
© Xephon Inc 2004

November 2004

38

In this issue

3 Identifying groups that may be
candidates for deletion

8 RACRAC dictionary attack on
weak passwords

37 RACF in focus – Global Access
Checking Table

42 C/C++ functions for RACF
security operations

66 RACF 101 – understanding
RACF terms

71 RACF news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

RACF Update
Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Bob Thomas
E-mail: info@xephon.com

RACF Update on-line
Code from RACF Update, and complete
issues in Acrobat PDF format, can be
downloaded from http://www.xephon.com/
racf; you will need to supply a word from the
printed issue.

Subscriptions and back-issues
A year’s subscription to RACF Update (four
quarterly issues) costs $290.00 in the USA
and Canada; £190.00 in the UK; £196.00 in
Europe; £202.00 in Australasia and Japan;
and £200.50 elsewhere. The price includes
postage. Individual issues, starting with the
August 2000 issue, are available separately
to subscribers for $72.75 (£48.50) each
including postage.

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.

Printed in England.

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any
warranty or make any representations as to
the accuracy of the material it contains.
Neither Xephon nor the contributing
organizations or individuals accept any
liability of any kind howsoever arising
out of the use of such material. Readers
should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, and other contents of this journal
before making any use of it.

Contributions
When Xephon is given copyright, articles
published in RACF Update are paid for at the
rate of $160 (£100 outside North America)
per 1000 words and $80 (£50) per 100 lines of
code for the first 200 lines of original
material. The remaining code is paid for at the
rate of $32 (£20) per 100 lines. To find out
more about contributing an article, without
any obligation, please download a copy of
our Notes for Contributors from
www.xephon.com/nfc.

This issue is dedicated to the memory of Chris Bunyan, co-founder of Xephon and
creator of the Update journals.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Identifying groups that may be candidates for
deletion

This is the REXX EXEC I use to identify groups that may be
candidates for deletion. I use JCL to call the REXX. Once
identified, a list of DG commands is built.
SYS4.RACF.IRRDBU00 contains an IRRDBU00-unloaded
RACF database.

JCL
//* JOBCARD

//**

//* CLEAN UP OBSOLETE GROUPS.

//* --

//* THIS REXX LOOKS FOR GROUPS THAT HAVE:

//* No Users, No Subgroups, Do Not match any DS HLQs, and

//* are not the Owners of any resources.

//* Once identified, a list of "DG" commands will be built.

//**

//REXX1 EXEC PGM=IKJEFTØ1,DYNAMNBR=3Ø,REGION=4Ø96K

//SYSEXEC DD DSN=SYS3.RACF.JCLLIB,DISP=SHR

//SYSTSPRT DD SYSOUT=*

//REXOUT DD SYSOUT=5

//DBINPUT DD DSN=SYS4.RACF.IRRDBUØØ,DISP=SHR

//SYSTSIN DD *

 %REXOLDGR

/*

REXX EXEC
/* REXX */

/* */

/* Look for obsolete groups. These are defined as groups having: */

/* 1. No users. */

/* 2. No Subgroups */

/* 3. No corresponding dataset profile. */

/* */

/* + Ø1ØØ - Group Basic -- */

/* This + Ø1Ø1 - Group Subgroup -- */

/* Report + Ø1Ø2 - Group Member -- */

/* Uses + Ø2ØØ - User Basic -- */

/* These + Ø2Ø5 - User Connect -- */

/* Record + Ø4ØØ - dataset basic -- */

 4 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

/* Types + Ø4Ø4 - dataset access -- */

/* + Ø5ØØ - general resource basic -- */

/* + Ø5Ø5 - general resource access -- */

/* */

/* */

/*-- */

/* dbufile is IRRDBUØØ unloaded dataset */

call setvars

call readitin

call filter

say 'Invoking routing to eliminate dups in groups found list --'

call elimdups

say 'finished'

say 'Invoking routine to compare all grpnames with found grpnames'

call comparr

say 'finished'

say 'Are any of these groups the HLQ of a ds profile? checking ... '

call hlqsrch

say 'finished'

queue ' /** **/'

queue ' /** Group Clean-up Tool **/'

queue ' /** There are 's' groups that appear useless **/'

queue ' /** **/'

"EXECIO * DISKW rexout"

"EXECIO * DISKW rexout (stem findog. finis"

exit

/* */

/* Subroutines to handle each record type */

/* set up initial variables))))))))) */

setvars:

 j = Ø

 s = 1

 x = Ø

 bb = 1

 y = Ø

 z = Ø

 return

/* read in from unloaded file */

readitin:

 eof = 'no'

 say 'reading in from sys3.racf.irrdbuØØ, please wait '

 "EXECIO Ø DISKR dbinput (OPEN"

 do while eof = 'no'

 "EXECIO 1 DISKR dbinput (stem inrec."

 if RC = 2 then eof = 'yes'

 else

 do

 j = j + 1

 dbfle.j = inrec.1

 end /* else if rc = 2 */

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 end /* do while eof = no */

 "EXECIO Ø DISKR dbinput (FINIS"

 /*))) */

 say 'Total Records in unloaded dataset ==> 'j

return

/* process each different record type */

filter:

 do g = 1 to j

 Rec_type = substr(dbfle.g,1,4)

 select

 when Rec_type = Ø1ØØ then call GPBD

 when Rec_type = Ø1Ø1 then call GPSG

 when Rec_type = Ø1Ø2 then call GPME

 when Rec_type = Ø2ØØ then call USBD

 when Rec_type = Ø2Ø5 then call USCN

 when Rec_type = Ø4ØØ then call DSBD

 /* when Rec_type = Ø4Ø4 then call DSACC */

 when Rec_type = Ø5ØØ then call GRBD

 /* when Rec_type = Ø5Ø5 then call GRACC */

 otherwise iterate

 end /* select */

 end /* do a */

return

/* GPBD, Record Type Ø1ØØ */

 GPBD:

 gpbd_owner_id = substr(dbfle.g,35,8)

 gpbd_name = substr(dbfle.g,6,8)

 goodgrp.x = gpbd_owner_id

 x = x + 1

 allgrp.y = gpbd_name

 y = y + 1

 return

/* GPSG, Record Type Ø1Ø1 */

 GPSG:

 gpsgrp_name = substr(dbfle.g,6,8)

 gpsgrp_subgrp_id = substr(dbfle.g,15,8)

 goodgrp.x = gpsgrp_name

 x = x + 1

 return

/* GPME, Record Type Ø1Ø2 */

 GPME:

 gpmem_name = substr(dbfle.g,6,8)

 gpmem_member_id = substr(dbfle.g,15,8)

 gpmem_auth = substr(dbfle.g,24,8)

 goodgrp.x = gpmem_name

 x = x + 1

 return

/* USBD, Record Type Ø2ØØ */

 USBD:

 usbd_owner_id = substr(dbfle.g,26,8)

 6 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 usbd_name = substr(dbfle.g,6,8)

 goodgrp.x = usbd_owner_id

 x = x + 1

 return

/* USCN, Record Type Ø2Ø5 */

 USCN:

 uscn_ownid = substr(dbfle.g,35,8)

 goodgrp.x = uscn_ownid

 x = x + 1

 return

/* DSBD, Record Type Ø4ØØ */

 DSBD:

 dsbd_owner_id = substr(dbfle.g,74,8)

 dsbd_name = substr(dbfle.g,6,44)

 dsbd_nam = strip(dsbd_name,'t')

 needle = pos('.',dsbd_nam)

 hlqlen = needle - 1

 dsnhlq.bb = left(dsbd_nam,hlqlen)

 bb = bb + 1

 goodgrp.x = dsbc_owner_id

 x = x + 1

 return

/* DSACC, Record Type Ø4Ø4 */

 DSACC:

 dsacc_auth_id = substr(dbfle.g,58,8)

 goodgrp.x = dsacc_auth_id

 x = x + 1

 return

/* GRBD, Record Type Ø5ØØ */

 GRBD:

 grbd_owner_id = substr(dbfle.g,282,8)

 goodgrp.x = grbd_owner_id

 x = x + 1

 return

/* GRACC, Record Type Ø5Ø5 */

 GRACC:

 gracc_auth_id = substr(dbfle.g,262,8)

 goodgrp.x = gracc_auth_id

 x = x + 1

 return

/* elimdups: in list of groups found, get rid of dups */

/* output will be in temp.kk */

 elimdups:

 temp.1 = goodgrp.1

 say 'Going through list of good groups, throwing out dups'

 kk = 2 /* kk points to current entry in output table */

 do ii = 1 to x /* ii will walk through big grpfnd table */

 hit = no

 do jj = 1 to ii /* jj will step through */

 if temp.jj = goodgrp.ii then

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 do

 hit = yes

 leave jj

 end /* if goodgrp.ii */

 end /* do jj */

 if hit = no then

 do

 temp.kk = goodgrp.ii

 kk = kk + 1

 end /* if hit = no */

 end /* do ii */

 return

/* comparr: looking for old groups */

 comparr:

 kk = kk - 1 /* because kk is actually one past table size */

 y = y - 1 /* I think that Y is one number too long */

 do e = 1 to y /* y is the number of group basic records */

 match = no

 do r = 1 to kk /* kk is the number of group entries found */

 if allgrp.e = temp.r then do

 match = yes

 leave r

 end /* if allgrp.e */

 end /* do r */

 if match = no then queue allgrp.e

 end /* do e */

 return

/* hlqsrch: is this group the high-level qualifier of a dataset ? */

 hlqsrch:

 do qq = 1 to queued() /* stack contains the groups in question */

 match = no

 pull bobbie

 do ww = 1 to bb /* bb is number of dataset hlqs */

 if bobbie = dsnhlq.ww then

 do

 match = yes

 leave ww

 end /* if bobbie */

 end /* do ww */

 if match = no then

 do

 findog.s = ' DG 'bobbie

 s = s + 1

 end

 end /* do e */

 return

/** end of subroutines */

Computer Specialist (USA) © Author 2004

 8 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

RACRAC dictionary attack on weak passwords

SUMMARY

In this article, a brute force attack method of exploiting the
standard RACF DES password encryption mechanism is
explained in detail. The application does a DES encryption
using every new word in the vocabulary against known users
and any new user using the whole vocabulary, and keeps the
result for future use. This implies that user X with a – for the
moment – safe password will be recognized whenever s/he
changes the password to something that is part of our dictionary.
RACRAC keeps the already calculated permutations so that, by
way of easy comparison, the vulnerability will be discovered in
the next run of the program in almost immeasurably small time-
spans. This saves computer cycles but raises inevitable
deontological (the science relating to duty or moral obligation)
questions.

To put it simply, starting from a list of words, you try every userid
known to the security database (RACF) to see whether there
is a match. If there was a usable match in the past, you do not
have to do the maths.

Locally-defined exception password rules can be introduced in
a simple REXX program that functions as an ‘exit’.

With every run, the program becomes more powerful because
known combinations are retried without doing the DES
mathematics behind it. This allows you to gradually build up a
dictionary without claiming the computer for hours. The check
can be run regularly because only simple comparisons are
used.

INTRODUCTION

The mainframe world was isolated from the networked society
to an extent that systems programmers, database administrators,

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

or security officers often ignored the fact that their ‘Fort Knox’
computers were becoming as vulnerable as any other Internet
machine. An OS/390 or z/OS system can be under attack from
the same ‘script kiddies’ using the same tools to target the
mainframe as they would any other computer on the Web. A
virus or worm will probably not be written to target a mainframe.
We are somehow sheltered from that because of the lack of
mainframe knowledge in the hacking society.

The APF mechanism is – as far as I know – unique in the
computer world as a means of combining system software and
hardware to avoid intrusion. There are other ways of course to
abuse a mainframe system – like SVCs, program calls, I/O
appendages, the program properties table, and so on.
Nevertheless, it must be said that the danger lurks mostly from
within: people with a valid userid/password combination, no
matter how weak their authority is. Theoretically the only way
to abuse a z/OS system is by having access to system libraries.

The RACRAC application is a neat example of how APF
remains the cornerstone of mainframe security. In order to run
RACRAC, one does not even need READ access to the RACF
databases. UPDATE access to an APF authorized library, to
contain the Assembler programs RACRACA0 and RACRACA1,
will suffice. This is the most difficult part – READ access to the
RACF database would eliminate the APF requirement. In my
experience, clients tend to define access to the RACF database
with the idea at the back of their mind that in order to control
one’s password one has to be authorized to read the database.
This common belief is absolutely untrue. With READ access to
the RACF database(s) one would not even need access to an
APF library to run RACRAC. IBM did a good job by excluding the
password field from the RACF database unload facility
(IRRDBU00). On the other hand, the dataset is open and the
DEB can be found easily in the Database Descriptor Table
(DSDT), pointed to by the DSDPDEB field. This factor is not
abused by RACRAC, but if there is sufficient interest from
readers (e-mail me at jan.de.decker@tiscali.be), this could be
the subject of a follow-up article.

 10 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Deontologically, much has been said about bringing password
cracking programs into the open. I, for one, am convinced that
there is no value in ‘security by obscurity’. In the non-mainframe
world, it is now generally accepted that a design should be
openly published and examined by the world on its risks.
Furthermore, the mainframe nowadays is not safe any more. A
Denial Of Service (DOS) attack can be done by introducing
some code via the Web onto a few thousand victims’ computers
that then will unwittingly ask your precious HTTP z/OS Web
server for a non-existent page. This is quite different from the
situation when SNA ruled the waves. The funny side is that IBM
recognized the fact and rebaptized the OS and its components
to something ending with the magic word ‘server’. Everything is
a server, MVS became z/OS, RACF for instance is the ‘Security
Server’, VTAM is now known as the ‘Communications Server’,
etc. All this happened because the mainframe became
connected to the real world. And it is an ugly world outside!

About the question of bringing RACRAC into the open: I remember
that Vanguard once launched a ‘RED ALERT’ to the security
society because there was a program (see http://www.os390-
mvs.freesurf.fr/mvs.htm) on the market that could ‘crack DES-
encrypted passwords’. This is impossible, as far as I know, but
perhaps the NSA might have an algorithm at their disposal.
Mathematically the only way to break a DES-encoded password
is by sheer luck.

What RACRAC does is enhance your luck factor. It starts from
a dictionary of words and tries them against every userid. The
program could easily be modified to try only ‘usable’ userids,
like people who have RACF SPECIAL, OPERATIONS, or AUDIT
attributes. There are many things that could be mentioned here;
let us focus on just two examples. E-mail address books often
contain usable information about the RACF group structure.
Help Desk people with the authority to reset a password are
often connected to the group, or are a subgroup of people who
have worldwide SPECIAL. People who are members of the
RACF-L Internet list group often have RACF SPECIAL, members
of the MVS mainframe IBMAIN-L list group, on the other hand,

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

mostly have access to system libraries. Harvesting the archives
of these groups could reveal interesting things in your own
company. From a security point of view, public Internet e-mail
exchange should be permitted only using an alias name that
cannot be traced back to a real name/userid. Alas, this is mostly
not the case.

Personally, I would go for users with access to APF libraries.
Browsing datasets like SYS1.PARMLIB should give a nice
starting list of users with UPDATE access (last changed by
field). Probably the same people have access to other sensitive
datasets as well. Since RACRAC issues a brute force attack,
checking 50 users against 40,000 passwords requires the
same number of processing cycles as checking 50 verbs
against 40,000 users. Cryptographic co-processors do not
speed up the process. RACF does not use them for the
calculation of 8-byte long character string DES-encoded
numbers. This is where things become tricky. If a systems
programmer, for instance, launches a REXX program to set up
his environment conveniently at the moment of LOGON, access
to this REXX could be enough to copy a malicious program into
an APF library, making RACRAC obsolete or authorized
(depending on the skills of the intruder).

The surplus value of RACRAC, and this is why I call it an
application rather than a program, is that no computing power
is wasted on combinations that were tried before. In other
words, if John’s password was not Mary before he married, it
could become so afterwards. Because we tried the combination
John/Mary before, and kept the results, we have only to
compare thb”bACF database DES-encrypted bytes with our
DES-encrypted John/Mary permutation.

We ran the program twice, once with an empty
U(ser)V(ocabulary)P(assword) and once against the UVP file
created in the first run without adding new words to the
vocabulary. The first run took 13,517,000 service units (SUs)
to complete, the second one (with the same results) only 2,645
(QED).

 12 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

ARCHITECTURE

Contrary to common believe, the RACF password is not stored
in the database(s). The password is used to calculate a DES
number starting from the userid, which is compared with the
result in the database. The algorithm and some of the nicer
attacks are explained at http://www.tropsoft.com/strongenc/
des.htm

In the application, U stands for user-id, V for vocabulary, and P
for password. The first time we start from a vocabulary (V) and
an empty U(ser)V(ocabulary)P(assword) dataset. A vocabulary
with the names of popular movie characters, pets, licence
numbers, birthdays, gnomes, months, can be easily constructed
or found at the Internet (a good start is http://www.pwcrack.com/
index.shtml).

The steps to follow are described below:

S0 The Assembler program RACRAC0 reads all the userids’
password combinations in the RACF database using simple
ICHENITY macro instructions. These are stored in a file
called U(ser)P(assword).

S1 The old U(ser)V(ocabulary)P(assword) dataset is sorted
on userid. This step is obsolete if no other application uses
the UVP dataset.

S2 The dictionary is sorted alphabetically. This could also be
avoided if entries were always made in the correct order.

S3 The REXX program RACRACR0 reads the (old)
U(ser)P(assword)V(ocabulary) dataset and the
U(ser)P(assword) file filled by RACRACA0 to write the work
files of this run by creating N(ew)U(ser), O(ld)U(ser),
N(ew)V(ocabulary), O(ld)Vocabulary, and the combined
U (s e r) V (o c a b u l a r y)
P(assword)1. The output looks like this:

New users: Ø Old users: 42Ø83 Deleted users: 1

New verbs: Ø Old verbs: 5Ø

READY

END

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

S4 As written, the REXX program RACRACR1 is executed. It
has access to all the work files created in the previous step
and is meant to function as a sort of exit where all data is
accessible. In the example given, it adds the RACF default
group to the U(ser)V(ocabulary) combinations in the dataset
U(ser)V(ocabulary)1. Depending on the password policy,
as defined with the RACF SETROPTS command, an entirely
different approach can be implemented here by simply
changing the permutations that will be checked. The example
needs RACF SPECIAL authority. The output appears thus:

Exit created 3464 extra entries in the UV1 file.

READY

END

S5 A REXX program (RACRACR2) merges the new
combinations N(ew)U(ser) – O(ld)V(ocabulary), N(ew)U(ser)
– N(ew) V(ocabulary), and O(ld)U(ser) – N(ew)V(ocabulary)
into a new file, U(ser)V(ocabulary)2. The output (from a run
without new userids or new words in the vocabulary) looks
like the following:

Combinations for new users and new verbs: Ø

Combinations for new users and old verbs: Ø

Combinations for old users and new verbs: ØíÞ

Total number of combinations in the UV2 file: Ø

READY

END

S6 The Assembler program RACRACA1 reads the
U(ser)V(ocabulary)1 file created by the ‘exit’ program
RACRACR1, written in S4, and decodes the combinations
in the file U(ser)V(ocabulary)P(assword)2.

S7 The same Assembler program (RACRACA1) is used to
encode the new U(ser)V(ocabulary)2 permutations created
in S5.

S8 The N(ew)V(ocabulary) and O(ld)V(ocabulary) files are
sorted in a new master file V(ocabulary). This is only done
to produce a neat report in step SB.

S9 All U(ser)V(ocabulary)P(assword) files are merged into a
master file against which the check will be done with the

 14 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

RACF DES-encrypted passwords. The master dataset is
called U(ser)V(ocabulary)P(assword)4.

SA All U(ser)V(ocabulary)P(assword) combinations bar the
‘exit’ generated ones (step S4) are combined into the new
master U(ser)V(ocabulary)P(assword)4 that will be used
for the next run.

SB All the data is now available. The REXX program RACRACR3
compares the decoded combinations with the RACF data
and produces a report. Typically 15% to 20% of the
passwords are cracked using a larger vocabulary than we
ours (50 words). The output looks like this:

RACRAC Summary report

 On a total of 42Ø83 users, 1516 were recognized,

 using a vocabulary of 5Ø verbs.

 Following users/password combinations were recognized:

UUUUUUU / PPPPPPP

At the end a RACF LISTUSER command is executed for every
compromised userid.

PROGRAM NOTES

Please protect the U(ser)V(ocabulary)P(assword) at the same
level as your proper RACF database(s).

The dataset U(ser)V(ocabulary)P(assword) must be pre-
allocated (RECFM=FB, DSORG=PS, LRECL=24), but may be
empty for the first run.

The V(ocabulary) dataset must exist (RECFM=FB, DSORG=PS,
LRECL=8) and contain a number of strings against which the
passwords are compared.

A user abend 46 will occur if one of the sort temporary datasets
is too small.

The REXX programs can be compiled in order to go a bit faster.
The ‘exit’ step that calls RACF for each user in foreground and

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

reads the complete output, searching for the default group,
consumes a lot of MIPS. This can be easily avoided by
replacing it with an Assembler program that uses ICHEINTY to
collect the same information (for instance as built straight into
RACRACA0). I left it this way just to have an easy, ready-to-be-
changed, ‘exit’ point.

RACRACA0
//JEDSPA JOB (JAN),'JAN DE DECKER',CLASS=A,MSGCLASS=U,

// NOTIFY=&SYSUID,REGION=ØM,COND=(Ø,NE)

//*

//* THIS VERSION LOOPS THROUGH THE RACF DB AND DUMPS ALL

//* USERID/PASSWORD COMBINATIONS TO THE UP DD STATEMENT.

//*

//ASM PROC M=,P='ASMA9Ø',RENT=NORENT

//*

//* ASSEMBLE SOURCE

//*

//A EXEC PGM=&P,

// PARM=(OBJECT,NODECK,NOTEST,&RENT)

//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

// DD DSN=SYS1.MODGEN,DISP=SHR

//SYSUT1 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSPRINT DD SYSOUT=*

//SYSLIN DD DSN=&&OBJECT,DISP=(,PASS),UNIT=VIO,SPACE=(CYL,(1,1)),

// DCB=(LRECL=8Ø,RECFM=FB)

//*

//* LINK-EDIT: THE SYSLMOD DATASET NEEDS TO BE APF AUTHORIZED

//*

//L EXEC PGM=IEWL,PARM=(XREF,LET,LIST,MAP,AC(1),

// &RENT)

//SYSPRINT DD SYSOUT=*

//SYSLMOD DD DSN=JEDSP.LOADLIB(&M),DISP=SHR

//SYSLIN DD DSN=&&OBJECT,DISP=(OLD,DELETE)

// PEND

//*

//* ASSEMBLIES

//*

//RACRACAØ EXEC ASM,M=RACRACAØ

//A.SYSIN DD *

RACRACAØ TITLE '*** RACRACAØ: RACF EXTRACT PROCESSING JANX

 DE DECKER ***'

* JAN.DE.DECKER@TISCALI.BE JED:SP N.V. START OF SPECIFICATIONS

* MODULE: RACRACAØ

* LOADMODULE: RACRACAØ

* STATUS: V1R2MØ

 16 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

* LOCATION: JOB PACK AREA

* PARAMETERS: N/A

* RETURN CODES: Ø OK

* 8 GETMAIN_ERROR

* 12 FREEMAIN_ERROR

* USER ABENDS: 666 OPEN FAILURE

* 999 ICHEINTY (RC <> Ø) & (RC <> 12)

* CALL TYPE: MAIN PROGRAM

* PURPOSE: CREATE A LIST OF USERID/DES-ENCODED PASSWORD

* COMBINATIONS

* LOGIC: LOOP THROUGH THE RACF DATABASE WITH ICHEINTY

* WRITE TO DDNAME UP

* RECOVERY: N/A

* LOCKS: N/A

* SYSTEM: Z/OS V1R4

* LINK: AMODE 31

* RMODE ANY

* AC=1

* RENT (NOT REALLY NECESSARY)

* MACROS: ICHEINTY

* DSECTS: NONE EXCEPT OWN WORKAREA

* USE: PREALLOCATE DDNAME UP

* AUTHOR: JAN DATE: 11/2ØØ3

* SAMPLE: N/A

* NOTES: PART OF RACRAC APPLICATION

* MODIFICATION: JAN Ø5/2ØØ4 CLEAN-UP FOR MORE GENERAL USE

 EJECT

RACRACAØ CSECT

RACRACAØ AMODE 24

RACRACAØ RMODE 24

 PRINT GEN

 BAKR RE,Ø SAVE REGISTERS

 LR RC,RF RC --> START OF RACRACAØ

 USING RACRACAØ,RC ADDRESS RACRACAØ WITH RC

 LR RA,R1 KEEP PARAMETER POINTER

 EYECATCH .

 AMODE24 . CHANGES RØ AND R1

* START OF PROCESSING

 STORAGE OBTAIN, ASK FOR STORAGE X

 LENGTH=L_WORK, FOR OUR WORK AREA X

 BNDRY=PAGE, ON A PAGE BOUNDARY X

 LOC=24, UNDERNEATH THE LINE X

 COND=YES DO NOT ABEND IF PROBLEM

 LTR RF,RF GETMAIN OK?

 BZ LØØØØ YES --> CONTINUE

 LA RF,GETMAIN_ERROR SET RETURN CODE

 PR . AND RETURN TO CALLER

* SET THE WORKAREA TO BINARY ZERO AND INITIALIZE

LØØØØ DS ØH

 LR R2,R1 R2 --> WORK AREA

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 USING WORKAREA,R2 R2 ADDRESSES THE WORK AREA

 LR R4,R1 R4 --> WORK AREA

 LR R6,R1 R6 --> WORK AREA

 LA R7,L_WORK R7 = L(WORK AREA)

 XR R5,R5 R5 = Ø

 MVCL R6,R4 ZERO OUT WORK AREA

 MVC SAVEAREA+4(4),=C'F1SA' LINKAGE STACK INDICATOR

 LA RD,SAVEAREA RD --> SAVEAREA

 EJECT

* START REAL WORK

* R2 ADDRESSES THE DYNAMIC WORK AREA

* RC ADDRESSES OUR CSECT

* RD --> OUR SAVEAREA

 MVC RETALEN(4),=AL4(L'RETAREA)

 MVC D_ACTN1,S_ACTN1 STATIC TO DYNAMIC AREA

 MVC D_INTY1,S_INTY1 STATIC TO DYNAMIC AREA

 MVC D_OUTDCB,S_OUTDCB STATIC TO DYNAMIC AREA

 LA R6,D_ACTN1 R6 --> ICHEACTN DYNAMIC MACRO

 LA RB,D_OUTDCB RB --> OUTPUT DCB

 MVC ENTBLEN,=H'8' USERID BUFFER LENGTH

 MVC ENTNLEN,=H'1' SET AS SMALL AS POSSIBLE

 XC ENTNAME,ENTNAME AND TO BINARY ZERO

 ICHEINTY DATAMAP=NEW, SET UP ICHEINTY X

 ACTIONS=(D_ACTN1), R6 -> ICHEACNT X

 WKAREA=RETAREA, WORKAREA X

 OPTIONS=(FLDEF,NOEXEC), R9 -> L USER X

 RELEASE=77Ø7, Z/OS V1R4 VERSION X

 MF=(E,D_INTY1) TARGET OF MACRO

 EJECT

* OPEN THE OUTPUT FILE

 OPEN ((RB),OUTPUT) OPEN OUTPUT DCB

 LTR RF,RF OPEN OK?

 BZ LØØ1Ø YES --> CONTINUE

 ABEND 666,DUMP NO --> USER ABEND

 EJECT

* LOOP FOR ALL USERIDS (NON-ZERO RC FROM ICHEINTY AFTER THE LAST ONE)

LØØ1Ø DS ØH

 XC RETDATA,RETDATA

 ICHEINTY NEXTC, SET UP ICHEINTY X

 ENTRYX=ENTBUFF, RESTRUCTURED FORMAT X

 RELEASE=77Ø7, Z/OS V1R4 VERSION X

 MF=(E,D_INTY1) TARGET OF MACRO

 LTR RF,RF RETURN CODE CHECKING

 BNZ LØØ2Ø ICHEINTY NON-ZERO --> STOP

 MVC RECORD,BLANKS BLANK OUT RECORD

 LH R8,ENTNLEN R8 = L(USERID)

 BCTR R8,Ø -R8 (EX INSTRUCTION)

 LA R3,RECUSER R3 --> USERID IN RECORD

 LA R4,ENTNAME R4 --> USERID FROM RACF

 EX R8,MVC1 MOVE IN USERID

 18 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 MVC RECPSW,RETPASSW MOVE IN PASSWORD

 PUT (RB),RECORD WRITE RECORD

 B LØØ1Ø LOOP FOR ALL USERIDS

* ICHEINTY GAVE A NON-ZERO RETURN CODE

* IF RC=12: END OF DATA (NORMAL)

* ELSE ABEND 999

LØØ2Ø DS ØH

 C RF,=F'12' NORMAL END?

 BE LØØ3Ø YES --> CONTINUE

 ABEND 999,DUMP NO --> USER ABEND

LØØ3Ø DS ØH

 CLOSE ((RB)) CLOSE 'UP' OUTPUT DATASET

 EJECT

* END OF PROCESSING

THE_END DS ØH MY ONLY FRIEND, THE END

 STORAGE RELEASE, FREE STORAGE CONDITIONAL X

 ADDR=(R2), WORKAREA POINTER X

 COND=YES, DO NOT ABEND X

 LENGTH=L_WORK LENGTH

 LTR RF,RF FREEMAIN OK?

 BZ LØØ4Ø YES

 LA RF,FREEMAIN_ERROR SET RETURN CODE

 PR . RETURN TO CALLER

LØØ4Ø DS ØH

 LA RF,OK RETURN CODE Ø

 PR . RETURN TO CALLER

 EJECT

* EXECUTE TARGETS

MVC1 MVC Ø(Ø,R3),Ø(R4)

 EJECT

* CONSTANTS

BLANKS DC 133C' '

 EJECT

* STATIC DCBS

S_OUTDCB DCB DDNAME=UP,DSORG=PS,RECFM=FB,MACRF=(PM),LRECL=16

L_OUTDCB EQU *-S_OUTDCB

 EJECT

* RACF MACRO'S STATIC PARAMETER LISTS

S_INTY1 ICHEINTY NEXTC, LOCATE A PROFILE ENTRY X

 TYPE='USR', OF TYPE USER X

 DATAMAP=NEW, RESTRUCTURED FORMAT X

 ENTRY=, R9 -> L USER X

 RELEASE=77Ø7, Z/OS V1R4 VERSION X

 WKAREA=, WORKAREA X

 ACTIONS=S_ACTN1, -> ICHEACTN X

 MF=L LIST FORMAT

L_S_INTY1 EQU *-S_INTY1 L(ICHEINTY1)

S_ACTN1 ICHEACTN FIELD=PASSWORD, X

 RELEASE=77Ø7, Z/OS V1R4 VERSION X

 MF=L

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

L_S_ACTN1 EQU *-S_ACTN1

 EJECT

* LITERAL POOL

 LTORG

 EJECT

* EQUATES

OK EQU Ø

GETMAIN_ERROR EQU 8

FREEMAIN_ERROR EQU 12

 EJECT

* PROGRAM DYNAMIC AREA DSECT

WORKAREA DSECT

SAVEAREA DS 18F SAVEAREA

* OUTPUT RECORD

RECORD DS ØCL16

RECUSER DS CL8

RECPSW DS XL8

* NEXT RACF ENTITY

ENTBUFF DS ØXL12

ENTBLEN DS H

ENTNLEN DS H

ENTNAME DS CL8

* ICHEINTY WORK AREA

 DS ØF

RETAREA DS ØXL512 ICHEINTY LOCATE WORK AREA

RETALEN DS F RETURN AREA LENGTH

RETDATA DS ØXL36 DATA PART RETURN AREA

RETRBA DS XL6 RBA RETURN AREA

RETFLAGS DS X FLAGS

RETRES1 DS X RESERVED

RETDDSC DS F DUPLICATE DATA SET NAME COUNT

RETRES2 DS XL8 RESERVED

RETDLEN DS F RETURNED DATA LENGTH

RETPASSL DS F RETURNED DFLTGRP LENGTH

RETPASSW DS XL8 RETURNED DFLTGRP

 ORG RETAREA+512

 EJECT

* RACF MACRO'S DYNAMIC PARAMETER LISTS

* START ON A DOUBLE WORD BOUNDARY

 DS ØD

D_INTY1 DS XL(L_S_INTY1) ICHEINTY NO 1

 DS ØD

D_ACTN1 DS XL(L_S_ACTN1) ICHEACTN NO 1

 EJECT

* DYNAMIC DCB

 DS ØD

D_OUTDCB DS XL(L_OUTDCB)

L_WORK EQU *-WORKAREA LENGTH OF THE WORKAREA

 M#REGS

 END

/*

 20 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

RACRACA1
//JEDSPA JOB (JAN),'JAN DE DECKER',CLASS=A,MSGCLASS=U,NOTIFY=&SYSUID,

// REGION=ØM,COND=(Ø,NE)

//*

//* THIS PROGRAM EXPECTS AN INPUT FILE FROM THE TYPE U(SERID), V(ERB)

//* AND WRITES A FILE (UVP) WITH THE DES-ENCODED VERBS.

//*

//ASM PROC M=,P='ASMA9Ø',RENT=NORENT

//*

//* ASSEMBLE SOURCE

//*

//A EXEC PGM=&P,

// PARM=(OBJECT,NODECK,NOTEST,&RENT)

//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

// DD DSN=SYS1.MODGEN,DISP=SHR

//SYSUT1 DD UNIT=VIO,SPACE=(CYL,(1,1))

//SYSPRINT DD SYSOUT=*

//SYSLIN DD DSN=&&OBJECT,DISP=(,PASS),UNIT=VIO,SPACE=(CYL,(1,1)),

// DCB=(LRECL=8Ø,RECFM=FB)

//*

//* LINK-EDIT: THE SYSLMOD DATASET NEEDS TO BE APF AUTHORIZED

//*

//L EXEC PGM=IEWL,PARM=(XREF,LET,LIST,MAP,AC(1),

// &RENT)

//SYSPRINT DD SYSOUT=*

//SYSLMOD DD DSN=JEDSP.LOADLIB(&M),DISP=SHR

//SYSLIN DD DSN=&&OBJECT,DISP=(OLD,DELETE)

// PEND

//*

//* ASSEMBLIES

//*

//RACRACA1 EXEC ASM,M=RACRACA1

//A.SYSIN DD *

RACRACA1 TITLE '*** RACRACA1: RACF EXTRACT PROCESSING (ENCODING) JANX

 DE DECKER ***'

* JAN.DE.DECKER@TISCALI.BE JED:SP N.V. START OF SPECIFICATIONS

* MODULE: RACRACA1

* LOADMODULE: RACRACA1

* STATUS: V1R2MØ

* LOCATION: JOB PACK AREA

* PARAMETERS: N/A

* RETURN CODES: Ø OK

* 8 GETMAIN_ERROR

* 12 FREEMAIN_ERROR

* ABENDS: 666 INPUT FILE OPEN ERROR

* 999 OUTPUT FILE OPEN ERROR

* 696 RACROUTE NON-ZERO RETURN CODE

* CALL TYPE: MAIN PROGRAM

* PURPOSE: DES ENCODE USERID/VERB COMBINATIONS

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

* LOGIC: READ DDNAME UV

* DES ENCODE UV

* WRITE UVP

* RECOVERY: N/A

* LOCKS: N/A

* SYSTEM: Z/OS V1R4

* LINK: AMODE 24

* RMODE 24

* AC=1

* MACROS:

* DSECTS:

* USE: RACRAC APPLICATION

* AUTHOR: JAN DATE: 11/2ØØ3

* SAMPLE: N/A

* NOTES:

* MODIFICATION: JAN 43 RECOVERY AND CLEAN-UP

* TO DO:

 EJECT

RACRACA1 CSECT

RACRACA1 AMODE 24

RACRACA1 RMODE 24

 M#REGS

 PRINT GEN

 BAKR RE,Ø SAVE REGISTERS

 LR RC,RF RC --> START OF RACRACA1

 USING RACRACA1,RC ADDRESS RACRACA1 WITH RC

 LR RA,R1 KEEP PARAMETER POINTER

 EYECATCH

 AMODE24 CHANGES RØ AND R1

* START OF PROCESSING

 GETMAIN RC, ASK FOR STORAGE X

 LV=L_WORK FOR THIS LENGTH

 LTR RF,RF GETMAIN OK?

 BZ LØØØØ YES --> CONTINUE

 LA RF,GETMAIN_ERROR SET RETURN CODE

 PR . AND RETURN TO CALLER

LØØØØ DS ØH

 LR R2,R1 R2 --> WORK AREA

 USING WORKAREA,R2 R2 ADDRESSES THE WORK AREA

 LR R4,R1 R4 --> WORK AREA

 LR R6,R1 R6 --> WORK AREA

 LA R7,L_WORK R7 = L(WORK AREA)

 XR R5,R5 R5 = Ø

 MVCL R6,R4 ZERO OUT WORK AREA

 MVC SAVEAREA+4(4),=C'F1SA' LINKAGE STACK INDICATOR

 LA RD,SAVEAREA RD --> SAVEAREA

 EJECT

* START REAL WORK

* R2 ADDRESSES THE DYNAMIC WORK AREA

* RC ADDRESSES OUR CSECT

 22 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

* RD --> OUR SAVEAREA

* OPEN THE OUTPUT FILE

 MVI KEYLEN,X'Ø8' FIXED LENGTH FOR USERID

 MVC D_INDCB,S_INDCB STATIC TO DYNAMIC AREA

 MVC D_OUTDCB,S_OUTDCB STATIC TO DYNAMIC AREA

 MVC D_RACR1,S_RACR1 STATIC TO DYNAMIC AREA

 LA RA,D_INDCB RA --> INPUT DCB

 LA RB,D_OUTDCB RB --> OUTPUT DCB

 OPEN ((RA),INPUT) OPEN INPUT DCB (UV)

 LTR RF,RF OPEN OK?

 BZ LØØ1Ø YES --> CONTINUE

 ABEND 666,DUMP

LØØ1Ø DS ØH

 OPEN ((RB),OUTPUT) OPEN OUTPUT DCB (UVP2)

 LTR RF,RF OPEN OK?

 BZ LØØ2Ø YES --> CONTINUE

 ABEND 999,DUMP

 EJECT

* LOOP TILL FOR ALL USERIDS

LØØ2Ø DS ØH

 GET (RA),UV GET INPUT RECORD

 MVC KEYNAME,V MOVE VERB TO KEY FIELD

 RACROUTE REQUEST=EXTRACT, X

 TYPE=ENCRYPT, ENCRYPT DATA X

 BRANCH=YES, USE THE FAST BRANCH ENTRY X

 RELEASE=77Ø7, RACF RELEASE X

 ENTITY=U, DATA TO ENCRYPT X

 WORKA=RACFWORK, RACF WORK AREA X

 ENCRYPT=(KEYBUFF,DES), ENCRYPT KEY AND METHOD X

 MF=(E,D_RACR1) EXECUTE TYPE MACRO

 LTR RF,RF

 BZ LØØ14

 LR R2,RF

 ABEND 696,DUMP

LØØ14 DS ØH

 MVC P,KEYNAME GET CODED VERSION

 PUT (RB),UVP AND WRITE TO FILE

 B LØØ2Ø

LØØ9Ø DS ØH

 CLOSE ((RA))

 CLOSE ((RB))

* END OF PROCESSING

THE_END DS ØH MY ONLY FRIEND, THE END

 FREEMAIN RC, FREE UP THE WORK AREA X

 LV=L_WORK, FOR THE GIVEN LENGTH X

 A=(R2) FROM THIS ADDRESS

 LTR RF,RF FREEMAIN OK?

 BNZ LØØ5Ø YES

 LA RF,OK RETURN CODE Ø

 PR . RETURN TO CALLER

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

LØØ5Ø DS ØH

 LA RF,FREEMAIN_ERROR RETURN CODE Ø

 PR . RETURN TO CALLER

 EJECT

* RACF MACRO'S STATIC PARAMETER LISTS

 EJECT

S_RACR1 RACROUTE REQUEST=EXTRACT, X

 TYPE=ENCRYPT, ENCRYPT DATA X

 BRANCH=YES, USE THE FAST BRANCH ENTRY X

 RELEASE=77Ø7, RACF RELEASE X

 ENTITY=, DATA TO ENCRYPT X

 WORKA=, RACF WORK AREA X

 ENCRYPT=(,DES), ENCRYPT KEY AND METHOD X

 MF=L

L_S_RACR1 EQU *-S_RACR1

 EJECT

* DCB MACRO'S STATIC PARAMETER LISTS

S_OUTDCB DCB DDNAME=UVP,DSORG=PS,RECFM=FB,MACRF=(PM),LRECL=24

L_OUTDCB EQU *-S_OUTDCB

S_INDCB DCB DDNAME=UV,DSORG=PS,RECFM=FB,MACRF=(GM),LRECL=16, X

 EODAD=LØØ9Ø

L_INDCB EQU *-S_INDCB

 EJECT

* LITERAL POOL

 LTORG

 EJECT

* EQUATES

OK EQU Ø

GETMAIN_ERROR EQU 8

FREEMAIN_ERROR EQU 12

 EJECT

* PROGRAM DYNAMIC AREA DSECT

WORKAREA DSECT

SAVEAREA DS 18F SAVEAREA

KEYBUFF DS ØXL9

KEYLEN DS X

KEYNAME DS CL8

UVP DS ØCL24

UV DS ØCL16

U DS CL8

V DS CL8

P DS CL8

RACFWORK DS XL512

 EJECT

* RACF MACRO'S DYNAMIC PARAMETER LISTS

* START ON A DOUBLE WORD BOUNDARY

 DS ØD

D_RACR1 DS XL(L_S_RACR1) RACROUTE NO 1

* DYNAMIC DCB

 DS ØD

 24 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

D_OUTDCB DS XL(L_OUTDCB)

D_INDCB DS XL(L_INDCB)

 EJECT

L_WORK EQU *-WORKAREA LENGTH OF THE WORKAREA

 END

/*

MACROS
 MACRO

*

* THIS MACRO SETS THE AMODE OF YOUR PROGRAM TO 24

* THE CONTENT OF REGISTER 1 IS DESTROYED

&LABEL AMODE24

 LA R1,JED2&SYSNDX R1 --> JED2XXXX

 N R1,JED1&SYSNDX SET FIRST BIT OFF

 BSM RØ,R1 BRANCH AND SET MODE

JED1&SYSNDX DS ØF FULL WORD BOUNDARY FOR AND

 DC X'7FFFFFFF' SET FIRST BIT OFF

JED2&SYSNDX DS ØH

 MEND

 MACRO

&LABEL M#REGS &TYPE=ALL

 AIF ('&TYPE' EQ 'ALL').LØØØØ

 AIF ('&TYPE' EQ 'HEX').LØØØØ

 MNOTE 8,'TYPE MUST BE ALL OR HEX'

 MEXIT

.LØØØØ ANOP

 AIF ('&TYPE' EQ 'HEX').LØØ1Ø

RØ EQU Ø ALL REFERENCES TO REGISTERS MAPPED BY

R1 EQU 1 ASSEMBLER XREF OPTION

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R1Ø EQU 1Ø

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

.LØØ1Ø ANOP

RA EQU 1Ø

RB EQU 11

RC EQU 12

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

RD EQU 13

RE EQU 14

RF EQU 15

*----------------------------M#REGS--END--------------------------------

 EJECT

 MEND

&LABEL EYECATCH

&DAY SETC '&SYSDATC'(7,2)

&MONTH SETC '&SYSDATC'(5,2)

&YEAR SETC '&SYSDATC'(1,4)

 B M&SYSNDX SKIP BRANCH AROUND DCS

 DC C'JAN.DE.DECKER@TISCALI.BE - JED:SP N.V.'

 DC C' MODULE: '

SYSECT DC CL8'&SYSECT' MODULE NAME

 DC C' ASM DATE: '

 DC CL1Ø'&DAY..&MONTH..&YEAR.'

 DC C' ASM TIME: '

 DC CL8'&SYSTIME' TIME

*

M&SYSNDX DS ØH

 MEND

RACRACR0
/* REXX Program of the RACRAC application. Reads the UP (created by

 RACRACAØ), UVP (from the previous run) and the V (new verbs)

 files. The records are combined to create the NU, OU, NV, OV

 and UVP1 datasets. Due to the possible large size of the UVP

 datasets the I/O is done by record and not by gulping in

 and out stem variables or the data stack in one go. */

address "TSO"

call Read_Input

call Make_U_Files

call Make_V_Files

exit

/* Read_Input reads the UP, UPV and V files into stem variables.

 Eventually error messages are issued. */

Read_Input:

"EXECIO 1 DISKR UVP (OPEN)"

uvp_rc = rc

if uvp_rc = Ø then parse pull uvp

 else uvp = ''

"EXECIO * DISKR UP (STEM up. FINIS)"

"EXECIO * DISKR V (STEM v. FINIS)"

"EXECIO Ø DISKW UVP1 (OPEN)"

do i = 1 to v.Ø

 upper v.i

 end

select

 26 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 when up.Ø = Ø then do

 say 'No RACF data found, processing halted'

 exit(8)

 end

 when uvp_rc <> Ø & v.Ø = Ø then do

 say 'No verbs to process, processing halted'

 exit(8)

 end

 otherwise nop

 end

return

/* Make_U_Files creates the files UVP1, NU, and OU from UP and UVP.

 Basically we walk through the UVP and UP files and when

 equal users are found we copy the record to the UVP1 file

 and the user to the OU file. If the user only exists in

 UP we copy the user to the NU file. */

Make_U_files:

nu. = ''

i_nu = Ø

ou. = ''

i_ou = Ø

i_du = Ø

i = 1

do while i <= up.Ø

 select

 when left(up.i, 8) < left(uvp, 8) | uvp_rc <> Ø then do

 i_nu = i_nu + 1

 nu.i_nu = left(up.i, 8)

 i = i + 1

 end

 when left(up.i, 8) = left(uvp, 8) then do

 i_ou = i_ou + 1

 ou.i_ou = left(up.i, 8)

 i = i + 1

 call Next_UVP('COPY')

 end

 otherwise do

 i_du = i_du + 1

 call Next_UVP('SKIP')

 end

 end

 end

nu.Ø = i_nu

ou.Ø = i_ou

say 'New users:' i_nu 'Old users:' i_ou 'Deleted users:' i_du

"EXECIO Ø DISKW UVP (FINIS)"

"EXECIO Ø DISKW UVP1 (FINIS)"

"EXECIO * DISKW NU (STEM NU. FINIS)"

"EXECIO * DISKW OU (STEM OU. FINIS)"

return

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

/* Make_V_Files */

Make_V_Files:

"EXECIO 1 DISKR UVP (OPEN)"

uvp_rc = rc

if uvp_rc = Ø then do

 parse pull uvp

 user = left(uvp, 8)

 end

nv. = ''

i_nv = Ø

ov. = ''

i_ov = Ø

/* Create a list of all the old v by reading all v from the uvp for

 the first user in uvp. */

do forever

 if user <> left(uvp, 8) | uvp_rc <> Ø then leave

 i_ov = i_ov + 1

 ov.i_ov = substr(uvp, 9, 8)

 "EXECIO 1 DISKR UVP"

 parse pull uvp

 end

"EXECIO Ø DISKR UVP (FINIS)"

ov.Ø = i_ov

j = 1

i = 1

do forever

 select

 when i > v.Ø then leave

 when ov.j < v.i & j <= ov.Ø then do

 j = j +1

 end

 when ov.j = v.i & j <= ov.Ø then do

 j = j +1

 i = i +1

 end

 otherwise do

 i_nv = i_nv + 1

 nv.i_nv = v.i

 i = i + 1

 end

 end

 end

nv.Ø = i_nv

say 'New verbs:' nv.Ø 'Old verbs:' ov.Ø

"EXECIO * DISKW NV (STEM NV. FINIS)"

"EXECIO * DISKW OV (STEM OV. FINIS)"

return

/* Next_UVP has uvp containing a certain uvp combination. Till the

 next new user, all records will be copied to UVP1. */

Next_UVP:

 28 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

arg action

act_user = left(uvp, 8)

do while act_user = left(uvp, 8) & uvp_rc = Ø

 if action = 'COPY' then do

 push uvp

 "EXECIO 1 DISKW UVP1"

 end

 "EXECIO 1 DISKR UVP"

 uvp_rc = rc

 parse pull uvp

 end

return

RACRACR1
/* REXX exit that allows customer-specific processing before the

 coding stage. All files are that used further in the process are

 available. Specific processing - for instance based on SETROPTS

 password settings - can be done here. In this set-up records are

 written to the UV1 file that containing the userid and

 the connect groups for each user.

 Note that the user who executes the program must have RACF SPECIAL.*/

call Read_Input

call Create_U_files

exit

/* Read_Input reads the OU and NU files into stem variables and merges

 them into a u. stem. */

Read_Input:

"EXECIO * DISKR U (STEM u. FINIS)"

return

/* Create_U_Files inquires RACF and creates a file with

 <userid><userid> and <userid><connect group> records. */

Create_U_Files:

i_uv1 = Ø

drop uv1

do i = 1 to u.Ø

 i_uv1 = i_uv1 + 1

 uv1.i_uv1 = left(u.i, 8) || left(u.i, 8)

 drop racf.

 x = outtrap('racf.')

 "LISTUSER" u.i

 do j = 1 to racf.Ø

 if left(strip(racf.j), 5) = 'GROUP' then do

 parse var racf.j 'GROUP=' group .

 i_uv1 = i_uv1 + 1

 uv1.i_uv1 = left(u.i, 8) || group

 end

 end

 end

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

uv1.Ø = i_uv1

say 'Exit created' uv1.Ø 'extra entries in the UV1 file.'

"EXECIO * DISKW UV1 (STEM uv1. FINIS)"

return

RACRACR2
/* REXX that merges the NU, OU, NV, and OU files to one input file

 (UV2) for the encoding stage in the following combinations:

 NU * OV New users and old verbs

 NU * NV New users and new verbs

 OU * NV Old users and new verbs

 The output is writen to UV2 */

call Read_input

call Make_uv2_File

exit

/* Read_Input reads the NU, OU, NV and OV files into stem variables.*/

Read_Input:

"EXECIO * DISKR NU (STEM nu. FINIS)"

"EXECIO * DISKR OU (STEM ou. FINIS)"

"EXECIO * DISKR NV (STEM nv. FINIS)"

"EXECIO * DISKR OV (STEM ov. FINIS)"

return

/* Make_uv2_File creates all combinations that must be encoded. */

Make_uv2_File:

uv2. = ''

i_uv2 = Ø

do i = 1 to nu.Ø

 do j = 1 to nv.Ø

 i_uv2 = i_uv2 + 1

 uv2.i_uv2 = nu.i || nv.j

 end

 end

say 'Combinations for new users and new verbs:' i_uv2

count = i_uv2

do i = 1 to nu.Ø

 do j = 1 to ov.Ø

 i_uv2 = i_uv2 + 1

 uv2.i_uv2 = nu.i || ov.j

 end

 end

say 'Combinations for new users and old verbs:' i_uv2 - count

count = i_uv2

do i = 1 to ou.Ø

 do j = 1 to nv.Ø

 i_uv2 = i_uv2 + 1

 uv2.i_uv2 = ou.i || nv.j

 end

 end

 30 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

say 'Combinations for old users and new verbs:' i_uv2 - count

say 'Total number of combinations in the UV2 file:' i_uv2

uv2.Ø = i_uv2

"EXECIO * DISKW UV2 (STEM uv2. FINIS)"

return

RACRACR3

/* REXX that produces the result listing by comparing the UVP and UP

 files.

 The output is written to SYSTSPRT:

 Summary: Number of users, recognized combinations, and verbs.

 Details: 1. Recognized combinations with RACF user information.

 2. Verb list. */

call Read_input

call Make_RACRAC

call Print_RACRAC

exit

/* Read_Input reads the NU, OU, NV and OV files into stem variables. */

Read_Input:

up. = ''

"EXECIO * DISKR UP (STEM up. FINIS)"

"EXECIO 1 DISKR UVP (OPEN)"

rc_uvp = rc

pull uvp

return

/* Make_RACRAC checks all the UP records against the calculated UVP

 records. Processing stops at EOF. */

Make_RACRAC:

drop racrac.

i_racrac = Ø

do i = 1 to up.Ø

 up_u = left(up.i, 8)

 do while left(uvp, 8) = up_u

 if substr(uvp, 17, 8) = substr(up.i, 9, 8) then do

 i_racrac = i_racrac + 1

 racrac.i_racrac = uvp

 end

 "EXECIO 1 DISKR UVP"

 if rc <> Ø then leave

 parse pull uvp

 end

 if rc <> Ø then leave

 end

racrac.Ø = i_racrac

"EXECIO Ø DISKR UVP (FINIS)"

return

/* Print_RACRAC writes the output report. */

Print_RACRAC:

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

"EXECIO * DISKR U (STEM u. FINIS)"

"EXECIO * DISKR V (STEM v. FINIS)"

say ' RACRAC Summary report'

say '--------------------'

say ' '

say ' On a total of' u.Ø 'users,' racrac.Ø ' were recognized,'

say ' using a vocabulary of' v.Ø 'verbs.'

say ' Following users/password combinations were recognized:'

say ' '

drop u.

do i = 1 to racrac.Ø

 say left(racrac.i, 8) '/' substr(racrac.i, 9, 8)

 end

say ' RACRAC Detailed report: Recognized combinations'

say '--'

say ' '

say ' Detailed user information for recognized users.'

say ' '

do i = 1 to racrac.Ø

 say left(racrac.i, 8) '/' substr(racrac.i, 9, 8)

 say ' '

 x = outtrap('racf.')

 "LISTUSER" left(racrac.i, 8)

 x = outtrap('OFF')

 do j = 1 to racf.Ø

 say racf.j

 end

 end

say ' RACRAC Detailed report: Vocabulary'

say '------------------------------'

say ' '

say ' Permutations used in this RACRAC run:'

say ' '

do i = 1 to v.Ø

 say v.i

 end

return

JCL
//JEDSPA JOB (JAN),'JAN DE DECKER',CLASS=A,MSGCLASS=U,NOTIFY=&SYSUID,

// REGION=ØM,COND=(Ø,NE)

//*

//* DATASET NAMINGCONVENTIONS: O OLD

//* N NEW

//* U USERID

//* V VERB

//* P PASSWORD

//*

 32 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

//* CREATE THE UP (USERID/PASSWORD) DATASET

//*

//SØ EXEC PGM=RACRACAØ

//STEPLIB DD DISP=SHR,DSN=JEDSP.LOADLIB

//SYSUDUMP DD SYSOUT=*

//UP DD DISP=(,PASS),DSN=&&UP,

// DCB=(LRECL=16,RECFM=FB,DSORG=PS),UNIT=339Ø,

// SPACE=(CYL,(1,1))

//*

//* SORT THE OLD UVP FILE ON USER - VERB

//*

//S1 EXEC PGM=SORT

//SYSOUT DD SYSOUT=*

//SORTIN DD DISP=SHR,DSN=L.JEDSP.UVP

//SORTOUT DD DISP=SHR,DSN=L.JEDSP.UVP

//SORTWKØ1 DD UNIT=VIO,SPACE=(CYL,(25,5))

//SORTWKØ2 DD UNIT=VIO,SPACE=(CYL,(25,5))

//SYSIN DD *

 SORT FIELDS=(1,16,CH,A)

/*

//*

//* SORT THE V FILE ON VERB

//*

//S2 EXEC PGM=SORT

//SYSOUT DD SYSOUT=*

//SORTIN DD DISP=SHR,DSN=L.JEDSP.V

//SORTOUT DD DISP=SHR,DSN=L.JEDSP.V

//SORTWKØ1 DD UNIT=VIO,SPACE=(CYL,(25,5))

//SORTWKØ2 DD UNIT=VIO,SPACE=(CYL,(25,5))

//SYSIN DD *

 SORT FIELDS=(1,8,CH,A)

/*

//*

//* CREATE THE DIFFERENT WORK FILES

//*

//S3 EXEC PGM=IKJEFTØ1,PARM='%RACRACRØ'

//SYSPRINT DD SYSOUT=*

//SYSEXEC DD DISP=SHR,DSN=L.JEDSP.REXX

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD DUMMY

//*

//* INPUT FILES

//*

//UVP DD DISP=OLD,DSN=L.JEDSP.UVP

//UP DD DISP=(OLD,PASS),DSN=&&UP

//V DD DISP=SHR,DSN=L.JEDSP.V

//*

//* OUTPUT FILES

//*

//NU DD DISP=(,PASS),DSN=&&NU,

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

// DCB=(LRECL=8,RECFM=FB,DSORG=PS),UNIT=339Ø,

// SPACE=(CYL,(5,1))

//OU DD DISP=(,PASS),DSN=&&OU,

// DCB=(LRECL=8,RECFM=FB,DSORG=PS),UNIT=339Ø,

// SPACE=(CYL,(5,1))

//NV DD DISP=(,PASS),DSN=&&NV,

// DCB=(LRECL=8,RECFM=FB,DSORG=PS),UNIT=339Ø,

// SPACE=(CYL,(5,1))

//OV DD DISP=(,PASS),DSN=&&OV,

// DCB=(LRECL=8,RECFM=FB,DSORG=PS),UNIT=339Ø,

// SPACE=(CYL,(5,1))

//UVP1 DD DISP=(,PASS),DSN=&&UVP1,

// DCB=(LRECL=24,RECFM=FB,DSORG=PS),UNIT=339Ø,

// SPACE=(CYL,(5Ø,5))

//*

//* USER EXIT: CREATES <USERID><USERID> & <USERID><GROUP> IN UV1

//*

//S4 EXEC PGM=IKJEFTØ1,PARM='%RACRACR1'

//SYSPRINT DD SYSOUT=*

//SYSEXEC DD DISP=SHR,DSN=L.JEDSP.REXX

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD DUMMY

//U DD DISP=(SHR,PASS),DSN=&&NU

// DD DISP=(SHR,PASS),DSN=&&OU

//V DD DISP=(SHR,PASS),DSN=&&NV

// DD DISP=(SHR,PASS),DSN=&&OV

//UV1 DD DISP=(,PASS),DSN=&&UV1,

// DCB=(LRECL=16,RECFM=FB,DSORG=PS),UNIT=339Ø,

// SPACE=(CYL,(1Ø,5))

//*

//* COMBINE ALL U AND V PERMUTATIONS INTO 1 UV2 FILE

//*

//S5 EXEC PGM=IKJEFTØ1,PARM='%RACRACR2'

//SYSPRINT DD SYSOUT=*

//SYSEXEC DD DISP=SHR,DSN=L.JEDSP.REXX

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD DUMMY

//NU DD DISP=(SHR,PASS),DSN=&&NU

//OU DD DISP=(SHR,PASS),DSN=&&OU

//NV DD DISP=(SHR,PASS),DSN=&&NV

//OV DD DISP=(SHR,PASS),DSN=&&OV

//UV2 DD DISP=(,PASS),DSN=&&UV2,

// DCB=(LRECL=16,RECFM=FB,DSORG=PS),UNIT=339Ø,

// SPACE=(CYL,(2Ø,1Ø))

//*

//* ENCODING PHASE: EXIT DETERMINED VERBS

//*

//S6 EXEC PGM=RACRACA1

//STEPLIB DD DISP=SHR,DSN=JEDSP.LOADLIB

//SYSUDUMP DD SYSOUT=*

 34 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

//UV DD DISP=(OLD,DELETE),DSN=&&UV1

//UVP DD DISP=(,PASS),DSN=&&UVP2,

// DCB=(LRECL=24,RECFM=FB,DSORG=PS),UNIT=339Ø,

// SPACE=(CYL,(1Ø,5))

//*

//* ENCODING PHASE: INPUT VERBS

//*

//S7 EXEC PGM=RACRACA1

//STEPLIB DD DISP=SHR,DSN=JEDSP.LOADLIB

//SYSUDUMP DD SYSOUT=*

//UV DD DISP=(OLD,DELETE),DSN=&&UV2

//UVP DD DISP=(,PASS),DSN=&&UVP3,

// DCB=(LRECL=24,RECFM=FB,DSORG=PS),UNIT=339Ø,

// SPACE=(CYL,(2Ø,1Ø))

//*

//* SORT THE OV AND NV FILES FOR THE REPORT

//*

//S8 EXEC PGM=SORT

//SYSOUT DD SYSOUT=*

//SORTIN DD DISP=(OLD,DELETE),DSN=&&NV

// DD DISP=(OLD,DELETE),DSN=&&OV

//SORTOUT DD DISP=(,PASS),DSN=&&V,

// DCB=(*.SORTIN),UNIT=339Ø,

// SPACE=(CYL,(1,1))

//SORTWKØ1 DD UNIT=VIO,SPACE=(CYL,(25,5))

//SORTWKØ2 DD UNIT=VIO,SPACE=(CYL,(25,5))

//SYSIN DD *

 SORT FIELDS=(1,8,CH,A)

/*

//*

//* COMBINE THE UVP FILES TO CREATE A NEW MASTER UVP4

//*

//S9 EXEC PGM=SORT

//SYSOUT DD SYSOUT=*

Figure 1: Password length and number of permutations

Password length Permutations
1 - 8 5492851609440 5,5E+12
2 - 8 5492851609401 5,5E+12
3 - 8 5492851607880 5,5E+12
4 - 8 5492851548561 5,5E+12
5 - 8 5492849235120 5,5E+12
6 - 8 5492759010921 5,5E+12
7 - 8 5489240267160 5,5E+12
8 - 8 5352009260481 5,4E+12

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

//SORTIN DD DISP=(SHR,PASS),DSN=&&UVP1

// DD DISP=(SHR,DELETE),DSN=&&UVP2

// DD DISP=(SHR,PASS),DSN=&&UVP3

//SORTOUT DD DISP=(,PASS),DSN=&&UVP4,

// DCB=(LRECL=24,RECFM=FB,DSORG=PS),UNIT=339Ø,

// SPACE=(CYL,(5Ø,5))

//SORTWKØ1 DD UNIT=VIO,SPACE=(CYL,(5Ø,5))

//SORTWKØ2 DD UNIT=VIO,SPACE=(CYL,(5Ø,5))

//SYSIN DD *

 SORT FIELDS=(1,16,CH,A)

/*

//*

//* COMBINE THE WORK UVP FILES TO CREATE A NEW MASTER UVP WITHOUT

//* THE EXIT DETERMINED COMBINATIONS

//*

//SA EXEC PGM=SORT

//SYSOUT DD SYSOUT=*

//SORTIN DD DISP=(OLD,DELETE),DSN=&&UVP1

// DD DISP=(OLD,DELETE),DSN=&&UVP3

//SORTOUT DD DISP=OLD,DSN=L.JEDSP.UVP

//SORTWKØ1 DD UNIT=VIO,SPACE=(CYL,(5Ø,5))

//SORTWKØ2 DD UNIT=VIO,SPACE=(CYL,(5Ø,5))

//SYSIN DD *

 SORT FIELDS=(1,16,CH,A)

/*

//*

//* COMPARE AND PRODUCE A REPORT ON THE SYSTSPRT SYSOUT DATASET

//*

//SB EXEC PGM=IKJEFTØ1,PARM='%RACRACR3'

//SYSPRINT DD SYSOUT=*

DES calculations/second (7 - 8) Average (50%)
Seconds Minutes Hours Days Years

1000 1,E+03 2744620134 45743669 762394 31766 87,0
10000 1,E+04 274462013 4574367 76239 3177 8,7

100000 1,E+05 27446201 457437 7624 318 0,9
500000 5,E+05 5489240 91487 1525 64 0,2
705920 7,E+05 3888003 64800 1080 45

1000000 1,E+06 2744620 45744 762 32
1058882 1,E+06 2591999 43200 720 30

31770422 3,E+07 86389 1440 24 1
762252696 8,E+08 3601 60 1

45735769636 5,E+10 60 1

Figure 2: Hack time in relation to available MIPS

 36 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

//SYSEXEC DD DISP=SHR,DSN=L.JEDSP.REXX

//SYSTSPRT DD SYSOUT=*,DCB=(RECFM=FBA)

//SYSTSIN DD DUMMY

//UVP DD DISP=(OLD,DELETE),DSN=&&UVP4

//UP DD DISP=(OLD,DELETE),DSN=&&UP

//V DD DISP=(OLD,DELETE),DSN=&&V

//U DD DISP=(OLD,DELETE),DSN=&&NU

// DD DISP=(OLD,DELETE),DSN=&&OU

CONCLUSION

What to do with the results? Password rules can be implemented
with the RACF SETROPTS command, but to be of any use they
should be published to the users, which is taken care of in the
provided ‘exit’ routine RACRACR1.

The relationship between the password length and the number
of permutations is shown in Figure 1.

The computer time to hack a password in relation to the number
of available MIPS is shown in Figure 2.

The question is whether or not we can do something about this.
The answer is no. One could argue that something stronger
than DES could be used (triple DES for instance). The answer
is two-fold, on the one hand it would be more difficult for a
hacker (the RACRAC approach would not work); on the other
hand, by simply abusing the in-place RACF password exit, the
same result could be achieved by calling the exit instead of
RACRACA1. Even more importantly, I would check where the
ICHDEX01 and ICHDEX11 exits are to be found, and when in
LINKLIB and LPALIB they are used. If their return code is 8 or
16, standard DES is used.

So, what can be done? I would suggest running RACRAC on a
regular basis and explaining to users that it is their account that
will be abused if they choose a weak password. Make it easier
for the user to think of creative passwords by, for instance,
remembering the first words of a poem, song, etc. An example
is Joy Division’s And I Saw Her Naked On Her Side And Then
She Lost Control Again, would become AISHNOHS, which
could be used as a password that would probably not be found

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

in the dictionary. Furthermore, do not force the users into
glueing Post-It notes to the screen with the 50 or so passwords
on them that they have to remember. Go for Single-Sign-On
(SSO), using Passtickets or Kerberos. Do me a favour and do
not trust the following:

• The end user (that necessarily evil).

• Windows security (keep access to the mainframe part of a
mainframe authentication scheme).

• Anybody with access to system libraries.

Jan De Decker
Senior Systems Engineer, JED:SP NV (Belgium) © Xephon 2004

RACF in focus – Global Access Checking Table

This is a regular column focusing on specific aspects of
RACF. In this issue, we will discuss various matters related to
the Global Access Checking Table, and discuss best practices
for implementing its features.

WHAT IS THE GLOBAL ACCESS CHECKING TABLE?

First, it is important to understand that the Global Access
Checking Table, sometimes also called the Global Access
Table, or simply the GAC table for short, is a feature provided
in RACF for performance reasons only. It does not provide
additional security features, nor does it make your installation
more secure. It is there to speed up RACF access checking and
processing, that’s all.

At the same time, it is a useful feature, and you can use it to your
advantage by understanding its power and capabilities.

The GAC table consists of RACF profile entries, and these

 38 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

entries can belong to the dataset class, or any of the general
resource classes that are active at your installation. You can
also specify, for each entry in the table, the level of access to
be provided. That is, READ, UPDATE, etc.

You should create entries in the GAC table for non-sensitive
resources only. That is, those resources, that everyone should
access anyway to carry out their basic job functions.

HOW GLOBAL ACCESS CHECKING WORKS

When an access request is made to RACF, RACF checks the
Global Access Checking Table before the profiles in the RACF
database. During access checking, if RACF finds a match in the
GAC table, it grants the requestor access to the resource
without even checking the actual profile in the database. So, if
the GAC table allows access, but the actual profile denies it, the
access is granted!

This last aspect is what makes the use of the GAC table
sometimes confusing. The GAC table is often overlooked when
determining whether someone has access to a resource. If you
know that someone can access a resource, but when you
check the profile the profile does not allow access, you may
wonder how the user is getting the access. In such cases, the
GAC table could provide the answer. The ‘mirror profile’ solution
mentioned below will remove some of this confusion.

An important point to keep in mind is that the Global Access
Checking Table only grants access; it cannot deny access to a
resource. In other words, during GAC checking, if no profile
match is found, RACF continues further processing by checking
the RACF database, etc, before failing (or granting) access.

Another important point to keep in mind is that if access is
granted via GAC, then there is no logging in SMF, even though
you have specified audit in the ‘mirror profile’ discussed below.
So use GAC only when you do not need the SMF logging to
occur. Since GAC only allows access, and never denies it, the
case for logging is somewhat mitigated – because there is very

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

little need to log successes, especially for non-sensitive
resources.

And lastly, you need to remember that Global Access Checking
does not apply to userids having the RESTRICTED attribute.
This is a feature of the RESTRICTED attribute, rather than a
GAC feature.

HOW IS GAC IMPLEMENTED?

To implement GAC processing, you need to activate the GLOBAL
class. This is a RACF class like any other, and you can activate
and deactivate it at will, using the RACF SETROPTS commands:

SETROPTS CLASSACT(GLOBAL)

or:

SETROPTS NOCLASSACT(GLOBAL)

Once you have the GLOBAL class active, you can selectively
use it for GAC processing. If, for example, you want to turn it on
for only the DATASET class, you issue the commands:

SETROPTS GLOBAL(DATASET)

RDEFINE GLOBAL DATASET

Lastly, add entries for the DATASET class. The following
command will provide UPDATE access to everyone for
dataset_one:

RALTER GLOBAL DATSET ADDMEM('dataset_one'/UPDATE)

To remove the same entry, issue the command:

RALTER GLOBAL DATSET DELMEM('dataset_one'/UPDATE)

After each change to GLOBAL class, you need to do a refresh
to effect the change. For example, for the DATASET class,
enter the command:

SETROPTS GLOBAL(DATASET) REFRESH

There are several ways to see what you currently have in your
GAC table:

 40 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

1 You can use the RLIST command:

RLIST GLOBAL DATASET

2 You can use the search command:

SEARCH CLASS(GLOBAL)

3 You can run the DSMON report.

MIRROR PROFILES

It is highly recommended that you create ‘mirror’ profiles for all
entries in the Global Access Checking Table. This is where you
define a ‘real’ RACF profile for every entry in the GAC table.

For example, if you have:

SYS1.BRODCAST/UPDATE

in the GAC table, you should define a RACF profile:

ADDSD 'SYS1.BRODCAST' UACC(UPDATE) GENERIC DATA('Mirror profile for GAC

entry')

The installation data field tells you the purpose of creating this
profile.

There are several reasons for creating mirror profiles. It
becomes easier to see whether someone has access, just by
listing profiles, and not having to worry about GAC overriding
any access. Also, if you want to make changes to a profile that
is also in the GAC table, you become aware of the implications
of making your change. If you do make changes to mirror
profiles, remember to update the GAC also, if it is appropriate.
Similarly, any changes to GAC should be reflected in the mirror
profiles.

Mirror profiles are useful for auditing purposes. Auditors often
look for mirror profiles for entries in the GAC table.

Creating mirror profiles has another important benefit – if for
some reason the GLOBAL class becomes inactive (and some
day it might), then you will have something to fall back on, and

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

not have failures for entries in the GAC table. The mirror profiles
will take over and provide equivalent access.

You must, of course, remember to keep the mirror profiles in
sync with the GAC entries.

GOOD CANDIDATES FOR GAC PROCESSING

As we saw earlier, you should only insert entries in the GAC
table for non-sensitive resources.

Another criterion should be that the resource is frequently
accessed. Since the benefits of GAC are performance-related,
it doesn’t make sense to put in entries that are not frequently
used.

Although GAC applies to any resource class, most often, you
will see it used for the dataset class.

The following are good candidates for GAC processing in the
dataset class. But you need to take into account your
installation’s policies and practices before putting these in the
GAC table:

SYS1.BRODCAST/UPDATE

SYS1.HELP/READ

SYS1.PROCLIB/READ

SYS1.** READ (some caution is required, if you do not want PARMLIB to

be read by everyone)

ISPF.**/READ (Your installation's ISPF library panels, etc).

CATALOG.**/READ

…

…

&RACUID.**/ALTER

The last entry is interesting – it says that, if the dataset’s high-
level qualifier starts with the person’s userid, allow full (ALTER)
access to the person – without any RACF profile checking!
Needless to say, it is very powerful, and allows all TSO users
complete control over their own TSO datasets. You avoid
having to create many profiles. This is one instance where you
may not want to create mirror profiles!

You may find other candidates based on your installation’s

 42 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

unique set-up and requirements. Do you have many profiles
with UACC (Universal ACCess) other than NONE? Then consider
adding these to the GAC table.

SUMMARY

While the GAC table provides useful features, and can be
exploited to your advantage, it should be used judiciously and
with care. If important, sensitive profiles make their way into the
GAC table, your installation’s security can be greatly
compromised, without your even being aware of it!

For this reason you should review your GAC table periodically
to make sure a RACF mirror profile exists for each entry in the
table, and also make sure no sensitive resource has crept in.

The best way to see what is in your GAC table is to run the
DSMON report. The section on GAC will show you what entries
you have, and also what level of access is provided.

Dinesh Dattani would welcome feedback, comments and
queries about this column. He can be contacted at
dinesh123@rogers.com.

Dinesh Dattani
Independent Consultant
Toronto (Canada) © Xephon 2004

C/C++ functions for RACF security operations

Verifying the legitimate use of a userid, changing password
values, and establishing alternative task-level security
environments are common security operations in applications
that support multiple users. This requirement is especially
common in today’s sophisticated, multi-user, multi-tasking
applications and this includes those coded in C/C++.

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Natively, IBM C/C++ for OS/390 or z/OS supports a __passwd()
function that can be used to verify a password for a specified
userid, or it can be used to verify and change a password for
a specified userid. This is an important operation for an
application that supports multiple users because it can be used
to verify that the application requestor is:

• Who they say they are.

• Someone who should be able to access the application.

In some cases, just verifying a correct userid/password
combination is insufficient for how an application needs to
function. For example, once a userid/password combination
has been validated, it may be necessary to perform the remaining
work under the security level of the verified userid (similar to
what happens with a CICS or TSO logon). This is where the
__login() function in IBM C/C++ is useful. The __login() function
creates a new task-level security environment so that any
subsequent security related operations will be tested against
the security authority of the new ‘logged in’ user.

These are powerful and necessary operations for any multi-
user systems and multi-user/multi-tasking applications. There
are drawbacks to these native functions. For __passwd(), if the
BPX_DAEMON facility class profile is defined, programs must
be loaded from controlled datasets (ie programs and datasets
defined to the RACF PROGRAM class).

For __login(), drawbacks include:

• If the BPX_DAEMON facility class profile is defined,
programs must be loaded from controlled datasets (ie
programs and dataset defined to the RACF PROGRAM
class).

• There is no way to log out from a logged-in user. You can
change to a new security environment only by performing
a new __login() function.

• __login() is not permitted in a multi-tasking environment,

 44 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

which is one of the main reasons you would want to use a
function with this capability.

A VIABLE SOLUTION

Four functions are provided with this article. They represent a
viable alternative and address the above mentioned issues
with using __passwd() and __login(). The functions are written
in Assembler and are designed to be used from IBM C/C++
programs. The four functions and their operations are:

• LOGON() – uses the supplied userid and password to
establish a task-level security environment under the
specified userid if the password is the valid password (ie
current and unexpired) for the userid and the userid is not
currently in revoked status.

• LOGOFF() – restores the task-level ACEE address to zero
for the current TCB.

• PWVERIFY() – is used to validate the supplied userid and
password with RACF. This function is similar to LOGON(),
but will not set the task-level security to that of the specified
userid.

• PWRESET() – is used to attempt to reset the password for
a given userid. If the supplied old password is valid (ie the
current password for the userid), and the supplied new
password is valid (ie meets the RACF password rule
requirements), and the specified userid is not RACF revoked,
the password for the specified userid will be reset.

USAGE

Below are code excerpts for using the functions in an IBM C
program:

// Define the function linkage

#pragma linkage (LOGON, OS)

#pragma linkage (LOGOFF, OS)

#pragma linkage (PWVERIFY, OS)

#pragma linkage (PWRESET, OS)

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

int i;

int SAFrc, RACFrc, RACFrsn;

char userid[9];

char curr_pwd[9];

char new_pwd[9];

// Populate userid, curr_pwd, new_pwd as necessary

// Sample LOGON() usage

i = LOGON(&userid, &curr_pwd, &SAFrc, &RACFrc, &RACFrsn);

// Sample LOGOFF() usage

i = LOGOFF(&SAFrc, &RACFrc, &RACFrsn);

// Sample PWVERIFY() usage

i = PWVERIFY(&userid, &curr_pwd, &SAFrc, &RACFrc, &RACFrsn);

// Sample PWRESET() usage

i = PWRESET(&userid, &curr_pwd, &new_pwd, &SAFrc, &RACFrc, &RACFrsn);

Comments in the function source code describe function
arguments, return codes, and sample usage. The SAFrc,
RACFrc, and RACFrsn variables can be used to determine the
specific nature of the security failure for certain non-zero return
codes (-1 for LOGON() and PWRESET(), -2 for PWVERIFY(),
-3 for LOGOFF()). For these security failure function return
conditions, the values returned in the SAFrc, RACFrc, and
RACFrsn variables are documented as the return codes and
reason codes for the RACROUTE REQUEST=VERIFY macro
(see Chapter 3, ‘System Macros’, in the z/OS SecureWay
Security Server RACROUTE Macro reference manual). Other
non-zero return codes indicate environment issues (see function
comments). A return code of 0 indicates that the requested
operation completed successfully.

COMPILATION AND PROGRAM LINKAGE

The source code for the functions should be assembled from a
combined source dataset using a standard assembly job. The
resulting object module will need to be linkedited with the C/C++
object module to create the executable code. Datasets
SYS1.MACLIB, SYS1.MODGEN, and CEE.SCEEMAC will need
to be included in the SYSLIB DD concatenation for the function

 46 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

assembly job. C/C++ programs that make use of any of the
security-related functions should be compiled and prelinked
with standard compile and prelink jobs. Presuming that the
security functions have been assembled into an object module
member named LOGIN and a test C program has been ultimately
prelinked into an object module member named TESTPGM,
below is a sample linkedit job:

 //IEWL EXEC PGM=HEWLHØ96,PARM='XREF,LIST,MAP,RENT'

 //SYSPRINT DD SYSOUT=*

 //SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(2,1))

 //OBJECT DD DSN=object.code.pds,DISP=SHR

 //SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR

 //SYSLMOD DD DSN=auth.load.library,DISP=SHR

 //SYSLIN DD *

 INCLUDE OBJECT(TESTPGM) OBJ MODULE AFTER TESTPGM PRELINK

 INCLUDE OBJECT(LOGIN) OBJ MODULE FOR SECURITY FUNCTIONS

 SETCODE AC(1)

 ENTRY CEESTART

 NAME TESTPGM(R)

An example C program, TSTLOGON, has been provided with
this article to show how the LOGON() function could be used in
a multi-tasking environment. In the case of the example program,
pthread_create() is used to initiate a number of subtasks.
Within each subtask, passed userid and password data are
used by the LOGON() function to attempt to create an alternative
security environment. For this program to work in your
environment, appropriate userid/password combinations will
need to be provided in the TSTLOGON program’s code.

CONCLUSION

The drawback of using this function suite is that you need to
create authorized programs and they need to reside in APF
authorized libraries. These functions, especially LOGON() and
LOGOFF() in a multi-tasking application, are very practical
options in situations where there may be few, if any, other
solutions and most of the time this outweighs the need for APF
authorization. They may prove useful in your application
development.

 47© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

LOGIN ASSEMBLER

* This file contains the Assembler support routines to support *

* selected logon/logoff type operations. The routines are intended *

* to be called from IBM C programs and the usage for each function *

* is described with the particular function call below. *

* The supported functions include: *

* LOGON - is used to validate the supplied user/password with *

* the security product and if valid it sets the task *

* level security to that of the 'logging' in userid. *

* LOGOFF - is used to reset the current task-level security. *

* If no task-level security is active, the function *

* returns a return code indicating such. *

* PWVERIFY - is used to validate the supplied user/password with *

* the security product. This function is similar to *

* LOGON, but it will not set the task-level security *

* on a successful 'logon'. *

* PWRESET - is used to attempt to reset the password for a given *

* userid. If the supplied old and new password are *

* valid, the password for the specified userid will be *

* reset. *

* Register Usage Conventions: *

* R2 : used to save the incoming parameter address *

* R3 : userid *

* R4 : password (current) *

* R1Ø : temporary storage address *

* R11 : reserved for second base register *

* R12 : first base register *

* R13 : DSA address *

* R5 - R9 : work registers *

* RØ - R1 : work registers, but generally available for use *

* by calls to system functions *

* R14 - R15 : work registers, return address and return code, but *

* generally available for use by calls to system *

* functions *

* Other system access validation functions can easily be added *

* by using any one of the supported functions as a model. *

* Routine: LOGON *

* Function: Establish a task-level security environment for *

* the specified userid providing the supplied password *

* for the userid is valid. *

* Arguments: Address of userid *

* Address of current password *

* Address of SAF rc return area *

* Address of RACF rc return area *

* Address of RACF rsn return area *

* Return: int - Ø for logon success (TCBSENV contains ACEE) *

* -1 for failure (SAFrc, RACFrc, RACFrsn will *

* contain details regarding the failure) *

 48 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

* -8 userid or password value invalid (length=Ø) *

* -9 parameter addresses were invalid *

* C usage: i = LOGON(&userid, &crntpwd, *

* &SAFrc, &RACFrc, &RACFrsn); *

LOGON CSECT

LOGON AMODE 31

LOGON RMODE ANY

 EDCPRLG BASEREG=R12,DSALEN=WORKLEN

 USING LGINWORK,R13

 LR R2,R1 Save incoming parm address

 STORAGE OBTAIN,LENGTH=TEMPLEN,LOC=ANY

 LR RØ,R1 Copy storage address

 LR R1Ø,R1 Again

 LR R14,R1 Again

 L R1,=A(TEMPLEN) Get length

 XR R15,R15 Set fill byte

 MVCL RØ,R14 Clear the storage

 USING TEMPAREA,R1Ø

 ST R2,PARMØ Save incoming parm address

 L R3,Ø(,R2) Get userid address

 ST R3,PARM1 Save userid address

 LTR R3,R3 Valid parm address?

 BZ LGONRT9 No - get out

 L R4,4(,R2) Get password address

 ST R4,PARM2 Save password address

 LTR R4,R4 Valid parm address?

 BZ LGONRT9 No - get out

 L R5,8(,R2) Get SAF rc area address

 ST R5,PARM3 Save SAF rc area address

 LTR R5,R5 Valid parm address?

 BZ LGONRT9 No - get out

 L R5,12(,R2) Get RACF rc area address

 ST R5,PARM4 Save RACF rc area address

 LTR R5,R5 Valid parm address?

 BZ LGONRT9 No - get out

 L R5,16(,R2) Get RACF rsn area address

 ST R5,PARM5 Save RACF rsn area address

 LTR R5,R5 Valid parm address?

 BZ LGONRT9 No - get out

* Determine the length of the userid and copy to local working *

* storage. *

 L R9,PARM1 Get address of userid

 XR R8,R8 Clear counter register

USRIDLN1 DS ØH

 CLI Ø(R9),C' ' End of userid?

 BE USRIDEN1 Yes - set len and move value

 CLI Ø(R9),X'ØØ' End of userid?

 BE USRIDEN1 Yes - set len and move value

 C R8,=F'8' Max len?

 BE USRIDEN1 Yes - set len and move value

 49© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 LA R9,1(,R9) Point to next data byte

 LA R8,1(,R8) Add one to count

 B USRIDLN1 Check next byte

USRIDEN1 DS ØH

 LTR R8,R8 Zero len?

 BZ LGONRT8 Yes - get out

 STCM R8,X'ØØØ1',USERIDL Save userid len

 BCTR R8,Ø Reduce len fo ex

 MVC USERID(8),=8C' ' Init the userid area

 L R9,PARM1 Get addr of incoming userid

 EX R8,USRIDMV1 Copy the incoming userid

 OC USERID(8),=8C' ' Set to uppercase

* Determine the length of the password and copy to local working *

* storage. *

 L R9,PARM2 Get address of password

 XR R8,R8 Clear counter register

CPWDLN1 DS ØH

 CLI Ø(R9),C' ' End of password?

 BE CPWDEN1 Yes - set len and move value

 CLI Ø(R9),X'ØØ' End of password?

 BE CPWDEN1 Yes - set len and move value

 C R8,=F'8' Max len?

 BE CPWDEN1 Yes - set len and move value

 LA R9,1(,R9) Point to next data byte

 LA R8,1(,R8) Add one to count

 B CPWDLN1 Check next byte

CPWDEN1 DS ØH

 LTR R8,R8 Zero len?

 BZ LGONRT8 Yes - get out

 STCM R8,X'ØØØ1',CRNTPWDL Save password length

 BCTR R8,Ø Reduce len for ex

 MVC CRNTPWD(8),=8C' ' Init password area

 L R9,PARM2 Get address of password area

 EX R8,CPWDMVC1 Copy the password

 OC CRNTPWD(8),=8C' ' Set to uppercase

 L R5,PARM3 Get SAF rc area addr

 XC Ø(4,R5),Ø(R5) Set SAF rc to zero

 L R5,PARM4 Get RACF rc area addr

 XC Ø(4,R5),Ø(R5) Set RACF rc to zero

 L R5,PARM5 Get RACF rsn area addr

 XC Ø(4,R5),Ø(R5) Set RACF rsn to zero

 MVC ROUTWRK(ROUTLEN1),RACROUT1 Copy RACROUTE model

 RACROUTE REQUEST=VERIFY, X

 ENVIR=CREATE, X

 PASSCHK=YES, X

 PASSWRD=CRNTPWDL, X

 USERID=USERIDL, X

 RELEASE=1.9.2, X

 WORKA=RACWORK,MF=(E,ROUTWRK)

 ST R15,RETCODE Save the return code

 50 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 LTR R15,R15 Logon ok?

 BNZ LGONRT1 No - set return values

ENDLOGON DS ØH

 L R5,RETCODE Copy return code

 STORAGE RELEASE,LENGTH=TEMPLEN,ADDR=(R1Ø)

 LR R15,R5 Set return code

 EDCEPIL Return

LGONRT1 DS ØH

 L R5,PARM3 Get SAF rc area addr

 ST R15,Ø(,R5) Save SAF rc

 L R5,PARM4 Get RACF rc area addr

 MVC Ø(4,R5),ROUTWRK Save RACF rc

 L R5,PARM5 Get RACF rsn area addr

 MVC Ø(4,R5),ROUTWRK+4 Save RACF rsn

 MVC RETCODE(4),=F'-1' Set return code

 B ENDLOGON We're done

LGONRT8 DS ØH

 MVC RETCODE(4),=F'-8' Set return code

 B ENDLOGON We're done

LGONRT9 DS ØH

 MVC RETCODE(4),=F'-9' Set return code

 B ENDLOGON We're done

* Executed instructions for LOGON *

USRIDMV1 MVC USERID(*-*),Ø(R9) Copy the userid

CPWDMVC1 MVC CRNTPWD(*-*),Ø(R9) Copy the password

* Constants for LOGON *

RACROUT1 RACROUTE REQUEST=VERIFY, X

 PASSCHK=YES, X

 RELEASE=1.9.2, X

 MF=L

ROUTLEN1 EQU *-RACROUT1

 LTORG

 DROP R1Ø,R12,R13

* Routine: LOGOFF *

* Function: Delete the task-level security environment for *

* this task. If no task-level security is active, *

* set a non-zero return code and do not delete the *

* ASXBSENV ACEE. *

* Arguments: Address of SAF rc return area *

* Address of RACF rc return area *

* Address of RACF rsn return area *

* Return: int - Ø for logoff success (TCBSENV contains ACEE) *

* -1 no current task-level security environment *

* -2 TCBSENV does not point to an ACEE *

* -3 for failure (SAFrc, RACFrc, RACFrsn will *

* contain details regarding the failure) *

* -9 parameter addresses were invalid *

* C usage: i = LOGOFF(&SAFrc, &RACFrc, &RACFrsn); *

LOGOFF CSECT

LOGOFF AMODE 31

 51© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

LOGOFF RMODE ANY

 EDCPRLG BASEREG=R12,DSALEN=WORKLEN

 USING LGINWORK,R13

 LR R2,R1 Save incoming parm address

 STORAGE OBTAIN,LENGTH=TEMPLEN,LOC=ANY

 LR RØ,R1 Copy storage address

 LR R1Ø,R1 Again

 LR R14,R1 Again

 L R1,=A(TEMPLEN) Get length

 XR R15,R15 Set fill byte

 MVCL RØ,R14 Clear the storage

 USING TEMPAREA,R1Ø

 ST R2,PARMØ Save incoming parm address

 L R5,Ø(,R2) Get SAF rc area address

 ST R5,PARM3 Save SAF rc area address

 LTR R5,R5 Valid parm address?

 BZ LGOFFRT9 No - get out

 L R5,4(,R2) Get RACF rc area address

 ST R5,PARM4 Save RACF rc area address

 LTR R5,R5 Valid parm address?

 BZ LGOFFRT9 No - get out

 L R5,8(,R2) Get RACF rsn area address

 ST R5,PARM5 Save RACF rsn area address

 LTR R5,R5 Valid parm address?

 BZ LGOFFRT9 No - get out

 L R5,PARM3 Get SAF rc area addr

 XC Ø(4,R5),Ø(R5) Set SAF rc to zero

 L R5,PARM4 Get RACF rc area addr

 XC Ø(4,R5),Ø(R5) Set RACF rc to zero

 L R5,PARM5 Get RACF rsn area addr

 XC Ø(4,R5),Ø(R5) Set RACF rsn to zero

 L R15,16 Get CVT address

 L R14,Ø(,R15) Point to TCB/ASCB

 L R5,4(,R14) Get active TCB address

 L R6,12(,R14) Get active ASCB address

 L R7,TCBSENV-TCB(,R5) Load task ACEE address

 L R8,ASCBASXB-ASCB(,R6) Get ASXB address

 L R9,ASXBSENV-ASXB(,R8) Get a/s ACEE address

 LTR R7,R7 A task ACEE?

 BZ LGOFFRT1 No - get out

 CLC Ø(4,R7),=C'ACEE' A valid ACEE?

 BNE LGOFFRT2 No - get out

 MVC ROUTWRK(ROUTLEN2),RACROUT2 Copy RACROUTE model

 RACROUTE REQUEST=VERIFY, X

 ENVIR=DELETE, X

 PASSCHK=NO, X

 RELEASE=1.9.2, X

 WORKA=RACWORK,MF=(E,ROUTWRK)

 ST R15,RETCODE Save the return code

 LTR R15,R15 Logoff ok?

 52 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 BNZ LGOFFRT3 No - set return values

ENDLOGOF DS ØH

 L R5,RETCODE Copy return code

 STORAGE RELEASE,LENGTH=TEMPLEN,ADDR=(R1Ø)

 LR R15,R5 Set return code

 EDCEPIL Return

LGOFFRT1 DS ØH

 MVC RETCODE(4),=F'-1' Set return code

 B ENDLOGOF We're done

LGOFFRT2 DS ØH

 MVC RETCODE(4),=F'-2' Set return code

 B ENDLOGOF We're done

LGOFFRT3 DS ØH

 L R5,PARM3 Get SAF rc area addr

 ST R15,Ø(,R5) Save SAF rc

 L R5,PARM4 Get RACF rc area addr

 MVC Ø(4,R5),ROUTWRK Save RACF rc

 L R5,PARM5 Get RACF rsn area addr

 MVC Ø(4,R5),ROUTWRK+4 Save RACF rsn

 MVC RETCODE(4),=F'-3' Set return code

 B ENDLOGOF We're done

LGOFFRT9 DS ØH

 MVC RETCODE(4),=F'-9' Set return code

 B ENDLOGOF We're done

* Executed instructions for LOGOFF *

* Constants for LOGOFF *

RACROUT2 RACROUTE REQUEST=VERIFY, X

 PASSCHK=YES, X

 RELEASE=1.9.2, X

 MF=L

ROUTLEN2 EQU *-RACROUT2

 LTORG

 DROP R1Ø,R12,R13

* Routine: PWVERIFY *

* Function: Determine whether the specified userid/password *

* combination is valid. *

* Arguments: Address of userid *

* Address of current password *

* Address of SAF rc return area *

* Address of RACF rc return area *

* Address of RACF rsn return area *

* Return: int - Ø for userid/password valid *

* -1 if password is expired *

* -2 for failure (SAFrc, RACFrc, RACFrsn will *

* contain details regarding the failure) *

* -8 userid or password value invalid (length=Ø) *

* -9 parameter addresses were invalid *

* C usage: i = PWVERIFY(&userid, &crntpwd, *

* &SAFrc, &RACFrc, &RACFrsn); *

PWVERIFY CSECT

 53© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

PWVERIFY AMODE 31

PWVERIFY RMODE ANY

 EDCPRLG BASEREG=R12,DSALEN=WORKLEN

 USING LGINWORK,R13

 LR R2,R1 Save incoming parm address

 STORAGE OBTAIN,LENGTH=TEMPLEN,LOC=ANY

 LR RØ,R1 Copy storage address

 LR R1Ø,R1 Again

 LR R14,R1 Again

 L R1,=A(TEMPLEN) Get length

 XR R15,R15 Set fill byte

 MVCL RØ,R14 Clear the storage

 USING TEMPAREA,R1Ø

 ST R2,PARMØ Save incoming parm address

 L R3,Ø(,R2) Get userid address

 ST R3,PARM1 Save userid address

 LTR R3,R3 Valid parm address?

 BZ PWVFRT9 No - get out

 L R4,4(,R2) Get password address

 ST R4,PARM2 Save password address

 LTR R4,R4 Valid parm address?

 BZ PWVFRT9 No - get out

 L R5,8(,R2) Get SAF rc area address

 ST R5,PARM3 Save SAF rc area address

 LTR R5,R5 Valid parm address?

 BZ PWVFRT9 No - get out

 L R5,12(,R2) Get RACF rc area address

 ST R5,PARM4 Save RACF rc area address

 LTR R5,R5 Valid parm address?

 BZ PWVFRT9 No - get out

 L R5,16(,R2) Get RACF rsn area address

 ST R5,PARM5 Save RACF rsn area address

 LTR R5,R5 Valid parm address?

 BZ PWVFRT9 No - get out

* Determine the length of the userid and copy to local working *

* storage. *

 L R9,PARM1 Get address of userid

 XR R8,R8 Clear counter register

USRIDLN2 DS ØH

 CLI Ø(R9),C' ' End of userid?

 BE USRIDEN2 Yes - set len and move value

 CLI Ø(R9),X'ØØ' End of userid?

 BE USRIDEN2 Yes - set len and move value

 C R8,=F'8' Max len?

 BE USRIDEN2 Yes - set len and move value

 LA R9,1(,R9) Point to next data byte

 LA R8,1(,R8) Add one to count

 B USRIDLN2 Check next byte

USRIDEN2 DS ØH

 LTR R8,R8 Zero len?

 54 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 BZ PWVFRT8 Yes - get out

 STCM R8,X'ØØØ1',USERIDL Save userid len

 BCTR R8,Ø Reduce len fo ex

 MVC USERID(8),=8C' ' Init the userid area

 L R9,PARM1 Get addr of incoming userid

 EX R8,USRIDMV2 Copy the incoming userid

 OC USERID(8),=8C' ' Set to uppercase

* Determine the length of the password and copy to local working *

* storage. *

 L R9,PARM2 Get address of password

 XR R8,R8 Clear counter register

CPWDLN2 DS ØH

 CLI Ø(R9),C' ' End of password?

 BE CPWDEN2 Yes - set len and move value

 CLI Ø(R9),X'ØØ' End of password?

 BE CPWDEN2 Yes - set len and move value

 C R8,=F'8' Max len?

 BE CPWDEN2 Yes - set len and move value

 LA R9,1(,R9) Point to next data byte

 LA R8,1(,R8) Add one to count

 B CPWDLN2 Check next byte

CPWDEN2 DS ØH

 LTR R8,R8 Zero len?

 BZ PWVFRT8 Yes - get out

 STCM R8,X'ØØØ1',CRNTPWDL Save password length

 BCTR R8,Ø Reduce len for ex

 MVC CRNTPWD(8),=8C' ' Init password area

 L R9,PARM2 Get address of password area

 EX R8,CPWDMVC2 Copy the password

 OC CRNTPWD(8),=8C' ' Set to uppercase

 L R5,PARM3 Get SAF rc area addr

 XC Ø(4,R5),Ø(R5) Set SAF rc to zero

 L R5,PARM4 Get RACF rc area addr

 XC Ø(4,R5),Ø(R5) Set RACF rc to zero

 L R5,PARM5 Get RACF rsn area addr

 XC Ø(4,R5),Ø(R5) Set RACF rsn to zero

 MVC ROUTWRK(ROUTLEN3),RACROUT3 Copy RACROUTE model

 RACROUTE REQUEST=VERIFY, X

 ENVIR=CREATE, X

 PASSCHK=YES, X

 PASSWRD=CRNTPWDL, X

 USERID=USERIDL, X

 ACEE=ACEEADDR, X

 RELEASE=1.9.2, X

 WORKA=RACWORK,MF=(E,ROUTWRK)

 ST R15,RETCODE Save the return code

 LTR R15,R15 Logon ok?

 BNZ PWVFRT1 No - set return values

 CLC ACEEADDR(4),=F'Ø' An ACEE?

 BE NOACEE1 No - don't delete it

 55© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 MVC ROUTWRK(ROUTLEN3),RACROUT3 Copy RACROUTE model

 RACROUTE REQUEST=VERIFY, X

 ENVIR=DELETE, X

 PASSCHK=NO, X

 ACEE=ACEEADDR, X

 RELEASE=1.9.2, X

 WORKA=RACWORK,MF=(E,ROUTWRK)

NOACEE1 DS ØH

ENDPWVF DS ØH

 L R5,RETCODE Copy return code

 STORAGE RELEASE,LENGTH=TEMPLEN,ADDR=(R1Ø)

 LR R15,R5 Set return code

 EDCEPIL Return

PWVFRT1 DS ØH

 L R5,PARM3 Get SAF rc area addr

 ST R15,Ø(,R5) Save SAF rc

 L R5,PARM4 Get RACF rc area addr

 MVC Ø(4,R5),ROUTWRK Save RACF rc

 L R5,PARM5 Get RACF rsn area addr

 MVC Ø(4,R5),ROUTWRK+4 Save RACF rsn

 C R15,=F'8' SAF rc=8?

 BNE PWVFRT2 No - password not expired

 CLC ROUTWRK(4),=F'12' RACF rc=12?

 BNE PWVFRT2 No - password not expired

 MVC RETCODE(4),=F'-1' Set return code

 B ENDPWVF We're done

PWVFRT2 DS ØH

 MVC RETCODE(4),=F'-2' Set return code

 B ENDPWVF We're done

PWVFRT8 DS ØH

 MVC RETCODE(4),=F'-8' Set return code

 B ENDPWVF We're done

PWVFRT9 DS ØH

 MVC RETCODE(4),=F'-9' Set return code

 B ENDPWVF We're done

* Executed instructions for PWVERIFY *

USRIDMV2 MVC USERID(*-*),Ø(R9) Copy the userid

CPWDMVC2 MVC CRNTPWD(*-*),Ø(R9) Copy the password

* Constants for PWVERIFY *

RACROUT3 RACROUTE REQUEST=VERIFY, X

 PASSCHK=YES, X

 RELEASE=1.9.2, X

 MF=L

ROUTLEN3 EQU *-RACROUT3

 LTORG

 DROP R1Ø,R12,R13

* Routine: PWRESET *

* Function: Attempt to reset the password for the specified *

* userid to the new password value. This function *

* will only succeed if the current password is valid *

 56 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

* and the requested new password meets the security *

* product rules for a good password. *

* Arguments: Address of userid *

* Address of current password *

* Address of new password *

* Address of SAF rc return area *

* Address of RACF rc return area *

* Address of RACF rsn return area *

* Return: int - Ø if the password was successfully reset *

* -1 for failure (SAFrc, RACFrc, RACFrsn will *

* contain details regarding the failure) *

* -8 userid or password value invalid (length=Ø) *

* -9 parameter addresses were invalid *

* C usage: i = PWRESET(&userid, &crntpwd, &newpwd, *

* &SAFrc, &RACFrc, &RACFrsn); *

PWRESET CSECT

PWRESET AMODE 31

PWRESET RMODE ANY

 EDCPRLG BASEREG=R12,DSALEN=WORKLEN

 USING LGINWORK,R13

 LR R2,R1 Save incoming parm address

 STORAGE OBTAIN,LENGTH=TEMPLEN,LOC=ANY

 LR RØ,R1 Copy storage address

 LR R1Ø,R1 Again

 LR R14,R1 Again

 L R1,=A(TEMPLEN) Get length

 XR R15,R15 Set fill byte

 MVCL RØ,R14 Clear the storage

 USING TEMPAREA,R1Ø

 ST R2,PARMØ Save incoming parm address

 L R3,Ø(,R2) Get userid address

 ST R3,PARM1 Save userid address

 LTR R3,R3 Valid parm address?

 BZ PWRSRT9 No - get out

 L R4,4(,R2) Get password address

 ST R4,PARM2 Save password address

 LTR R4,R4 Valid parm address?

 BZ PWRSRT9 No - get out

 L R5,8(,R2) Get new password address

 ST R5,PARM3 Save new password address

 LTR R5,R5 Valid parm address?

 BZ PWRSRT9 No - get out

 L R5,12(,R2) Get SAF rc area address

 ST R5,PARM4 Save SAF rc area address

 LTR R5,R5 Valid parm address?

 BZ PWRSRT9 No - get out

 L R5,16(,R2) Get RACF rc area address

 ST R5,PARM5 Save RACF rc area address

 LTR R5,R5 Valid parm address?

 BZ PWRSRT9 No - get out

 57© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 L R5,2Ø(,R2) Get RACF rsn area address

 ST R5,PARM6 Save RACF rsn area address

 LTR R5,R5 Valid parm address?

 BZ PWRSRT9 No - get out

* Determine the length of the userid and copy to local working *

* storage. *

 L R9,PARM1 Get address of userid

 XR R8,R8 Clear counter register

USRIDLN3 DS ØH

 CLI Ø(R9),C' ' End of userid?

 BE USRIDEN3 Yes - set len and move value

 CLI Ø(R9),X'ØØ' End of userid?

 BE USRIDEN3 Yes - set len and move value

 C R8,=F'8' Max len?

 BE USRIDEN3 Yes - set len and move value

 LA R9,1(,R9) Point to next data byte

 LA R8,1(,R8) Add one to count

 B USRIDLN3 Check next byte

USRIDEN3 DS ØH

 LTR R8,R8 Zero len?

 BZ PWRSRT8 Yes - get out

 STCM R8,X'ØØØ1',USERIDL Save userid len

 BCTR R8,Ø Reduce len fo ex

 MVC USERID(8),=8C' ' Init the userid area

 L R9,PARM1 Get addr of incoming userid

 EX R8,USRIDMV3 Copy the incoming userid

 OC USERID(8),=8C' ' Set to uppercase

* Determine the length of the password and copy to local working *

* storage. *

 L R9,PARM2 Get address of password

 XR R8,R8 Clear counter register

CPWDLN3 DS ØH

 CLI Ø(R9),C' ' End of password?

 BE CPWDEN3 Yes - set len and move value

 CLI Ø(R9),X'ØØ' End of password?

 BE CPWDEN3 Yes - set len and move value

 C R8,=F'8' Max len?

 BE CPWDEN3 Yes - set len and move value

 LA R9,1(,R9) Point to next data byte

 LA R8,1(,R8) Add one to count

 B CPWDLN3 Check next byte

CPWDEN3 DS ØH

 LTR R8,R8 Zero len?

 BZ PWRSRT8 Yes - get out

 STCM R8,X'ØØØ1',CRNTPWDL Save password length

 BCTR R8,Ø Reduce len for ex

 MVC CRNTPWD(8),=8C' ' Init password area

 L R9,PARM2 Get address of password area

 EX R8,CPWDMVC3 Copy the password

 OC CRNTPWD(8),=8C' ' Set to uppercase

 58 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

* Determine the length of the new password and copy to local *

* working storage. *

 L R9,PARM3 Get address of new password

 XR R8,R8 Clear counter register

NPWDLN3 DS ØH

 CLI Ø(R9),C' ' End of password?

 BE NPWDEN3 Yes - set len and move value

 CLI Ø(R9),X'ØØ' End of password?

 BE NPWDEN3 Yes - set len and move value

 C R8,=F'8' Max len?

 BE NPWDEN3 Yes - set len and move value

 LA R9,1(,R9) Point to next data byte

 LA R8,1(,R8) Add one to count

 B NPWDLN3 Check next byte

NPWDEN3 DS ØH

 LTR R8,R8 Zero len?

 BZ PWRSRT8 Yes - get out

 STCM R8,X'ØØØ1',NEWPWDL Save password length

 BCTR R8,Ø Reduce len for ex

 MVC NEWPWD(8),=8C' ' Init password area

 L R9,PARM3 Get address of password area

 EX R8,NPWDMVC3 Copy the password

 OC NEWPWD(8),=8C' ' Set to uppercase

 L R5,PARM4 Get SAF rc area addr

 XC Ø(4,R5),Ø(R5) Set SAF rc to zero

 L R5,PARM5 Get RACF rc area addr

 XC Ø(4,R5),Ø(R5) Set RACF rc to zero

 L R5,PARM6 Get RACF rsn area addr

 XC Ø(4,R5),Ø(R5) Set RACF rsn to zero

 MVC ROUTWRK(ROUTLEN4),RACROUT4 Copy RACROUTE model

 RACROUTE REQUEST=VERIFY, X

 ENVIR=CREATE, X

 PASSCHK=YES, X

 NEWPASS=NEWPWDL, X

 PASSWRD=CRNTPWDL, X

 USERID=USERIDL, X

 ACEE=ACEEADDR, X

 RELEASE=1.9.2, X

 WORKA=RACWORK,MF=(E,ROUTWRK)

 ST R15,RETCODE Save the return code

 LTR R15,R15 Logon ok?

 BNZ PWRSRT1 No - set return values

 CLC ACEEADDR(4),=F'Ø' An ACEE?

 BE NOACEE2 No - don't delete it

 MVC ROUTWRK(ROUTLEN4),RACROUT4 Copy RACROUTE model

 RACROUTE REQUEST=VERIFY, X

 ENVIR=DELETE, X

 PASSCHK=NO, X

 ACEE=ACEEADDR, X

 RELEASE=1.9.2, X

 59© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 WORKA=RACWORK,MF=(E,ROUTWRK)

NOACEE2 DS ØH

ENDPWRS DS ØH

 L R5,RETCODE Copy return code

 STORAGE RELEASE,LENGTH=TEMPLEN,ADDR=(R1Ø)

 LR R15,R5 Set return code

 EDCEPIL Return

PWRSRT1 DS ØH

 L R5,PARM4 Get SAF rc area addr

 ST R15,Ø(,R5) Save SAF rc

 L R5,PARM5 Get RACF rc area addr

 MVC Ø(4,R5),ROUTWRK Save RACF rc

 L R5,PARM6 Get RACF rsn area addr

 MVC Ø(4,R5),ROUTWRK+4 Save RACF rsn

 MVC RETCODE(4),=F'-1' Set return code

 B ENDPWRS We're done

PWRSRT8 DS ØH

 MVC RETCODE(4),=F'-8' Set return code

 B ENDPWRS We're done

PWRSRT9 DS ØH

 MVC RETCODE(4),=F'-9' Set return code

 B ENDPWRS We're done

* Executed instructions for PWRESET *

USRIDMV3 MVC USERID(*-*),Ø(R9) Copy the userid

CPWDMVC3 MVC CRNTPWD(*-*),Ø(R9) Copy the password

NPWDMVC3 MVC NEWPWD(*-*),Ø(R9) Copy the new password

* Constants for PWRESET *

RACROUT4 RACROUTE REQUEST=VERIFY, X

 PASSCHK=YES, X

 RELEASE=1.9.2, X

 MF=L

ROUTLEN4 EQU *-RACROUT4

 LTORG

 DROP R1Ø,R12,R13

LGINWORK EDCDSAD

WORKLEN EQU *-LGINWORK

TEMPAREA DSECT

PARMØ DS F

PARM1 DS F

PARM2 DS F

PARM3 DS F

PARM4 DS F

PARM5 DS F

PARM6 DS F

PARM7 DS F

PARM8 DS F

PARM9 DS F

PARM1Ø DS F

RETCODE DS F

ACEEADDR DS F

 60 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

ROUTWRK DS ØD,CL(ROUTLEN1)

USERIDL DS XL1

USERID DS CL8

CRNTPWDL DS XL1

CRNTPWD DS CL8

NEWPWDL DS XL1

NEWPWD DS CL8

RACWORK DS ØD,CL(512)

TEMPLEN EQU *-TEMPAREA

 IKJTCB

 CVT DSECT=YES

 IHAASCB

 IHAASXB

 IHAACEE

RØ EQU Ø

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R1Ø EQU 1Ø

R11 EQU 11

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 END

TSTLOGON.C
/* Before this program is compiled on an OS/39Ø or z/OS

 * system, be sure to change all occurrences of '[' to x'AD'

 * and all occurrences of ']' to x'BD'. */

#define _OPEN_THREADS

#define _POSIX_SOURCE

#include <pthread.h>

#include <stdio.h>

#include <unistd.h>

#include <time.h>

#include <pwd.h>

#include <errno.h>

#pragma runopts("POSIX(ON)")

#pragma linkage (LOGON, OS)

#pragma linkage (LOGOFF, OS)

#pragma linkage (PWVERIFY, OS)

 61© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

#pragma linkage (PWRESET, OS)

struct THREAD_PARM {

 pthread_t thread_id;

 char thread_name[64];

 char thread_userid[12];

 char thread_passwd[12];

 char *thread_ret;

 int thread_done;

 int thread_sleep;

 struct THREAD_PARM *thread_next;

};

#define MAX_THREAD_COUNT 4

int CHECK_ACEE(char *sec_env)

{

 unsigned int cvtloc;

 unsigned int cvt;

 unsigned int ascb;

 unsigned int tcb;

 unsigned int asxb;

 unsigned int tcbsenv;

 unsigned int asxbsenv;

 unsigned int temp;

 char ACEEUSRI[9];

 char temp_str[5];

 int rc;

/* Extract the current TCB and ASCB addresses. Find the current task-

 * level ACEE address (the TCBSENV (TCB+x'154') contains the task

 * level ACEE address) and determine whether there is an ACEE

 * associated with the current task (TCBSENV is non-zero). If there

 * is no task-level ACEE, the current task is running under the

 * security environment associated with the address space. The address

 * space ACEE address is contained in the ASXB (the ASXBSENV

 * (ASXB=x'C8') contains the address space ACEE address). Under only

 * the rarest of circumstances will the ASXBSENV be zero so expect this

 * field to contain the address space ACEE address.

 * A task ACEE always takes precedence over an address space ACEE so

 * check for it first. */

 cvtloc = 16;

 cvt = *(unsigned int *)cvtloc; // CVT address

 temp = *(unsigned int *)cvt; // TCB/ASCB area address

 tcb = *(unsigned int *)(temp + 4); // TCB address

 ascb = *(unsigned int *)(temp + 12); // ASCB address

 tcbsenv = *(unsigned int *)(tcb + ØxØØØØØ154); // TCB ACEE address

 asxb = *(unsigned int *)(ascb + ØxØØØØØØ6c); // ASXB address

 asxbsenv = *(unsigned int *)(asxb + ØxØØØØØØc8);

 // Address space ACEE addr

 ACEEUSRI[8] = Ø;

 if (tcbsenv != Ø)

 {

 strncpy(temp_str,(char *)(tcbsenv + Ø),4);

 62 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 temp_str[4] = Ø;

 rc = strcmp(temp_str,"ACEE\Ø");

 if (rc == Ø)

 {

 strncpy(ACEEUSRI,(char *)(tcbsenv + ØxØØØØØØ15),8);

// printf("Security environment is associated with %s\n",ACEEUSRI);

 strncpy(sec_env,ACEEUSRI,8);

 return (Ø);

 }

 else

 {

 printf("ACEE not located\n");

 return (-1);

 }

 }

 if (asxbsenv != Ø)

 {

 strncpy(temp_str,(char *)(asxbsenv + Ø),4);

 temp_str[4] = Ø;

 rc = strcmp(temp_str,"ACEE\Ø");

 if (rc == Ø)

 {

 strncpy(ACEEUSRI,(char *)(asxbsenv + ØxØØØØØØ15),8);

// printf("Security environment is associated with %s\n",ACEEUSRI);

 strncpy(sec_env,ACEEUSRI,8);

 return (Ø);

 }

 else

 {

 printf("ACEE not located\n");

 return (-1);

 }

 }

 return(-2);

}

void *thread(void *arg)

{

 time_t t1;

 struct THREAD_PARM *thrd_prm;

 int k, l;

 int SAFrc;

 int RACFrc;

 int RACFrsn;

 char security_environment[9];

 thrd_prm = (struct THREAD_PARM *)arg;

 printf("thread() entered with argument '%s'\n",

 thrd_prm->thread_name);

 if ((thrd_prm->thread_ret = (char*) malloc(32)) == NULL) {

 perror("malloc() error");

 exit(22);

 63© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 }

 time(&t1);

 printf("thread() start time for thread %s is %s\n ...\

 userid %s len %d password %s len %d\n",

 thrd_prm->thread_name, ctime(&t1),

 thrd_prm->thread_userid, strlen(thrd_prm->thread_userid),

 thrd_prm->thread_passwd, strlen(thrd_prm->thread_passwd));

 sprintf(thrd_prm->thread_ret, "This is a test of %s",

 thrd_prm->thread_name);

/* Issue the LOGON() function to request the creation of a task

 * level security environment. */

 l = LOGON(&thrd_prm->thread_userid,

 &thrd_prm->thread_passwd,

 &SAFrc,

 &RACFrc,

 &RACFrsn);

 strcpy(security_environment," ");

 k = CHECK_ACEE((char *)&security_environment);

 sleep(thrd_prm->thread_sleep);

 time(&t1);

 printf("thread() end time for thread %s is %s. k=%d errno=%d

l=%d\n",

 thrd_prm->thread_name, ctime(&t1), k, errno, l);

 printf("Security environment for thread %s is %s\n",

 thrd_prm->thread_name, security_environment);

 thrd_prm->thread_done = 1;

 pthread_exit(thrd_prm->thread_ret);

}

main() {

 struct THREAD_PARM *thread_info_first;

 struct THREAD_PARM *thread_info;

 struct THREAD_PARM *thread_info_next;

 void *ret;

 time_t t;

 char thread_name[64];

 int thread_count;

 int i;

 int done_flag;

 thread_info_first = NULL;

 thread_info = (struct THREAD_PARM*)calloc(1,sizeof(struct

THREAD_PARM));

/* Determine how many threads you want to initiate and how many

 * unique userid/password combinations should be used.

 * Change the MAX_THREAD_COUNT and the userid/passwd values below

 * as necessary. */

 for (thread_count = 1; thread_count <= MAX_THREAD_COUNT;

thread_count++)

 {

 if (thread_info_first == NULL)

 {

 64 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 thread_info_first = thread_info;

 }

 if (thread_count == 1)

 {

 thread_info->thread_sleep = 1Ø;

 strcpy(thread_info->thread_userid,"USERID1");

 strcpy(thread_info->thread_passwd,"PWDVAL1");

 }

 else if (thread_count == 2)

 {

 thread_info->thread_sleep = 8;

 strcpy(thread_info->thread_userid,"USERID2");

 strcpy(thread_info->thread_passwd,"PWDVAL2");

 }

 else if (thread_count == 3)

 {

 thread_info->thread_sleep = 7;

 strcpy(thread_info->thread_userid,"USERID3");

 strcpy(thread_info->thread_passwd,"PWDVAL3");

 }

 else if (thread_count == 4)

 {

 thread_info->thread_sleep = 11;

 strcpy(thread_info->thread_userid,"USERID4");

 strcpy(thread_info->thread_passwd,"PWDVAL4");

 }

 else

 {

 thread_info->thread_sleep = 1;

 }

 sprintf(thread_info->thread_name,"Thread %d",thread_count);

 thread_info->thread_done = Ø;

 thread_info->thread_ret = NULL;

 thread_info->thread_next = NULL;

 i = pthread_create(&thread_info->thread_id, NULL, thread,

 thread_info);

 if (i != Ø)

 {

 perror("pthread_create() error");

 printf("thread_count = %d rc %d errno %d\n",

 thread_count, i, errno);

 exit(99);

 }

 if (thread_count < MAX_THREAD_COUNT)

 {

 thread_info_next =

 (struct THREAD_PARM*)calloc(1,sizeof(struct THREAD_PARM));

 thread_info->thread_next = thread_info_next;

 thread_info = thread_info_next;

 }

 65© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 }

/* Wait for tasks to indicate their completedness. */

 done_flag = Ø;

 while (done_flag == Ø)

 {

 done_flag = 1;

 if (thread_info_first != NULL)

 {

 thread_info = thread_info_first;

 while (thread_info != NULL)

 {

 if (thread_info->thread_done < done_flag)

 {

 done_flag = thread_info->thread_done;

 sleep(1);

 goto THREADS_ACTIVE;

 }

 thread_info = thread_info->thread_next;

 }

 }

THREADS_ACTIVE:

 done_flag = done_flag;

 }

/* The tasks are complete. Is termination messages. */

 thread_info = thread_info_first;

 while (thread_info != NULL)

 {

 if (pthread_join(thread_info->thread_id, &ret) != Ø)

 {

 perror("pthread_join() error");

 exit(91);

 }

 printf("thread '%s' exited with '%s'\n", thread_info->thread_name,

ret);

 free(thread_info->thread_ret);

 thread_info_next = thread_info->thread_next;

 free(thread_info);

 thread_info = thread_info_next;

 }

}

Rudy Douglas
Systems Programmer (Canada) © Xephon 2004

 66 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

RACF 101 – understanding RACF terms

RACF 101 is a regular column for newcomers to the RACF world.
It presents basic RACF topics in a tutorial format. In this issue, we
will discuss some RACF terms that are commonly used in the
industry. Knowing these terms will add to your RACF knowledge
and help you better understand some of the idiosyncrasies of
RACF.

Like all specialties, RACF has its own set of special terms and
jargon that may appear ‘Greek’ to outsiders, and sometimes
even to a RACF beginner.

Quite often, the newcomer to RACF is intimidated by such
terms when used by some of their more senior colleagues. They
may not be able to participate in the conversation; may not want
to open their mouths for fear of being wrong, and may even feel
inferior.

Well, fear not! The following, while not all-inclusive, will get you
started in understanding some of the common terms of RACF.

UNDERCUTTING

The term ‘undercutting’ is used with respect to a person losing
the RACF access he previously had. If, by creating a new
profile, you take away someone’s access inadvertently, you
are said to have ‘undercut’ that person’s access.

The following example will help explain undercutting.

Let’s say a user, USER99, has READ access to a profile,
SYS1.**. This person therefore has READ access to any
dataset starting with SYS1, including SYS1.PROCLIB. Now
you are asked to grant READ access to another user, USER01,
to SYS1.PROCLIB, and only that dataset. So you create a
profile called SYS1.PROCLIB, with Universal Access NONE,
and add the user USER01 to the access list of this newly-
created profile.

 67© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

What you have just done is ‘undercut’ USER99 from his READ
access to SYS1.PROCLIB, which he had by virtue of the
SYS1.** profile! This occurred because of the way RACF does
access checking – the most specific profile that matches an
access request is used for access checking.

In other words, when you create a new profile, you have to keep
in mind existing, more general, profiles so that you don’t
undercut someone’s existing access.

To prevent undercutting, you should determine all similar profiles
before defining the new one. In the above case, if you were to
enter the SEARCH command:

SEARCH MASK(SYS1) CLASS(DATASET)

the results might be:

SYS1.**

SYS1.VTAMLIB.**

This tells you that the profile SYS1.** already exists. So, to
prevent undercutting, you can define your new profile utilizing
the FROM operand of the ADDSD command:

ADDSD 'SYS1.PROCLIB" GENERIC FROM('SYS1.**')

The FROM operand will copy the userids and groups from the
SYS1.** profile into the access list of the new profile, thus
preventing any undercutting.

Undercutting, by the way, can happen for general resource
classes also.

THE BACK-STOP PROFILE

Sometimes also called the ‘catch-all’ profile, the back-stop
profile comes into play when no other profile in a class matches
the resource in question. For example, if you have a CICS
transaction class called CICSTRN1, and the SEARCH command
reveals the following profiles in that class:

ABCD

DEF*

 68 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

ABC*

**

then, if you access a transaction called PQRS, the back-stop
profile ‘**’, the last one on the list, is used for access checking,
because it is the ‘best’ fit among all others. The same profile will
also be used for any transaction that does not match the ABCD,
DEF*, or ABC* profiles.

Back-stop profiles play a special role in RACF. Without them,
many of the resources that you have not thought of will go
unprotected. By creating a back-stop profile, you ensure that
current, and any future, resources will be covered by the back-
stop profile.

RACF SEGMENTS

Profiles in RACF can have ‘segments’ that store additional (but
optional) security information. For example, a user profile can
contain a TSO segment specifying TSO-related security
information. Not all profiles need to have segments, and some
can have more than one segment. For example, a user profile
can have the TSO and CICS segments.

The segments that a profile can have are pre-defined. For
example, a user profile can have one or more of the following
segments: TSO, CICS, DFP, OPERPARM, WORKATTR,
NETVIEW, and OMVS. A group profile can have the DFP or
OMVS segments.

To list segments, you need to specify them by name in the list
command. For example to list the TSO segment of a userid
USER00, enter the command:

LU USERØØ TSO

Or, to list the TSO and CICS segments:

LU USERØØ TSO CICS

The segment information is displayed at the very end of the list
output. If you want only segment information (no standard
RACF information), enter the command:

 69© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

LU USERØØ TSO CICS NORACF

By default, RACF does not provide segment information. You
need to ask for it by segment name, which of course forces you
to know your segment names.

RACF UNLOADED DATABASE

The RACF unloaded database, or RACF ‘flat’ file, is a term
applied to the RACF database containing ‘readable’ RACF
records, ie all the profiles defined at the installation. This of
course implies that the ‘real’ RACF database that is updated all
the time by RACF is ‘unreadable’ by human beings – it is in a
format that only RACF understands.

The flat file is produced by running an IBM-provided program
that reads the unreadable RACF records and produces a file
containing readable RACF records. Most installations produce
a RACF flat file on a daily basis. This file is often input to various
programs that produce monitoring and review reports.

The records in the unloaded database are ‘tagged’ to denote
the type of records. For example, all user profiles have a type
code of 200, group profile records have type 100, etc. Based
on this, it is possible to browse all your user profiles in an ISPF
session.

GROUPING CLASSES

Some of the general resource classes have a corresponding
‘grouping’ class. Grouping classes, as the name implies, allow
you to group resources for similar treatment. You can do this
even in cases where grouping would otherwise be impossible.

Let’s say you have CICS transactions ABCD and ABCE, and
they have similar access requirements. In this case, grouping
is easy – you can create a profile called ABC* in the CICS
transaction class, and both the transactions will be covered by
this profile. In this case, we did it using wildcards.

But wildcarding is not always possible – what if you had payroll

 70 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Done anything interesting with RACF? More information
about contributing an article, plus an explanation of our
terms and conditions, can be found at www.xephon.com/
nfc.

Articles can be sent to the editor, Trevor Eddolls, at
trevore@xephon.com.

transactions called DDDD and FFFF, which, the payroll
department tells you, have similar access requirements?
Wildcarding to cover both these cases is impossible. This is
where RACF grouping profiles come in. In the CICS grouping
class, simply specify that the transactions DDDD and FFFF are
in a group, and then provide appropriate RACF permissions!

Grouping classes do not make sense for all RACF classes. For
example, the DATASET class does not have a corresponding
grouping class.

CONCLUSION

We have not covered all possible terms used in RACF. Nor
should that be our goal. Our goal is to add to the existing RACF
knowledge base and gradually increase it. And this is what we
achieved.

Dinesh Dattani (dinesh123@rogers.com)
Independent Consultant
Toronto (Canada) © Xephon 2004

RACF news

NEON Systems has announced Shadow
z/Services, SOAP-based mainframe integration
solution that allows organizations to rapidly
transform CICS, IMS, and Advantage CA-
IDMS applications into Web services.

Shadow z/Services includes several
components and features designed to accelerate
the development and deployment of mainframe
Web services, including single-step
configuration, dynamic introspection, and
microflow orchestration. Shadow z/Services
Studio is an Integrated Development
Environment (IDE) for development,
management, and administration of mainframe
Web services integration.

The product offers flexible security. It integrates
into existing mainframe security infrastructures
using mainframe SAF services, which support
RACF (as well as ACF2 and CA-Top Secret)
in order to maintain the integrity of application
security.

For further information contact:
NEON Systems, 14100 Southwest Freeway,
Suite 500, Sugar Land, TX 77478, USA.
Tel: (281) 491 4200.
URL: www.neonsys.com/Shadow/
shadow_zservices.asp.

* * *

Blockade Systems and VASCO Data Security
International have extended their partnership to
provide complete product integration and co-
selling and marketing of the combined security
solution.

VASCO Digipass authenticators are natively
integrated with Blockade’s ESaccess.

Blockade ESaccess is a centralized enterprise
access control and management product that
uses the power of the OS/390 or z/OS
Enterprise Server system to administer access
of Web-based users to corporate Web
resources. It provides centralized role-based
access control for simplified administration and
control of user access. VASCO Digipass
provides user authentication for remote access,
Web, and custom applications. A Digipass is a
small, hand-held device available in various
sizes, colours, and form factors that dynamically
generates a random password with each use.

For further information contact:
Blockade Systems, 2200 Yonge Street, Suite
1300, Toronto, Ontario, Canada, M4S 2C6.
Tel: (416) 482 8400.
VASCO, 1901 South Meyers Road, Suite 210,
Oakbrook Terrace, IL 60181, USA.
Tel: (630) 932 8844.
URL: www.blockade.com/news/pressrelease/
pr_09_14_2004.html.

* * *

OpenNetwork Technologies has announced
enhanced support for Microsoft Identity
Integration Server (MIIS) 2003 with the
availability of connectors for out-of-the-box
integration to SAP R/3 and Oracle
environments.

OpenNetwork Technologies, 13577 Feather
Sound Drive, Clearwater, FL 33762, USA.
Tel: (877) 561 9500.
URL: www.opennetwork.com/news/press/
2004/2004-05-26_provisioning-miis-sap-
oracle.php.

* * *

x xephon

	Identifying groups that may be candidates for deletion
	RACRAC dictionary attack on weak passwords
	RACF in focus - Global Access Checking Table
	C/C++ functions for RACF security operations
	RACF 101 - understanding RACF terms
	RACF news

