September 2001

In this issue

3 Enterprise Extender – the AnyNet alternative
10 Simplistic monitor of VTAM’s LUs
38 IBM’s Web Services and dynamic e-business
49 Monitoring host sites
52 Active Server Watcher in action
66 The top ten sources of TCP/SNA-related information
72 TCP/SNA news

© Xephon plc 2001
Editor
Fiona Hewitt

Disclaimer
Readers are cautioned that, although the information in this journal is presented in good faith, neither Xephon nor the organizations or individuals that supplied information in this journal give any warranty or make any representations as to the accuracy of the material it contains. Neither Xephon nor the contributing organizations or individuals accept any liability of any kind howsoever arising out of the use of such material. Readers should satisfy themselves as to the correctness and relevance to their circumstances of all advice, information, code, JCL, EXECs, and other contents of this journal before using it.

Contributions
When Xephon is given copyright, articles published in TCP/SNA Update are paid for at £170 ($260) per 1000 words for original material. To find out more about contributing an article, please download a copy of our Notes for Contributors from www.xephon.com/contnote.html.

TCP/SNA Update on-line
Code from TCP/SNA Update, and complete issues in Acrobat PDF format, can be downloaded from http://www.xephon.com/tcpsnaupdate.html; you will need to supply a word from the printed issue.

© Xephon plc 2001. All rights reserved. None of the text in this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior permission of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use in their own installations, but may not sell such code or incorporate it in any commercial product. No part of this publication may be used for any form of advertising, sales promotion, or publicity without the written permission of the publisher. Copying permits are available from Xephon in the form of pressure-sensitive labels, for application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.
Enterprise Extender – the AnyNet alternative

In the last issue of TCP/SNA Update (issue 42, June 2001), the article entitled ‘SNA over TCP/IP’ described the AnyNet suite of products, which enables multiple application programs to be transported over SNA or IP networks. This article looks at an alternative – Enterprise Extender (EE) – examining its benefits, and describing how recent enhancements have eliminated significant implementation problems.

Businesses continue to rely on legacy applications residing on mainframes. Initially, access to these applications was through SNA networks. Today, however, application developers are unlikely to be familiar with VTAM, and newer applications are generally based on TCP/IP networks. Initially, businesses created and supported these SNA and TCP/IP networks separately, but network managers are now seeking ways to consolidate their SNA traffic onto the TCP/IP network. But it’s not usually economically practical to convert existing SNA applications to TCP/IP-enabled applications, and, in many cases, conversion may even be technically impractical because of the lack of source code and/or adequate skills for the specific application.

For 3270-based applications, tn3270 can be a key part of the solution. Businesses could convert all their end-user desktops to be TCP/IP-based. These desktop users would then be able to access Web-based applications, new applications written for TCP/IP, and the existing SNA applications using terminal emulation. Desktop emulators come as stand-alone products (typically called fat clients) or are browser-based using Java clients downloaded to the desktop from a Web server. tn3270 servers can run outboard (a separate device) of the System/390 or be contained within it. Both approaches limit the SNA network path to the inside of the data centre. Many businesses use tn3270 to access those SNA applications from IP-based desktops.

It’s often impossible or too expensive to convert all end devices to TCP/IP, especially older or specialized devices, such as ATMs requiring a SNA communications protocol (eg SDLC) or actual 3270 devices coax-attached to a 3274 terminal controller. This leaves the question of how to access non-3270-based applications, preserve the application
and endpoint investment, and converge onto a single IP network.

AnyNet was introduced in 1993 for VTAM, in 1994 for OS/2, and included within CS/390 V2R5 (and higher). AnyNet gained limited acceptance and by 1998 most of the offerings were withdrawn from marketing and service (in the US). In 1992, IBM’s now defunct networking division invented DLSw as a way to transport SNA using its infamous 6611 routers. Although DLSw is non-proprietary (RFC 1795), implementations, such as Cisco’s DLSw+, have additional features provided by proprietary extensions. All routing vendors incorporated a form of DLSw, and most customers use this as their method for accessing SNA applications across a TCP/IP network.

With CS/390 V2R7, IBM created Enterprise Extender as an alternative way to integrate SNA applications onto an IP network. EE is also an industry-standard solution defined by the APPN Implementer’s Workshop (AIW) and the IETF (RFC 2353). EE is supported on a number of other IBM products, including Communications Server for OS/2 (CS/2) and CS/NT. Routing vendors continued to promote DLSw (it sold more routers), and EE did not initially gain widespread acceptance. However, DLSw has a number of limitations (see below), and, in 1999, Cisco announced that its routers would also provide the EE function as part of its SNA Switching Services (SNASw). This has sparked new IBM customer interest in EE.

DLSw LIMITATIONS

The key limitations of DLSw are shown below:

- DLSw is the encapsulation of SNA protocols within a TCP/IP ‘package’. The package has a usable TCP/IP address that has been discovered by DLSw-capable routers. (Note that older routers may not be able to support DLSw or may require software upgrade.) At both the sending and receiving location, the routers terminate the SNA connection and locally acknowledge transmissions. Connection set-up and session maintenance is process-intensive, involving link-level acknowledgement, TCP retransmit, congestion control, protocol translation, and data store-and-forward. This is a significant router burden, and requires powerful data centre routers (branch office routers today are
generally powerful enough to be able to maintain their sessions).

- With DLSw, the data centre router, where termination and acknowledgement occurs, is a single point of failure. Should this router fail, even though an alternative path may exist, all SNA connections would be disrupted and would have to be re-established. Because Enterprise Extender does not terminate the session flow, it can take advantage of the inherent reroute capability of IP, maintain the connection, and switch to an alternative path without session disruption.

- Although most routers provide some form of prioritized queueing, it has been difficult to identify the priority at which a SNA packet should be sent. With DLSw, traffic prioritization is handled on a link basis, and multiple links must be defined to the same SNA device to support prioritization.

EE extends the reach of SNA applications and data across IP networks to IP-attached clients, and offers high levels of reliability, scalability, and control. EE provides SNA Class of Service support as well as non-disruptive path switching over an IP network. It provides this integration using standard IP technology, and, like AnyNet, requires no new hardware or software in the IP backbone network.

ENTERPRISE EXTENDER IN DETAIL

EE is an extension to High Performance Routing (HPR) technology that provides encapsulation of SNA application traffic within UDP frames by HPR-capable devices at the edges of an IP network. (UDP stands for Unreliable Data Protocol; however, the data transport endpoints ensure reliable delivery.) To the IP network, the SNA traffic is UDP datagrams that get routed without hardware or software changes to the IP backbone. To the end user, the session is ‘normal SNA’ with predictable performance and high availability.

SNA evolved from the traditional subarea networks that dominated enterprise networks for 25+ years. APPN was an enhancement to SNA that supported the movement of logical units and routing change without coordinated system definition. HPR was an enhancement to APPN that supported non-disruptive session switching around failures. Before you discard EE for fear of venturing beyond subarea, I’d like
to point out that HPR is a simpler form of APPN.

HPR and TCP/IP have similarities – end stations ensure data integrity and intermediate devices forward traffic. With HPR, the intermediate – Automatic Network Routing (ANR) – node forwards packets, has no session awareness, and relies on the endpoints for error recovery. The HPR endpoint – Rapid Transport Protocol (RTP) – nodes provide end-to-end error recovery, non-disruptive rerouting, and selective retransmission of lost packets. Anyone familiar with TCP/IP networks will relate RTP to the TCP portion and ANR to the IP part of the stack.

ENTERPRISE EXTENDER ADVANTAGES

The RTP endpoint sees its interface with the UDP layer of the stack as just another data link control (DLC), and treats the IP connection as it would any SNA connection. This gives EE certain advantages:

- When errors are detected, there is a selective retransmission of lost packets only (ie not all subsequent packets too).
- EE requires less router processing. In similar network configurations, the same router can be up to ten times faster when using Enterprise Extender than when using DLSw.
- Non-disruptive reroute based on class of service requirements. HPR preserves the session without impact to the end user for planned and unplanned outages in the session path. If no alternative path is available, HPR can even be configured to preserve the session while the failing component is recovered.
- Enterprise Extender introduced an enhanced version of HPR’s Adaptive Rate-Based (ARB) congestion control algorithm. The new proactive version, Responsive-Mode ARB, is more aggressive in using available bandwidth, and more tolerant of variations in network latency. Responsive-Mode ARB better allows EE traffic to coexist with native IP traffic in the backbone network.
- Prioritization. The SNA priority field is mapped to the IP precedence settings used by routing algorithms such as Cisco’s Weight-Fair-Queuing. (Joint IBM and Cisco testing resulted in a white paper that showed, for a particular configuration, an improvement from 3 to 7 second response swings to a consistent
EE exploits an APPN connection mechanism where a shared transport facility can be represented as a Virtual Routing Node (VRN). With EE, a VRN can represent the IP network such that \(n \) number of OS/390 network connected servers define a single connection instead of defining \(n-1 \) partner links. These connections can be dynamically activated as needed.

EE provides an alternative for current SNA Network Interconnect (SNI) users. The APPN replacement for SNI is Extended Border Node (EBN), first shipped on VTAM in 1994. Unlike SNI, which requires a gateway NCP (on a 3745) at the network boundary, there’s no gateway requirement between two EBNs. Since most enterprises generally connect to an IP network (eg Internet), EE can connect multiple enterprises using the existing IP connectivity.

OSA-Express provides an economical, high-speed method for System/390 server access. Direct memory access uses a set of priority queues shared with CS/390’s TCP/IP stack to provide higher bandwidth and lower latency, and use less CPU. Because of this, the OSA-Express adapter doesn’t support native SNA communication; however, SNA applications using EE can still benefit from this high-speed path.

When APPN was introduced, larger networks quickly became complex, requiring large numbers of network-nodes. When EE is used in conjunction with an IP wide area network, much simpler networks can be designed. A few data centre CS/390 images within each sysplex would be designated as network nodes – typically a Communications Management Controller (CMC), a CMC back-up, and one or two additional images to provide basic network node services. The remainder of the CS/390 images would be data hosts defined as end nodes. Branch routers (eg Cisco’s SNASw routers) would be configured as Branch Extender (BX) nodes – nodes that present an end node image to the upstream hosts in the data centre, while providing network services for end nodes and clients in the branch. The result is a scalable design that greatly reduces the impact of APPN topology and search broadcast traffic (a potentially significant overhead).
HPR is a very scalable architecture (despite some early counter claims). Joint IBM and Cisco testing showed that thousands of EE flows could be terminated on a single System/390. 30,000 sessions, across 10,000 connections were set up and maintained – and the results were linear, suggesting that even larger networks could be built and supported (ftp://ftp.software.ibm.com/software/network/hostintegration/brochures/hostinteggqos0300.pdf).

EE INHIBITORS ELIMINATED
Enterprise Extender has been available on IBM’s Communications Server for OS/390 product since V2R7 (V2R6 via PTF). However, until recently, it has had several limitations that made migration very difficult. Before CS/390 V2R10, the first hop from an interchange node (ICN), for sessions from a subarea partner network crossing into the APPN network, could not be HPR. Sessions from applications on the ICN could enter the APPN network via HPR, but those entering the ICN from a cross-domain subarea partner (e.g., SNI partner) could not use HPR for the first hop. (There is one exception – if the interchange session from the ICN to an end node is via a single APPN hop, then HPR is allowed.)

With CS/390 V2R10, when an ICN receives a session initiation request for an interchange session, it examines the session path to determine whether HPR should be used. If HPR is necessary, the ICN ties the session via a one-hop pipe to the adjacent APPN partner node. Sessions for multi-hop APPN paths will use the one-hop pipe to the adjacent node, and then access a second HPR pipe for the remainder of the HPR-capable session path. Setting up back-to-back pipes in the adjacent node introduces a small performance hit and a single point of failure in the session path. However, you can now establish interchange sessions using HPR, thereby enabling all connection types (including EE) anywhere within the network. (Because this function enables customer migrations to EE, CS/390 has made it available for earlier releases (V2R6-V2R8) via an APAR (OW44611).)

Although V2R10 allows interchange sessions to enter the APPN network via HPR-capable connections, those connections cannot be over a connection-network (virtual routing node). IBM currently recommends the following to customers deploying EE with connection
network:

- Define the EE virtual routing node (VRN) at all end-nodes, branch extenders, and pure network nodes.
- Use only defined (ie non-VRN) connections at an ICN.

These recommendations don’t require much definition beyond what’s already required. The ICNs typically also function as network node servers (primary and back-up) for the end nodes and branch extenders, and connectivity between an EN (or a BX) and its network node server for the CP-CP session must be defined.

Even though Extended Border Nodes (EBN) removes the requirement for SNI, it forces all inter-network traffic through this potential bottleneck. Customers asked for a slicker solution and IBM responded in z/OS Communications Server V1 R2 (aka R12). Transmission groups directly connected to the destination (end-node) server can be established, bypassing the border node. The IP network, supporting EE and/or SNASw, is defined as a virtual node with a global CPNAME of IP. This enables Virtual Private Networks (VPNs) between networks to be established for TCP/IP and SNA application traffic.

SUMMARY

Having recently had the responsibility for the AnyNet product within CS/390, I know that AnyNet is no longer a strategic product to IBM – in fact, there are no planned enhancements to any of the AnyNet products.

Enterprise Extender is IBM’s strategic approach to SNA/IP integration. It has numerous advantages over the widely accepted DLSw approach, including session prioritization and ‘SNA-like’ availability. And, although EE requires the implementation of HPR, IBM has corrected shortcomings that reduce the network definition complexity and improve performance. If you want to preserve your SNA application and end-device investment, I would recommend that you seriously consider Enterprise Extender as the way to transport SNA applications across an IP network.

Richard Tobacco
Independent Consultant (USA)
Simplistic monitor of VTAM’s LUs

This article offers a rudimentary version of the sophisticated monitors that provide detailed information regarding activity on logical units controlled by VTAM. Initial values of the send and receive counts of each logical unit (LU) are preserved, and then the counts are again retrieved at six-second intervals, three times, and a delta is computed and stowed in a line of information that is transcribed for each active LU.

The send and receive counts are the reverse of those provided by VTAM for an LU in response to a D NET,ID=luname command. However, the counts agree with those provided by VTAM in response to a D NET,ID=imsappl command. Deltas for send and receive counts begin under the title SND1 and RCV1. Under the last portion of output generated by YANKO, they’re listed under the titles SDLTA and RDLTA (I wasn’t very consistent, was I?). Most titles are readily understood, but consult the source code for those that aren’t.

In order to obtain send and receive counts, several control block chains anchored in VTAM’s Communications Vector Table (ATCVT) were followed to where those counts are maintained. Send and receive counts are extracted from the Transmission Control Status Area (TCSA) of the Transmission Subsystem Parameter List (TSPL), a VTAM control block, to be sure.

CHAINS

The first chain processed by YANKO is the DEB chain anchored at ATCACDA in the ATCVT. This is the only chain used to obtain three delta counts. A Logical Unit Control Block (LUCB) is chained from each DEB, and from there to a Function Management Control Block (FMCB) extension that contains a network address. Each FMCB extension is searched until an address is found that matches the one in the Resource Definition Table Entry Prefix (RPRE) of the LU for which you want to obtain counts, or until you reach the end of the FMCB chain for that LUCB. Then it’s on to the next DEB.

This is a lengthy and convoluted process (thank goodness for fast processors), but since IBM personnel are unwilling to share their
shortcut methods with their customers, I was stuck with doing it in this fashion. The FMCB extension points to the FMCB proper where the send and receive counts can be found in the TCSA. Normally, I can locate the information I need in VTAM’s control blocks. However, there’s no chart showing how the various control blocks can be accessed, so learning how to navigate them takes time.

The third chain processed is the CID Index Table that begins at label ATCCIT in the ATCVT. Only one delta is provided here. This chain will eventually become non-existent and will then need to be removed from YANKO.

I’ve saved the second chain that’s processed by YANKO for last, because it’s the one that caused me most exasperation. I failed to locate receive and send counts by following the chain of Session Information Blocks (SIB), anchored at label ATCSIBQ. IBM personnel stated that send and receive counts are available only from the PLU side of a session, and then only if the PLU is HOST-based, such as a VTAM APPL, and definitely not when the session is cross net or cross domain. I contended that the SEQNO presented in a VTAM trace on the SNA Summary (SSPRT) was analogous to the send and receive counts (close enough anyway) and would serve my purpose for seeking them. But, while they agreed in theory, they wouldn’t help me locate counts, stating that the manner in which VTAM accesses the information in the TSPL is OCO. Since VTAM is visibly vanishing as I compose this article, I don’t quite understand this reluctance – if anyone learns how to access the TSPL from the SIB chain before I do, please share this information through TCP/SNA Update.

(I should just mention that someone at IBM did provide me with the name of the fields that contain the send and receive counts, although in fact I’d already found this out while awaiting a response from him.)

NOTES

Because VTAM’s environment is dynamic and extremely volatile, a few deltas may be in the X'FF00' - X'FFFF' range. Don’t be alarmed. Extreme care was taken to ensure that the TSPL control block used to obtain send and receive counts corresponded to the LU at hand; however, within an eighteen-second period, an LU could have had one session end and another begin, thereby corrupting the initial
counts preserved for comparisons. Just discount such values. It may be noted that incremental deltas do continue to be valid afterwards.

Some of the information provided by YANKO is present only because it helped me to locate the information I wanted. For example, the ESTAE routine helped me solve more than a couple of S0C4 abends.

The last line of data will always contain the name of the active network, the name of the procedure used to initiate that network, and its network identifier.

YANKO must reside in an authorized library and have been bound with an authorization code of 1. For execution, it should have a region size of 210M. The only DD statement required for execution is one named SYSPRINT.

SOURCE
TITLE 'YANKO - PRINT A NETWORK'S ACTIVE SESSIONS'
* *
* *
* THE PURPOSE OF THIS ROUTINE IS TO PRINT A SIMPLE VERSION OF *
* VTAM'S VIEW OF A NETWORK'S ACTIVE LOGICAL UNITS AS SEEN FROM THE *
* PERSPECTIVE OF DEB'S, SIB'S, AND CIT'S. A DELTA OF RECEIVE AND *
* SEND COUNTS IS ALSO PROVIDED IN THE DEB AND CIT LISTINGS. *
* YANKO MUST RESIDE IN AN AUTHORIZED LIBRARY AND HAVE BEEN BOUND *
* WITH AN AUTHORIZATION CODE OF ONE. *
* *
* EXECUTION OF YANKO REQUIRES A DD STATEMENT NAMED SYSPRINT. *
* A REGION SIZE OF 210M ON THE EXEC STATEMENT WOULD BE NICE. *
* *
* *
* *
SPACE
YANKO CSECT
SPACE
YANKO AMODE 31
YANKO RMODE 24
SPACE
PRINT NOGEN
SPACE
USING YANKO,R12 ESTABLISH YANKO ADDRESSABILITY
USING PPHDSECT,R8 ESTABLISH PPHDSECT ADDRESSABILITY
USING PSA,R0 ESTABLISH PSA ADDRESSABILITY
SPACE
LR R12,R15 PRIME BASE REGISTER
SPACE
STORAGE OBTAIN,LENGTH=20000000,LOC=ANY NEED BUNCH OF STORAGE
ST R1,PPHGAREA STOW ITS ADDRESS
LR R8,R1 PRIME BASE REGISTER FOR PPHDSECT
SPACE 1
MODESET MODE=SUP PRETEND TO BE GEORGE
MODESET EXTKEY=ZERO WALK ANYWHERE
SPACE
ESAR R1 GET SECONDARY ASID OF THIS TASK
ST R1,PPHCASID SAVE IT
SPACE
* *
* ESTABLISH RECOVERY ENVIRONMENT *
* *
SPACE 1
L R3,A(PATEXIT) POINT TO STAE EXIT ROUTINE ADDRESS
SPACE 1
ESTAE (R3),PARAM=PATLIST ESTABLISH STAE ENVIRONMENT
SPACE 1
LTR R15,R15 TEST IF UNDER STAE'S AEGIS
BE PATGO BRANCH IF SO
SPACE 1
WTO '*** UNABLE TO ESTABLISH A STAE ENVIRONMENT ***'
SPACE 1
LA R15,16 SET CATASTROPHIC ERROR CODE
SVC 3 TERMINATE
EJECT
* *
* LOCATE AND ESTABLISH ADDRESSABILITY TO NET'S ADDRESS SPACE *
* *
SPACE 1
PATGO L R7,PSAATCVT ADDRESS OF VTAM'S VECTOR TABLE
L R9,ATCCONFT(R7) ADDRESS OF VTAM CONFIGURATION TABLE
MVC PPHJNAME,CONIDENT(R9) SET THE NAME OF VTAM'S TASK
SPACE 1
L R3,CVTPTR ADDRESS OF CVT
USING CVT,R3 ESTABLISH CVT ADDRESSABILITY
L R5,CVTASVT FETCH ADDRESS OF ASVT
DROP R3 FORGET CVT
SPACE 1
USING ASVT,R5 ESTABLISH ASVT ADDRESSABILITY
L R4,ASVTMAXU MAXIMUM NUMBER OF ADDRESS SPACES
SPACE 1
PATLOC TM ASVTENTY,ASVTAVAL TEST IF ENTRY IS AVAILABLE
BO PATGRUVE BRANCH IF SO
L R6,ASVTENTY RETRIEVE ADDRESS OF ASCB
USING ASCB,R6 ESTABLISH ASCB ADDRESSABILITY
SPACE 1
ICM R1,15,ASCBJBNI POINTER TO INITIATED JOBNAME
BZ PATJBNI BRANCH IF NONEXISTENT
SPACE 1
CLC Ø(8,R1),PPHJNAME TEST IF CORRECT JOB
BNE PATGRUVE BRANCH IF NOT
B PATGOTIT ELSE CONTINUE
SPACE 1
PATJBNI ICM R1,15,ASCBJBS POINTER TO START/MOUNT/LOGON TASK
BZ PATGRUVE FORMAT IT
SPACE 1
CLC 0(8,R1),PPHJNAME TEST IF CORRECT JOB
BE PATGOTIT BRANCH IF SO
SPACE 1
PATGRUVE LA R5,4(R5) NEXT ENTRY
BCT R4,PATLOC LOOP POWER
B PPHDUST ISSUE ERROR MESSAGE; RETURN TO DUST
SPACE 1
PATGOTIT LH R2,ASCBASID OBTAIN ASID OF VTAM'S ADDRESS SPACE
STH R2,PPHVASID STOW VTAM'S ASID
LAM R3,R3,PPHONE INITIALIZE ACCESS REGISTER
LAM R4,R4,PPHONE INITIALIZE ACCESS REGISTER
LAM R5,R5,PPHONE INITIALIZE ACCESS REGISTER
LAM R2,R2,PPHONE INITIALIZE ANOTHER ACCESS REGISTER
SPACE 1
LA R1,1 SET AUTHORIZATION
AXSET AX=(R1) INDEX TO ONE
SSAR R2 USE DATA IN VTAM'S ADDRESS SPACE
SPACE 1
SAC 512 SET UNIVERSAL ACCESS MODE
EJECT
* *
* PROCESS VTAM'S DEB CHAIN *
* *
SPACE 1
PPHTYPE1 DS ØH
L R5,ATCACDA(R7) POINT TO FIRST DEB
MVI PPHCC,C' '
MVC PPHONLNM(PPHDLEN-1),PPHCC CLEAR OUTPUT AREA
PPGLOCLU DS ØH
SPACE
CLI 0(R5),X'OF' TEST IF R15 POINTS TO A DEB
BNE PPGNXTDB BRANCH IF NOT
SPACE
ICM R4,15,ACDLUCBA(R5) OBTAIN ADDRESS OF LUCB
BE PPGNXTDB BRANCH IF UNAVAILABLE
CLI 0(R4),X'52' TEST IF ACTUALLY AN LUCB
BNE PPGNXTDB BRANCH IF NOT
SPACE
ICM R3,15,LUCRDTEA(R4) OBTAIN ADDRESS OF APPL RDT ENTRY
BE PPGDOFMX BRANCH IF UNAVAILABLE
MVC PPHONLNM,Ø(R3) SAVE NAME
SPACE
PPGDOFMX ICM R3,15,LUCFMCB(R4) FETCH ADDRESS OF FIRST FMCB XTENSION
BE PPGNXTDB BRANCH IF UNAVAILABLE
SPACE
PPGISDEB DS ØH PROVIDE A TARGET FOR BRANCH INST
MVC PPHAPLNM,ACDUNTNM(R5) ALIAS NAME
MVC PPHLUNME,TSPNAME(R3) NAME OF SESSION PARTNER
SPACE 1
ST R5,PPHOLD ADDRESS OF DEB
UNPK PPHDADDR(9),PPHOLD(5) FORMAT ADDRESS
TR PPHDADDR(8),PPHTRANS-240 OF RCC
MVI PPHDADDR+8,C' ' CLEAR THE TRASH
SPACE 1
UNPK PPHNETAD,TSPNA(5,R3) DESTINATION'S NETWORK SUBAREA
TR PPHNETAD(8),PPHTRANS-240
MVI PPHNETAD+8,C' ' UNPK PPHNETEL,TSPNA+4(3,R3) DESTINATION'S NETWORK ELEMENT
TR PPHNETEL(4),PPHTRANS-240
MVI PPHNETEL+4,C' ' SPACE
UNPK PPHPLUAD,TSPPLUSA(5,R3) PLU'S SUBAREA NUMBER
TR PPHPLUAD(8),PPHTRANS-240
MVI PPHPLUAD+8,C' ' UNPK PPHPLUEL,TSPPLUEA(3,R3) PLU'S ELEMENT NUMBER
TR PPHPLUEL(4),PPHTRANS-240
MVI PPHPLUEL+4,C' ' SPACE
UNPK PPHSLUAD,TSPSLUSA(5,R3) SLU'S SUBAREA NUMBER
TR PPHSLUAD(8),PPHTRANS-240
MVI PPHSLUAD+8,C' ' UNPK PPHSLUEL,TSPSLUEA(3,R3) SLU'S ELEMENT NUMBER
TR PPHSLUEL(4),PPHTRANS-240
MVI PPHSLUEL+4,C' ' SPACE
LR R1,R3 PRESERVE POINTER TO FMCB EXTENSION
L R3,TSPFMCBA(R3) POINT TO FMCB
CLI TSPCBID(R3),FMTYPE TEST IF FMCB
BNE PPGNXTDB BRANCH IF NOT
SPACE 1
ST R3,PPHOLD ADDRESS OF FMCB
UNPK PPFFADDR(9),PPHOLD(5) FORMAT ADDRESS
TR PPFFADDR(8),PPHTRANS-240 OF RCC
MVI PPFFADDR+8,C' ' CLEAR THE TRASH
SPACE 1
LA R3,FMCTCSA(R3) POINT TO TCSA
SPACE
MVC PPHSND3(2),TSPSQCNT(R3) RETAIN CURRENT RECEIVE COUNT
UNPK PPFSSEND,TSPSQCNT(3,R3) RECEIVE COUNT
MVI PPFSSEND+4,C' ' CLEAR THE TRASH
TR PPFSSEND(4),PPHTRANS-240 MAKE IT PRETTY
SPACE
MVC PPFRCRVD3(2),TSPSRRCV(R3) RETAIN CURRENT SEND COUNT
UNPK PPFRREC,TSPSRRCV(3,R3) SEND COUNT
MVI PPFRREC+4,C' ' CLEAR THE TRASH
TR PPFRREC(4),PPHTRANS-240 MAKE IT PRETTY
SPACE
LA R8,PPHDLEN(R8) NEXT SLOT IN ARRAY OF SAVED ENTRIES
MVI PPHCC,C' ' CLEAR OUTPUT AREA
SPACE
C R1,LUCFMCBL(R4) TEST IF LAST FMCB EXTENSION
BE PPGNXTDB BRANCH IF SO
SPACE
LR R3,R1
ICM R3,15,TSPNEXTA(R3) RETRIEVE ADDRESS OF NEXT EXTENSION
BNE PPGISDEB BRANCH IF AVAILABLE
SPACE
PPGNXTDB ICM R5,15,ACDDEB(R5) FETCH ADDRESS OF NEXT DEB ON CHAIN
BNE PPGISDEB BRANCH IF AVAILABLE
MVI PPHCC,C'(' TERMINATE LIST OF DEB ENTRIES
ST R8,PPGHDEB REMEMBER END OF DEB TRANSCRIPTIONS
EJECT

* *
* REPROCESS VTAM'S DEB CHAIN, AGAIN AND AGAIN *
* *
SPACE
BAS R9,PPHTARRY TARRY AWHILE
LA R6,PPHSND1O OFFSET TO FIRST DELTA
BAS R9,PPHCAROL PROCESS IT
SPACE
BAS R9,PPHTARRY TARRY A LITTLE LONGER
LA R6,PPHSND2O OFFSET TO MIDDLE DELTA
BAS R9,PPHCAROL PROCESS IT
SPACE
BAS R9,PPHTARRY TARRY HO!
LA R6,PPHSND3O OFFSET TO LAST DELTA
BAS R9,PPHCAROL PROCESS IT
B PPGCBPIB GO AND PROCESS SIB CHAIN
EJECT

* *
* LOCATE A DEB ASSOCIATED WITH A LOGICAL UNIT WHOSE *
* DESCRIPTION HAS BEEN PREVIOUSLY FORMATTED. *
* *
SPACE 1
PPHCAROL DS ØH
 L R8,PPHGAREA POINT TO FIRST LINE OF DATA
 C R8,PPGHDEB TEST IF ANY ENTRIES WERE FOUND
 BE Ø(R9) RETURN IF NOT
SPACE
PPHCNO1 L R5,ATCACDA(R7) POINT TO FIRST DEB
SPACE 1
PPHCKDEB CLI Ø(R5),X'OF' TEST IF R5 POINTS TO A DEB
BNE PPHNXTDB BRANCH IF NOT
SPACE
ICM R4,15,ACDLUCBA(R5) OBTAIN ADDRESS OF LUCB
BE PPHNXTDB BRANCH IF UNAVAILABLE
CLI Ø(R4),X'52' TEST IF ACTUALLY AN LUCB
BNE PPNXTDB BRANCH IF NOT
SPACE
ICM R3,15,LUCFMcba(R4) FETCH ADDRESS OF FIRST FMCB XTENSION
BE PPNXTDB BRANCH IF UNAVAILABLE
EJECT
**
* ENSURE THAT AN ENTRY TRULY MATCHES ONE BEING PROCESSED *
**
SPACE
PPHISDEB DS ØH PROVIDE A TARGET FOR BRANCH INST
LR R2,R3 PRESERVE POINTER TO FMCB EXTENSION
CLC PPHLUNME,TSPNAME(R3) TEST IF NAMES OF PARTNERS MATCH
BNE PPHLUCK BRANCH IF NOT
SPACE 1
UNPK PPGFSM(9),TSPNA(5,R3) DESTINATION'S NETWORK SUBAREA
TR PPGFSM(8),PPHTRANS-24Ø MAKE SUBAREA LEGIBLE
CLC PPGFSM(8),PPHNETAD TEST IS SAME NETWORK SUBAREA
BNE PPHLUCK BRANCH IF NOT
SPACE 1
UNPK PPGFSM(5),TSPNA+4(3,R3) DESTINATION'S NETWORK ELEMENT
TR PPGFSM(4),PPHTRANS-24Ø MAKE ELEMENT LEGIBLE
CLC PPGFSM(4),PPHNETEL TEST IS SAME NETWORK ELEMENT
BNE PPHLUCK BRANCH IF NOT
SPACE
UNPK PPGFSM(9),TSPPLUSA(5,R3) PLU'S SUBAREA NUMBER
TR PPGFSM(8),PPHTRANS-24Ø CONVERT TO EBCDIC
CLC PPGFSM(8),PPHPLUAD TEST IS SAME SUBAREA NUMBER
BNE PPHLUCK BRANCH IF NOT
SPACE
UNPK PPGFSM(5),TSPPLUEA(3,R3) PLU'S ELEMENT NUMBER
TR PPGFSM(4),PPHTRANS-24Ø CONVERT TO EBCDIC
CLC PPGFSM(4),PPHPLUEL TEST IS SAME ELEMENT NUMBER
BNE PPHLUCK BRANCH IF NOT
SPACE
UNPK PPGFSM(9),TSPSLUSA(5,R3) SLU'S SUBAREA NUMBER
TR PPGFSM(8),PPHTRANS-24Ø TRANSLATE TO EBCDIC
CLC PPGFSM(8),PPHSLUAD TEST IS SAME SUBAREA NUMBER
BNE PPHLUCK BRANCH IF NOT
SPACE
UNPK PPGFSM(5),TSPSLUEA(3,R3) SLU'S ELEMENT NUMBER
TR PPGFSM(4),PPHTRANS-24Ø TRANSLATE EXTERNAL DEC TO EBCDIC
CLC PPGFSM(4),PPHSLUEL TEST IS SAME SUBAREA NUMBER
BNE PPHLUCK BRANCH IF NOT
EJECT
**
* COMPUTE DELTA FOR SEND AND RECEIVE COUNTS *
**
SPACE
LA R1,Ø(R6,R8) POINT TO PROPER COUNT
L R3,TSPFMcba(R3) POINT TO FMCB
CLI TSPCBID(R3),FMTYPE TEST IF FMCB
BNE PPHNXDB
LA R3,FMCCTCSA(R3) POINT TO TCSA
SPACE
SR R14,R14 ZERO A WORK REGISTER
LR R15,R14 CLEAR ANOTHER VOLATILE REGISTER
SPACE
CLC PPHSND3(6),=CL6' ' TEST IF LU MISSD DURING AN ITERATION
BE PPHLUCK BRANCH IF SO
SPACE
ICM R14,3,TSPSQRCV(R3) FETCH CURRENT RECEIVE COUNT
CLC TSPSQRCV(2,R3),PPHRCVD3 IF CURRENT IS HIGHER THAN FORMER
BNL PPHRLESS THEN BRANCH
O R14,=XL4'00010000' ELSE ENSURE THAT IT IS
SPACE
PPHRLESS ICM R15,3,PPHRCVD3 FETCH PREVIOUS RECEIVE COUNT
SR R14,R15 COMPUTE CHANGE
STCM R14,3,PPHHCVR STOW VALUE COMPUTED
UNPK 5(5,R1),PPHHCVR(3) CONVERT RECEIVE COUNT TO EBCDIC
MVI 9(R1),C' ' CLEAR THE TRASH
TR 5(4,R1),PPHTRANS-24Ø MAKE IT PRETTY
SPACE
SR R14,R14 ZERO A WORK REGISTER
LR R15,R14 CLEAR ANOTHER VOLATILE REGISTER
SPACE
ICM R14,3,TSPSQCNT(R3) FETCH CURRENT SEND COUNT
CLC TSPSQCNT(2,R3),PPHSND3 IF CURRENT IS HIGHER THAN FORMER
BNL PPHSLESS THEN BRANCH
O R14,=XL4'00010000' ELSE ENSURE THAT IT IS
SPACE
PPHSLESS ICM R15,3,PPHSND3 FETCH PREVIOUS SEND COUNT
SR R14,R15 COMPUTE CHANGE
STCM R14,3,PPHHCVR STOW VALUE COMPUTED
UNPK Ø(5,R1),PPHHCVR(3) CONVERT SEND COUNT TO EBCDIC
MVI 4(R1),C' ' CLEAR THE TRASH
TR Ø(4,R1),PPHTRANS-24Ø MAKE IT PRETTY
SPACE
LA R8,PPHDLEN(R8) POINT TO NEXT ENTRY
CLI PPHCC,C'(' TEST IF END OF CHAIN
BNE PPHCN01 IF NOT PROCESS NEXT LINE-ENTRY
B Ø(R9) ELSE RETURN TO CALLER
EJECT
PPHLUCK C R2,LUCFMCPBL(R4) TEST IF LAST FMCB EXTENSION
BE PPHNXDB BRANCH IF SO
SPACE
LR R3,R2 SET ADDRESS OF FMCB EXTENSION
ICM R3,15,TSPNEXTA(R3) RETRIEVE ADDRESS OF NEXT EXTENSION
BNL PPHISISDEB BRANCH IF AVAILABLE
SPACE
PPHNXTDB ICM R5,15,ACDDEB(R5) FETCH ADDRESS OF NEXT DEB ON CHAIN
BNL PPHCHKDEB BRANCH IF AVAILABLE
SPACE
PPHENDEB DS ØH PROVIDE A TARGET FOR B INSTRUCTION
CLI PPHCC,C'(' TEST IF END OF CHAIN
BE Ø(R9) IF SO, RETURN TO CALLER
SPACE
MVI PPHSND3,C' ' CLEAR THE TRASH
MVC PPHSND3+1(8),PPHSND3 FROM SEND AND RECEIVE DELTAS
LA R8,PPHDLEN(R8) POINT TO NEXT ENTRY
B PPHCNO1 AND PROCESS IT
EJECT
* *
* PROCESS CHAIN OF SESSION INFORMATION BLOCKS *
* *
SPACE
PPGBPIB L R5,ATCSIBQ(R7) POINT TO FIRST SIB
SPACE
DROP R8 FORGET PPHDSECT
USING PPGDSECT,R8 ESTABLISH PPGDSECT ADDRESSABILITY
SPACE
PPGSIBLP CLI SIBCBDI(R5),SIBCBDYPC TEST IF THIS IS AN SIB CONTROL BLK
BNE PPGSIBER BRANCH IF NOT
SPACE
CLI PPGSIBSW,Ø TEST IF DATA PRESENT
BE PPGETPLU BRANCH IF NOT
MVI PPGSIBSW,Ø RESET SWITCH
LA R8,PPHDLEN(R8) NEXT SLOT IN ARRAY OF SAVED ENTRIES
MVI PPGCC,C' '
MVC PPGSRNID(PPHDLEN-1),PPGCC CLEAR OUTPUT AREA
SPACE
PPGETPLU ICM R3,15,SIBBPPTR(R5) POINT TO PLU RESOURCE INFORMATION
BE PPGKSSIB BRANCH IF NOT AVAILABLE
MVI PPGSIBSW,1 INDICATE THAT DATA IS PRESENT
SPACE
UNPK PPGP1ADR,SIBPCID(5,R5) FIRST-HALF OF LU'S PCID
TR PPGP1ADR(8),PPHTRANS-24Ø
MVI PPGP1ADR+8,C' '
UNPK PPGP2ADR,SIBPCID+4(5,R5) SECOND-HALF OF LU'S PCID
TR PPGP2ADR(8),PPHTRANS-24Ø
MVI PPGP2ADR+8,C' '
SPACE
MVC PPGSALNM,SIBRALNM(R3) RESOURCE'S NAME IN SESS PART NETWK
MVC PPGSRNID,SIBRNID(R3) NETWORK ID ASSOCIATED WITH LU
ICM R4,15,SIBRRSRC(R3) ADDRESS OF RESOURCE'S RDTE
BE PPGKSSIB BRANCH IF NONE
CLI RPRNAME(R3),C'A' TEST IF TRUELY A NAME
BL PPGKSSIB BRANCH IF NOT
MVC PPGSNAME,RPRNAME(R3) PLU'S RDTE NAME
EJECT
PPGKSSIB ICM R3,15,SIBBSBPTR(R5) POINT TO SLU RESOURCE INFORMATION
BE PPGNSIB BRANCH IF NONEXISTENT
MVI PPGSIBSW,1 INDICATE THAT DATA IS PRESENT
MVC PPGSSLNM(8),SIBRALNM(R3) RESOURCE'S NAME IN SESS PART NWK
MVC PPGSSRNID(8),SIBRNID(R3) NETWORK ID ASSOCIATED WITH LU

SPACE
UNPK PPGSSUBA,SIBRSUBA(5,R3) FORMAT LU'S SUBAREA ADDRESS
TR PPGSSUBA(8),PPHTRANS-24Ø MAKE IT PRETTY
MVI PPGSSUBA+8,C' ' REMOVE THE GARBAGE
SPACE
UNPK PPGSSUBE(5),SIBRELMA(3,R3) FORMAT LU'S ELEMENT ADDRESS
TR PPGSSUBE(8),PPHTRANS-24Ø MAKE IT LEGIBLE
MVI PPGSSUBE+8,C' ' RECYCLE THE TRASH
SPACE
ST R5,PPHHOLD ADDRESS OF SIB
UNPK PPGSSBAD,PPHHOLD(5) FORMAT ADDRESS
TR PPGSSBAD(8),PPHTRANS-24Ø OF SIB
MVI PPGSSBAD+8,C' ' CLEAR THE TRASH
SPACE
ICM R4,15,SIBRRSRC(R3) ADDRESS OF RESOURCE'S RDTE
BE PPGNSIB BRANCH IF NONE
CLI RPRNAME(R3),C'A' TEST IF TRULY A NAME
BL PPGNSIB BRANCH IF NOT
MVC PPGSPNME(8),RPRNAME(R3) PLU'S RDTE NAME
SPACE
PPGSIBER LA R8,PPHDLEN(R8) NEXT SLOT IN ARRAY OF SAVED ENTRIES
ST R8,PPHSAVIT REMEMBER FIRST OF MANY CIC ENTRIES
MVI PPLCC,C' ' MVI PPLLUNME(PPHDLEN-1),PPLCC CLEAR OUTPUT AREA
SPACE
MVI PPLLCC,C')' TERMINATE LIST OF SIB ENTRIES
L R5,ATCCIT(R7) ADDRESS OF CID INDEX TABLE
PPGCITFM LA R4,X'2Ø'(R5) POINT TO FIRST ENTRY
SPACE
PPHCITFM CLC Ø(4,R4),4(R4) TEST IF ENTRIES ARE TWINS
BE PPGSAME BRANCH IF SO
SPACE
LA R8,PPHDLEN(R8) NEXT SLOT IN ARRAY OF SAVED ENTRIES
MVI PPLCC,C' ' MVI PPLLUNME(PPHDLEN-1),PPLCC CLEAR OUTPUT AREA
SPACE
UNPK PPLVRBLK(9),Ø(5,R4) FORMAT ADDRESS
TR PPLVRBLK(8),PPHTRANS-24Ø OF VRBLK
MVI PPLVRBLK+8,C' ' CLEAR THE TRASH
SPACE
UNPK PPLFMCB(9),4(5,R4) FORMAT ADDRESS
TR PPLFMCB(8),PPHTRANS-24Ø OF FMCB
MVI PPLFMCB+8,C' ' CLEAR THE TRASH
SPACE
L R3,4(R4) POINT TO FMCB
TM 4(R4),CITFMCBX TEST IF FMCB EXTENSION
BNO PPPHIPPS BRANCH IF NOT
SPACE
L R3,TSPFMcba(R3) POINT TO FMCB
PPPHIPS CLI TSPcbid(R3),FMTYPE TEST IF FMCB
BNE PPGSAME BRANCH IF NOT
SPACE
LA R3,FMCTCSA(R3) POINT TO TCSA
SPACE
UNPK PPLSEND,TSPSQCNT(3,R3) RECEIVE COUNT
MVC PPLSEND+4(2),TSPSQCNT(R3) STOW BINARY RECEIVE COUNT
TR PPLSEND(4),PPHTRANS-24Ø MAKE IT PRETTY
SPACE
UNPK PPLRECV,TSPSQRCV(3,R3) SEND COUNT
MVC PPLRECV+4(2),TSPSQRCV(R3) STOW BINARY SEND COUNT
TR PPLRECV(4),PPHTRANS-24Ø MAKE IT PRETTY
EJECT
**
* FORMAT THE NETWORK ADDRESS OF RESOURCE'S PLU AND SLU *
**
SPACE 1
L R3,4(R4) POINT TO FMCB
L R3,4(R3) POINT TO FMCB EXTENSION
SPACE
MVC PPLLUNME,TSPNAME(R3) NAME OF SESSION PARTNER
UNPK PPLPLUAD,TSPPLUSA(5,R3) PLU'S SUBAREA NUMBER
TR PPLPLUAD(8),PPHTRANS-24Ø TO EBCDIC
MVI PPLPLUAD+8,C' ' DON'T WANT ANY TRASH AROUND HERE
UNPK PPLPLUEL,TSPPLUEA(3,R3) PLU'S ELEMENT NUMBER
TR PPLPLUEL(4),PPHTRANS-24Ø TO EBCDIC
MVI PPLPLUEL+4,C' ' SO LONG TRASH
SPACE
UNPK PPLSLUAD,TSPSLUSA(5,R3) SLU'S SUBAREA NUMBER
TR PPLSLUAD(8),PPHTRANS-24Ø TO EBCDIC
MVI PPLSLUAD+8,C' ' GARBAGE TO OBLIVION
UNPK PPLSLUEL,TSPSLUEA(3,R3) SLU'S ELEMENT NUMBER
TR PPLSLUEL(4),PPHTRANS-24Ø TO EBCDIC
MVI PPLSLUEL+4,C' ' TAKE OUT THE GARBAGE
SPACE 2
**
* PROCESS ENTIRE CIT INDEX TABLE *
**
SPACE 1
PPGSAME CLC 12(4,R4),=F'Ø' TEST IF LAST ENTRY
BE PPGCITNX BRANCH IF SO
LA R4,X'10'(R4) POINT TO NEXT ENTRY
B PPHCITFM LOOP POWER

* FORMAT THE NETWORK ADDRESS OF THIS HOST; INCLUDE *
* ITS NETWORK IDENTIFIER AND VTAM'S NAME IN THE SAME *
* INFORMATIVE MESSAGE, THEN TERMINATE ENTRIES. *
**

SPACE
LA R8,PPHDLEN(R8) NEXT SLOT IN ARRAY OF SAVED ENTRIES
MVI PPLCC,C' ' INITIAL BLANK
MVC PPLLUNME(PPHDLEN-1),PPLCC CLEAR OUTPUT AREA
MVI PPLCC,C'Ø' DOUBLE SPACE
SPACE
L R9,ATCCONFT(R7) ADDRESS OF VTAM CONFIGURATION TABLE
MVC PPLSEND(8),CONIDENT(R9) SET THE NAME OF VTAM'S TASK
MVC PPLLUNME,ATCNETID(R7) THIS HOST'S NETWORK IDENTIFIER
UNPK PPLPLUAD,ATCHOSTA(5,R7) HOST'S NETWORK SUBAREA
TR PPLPLUAD(8),PPHTRANS-24Ø TO EBCDIC
MVI PPLPLUAD+8,C' ' LESS TRASH
UNPK PPLPLUEL,ATCHOSTE(3,R7) HOST'S NETWORK ELEMENT
TR PPLPLUEL(4),PPHTRANS-24Ø TO EBCDIC
MVI PPLPLUEL+4,C' ' END OF TRASH
LA R8,PPHDLEN(R8) NEXT SLOT IN ARRAY OF SAVED ENTRIES
SPACE
MVI PPLCC,X'FF' TERMINATE LIST
EJECT

* PROCESS THE CIT CHAIN, AGAIN. *

SPACE
BAS R9,PPHTARRY A PAUSE FOR THE CAUSE
SPACE
L R8,PPHSAVIT FETCH ADDRESS OF FIRST CIT PROCESSED
SPACE
PPGCAROL L R5,ATCCIT(R7) ADDRESS OF CID INDEX TABLE
PPLCBP LA R4,X'20'(R5) POINT TO FIRST ENTRY
SR R1,R1 CLEAR A VOLATILE REGISTER
SPACE
PPCPITFM CLC Ø(4,R4),4(R4) TEST IF ENTRIES ARE TWINS
BE PPGCPME BRANCH IF SO
SPACE
L R2,4(R4) POINT TO FMCB
LR R3,2 PRESERVE ADDRESS OF FMCB
TM 4(R4),X'80' TEST IF FMCB EXTENSION
B0 PPLCAROL BRANCH IF SO
CLI TSPCBID(R2),FMTYPE TEST IF FMCB
BNE PPGCPME BRANCH IF NOT
L R3,4(R2) POINT TO FMCB EXTENSION
SPACE
B PPLCAROL => BRANCH REGARDLESS ** REMOVE FOR DEBUG ** <=
SPACE
LRA R0,Ø(R3) TEST FOR A VALID VIRTUAL ADDRESS
SPACE
BE PPLCAROL BRANCH IF SO
SPACE
ST R2,PPHOLD ADDRESS OF FMCB
UNPK PPLFMCBX(9),PPHOLD(5) FORMAT ADDRESS
TR PPLFMCBX(8),PPHTRANS-24Ø OF FMCB
MVI PPLFMCBX+8,C' ' CLEAR THE TRASH
ST R5,PPHOLD ADDRESS OF CIT
UNPK PPLFMCBY(9),PPHOLD(5) FORMAT ADDRESS
TR PPLFMCBY(8),PPHTRANS-24Ø OF CIT
MVI PPLFMCBY+8,C' ' CLEAR THE TRASH
ST R4,PPHOLD ADDRESS OF CIT ENTRY
UNPK PPLFMCBZ(9),PPHOLD(5) FORMAT ADDRESS
TR PPLFMCBZ(8),PPHTRANS-24Ø OF CIT ENTRY
MVI PPLFMCBZ+8,C' ' CLEAR THE TRASH
B PPLPHIPP PROCESS NEXT ENTRY
EJECT
**
* ENSURE THAT AN ENTRY TRUELY MATCHES ONE BEING PROCESSED *
**
SPACE
PPLCAROL CLC PPLLUNME,TSPNAME(R3) TEST IF KNOWN NAME OF SESS PARTNER
BNE PPGCPME BRANCH IF NOT
SPACE
UNPK PPGFSM(9),TSPPLUSA(5,R3) PLU'S SUBAREA NUMBER
TR PPGFSM(8),PPHTRANS-24Ø CONVERT TO EBCDIC
CLC PPGFSM(8),PPLPLUAD TEST IS SAME SUBAREA NUMBER
BNE PPGCPME BRANCH IF NOT
SPACE
UNPK PPGFSM(5),TSPPLUEA(3,R3) PLU'S ELEMENT NUMBER
TR PPGFSM(4),PPHTRANS-24Ø CONVERT TO EBCDIC
CLC PPGFSM(4),PPLPLUEL TEST IS SAME ELEMENT NUMBER
BNE PPGCPME BRANCH IF NOT
SPACE
UNPK PPGFSM(9),TSPSLUSA(5,R3) SLU'S SUBAREA NUMBER
TR PPGFSM(8),PPHTRANS-24Ø
CLC PPGFSM(4),PPLSLUAD TEST IS SAME SUBAREA NUMBER
BNE PPGCPME BRANCH IF NOT
SPACE
UNPK PPGFSM(5),TSPSLUEA(3,R3) SLU'S ELEMENT NUMBER
TR PPGFSM(4),PPHTRANS-24Ø TRANSLATE EXTERNAL DEC TO EBCDIC
CLC PPGFSM(4),PPLSLUEL TEST IS SAME SUBAREA NUMBER
BNE PPGCPME BRANCH IF NOT
EJECT
**
* COMPUTE DELTA FOR SEND AND RECEIVE COUNTS *
**
SPACE

LA R3,FMCTCSA(R2) POINT TO TCSA
SPACE
SR R14,R14 ZERO A WORK REGISTER
LR R15,R14 CLEAR ANOTHER VOLATILE REGISTER
SPACE
ICM R14,3,TSPSQRCV(R3) FETCH CURRENT RECEIVE COUNT
CLC TSPSQRCV(2,R3),PPLRECV+4 IF CURRENT IS > THAN FORMER CNT
BNL PPGRLESS THEN BRANCH
O R14,=XL4'00010000' ELSE ENSURE THAT IT IS
SPACE
PPGRLESS ICM R15,3,PPLRECV+4 FETCH PREVIOUS RECEIVE COUNT
MVI PPLRECV+4,C' ' TAKE OUT THE GARBAGE
SR R14,R15 COMPUTE CHANGE
STCM R14,3,PPHHOLD STOW VALUE COMPUTED
UNPK PPLDELTR,PPHHOLD(3) CONVERT RECEIVE COUNT TO EBCDIC
MVI PPLDELTR+4,C' ' CLEAR THE TRASH
TR PPLDELTR(4),PPHTRANS-24Ø MAKE IT PRETTY
SPACE
SR R14,R14 Zero A WORK REGISTER
LR R15,R14 Clear ANOTHER VOLATILE REGISTER
SPACE
ICM R14,3,TSPSQCNT(R3) FETCH CURRENT SEND COUNT
CLC TSPSQCNT(2,R3),PPLSEND+4 IF CURRENT IS > THAN FORMER CNT
BNL PPGSLESS THEN BRANCH
O R14,=XL4'00010000' ELSE ENSURE THAT IT IS
PPGSLESS ICM R15,3,PPLSEND+4 FETCH PREVIOUS SEND COUNT
MVI PPLSEND+4,C' ' TAKE OUT
SR R14,R15 COMPUTE CHANGE
STCM R14,3,PPHHOLD STOW VALUE COMPUTED
UNPK PPLDELT,PPHHOLD(3) CONVERT SEND COUNT TO EBCDIC
MVI PPLDELT+4,C' ' CLEAR THE TRASH
TR PPLDELT(4),PPHTRANS-24Ø MAKE IT PRETTY
SPACE
LA R8,PPHDLEN(R8) POINT TO NEXT ENTRY
CLI PPLCC,X'FF' TEST IF END OF CHAIN
BNE PPGCAROL BRANCH SO LONG AS WORK REMAINS
B PPHDUST GO TRANSCRIBE DATA
EJECT
**
* PROCESS EVERY CIT ENTRY THEN PROCESS NEXT ONE UNTIL *
* EITHER A MATCHING ENTRY IS FOUND OF THE END OF THE *
* CIT INDEX TABLE IS ENCOUNTERED. THEN PROCESS THE *
* NEXT ENTRY THAT IS TO BE TRANSCRIBED. *
**
SPACE
PPGCPME CLC 12(4,R4),=F'Ø' TEST IF LAST ENTRY
BE PPCPITNX BRANCH IF SO
LA R1,1(R1) COUNT LOOPS
LA R4,X'10'(R4) POINT TO NEXT ENTRY
B PPCPITFM LOOP POWER
SPACE
PPPCITNX ICM R5,15,16(R5) POINT TO NEXT CIT
BNE PPLCBP BRANCH IF ONE IS AVAILABLE
SPACE
PPLPHIPP CLI PPLCC,X'FF' TEST IF END OF CHAIN
BE PPHDUST IF SO, TRANSCRIBE DATA
MVI PPLSEND+4,C' ' CLEAR THE TRASH
MVI PPLSEND+5,C' ' FROM SEND
MVI PPLRECV+5,C' ' AND RECEIVE
MVI PPLRECV+4,C' ' COUNT FIELDS
LA R8,PPHDLEN(R8) ELSE POINT TO NEXT ENTRY
B PPGCAROL AND PROCESS IT
SPACE 1
DROP R8 FORGET PPLDSECT
USING PPHDSECT,R8 REMEMBER PPHDSECT?
EJECT
**
* RETURN TO A NORMAL ENVIRONMENT FOR FURTHER DUTIES *
**
SPACE
PPHDUST L R1,PPHCASID OBTAIN ACTUAL SECONDARY ASID
SSAR R1 SET SECONDARY TO CURRENT
SPACE 1
SAC Ø ACCESS DATA ONLY WITHIN THIS ASID
SPACE 1
MODESET MODE=PROB BECOME MORTAL ONCE AGAIN
SPACE
C R8,PPHGAREA TEST IF ABLE TO PERFORM AS DESIGNED
BNE PPHSCRIB BRANCH IF SO
WTO '** NET NOT FOUND **' TERMINATE WITH PREJUDICE
LA R15,16 RETURN TO NOTHINGNESS
SVC 3 EJECT
**
* TRANSCRIBE FORMATTED DATA *
**
SPACE 1
PPHSCRIB LA R1,PPHOPEN SETUP FOR RE-ENTRY
BSM R0,R1 ENTER 24-BIT AMODE
PPHOPEN OPEN (PPHDCB,OUTPUT) PREPARE DATA SET FOR USE
L R8,PPHGAREA POINT TO INFORMATION-GRANARY(MY
* TERM - IF YOU LIKE IT, USE IT!)
SPACE 1
PPGTOP LA R6,58 SET LINE COUNT
BAS R15,PPG24 ENTER
SR R1,R1 CLEAR INDEX REGISTER
IC R1,PPHOTIT FETCH OFFSET
L R0,PPHATIT(R1) POINT TO CORRECT TITLE FOR DATA
PUT PPHDCB,(Ø) PRINT TITLE
MVI PPGFSM,C' ' SINGLE SPACE
MVC PPGFSM+1(PPHDLEN-1),PPGFSM CLEAR LINE FOR PUT
PUT PPHDCB,PPGFSM PRINT BLANK LINE

BAS R15,PPG31 ENTER 31-BIT AMODE
SPACE
PPHPUT CLI PPHCC,X'FF' TEST IF ALL DATA HAS BEEN PROCESSED
BE PPHCLOSE BRANCH IF SO
BCT R6,PPGPUT ENSURE THAT PAGES DON'T OVERFLOW
B PPGTOP
SPACE
PPGPUT MVC PPGFSM(PPHDLEN),Ø(R8) MOVE DATA TO AREA IN 24-BIT AMODE
SPACE
CLI PPHCC,C'(' TEST IF SIB CHAIN
BNE PPHCKRRN BRANCH IF NOT
MVI PPHOTIT,4 USE SIB TITLES
LA R8,PPHDLEN(R8) SET ADDRESS OF NEXT ENTRY
B PPGTOP CONTINUE...
SPACE
PPHCKRRN CLI PPHCC,C')' TEST IF CIT CHAIN
BNE PPHPUTX BRANCH IF NOT
MVI PPHOTIT,8 USE CIT TITLES
LA R8,PPHDLEN(R8) SET ADDRESS OF NEXT ENTRY
B PPGTOP CONTINUE...
SPACE
PPHPUTX BAS R15,PPG24 ENTER 24-BIT AMODE
PUT PPHDCB,PPGFSM TRANSCRIBE DATA
BAS R15,PPG31 ENTER 31-BIT AMODE
LA R8,PPHDLEN(R8) SET ADDRESS OF NEXT ENTRY
B PPHPUT LOOP POWER
SPACE
PPHCLOSE BAS R15,PPG24 ENTER 24-BIT AMODE
CLOSE (PPHDCB) CLEAN UP ENVIRONMENT
SR R15,R15 INDICATE SUCCESS
SVC 3 RETURN TO DUST
EJECT
**
* SUBROUTINES USED TO SWITCH BETWEEN AMODES *
**
SPACE
PPG24 LA R15,Ø(R15) CLEAR HI-ORDER BIT
BSM R0,R15 RETURN IN 24-BIT AMODE
SPACE
PPG31 O R15,=X'80000000' SET HI-ORDER BIT
BSM R0,R15 RETURN IN 31-BIT AMODE
EJECT

* REENTER NORMAL OPERATING MODE IN ORDER TO ISSUE AN STIMER *

SPACE
PPHTARRY L R1,PPHCASID OBTAIN ACTUAL SECONDARY ASID
SSAR R1 SET SECONDARY TO CURRENT
SPACE 1
SAC Ø ACCESS DATA ONLY WITHIN THIS ASID
SPACE 1
* MODESET MODE=PROB BECOME MORTAL ONCE AGAIN

SPACE

* PAUSE SIX SECONDS FOR CHANGES IN SEND AND RECEIVE COUNTS *
* TO OCCUR, THEN REDO SCAN OF CHAIN ONCE AGAIN AND COMPUTE A *
* COUNT-Delta FOR ENTRIES STILL IN EXISTENCE. *

STIMER WAIT,BINTVL=CLAMTIME SLEEP...

* RETURN TO ANYTHING-GOES MODE IN ORDER TO PROCESS CHAIN AGAIN *

SPACE

LH R2,PPHASID RETRIEVE VTAM'S ADDRESS SPACE IDENT
SSAR R2 USE DATA IN VTAM'S ADDRESS SPACE
SPACE 1
SAC 512 SET UNIVERSAL ACCESS MODE
SPACE 1
BR R9 RETURN TO CALLER

EJECT

* *
* CONSTANTS AND OTHER JUNK *
* *

SPACE 1

PPHJNAME DC CL8'NET' VTAM'S HANDLE
CONIDENT EQU X'100' OFFSET WITHIN CONFT TO VTAM'S JOB ID
SPACE 1

* *
* TITLE FOR DEBS' DATA *
* *

SPACE 1

PPHTITLE DC C'1'
DC CL8'NAME'
DC C'
DC CL9/APPL-NAME'
DC C'
DC CL9/LU-NAME'
SPACE 1
DC C'
DC CL5/SEND'
DC CL5/RECV'
SPACE 1
DC CL9/NET-ADR'
DC CL6'ELEM'
DC CL9/PLU-ADR'
DC CL6'ELEM'
DC CL9/SLU-ADR'
DC CL6'ELEM'
DC CL9/DEB-ADR'
DC CL9/FMCB-ADR'
DC CL1Ø'VRBLK-ADR'
DC CL1Ø'FMCB-ADR'
DC CL6Ø' '
EJECT
PPGFSM DS CL133
SPACE
PPHDCB DCB LRECL=133,BLKSIZE=133,DSORG=PS,MACRF=PM,RECFM=FA, C
DDNAME=SYSPRINT
SPACE
PPHOTIT DC X'Ø'
SPACE
CLAMTIME DC F'6ØØ' 100 = ONE SECOND
SPACE
PPHATIT DC A(PPHTITLE)
DC A(PPGTITLE)
DC A(PPLTITLE)
PPHSAVIT DS F
PPHGAREA DS F
PPHCASID DS F
PPPHONE DC F'1'
PPGHDEB DS F
PPHHOLD DS F
PPHVASID DS H
SPACE
PPHTRANS DC C'Ø123456789ABCDEF'
EJECT
PPGSIBSW DC X'Ø1'
SPACE 1
ATCSIBQ EQU X'43C'
ATCHOSTA EQU X'494'
ATCHOSTE EQU X'498'
ATCNETID EQU X'82Ø'
SPACE
RPRNAME EQU Ø NAME OF RDTE ET AL
SPACE
RCPSIBS EQU X'6C' PTR TO 1ST SIB ON SECONDARY SIB CHAIN
SPACE
SIBBFWD EQU X'3Ø' PTR TO THE NEXT SIB
SIBRSUBA EQU X'42'
SIBRELMA EQU X'46'
SIBRRSRC EQU X'1C' PTR TO THE RDTE
SIBBSPTR EQU X'48' PTR TO THE SLU RESOURCE INFORMATION
SIBCBTYP EQU X'98' CONTROL BLOCK CONSTANT FOR SIB
SIBBPPTR EQU X'44' PTR TO THE PLU RESOURCE INFORMATION
SIBRALNM EQU 8 NAME OF RESRC FROM SESS PARTNR NETWK
SIBRNID EQU 16 NAME OF NETWORK ASSOCIATED WITH LU
SIBPCID EQU 8 ORIGINAL PCID FOR SESSION
SIBCBLD EQU Ø OFFSET TO SIB'S CONTROL BLOCK ID
SPACE
CONVTHAA EQU X'94' POINTER TO VTAM RDT HEADER AREA
SPACE
GENERALIZED PROGRAM RECOVERY ROUTINE

* PERFORMS THE ERROR RECOVERY PROCESSING FOR ANY ROUTINE. *
* THIS ROUTINE IS INVOKED VIA THE ESTAE ERROR RECOVERY *
* MECHANISM IN THE EVENT OF AN ABEND CONDITION IN A ROUTINE. *
* THE PURPOSE OF THIS RECOVERY ROUTINE IS TO IDENTIFY THE OFF- *
* SET OF AN ABEND WITHIN A CSECT THAT ISSUED THE CORRESPONDING *
* ESTAE AND, WHEN REQUESTED, ATTEMPT TO RECOVER AT A SPECIFIC *
* RETRY ADDRESS THAT WAS SPECIFIED IN PARAMETERS THAT WERE *
* PASSED TO THIS EXIT IN THE SDWA. *
* IF NO PARAMETERS WERE SPECIFIED WHEN A RECOVERY ENVIRONMENT *
* WAS ESTABLISHED, PERCOLATION CONTINUES WITHOUT AN ATTEMPT *
* TO RECOVER FROM ABEND CONDITIONS. *
* *
REG ENTRY VALUE
* R0 CODE EXPLAINING TYPE I/O PROCESSING PERFORMED *
* 0 - I/O QUIESCED AND RESTORABLE *
* 4 - I/O HALTED AND NOT RESTORABLE *
* 8 - NO I/O AT TIME OF ABEND *
* 12 - SDWA STORAGE UNAVAILABLE *
* R1 - ABEND COMPLETION CODE *
* R2 - ADDR OF ESTAE PARM LIST OR 0 *
* 16 - NO I/O PROCESSING PERFORMED *
* R1 POINTER TO SDWA *
* R13 POINTER TO 72-BYTE SAVE AREA ADDRESS *
* R14 RETURN ADDRESS *
* R15 ENTRY ADDRESS *

EJECT
DROP R12 FORGET BASE REGISTER OF PROGRAM <<<<<<<<<
DS 0F ALIGN RECOVERY RTN ON INTEGRAL BNDRY
USING PSA,R0 ESTABLISH PSA ADDRESSABILTY
USING *,R15
SPACE 1
PATEXIT DS 0H ESTAE ERROR RECOVERY
SPACE 1
SAC 0 ENSURE OPERATING IN PRIMARY MODE
C R0,F'12' SDWA AVAILABLE?
BE 0(R14) RETURN IF NOT - IMPLIES CONTINUE WITH ABEND
SPACE 1
ST R14,12(R13) SAVE RETURN ADDRESS
L R14,0(R1) RETRY ADDRESS
TM 0(R14),X'80' TEST IF RE-ENTRY
L R14,12(R13) RESTORE RETURN ADDRESS
BO PATSTAE BRANCH IF NOT
SVC 3 BACK TO DUST
SPACE 1
PATSTAE BAKR R14,R0 SAVE ENVIRONMENT AT ENTRY
SPACE 1
LR R12,R15 SET BASE REGISTER
DROP R15 FORGET INITIAL TEMPORARY BASE
USING PATEXIT,R12 ESTABLISH ADDRESSABILTY
SPACE 1
USING SDWA,R5 ESTABLISH SDWA ADDRESSABILTY
LR R5,R1 ADDRESS OF SDWA
SPACE 1
MVC PATCNAME,SDWANAME SDWA
MVC PATSDWA,0(R1) SDWA
SPACE 1
L R0,PATESIZE SIZE OF WORK AREA
GETMAIN R,LV=(6) OBTAIN WORK AREA
LR R2,R1 POINT TO IT
EJECT
USING PATDSECT,R2 ESTABLISH BASE
MVC PATGPRS(4*16),SDWAGRSV REGISTERS AT TIME OF ABEND
L R9,SDWASR13 POINT TO SAVE AREA AT TIME OF ERROR
MVC PATEWT0(PATWTOL),PATWTO INITIALIZE WORK AREA
SPACE
UNPK PATDLPSW(9),SDWAEC1(5) LEFT HALF OF EC PSW
MVI PATDLPSW+8,C' '
TR PATDLPSW,PATTRANS-24Ø
SPACE
UNPK PATDRPSW(9),SDWANXT1(5) RIGHT HALF OF EC PSW
MVI PATDRPSW+8,C' '
TR PATDRPSW,PATTRANS-24Ø
SPACE 1
L R0,SDWANXT1 TERMINATION ADDRESS
N R0,PAT7FFF CLEAR 31-AMODE BIT
ST R0,PATGILL SAVE INSTRUCTION ADDRESS
L R4,PSATOLD CURRENT TCB ADDRESS
BAS R8,PSATMLOC LOCATE FAILING MODULE
SPACE 3
L R4,PSATOLD CURRENT TCB ADDRESS
USING TCB,R4 ESTABLISH TCB ADDRESSABILITY
L R8,TCBRBP POINT TO AN RB
DROP R4 FORGET TCB
USING RBBASIC,R8 ESTABLISH RB ADDRESSABILITY
PATNXTRB N R8,PAT0FFF CLEAR THE TRASH
LR R11,R8 PRESERVE ADDRESS OF RB
L R8,RBLINK FETCH ADDRESS OF NEXT RB
CR R4,R8 TEST IF MISSING RB
BNE PATNXTRB BRANCH IF NOT
LR R8,R11 SET ADDRESS OF RB
SPACE 1
L R0,RBOPSWA FETCH RIGHT HALF OF PSW
N R0,PAT7FFF CLEAR 31-AMODE BIT
ST R0,PATGILL USE IT AS FAILING INSTRUCTION ADDRESS
BAS R8,PSATMLOC LOCATE FAILING MODULE
SPACE 1
LR R8,R11 RESTORE ADDRESS OF RB
L R3,RCBDE POINT TO CONTENTS DIRECTORY ENTRY
N R3,PAT0FFF CLEAR OPTIONS
B PHCDNAME ENTER COMMON CODE
DROP R8 FORGET RB
EJECT
**
* LOCATE MODULE CONTAINING FAILING INSTRUCTION *
**
SPACE 1
PATMLOC L R4,PSATOLD CURRENT TCB ADDRESS
USING TCB,R4 ESTABLISH TCB ADDRESSABILITY
SPACE 1
L R3,TCBJPQ ADDR OF LAST CDE IN JOB PACK AREA Q
SPACE 1
MVC PATDPGM,=CL8'UNKNOWN' SET CONSTANT IN WTO AREA
MVC PATDEP,=CL8'UNKNOWN' SET CONSTANT IN WTO AREA
MVC PATDOFF,=CL8'UNKNOWN' SET CONSTANT IN WTO AREA
USING CDENTRY,R3 ESTABLISH CDE ADDRESSABILITY
TM CDATTR,CDMIN TEST IF MINOR CDE
BO PGNXTCDCE BRANCH IF NOT

PATGETXL L R7,CDXMLJP ADDR OF EXTENT LIST OF THIS MODULE
USING XTLST,R7 ESTABLISH XTLST ADDRESSABILITY
CLC PATGILL,XTLMSBAD COULD BLOCK CONTAIN FAILING INST?
BL PGNXTCDCE BRANCH IF NOT

SPACE 1
L RØ,PATGILL TERMINATION ADDRESS
S RØ,XTLMSBAD COMPUTE OFFSET INTO BLOCK
CLM RØ,7,XTLMSBLN TEST IF OFFSET WITHIN BLOCK
BL PATOK BRANCH IF SO

SPACE 1
PGNXTCDE ICM R3,15,CDCHAIN NEXT CDE ON CHAIN
BE Ø(R8) AT END RETURN
TM CDATTR,CDMIN TEST IF MINOR CDE
BNO PATGETXL BRANCH IF NOT
B PGNXTCDCE ELSE TRY TRY AGAIN

SPACE 1
PATOK ST RØ,PATGILL SAVE OFFSET
MVI PATGILL,Ø CLEAR TRASH
UNPK PATDOFF(9),PATGILL(5)
MVI PATDOFF+8,C' '
TR PATDOFF,PATTRANS-24Ø

PHCDNAME MVC PATDPGM,CDNAME MODULE ACTIVE AT TIME OF ABEND
SPACE 1
L R15,CDENTPT FETCH ADDRESS OF ENTRY POINT
CLC Ø(3,R15),=XL3'47FØFØ' TEST IF MODULE CONFORMS
BNE PATRADIC BRANCH IF A RADICAL
CLI 4(R15),Ø TEST IF LENGTH IS ZERO
BE PATRADIC BRANCH IF SO
MVC PATDEP,=CL8' ' BLANK AREA
SR R14,R14 CLEAR WORK REGISTER
IC R14,4(R15) OBTAIN LENGTH OF ENTRY POINT NAME
CH R14,=H'9' TEST IF NAME EXCEEDS EIGHT BYTES
BL ++8 BRANCH IF NOT
LA R14,8 LIMIT LENGTH TO EIGHT BYTES
BCTR R14,R0 REDUCE BY ONE FOR MOVE
EX R14,PATMVEP MOVE NAME OF ENTRY POINT TO WTO AREA
EJECT

PATRADIC CLI SDWACMPC+2,X'ØØ' TEST IF USER ABEND
BNE PATDOUSR BRANCH IF SO
TM SDWACMPC+1,X'ØF' TEST IF USER ABEND
BNZ PATDOUSR BRANCH IF SO
UNPK PATDCODE+1(5),SDWACMPC(3) ASSUME SYSTEM ABEND
MVI PATDCODE+4,C' '
MVI PATDCODE+5,C' '
TR PATDCODE+1(3),PATTRANS-24Ø
B PATXWT0

PATDOUSR L R1,SDWACMPF FETCH USER ABEND CODE
N R1,PATØØ3F CLEAR HI-ORDER TRASH
CVD R1,PPHTWICE THENCE TO PACKED DECIMAL
UNPK PATDCODE,PPHTWICE+5(3) ASSUME USER ABEND
MVI PATDCODE,C'U' SHOW USER ABEND
OI PATDCODE+4,24Ø FILL FINAL CHARACTER FOR TRANSLATION
MVI PATDCODE+5,C' ' REMOVE GARBAGE
TR PATDCODE+1(4),PATRANS-24Ø EVERYTHING TO UPER CASE EBCDIC
SPACE 1
PATXWTO WTO MF=(E,PATEWTO)
EJECT
**
* FORMAT GENERAL PURPOSE REGISTERS AT ENTRY TO ABEND *
**
SPACE 1
MVI PATEWTO+4,C' ' REMOVE TRASH
MVC PATEWTO+5(PATWTOL-5),PATEWTO+4 FROM WORK AREA
LA R3,PATGPRC-9 POINT TO CONSTANTS - 9
LA R7,SDWAGRSV POINT TO REGISTERS AT ENTRY TO ABEND
LA R8,4 SET LOOP COUNT
PATPGPRS LA R3,9(R3) NEXT CONSTANT
MVC PATEWTO+4(9),Ø(R3) CONSTANT TO WTO AREA
LA R4,4 SET LOOP COUNT
LA R6,PATEWTO+14 POINT TO REGISTER AREA
PATUNPKG UNPK Ø(9,R6),Ø(5,R7) CONVERT REGISTER CONTENTS
TR Ø(8,R6),PATRANS-24Ø TO EBCDIC
MVI Ø(R6),C' ' CLEAR TRASH FROM WTO
LA R6,1Ø(R6) NEXT OUTPUT LOCATION
LA R7,4(R7) NEXT GENERAL PURPOSE REGISTER
BCT R4,PATUNPKG LOOP POWER
WTO MF=(E,PATEWTO) DISPLAY FORMATTED DATA
BCT R8,PATPGPRS DISPLAY GENERAL PURPOSE REGISTERS
SPACE 1
L RØ,PATESIZE SIZE OF AREA TO BE RELEASED
SPACE 1
STORAGE RELEASE,ADDR=(2),LENGTH=(Ø)
SPACE 1
ICM R6,15,SDWAPARM ADDRESS OF ESTAE PARAMETER LIST
BE PATABEND IF NONE, CONTINUE WITH TERMINATION
NI Ø(R6),255-X'8Ø' CLEAR RETRY INDICATOR
ICM R6,15,Ø(R6) RETRY ADDRESS
BE PATABEND IF NONE, CONTINUE WITH TERMINATION
SPACE 1
SETRP WKAREA=(R5),RETADDR=(R6),RC=4 RETRY ONCE
SPACE 1
SR R15,R15 SET RETURN CODE
PR R14 RETURN TO DUST
SPACE 2
PATABEND SETRP WKAREA=(R5),RC=Ø ABEND
SPACE 1
SR R15,R15 SET RETURN CODE
PR R14 RETURN TO DUST
EJECT

**
* CONSTANTS AND EQUATES *
**
SPACE 1
PPHTWICE DS D
PAT7FFF DC X'7FFFFFFF'
PAT0FFF DC X'00FFFFFF'
PAT003F DC X'000000FF'
PATMVEP MVC PATDEP(*-*) ,5(R15) **** EXECUTE ONLY ****
PATSDWA DC XL256'00'
DC CL8'JOHNSLUV'
PATCNAME DC CL8'
SPACE 1
PATSIZE DC A(18*4)
PATESIZE DC A(PATDSIZE)
PATWTO WTO ' ABEND STAP IN PGM LLEWWOP AT EP HP OFFSET PATTYL
 H PSW - SNIKWAH ENNA ',MF=L
PATWTOL EQU *-PATWTO
PATTRANS DC C'0123456789ABCDEF'
SPACE 3
PATLIST DC X'80',AL3(Ø) <===== PLACE ADDRESS OF RETRY ROUTINE HERE
SPACE
PATGPRC DC CL9'GPR Ø-3'
DC CL9'GPR 4-7'
DC CL9'GPR 8-11'
DC CL9'GPR 12-15'
SPACE 2
LTORG
EJECT
PATDSECT DSECT
PATGILL DS 2F
PATGPRS DS 16F
PATEWTO DS (PATWTOL)C
ORG PATEWTO+4
DC C' ABEND '
PATDCODE DC CL5'U0000'
DC C' IN PGM '
PATDPGM DC CL8''
DC C' AT EP '
PATDEP DC CL8''
DC C' OFFSET '
PATDOFF DC CL8''
DC C' PSW - '
PATDLPSW DC CL8''
DC C''
PATDRPSW DC CL8''
DC C''
ORG
PATDSIZE EQU ((((*-PATGILL)+7)/8)*8)
EJECT
* *
* DSECT FOR DEBS' DATA *
* *
SPACE 1
PPHDSECT DSECT
SPACE 1
PPHCC DS C
PPHONLM DS CL8
DS C
PPHAPLMN DS CL8
DS 2C
PPHLUNME DS CL8
DS 2C
SPACE 1
PPHSEND DS CL5
PPHRECV DS CL5
PPHNETAD DS CL9
PPHNETEL DS CL5
DS C
PPHPUAD DS CL9
PPHPULUEL DS CL5
DS C
PPHSLUAD DS CL9
PPHSLUEL DS CL5
DS C
PHDADDR DS CL9
PPHFADDR DS CL9
PPHSND1 DS CL5
PPHRCVD1 DS CL5
PPHSND2 DS CL5
PPHRCVD2 DS CL5
PPHSND3 DS CL5
PPHRCVD3 DS CL5
DS £F
PPHLEN EQU *-PPHCC
PPHSND1O EQU PPHSND1-PPHCC
PPHSND2O EQU PPHSND2-PPHCC
PPHSND3O EQU PPHSND3-PPHCC
EJECT
* *
* DSECT FOR SIBS' DATA *
* *
SPACE 1
PPGDSECT DSECT
SPACE 1
PPGCC DS C
PPGSRNID DS CLB'SIBRNID'
DS C' ,

© 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.
PPGSALNM DS CL8'SIBRALNM'
 DS C'
PPGSNAME DS CL8'RPRNAME'
 SPACE 1
 DS C'
PPGSSLNM DS CL8'SLURALNM'
 DS C'
 SPACE 1
PPGSSUBA DS CL9'SLURSUBA'
PPGSSUBE DS CL6'ELEM'
PPGSSNID DS CL8'SLURNID'
 DS C'
PPGSPNME DS CL8'PLU-NAME'
 DS C'
PPGSSBAD DS CL9'SIB-ADDR'
PPGP1ADR DS CL9
PPGP2ADR DS CL9
EJECT
* *
* DSECT FOR CITS' DATA *
* *
SPACE 1
PPLDSECT DSECT
SPACE 1
PPLCC DS C
PPLLUNME DS CL8'LU-NAME'
 DS C'
 SPACE 1
PPLSEND DS CL5'SEND'
PPLDELT DS CL5'SDLTA'
 DS C'
PPLRECV DS CL5'RECV'
PPLDELTR DS CL5'RDLTA'
 DS C'
 SPACE 1
PPLPLUAD DS CL9'PLU-ADR'
PPLPLUEL DS CL5'ELEM'
PPLSLUAD DS CL9'SLU-ADR'
PPLSLUEL DS CL5'ELEM'
PPLFMCBZ EQU *
PPLVRBLK DS CL10'VRBLK-ADR'
PPLFMCB DS CL10'FMCB-ADR'
PPLFMCBX DS CL10'FMCB-ADR'
PPLFMCBY DS CL10'FMCB-ADR'
 TITLE 'ESA CONTROL BLOCKS'
**
* GENERATE REQUIRED OS CONTROL BLOCKS *
**
SPACE 1
IKJTCB TASK CONTROL BLOCK
SPACE 1
IBM's Web Services and dynamic e-business

The Web services initiative unveiled by IBM on 14 May 2001 is a bold attempt to add some much needed formal structure and consistency to future e-business applications through the provision of a key set of vital backbone services based on open Internet standards. The express goal of these Web services is to facilitate the development of e-applications, for e-business, that can readily synthesize data from multiple disparate sources – from within the Web or external to the Web. The initial five Internet standards that together constitute the current base of IBM Web services are as follows:

1. **Universal Description Discovery and Integration (UDDI)** scheme, (backed by IBM, Microsoft, Ariba, SAP, Oracle, Sun, HP, Compaq, and about another 280 companies), which enables businesses to describe themselves in a standard and consistent manner. UDDI is, in effect, a universal, Web-centric product and service advertising and syndicating mechanism.

2. **Simple Object Access Protocol (SOAP)**, a World-Wide Web Consortium (W3C) standard now in Version 1.2, is a simple and
lightweight mechanism for exchanging structured and typed information between peers in a decentralized, distributed environment using the Extensible Markup Language (XML) standard – where XML is now the universal format for describing and exchanging structured documents and data on the Web. SOAP thus provides a peer-to-peer protocol for facilitating inter-company communications in the context of Web services – for example, conveying UDDI requests and responses.

3 Web Services Description Language (WSDL) is an XML derivative for describing network services as a set of endpoints that function by exchanging messages containing either document- or procedure-oriented information. With WSDL, these operations and messages are described abstractly in an implementation-independent manner and are then bound to a concrete network protocol (e.g., SOAP) and message format to define an endpoint. WSDL can also be used with HTTP and MIME.

4 Java 2 Enterprise Edition (J2EE), the platform-independent middleware infrastructure that represents the top of the range of the three Java technology bundles available from Sun, and the one explicitly targeted at developers of enterprise-class, server-side applications.

5 XML, the increasingly popular and strategic standard, whose schema provide a powerful and consistent means for defining the structure, content, and semantics of e-business-related documents and data. XML schemas is today’s preferred means for expressing shared vocabularies and allowing machines to carry out rules made by people in order to automatically process e-business transactions on a peer-to-peer, b2b basis. XML, as seen above, is also the underlying fabric of UDDI and WSDL.

UDDI, SOAP, WSDL, and J2EE are described in more detail later in this article.

AN ARCHITECTURE FOR E-BUSINESS

Anyone who remembers IBM’s Open Blueprint of the early 1990s or the Systems Applications Architecture (SAA) that pre-dated it will immediately recognize where IBM is going with this Web services
initiative. The fact is that cogent architectures (or frameworks) are a sure way of winning customer following and keeping account control; Web services, though based entirely on open industry standards, is IBM’s way of providing a convincing architectural basis for future e-business applications. So, think of Web services as SAA for e-business. In the same spirit as SAA, Web services, in theory, will be platform-, operating system-, and application-independent, and permit any-to-any integration and collaboration.

“Dynamic e-business”, a phrase introduced by IBM at the Web services unveiling, is essentially an umbrella marketing term to describe Web services empowered e-business. Dynamic e-business should be thought of as e-business made possible via new e-applications that actually use the key backbone functionality provided by Web services. The relationship between Web services and dynamic e-business is therefore comparable to that between the SNA LU 6.2 architecture and IBM’s market-speak term Advanced Program-to-Program Communications (APPC), which referred to anything that was based on LU 6.2.

Computer and networking architectures, though always valuable design props, are of little practical use unless the services they refer to are readily available within robust and reliable product implementations. WebSphere, IBM’s strategic infrastructure foundation for all Web-centric endeavours, will undoubtedly be the premier platform offering pragmatic implementations of Web services. So think of WebSphere as playing ACF/VTAM’s role with regard to SNA when it comes to Web services.

The three initial WebSphere products that will support Web services are WebSphere Application Services 4.0, WebSphere Studio, and WebSphere Business Integrator.

UDDI

Unveiled last September, UDDI is a cross-industry initiative to accelerate and broaden Web-based b2b integration and commerce. Its goal is to create a platform-independent, Web-centric open framework for describing services, discovering businesses, and integrating business services; ie machine readable ‘yellow pages’ for e-business. UDDI is thus the mechanism that will enable businesses to quickly,
easily, and dynamically find and transact with one another, over the Web, using their preferred applications.

Part of the growing success of UDDI is that it leverages proven and popular WWW Consortium (W3C) and Internet Engineering Task Force (IETF) standards such as XML, HTTP, and Domain Name System (DNS) protocols. In addition, cross-platform programming features are satisfied through the adoption of early versions of the proposed SOAP (which itself is based on the XML protocol messaging specifications described at www.w3c.org).

Before UDDI, there was no industry-wide, accepted approach, let alone a standard, that businesses could use to reach their customers and partners and provide them with information about their products and Web services. There was also no mechanism whereby they could cleanly integrate each other’s systems and processes.

UDDI attempts to fix some of the problems that have slowed down the wide-scale adoption of b2b e-business. Companies can benefit from UDDI irrespective of their size, because the goals of UDDI are broad and pertinent and the specifications are platform-independent and comprehensive. What’s more, UDDI is not specific to any particular industry; it’s a true cross-industry initiative that can benefit any industry, world-wide, offering any type of product or service.

Companies can already register their products and services using UDDI through the uddi.org Web site. Registration enables a company to publicly list key information about its offerings. There’s also the option to list a catalogue of products, services, and guidelines for business engagement. Registered companies at uddi.org will be displayed in searches conducted by potential buyers. Once a match is found, b2b integration will be significantly easier and more dynamic for companies transacting business with each other in this manner.

The second version (V2) of the UDDI specification was made available by UDDI.org on 18 June 2001. Key new features include:

- The ability to accurately describe complex organizations in terms of representative, real-world organizational structures that include business units, departments, divisions, and subsidiaries.
- Enhanced support for global trading and internationalization in
the form of support for multiple languages offering companies the option of describing their business and services in more than one language.

- The inclusion of additional categories and identification schemes, including industry-specific categories (eg chemical and pharmaceutical), to give companies more flexibility and freedom to describe their business. These new categories can be validated during registration through third parties such as industry associations.

- The availability of richer searching options to facilitate complex searches. You can now search the UDDI registry for e-business-related products and services you’re looking for using more expressive query parameters spanning more fields and involving more complex combinations of fields.

SOAP

SOAP is a simple and lightweight peer-to-peer, platform-independent mechanism for exchanging data in a decentralized and distributed Web-centric environment. SOAP does not in itself define any application semantics such as a programming model or any implementation-specific guidelines. Instead, it specifies a simple mechanism for expressing application semantics through the provision of a modular packaging model and an encoding mechanism for encoding application defined data. This abstract, implementation-neutral specification allows SOAP to be used in a variety of networking systems ranging from those relying on messaging systems (eg MQSeries) to Unix systems that prefer remote procedure calls (RPCs).

SOAP has four separately defined components:

- **SOAP envelope.** This is the top element of the XML document representing the SOAP message. This envelope defines an overall framework for expressing what’s in a message, who (ie which process) at the receiving end should deal with it, and whether the request contained in the message is optional or mandatory.

- **SOAP encoding rules.** The SOAP encoding scheme is based on a simple type system similar to that used by programming
languages and databases. A SOAP encoding type is either a simple (scalar) type or a compound type constructed as a composite of several parts, each with its own type. The SOAP encoding rules thus define a serialization mechanism that can be used to exchange instances of application-defined data types in a platform-independent manner.

• **SOAP binding.** SOAP bindings are the conventions for encapsulating a SOAP message within or on top of another protocol (i.e., the underlying protocol) for the purpose of transmitting these messages between peers using SOAP envelopes. Typical SOAP bindings include carrying a SOAP message within an HTTP message, or simply on top of TCP.

• **SOAP RPC representation scheme.** This scheme specifies how RPC functionality, in terms of RPC invocations and responses, can be represented and implemented within the context of XML.

WSDL

In much the same way as HTML enables us to describe the format of Web pages, WSDL offers a way to describe contemporary Web-oriented communications protocols and messaging schemes. WSDL, as such, is an XML-based grammar for describing communications environments in terms of a set of communication endpoints that can exchange messages between them. The goal of WSDL is to ensure that automated processes (e.g., e-business applications running on client PCs) can automatically determine the exact networking capabilities of remote systems without human intervention or prior definitions.

A WSDL document (or WSDL schema) describing a communications set-up will define the available services as collections of network endpoints, or ports. The key WSDL constructs, according to the current WSDL specification available at www.w3.org, are as follows:

• **WSDL types.** A container for data type definitions using some type system.

• **Message.** An abstract, typed definition of the data being communicated.

• **Operation.** An abstract description of an action supported by the service.
• **Port type.** An abstract set of operations supported by one or more endpoints.
• **Binding.** A concrete protocol and data format specification for a particular port type.
• **Port.** A single endpoint defined as a combination of a binding and a network address.
• **Service.** A collection of related endpoints.

J2EE AND CONTAINERS

Today’s Java, especially on the server side, is more about containers than Java Virtual Machines (JVMs). According to Java, a container is a runtime environment that provides common services for the Java components that run in that container. Decoupling the services and putting them in the container means that Java application developers no longer have to concern themselves with how they obtain critical system functions such as security. Instead they can expect the container—or, to be more precise, the platform-specific implementation of the container—to deliver the required services at runtime.

This decoupling is also true to Java’s fundamental platform-independence. With this approach, application developers can focus on writing platform-independent problem solving code without having to worry about how they tap into platform-specific services.

The Java programming model for enterprises defines three container-driven Java components:

• **Java Server Pages.** Similar to Microsoft’s Active Server Pages (ASPs) and geared at enhancing the functionality of Web output by extending server-side presentation logic.
• **Java Servlets.** Server side Java code to add functionality or control the flow of software execution.
• **Enterprise JavaBeans.** The object-oriented technology ideally suited for creating reusable business logic components (including capturing and representing host transactions from existing host applications) and permitting interaction with non-Java resources and systems.
J2EE, in essence, consists of these three container-driven Java components combined with a set of key system level services, as well as a series of connectors to facilitate direct access to certain ‘back-end’ systems. The programming model for J2EE is flexible and extensible enough to permit any practical combination of containers, services, and ‘back-end’ connectors to be synthesized together to create an e-business application – whether based on a standalone, client/server (ie 2-tier) or fully distributed model.

WEBSHHERE APPLICATION SERVER VERSION 4 AND WEB SERVICES

Initially, the flagship product that will showcase all five of the Web services technologies will be Version 4 of the WebSphere Application Server (WAS) which has been available since 30 June 2001 for NT, Windows 2000, IBM AIX, Sun Solaris, UP-UX, and Red Hat Linux platforms. WebSphere Application Server Version 4 for z/OS and OS/390, which has been generally available as of April 2001, does not currently support UDDI, SOAP, and WSDL.

Although Web services are the undoubted highlight of WAS Version 4, they are not the only capabilities included in this new release. An overriding objective of WAS Version 4, including WAS Version 4 for z/OS and OS/390, is to deliver an industrial-strength Enterprise JavaBeans (EJB) production environment that is fully J2EE compliant. WAS Version 4 is first and foremost a top-end, cross-platform Java server with all of IBM’s clout and support behind it. In the case of mainframes, WAS Version 4 is very much a tightly integrated enterprise Java server that takes full advantage of the unsurpassed high-availability, workload balancing, and scalability characteristics available with today’s parallel sysplex systems. No other platform can come close to a mainframe when it comes to these crucial characteristics – with a top-end Sun Unix server still likely to have an order of magnitude shortfall in up-time over a year compared to that of a System/390 running OS/390. So, to Sun’s chagrin, the most reliable and scalable platform to run high-end enterprise-class Java applications has to be a mainframe rather than one of its much-vaunted Unix boxes!

WAS includes the Java Software Development Kit (SDK) 1.3.0, which supports:
• Servlets and JavaServer Pages (JSPs) that conform to the J2EE V1.2 specifications.
• EJBs compliant with J2EE specifications.
• CORBA components consistent with the WebSphere platform programming model.
• Applications written to the Java 2 API level.

As well as EJB, WAS Version 4, in line with the original WebSphere goals, supports the OMG’s CORBA at the 2.1 specification level. With both CORBA and EJB, IBM is giving you total freedom as to what type of object technology you want to use when it comes to developing new e-applications.

In addition to the standard UDDI functionality, WAS Version 4 will also be able to interface with a public UDDI registry. Access to a public UDDI registry will facilitate interoperability and information sharing across the corporate world, independent of platform and software dependencies. Consequently, companies using WebSphere can now easily transform new and existing business processes into Web services-based applications that can be easily ‘advertised’ and subsequently shared among other enterprises, including business partners and customers using the power and reach of UDDI.

WebSphere Application Server Version 4 is also credited with being able to connect and interoperate with the largest number of business applications in the industry. Application types supported include SAP, PeopleSoft, CICS, and IMS. Special emphasis has also been given to ensuring that this Application Server can handle ultra-high volume transactions without significant degradation in performance and response times. There’s a new caching capability that supposedly increases application speed by 200% to 300% in high-volume scenarios. The performance and throughput of the ‘back-end’ host application connectors have also been optimized and improved.

OTHER IBM PRODUCTS SUPPORTING WEB SERVICES

While the Application Server Version 4 is the linchpin of this IBM Web services initiative, it’s just one of the WebSphere components that will play an active part in making this technology real. IBM has
already included Web services capabilities in two other components: WebSphere Business Integrator and WebSphere Studio.

WebSphere Business Integrator permits companies to easily create, execute, and manage business processes that span disparate applications, enterprises, and people using a consistent methodology. It also ensures that you can monitor and manage these processes and their underlying operational infrastructure as a complete system independent of the platforms involved.

WebSphere Business Integrator is a total, integrated solution for enterprises, service providers, and system integrators that enables them to design, develop, and deploy adaptive business processes that can execute across multiple disparate internal business systems and interface with external business systems for b2b interactions. It also offers a mechanism for realizing a common and consistent management view of business activities that is adaptable to changes in business practices. Version 2.1 of the WebSphere Business-to-Business Integrator is currently available on NT servers, with AIX and Solaris versions to start shipping in the future.

Within the context of Web services, IBM will position WebSphere Business Integrator as the means for enabling companies to integrate and manage the ‘flow’ of Web services applications. WebSphere Business Integrator will use MQSeries, IBM’s message queuing-based middleware solution for transaction processing, as the basis for interfacing with SOAP. IBM will use MQSeries to deliver SOAP messages from one Web services application to another, linking the applications together and managing their interaction.

WebSphere Studio is IBM’s top-of-the-line design and development tool for multi-platform Web application creation and sustenance. It’s an easy-to-use design tool that expedites application development and minimizes the development effort involved in creating, managing, and debugging Web applications. IBM claims that it’s the first tool in the industry that permits the visual layout of dynamic Web pages using technologies such as Dynamic HTML (DHTML) and JavaServer Pages (JSPs). In addition, WebSphere Studio, which relies extensively on wizards for generating database-driven output pages, supports HTML and JavaScript. It also includes a JSP debugger – which according to IBM is another industry first. Studio can also automatically
update and correct Web links when the Web page content changes. Developers also have the option of integrating their favourite content creation tools into the design and development environment provided by the studio.

A new beta test release of the Studio (July 2001) enables companies to ‘publish’ Web services applications for existing and potential trading partners via a UDDI Registry. The general release of this software is scheduled for September 2001.

Next to the WebSphere products, the other IBM offering that will offer the most amount of Web services support, at least in the short-term, will be the Lotus Domino Application Server. The highly respected collaboration, workflow, and messaging capabilities of this Application Server will now be extended so that they support SOAP and WSDL. This support for SOAP and WSDL will permit external entities to gain access to selected applications being hosted by the Domino Application Server using these industry standards.

Within the context of Web services, the Tivoli offerings provide for overall management and policy enforcement support. The SecureWay Policy Director, for example, permits developers to add security policy into dynamic e-business applications using a consistent and proven paradigm that has been popular with WebSphere developers for the last couple of years. Similarly, the Tivoli Manager for WebSphere Application Server will enable the new Web services capable Version 4 Application Server to be managed, from a single point of control, using familiar and popular processes and procedures.

BOTTOM LINE

After the ignominious collapse of the ‘dot.com’ culture and the ongoing global economic slowdown, many corporations have been forced to re-evaluate their e-business goals, expectations, and schedules. Many, quite rightly, are concerned that e-business might not live up to all that has been claimed for it. Web services, and UDDI in particular, set out to show how e-business, in the future, can be more pervasive, penetrative, and expeditious. Web services also has the potential to significantly reduce the cost of e-application development by ensuring that developers have ready access to key services in the form of open standards, via proven products like
WebSphere, rather than having to create some of this functionality themselves. Web services is therefore a win-win proposition all round, with no real downside. E-business needed this type of architectural framework and impetus, from IBM, the uncontested doyen of such initiatives, to get it over the current slump and back into true contention.

Anura Gurugé
Strategic Consultant (USA)
© Xephon 2001

Monitoring host sites

There are many reasons why you might want to monitor the availability of a TCP/IP-accessible resource, especially host sites and Web sites. For example, you might be responsible for supporting it, investigating a user complaint of poor service on a site, or keeping an eye on your ISP’s reliability.

THE ORIGINAL NEED

My need originally arose as I watched a partner repeatedly caught unawares as customers complained about their Web sites being down. He needed to know first, since he built and now maintains and supports their Web sites. I needed to know because I was the one who selected and negotiated with the ISP that hosted the Web sites.

But it soon became clear that the broader need went beyond just Web sites, and included the monitoring of:

• tn3270e access to mainframes.

• ftp access to both the mainframe and those Web sites, since ftp is currently the only way to maintain the Web pages and other components on those sites.

• The mail servers that send and receive e-mail.

I had never investigated this area, but it seemed fairly likely that comprehensive network management products from the likes of Tivoli would not have overlooked such necessary functionality. But
I had no idea whether affordable stand-alone software was available to do what I wanted: to run in the background and raise an alert on my workstation whenever any of a fairly lengthy list of sites was down.

THE SHAREWARE SEARCH

I decided to do a shareware search, selecting appropriate categories and doing searches by keyword on both ZDNet and TUCOWS. After sifting through the 500+ shareware products that were listed, I identified 16 that looked as if they might provide alerts whenever a site went down. Only two were freeware, and these moved immediately to the top of my list.

The freeware products were Active Server Watcher (ASW) and Web Supervisor. But it seemed pretty clear from the description of Web Supervisor on both ZDNet and the vendor’s Web site that it could only monitor Web sites, not tn3270e and other types of host connection. This was a shame, because it promised a very comprehensive check of Web sites, beyond the rudimentary ping.

ACTIVE SERVER WATCHER (ASW)

I was quickly disappointed with ASW, as it seemed to have the same limitation as Web Supervisor – any site to be tested had to be expressed in terms of an http:// URL. But an inspired wild guess (ASW has no documentation or Help files) overcame this by adding a port number to the URL, allowing the testing of tn3270e and ftp through the telnet (23) and ftp (21) port numbers.

Complete details of the installation and evaluation process for ASW can be found in ‘Active Server Watcher in action’, which immediately follows in this issue. But if ASW does not meet your needs, Figure 1 lists the other 15 shareware products that were identified as possibles in the initial sweep. The list includes the registration price, vendor’s Web site URL, and details of where I found each.

YOU MAY ALREADY OWN IT

Of course, the cheapest software is the software you already have. Not only is it free, but there should be no learning curve since you’re using
or at least, that’s the theory. Here are the pros and cons for using unused functionality that already exists in existing software, versus acquiring a stand-alone product ('single-purpose software' below) that does little or nothing more than what you want to do:

- If you plan to put it into production and have operations or rotating shifts of support staff responsible for it, using existing software they are familiar with will be easier for them.
- For personnel with no experience with the existing software, single-purpose software generally has less of a learning curve than the all-encompassing existing software.
- Single-purpose software avoids the problem of finding the functionality you need in an all-encompassing product with hundreds of features.

Figure 1: Other possibilities

- **SPIS WebWatch** – $40/£28 – ZDNet
 http://www.spis.co.nz/Webcentr/Webwatch.htm
- **IPCheck** – $50/£35 – ZDNet
 http://www.web-server-tools.com/tools/IPCheck_2/ipcheck_2.htm
- **ITutils WebCheck** – $30/£21 – ZDNet
 http://www.itutils.com/webcheck
- **Alert LinkRunner** – $40/£28 – ZDNet
 http://www.alertbookmarks.com/lr
- **CyberSpyder Link Test** – $35/£25 – ZDNet
 http://www.cyberspyder.com/cslnkts1.html
- **Web Supervisor** – free – ZDNet
 http://www.neurostock.com/websupervisor
- **Site/C** – $20/£14 – ZDNet
 http://www.locutuscodeware.com/sitec.htm
- **InfoLink Link Checker** – $50/£35 – ZDNet
 http://www.biggbyte.com/infolink
- **Alchemy Network Monitor** – $200/£140 – TUCOWS
 http://www.deksoftware.com/alchemy
- **Eye in the Sky** – $25/£18 – TUCOWS
 http://www.8th-wonder.net
- **Host Monitor** – $35/£25 – TUCOWS
 http://www.ks-soft.net/hostmon.eng
You may discover that the functionality is only available in an expensive add-on to the existing software.

For the purposes of this discussion, two good examples of all-encompassing products are Tivoli NetView and Tivoli NetView for OS/390. For more information, see:

http://www.tivoli.com/products/index/netview
http://www.tivoli.com/products/index/netview_390

George Walker
(Canada) © Xephon 2001

Active Server Watcher in action

The selection of Active Server Watcher (ASW) is described in the preceding article in this issue, ‘Monitoring Host Sites’. I was looking for software that would alert me whenever I was at my workstation and any of a specified list of host and Web sites was down.

To begin installing and testing ASW, I located the vendor’s Web site—SmartLine at http://www.ntutility.com. (I avoid downloading shareware from sites like ZDNet and TUCOWS because they often don’t have the most up-to-date version, although, in this case, ZDNet, TUCOWS, and the vendor’s site all had the same version (1.0).)

DOWNLOAD AND INSTALL

When I clicked the Company Name in ZDNet, ASW was listed on a page with other SmartLine freeware at http://www.ntutility.com/freeware.html. The download was 471KB in a zipped file named asw.zip. It contained five files, including setup.exe, readme.txt, and software.txt.

There were no known problems or other last minute information in the readme file, and software.txt described some of the company’s other products. I used WinZip 8.0 to extract all five files to the same directory where I had stored the asw.zip file: C:\Program Files\Install\Active Server Watcher.
When I double-clicked on setup.exe, the first dialogue box advertised MindVision’s Installer VISE, but also listed a Web site and an e-mail address for ASW support. The Web site listed was http://www.protect-me.com, but the home page contents were the same as ntutility.com.

After a succession of dialogue boxes, including Welcome, Important Notes, and the licence agreement, I was able to accept the default Destination Directory or choose my own. Likewise with the Program Folder (Start menu). Finally, a Ready to Install dialogue box confirmed my Destination Directory and Program Folder choices. A few seconds later and the files had been copied, the new program folder opened, and a Finished dialogue box was displayed, confirming that installation was complete. By default, the Active Server Watcher Home Page box was checked off.

GETTING STARTED AND ADDING THE FIRST SITE

After you hit the Close button, your default Web browser starts up and displays the ntutility.com home page. If you look quickly, or have a dial-up connection, you’ll see an Internet Options dialogue box. If you miss it, you’ll see it when you shut down both your browser and the ASW program folder. Otherwise, if you don’t close the ASW program folder and double-click on the Active Server Watcher icon inside the folder, nothing will happen, as the Internet Options dialogue box is hiding behind the folder.

There are two choices in the Internet Options dialogue box:

- I am connecting to the Internet through the LAN.
- I am connecting to the Internet through the Dial-Up.

It wasn’t clear whether LAN is the default, or whether ASW was smart enough to determine that I had a LAN-type Internet connection.

‘Autodetect connections (please select connections you are using to connect to the Internet):’ was greyed out, but ‘The list is empty!’ was not. I clicked on the word OK, which immediately turned into a button and brought up the ASW window. The same empty list message appeared, this time in the left half of the window labelled Resources. Everything on the right side of the window was greyed out. Only the dark red word Add at the bottom of the window, the dark red plus sign
to the left of Add, and File, Options and ‘?’ in the menu bar were not greyed out.

When I moved the mouse over Add, it turned bright red and became a button. The empty list message disappeared under Resources, and an icon appeared in the list with a box and cursor to the right of it. I typed a Web site URL beginning with http:// and hit Enter. The right side of the window was no longer greyed out, and Check Resource Now! was now in red at the bottom. Just above it was ‘Check resource every 30 min’. I changed this to 5 minutes so that I would know quickly when an outage occurred on this site.

The rest of the right side was in an area labelled ‘If resource becomes unavailable:’. ‘Retry 0 times before run action(s)’ was just below it, and I changed the zero to one. The rest of the ‘If unavailable’ area was an Actions subarea containing:

- Display message check box, with a check mark in it by default.
- Scrollable list of messages, initially with ‘Resource is unavailable’.
- Unchecked check box: Bring this dialogue to top.
- Unchecked check box: Write to log file.
- Greyed out asw.log just below it.
- Unchecked check box: Run external file.
- Empty grey box just below it.

CHECKING SITE STATUS

When I clicked the Check Resource Now! button, nothing happened, because the Web site was up. Although this initially seemed quite reasonable, as I gained more experience with ASW it became quite annoying. Tests on sites where the operation times out often take quite a while to respond, especially with multiple retries, so you’re never sure if you’ve waited long enough.

Next, I added a second Web site, which was actually a domain name that was still available for registration, so there could not be a Web site behind it. I set it to retry 5 times before displaying a message, and to check every 30 minutes, and hit the Check Resource Now! button. In
just 5 seconds, it did all six checks and displayed an Active Server Watcher dialogue box:

Resource is unavailable

Resource name: http://www.newname.com
The server name or address could not be resolved
Status: 12007

ASW also worked well with trapped 404s, where sites display an alternative page indicating the page is not found, displaying the following ASW Resource Unavailable dialogue box:

Resource name: http://www.zdnet.com/aaa
Object not found
Status: 404

Even relatively obscure availability problems are precisely reported:

Resource name: http://cnnfn.cnn.com/techwatch
The connection with this page's server was lost.
Status: 12031

Of course, the downside of freeware is that corners get cut, and in this case documentation is the weak point. I wanted to check an external Internet tn3270e connection on an OS/390 system, but wasn’t sure how to code the URL.

Rather than a Help menu bar item, there was simply a question mark, offering the choice of ‘SmartLine Home Page’ or ‘About’. There’s no user manual in the ASW program folder, and nothing more on the Web site than the one paragraph description of the product that I read initially. The Support page provides links to FAQs, but just for the non-free products. And the only two discussion fora are for their commercial products.

I therefore went back to the Add operation. The tn3270e site also had ftp access on the same IP address, so I tried an ftp:// in front. As soon as I hit Enter, I got an error dialogue box:

Error: can only use URLs beginning with http://

I checked with a Web browser and found that the IP address with http:// in front of it didn’t work. So I wasn’t surprised when I added it to ASW and got the Resource Unavailable dialogue box:

Resource name: http://222.111.57.22
The operation timed out
Status: 12002

The http-only error message above is quite literally correct. You must enter the complete URL, with the preceding http://. Even www.site.com will not work.

On a whim, I specified port numbers and confirmed that they actually have an effect. A valid site with :80 appended to the URL continued to work. But, with :23, indicating the telnet port on a site with no telnet access, it failed as it should:

A connection with the server could not be established
Status: 12029

I then checked my ISP’s ftp site, which will also bring up a Web page if you enter the site name with http:// in front of it in your Web browser. Port 21 is ftp. In ASW:

- http://telusplanet.net worked
- http://telusplanet.net:80 worked

Next, I checked the mainframe site that I used for testing, which has tn3270e and ftp access, but no Web access. In ASW:

- http://222.111.57.22 failed
- http://222.111.57.22:80 failed
- http://222.111.57.22:23 worked

Mail servers can also be checked in this way. To determine the current URLs and port numbers for the mail servers you’re using for e-mail, check your e-mail software configuration. In Outlook 2000:

- From the menu bar, select Tools-Accounts.
- Be sure your e-mail service is selected.
- Push the Properties button.
• Click the Servers tab.
• Write down the incoming and outgoing mail server URLs.
• Click the Advanced tab.
• Write down the Server Port Numbers for the incoming and outgoing mail.

MAIL SERVER TIMEOUTS
The practicality of effectively monitoring mail servers in this way is open to question. Unlike e-commerce Web sites, where ten-second outages may mean a lot of lost customers, mail servers routinely take a long time to respond. Even though my ISP prides itself on high service levels, it still recommends that e-mail clients be set to one minute mail server timeouts.

Before long, I was getting lots of Resource unavailable messages on both mail servers. I soon discovered that ASW uses a 15 second timeout, and that there was no way to change this value. At first glance, a Retry setting of three would seem to be the equivalent of my ISP’s recommended one minute timeout. Except, of course, that giving up after 15 seconds, even if you try four times in a row, is not the same as patiently waiting 60 seconds. Especially on mail servers.

Additional testing indicated that the maximum value allowed by ASW for retries is 10. This may well be the best value to use when checking mail servers – surely at least one of 11 tries over a three-minute period should get a response within 15 seconds.

WEB SITE COMPONENTS
So far, all my tests had been on domain name or numeric IP addresses. But what about specific pages on a Web site, rather than just the home page?

• http://www.sitename.com/status.htm works
• http://www.sitename.com/test.gif fails

For the .gif, ASW’s dialogue box read (in part):
The definition for code 406 (see http://www.ietf.org/rfc/rfc2068.txt) is ‘not acceptable’. I realized that ASW probably sends Accept Headers specifying what type of content is allowable, and that does not include graphics files. I therefore tested the following file types: .txt, .asp, .jsp, and .cgi worked, but .jpg, .wav, .bmp, .mp3, .zip, and .ram failed.

An obvious pattern was emerging: ASW can check availability of Web pages but not components of Web pages. There are other shareware products that do this, and in any case it’s not what I’d selected ASW for in the first place.

One troublesome area that ASW does not handle is audio/video (a/v) streaming servers. Not only will ASW not check that a server is streaming properly, but it cannot even check that the components, typically a/v file and meta-file pointing to it, are present.

Even the less obvious URLs all work correctly. Here are four examples:

- Default file within a folder – http://cnnfn.cnn.com/techwatch/
- Same, without the final slash – http://cnnfn.cnn.com/techwatch
- cgi coding – http://www.reelradio.com/comment/comment.cgi?general~General+Comments~../index.html
- Invalid cgi coding – http://www.reelradio.com/comment/comment.cgi?general~General+Comments

ASW didn’t detect the error in the last cgi coding, probably because it’s trapped by the Web site and produces an Illegal Usage! Web page.

STACKED ERROR MESSAGES

With the Display message option, even if you don’t respond (by hitting the OK button) to the first ‘Resource is unavailable’ dialogue box, ASW continues checking and you continue to get messages for any other resources that are unavailable. In fact, if you wait long enough, you’ll get a second dialogue box for the same resource, as ASW continues cycling through, checking all resources at the ‘Check resource every nn min. interval’ set for each resource you define.
To put this in perspective, even if you stick with the 30 minute check interval, and just one resource fails as soon as you go home, if you leave your workstation on all night, you’ll be greeted with around thirty dialogue boxes on your screen the next morning.

This situation can really get out of hand if the workstation’s Internet connection fails. I didn’t test a dial-up connection, which may be handled differently, but when I pulled the workstation’s LAN cable from the local hub, through which it connects to the Internet, ASW ‘Resource Unavailable’ dialogue boxes began piling up almost immediately. A similar situation would presumably occur during those bouts of slow Internet response that occur from time to time, as timeouts occur on ASW’s attempts to contact each URL in the Resources list. Remember, ASW sets the timeout value to 15 seconds.

AUTOMATIC HIBERNATION

One solution to this glut of dialogue boxes when you’re away is to use Power Management to shut down the workstation after a specified period of inactivity. I tested Hibernation in Windows 2000 and was quite surprised to find that Power Management doesn’t consider ASW’s operation as ‘activity’, whether or not any messages were generated by Display message actions in ASW.

LOG FILES

As mentioned earlier, you can write to a log file instead. Fields within each log record are separated by tabs and each log record is separated from the next by a single line feed.

Simply remove the check mark from the Display message box, click to put a check mark in the Write to log file box, and specify a file name in the field just below. The default is asw.log, but that means it will be stored in C:\Program Files\Active Server Watcher. You can change it, but, since there is no Browse button, it does mean a lot of typing if you’re running Windows NT or 2000 and you want it in a My Documents folder. For example, to store it in the Administrator’s ASW folder, you would have to type:

C:\Documents and Settings\Administrator\My Documents\ASW\asw.log
If your typing isn’t good, you can use Windows Explorer to Copy and Paste the folder path from the Properties of the ASW folder.

PER ENTRY SETTINGS
Settings are made individually for each URL you want to check. If your list of ‘Resources to monitor’ grows beyond a very few, it becomes clear that this flexibility comes at a price. If you suddenly find that you must change the Retry value for all entries, you must select each URL on the Resources list individually and make the changes one at a time. Even if you make the decision before building the Resources list, you cannot change the ASW default, and must still change the value for each entry as you create each Resources list URL.

The flexibility, however, is useful. You can have several log files, perhaps even one for each URL you’re checking. However, it’s worth pointing out that Win 2000 Server would probably be a better place for this kind of continuous monitoring application. (Although my testing was done on a Windows 2000 Professional client workstation, I have no reason to believe that ASW would not run on Win 2000 Server.)

MULTIPLE ACTIONS
Beyond making different action, frequency of checking, and retry choices for each URL, you can also specify multiple actions for a single URL just by checking off more than one Actions box. By specifying no actions, you can temporarily disable an entry without deleting it and re-adding it later. It is, however, unclear whether ASW would actually stop checking the URL, or just stop reporting any negative results.

Additional flexibility is provided by the fact that you can create multiple Resources list entries for the same URL and specify different parameters for each. For example, you might want to:

- Write to three log files, say a master log, a site log, and a log for each URL.
- Perform different actions with different checking intervals.
RUN BATCH FILES

Another option in the Actions area is Run external file. Again, the default location is the folder where ASW was installed, by default:

C:\Program Files\Active Server Watcher

A full path to a batch file can be specified. There is no Browse button, but you can capture the path in the clipboard using the Copy and Paste technique from Properties on the batch file. Unless you begin your batch file with a CD (change directory) command, your batch file will run, and create any output files it generates, in the ASW install folder, even if the batch file is located elsewhere.

If you want to see the results in a Command Prompt session, you will have to insert a batch Pause command. Otherwise, unless the batch file takes a while to run, the session will appear only for a fraction of a second. At least, that’s the default operation of batch files in Windows 2000. As with the Display message option, if you don’t respond to the Pause before the interval specified in ‘Check resource every nn minutes’, you could end up with a screenful of Command Prompt sessions to greet you on your return.

EXECUTE PROGRAMS

You can also run executable files. You can specify just the file name, without a path, if the file is in one of the default paths like C:\WINNT\System32. For example, in Win 2000, specifying any of the following in the Run external file field will produce the same results:

• calc
• calc.exe
• C:\WINNT\System32\calc.exe
• \WINNT\System32\calc.exe
• ..\..\WINNT\System32\calc.exe

Technically, this means that a (very) few batch commands can be run directly by entering them in the Run external file box:
• Only batch commands that are also executable files.
• No parameters are allowed, not even parameters separated from the command by only a slash and no blanks.

Simple commands like pause and dir are part of command.com and are not executable files in their own right. chntfs is an executable file but gives an error message when specified without parameters.

VBSCRIPT AND JSCRIPT

If Visual Basic Scripting (VBScript) support is installed – it comes standard with Windows 2000 – you can also specify a .vbs file in ASW’s ‘Run external file’ box. To test it, the following one line hw.vbs file was created in the ASW install directory (to simplify testing):

MsgBox “Hello World”

First, it was tested by double-clicking on the file in Windows Explorer. As you might guess, it generates a dialogue box labelled VBScript with the message “Hello World” and an OK button. At first, it appeared not to work in ASW until I noticed a VBScript button in the task bar at the bottom of the screen. ASW’s dialogue box was overlaying the VBScript dialogue box and making it impossible to view until either ASW was minimized or ASW’s Always on Top option was turned off. This and other ASW options are described below.

With a little imagination, the ‘Run external file’ action offers the ability to do almost anything when a host or Web site becomes unavailable. However, some knowledge of one or more of the following is required: batch files, VBScript, JScript, or any programming language or other tool that produces an .exe or other executable file.

RESTORING AND MINIMIZING, OPTIONS, SHUT DOWN AND RESTART

The fourth of the Actions, ‘Bring this dialogue to top’ requires some ingenuity to test, as pushing the Check Resource Now! button does nothing, whether or not the Resource is available. You need to Set
Check resource every 0 min (yes, zero minutes), and then minimize ASW.

There’s one big problem with this option, however. If you have more than one entry in the Resources list, there’s no easy way to tell which entry triggered the alert. Whatever entry was highlighted when you minimized ASW is still highlighted. About the only thing you can do at this point is to temporarily turn Display Message on, and push the Check Resource Now! button.

Back to minimizing for a moment. The minimize and exit buttons in the upper left corner of the ASW window always do the same thing. By default, ASW will look like it exited, but it has an Earth globe icon in the system tray, with an animated magnifying glass slowly moving over the surface.

This behaviour is known as Hide When Minimized. Since there’s no button in the task bar at the bottom of the screen, as you would expect for a minimized application, you must double click on the icon in the system tray to bring the ASW window back to the desktop. Normal minimizing behaviour can be set from the menu bar, by selecting Options-Hide When Minimized to remove the check mark from the left of the option. You will see two other check marks and a final option that leads you to the first dialogue box you saw when the product originally started:

- Enable Watcher
- Always on Top
- Internet Options...

‘Enable Watcher’ allows you to stop ASW from automatically cycling through and checking each item on the Resources list for availability as specified in the ‘Check resource every nn min.’ box of each item. If you watch the ASW globe icon in the system tray carefully, you’ll see the magnifying glass change to a red dot.

If you would prefer to shut down ASW completely, right-click on the ASW globe icon in the system tray, and select Close from the pop-up menu. You’ll also see an option to turn Enable Watcher back on (or off if it was on). Whenever ASW is started, either automatically at Windows start-up, or manually from the Start menu, Enable Watcher
is set back on. This means that, if you want to disable ASW for an extended period, you must either uninstall it or know how to stop programs from inserting themselves into the system tray at start-up.

One final point: the ASW globe icon returns to the system tray each time you reboot or logon. And, unless you change the default Enable Watcher option, ASW begins monitoring.

ONE BUG

Despite all this testing, I only uncovered one bug. ‘Resource unavailable’ dialogue boxes for my mail servers kept appearing even after:

• Removing the check marks from all Actions for each mail server URL in the Resources list.
• Deleting the Resources list entries for the mail server URLs.

A reboot eliminated the problem, although the two mail server entries reappeared, with no Actions check marked, even though I had previously deleted both entries. With hindsight, I realize I should have tried changing the Enable Watcher option in the Options menu bar drop-down menu before resorting to a reboot.

Because this behaviour (bug) was observed on two separate workstations where ASW was installed, you’re likely to encounter it. It appears to be triggered by large numbers of changes to list entry parameters, after which most changes do not take effect.

SUMMARY

If you have reliable Internet service and can live without documentation, Active Server Watcher provides a good way to be notified whenever you’re at your workstation and any host, Web site, or perhaps mail server you’re interested in goes down. And, although I didn’t test it in that environment, there’s no reason why ASW couldn’t be run on a server to provide constant monitoring.

Finally, here are a few usage tips:

• Append a colon and a port number to the URL to check telnet, ftp, mail, and other types of non-Web access.
• The standard port numbers are 21 for ftp, 23 for tn3270e and other telnet connections, 25 for outgoing SMTP mail servers, and 110 for incoming POP3 mail servers.

• Remove all Action check marks to temporarily suspend outage reporting for a site.

• All sites to be checked must be specified with URLs beginning with http://

• Web pages, not components, can be checked.

• Set Retry to one or more for sites where momentary outages or long response times are common and you don’t wish to know about them.

• Repeat any URLs in the Resources list where you wish to specify different actions with different Retry and/or ‘Check resource every nn min’ settings.

• Remember that a single site down for an extended period can create a large number of dialogue boxes on the desktop if Display Message is specified as an Action and the workstation is left unattended and running for long periods of time.

George Walker
(Canada) © Xephon 2001

Free weekly Enterprise IS News

A weekly enterprise-oriented news service is available free from Xephon. Each week, subscribers receive an e-mail listing around 40 news items, with links to the full articles on our Web site. The articles are copyrighted by Xephon – they are not syndicated from other sources.

To subscribe to this newsletter, send an e-mail to news-list-request@xeophon.com, with the word subscribe in the body of the message. You can also subscribe to this and other Xephon e-mail newsletters by visiting Xephon’s home page, which contains a simple subscription form: see http://www.xephon.com
The top ten sources of TCP/SNA-related information

Over recent years, our Information points – reviews have looked at many sources of TCP/SNA-related information. This article summarizes the ten most valuable.

IBM MANUALS ON THE INTERNET
IBM offers thousands of its manuals, including many TCP/SNA-related publications, on the Internet at no cost for Web viewing and/or downloading. Although originally only in a browser-based simulation of BookManager, many are now (also or exclusively) being offered in Adobe Acrobat (.pdf) format.

Under the heading z/OS elements and features publications, click on the relevant version/release. Under the z/OS elements and features bookshelf heading, click on ‘List – All bookshelves’. Look for, or use your browser’s Find function to find the z/OS IBM Communications Server bookshelf and click on ‘List books’.

Under the heading OS/390 elements and features publications, click on the relevant version/release. Under the OS/390 elements and features bookshelf heading:

- Version 2.10: click on ‘List – All bookshelves’; look for, or use your browser’s Find function to find, the OS/390 IBM Communications Server bookshelf and click on ‘List books’.
- Version 2.5-7: click on ‘List – All bookshelves’; look for OS/390 eNetwork Communications Server bookshelf and click on ‘List books’.
• Version 1.2-2.4: click on ‘List – All bookshelves’; look for Communication Server for OS/390 bookshelf and click on ‘List books’.

• Version 1.1: click on ‘List – All books’; not all manuals are available on-line.

Under the heading MVS/ESA Applications: Q-Z (Disc 6) bookshelf, click on ‘List – All bookshelves’. Find the relevant version/release of TCP/IP for MVS or VTAM and click on ‘List books’.

Under the heading z/VM, VM/ESA, and VM-related product documentation, click on ‘Product publications’. Click on System/390 bookserver under the VM Library in BookManager format heading. Look for, or use your browser’s Find function to find, the bookshelf for the relevant version/release of TCP/IP for MVS or VTAM and click on ‘List books’. The z/VM bookshelf also contains the old, but still useful, VM/ESA V2R1.0 Connectivity manual.

Under the heading VSE related documentation, click on ‘VSE product manuals’ on the on-line book server. Find the relevant version of VSE and click on the Search – Titles, names or doc numbers link, then enter TCP, SNA, or any other keyword, and hit the Find button.

For specific hardware products, find the specific bookshelf and click ‘List books’. Otherwise, click List books in the first bookshelf, Hardware collection, and search for the manual(s) of interest.

REDBOOKS – http://www.redbooks.ibm.com

Redbooks have always provided an outlet for less formal material.
than manuals, and much of it is extremely valuable. Many of them are essentially detailed diaries of IBM projects, at both customer and IBM sites, with some effort made to remove installation-specific information in the sample code and the text. Others are based on technical presentations. A more recent trend, exemplified by the five-volume *ABCs of System Programming*, is to provide the type of textbooks you would expect to find in a computer bookstore.

You can do a direct search by keyword and find over 90 matches for SNA. Or you can click on *Redbooks Online* on the left sidebar. There, you’ll find a more comprehensive search capability. The right sidebar provides access to a dozen *Redbook Portals* by subject area, from where you can list all the red books on one page, most recent first, or just the 15 most popular. These portals also provide access to Redpieces, Redpapers, and Residencies. Redpieces are redbooks in progress. Redpapers do not qualify as redbooks for one reason or another, and are only available on-line. Residencies list the future openings to be a member of the team that creates a specific redbook.

IBM zSERIES NETWORKING HOME PAGE – http://www.ibm.com/servers/eserver/zseries/networking

The left sidebar allows you to drill down to a broad range of mainframe networking information for VSE, z/VM, and z/OS environments. *Products*, for example, is where you will find Communications Server for z/OS.

IDG.NET – http://www.idg.net/content/channel_content/net_theme.html

The Networking and Communications channel of IDG.net is divided into five categories: News, Products, How-to, Books, and Research. *Books* merely lists relevant *for Dummies* and other IDG books for sale. But the rest of the categories provide information from IDC Research, Network World Fusion, and other IDG publications, and the IDG News Service.

TECHREPUBLIC – http://www.techrepublic.com

To serve its two million members, TechRepublic catalogues a huge
amount of computing information both on and off the site. The number of links that lead you to books you have to buy or product marketing labelled as Research (‘White Paper’) can be frustrating, but the good stuff makes it all worthwhile. There are also *Discussions* and a *Technical Q&A* where members offer each other *TechRepublic Points* for answers to their questions.

Even for casual reading, *Search* and *Advanced Search* are usually the preferred method of navigation.

INTERNET PROTOCOLS – http://www.rfc-editor.org

Internet standards are defined by the Internet Engineering Task Force (IETF) and documented in Request For Comments (RFCs). They range from ftp commands to tn3270e protocol. RFCs began in 1969 as a series of notes on the Internet (then ARPANET) and cover a lot more than standards. They range from best practices to humour.

The RFC Editor is responsible for publishing all RFCs, a process that includes final editorial review and providing on-line search capabilities. From his home page, click on ‘RFC Search and Retrieval’ for a number of ways to find and retrieve RFCs.

XEPHON IS LIBRARY – http://www.xephon.com/is_library.html

Click the *IS Library* button in the left sidebar for free access to 200 articles extracted from Xephon Reports, including some on TCP/IP, SNA, VTAM, and other network topics. Members of Xephon’s Corporate Licence scheme have access, without additional charge, to all 400+ articles. They are divided into five categories: Business and IT strategies, New technologies and applications, Data centre management, System/390, and Other systems.

Click on an article title to have an Adobe Acrobat (.pdf) version e-mailed to you; free registration is required the first time. To locate titles of interest on this page, select text anywhere on the right side of the page and then use your browser’s Find function to search the titles. Alternatively, you can use the ‘Search Site’ function on the left sidebar to list both articles and Update journal pages.
As the site’s name implies, this site will appeal most to the extreme fringes, though perhaps not the Overclocking crowd who install their own cooling system just so they can run their processor faster than it is rated to run. But this little corner seems to have found an active networking discussion group. Click on Networking and Wireless in the left sidebar to see an expanded view of discussion topics.

OPEN DIRECTORY PROJECT

http://dmoz.org/Computers/Data_Communications
http://dmoz.org/Computers/Software/Networking
http://dmoz.org/Computers/Software/Communications
http://dmoz.org/Computers/Internet/Protocols/Transmission_Protocols

Like Yahoo!, the Open Directory Project uses human beings to create a hierarchy of pages of links to a very large number of Web sites. Unlike Yahoo!, these people are volunteer editors, and the directory can be incorporated at no charge into other search engines and services. And it is, most notably by Google and AOL.

Subcategories are listed first, which you click to drill down, and any links to Web sites are listed next. Links are listed alphabetically except for any ‘Editor’s Choice’ sites, which appear first.

YAHOO! – http://dir.yahoo.com/Computers_and_Internet/Communications_and_Networking

In response to the automated approach of search engines, Yahoo! pioneered the use of human beings to build menu-based navigation through the chaos that is the Internet. Scroll down to the Categories and Site Listings sections. A category is another Yahoo! page that covers a subtopic. Site listings are links to Web sites that cover multiple subtopics or none at all.

Jon E Pearkins
(Canada)
© Xephon 2001
Contributing to *TCP/SNA Update*

In addition to *TCP/SNA Update*, the Xephon family of *Update* publications now includes *CICS Update, MVS Update, VSAM Update, DB2 Update, RACF Update, AIX Update, Domino Update, MQ Update, NT Update, Oracle Update*, and *TSO/SPF Update*. Although the articles published are of a very high standard, the vast majority are not written by professional writers, and we rely heavily on our readers themselves taking the time and trouble to share their experiences with others. Many have discovered that writing an article is not the daunting task that it might appear to be at first glance.

They have found that the effort needed to pass on valuable information to others is more than offset by our generous terms and conditions and the recognition they gain from their fellow professionals. Often, just a few hundred words are sufficient to describe a problem and the steps taken to solve it.

If you have ever experienced any difficulties, or made an interesting discovery, you could receive a cash payment, a free subscription to any of our *Updates*, or a credit against any of Xephon’s wide range of products and services, simply by telling us all about it.

More information about contributing an article to a Xephon Update, and an explanation of the terms and conditions under which we publish articles, can be found at www.xephon.com/nfc. Alternatively, please write to the editor, Fiona Hewitt, at any of the addresses shown on page 2, or e-mail her at fionah@xephon.com
TCP/SNA news

IBM has made a number of announcements, including the following:

1. Enhancements to the 3746 Multiprotocol Controller, which consolidates IP, SNA, and APPN/HPR routing over the same media, with better network management functions, new capabilities in IP, APPN, HPR and dependent LU environments, and support for more LU-LU user sessions and SSCP-LU control sessions controlled by the Network Node Processor.

2. ACF/NCP V7R8.1 and ACF/SSP V4R8.1 with network management and serviceability enhancements, and the NTuneNCP tuning feature as an integrated component. This is designed to simplify installation and makes it easier to propagate network monitoring tools into SNA networks.

4. V2.1 of Everyplace Wireless Gateway for Multiplatforms, to help extend existing applications to mobile devices over wireless and wireline networks. It can be configured as a remote access gateway providing TCP/IP connectivity with support for strong encryption, data compression, and data optimizations to different client devices over different network types.

5. Enhancements to its performance management, testing, and scalability services. Specific functions include Web mining for Web site quality and consistency, Web site stress analysis, Web site usage analysis, TCP/IP network performance analysis, and server and database analysis.

URLs:
http://www.ibm.com
http://www.networking.ibm.com
http://www.ibm.com/software/ts/cics
http://www.software.ibm.com
http://www.ibm.com

Tivoli has announced V1R5 of its Business Systems Manager (TBSM) enterprise system management product, including, amongst other new features, an expanded NetView interface with APPN SNA resource autodiscovery and management.

URL: http://www.tivoli.com/products

Quattro software has begun shipping its SysChecker, which, amongst other things, can check whether TCP/IP interfaces are running correctly.

URL: http://www.quattrosoftware.co.uk

HP has launched its Storage on Ethernet (SoE) initiative, to provide SANs through an Ethernet and TCP/IP connection. The first products will ship by the end of the year.

URL: http://www.hp.com