMQXC.MQCHT_ALL),
new MQCFIL (MQIACF_CHANNEL_ATTRS, new int [] {MQIACF_ALL}),
}s

12 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

/**

* This method returns an array of PCFHashtables. Each hashtable

* represents a single channel. The hashtable holds all data

* pertaining to the channel, and the data varies according to the
* channel, so that, for example, the sender channel holds details
* of target queue manager, while the receiver channel doesn't.

*/
public PCFHashtable [] getChannels() {

try {
MQMessage [] pcfResponses = iAgent.send (MQCMD_INQUIRE_CHANNEL,
iParameters);
PCFHashtable [] details = new PCFHashtable [pcfResponses.length];

for (int i =
details[i]

}

return details;

0; i < pcfResponses.length; i++) {
= new PCFHashtable(pcfResponses[i]);

} catch (Exception e) {
e.printStackTrace();
}
return null;
}
}

CHANNELSTATUSPCF.JAVA

package com.dmitri.pcf;

import com.ibm.mqg.pcf.*;

import com.ibm.mq.*;

/**

* @author Dmitri

*

* This class is used to query channel status.
*/

public class ChannelStatusPCF implements CMQCFC {

private PCFAgent iAgent;
private PCFParameter [] iParameters;

/**

* Constructor (requires a valid queue manager agent).
*/
public ChannelStatusPCF(PCFAgent agent) {

iAgent = agent;

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 13

iParameters = new PCFParameter [] {
new MQCFST (MQCACH_CHANNEL_NAME, "*"),
new MQCFIL (MQIACH_CHANNEL_INSTANCE_ATTRS, new int []
{MQIACF_ALL}),
}s
}

/**
* This method returns an array of PCFHashtables. Each hashtable
* contains parameters describing channel status.
*/
pubTlic PCFHashtable [] getChannelStatus() {

try {
MQMessage [] pcfResponses = iAgent.send
(MQCMD_INQUIRE_CHANNEL_STATUS, iParameters);
PCFHashtable [] details = new PCFHashtable [pcfResponses.length];

for (int i =
details[i]

}

return details;

0; i < pcfResponses.length; i++) {
= new PCFHashtable(pcfResponses[i]);

} catch (Exception e) {
e.printStackTrace();

}
return null;

}

MQINFRASTRUCTURE.JAVA

package com.dmitri.pcf;

import com.ibm.mq.*;
import java.util.*;
/**

* @author Dmitri

*

* This class is the top-level module for the MQ Infrastructure

* monitor suite. It is a coordination and look-up point for other
* classes, and makes use of a standard Singleton pattern to ensure
* that it is not duplicated.

*/

public class MQInfrastructure {

private static MQInfrastructure cInstance;
private Hashtable iAl1QueueManagers = new Hashtable();

14 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

/**
* Singleton private constructor. This sets up the first queue manager
* (specified by a command line argument), then calls the method
* discoverAllQmgrs to crawl through the MQSeries infrastructure.
*/
private MQInfrastructure(String startQmgrName, int startPort,
String startAddress) {
QMgrManager mgr = new QMgrManager(startQmgrName, startPort,
startAddress);
try {
mgr.connect();
mgr.queryChannels();

iAl1QueueManagers.put(mgr.getName(), mgr);
mgr.discoverQmgrs(iAll1QueueManagers);
discoverAllQmgrs(iAllQueueManagers);

} catch (MQException ex) {
ex.printStackTrace();

}

/**
* Provides access to the singleton instance.
*/
pubTic static MQInfrastructure instance() {
return clInstance;

}

/**
* Provides access to the queue manager data.
*/
public Hashtable getQueueManagers() {
return iAlTQueueManagers;
}

*
*

Iterate through the Tisted queue managers, connecting and querying
until no more are discovered. This could be described as a "crawler
method"™, as it uses a queue manager's references to other queue
managers for "auto discovery" (as long as conventions are followed
and queue managers are running).

I've opted for an interative rather than a recursive approach here
as it makes everything a bit more explicit.

% o o X X X

*
~

private void discoverAll1Qmgrs(Hashtable gmgrStore) {

int currentSize = gmgrStore.size();

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 15

for (int i = 0; i != currentSize;) {

i = currentSize;

for (Enumeration enum = gmgrStore.elements();
enum.hasMoreElements();) {

QMgrManager current = (QMgrManager) enum.nextElement();
if (lcurrent.isConnected()) {
// This is an area that needs to be improved. If a queue
// manager refuses a connection for whatever reason, this
// code attempts to re-connect on each sweep. While this
// may be desirable, it imposes a processing overhead.
try {
current.connect();
current.queryChannels();
current.discoverQmgrs(gmgrStore);
} catch (MQException ex) {
System.out.printin(ex);
}
}
}
currentSize = gmgrStore.size();
}
}

/**
* Bootstrap method. Requires a starting point (queue manager name
* and the port and address on which it's running.
*/
public static void main(String [] args) {

if (args.length != 3) {
remindOfUsage();
}
try {
int port = Integer.parseInt(args[1l]);
cInstance = new MQInfrastructure(args[0], port, args[2]);
printAl1QueueManagerDetails();

} catch (NumberFormatException nex) {
remindOfUsage();
}
}

/**

* A gentle reminder of how to use this program.
*/
private static void remindOfUsage() {

16 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

System.out.printin("Usage:");

System.out.printin("java com.dmitri.pcf.MQInfrastructure
QueueManagerName Port Address");

System.out.printin("Note: MQSeries will use port 1414 as default");

System.exit(0);
}

/**
* This is a very simple way of rendering all the data that is
* collected. It iterates through all queue manager data and dumps
* jt to system out.
*/
private static void printAllQueueManagerDetails() {

for (Enumeration enum = instance().getQueueManagers().elements();
enum.hasMoreElements();) {

QMgrManager current = (QMgrManager) enum.nextElement();

System.out.printin("----------------------------“"---““-------
O ----------------- ")

System.out.printin("Queue manager : " + current.getName());

System.out.printin("");

System.out.printin("Has channels:");

ManagedChannel [] chls = current.getChannels();
for (int i = 0; i < chls.length; i++) {

System.out.printin(chls[i].getName() + " : " +
chls[i].getChannelStatus());

QMGRMANAGER.JAVA

package com.dmitri.pcf;

import com.ibm.mq.pcf.*;
import com.ibm.mq.*;
import java.util.*;

/**

* @author Dmitri

This class is used to control all access to managed MQSeries
queue managers. It controls access to resources.

* % o X %

This class relies both on queue managers being accessible via

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 17

* client connections (TCP/IP) and the command server being running.
*/
public class QMgrManager implements CMQCFC {

private String iHostname;

private int iPort;

private String iQmgrName;

private String iClientChannel;
private PCFAgent iAgent;

private boolean ilsConnected = false;

private ChannelDetailsPCF iDetailsPCF;
private ChannelStatusPCF iStatusPCF;

private Hashtable iManagedChannels = new Hashtable();

public final static String CLIENT_CHANNEL = "SYSTEM.DEF.SVRCONN";

/**
* The constructor (it assumes the default CLIENT_CHANNEL is used
* to reach the destination gmgr).
*/
public QMgrManager(String gmgrName, int port, String hostname) {
this(gmgrName, hostname, port, CLIENT_CHANNEL);
}

/**
* The full constructor.
*/
pubTic QMgrManager(String gmgrName, String hostname, int port,
String clientChannel) {

iQmgrName = gmgrName;

iHostname = hostname;

iPort = port;

iClientChannel = clientChannel;
}

/**
* Connects to the queue manager so that it can be queried. Also
* prepares PCF queries.
*/
pubTic void connect() throws MQException {

iAgent = new PCFAgent(iHostname, iPort, iClientChannel);
iDetailsPCF = new ChannelDetailsPCF(iAgent);
iStatusPCF = new ChannelStatusPCF(iAgent);
ilsConnected = true;
}

18 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

/**
* Used to determine whether this is an active queue manager.
*/
public boolean isConnected() {
return iIsConnected;
}

/**
* Returns the queue manager's name.
*/
public String getName() {
return iQmgrName;
}

/**
* Query the queue manager for channel details.
*/

public void queryChannels() {

PCFHashtable [] details = iDetailsPCF.getChannels();
PCFHashtable [] status = iStatusPCF.getChannelStatus();
PCFHashtable current;

String name;

for (int i = 0; i < details.length; i++) {
current = null;
name = details[i].getStringValue(MQCACH_CHANNEL_NAME);

for (int j = 0; j < status.length; j++) {
// try to match status with details.
if (name.equals(status[j].getStringValue(
MQCACH_CHANNEL_NAME))) {
current = status[j];
break;
}
}
ManagedChannel mchl = (ManagedChannel)
iManagedChannels.get(name);

//instantiation is requred the first time channel is found.
if (mchl == null) {
mchl = new ManagedChannel(iAgent);
iManagedChannels.put(name, mchl);

}
mchl.refreshChannel (details[i], current);

/**

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

This method may be called by a control object to query queue
managers for details of other queue managers, thereby discovering
ones not known to the control object. This is achieved by
delegating the call to the managed channels and querying them

for remote queue manager details. The hashtable returned is

keyed by queue manager name, and the item is a QMgrManager

object (not connected).

% X X % %k

*/
public void discoverQmgrs(Hashtable gmgrs) {

ManagedChannel currentChl;

for (Enumeration chls = iManagedChannels.elements();
chls.hasMoreElements();) {

currentChl = (ManagedChannel) chls.nextETement();
currentChl.copyQmgrsInto(gmgrs);
}
}

/**
* Returns an array of managed channels.
*/

public ManagedChannel [] getChannels() {

ManagedChannel [] channels = new ManagedChannel
[iManagedChannels.size()];
int i = 0;
for (Enumeration chls = iManagedChannels.elements();
chls.hasMoreElements(); i++) {

channels[i] = (ManagedChannel) chls.nextElement();
}

return channels;

MANAGEDCHANNEL.JAVA

package com.dmitri.pcf;

import com.ibm.mq.pcf.*;
import com.ibm.mqg.*;
import java.util.*;

/**

* @author Dmitri

*

* This class is used to control access to channels. It deals with a

20 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

This is the main class that would be extended to provide a more
complete system management solution. For example, from here it

X% X X % 3k %

channels (eg by starting or resetting them).
*/
public class ManagedChannel implements CMQCFC, CMQXC {

private PCFHashtable iChannelDetails;
private PCFHashtable iChannelStatus;
private String iName;

private String iXmitQName;

private PCFAgent iAgent;

private QMgrManager iTargetQMgr;
public static int DEFAULT_PORT = 1414;

// lookup point to translate channel status into English.
public static String [] CHANNEL_STATUS = {

"Inactive",

"Binding",

"Starting"”,

"Running",

"Stopping",

"Retrying",

"Stopped",

"Requesting”,

"Paused”,

"Initializing",
}s

/**

* Simple constructor that saves a reference to the queue manager's

* agent.
*/
public ManagedChannel(PCFAgent agent) {
super();
iAgent = agent;
}
/**

* This method is called by the QMgrManager class. This is done
* because calls to enquire channel details and status may return

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

single channel and coordinates other facets of channel management.

would be possible to add a channel renderer to represent a channel
visually. It would also be appropriate to tag on classes to alter

21

* multiple channels.
*/
public void refreshChannel(PCFHashtable details,
PCFHashtable status) {

iChannelDetails = details;
iChannelStatus = status; // often null.

iName = iChannelDetails.getStringValue(MQCACH_CHANNEL_NAME);
refreshXmitQ();
refreshTargetQmgr();

}

/**
* Return the name of the managed channel.
*/
public String getName() {
return iName;
}

/**
* Return the channel's status (string format).
*/
pubTlic String getChannelStatus() {
return CHANNEL_STATUS[getChannelStatusInt() 1;
}

/**
* Return the channel's status (int format).
*/

public int getChannelStatusInt() {

try {
return iChannelStatus.getIntValue(MQIACH_CHANNEL_STATUS);

} catch (NullPointerException channellsInactive) {
return 0;
}

}

/**
* A possible future extension could be to get the depth of the XmitQ.
* An XmitQ with messages on is a good sign of problems in a system
* that requires channels to be running at all times.
*/
private void refreshXmitQ() {

try {
iXmitQName = iChannelDetails.getStringValue(MQCACH_XMIT_Q_NAME);

22 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

} catch (NullPointerException noXmitqg) {

}

}
/**
* This is used to discover other queue managers on a network. It
* does this by querying sender/server channels for details of
* partner queue managers, and makes a number of assumptions:
*
* 1 That the connection is based on TCP/IP (the whole Java MQ
* interface relies on IP).
* 2 That the convention is followed whereby XMitQs have the same
* name as queue managers (MQSeries management becomes difficult
* if this convention is not followed).
* 3 That remote queue managers are accessible via the default
* client connection channel.
*/

private void refreshTargetQmgr() {
if (iXmitQName == null) return;

// 1If already set up...
if (iTargetQMgr != null &&
TargetQMgr.getName().equals(iXmitQName)) {
return;
}
int chltype = iChannelDetails.getIntValue(MQIACH_CHANNEL_TYPE);
if (chltype != MQCHT_SENDER &&
chltype != MQCHT_SERVER) { // we are unable to query
// for connection name.
return;
}
String conname =
iChannelDetails.getStringValue(MQCACH_CONNECTION_NAME);
int port = DEFAULT_PORT;

if (conname.index0f('("') > 0) { // port number is embedded
port = Integer.parselnt(conname.substring(
conname.index0f('(') + 1, conname.index0f(')"')));
conname = conname.substring(0, conname.indexO0Of('('));

}
iTargetQMgr = new QMgrManager(iXmitQName, port, conname);

}

/**

* A method of accumulating all data about referenced queue
* managers in a common place.
*/

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

23

public void copyQmgrsInto(Hashtable gmgrs) {

if (iTargetQMgr == null ||
iTargetQMgr.getName().equals("") ||
gmgrs.containsKey(iTargetQMgr.getName())) {
return;
}
gmgrs.put(iTargetQMgr.getName(), iTargetQMgr);
}

STARTCHANNELPCF.JAVA

package com.dmitri.pcf;
import com.ibm.mq.pcf.*;
import com.ibm.mq.*;

/**

* @author Dmitri
*

* This class is used to start channels. It is not linked to other
* classes and is included only as an example.

*/

public class StartChannelPCF implements CMQCFC {

private PCFAgent iAgent;
private PCFParameter [] iParameters;

/**
* The constructor, which requires a valid queue manager agent.
*/

public StartChannelPCF(PCFAgent agent) {

iAgent = agent;
}

/**
* This method starts the channel specified.
*/
public void startChannel(String channelName) {

iParameters = new PCFParameter [] {
new MQCFST (MQCACH_CHANNEL_NAME, channelName),
}s

try {

MQMessage [] pcfResponses = iAgent.send (MQCMD_START_CHANNEL,
iParameters);

24 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

// Assume only the one response.
PCFHashtable response = new PCFHashtable(pcfResponses[0]);

if (response.isValid()) {
System.out.printin("Channel " + channelName + " Started");

} else {
System.out.printin("Channel "™ + channelName +
" failed to start, reason code : " +
response.getReasonCode());

}

} catch (Exception e) {
e.printStackTrace();

© Xephon 1999

Copying object definitions from QMGR to QMGR

Part of MQSeries for MVS/ESA is a set of operations and control
panels to construct and run commands for defining, displaying,
altering, and del eting M QSeriesobjectsunder | SPF. But | wasmissing
afunction for copying object definitions from one queue manager to
another (for instance, from TEST to PROD). To plug thisgap | wrote
MQSMAKE EXEC (it comprises one REXX EXEC and two | SPF
panels), whichusesthe COMMAND functionof theCSQUTIL utility
programto producealist of object DEFINE statementsand passthem
to atarget subsystem. Asthe CSQUTIL load moduleis called as an
external routine, the appropriate MQSeries libraries
(thlqual . SCSQAUTH and thiqual.SCSQANLE) must beincluded in
the TSO STEPLIB concatenation. Figure 1 overleaf shows the
processes involved.

Initially aselection panel (MQSMAKE) asksfor the sourceand target
gueue manager and also for the objectsfor which DEFINE statements
should be generated. After receiving the arguments, temporary data

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 25

Source Define Generate Target
MQSMAKE >
QMGR Object ’@ Object QMGR

definitions definitions

Figure 1. Seps performed by MQSMAKE

sets for use by the utility program are alocated and CSQUTIL is
called for the first time to generate DEFINE statements from the
specified DISPLAY object commands. If any statementsaregenerated,
the MQSMAKE2 panel prompts you to edit the MAKEDEF output
and execute the define step. Otherwise, the queue manager utility
SYSPRINT is displayed and the dialogue function returns to the
MQSMAKE panel. During editing, the DEFINE statementsgenerated
canbemodified beforethey arepassedtothetarget queue manager via
asecond call to CSQUTIL. If thereturn code from the call command
signals successful processing, SY SPRINT isdisplayed for verifying
the DEFINE object execution. Returning (PF3-End) to the selection
screen (MQSMAKE) deletes all temporary data sets.

Note the use of the continuation character (‘o) in the code below to
indicatethat oneline of code mapsto morethan onelineof print. This
character isnot present inthe code downl oadablefrom X ephon’sWeb
site (www.xephon.com).

REXX SOURCE CODE
EXEC MQSMAKE

/* REXX */
/* /
/- Author : R.Kleebaur /
/- Date : 10.01.1999 /
/- Function: Copy object definitions from QMGR to QMGR via CSQUTIL -/
/- utility. The user is prompted before the selected -/
/- object(s) are defined in target QMGR. -/
/- =%/
fqmgr =" /* init panel fields */
tgmgr =
queue =
namelist =
process =
channel =

26 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

msg ="'
1ib = 'THQ.SCSQAUTH' /* CSQUTIL library
do forever

ADDRESS ISPEXEC 'DISPLAY PANEL (MQSMAKE)'

if rc = 8 then

leave /* pf3 - end
else
do
alloc_rc =0
x = outtrap(var.,'*")
call alloc /* allocate temporary data sets
if alloc_rc = 0 then
do
call genstep /* generate object definitions
if genstep_rc = 0 then
do
call defprompt /* should defstep be performed ?
end
else
do
call dealloc /* delete temorary data sets
msg = 'Generate step unsuccessful |’
end
end
end
end
exit
/* ___
/- subroutine: allocate temporary data sets for utility execution
/- dsntempl = SYSIN
/- dsntemp2 = SYSPRINT
/- dsntemp3 = CMDINPUT input
/- dsntemp4 = MAKEDEF output
/ __
alloc
templ = 'SYSIN'
temp2 = 'SYSPRINT'
temp3 = 'CMDINPUT’
temp4 = 'MAKEDEF'
dsntempl = USERID() || '.MQSMAKE' || ".SYSIN'
dsntemp2 = USERID() || '.MQSMAKE"' || '.SYSPRINT'
dsntemp3 = USERID() || '.MQSMAKE' || '.CMDINPUT'
dsntemp4 = USERID() || '.MQSMAKE' || '.MAKEDEF'

/* allocate temp dataset 1 */
ADDRESS TSO "ALLOC FI("templ™) DA('"dsntempl™') OLD REUSE"
if rc = 0 then
ADDRESS TSO "EXECIO O DISKW "templ™ (OPEN FINIS"
else
ADDRESS TSO "ALLOC FI("templ") DA('"dsntempl"'),

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

*/

*/

*/

*/

27

NEW CAT REUSE UNIT(SYSTS),
LRECL(80) BLKSIZE(27920) RECFM(F B) SPACE(1,1) TRACKS"
if rc /= 0 then

do
msg = 'Temporary dataset 1 cannot be allocated |’
alloc_rc =1
return

end

/* allocate temp dataset 2 */
ADDRESS TSO "ALLOC FI("temp2") DA('"dsntemp2"') OLD REUSE"
if rc = 0 then
ADDRESS TSO "EXECIO O DISKW "temp2" (OPEN FINIS"
else
ADDRESS TSO "ALLOC FI("temp2") DA('"dsntemp2"'),
NEW CAT REUSE UNIT(SYSTS),
LRECL(133) BLKSIZE(27930) RECFM(F B) SPACE(1,1) TRACKS"
if rc /= 0 then

do
msg = 'Temporary dataset 2 cannot be allocated |'
alloc_rc =1
return

end

/* allocate temp dataset 3 */
ADDRESS TSO "ALLOC FI("temp3") DA('"dsntemp3"') OLD REUSE"
if rc = 0 then
ADDRESS TSO "EXECIO O DISKW "temp3"™ (OPEN FINIS™
else
ADDRESS TSO "ALLOC FI("temp3™) DA('"dsntemp3™'),
NEW CAT REUSE UNIT(SYSTS),
LRECL(80) BLKSIZE(27920) RECFM(F B) SPACE(1,1) TRACKS"
if rc /= 0 then

do
msg = 'Temporary dataset 3 cannot be allocated |’
alloc_rc =1
return

end

/* allocate temp dataset 4 */
ADDRESS TSO "ALLOC FI("temp4") DA('"dsntemp4"') OLD REUSE"
if rc = 0 then

ADDRESS TSO "EXECIO O DISKW "temp4" (OPEN FINIS"
else

ADDRESS TSO "ALLOC FI("temp4") DA('"dsntemp4"'),

NEW CAT REUSE UNIT(SYSTS),

LRECL(80) BLKSIZE(27920) RECFM(F B) SPACE(1,1) TRACKS"

if rc /= 0 then

do
msg = 'Temporary dataset 4 cannot be allocated |'

28 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

alloc_rc =1

return

end
return
/* ___
/- subroutine: reuse temp data sets for define step
/- dsntempl = SYSIN
/- dsntemp2 = SYSPRINT
/ __

alloc_reuse:

ADDRESS TSO "ALLOC FI("templ™) DA('"dsntempl™') OLD REUSE"
ADDRESS TSO "EXECIO O DISKW "templ" (OPEN FINIS"

ADDRESS TSO "ALLOC FI("temp2"™) DA('"dsntemp2"') OLD REUSE"
ADDRESS TSO "EXECIO O DISKW "temp2" (OPEN FINIS"

return

dealloc:

ADDRESS TSO "FREE FI("templ™)"
ADDRESS TSO "FREE FI("temp2")"
ADDRESS TSO "FREE FI("temp3")"
ADDRESS TSO "FREE FI("temp4")"
ADDRESS TSO "DELETE ('"dsntempl"')"
ADDRESS TSO "DELETE ('"dsntemp2"')"
ADDRESS TSO "DELETE ('"dsntemp3"')"
ADDRESS TSO "DELETE ('"dsntemp4"')"

return
/* ___
/- subroutine: generate MQS object definitions
/ __
genstep:
queue 'COMMAND DDNAME(' || temp3 || ') MAKEDEF(' || temp4 || ")’
queue "' /* enter null Tine
ADDRESS TSO "EXECIO * DISKW "templ /* write SYSIN
ADDRESS TSO "EXECIO O DISKW "templ™ (FINIS" /* close SYSIN
if queue "= "' then

queue 'DISPLAY QUEUEC' || queue || ") ALL'
if namelist "= "' then

queue 'DISPLAY NAMELIST(' || namelist || ") ALL'
if process "= "' then

queue 'DISPLAY PROCESS(' || process || ") ALL'
if channel "= "' then

queue 'DISPLAY CHANNEL(' || channel || ") ALL'
queue "' /* enter null Tine
ADDRESS TSO "EXECIO * DISKW "temp3 /* write CMDINPUT
ADDRESS TSO "EXECIO O DISKW "temp3™ (FINIS" /* close CMDINPUT
ADDRESS TSO "call '™ || 1ib || ™CsaQuTIL)" "™ || fgmgr || """
genstep_rc = rc /* save return code

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

*/
*/
*/

*/
*/
*/

*/

29

return

i i e /
/- subroutine: define objects in target gmgr -/
/- 1. analyse genstep SYSPRINT -/
/- 2. display defstep execution prompt panel -/
/- 3. execute defstep -/
e i */
defprompt:

call genstep_analyse
if cmdno = 0 then

do
ADDRESS ISPEXEC "VIEW DATASET('"dsntemp2"')™ /* displ SYSPRINT */
call dealloc /* del temp datasets */
msg = 'No DEFINE commands generated |’
return
end
defmsg = cmdno 'DEFINE command(s) generated |’
makedef = "Y'
defstep = "Y'
ADDRESS ISPEXEC "ADDPOP"
ADDRESS ISPEXEC "DISPLAY PANEL(MQSMAKE2)" /* prompt exec'n */
ADDRESS ISPEXEC "REMPQOP"
if makedef = 'Y' then /* edit MAKEDEF? */
ADDRESS ISPEXEC "EDIT DATASET('"dsntemp4"')"
if defstep = 'Y' then /* execute define? */
do
call alloc_reuse /* reuse data sets */
call defstep /* run utility */
if defstep_rc = 0 then /* define executed */
do /* displ SYSPRINT */
ADDRESS ISPEXEC "VIEW DATASET('"dsntemp2"')"
call dealloc /* del temp datasets */
msg = 'Define step executed |'
end
else /* define unsuccessful */
do
call dealloc /* del temp datasets */
msg = 'Define step unsuccessful |’
end
end
else /* define skipped */
do
call dealloc /* del temp datasets */
msg = 'Define step skipped |’
end
return
[K o m oo m oo /
/- subroutine: extract CSQUO59I message from genstep SYSPRINT -/
e i */

genstep_analyse:

30 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

ADDRESS TSO "EXECIO * DISKR "temp2" (STEM recin. FINIS"
cmdno = 0 /* no of define cmds made
do i =1 to recin.0

if pos('CSQUO59I',recin.i) "= 0 then

do
parse var recin.i 'CSQUO59I' . cmdno .
leave

end
end
return
/* __
/- subroutine: define MQS objects in target QMGR
/ ___
defstep:
queue 'COMMAND DDNAMEC(C' || temp4 || ")
queue "' /* enter null Tine
ADDRESS TSO "EXECIO * DISKW "templ /* write SYSIN
ADDRESS TSO "EXECIO O DISKW "templ™ (FINIS" /* close SYSIN
ADDRESS TSO "call '™ || 1ib || ™(CsQuTIL)" "™ || tgmgr || """
defstep_rc = rc /* save return code
return
ISPF PANELS
PANEL MQSMAKE
)Body
% COPY OBJECT DEFINITION(S) User
O -+&ZUSER
% Date
O -+&date
% COMMAND ===> _Z7CMD +%Time
O -+&ZTIME
% ___
|:| ____________
+
+
+ sFrom:+ _FQMGR + %To:+ _TOMGR +
+
+ %For object(s):
+ %Queue :+ _QUEUE
O +
+ %Namelist: + _NAMELIST
0 +
+ %Process:+ _PROCESS
O +
+ %Channel :+ _CHANNEL +
+
+ %Note: Generic selection possible. There will be a prompt
O before

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

*/

*/
*/
*/

*/

31

% the define step.

JINIT
.CURSOR = FQMGR
&DATE = "&ZDAY..&ZMONTH..&ZSTDYEAR'
)PROC
VER (&fgmgr,nb)
VER (&tgmgr,nb)
IF (&fgmgr = &tgmgr)
.CURSOR=TQMGR
.MSG=MQM000
IF (&queue = "' & &namelist = '" & &process = '"' & &channel = '")
.CURSOR=QUEUE
.MSG=MQMO001
YEND

PANEL MQSMAKE?2
)Body window(65,10)
%COMMAND ===>_7CMD

+ &defmsg
+
+ %Edit MAKEDEF output:+ _makedef +
+ %Perform define step:+ _defstep +
% __
JINIT
.CURSOR = ZCMD
JREINIT
REFRESH(*)
)JPROC

VER (&makedef,list,Y,N)
VER (&defstep,list,Y,N)
JEND

MESSAGE MEMBER MQM0O
MQMOOO 'INVALID SELECTION' .TYPE=WARNING
MQMOO1 'NO OBJECT SELECTED' .TYPE=WARNING

Raimund Kleebaur
MQSeries Programmer
Hugo Boss AG (Germany) © Xephon 1999

32 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

MQSeries stress testing

This months's instalment concludes this article on MQSeries stress
testing using Java(thefirst part appearedinlast month’sMQ Update).

MQCONSTANTS.JAVA (CONTINUED)

JPanel bottom = new JPanel();
dlgContents.add(bottom, BorderLayout.SOUTH);
bottom.setlLayout(new FlowLayout());

JButton btnOk = new JButton("0k");

bottom.add(btnOk);

btnOk.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

iMessagedlg.setVisible(false);

}

1)

iMessagedlg.pack();

iMessagedlg.setVisible(true);

}

/**
* Return the singleton's instance
*/
public static synchronized MQConstants getInstance() {

if (cInstance == null) {

try {

cInstance = new MQConstants(); // Swing styles must be
// re-instantiated.
ObjectInputStream ois = new ObjectInputStream(new
FileInputStream(PERSISTENCY_NAME));

cInstance = (MQConstants) ois.readObject();
cInstance.addListeners();
ois.close();

} catch (Exception e) {
cInstance = new MQConstants();

}

cInstance.setVisible(true);
cInstance.repaint();

}

return cInstance;

}

/**

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 33

Store a reference to any classes interested in the completion
* of the gathering of constants
*/
public void addConstantsListener(ConstantslListener 1lis) {
iListeners.addElement(1is);
}
/**
* Notify listeners that all constants have now been gathered
*/
public void notifyConstantsListeners() {
for (Enumeration enum = ilListeners.elements();
enum.hasMoreETements();) {
((ConstantsListener) enum.nextElement()).constantsAvailable();
}
}
}

CONSTANTSLISTENER.JAVA

package com.dmitri.mgstress;

/**

* @author Dmitri

* Simple interface to notify that constants are now ready for use
*/

public interface ConstantslListener {

public void constantsAvailable();
}

MQSTRESSTESTER.JAVA

package com.dmitri.mgstress;
import java.awt.event.*;
import com.sun.java.swing.*;
import java.awt.*;

/**

* @author Dmitri

*

* This is the top-Tevel class of the MQStressTester package. It
* has overall responsibility for other classes.

*

* Its primary actions are:

*

* 1. Instantiate the constants window and wait for it to finish
* its information gathering and processing.

* 2. Instantiate an appropriate number of MQStressThreads.

* 3. Present the user with controls for starting and stopping

* the test.

* 4. Control the starting and stopping of the stress test.

34 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

*/
pubTic class MQStressTester implements ConstantsListener {

private MQConstants iConstants = MQConstants.getInstance();

private JFrame iFrmResults = new JFrame("MQStress Results");
private JButton iBtnStart = new JButton("Start");

private JButton iBtnStop = new JButton("Stop");

private JButton iBtnExit = new JButton("Exit");

private static long cRepaintInterval = 10001;
private MQStressThread [] iThreads; // An array of test threads

/**
* A simple constructor to register an interest in the completion
* of MQConstants. As we are dependent on constants being gathered,
* it is necessary to wait until they are all in place.
*/
public MQStressTester() {
super();
iConstants.addConstantsListener(this);
}

/**
* This method starts things off when the MQConstants class has
* finished gathering data.
*/
pubTic void constantsAvailable() {
begin();
}

/**
* This method initializes the window for displaying the results
* of the stress test while in progress.
*/
private void begin() {

int numberOfThreads = iConstants.getNumberOfInstances();
iThreads = new MQStressThread[numberOfThreads];

JPanel pniContents = new JPanel();

JPanel pniMain = new JPanel();
iFrmResults.getContentPane().add(pnlContents);
pnlContents.setBorder(BorderFactory.createEmptyBorder(

10, 10, 10, 10));
pniContents.setlLayout(new BorderLayout());
pniContents.add(pniMain);
pniMain.setlLayout(new FlowlLayout());

for (int i = 0; i < numberOfThreads; i++) {

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 35

iThreads[i] = new MQStressThread();
pniMain.add(iThreads[i].getRenderer());
}

JPanel pnlButtons = new JPanel();
pnlButtons.setlayout(new FlowlLayout());
pniContents.add(pniButtons, BorderlLayout.SOUTH);
pnlButtons.add(iBtnStart);
pn1Buttons.add(iBtnStop);
pnlButtons.add(iBtnExit);

addListeners();
iFrmResults.pack();
iFrmResults.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
iFrmResults.setVisible(true);

}

/**
* This method adds inner class listeners to all buttons.
*/

private void addListeners() {

iBtnStart.addActionlListener(new ActionlListener() {
public void actionPerformed(ActionEvent e) {
for (int i = 0; i < iThreads.length; i++) {
new Thread(iThreads[i]).start();
}
}
1)

iBtnStop.addActionListener(new ActionlListener() {
public void actionPerformed(ActionEvent e) {
for (int 1 = 0; i < iThreads.length; i++) {
iThreads[i].stopTest();
}
}
IO

iBtnExit.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
for (int i = 0; i < iThreads.length; i++) {
iThreads[i].exit();
iFrmResults.setVisible(false);
System.exit(0);
}
}
1)

/**

* This is a standard main method to instantiate this class.

36 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

*/

public static void main(String[] args) {
new MQStressTester();

}

MQSERVICE.JAVA

package com.dmitri.mgstress;
import com.ibm.mq.*;

/**

* @author Dmitri

class

* O X X X

*/

This is a simple class that interfaces to MQSeries, putting
and getting simple messages. It doesn't act on messages. This

is not capable of recovering from MQSeries errors (such

as connection lost).

public class MQService {

private
private
private
private
private
private

/**

MQConstants iConstants = MQConstants.getInstance();
MQQueue iRequestQueue = null;

MQQueue iReplyQueue = null;

MQGetMessageOptions iGmo = new MQGetMessageOptions();
MQPutMessageOptions iPmo = new MQPutMessageOptions();
MQQueueManager iQmgr;

* Initializes a new service to MQSeries

*/

public MQService() {
System.runFinalizersOnExit(true);

}

/**

* This method sets up the default message parameters. Some of these

* are hard-coded, others are obtained from the constants class.

*/
private

try {

MQMessage applyDefaults(String msg) {

MQMessage mgmess = new MQMessage();
mgmess.replyToQueueName = iReplyQueue.name;
mgmess.format = MQC.MQFMT_STRING;
mgmess.writeString(msg);

return mgmess;

} catch (java.io.IOException e) {
e.printStackTrace();

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

37

}
return null;
}

/**

This method initializes the MQ component of the service.
This includes connection to the queue manager as well as the
opening queues.

Note: for future expansion, it may be a good idea to measure
connection times etc, as this takes an appreciable time in a
stressed system.

X% X % % 3k

*/
public void mqStartup() {

iGmo.options = MQC.MQGMO_WAIT | MQC.MQGMO_CONVERT |
MQC.MQGMO_NO_SYNCPOINT | MQC.MQGMO_FAIL_IF_QUIESCING;
iPmo.options = MQC.MQPMO_NO_SYNCPOINT | MQC.MQPMO_FAIL_IF_QUIESCING
| MQC.MQPMO_SET_IDENTITY_CONTEXT;

MQEnvironment.hostname = iConstants.getHostName();
MQEnvironment.channel iConstants.getChannelName();

// Connect to the specified queue manager
try {
iQmgr = new MQQueueManager(iConstants.getQueueManagerName());

int openOptions = MQC.MQOO_OUTPUT | MQC.MQOO_FAIL_IF_QUIESCING
| MQC.MQOO_SET_IDENTITY_CONTEXT;
// Open request queue
iRequestQueue = iQmgr.accessQueue(
iConstants.getRequestQueueName(),
openOptions, null, null, null);

openOptions = MQC.MQOO_INPUT_SHARED | MQC.MQOO_FAIL_IF_QUIESCING;

// Open reply queue
iReplyQueue = iQmgr.accessQueue(iConstants.getReplyQueueName(),
openOptions, null, null, null);
} catch (Exception ex) {
ex.printStackTrace();
}
}

/**

* This method places a message on a queue and waits for a reply

* on the reply queue. It returns the time taken or -1 if it fails.
*/

public long sendAndReceive(String ioutMessage, long timeQut) {

iGmo.waitInterval = (int) timelOut;

38 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

MQMessage outMess = applyDefaults(ioutMessage);
long timeStart = System.currentTimeMillis();
try {
iRequestQueue.put(outMess, iPmo);
iReplyQueue.get(outMess, iGmo,
iConstants.getMaximumMessagelLength());

return System.currentTimeMillis() - timeStart;

} catch (Exception e) {
System.out.printin("Put/Get error : " + e);
}
return -1;
}

/**
* Close down the mqg queues and connection
*/

public void finalize() {

try {
iReplyQueue.close();
iRequestQueue.close();
iQmgr.disconnect();
} catch (MQException toolLateToWorry) {}
}
}

MQSTRESSTHREAD.JAVA

package com.dmitri.mgstress;
import java.awt.*;
import com.sun.java.swing.*;

*
*

@author Dmitri

This class is the actual control object for the MQStress test
package. It calls the MQService class and reports results back
to the main class by supplying a component to hold results.

In this implementation, a simple JLabel is supplied to show

test results as they happen. This gives an on-line view that
immediately highlights problem areas. This implementation does
not store results of any kind. It could be appropriate to extend
this class to do just that, enabling extensive analysis of
results at a Tater stage.

% o o X % 3 ok 3 X X X

*/
public class MQStressThread implements Runnable {

private JLabel iRenderer = new JLabel("Inactive");

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

39

private MQService iService = new MQService();

private boolean iStopRequested

private MQConstants iConstants

false; // Flag to determine
// whether the control module
// has requested a stop.

MQConstants.getInstance();

private long [] iAcceptable;
private long [] iFailure;
private long [] iPace;
private String [] iMessage;

private Color iClrAcceptable = new Color(0, 70, 0); // Dark green
private Color iClrWarning = new Color(170, 170, 0); // Yellowish
private Color iClrFail = Color.red;

private Color iClrDefault = Color.black;

/**
*
*

*/

Constructor. Initializes local copies of runtime parameters to
avoid delays when running.

public MQStressThread() {

}

/**
*
*

*/

iRenderer.setPreferredSize(new Dimension(60,20));
iRenderer.setForeground(iClrDefault);

int messNo = iConstants.getNumberOfMesages();
iAcceptable = new Tong[messNo];

iFailure = new long[messNo];

iPace = new long[messNo];

iMessage = new String[messNo];

for (int i = 0; i < messNo; i++) {
iAcceptable[i] = iConstants.getAcceptableTime(i);
iFailure[i] = iConstants.getFailureTime(i);
iPace[i] = iConstants.getPaceTime(i);
iMessage[i] = iConstants.getMessage(i);

}

iService.mqStartup();

This method returns the 'renderer' that is used to display the
results of the stress test as they happen.

pubTlic Component getRenderer() {

}

/**
*

40

return iRenderer;

Starts the stress test. Records response times and paces

© 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

*

*/

according to pre-set parameters.

public void run() {

}

/**
*

*/

iStopRequested = false;
int numberOfRepetitions = iConstants.getNumberOfRepetitions();
int numberOfMessages = iConstants.getNumberOfMesages();

long startTime = 0;

long response = 0;

long sleepTime = 0;

for (int i = 0; i < numberOfRepetitions && !iStopRequested; i++) {
for (int j = 0; j < numberOfMessages && !iStopRequested; j++) {

startTime = System.currentTimeMillis();
response = iService.sendAndReceive(iMessage[j], iPace[j]);

// Maximum time allowed is pace time.

// Could log to disk here in future extensions.

if (response < 0) { // Complete failure
iRenderer.setForeground(iClrFail);
iRenderer.setText("Failure");

} else if (response < iAcceptable[j]) {
iRenderer.setForeground(iClrAcceptable);
iRenderer.setText(Long.toString(response));

} else if (response < iFailure[J]) {
iRenderer.setForeground(iClrWarning);
iRenderer.setText(Long.toString(response));

} else if (response > iFailure[J]) {
iRenderer.setForeground(iClrFail);
iRenderer.setText(Long.toString(response));

}
sleepTime = iPace[j] - (System.currentTimeMillis()
- startTime);
try {
Thread.sleep(sleepTime);
} catch (Exception ignored) {} // Could be an interrupt or
// negative sleep

}

Stops the stress test

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

41

public void stopTest() {

iStopRequested = true;
iRenderer.setText("Stop");
iRenderer.setForeground(iClrDefault);

}

/**

* Prepares for exiting

*/
public void exit() {
stopTest();
}
}

© Xephon 1999

Recovering damaged or lost circular logs on Unix

MQSeries builds its own log files in /var/mgnVlog/ QMGRNAME/
active. If thelogsaredefined as‘ circular’ you need never worry about
them — MQ will maintain them itself. To find out how your logs are
defined, check the LogType parameter in the /var/mgm/gmgrs/
QMGRNAME/gm.ini file (note that ‘ CIRCULAR’ isthe default).

Here's an excerpt from gm.ini:

Log:

LogPrimaryFiles=3
LogSecondaryFiles=2
LogFilePages=1024

LogType=CIRCULAR

LogBufferPages=17

LogPath=/var/mgm/1og/QMGRNAME/

Thisisthelog file structure:

Path: /var/mgm/log/ QMGRNAME:

drwxrwx--- 3 mgm
drwxrwxr-x 5 mgm
drwxrwx--- 2 mgm
“rW-rw---- 1 mgm

mam
mqm
mqm
mqm

512
512
512
7580

May 26 1998

Jul 16 14:41 ..

May 26 1998 active

Jul 16 14:25 amghlctl.1fh

Path: /var/mgm/log/ QMGRNAME/active:

42 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

drwxrwx--- 2 mgm mgm 512 May 26 1998

drwxrwx--- 3 mgm mgm 512 May 26 1998 ..
“rW-rw---- 1 mgm mgm 4202496 Jul 16 14:25 S0000000.LOG
“rW-rw---- 1 mgm mgm 4202496 Jul 11 12:01 S0000001.L0OG
SrW-rw---- 1 mgm magm 4202496 Jul 14 09:23 S0000002.L0G

Occasionally, the logs are damaged or (if outside forces enforce a
rigorous log archiving routine) they may be removed. Whatever the
cause, the result is the same: MQ dies.

A quick way to make M Q operative again isto create adummy queue
manager and steal itslogs:

1 Stop MQSeries, if it isnot already down:
endmgm -i QMGRNAME

2 Create adummy queue manager:
crtmgm DUMQMGR

3 Back up (rename) existing log files:
mv old.fil /tmp/backup.name

4 Copy the log files and the log control record from the newly
created queuemanager (notetheuseof thecontinuation character,
‘07, to indicate that one command line maps to several lines of
print):
cp -r /var/mgm/1og/DUMOMGR/active /var/mgm/10g/QMGRNAME/active

cp /var/mgm/1og/DUMQMGR/amghlct1.1fh /var/mgm/10g/QMGRNAME/
O amghlctl.1fh

5 Restart the queue manager:

strmgm QMGRNAME

The queue manager should restart without a problem. Of course, you
losethedatathat wason theold logs, but that isbetter than not having
MQ at all.

This procedure is known to work on Sun Solaris and AIX Unix
systems but has not been tested on HP/UX or any other version of
Unix.

Christine Hills (USA) © Xephon 1999

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 43

MQ news

Candle has made anumber of enhancements
to its Candle Command Center (CCC) to
boost support for MQSeries. New versions
of the company’s CCC Admin Pac (which
ships with MQSeries) and CCC
Management Pac support both MQSeries
V2.1 for OS/390 and MQSeries V5.1 for
other platforms, and anew Management Pac
for MQSeries Integrator adds support for
MQSeries Integrator Version 2.0. CCC
Management Pac for MQSeries Integrator
provides tools for MQSeries Integrator
configuration and also enables CCC to
process and manage MQSeries Integrator-
generated events.

Both Admin and Management Pacs are out
now, but no detailson pricing wererel eased.

For further details contact:

Candle Corp, 2425 Olympic Blvd, Santa
Monica, CA 90404, USA

Tel: +1 310 829 5800

Fax: +1 310 582 4287

Web: http://www.candle.com

Candle Ltd, 1 Archipelago, Lyon Way,
Frimley, Camberley, Surrey GU16 5ER, UK
Tel: +44 1276 4147000

Fax: +44 1276 414777

* % %

Willow Technology has announced new
productsto add toits portfolio of clientsand
servers for MQSeries. In addition to the
company’ sexistingMQSeriesV 2 clientsfor
Data General DG/UX, Silicon Graphics
IRIX, and Apple Mac OS, the company has

started shipping an MQSeries V2 client for
Hewlett-Packard MPE/ix. The new
MQSeries V2 server isfor SGI IRIX (6.2 or
later), which joins existing MQSeries V2
servers for UnixWare (2.1.2 or later) and
SCO OpenServer (OSR5.0.2 or later).

The company also announced it has a
number of MQSeries V5 clients under
development: the IRIX client isnow in beta,
while beta versions of clients for DG/UX,
MacOS, UnixWare, and SCO OpenServer
are expected in the near future.

For further information contact:

Willow Technologies Inc, PO Box 320005,
Los Gatos, CA 95032, USA

Tel: +1 408 377 7292

Fax: +1 408 377 7293

Web: http://www.willowtech.com

* % %

IBM has announced MQSeries for Tandem
NonStop Kernel V2.2.0.1, which has
improved performance and scalability and
also addssupport for more Tandem NonStop
Kernel features. The product was devel oped
in conjunction with Tandem, a division of
Compag, and Candle, an IBM business
partner. Other features are Euro symbol
support and Y2K compliance, and support
for both the TCP/IP and SNA protocols.

Out now, nodetailson pricingwererel eased.

For further information contact your local
IBM representative.

QO

xephon

	PCF programming in Java
	Copying object definitions from QMGR to QMGR
	MQSeries stress testing
	Recovering damaged or lost circular logs on Unix
	MQ news

