

© Xephon plc 2003

March 2003

49

In this issue

u
p

d
ate

TCP/SNA

3 Getting ready to implement Web
services

16 A TCP/IP transaction for linking
CICS and PC programs

26 The FTPPUT utility
54 Communications Server in batch
71 Information point – reviews
74 March 1997 – March 2003 index
76 TCP/SNA news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

TCP/SNA Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: fionah@xephon.com

North American office
Xephon
Post Office Box 350100
Westminster, CO 80035-0100
USA
Telephone: (303) 410-9344

Subscriptions and back-issues
A year’s subscription to TCP/SNA Update,
comprising four quarterly issues, costs
£130.00 in the UK; $190.00 in the USA and
Canada; £136.00 in Europe; £142.00 in
Australasia and Japan; and £140.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
March 1999 issue, are available separately to
subscribers for £33.00 ($49.50) each
including postage.

Editorial panel
Articles published in TCP/SNA Update are
reviewed by our panel of experts. Members
include John Bradley (UK), Carlson Colomb
(Canada), Anura Gurugé (USA), Jon
Pearkins (Canada), and Tod Yampel (USA).

© Xephon plc 2003. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Editor
Fiona Hewitt

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations
or individuals accept any liability of any
kind howsoever arising out of the use of
such material. Readers should satisfy
themselves as to the correctness and
relevance to their circumstances of all advice,
information, code, JCL, EXECs, and other
contents of this journal before using it.

Contributions
When Xephon is given copyright, articles
published in TCP/SNA Update are paid for at
£170 ($260) per 1000 words for original
material. To find out more about contributing
an article, please download a copy of our
Notes for Contributors from http://
www.xephon.com/index/nfc

TCP/SNA Update on-line
Code from TCP/SNA Update, and complete
issues in Acrobat PDF format, can be
downloaded from http://www.xephon.com/
tcpsna; you will need to supply a word from
the printed issue..

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Getting ready to implement Web services

Web services shouldn’t be summarily dismissed as mere
marketing hype just because they have yet to live up to the
enormous expectations that have surrounded them since their
inception over two years ago.
There’s no doubt that Web services have yet to gain any real
traction in real-life production use, despite the near-
unprecedented push they’ve received from every quarter of the
computer industry. It’s also true that 2002, which many expected
to be the year that Web services would begin to flourish, saw
only a staggering amount of effort being expended by the
supply side (ie the vendor community) on defining and publicizing
Web services-related standards – particularly in the security
and business process ‘orchestration’ fronts – rather than any
real proliferation of mission-critical Web services.
Despite these very public setbacks, however, Web services are
very real, viable, and here to stay – for a very long time to come.
Later, we’ll examine some of the reasons why Web services
have been slow to live up to their expectations; first, however,
let’s review just why Web services are so important to the SNA
community, and to those associated with application
development, application support, or system support in particular.
Over the next few years, much of the proven, highly valuable,
business-critical functionality that is still embodied within
decades-old SNA applications will need to be converted into
Web services. So, to paraphrase that adage about old soldiers,
we can now say, without any fear of contradiction, that: “Old
SNA applications never die, they just fade away to become Web
services.”
If you think of Web services in terms of protocols such as SOAP,
WSDL, and UDDI, it may not be obvious what the connection
is to the future of mission-critical SNA applications. So it’s worth
taking a moment to do some fundamental level-setting.

 4 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

AN APPLICATION BY ANY OTHER NAME
Web services are modular, self-contained ‘applications’. Despite
the confusion in the media and even in some White Papers and
technical documentation from companies that should know
better, Web services in themselves are not abstract middleware
services related to locating, defining, and invoking applications.
Web services are meant to be functionally complete, task-
performing software components. That is a given, and should
no longer be subject to doubt or debate.
Hence the tie-in with existing SNA applications. A Web service
is a remotely invokable unit of software. In today’s business
world, mission-critical SNA applications contain some of the
most proven and most valuable units of business-logic-related
software, including software for customer credit rate calculations,
customer account maintenance, portfolio management,
manufacturing process automation, and customer account
look-up.
IBM understands the role that Web services can play when it
comes to extending the already healthy ROI of ‘legacy’
applications – one of the key features now cited for IBM
WebSphere Host Publisher is the ability to enable existing
legacy services (resident within SNA mission-critical
applications) to be deployed as new Web services.
Since IBM’s perspective with WebSphere Host Publisher is
100% SNA-centric, it’s an excellent place to start in your quest
to understand the potential of Web services. Host Publisher’s
SNA-related Web services capabilities are complemented and
augmented by the Web services support now available in IBM’s
WebSphere Application Server Version 5 and the new revamped
WebSphere Studio. Your first step, therefore, should be to visit
IBM’s portal and check out what IBM is offering in terms of Web
services-enabling technology within the WebSphere family.
The goal of Web services is to enable you to develop new Web
applications, relatively quickly, that consist of software
components from multiple, diverse sources (including those
extracted from existing SNA applications) that have been

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

dynamically assembled and loosely coupled together. This is,
essentially, distributed computing on the Web, with various
applications – many in the form of Web services – dynamically
interacting with each other. A Web service, however, is typically
not meant to be a full-blown, feature-rich application in its own
right (though, to be fair, there are no actual restrictions as to how
long, big, or complex a Web service can or should be).
For a start, a Web service doesn’t necessarily have to possess
a user interface (though IBM has recently been promoting a
type of Web service, in particular for portal applications, that
comes complete with its own GUI). However, the idea of having
a Web service without a user interface runs counter to most
people’s notion of what constitutes an application. So, although
it needs to be characterized as an application for technical
integrity, it’s better to think of a Web service as a ‘mini-
application’ or even an application ‘segment’. This means that,
although an existing mission-critical SNA application could be
made into a single Web service, it’s unlikely to be packaged in
this way. Instead, what’s likely to happen is that various parts of
it – in particular business-logic-related functionality – will be
isolated and made into discrete Web services.
There are a number of other terms that could be used to convey
the true essence of a Web service; you may prefer one or other
of these, depending on your background: subroutine, software
building block, reusable object, software component, chunk of
business logic, entry (or member) from a software library,
remote procedure (or even possibly remote procedure call), or
business process representation.

SNA WILL BE A DONOR RATHER THAN A CONSUMER
If you’re currently responsible for sustaining one or more SNA
applications, it’s highly likely that you’ll soon be asked by
management to make some recommendations as to how your
application or applications ‘relate’ to Web services. In general,
this would be a ‘fishing expedition’. Corporate IT, around the
globe, is still trying to work out the implications and ramifications

 6 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

of all this fuss about Web services. The confusion factor gets
even greater when ‘legacy’ is thrown into the mix.
The key issue that needs to be worked out here is whether SNA
applications are going to be Web service consumers or Web
service sources (or providers).
An application that relies on software functionality provided by
a Web service can be thought of as a Web service consumer.
Although there’s no technical reason why existing SNA
applications shouldn’t become Web service consumers, this is
unlikely to happen in practice. An SNA application will need to
become a Web service consumer only if you’re thinking of
extending its current functionality to include capabilities best
obtained in the form of Web services. So this boils down to the
economics and practicality of modifying and extending
applications that in many cases were developed even before
the advent of the PC. Rather than going and modifying the code
of these applications, most of which were written in COBOL,
BAL, or PL/I, a better way to extend their functionality would be
in terms of host integration (see below). The bottom line here,
however, is that, post Y2K, most IT organizations are reluctant
to make any more large-scale extensions to decades-old SNA
applications. This is why SNA applications are unlikely to be
major consumers of Web services, other than from a host
integration perspective.
On the other hand, SNA applications are veritable smorgasbords
when it comes to relevant business logic that can be packaged
for re-use as Web services. This also ties in with the very hot
and strategic interest in business process integration. The
lifeblood of any enterprise is its processes; it is they that sustain
the business. In the case of an insurance company, for example,
there will be multiple processes that relate to the issuing,
updating, and cancelling of customer policies. Each such
business process typically involves the invocation of multiple
applications. Business process integration as it applies to
enterprise applications is all about streamlining this mechanism
so that all the necessary applications can be seamlessly
integrated.

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

SNA applications embody umpteen proven, critical, and hard-
to-accurately-reproduce business processes. With Web
services, these business processes can be isolated, neatly
packaged, and readily marketed for use by new in-house
applications being developed – or even by other entities. And,
because Web services are totally platform-independent, there
are no real issues about whether one person’s application will
be able to use another’s Web service. A new Web application
being developed in Visual Basic to run on a Microsoft .NET
platform can transparently make use of business process Web
services derived from SNA applications running on a mainframe.

THE FIRST CHALLENGE FOR SNA ‘CURATORS’
The first challenge that you face when it comes to Web services
is to identify the individual business processes embodied within
your SNA applications. You’ll effectively have to do an audit of
the applications and catalog the various business-related
functionality offered by each application. Some of this application
‘audit’ groundwork may have been done as a part of the Y2K
extravaganza, in which case you can use that as a starting point
and build a catalog of the software functionality already ‘in-
stock’ within your data centre.
The next step is to determine how practical it would be to isolate
each of the business logic units identified in the above step.
This is where you need to look at SNA-specific host integration
tools such as IBM’s WebSphere Host Publisher, NetManage’s
OnWeb, and SEAGULL’s Transidiom. These provide
mechanisms to isolate business logic components from within
SNA applications, with IBM’s Host Publisher (right now at least)
offering the greatest tie-in with Web services protocols. Once
you’re comfortable that you can extract functionality from SNA
applications and make them into Web services, using tools
such as Host Publisher, you can report back to management on
your recommendation with regard to Web services and SNA
applications.
Typically, you would show management your catalog of potential
Web services that can be derived from the SNA applications.

 8 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Then, politics, avarice, competitiveness, self-preservation, and
other related factors will come into play. This is a new ball game
for most enterprises and people. Suddenly, you have a standards-
based mechanism whereby you can market and share software
functionality that has been closely guarded in-house for decades.
In many cases, the status quo will prevail; management will,
understandably, not be ready to rush off and start offering
company software resources as Web services unless they
really have to.
It’s at this point that pricing and security issues arise. The
pricing model for Web services is still in its embryonic stage;
most people, quite rightly, are still focusing their attention on the
technical side of things. To its credit, however, IBM has already
started publishing position papers about possible accounting
and metering schemes for Web services. What’s clear is that
there will be a very wide spectrum, ranging from freeware to
expensive premium offerings, and many permutations as to
how the pricing will be structured. The pricing options available
will definitely include one-time charge schemes, periodic
licensing (eg monthly or yearly), and umpteen usage-based
options. In addition, there will probably also be third-party Web
service distributors, although the inherent dynamic discovery
capability of a Web service dilutes some of the potential value
that can be offered by a distributor. In the case of Web services,
the main value of a distributor will be in handling the billing and
collection. There will doubtless also be syndicated Web services.
Management will no doubt want to table the whole issue of Web
service provision – now that they know that it can be done – until
the pricing model becomes more formalized.

WEB SERVICES AND HOST INTEGRATION
Since at least 1999, host integration has been positioned as the
final frontier of Web-to-host. Web-to-host via applet-based
emulation (eg IBM’s Host On-Demand) or 3270/5250-to-HTML
conversion (eg Hummingbird’s e-Gateway) enabled cost-
effective, Web-based, Web browser-invoked access to existing

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

SNA applications running on mainframes or AS/400s. Host
integration went one step further, and talked about how existing
SNA applications could complement new Web applications; it
was all about reusing the software functionality found within
SNA applications. Web services provides the ideal mechanism
for this software reuse scenario. Hence the now close interplay
between SNA applications, host integration, and Web services.
Host integration is an ‘execution-time’ software binding
mechanism – the software is being reused rather than ‘cut-and-
pasted’ from the old application to the new, it continues to run
on a host platform, and interacts with the new application in
terms of dynamic I/O calls. This is also the Web service model.
What’s more, Web services provide all of this within a highly
standards-based, XML-centric framework which is platform-
and programming language-independent.
With host integration (eg with IBM’s Host Publisher), the
functionality of SNA applications can be significantly enhanced
without any changes to the source code of the original application.
Rather than adding new code to the existing application, you
can create new code that runs as a separate process and
interacts with the original application at run time. The new code
can be in the form of Web services. Any consumption of Web
services by SNA applications is therefore best viewed in the
context of host integration, as opposed to SNA applications
being modified to locate and invoke Web services.

SOME EXPLANATIONS AS TO WHY WEB SERVICES ARE LATE
Web services aren’t a solution or ‘killer application’ in their own
right. Rather, they’re a support or infrastructure mechanism for
new application development. This distinction by itself can
explain many of the set-backs experienced by Web services.
Since 2000, thanks to the recessionary pressures being felt
around the globe, enterprises have been very wary of undertaking
costly new software development projects. Because there
aren’t that many applications being developed right now, there
isn’t as much demand for Web services as we might like. It’s a
kind of chicken-and-egg scenario: application development

 10 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

needs to take off again in order for Web services to prove their
worth.
This said, it’s true that the industry started hyping Web services
in autumn 2000 before they were truly ready for prime time! It
wasn’t difficult for technical people to see the potential and
promise of Web services: they addressed, in one fell swoop, so
many issues that in the past had hindered software reuse.
Moreover, Web services were totally Web centric. After the
humbling of the dot-coms, Web services promised to be the
next big thing – hence the rush to market.
Although the key enabling protocols – SOAP, WSDL, and UDDI
– were in place, however, many of the other infrastructure-
related standards, especially in the areas of security and
business process ‘orchestration’, were missing. Fortunately,
however, 2002 saw tremendous progress in the areas of
security and orchestration, and these are no longer pitfalls. The
pricing model is the next big thing that needs to be nailed down.

SECURITY AS IT APPLIES TO WEB SERVICES
As reusable pieces of business logic, sourced and invoked over
the Web, Web services have the potential to be the ultimate in
‘Trojan horse’ type threats – even taking into account that the
WS code is executed, remotely, on a third-party server. The first
and biggest concern here is making sure that the provider of a
Web service is really who they claim to be – especially if you
intend to be dealing with sensitive data.
Then there’s the whole issue as to what happens to the
information you’ve shared with a Web service. What rights,
explicit and implicit, does a provider of a Web service have
when it comes to storing, analysing, and, above all, exploiting
(eg selling) what’s been sent to the Web service?
This clearly opens up a whole Pandora’s box of issues. Today
we worry about the information that portals (eg Amazon)
automatically and transparently extract from visitors via what’s
referred to, euphemistically, as ‘collaborative filtering’. The

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

scope for this type of intrusion in the case of Web services is
equally high – and more insidious. There’s a clear need,
therefore, to determine that a WS is not unscrupulous; and the
problem here is that scruples come in many shades of grey.
Although a major concern, securing the privacy of the information
flowing to and from a WS is not a real problem. Proven solutions
like SSL-based encryption will work, and are more than adequate
for the time being.
Unfortunately, however, there are other problems. Think of the
various ‘buffer overflow’ type vulnerabilities that have been
exploited in Windows NT and some Web servers. Well, WSs,
at least in theory, can take such threats to a whole new
dimension. Related to this is the possibility of denial of service
attacks propagated through the WS connections – especially
because SOAP-based WS traffic is typically configured to flow
through ports 80 and 443 – standard HTTP and SSL-encrypted
traffic flows for Web servers, respectively. All in all, it’s not
surprising that people want to securely nail down the WS
security issues.
There is now even a forum, the XML Web Services Security
(XWSS), at www.xwss.org to act as a central clearing house for
WS-related security issues. It’s definitely worth visiting this
forum to familiarize yourself with what’s happening in this fast-
evolving arena.
The WS security-related issues being addressed by the XWSS
include the following:
• The issue of service provider and service requester

authentication. This is a mandatory prerequisite for any
service involving sensitive information. Authentication, as
we saw in the context of corporate portals last issue, can be
realized quite successfully using multiple different highly-
proven technologies. In the context of Web services, you
could also think about using Kerberos and LDAP.

• Authorization and access control. This, in effect, is the next
layer of security after bi-directional authentication has been

 12 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

performed. Authorization, which is typically implemented
using user-ids and passwords, determines the functions or
resources to which a particular user has rightful access.
Rules-based access control mechanisms can be employed
here, depending on the level and sensitivity of the functions
being offered by a Web service.

• Single sign-on is another factor when it comes to
authorization and access control, if multiple Web services
are available from the same provider. A methodology called
‘security access mark-up language’ (SAML), is being
developed in an attempt to represent relevant authentication
and authorization parameters and criteria in standard XML
form.

• Data encryption between the data flowing between a WS
requester and provider – which would, as previously
mentioned, be typically handled using standard SSL
encryption along the lines of HTTPS.

• Digital signatures and non-repudiation. When dealing with
sensitive data across the Internet, now in the context of
Web services, it’s imperative to have a mechanism to
ensure total data integrity – both to ensure that the data
wasn’t tampered with while it was crossing the Internet, and
to prevent the WS from refusing to perform the transaction
(the non-repudiation aspect). This is where digital signatures
will come into play.

As well as addressing the above issues in the context of Web
services, the XWSS is also already making strides on the notion
of ‘XML Application Firewalls’ – particularly as they apply to
Web services. It should be fairly obvious what this type of
firewall is trying to achieve. It focuses on SOAP-borne messages
flowing to and from Web services, and tries to determine that
they are authorized and unmalicious.

XML KEY MANAGEMENT (XKMS)
XML key management (XKMS), developed by folks at Microsoft,
VeriSign, and webMethods, sets out to integrate Public Key

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Infrastructure (PKI) with the Internet backbone using XML
methodologies. Its goal is to specify protocols for distributing
and registering public keys as used in dual-key public-key
cryptography.
XKMS is designed for use in conjunction with the proposed
standard for XML Signature (XML-SIG) developed by the World
Wide Web Consortium (W3C) and the Internet Engineering
Task Force (IETF) as well as an anticipated companion standard
for XML encryption.
PKI, as indicated by the inclusion of the term ‘infrastructure’ in
its name, provides a framework for facilitating secure – but at
the same time accessible and easy-to-use – public-key
encryption and digital signatures. The term ‘public’ in the title,
however, can be deceptive. PKI is not a centralized, public
service for distributing and managing keys. The ‘public’ in this
context refers to the public-key in the public-private key
combination. Today, PKIs are typically implemented on a
corporate basis using PKI facilitating products from a variety of
vendors including IBM, VeriSign, and Entrust. IBM now even
includes a comprehensive PKI on its flagship z/OS operating
system.
There is a three-way relationship between PKI, digital certificates,
and digital signatures. The use of digital certificates (DCs) for
Internet applications is dependent on PKI; without PKI, DCs
would not be as convenient to use or administer. PKI has four
main components:
• Certificate Authorities (CAs), eg VeriSign, that issue and

validate digital certificates.
• One or more registration authorities (RAs) that work with

the CA to verify a requester’s identity before the digital
certificate is issued.

• One or more public directories (typically based on LDAP)
where digital certificates, which will contain the public keys
of their owners, can be stored.

 14 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• A comprehensive and foolproof certificate management
system.

As an infrastructure scheme, PKI is expected to cater for key
back-up and recovery. Users typically have to enter a password
to access their public-key encryption keys. But users forget
their password or may leave the company. If there’s no way to
recover encryption/decryption keys in such instances, valuable
company information that has previously been encrypted may
be lost forever.
It’s therefore essential to have a secure and reliable way for a
designated and fully-validated security administrator to recover
encryption key pairs through the PKI system. Since such
recovery will be possible only if the key pairs are properly
backed up, it’s assumed that the CA will automatically keep a
back-up of keys that have been issued.
XKMS’s goal is to make PKI into a formalized, centralized,
‘public’ service as connoted by the term. XKMS consists of two
parts:
• XML Key Information Service Specification (X-KISS)
• XML Key Registration Service Specification (X-KRSS).
X-KISS defines a protocol for a Trust Service. This trust service
will resolve public key information contained in ‘XML-
SIGelements’. The X-KISS protocol allows a client of such a
service to delegate part or all of the tasks required to process
such elements.
A key objective of X-KISS is to minimize the complexity of
application implementations by allowing them to become clients
and thereby to be shielded from the complexity and syntax of
the underlying PKI used to establish trust relationships. The
underlying PKI may be based on a different specification such
as X.509.
X-KRSS specification defines a protocol for a Web service that
accepts registration of public key information. Once registered,
the public key can be used in conjunction with other WSs,
including X-KISS.

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Both protocols, as expected, are defined in terms of structures
expressed in terms of XML schema and conveyed using SOAP.
The relationships among the messages used are defined using
WSDL.
Web Services Security (WS-Security), developed by folks from
IBM, Microsoft, and VeriSign, defines enhancements to SOAP
to provide quality of protection for SOAP-borne messages
through message integrity, message confidentiality, and single
message authentication – with regard to the concerns already
raised at XWSS.org. WS-Security is meant to be used by WSs
to realize standards-based data and service integrity and
confidentiality.
WS-Security is defined in terms of the Web Services Security
Language, which gets abbreviated and referred to as WS-
Security. WS-Security is an ‘open’ and extensible mechanism
that can be used to accommodate a wide variety of security
models and encryption technologies, including PKI, Kerberos,
and SSL/TLS. WS-Security provides support for multiple security
tokens, multiple trust domains, multiple signature formats, and
multiple encryption technologies.
WS-Security, as shown below, includes a general-purpose
mechanism for associating security tokens with SOAP
messages. It doesn’t call for a specific type of security token; it’s
designed to support multiple security token formats. For example,
a client might provide proof of identity as well as further proof
that they have a particular business certification.
WS-Security also describes how to encode binary security
tokens – in particular X.509 certificates and Kerberos tickets. It
also includes mechanisms that can be used to further describe
the characteristics of the credentials that are included with a
SOAP message.
WS-Security provides for three main mechanisms:
• Security token propagation
• Message integrity
• Message confidentiality.

 16 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

BOTTOM LINE
Although they haven’t materialized as quickly as had been
originally forecast, Web services are real, viable, and here to
stay. What’s more, they’re particularly relevant to the SNA
world, since they provide the mechanism whereby the invaluable
business logic contained within existing mission-critical
applications can be repackaged for reuse by future generations
of application developers. One of the key reasons why Web
services have been slow to take off was a lack of security
measures, but this has now been rectified. If you’re an SNA
‘curator’ you should start looking at how to convert your SNA
applications to Web services using the pointers contained in
this article.
Anura Gurugé
Strategic Consultant (USA) © Xephon 2003

A TCP/IP transaction for linking CICS and PC
programs

Creating and testing programs for TCP/IP communication is
on-going and hard work. You can’t use CEDF, and CEDX is not
much use either. This article presents two universal modules –
TCP1 on IBM and TCPACTIVEX on a PC – which can be used
to simplify TCP/IP communication between CICS and PCs
using sockets. The modules are easy to use, and can be used
from a variety of PC programs and for calling a CICS program
on IBM.
TCPACTIVEX is a Visual Basic ActiveX.dll that links a CICS
program with PC programs using the RunCICS function (see
Figure 1). This function has the following parameters:
• PID. Program ID of the CICS program.
• CICSInput. Input for the requested CICS program.

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• CICSOutput. The common area after execution, ie the
results.

• ErrDesc. If the function returns a non-zero value, this is a
description of the error.

TEST1
Below is a sample VB program for testing TCPACTIVEX.
Private Sub Command1_Click()
Dim obj As New TCPACTIVEX.TCPClass1
Dim res As Integer
Dim CICSRes As String
Dim ed As String
res = obj.RunCICS("Ø1", "1234ØØØØ", CICSRes, ed)
If res <> Ø Then
 MsgBox Trim(ed) & " (CODE " & res & ")"
Else
 MsgBox CICSRes
End If
End Sub

Figure 1: Communication between a PC and CICS

Visual Basic
Visual C++

ASP
Delphi

TCPActiveX

PC

CSKL

TCP1

CICS

Program 1
Program 2

...

...

IBM
OS/390

 18 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

TCP1 is a CICS transaction that is called from CSKL. TCP1 has
the following functions:
• Receiving the RunCICS parameter CICSInput from TCP/

IP.
• Processing the link to the requested CICS program (with

the received data as input).
• Sending the results as the RunCICS parameter CICSOutput

via TCP/IP.

TCPIP01
 TCPIPØ1: PROC OPTIONS(MAIN);
 /***/
 /* TCP1 - TRANSACTION */
 /* FOR LINKING CICS PROGRAMS AND PC */
 /* VIA TCP/IP */
 /* */
 /* DEJAN JELIC APR 2ØØ2. */
 /***/

 DCL EZASOKET ENTRY OPTIONS(ASSEMBLER,RETCODE) EXTERNAL;
 /* FROM EBCDIC TO ASCII FOR SENDING DATA*/
 DCL EZACICØ4 ENTRY OPTIONS(ASSEMBLER,RETCODE) EXTERNAL;
 /* FROM ASCII TO EBCDIC FOR RECEIVING DATA*/
 DCL EZACICØ5 ENTRY OPTIONS(ASSEMBLER,RETCODE) EXTERNAL;

 DCL (SUBSTR,ADDR,CSTG,STG,LENGTH,VERIFY) BUILTIN;

 DCL TASK_START CHAR(5) INIT('#S~S#');

 DCL 1 SOKET_FUNCTIONS,
 2 SOKET_CLOSE CHAR(16) INIT('CLOSE '),
 2 SOKET_RECV CHAR(16) INIT('RECV '),
 2 SOKET_TAKESOCKET CHAR(16) INIT('TAKESOCKET '),
 2 SOKET_WRITE CHAR(16) INIT('WRITE ');
 DCL TOEBCDIC_TOKEN CHAR(16) INIT('TCPIPTOEBCDICXLT');
 DCL TOASCII_TOKEN CHAR(16) INIT('TCPIPTOASCIIXLAT');
 DCL TAKE_SOCKET BIN FIXED(31) INIT(Ø);
 DCL SOCKID BIN FIXED(15) INIT(Ø);
 DCL SOCKID_FWD BIN FIXED(31) INIT(Ø);
 DCL ERRNO BIN FIXED(31) INIT(Ø);
 DCL AF_INET BIN FIXED(31) INIT(2);

 DCL 1 TCPBUF,
 2 PROGID CHAR(2) INIT(''),

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 2 DATA CHAR(5ØØ) INIT('');
 DCL TCPBUFLEN BIN FIXED(31) INIT(Ø);

 DCL RECV_FLAG BIN FIXED(31) INIT(Ø);
 DCL CLENG BIN FIXED(15) INIT(Ø);

 DCL 1 CLIENTID_LSTN,
 2 CID_DOMAIN_LSTN BIN FIXED(31) INIT(Ø),
 2 CID_NAME_LSTN CHAR(8) INIT(' '),
 2 CID_SUBTASKNAME_LSTN CHAR(8) INIT(' '),
 2 CID_RES_LSTN CHAR(2Ø) INIT(' ');
 DCL CLIENTID_LSTN_BAZ CHAR(4Ø) BASED(ADDR(CLIENTID_LSTN));

 DCL 1 CLIENTID_APPL,
 2 CID_DOMAIN_APPL BIN FIXED(31) INIT(Ø),
 2 CID_NAME_APPL CHAR(8) INIT(' '),
 2 CID_SUBTASKNAME_APPL CHAR(8) INIT(' '),
 2 CID_RES_APPL CHAR(2Ø) INIT(' ');

 DCL 1 TCPSOCKET_PARM,
 2 GIVE_TAKE_SOCKET BIN FIXED(31) INIT(Ø),
 2 LSTN_NAME CHAR(8) INIT(' '),
 2 LSTN_SUBTASKNAME CHAR(8) INIT(' '),
 2 CLIENT_IN_DATA CHAR(35) INIT(' '),
 2 FILLER CHAR(1) INIT(' '),
 2 SOCKADDR_IN,
 3 SIN_FAMILY BIN FIXED(15) INIT(Ø),
 3 SIN_PORT BIN FIXED(15) INIT(Ø),
 3 SIN_ADDR BIN FIXED(31) INIT(Ø),
 3 SIN_ZERO CHAR(8) INIT(' ');

 DCL STATCICS BIN FIXED(31) INIT(Ø);
 DCL TMODE BIT(1) INIT('Ø'B);
 DCL MESSAGE1 CHAR(1ØØ) INIT('');
 DCL STATCICSP PIC '(6)9' INIT(Ø);
 DCL PRGSTAT BIN FIXED(31) INIT(Ø);

 /************** P R O G R A M **************************/

 PRGSTAT=INITIAL_SEC();
 IF PRGSTAT=Ø THEN PRGSTAT=TAKESOCKET_SEC();
 IF PRGSTAT=Ø THEN DO;
 TCPBUFLEN=PACKETR();
 IF TCPBUFLEN<Ø THEN PRGSTAT=-1;
 END;
 IF PRGSTAT=Ø THEN PRGSTAT=EXELINK();
 DELAY(1ØØ);
 IF TMODE THEN
 CALL EZASOKET(SOKET_CLOSE,SOCKID,ERRNO,STATCICS);
 EXEC CICS RETURN;

 20 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 INITIAL_SEC: PROC RETURNS(BIN FIXED(31));
 DCL RC BIN FIXED(31) INIT(Ø);
 CLENG=72;
 EXEC CICS RETRIEVE INTO(TCPSOCKET_PARM) LENGTH(CLENG)
 RESP(STATCICS);
 IF STATCICS¬=DFHRESP(NORMAL) THEN RC=-1;
 ELSE TMODE='1'B;
 RETURN(RC);
 END INITIAL_SEC;

 TAKESOCKET_SEC: PROC RETURNS(BIN FIXED(31));
 DCL RC BIN FIXED(31) INIT(Ø);
 CID_DOMAIN_LSTN=AF_INET;
 CID_DOMAIN_APPL=AF_INET;
 CID_NAME_LSTN=LSTN_NAME;
 CID_SUBTASKNAME_LSTN=LSTN_SUBTASKNAME;

 TAKE_SOCKET=GIVE_TAKE_SOCKET;
 SOCKID=GIVE_TAKE_SOCKET;
 SOCKID_FWD=GIVE_TAKE_SOCKET;
 CALL EZASOKET(SOKET_TAKESOCKET,SOCKID,
 CLIENTID_LSTN,ERRNO,STATCICS);
 IF STATCICS < Ø THEN RC=-1;
 ELSE DO;
 SOCKID=STATCICS;
 RC=PACKETS(TASK_START,5);
 END;
 RETURN(RC);
 END TAKESOCKET_SEC;

 PACKETS: PROC(POR,DUZ) RETURNS(BIN FIXED(31));
 /* SEND DATA */
 DCL RC BIN FIXED(31) INIT(Ø);
 DCL POR CHAR(51Ø);
 DCL DUZ BIN FIXED(31);
 CALL EZACICØ4(TOASCII_TOKEN,POR,DUZ);
 CALL EZASOKET(SOKET_WRITE,SOCKID,DUZ,POR,ERRNO,STATCICS);
 IF STATCICS < Ø THEN RC=-1;
 RETURN(RC);
 END PACKETS;

 PACKETR: PROC RETURNS(BIN FIXED(31));
 /* RECEIVE DATA */
 TCPBUF=' ';
 TCPBUFLEN=5Ø2; /* MAX LENGTH */
 CALL EZASOKET(SOKET_RECV,SOCKID,
 RECV_FLAG,TCPBUFLEN,TCPBUF,ERRNO,STATCICS);
 /* STATCICS = NUMBER OF RECEIVED CHARACTERS */
 /* STATCICS < Ø FOR ERROR */
 IF STATCICS >= Ø THEN

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 CALL EZACICØ5(TOEBCDIC_TOKEN,TCPBUF,STATCICS);
 RETURN (STATCICS);
 END PACKETR;

 SENDP: PROC(POD,DUZ) RETURNS(BIN FIXED(31));
 DCL POD CHAR(5ØØ);
 DCL DUZ BIN FIXED(31);
 DCL LPOD CHAR(51Ø);
 DCL LDUZ BIN FIXED(31);
 LPOD='#B~B#' || SUBSTR(POD,1,DUZ) || '#E~E#';
 LDUZ=DUZ+1Ø;
 RETURN(PACKETS(LPOD,LDUZ));
 END SENDP;

 EXELINK: PROC RETURNS(BIN FIXED(31));
 DCL RC BIN FIXED(31) INIT(Ø);
 DCL COMM CHAR(5ØØ);
 DCL PRGRECC CHAR(8Ø) INIT('');
 DCL 1 PRGREC BASED(ADDR(PRGRECC)),
 2 PRGID BIN FIXED(31),
 2 PRGNAME CHAR(8),
 2 PRGINPUL BIN FIXED(31),
 2 PRGOUTPL BIN FIXED(31),
 2 FILLER CHAR(6Ø);
 DCL KLJUC CHAR(4) BASED(ADDR(PRGID));

 IF VERIFY(TCPBUF.PROGID,'123456789Ø') ¬= Ø THEN
 RETURN(SENDP('ERRCICS:INVALID PARAMETER PROGID',32));

 PRGID=TCPBUF.PROGID;
 EXEC CICS READ DATASET('IØØ2VSAM') INTO(PRGRECC)
 RIDFLD(KLJUC) RESP(STATCICS);
 IF STATCICS=DFHRESP(NOTFND) THEN
 RC=SENDP('ERRCICS:UNKNOWN PROGID ' || TCPBUF.PROGID,25);
 ELSE IF STATCICS¬=DFHRESP(NORMAL) THEN DO;
 STATCICSP=STATCICS;
 MESSAGE1='ERRCICS:FILE (IØØ2VSAM) ERROR DFHRESP=' || STATCICSP;
 RC=SENDP(MESSAGE1,LENGTH(MESSAGE1));
 END;
 ELSE DO;
 IF TCPBUFLEN¬=(PRGINPUL+2) THEN
 RC=SENDP('ERRCICS:INVALID SIZE OF PARAMETER CICS INPUT',44);
 ELSE IF PRGINPUL>5ØØ THEN
 RC=SENDP('ERRCICS:INVALID VALUE OF PRGINPUL IN FILE',41);
 ELSE DO;
 COMM=TCPBUF.DATA;
 EXEC CICS LINK PROGRAM(PRGNAME) COMMAREA(COMM) RESP(STATCICS);
 IF STATCICS¬=DFHRESP(NORMAL) THEN DO;
 IF STATCICS=DFHRESP(PGMIDERR) THEN
 MESSAGE1='LINK PROGRAM ERROR DFHRESP=PGMIDERR';

 22 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 ELSE DO;
 STATCICSP=STATCICS;
 MESSAGE1='LINK PROGRAM ERROR DFHRESP=' || STATCICSP;
 END;
 MESSAGE1='ERRCICS:' || MESSAGE1;
 RC=SENDP(MESSAGE1,LENGTH(MESSAGE1));
 END;
 ELSE DO; /* OK */
 RC=SENDP(COMM,PRGOUTPL);
 IF RC=Ø THEN RC=SENDP('END',3);
 END;
 END;
 END;
 RETURN(RC);
 END EXELINK;

 END TCPIPØ1;

MODULE1.BAS
Public Buffer As String
Public TCPRes As Integer
Public Tran As String
Public SendMess As String
Public Busy As Boolean

TCPCLASS1.CLS
TCPCLASS1.CLS is the class module.
Public Function RunCICS(PID As String, CICSInput As String, CICSOutput
As String, ErrDesc As String) As Integer
 Tran = "TCP1"
 SendMess = PID & CICSInput
 fTCPIP.Show 1
 If TCPRes = Ø Then
 CICSOutput = Buffer
 ErrDesc = ""
 Else
 ErrDesc = Buffer
 RunCICS = TCPRes
 End If
End Function

FTCPIP.FRM
FTCPIP.FRM is the form with WINSOCK and TIMER
components.

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Option Explicit
Dim SockMsg As String
Dim SockStart As String
Dim SockEnd As String
Dim SockIBM As String
Dim ConnStart As Boolean
Dim ConnIBM As Boolean

Private Sub Finish()
 If Winsock1.State <> Ø Then Winsock1.Close
 Unload Me
End Sub

Private Sub Form_Activate()
If Not Busy Then
 Busy = True
 SockMsg = ""
 Buffer = ""
 ConnStart = False
 ConnIBM = False
 TCPRes = Ø
 Winsock1.Connect
' DEFINE TIMEOUT 1Øs
 Timer1.Interval = 1ØØØØ
Else
 TCPRes = -6
 Buffer = "BUSY"
 Unload Me
End If
End Sub

Private Sub Form_Load()
 Me.Caption = "CICS PROGRAM IS RUNNING. PLEASE WAIT ..."
 SockStart = "#B~B#"
 SockEnd = "#E~E#"
 SockIBM = "#S~S#"
 Winsock1.Protocol = sckTCPProtocol
 Winsock1.RemotePort = 3ØØ2
 Winsock1.RemoteHost = "4.3.2.1"
 Me.Height = Ø
 Me.Top = Ø
 Me.Left = Ø
End Sub
Private Sub Form_Unload(Cancel As Integer)
 Busy = False
End Sub

Private Sub Timer1_Timer()
 Buffer = "TIMEOUT"
 TCPRes = -1
 Finish

 24 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

End Sub

Private Sub Winsock1_Connect()
 Winsock1.SendData Tran
End Sub

Private Sub Winsock1_DataArrival(ByVal bytesTotal As Long)
Dim s1 As String
Dim Res As Integer
Dim TCPData As String
 Winsock1.GetData s1
 SockMsg = SockMsg & s1
 If Not ConnIBM Then
 Res = InStr(1, SockMsg, SockIBM)
 If Res > Ø Then
 SockMsg = Mid(SockMsg, Res + Len(SockIBM))
 s1 = SendMess
 Winsock1.SendData s1
 ConnIBM = True
 End If
 Else ' Connected to IBM
 While InStr(1, SockMsg, SockEnd) > Ø
 Res = InStr(1, SockMsg, SockStart)
 If Res > Ø Then
 If ConnStart Then
 TCPRes = -4
 Buffer = "STARTx2"
 Finish
 Else
 ConnStart = True
 SockMsg = Mid(SockMsg, Res + Len(SockStart))
 End If
 End If
 Res = InStr(1, SockMsg, SockEnd)
 If Res > Ø Then
 If ConnStart Then
 ConnStart = False
 TCPData = Left(SockMsg, Res - 1)
 SockMsg = Mid(SockMsg, Res + Len(SockEnd))
 If TCPData = "END" Then
 Finish
 ElseIf Left(TCPData, 3) = "ERR" Then
 TCPRes = -3
 Buffer = Mid(TCPData, 4)
 Finish
 Else
 Buffer = Buffer & TCPData
 End If
 Else
 TCPRes = -5

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 Buffer = "END WITHOUT START"
 Finish
 End If
 End If
 Wend
 End If ' CONNIBM
End Sub

Private Sub Winsock1_Error(ByVal Number As Integer, Description As
String, ByVal Scode As Long, ByVal Source As String, ByVal HelpFile As
String, ByVal HelpContext As Long, CancelDisplay As Boolean)
 TCPRes = -2
 Buffer = Hex(Number) & Description
 Finish
End Sub

In practice, one socket may pass two (or more) times through
the DataArrival of Winsock1 procedure. This is more evident
with large sockets. This means that it’s possible to divide one
socket into two (or more) smaller sockets (pieces).
Concatenating the pieces presents a problem, however, because
there’s no way of knowing when we’ve received a complete
response. One solution is to insert start and stop delimiters
inside a socket before sending them from CICS. If these can be
detected on the PC, we can be sure the socket is all there.
An alternative solution is to check the size of the socket after
joining the pieces. However, this doesn’t work well because
different CICS programs have differently-sized common areas.
With this method, if we want to append a new CICS program,
we would have to append commands for checking its size in our
TCPActiveX.dll and install it on all the PCs!
Note that in CICS transaction TCP1, I had to use the DELAY(100)
command. Without this command, we sometimes get unhandled
errors in TCPActiveX. I think this is caused by the PC getting a
‘close socket’ message before receiving all the data.
Note also that TCPActiveX.dll has a timer which generates a
timeout after 10 seconds and returns control to the program that
called the RunCICS function.
After receiving the PID and CICSInput parameters, the TCP1
transaction searches a VSAM file (I002VSAM) for the

 26 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The FTPPUT utility

Since IBM added the TCP/IP protocol and the traditional TCP/
IP tools to the mainframe environment, the popular tools of the
Unix world have become available to the mainframe user.
These tools offer the programmer a great deal of help with
common activities. ftp (File Transfer Protocol) is one of the more
recognizable tools in the TCP/IP tool suite, and has tremendous
potential to improve the quality of life for many mainframe users.
ftp is similar to many other tools for moving files between hosts.
You may be familiar with the traditional mainframe tools for
moving MVS files (sequential files and PDS members) to non-
mainframe platforms. These are IND$FILE, the older (and less
frequently seen) IRMA FTTSO, the newer (and now stabilized)
ISPF Workstation, and the proprietary Connect: Direct (NDM).
Each of these has pros and cons, and, in my opinion, most have
drawbacks and lack flexibility and interoperability.
The OS/390 implementation of ftp allows a mainframe to
participate with any host that supports ftp (almost every platform
these days). Even though the ftp command syntax is very
similar on most platforms (it’s governed by RFCs), I still found
the process could use a little help on the OS/390 platform – not
to extend or change the ftp implementation, but to integrate it
with existing processes.

corresponding CICS program name (PRGNAME), the length of
input data (PRGINPUL), and the length of common area
(PRGOUTPL (>=PRGINPUL)), and checks them. Instead of
this VSAM file you could of course use a memory array with the
same structure. If you do that, however, you would have to
change and recompile TCP1 when you wanted to append a new
CICS program.
Dejan Jelic
Programmer, Postal Savings Bank (Yugoslavia) © Xephon 2003

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

After trying to use ftp in existing production processes (batch
JCL), I found a number of problems:
• It was difficult to implement without significant tailoring.
• ftp jobs were susceptible to frequent modification (especially

those using relative GDGs).
• Condition code processing was not intuitively obvious.
I also found it less intuitive to teach to interactive TSO users with
a purely mainframe background. Like many TSO/ISPF users, I
commonly wanted to bring things to the mainframe for editing.
Even after five years of doing Unix Sysadmin work, I still refuse
to use the Unix vi editor. While working on multi-platform
projects I frequently wanted to get files from or put files on other
platforms while editing a mainframe dataset. Finally, under all
these circumstances, I wanted all ftp processes to be initiated
from the mainframe.
This resulted in the creation of three REXX EXECs that I and
others have found useful, presented here as the FTPPUT batch
tool (see Figure 1).

FTPPUT
The FTPPUT EXEC is a batch implementation of ftp that allows
the user to identify one or multiple sequential datasets, relative
or absolute GDGs, VSAM datasets, HFS files, and PDSs in a
single step of JCL. The program uses EXEC card parms to
specify the destination (IP address and directory) and ‘remote’
userid/password for all the files in the job and FTP* DD
statements to identify all the files to be transferred. This
implementation facilitates incorporation in PROCs by allowing
symbolics to be placed in the EXEC card parms and traditional
DD statements for all datasets to be transferred as well as the
use of dependable condition code processing.
FTPPUT depends on an ftp server running on the target
platform. All Unix platforms run an ftp server. Several are
available for the Microsoft operating systems (Win9x, NT, 2000,

 28 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

XP, etc). A-FTP and WSFTP are two examples of ftp servers
that can be downloaded from sources like Download.com to
make this a tool to move files to and from Microsoft workstations.
This was actually the original inspiration for this utility – I wanted
to download one or more PDSs and sequential files to my
workstation and didn’t want to ‘hang’ my TSO session or rewrite
the ftp subcommand input for a job every time.
If FTPPUT is used to send files to a workstation, the DNS name
or IP address must be known. In many shops, not all workstations
have a name in the DNS, and if DHCP is used the IP address
can change. NT and OS/2 users can use the IPCONFIG
command (from a Command Prompt) and Win9x users can use
the WINIPCFG command (from Start/Run) to get the
workstation’s IP address.
FTPPUT will format and execute an ftp PUT subcommand for
sequential files and create a file name on the target platform
identical to the MVS dataset name. Relative Gags will create a
file name on the target platform the same as the absolute GDG
name. If the dataset is a PDS, FTPPUT will format and execute
an ftp MPUT * subcommand which will copy all of the members
of the PDS to individual files on the target platform in the target
directory. In this case, the file names will be the same as the
member names. All member file names on the target platform
will default to upper case. I tried generating a single ftp PUT for
every member to provide upper/lower case flexibility, but
performance was worse and the visual recognition of files that
came from the mainframe became a downstream benefit.

EXEC Description
FTPPUT Batch implementation of FTP PUT processing
@FTPPUT ISPF Edit Macro to FTP PUT the contents of an edit session
@FTPGET ISPF Edit Macro to FTP GET a foreign file into an edit session

Figure 1: FTPPUT batch tool – REXX EXECs

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

If the dataset is VSAM, SORT is invoked to create a sequential
VB file to ftp PUT with the same name as the original VSAM
dataset. No special processing of VSAM is done; if it contains
packed or binary data, it will be fairly unusable downstream. On
the other hand, if it’s primarily character data and zoned decimal
data, it is readable downstream. If the file is an HFS file, the
‘basename’ will be FTP PUT and the case will be retained. If the
file is an HFS directory, the entire contents of the HFS directory
will be FTP MPUT and the case will be retained.
All transfers default to ASCII. ASCII transfers using ftp are
identical to IND$FILE TEXT transfers. One of the nice things
about ftp is that ASCII to EBCDIC conversion takes place auto-
magically. I’ve also found that the TCP/IP translation tables
used by ftp seem more accurate than IND$FILE (‘|’ is no longer
converted to ‘]’). Since my original inspiration involved moving
REXX source code PDSs around, this was an unexpected but
welcome benefit.
The JCL to run FTPPUT requires a few things:
• An EXEC card for IKJEFT01 with parms for the FTPPUT

REXX EXEC, target IP address, target directory, userid,
and password.

• Standard DD statements used in batch TSO (SYSEXEC,
SYSTSPRT, and SYSTSIN).

• DD statements beginning with FTP* to identify all the
datasets to be sent.

There are some limitations, namely:
• The FTP* DD statements do not support concatenation.
• Direct access datasets are not supported.
• Since unsupported datasets will be bypassed with only an

RC=4, it may be advisable to limit one dataset per FTPPUT
step if you must guarantee that a dataset was successfully
sent.

• Since FTP PUT can send only catalogued datasets, there
cannot be &&TEMP datasets on the FTP* DDs.

 30 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Since Unix is case sensitive, you may want to turn ‘CAPS
OFF’ on your JCL member, so the target directory can be
located on the target host.

• FTPPUT generates ftp MPUT statements for PDSs and will
always copy member names to upper case file names on
the target system. The CASE parm will not change this
situation.

• All HFS files will be transferred with the SAME case. The
CASE parm will not change this situation.

SAMPLE JCL TO RUN FTPPUT
The sample JCL to run FTPPUT is as follows:
//FTPPUT EXEC PGM=IKJEFTØ1,
// PARM='FTPPUT 1Ø.1.1.1 /data/stuff'
//SYSEXEC DD DSN=exec.pds,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//OUTPUT DD SYSOUT=*
//SYSTSIN DD DUMMY
//FTPPDS DD DSN=pds.to.send,DISP=SHR
//FTPSEQ1 DD DSN=seq.file1.to.send,DISP=SHR
//FTPSEQ2 DD DSN=seq.file2.to.send,DISP=SHR
//FTPGDG1 DD DSN=rel.gdg1.to.send(Ø),DISP=SHR
//FTPVSAM DD DSN=vsam.cluster,DISP=SHR
//FTPHFILE DD PATH='/u/mystuff/configs/parm.cfg'
//FTPHDIR DD PATH='/u/mystuff/scripts'

Parm Status Description
IP_Addr Required IP address or DNS name of target host
Directory Required Fully qualified directory of target directory on

target host
Userid Optional Userid, defaults to "anonymous"
Password Optional Password, defaults to the current userid
Mode Optional FTP Mode (ASCII or BINARY), defaults to ASCII
Case Optional Target filename case (UPPER or LOWER),

defaults to UPPER and does not apply for PDS or
HFS transfers

Figure 2: FTPPUT parms

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

FTPPUT PARMS, STATEMENTS, ACTIONS, AND RETURN CODES
Figures 2, 3, 4, and 5 show the FTPPUT parms, statements,
actions, and return codes respectively.

DDNAME Status Description
SYSEXEC Required Location of the FTPPUT REXX EXEC
SYSTSPRT Required REXX and TSO output messages
SYSTSIN Required REXX and TSO input
OUTPUT Optional FTP messages, dynamically allocated if not in the

JCL
FTP* Required At least one FTP* DD statement is required, last 5

characters of the DDNAME are selected by the user
DIAGMSGS Required All diagnostic messages from FTPPUT

Figure 3: FTPPUT DD statements

Dataset type FTP action Notes
Sequential datasets FTP PUT Same name on target
Absolute GDG FTP PUT Same name on target
Relative GDG FTP PUT Absolute GDG name on target
PDS FTP MPUT Upper case membernames on target
VSAM FTP PUT Same name on target
HFS file FTP PUT Same name, same case on target
HFS directory FTP MPUT Case retained on target
All others Bypass RC=4 and continues to the next file

Figure 4: FTPPUT actions

Return code Description
4 Unsupported dataset type
12 TSO Command failure, see SYSTSPRT for messages
Over 12 See IP User’s Guide under FTP EXIT Return Codes

Figure 5: FTPPUT return codes

 32 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

FTPPUT
/***/
/* REXX */
/***/
/* Purpose: To FTP PUT all datasets found allocated to FTP* DD's */
/*---*/
/* Syntax: FTPPUT ipaddr dir */
/*---*/
/* Parms: ipaddr - IP Address of destination (required) */
/* dir - Target directory (defaults to /) */
/* user - UserId on destination (defaults to anonymous) */
/* pass - Password for Userid (defaults to userid()) */
/* mode - ASCII or BINARY (defaults to ASCII) */
/* case - UPPER or LOWER (defaults to UPPER) */
/* PDS members are always in UPPER case */
/* */
/* Notes: Intended to run in batch */
/* */
/* Include as many FTPxxxxx DD statements as required. All will be */
/* FTP'd to the same IP Address. Does NOT support concatenation. */
/* */
/* All DD's beginning with 'FTP' will be sent. */
/* */
/* If DSN is a sequential file, then a FTP PUT will be executed */
/* If DSN is a PDS, then a FTP MPUT * will be executed */
/* If file is an HFS file, then a FTP PUT will be executed */
/* If file is an HFS directory, then FTP MPUT * will be executed */
/* */
/* Remember to set "CAPS OFF" in your JCL/PROC member if lower case */
/* is required (i.e UNIX is case sensitive) */
/* */
/* //FTPPUT EXEC PGM=IKJEFTØ1,PARM='FTPPUT 1Ø.1.1.1 c:\data\stuff' */
/* //SYSEXEC DD DSN=exec.pds,DISP=SHR */
/* //SYSTSPRT DD SYSOUT=* */
/* //OUTPUT DD SYSOUT=* (optional, FTP will create 1 per file) */
/* //DIAGMSGS DD SYSOUT=* */
/* //SYSTSIN DD DUMMY */
/* //FTPPDS DD DSN=pds.to.send,DISP=SHR */
/* //FTPSEQ1 DD DSN=seq.file1.to.send,DISP=SHR */
/* //FTPSEQ2 DD DSN=seq.file2.to.send,DISP=SHR */
/* //FTPGDG1 DD DSN=rel.gdg1.to.send(Ø),DISP=SHR */
/* //FTPVSAM DD DSN=vsan.cluster.dsn,DISP=SHR */
/* //FTPHFSF DD PATH='/u/mystuff/hello.sh' */
/* //FTPHFSD DD PATH='/u/mystuff/sql' */
/* */
/* Receiving system MUST be running an FTP Server. PC users can */
/* download the public domain A-FTP Server from Download.com */
/* */
/* PC users can use the IPCONFIG command on NT and WINIPCFG on Win9x */
/* to get the IP address for the workstation. */

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

/* */
/* All files are sent as ASCII. Filenames on the receiving system */
/* will be the same as the DSN (same as the member name if a PDS). */
/* GDG's will use absolute GDG name. */
/* */
/* PS, PO, VSAM , HFS files and HFS directories are supported. All */
/* others will be bypassed. A non-zero RC will result if a dataset */
/* is bypassed. */
/* */
/* Don't send multiple datasets if you need single dataset level */
/* confirmation in your JCL condition codes. */
/* */
/***/
/* Change Log */
/* */
/* Author Date Reason */
/* -------- --------- --- */
/* R. Zenuk Apr 2ØØØ Initial Creation */
/* R. Zenuk Ø9/24/Ø1 Combine FTPMPUT and FTPGPUT */
/* R. Zenuk Ø9/27/Ø1 1) Deal with non-PS and PO datasets */
/* 2) Lower case defaults and FTP subcmds */
/* for cleaner UNIX support */
/* 3) Improve shutdown and cleanup logic */
/* R. Zenuk 1Ø/11/Ø1 Incorporated RCEXIT */
/* R. Zenuk 1Ø/17/Ø1 Fixed MAXRC problem */
/* R. Zenuk 1Ø/3Ø/Ø1 Added updated RCEXIT and STDENTRY code */
/* R. Zenuk 11/29/Ø1 Added updated RCEXIT and STDENTRY code */
/* R. Zenuk Ø6/2Ø/Ø2 Added MODE and CASE parms and newmodel */
/* R. Zenuk Ø7/18/Ø2 Incorporated @REFRESH support */
/* R. Zenuk Ø9/Ø7/Ø2 Added HFS support */
/* R. Zenuk Ø9/11/Ø2 Added VSAM support */
/* */
/*********** @REFRESH BEGIN START 2ØØ2/Ø9/11 ØØ:41:39 *************/
/* Standard startup activities */
/***/
 call time 'r'
 parse arg parms
 signal on syntax name trap
 signal on failure name trap
 signal on novalue name trap
 probe = 'NONE'
 modtrace = 'NO'
 modspace = ''
 call stdentry 'DIAGMSGS'
 module = 'MAINLINE'
 push trace() time('L') module 'From:' sigl 'Parms:' sparms
 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'
 call modtrace 'START' sigl
/*********** @REFRESH END START 2ØØ2/Ø9/11 ØØ:41:39 *************/
/* Accept all the parms */

 34 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

/***/
 parse arg ipaddr ftpdir ftpuser ftppass ftpmode ftpcase
 if ipaddr = '' then call rcexit 999 'Required IP Address is missing'
 if ftpdir = '' then ftpdir = '/'
 if ftpuser = '' then ftpuser = 'anonymous'
 if ftppass = '' then ftppass = userid()
 if ftpmode = '' then ftpmode = 'ASCII'
 if ftpcase = '' then ftpcase = 'UPPER'
/***/
/* Loop through all DD's looking for FTP DD's */
/***/
 ddnum = ddlist()
 fddlist = ddlist
 ftpdds = Ø
 do loop=1 to ddnum
 ftpdd = word(fddlist,loop)
 if abbrev(ftpdd,'FTP',3) then
 do
 ftpdds = ftpdds + 1
/***/
/* Get filename in case this is HFS */
/***/
 ftpfile = 'garbage'
 fcount = dddsns(ftpdd)
 ftpfile = dddsns
 stat.ST_TYPE = Ø
/***/
/* Get file attributes for a USS FTP DD's */
/***/
 if substr(ftpfile,1,1) = '/' then
 do
 call rcexit syscalls('ON') 'USS Initialization error'
 URC = usswrap("stat" ftpfile "stat.")
 sysdsorg = 'HFS'
 end
 else
/***/
/* Get DSN attributes for all MVS FTP DD's */
/***/
 do
 FILERC = listdsi(ftpdd "FILE")
 if FILERC <> Ø & sysreason <> 12 then MAXRC = FILERC
 end
/***/
/* Is this a PDS? */
/***/
 select
 when sysdsorg = 'PO' then
 do
 input.4 = "lcd '"sysdsname"'"

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 input.5 = "mput *"
 input.6 = "quit"
 putcmd = input.5
 end
/***/
/* Is this a sequential file? */
/***/
 when sysdsorg = 'PS' then
 do
 if ftpcase = 'LOWER' then
 do
 lower = xrange('a','z')
 upper = xrange('A','Z')
 targetfile = translate(sysdsname,lower,upper)
 end
 else
 do
 targetfile = sysdsname
 end
 input.4 = "put" "'"sysdsname"'" targetfile
 input.5 = "quit"
 putcmd = input.4
 end
/***/
/* Is this a VSAM KSDS? */
/***/
 when sysdsorg = 'VS' then
 do
 vsamdsn = sysdsname
/***/
/* Allocate a temp SEQ DSN by prefixing VSAMDSN with current userid */
/***/
 tempdsn = userid()'.'vsamdsn
 call tsotrap "ALLOC F(SORTIN) DA('"sysdsname"') SHR REU"
 call tsotrap "ALLOC F(SORTOUT) DA('"tempdsn"')",
 "NEW UNIT(SYSDA) SPACE(5 1Ø) CYLINDERS"
/***/
/* Invoke a SORT COPY to copy the records to the temp SEQ DSN */
/***/
 sysin.1 = ' SORT FIELDS=COPY'
 call viodd "SYSIN"
 call tsotrap "EXECIO * DISKW SYSIN (STEM SYSIN. FINIS"
 parms = ''
 address ATTCHMVS "SORT" "PARMS"
/***/
/* PUT the temporary SEQ DSN as the VSAMDSN */
/***/
 if ftpcase = 'LOWER' then
 do
 lower = xrange('a','z')

 36 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 upper = xrange('A','Z')
 vsamdsn = translate(vsamdsn,lower,upper)
 end
 input.4 = "put '"tempdsn"'" vsamdsn
 input.5 = "quit"
 putcmd = input.4
 call tsotrap "FREE F(SORTIN)"
 call tsotrap "FREE F(SYSIN)"
 end
/***/
/* Is this an HFS file? */
/***/
 when substr(ftpfile,1,1) = '/' & stat.ST_TYPE = 3 then
 do
 slash = lastpos('/',ftpfile)
 path = substr(ftpfile,1,slash)
 basename = substr(ftpfile,slash+1,length(ftpfile)-slash)
 sysdsorg = 'HF'
 sysdsname = ftpfile
 input.4 = "lcd" path
 input.5 = "put" basename basename
 input.6 = "quit"
 putcmd = input.5
 end
/***/
/* Is this an HFS directory? */
/***/
 when substr(ftpfile,1,1) = '/' & stat.ST_TYPE = 1 then
 do
 sysdsorg = 'HD'
 sysdsname = ftpfile
 input.4 = "lcd" ftpfile
 input.5 = "mput *"
 input.6 = "quit"
 putcmd = input.5
 end
/***/
/* Otherwise this is an unsupported file type */
/***/
 otherwise
 do
 say left(ftpdd,8) sysdsorg 'RC=4' sysdsname sysmsglvl2
 MAXRC = 4
 iterate loop
 end
 end
/***/
/* Terminate the USS environment */
/***/
 call rcexit syscalls('OFF') 'USS Termination error'

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 end
 else
 do
 iterate loop
 end
/***/
/* Write FTP subcommands to INPUT file */
/***/
 input.1 = ftpuser ftppass
 input.2 = ftpmode
 input.3 = "cd" ftpdir
 call viodd 'INPUT'
/***/
/* Unload the parentage stack to avoid FTP problems */
/***/
 do deq=1 to queued()
 pull stackinfo
 tempq.deq = stackinfo
 end
/***/
/* Invoke FTP with '-i' to avoid prompting with MPUT */
/***/
 address TSO "FTP -i" ipaddr "(EXIT"
 EXITRC = RC
 say left(ftpdd,8) sysdsorg 'RC='EXITRC sysdsname putcmd
/***/
/* Cleanup */
/***/
 drop input.
/***/
/* VSAM cleanup */
/***/
 if sysdsorg = 'VS' then call tsotrap "FREE F(SORTOUT) DELETE"
/***/
/* Reload the parentage stack */
/***/
 do req=deq-1 to 1 by -1
 push tempq.req
 end
/***/
/* If EXITRC is non-zero, then write the INPUT to DIAGMSGS */
/***/
 if EXITRC <> Ø then
 do
 call tsotrap "EXECIO * DISKR INPUT (STEM ERRINPUT. FINIS"
 call saydd msgdd 1 'INPUT for' sysdsname putcmd 'RC='EXITRC
 do err=1 to errinput.Ø
 call saydd msgdd Ø errinput.err
 end
 end

 38 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 end
/***/
/* Shutdown */
/***/
 shutdown: nop
/***/
/* Cleanup the INPUT dataset */
/***/
 call tsotrap "FREE F(INPUT)"
/***/
/* Summary */
/***/
 say
 if ftpdds > 1 then
 say ftpdds 'datasets processed'
 else
 say ftpdds 'dataset processed'
 say
/*********** @REFRESH BEGIN STOP 2ØØ2/Ø8/Ø3 Ø8:42:33 *************/
/* Shutdown message and terminate */
/***/
 call stdexit time('e')
/*********** @REFRESH END STOP 2ØØ2/Ø8/Ø3 Ø8:42:33 *************/
/*********** @REFRESH BEGIN SUBBOX 2ØØ2/Ø8/15 12:46:24 *************/
/* */
/* Internal Subroutines provided in FTPPUT */
/* */
/* RCEXIT - Exit on non-zero return codes */
/* TRAP - Issue a common trap error message using rcexit */
/* ERRMSG - Build common error message with failing line number */
/* STDENTRY - Standard Entry logic */
/* STDEXIT - Standard Exit logic */
/* MSG - Determine whether to SAY or ISPEXEC SETMSG the message */
/* DDCHECK - Determine if a required DD is allocated */
/* DDDSNS - Returns number of DSNs in a DD and populates DDDSNS */
/* DDLIST - Returns number of DD's and populates DDLIST variable */
/* TSOTRAP - Capture the output from a TSO command in a stem */
/* SAYDD - Print messages to the requested DD */
/* JOBINFO - Get job related data from control blocks */
/* PTR - Pointer to a storage location */
/* STG - Return the data from a storage location */
/* CMDTIMER - Time a command, if this is a background run */
/* VIODD - EXECIO a stem into a TEMP PDS */
/* USSWRAP - Wrapper for USS API commands */
/* MODTRACE - Module Trace */
/* */
/*********** @REFRESH END SUBBOX 2ØØ2/Ø8/15 12:46:24 *************/
/*********** @REFRESH BEGIN RCEXIT 2ØØ2/Ø8/15 15:28:39 *************/
/* RCEXIT - Exit on non-zero return codes */
/*---*/

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

/* EXITRC - Return code to exit with (if non zero) */
/* ZEDLMSG - Message text for it with for non zero EXITRC's */
/***/
 rcexit: parse arg EXITRC zedlmsg
 if EXITRC <> Ø then
 do
 trace 'o'
/***/
/* If execution environment is ISPF then VPUT ZISPFRC */
/***/
 if execenv = 'TSO' | execenv = 'ISPF' then
 do
 if ispfenv = 'YES' then
 do
 zispfrc = EXITRC
/***/
/* Does not call ISPWRAP to avoid obscuring error message modules */
/***/
 address ISPEXEC "VPUT (ZISPFRC)"
 end
 end
/***/
/* If a message is provided, wrap it in date, time and EXITRC */
/***/
 if zedlmsg <> '' then
 do
 zedlmsg = time('L') execname zedlmsg 'RC='EXITRC
 call msg zedlmsg
 end
/***/
/* Write the contents of the Parentage Stack */
/***/
 stacktitle = 'Parentage Stack Trace ('queued()' entries):'
/***/
/* Write to MSGDD if background */
/***/
 if tsoenv = 'BACK' then
 do
 call saydd msgdd 1 zedlmsg
 call saydd msgdd 1 stacktitle
 end
 else
/***/
/* Write to the ISPF Log if foreground */
/***/
 do
 zerrlm = zedlmsg
 address ISPEXEC "LOG MSG(ISRZØØ3)"
 zerrlm = center(' 'stacktitle' ',78,'-')
 address ISPEXEC "LOG MSG(ISRZØØ3)"

 40 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 end
/***/
/* Unload the Parentage Stack */
/***/
 do queued()
 pull stackinfo
 if tsoenv = 'BACK' then
 call saydd msgdd Ø stackinfo
 else
 do
 zerrlm = stackinfo
 address ISPEXEC "LOG MSG(ISRZØØ3)"
 end
 end
/***/
/* Put a terminator in the ISPF Log for the Parentage Stack */
/***/
 if tsoenv = 'FORE' then
 do
 zerrlm = center(' 'stacktitle' ',78,'-')
 address ISPEXEC "LOG MSG(ISRZØØ3)"
 end
/***/
/* Signal SHUTDOWN. SHUTDOWN label MUST exist in the program */
/***/
 signal shutdown
 end
 else
 return
/*********** @REFRESH END RCEXIT 2ØØ2/Ø8/15 15:28:39 *************/
/*********** @REFRESH BEGIN TRAP 2ØØ2/Ø8/Ø7 11:48:14 *************/
/* TRAP - Issue a common trap error message using rcexit */
/*---*/
/* PARM - N/A */
/***/
 trap: traptype = condition('C')
 if traptype = 'SYNTAX' then
 msg = errortext(RC)
 else
 msg = condition('D')
 trapline = strip(sourceline(sigl))
 msg = traptype 'TRAP:' msg', Line:' sigl '"'trapline'"'
 call rcexit 666 msg
/*********** @REFRESH END TRAP 2ØØ2/Ø8/Ø7 11:48:14 *************/
/*********** @REFRESH BEGIN ERRMSG 2ØØ2/Ø8/1Ø 16:53:Ø4 *************/
/* ERRMSG - Build common error message with failing line number */
/*---*/
/* ERRLINE - The failing line number passed by caller from SIGL */
/* TEXT - Error message text passed by caller */
/***/

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 errmsg: nop
 parse arg errline text
 return 'Error on statement' errline',' text
/*********** @REFRESH END ERRMSG 2ØØ2/Ø8/1Ø 16:53:Ø4 *************/
/*********** @REFRESH BEGIN STDENTRY 2ØØ2/Ø9/11 Ø1:48:55 *************/
/* STDENTRY - Standard Entry logic */
/*---*/
/* MSGDD - Optional MSGDD used only in background */
/***/
 stdentry: module = 'STDENTRY'
 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'
 parse arg sparms
 push trace() time('L') module 'From:' sigl 'Parms:' sparms
 arg msgdd
 parse upper source . . execname . execdsn . . execenv .
/***/
/* Startup values */
/***/
 EXITRC = Ø
 MAXRC = Ø
 ispfenv = 'NO'
 popup = 'NO'
 lockpop = 'NO'
 keepstack = 'NO'
/***/
/* Determine environment */
/***/
 if substr(execenv,1,3) <> 'TSO' & execenv <> 'ISPF' then
 tsoenv = 'NONE'
 else
 do
 tsoenv = sysvar('SYSENV')
 "ISPQRY"
 if RC = Ø then ispfenv = 'YES'
 end
/***/
/* MODTRACE must occur after the setting of ISPFENV */
/***/
 call modtrace 'START' sigl
/***/
/* Startup message */
/***/
 lpar = mvsvar('SYSNAME')
 startmsg = execname 'started' date() time() 'on' lpar
 if tsoenv = 'BACK' then
 do
 jobname = mvsvar('SYMDEF','JOBNAME')
 jobinfo = jobinfo()
 parse var jobinfo jobtype jobnum .
 say jobname center(' 'startmsg' ',61,'-') jobtype jobnum

 42 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 say
/***/
/* If MSGDD is provided, write the STARTMSG and SYSEXEC DSN to MSGDD */
/***/
 if msgdd <> '' then
 do
 call saydd msgdd 1 startmsg
 x = listdsi('SYSEXEC' 'FILE')
 call saydd msgdd Ø execname 'loaded from' sysdsname
/***/
/* If there are PARMS, write them to the MSGDD */
/***/
 if parms <> '' then
 call saydd msgdd Ø 'Parms:' parms
/***/
/* If there is a STEPLIB, write the STEPLIB DSN MSGDD */
/***/
 if listdsi('STEPLIB' 'FILE') = Ø then
 do
 steplibs = dddsns('STEPLIB')
 call saydd msgdd Ø 'STEPLIB executables loaded',
 'from' word(dddsns,1)
 if dddsns('STEPLIB') > 1 then
 do
 do stl=2 to steplibs
 call saydd msgdd Ø copies(' ',31),
 word(dddsns,stl)
 end
 end
 end
 end
 end
 pull tracelvl . module . sigl . sparms
 call modtrace 'STOP' sigl
 interpret 'trace' tracelvl
 return
/*********** @REFRESH END STDENTRY 2ØØ2/Ø9/11 Ø1:48:55 *************/
/*********** @REFRESH BEGIN STDEXIT 2ØØ2/Ø9/11 Ø1:ØØ:51 *************/
/* STDEXIT - Standard Exit logic */
/*---*/
/* ENDTIME - Elapsed time */
/* Note: Caller must set KEEPSTACK if the stack is valid */
/***/
 stdexit: module = 'STDEXIT'
 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'
 parse arg sparms
 push trace() time('L') module 'From:' sigl 'Parms:' sparms
 call modtrace 'START' sigl
 arg endtime
 endmsg = execname 'ended' date() time() format(endtime,,1)

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

/***/
/* if MAXRC is greater then EXITRC then set EXITRC to MAXRC */
/***/
 if MAXRC > EXITRC then EXITRC = MAXRC
 endmsg = endmsg 'on' lpar 'RC='EXITRC
 if tsoenv = 'BACK' then
 do
 say
 say jobname center(' 'endmsg' ',61,'-') jobtype jobnum
 if msgdd <> '' then
 do
 call saydd msgdd 1 execname 'ran in' endtime 'seconds'
 call saydd msgdd Ø endmsg
 end
 end
/***/
/* Remove STDEXIT and MAINLINE Parentage Stack entries, if there */
/***/
 if queued() > Ø then pull . . module . sigl . sparms
 if queued() > Ø then pull . . module . sigl . sparms
 call modtrace 'STOP' sigl
/***/
/* if the Parentage Stack is not empty, display its contents */
/***/
 if queued() > Ø & keepstack = 'NO' then
 do
 say 'Leftover Parentage Stack Entries:'
 say
 do queued()
 pull stackundo
 say stackundo
 end
 EXITRC = 1
 end
/***/
/* Exit */
/***/
 exit(EXITRC)
/*********** @REFRESH END STDEXIT 2ØØ2/Ø9/11 Ø1:ØØ:51 *************/
/*********** @REFRESH BEGIN MSG 2ØØ2/Ø9/11 Ø1:35:53 *************/
/* MSG - Determine whether to SAY or ISPEXEC SETMSG the message */
/*---*/
/* ZEDLMSG - The long message variable */
/***/
 msg: module = 'MSG'
 parse arg zedlmsg
 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'
 parse arg sparms
 push trace() time('L') module 'From:' sigl 'Parms:' sparms
 call modtrace 'START' sigl

 44 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

/***/
/* If this is background or OMVS use SAY */
/***/
 if tsoenv = 'BACK' | execenv = 'OMVS' then
 say zedlmsg
 else
/***/
/* If this is foreground and ISPF is available, use SETMSG */
/***/
 do
 if ispfenv = 'YES' then
/***/
/* Does not call ISPWRAP to avoid obscuring error message modules */
/***/
 address ISPEXEC "SETMSG MSG(ISRZØØØ)"
 else
 say zedlmsg
 end
 pull tracelvl . module . sigl . sparms
 call modtrace 'STOP' sigl
 interpret 'trace' tracelvl
 return
/*********** @REFRESH END MSG 2ØØ2/Ø9/11 Ø1:35:53 *************/
/*********** @REFRESH BEGIN DDCHECK 2ØØ2/Ø9/11 Ø1:Ø8:3Ø *************/
/* DDCHECK - Determine if a required DD is allocated */
/*---*/
/* DD - DDNAME to confirm */
/***/
 ddcheck: module = 'DDCHECK'
 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'
 parse arg sparms
 push trace() time('L') module 'From:' sigl 'Parms:' sparms
 call modtrace 'START' sigl
 arg dd
 dderrmsg = 'OK'
 LRC = listdsi(dd "FILE")
/***/
/* Allow sysreason=3 to verify SYSOUT DD statements */
/***/
 if LRC <> Ø & strip(sysreason,'L',Ø) <> 3 then
 do
 dderrmsg = errmsg(sigl 'Required DD' dd 'is missing')
 call rcexit LRC dderrmsg sysmsglvl2
 end
 pull tracelvl . module . sigl . sparms
 call modtrace 'STOP' sigl
 interpret 'trace' tracelvl
 return
/*********** @REFRESH END DDCHECK 2ØØ2/Ø9/11 Ø1:Ø8:3Ø *************/
/*********** @REFRESH BEGIN DDDSNS 2ØØ2/Ø9/11 ØØ:37:36 *************/

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

/* DDDSNS - Returns number of DSNs in a DD and populates DDDSNS */
/*---*/
/* TARGDD - DD to return DSNs for */
/***/
 dddsns: module = 'DDDSNS'
 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'
 parse arg sparms
 push trace() time('L') module 'From:' sigl 'Parms:' sparms
 call modtrace 'START' sigl
 arg targdd
 if targdd = '' then call rcexit 77 'DD missing for DDDSNS'
/***/
/* Trap the output from the LISTA STATUS command */
/***/
 x = outtrap('lines.')
 address TSO "LISTALC STATUS"
 dsnnum = Ø
 ddname = '$DDNAME$'
/***/
/* Parse out the DDNAMEs, locate the target DD and concatentate DSNs */
/***/
 do ddd=1 to lines.Ø
 select
 when words(lines.ddd) = 1 & targdd = ddname &,
 lines.ddd <> 'KEEP' then
 dddsns = dddsns strip(lines.ddd)
 when words(lines.ddd) = 1 & strip(lines.ddd),
 <> 'KEEP' then
 dddsn.ddd = strip(lines.ddd)
 when words(lines.ddd) = 2 then
 do
 parse upper var lines.ddd ddname .
 if targdd = ddname then
 do
 fdsn = ddd - 1
 dddsns = lines.fdsn
 end
 end
 otherwise iterate
 end
 end
/***/
/* Get the last DD */
/***/
 ddnum = ddlist()
 lastdd = word(ddlist,ddnum)
/***/
/* Remove the last DSN from the list if not the last DD or SYSEXEC */
/***/
 if targdd <> 'SYSEXEC' & targdd <> lastdd then

 46 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 do
 dsnnum = words(dddsns) - 1
 dddsns = subword(dddsns,1,dsnnum)
 end
/***/
/* Return the number of DSN's in the DD */
/***/
 pull tracelvl . module . sigl . sparms
 call modtrace 'STOP' sigl
 interpret 'trace' tracelvl
 return dsnnum
/*********** @REFRESH END DDDSNS 2ØØ2/Ø9/11 ØØ:37:36 *************/
/*********** @REFRESH BEGIN DDLIST 2ØØ2/Ø9/11 ØØ:33:19 *************/
/* DDLIST - Returns number of DD's and populates DDLIST variable */
/*---*/
/* N/A - None */
/***/
 ddlist: module = 'DDLIST'
 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'
 parse arg sparms
 push trace() time('L') module 'From:' sigl 'Parms:' sparms
 call modtrace 'START' sigl
/***/
/* Trap the output from the LISTA STATUS command */
/***/
 x = outtrap('lines.')
 address TSO "LISTALC STATUS"
 ddnum = Ø
/***/
/* Parse out the DDNAMEs and concatenate into a list */
/***/
 ddlist = ''
 do ddl=1 to lines.Ø
 if words(lines.ddl) = 2 then
 do
 parse upper var lines.ddl ddname .
 ddlist = ddlist ddname
 ddnum = ddnum + 1
 end
 else
 do
 iterate
 end
 end
/***/
/* Return the number of DD's */
/***/
 pull tracelvl . module . sigl . sparms
 call modtrace 'STOP' sigl
 interpret 'trace' tracelvl

 47© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 return ddnum
/*********** @REFRESH END DDLIST 2ØØ2/Ø9/11 ØØ:33:19 *************/
/*********** @REFRESH BEGIN TSOTRAP 2ØØ2/Ø9/11 Ø1:22:43 *************/
/* TSOTRAP - Capture the output from a TSO command in a stem */
/*---*/
/* VALIDRC - Optional valid RC, defaults to zero */
/* TSOPARM - Valid TSO command */
/***/
 tsotrap: module = 'TSOTRAP'
 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'
 parse arg sparms
 push trace() time('L') module 'From:' sigl 'Parms:' sparms
 call modtrace 'START' sigl
 parse arg tsoparm
/***/
/* If the optional valid_rc parm is present use it, if not assume Ø */
/***/
 parse var tsoparm valid_rc tso_cmd
 if datatype(valid_rc,'W') = Ø then
 do
 valid_rc = Ø
 tso_cmd = tsoparm
 end
 call outtrap 'tsoout.'
 tsoline = sigl
 address TSO tso_cmd
 CRC = RC
/***/
/* If RC = Ø then return */
/***/
 if CRC <= valid_rc then
 do
 pull tracelvl . module . sigl . sparms
 call modtrace 'STOP' sigl
 interpret 'trace' tracelvl
 return CRC
 end
 else
 do
 trapmsg = center(' TSO Command Error Trap ',78,'-')
 terrmsg = errmsg(sigl 'TSO Command:')
/***/
/* If RC <> Ø then format output depending on environment */
/***/
 if tsoenv = 'BACK' | execenv = 'OMVS' then
 do
 say trapmsg
 do c=1 to tsoout.Ø
 say tsoout.c
 end

 48 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 say trapmsg
 call rcexit CRC terrmsg tso_cmd
 end
 else
/***/
/* If this is foreground and ISPF is available, use the ISPF LOG */
/***/
 do
 if ispfenv = 'YES' then
 do
 zedlmsg = trapmsg
/***/
/* Does not call ISPWRAP to avoid obscuring error message modules */
/***/
 address ISPEXEC "LOG MSG(ISRZØØØ)"
 do c=1 to tsoout.Ø
 zedlmsg = tsoout.c
 address ISPEXEC "LOG MSG(ISRZØØØ)"
 end
 zedlmsg = trapmsg
 address ISPEXEC "LOG MSG(ISRZØØØ)"
 call rcexit CRC terrmsg tso_cmd,
 ' see the ISPF Log (Option 7.5) for details'
 end
 else
 do
 say trapmsg
 do c=1 to tsoout.Ø
 say tsoout.c
 end
 say trapmsg
 call rcexit CRC terrmsg tso_cmd
 end
 end
 end
/*********** @REFRESH END TSOTRAP 2ØØ2/Ø9/11 Ø1:22:43 *************/
/*********** @REFRESH BEGIN SAYDD 2ØØ2/Ø9/11 Ø1:15:54 *************/
/* SAYDD - Print messages to the requested DD */
/*---*/
/* MSGDD - DDNAME to write messages to */
/* MSGLINES - number of blank lines to put before and after */
/* MESSAGE - Text to write to the MSGDD */
/***/
 saydd: module = 'SAYDD'
 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'
 parse arg sparms
 push trace() time('L') module 'From:' sigl 'Parms:' sparms
 call modtrace 'START' sigl
 parse arg msgdd msglines message
 if words(msgdd msglines message) < 3 then

 49© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 call rcexit 33 'Missing MSGDD or MSGLINES'
 if datatype(msglines) <> 'NUM' then
 call rcexit 34 'MSGLINES must be numeric'
/***/
/* Confirm the MSGDD exists */
/***/
 call ddcheck msgdd
/***/
/* If a number is provided, add that number of blank lines before */
/* and after the message */
/***/
 msgb = 1
 if msglines > Ø then
 do msgb=1 to msglines
 msgline.msgb = ' '
 end
 msgline.msgb = date() time() message
 if msglines > Ø then
 do msgt=1 to msglines
 msge = msgt + msgb
 msgline.msge = ' '
 end
/***/
/* Write the contents of the stack to the MSGDD */
/***/
 call tsotrap "EXECIO * DISKW" msgdd "(STEM MSGLINE. FINIS"
 drop msgline. msgb msgt msge
 pull tracelvl . module . sigl . sparms
 call modtrace 'STOP' sigl
 interpret 'trace' tracelvl
 return
/*********** @REFRESH END SAYDD 2ØØ2/Ø9/11 Ø1:15:54 *************/
/*********** @REFRESH BEGIN JOBINFO 2ØØ2/Ø9/11 Ø1:12:59 *************/
/* JOBINFO - Get job related data from control blocks */
/*---*/
/* ITEM - Optional item number desired, default is all */
/***/
 jobinfo: module = 'JOBINFO'
 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'
 parse arg sparms
 push trace() time('L') module 'From:' sigl 'Parms:' sparms
 call modtrace 'START' sigl
 arg item
/***/
/* Chase control blocks */
/***/
 tcb = ptr(54Ø)
 ascb = ptr(548)
 tiot = ptr(tcb+12)
 jscb = ptr(tcb+18Ø)

 50 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 ssib = ptr(jscb+316)
 asid = c2d(stg(ascb+36,2))
 jobtype = stg(ssib+12,3)
 jobnum = strip(stg(ssib+15,5),'L',Ø)
 stepname = stg(tiot+8,8)
 procstep = stg(tiot+16,8)
 program = stg(jscb+36Ø,8)
 jobdata = jobtype jobnum stepname procstep program asid
/***/
/* Return job data */
/***/
 if item <> '' & (datatype(item,'W') = 1) then
 do
 pull tracelvl . module . sigl . sparms
 call modtrace 'STOP' sigl
 interpret 'trace' tracelvl
 return word(jobdata,item)
 end
 else
 do
 pull tracelvl . module . sigl . sparms
 call modtrace 'STOP' sigl
 interpret 'trace' tracelvl
 return jobdata
 end
/*********** @REFRESH END JOBINFO 2ØØ2/Ø9/11 Ø1:12:59 *************/
/*********** @REFRESH BEGIN PTR 2ØØ2/Ø7/13 15:45:36 *************/
/* PTR - Pointer to a storage location */
/*---*/
/* ARG(1) - Storage Address */
/***/
 ptr: return c2d(storage(d2x(arg(1)),4))
/*********** @REFRESH END PTR 2ØØ2/Ø7/13 15:45:36 *************/
/*********** @REFRESH BEGIN STG 2ØØ2/Ø7/13 15:49:12 *************/
/* STG - Return the data from a storage location */
/*---*/
/* ARG(1) - Location */
/* ARG(2) - Length */
/***/
 stg: return storage(d2x(arg(1)),arg(2))
/*********** @REFRESH END STG 2ØØ2/Ø7/13 15:49:12 *************/
/*********** @REFRESH BEGIN CMDTIMER 2ØØ2/Ø9/11 Ø1:Ø5:32 *************/
/* CMDTIMER - Time a command, if this is a background run */
/*---*/
/* TIMECMD - Command to time */
/***/
 cmdtimer: module = 'CMDTIMER'
 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'
 parse arg sparms
 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 51© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 call modtrace 'START' sigl
 parse arg timecmd
 if tsoenv = 'BACK' then
 do
 cmdstart = time('e')
 call saydd msgdd Ø 'Starting Command:' timecmd
 end
 interpret timecmd
 CMDRC = RC
 if tsoenv = 'BACK' then
 do
 cmdend = time('e')
 cmddur = format((cmdend - cmdstart),,3)
 call saydd msgdd Ø 'Ending Command:' timecmd', RC='CMDRC
 call saydd msgdd Ø 'Command Duration' cmddur timecmd
 end
 pull tracelvl . module . sigl . sparms
 call modtrace 'STOP' sigl
 interpret 'trace' tracelvl
 return CMDRC
/*********** @REFRESH END CMDTIMER 2ØØ2/Ø9/11 Ø1:Ø5:32 *************/
/*********** @REFRESH BEGIN VIODD 2ØØ2/Ø9/11 Ø1:25:Ø1 *************/
/* VIODD - EXECIO a stem into a TEMP PDS */
/*---*/
/* VIODD - The member to create */
/* VIOLRECL - The LRECL for the VIODD (defautls to 8Ø) */
/***/
 viodd: module = 'VIODD'
 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'
 parse arg sparms
 push trace() time('L') module 'From:' sigl 'Parms:' sparms
 call modtrace 'START' sigl
 arg viodd violrecl viorecfm
 if viodd = '' then call rcexit 88 'VIODD missing'
 if violrecl = '' then violrecl = 8Ø
 if viorecfm = '' then viorecfm = 'F B'
/***/
/* If DD exists, FREE it */
/***/
 if listdsi(viodd 'FILE') = Ø then
 call tsotrap "FREE F("viodd")"
/***/
/* ALLOCATE a temporary SYSIN */
/***/
 call tsotrap "ALLOC F("viodd") UNIT(VIO) SPACE(1 5)",
 "LRECL("violrecl") BLKSIZE(Ø) REUSE",
 "RECFM("viorecfm") CYLINDERS"
/***/
/* Write the generated NDM SYSIN statements to the temporary DSN */
/***/

 52 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 call tsotrap "EXECIO * DISKW" viodd "(STEM" viodd". FINIS"
/***/
/* DROP the stem variable */
/***/
 interpret 'drop' viodd'.'
 pull tracelvl . module . sigl . sparms
 call modtrace 'STOP' sigl
 interpret 'trace' tracelvl
 return
/*********** @REFRESH END VIODD 2ØØ2/Ø9/11 Ø1:25:Ø1 *************/
/*********** @REFRESH BEGIN USSWRAP 2ØØ2/Ø9/11 Ø1:24:46 *************/
/* USSWRAP - Wrapper for USS API commands */
/*---*/
/* VALIDRC - Optional valid RC from the USS command, defaults to Ø */
/* USSPARM - Valid USS command */
/***/
 usswrap: module = 'USSWRAP'
 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'
 parse arg sparms
 push trace() time('L') module 'From:' sigl 'Parms:' sparms
 call modtrace 'START' sigl
 parse arg ussparm
/***/
/* If the optional valid_rc parm is present use it, if not assume Ø */
/***/
 parse var ussparm valid_rc uss_cmd
 if datatype(valid_rc,'W') = Ø then
 do
 valid_rc = Ø
 uss_cmd = ussparm
 end
 address SYSCALL uss_cmd
 URC = RC
/***/
/* If RC = Ø then return */
/***/
 if URC <= valid_rc then
 do
 pull tracelvl . module . sigl . sparms
 call modtrace 'STOP' sigl
 interpret 'trace' tracelvl
 return RETVAL
 end
 else
 do
 uerrmsg = errmsg(sigl 'USS Command:')
 call rcexit URC uerrmsg uss_cmd,
 'RETVAL='RETVAL 'ERRNO='ERRNO 'ERRNOJR='ERRNOJR
 end
/*********** @REFRESH END USSWRAP 2ØØ2/Ø9/11 Ø1:24:46 *************/

 53© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

/*********** @REFRESH BEGIN MODTRACE 2ØØ2/Ø9/11 Ø1:46:24 *************/
/* MODTRACE - Module Trace */
/*---*/
/* TRACETYP - Type of trace entry */
/* SIGLINE - The line number called from */
/***/
 modtrace: if modtrace = 'NO' then return
 arg tracetyp sigline
 tracetyp = left(tracetyp,5)
 sigline = left(sigline,5)
/***/
/* Adjust MODSPACE for START */
/***/
 if tracetyp = 'START' then
 modspace = substr(modspace,1,length(modspace)+1)
/***/
/* Set the trace entry */
/***/
 traceline = modspace time('L') tracetyp module sigline sparms
/***/
/* Adjust MODSPACE for STOP */
/***/
 if tracetyp = 'STOP' then
 modspace = substr(modspace,1,length(modspace)-1)
/***/
/* Determine where to write the traceline */
/***/
 if ispfenv = 'YES' then
/***/
/* Write to the ISPF Log, do not use ISPWRAP here */
/***/
 do
 zedlmsg = traceline
 address ISPEXEC "LOG MSG(ISRZØØØ)"
 end
 else
 say traceline
/***/
/* SAY to SYSTSPRT */
/***/
 return
/*********** @REFRESH END MODTRACE 2ØØ2/Ø9/11 Ø1:46:24 *************/

Robert Zenuk
Systems Programmer (USA) © Xephon 2003

 54 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Communications Server in batch

Although it’s not obvious from the IBM manuals, it’s possible to
access z/OS Communications Server (CS) in batch jobs, even
without running TSO (IKJEFT01). This is worth knowing, because
batch is typically the easiest way to regularly and automatically
run those tasks that network professionals and system
programmers need for clean-up, monitoring, and other
administrative functions. This article looks at useful ways to
access CS functionality in those batch jobs.

CALL ME
Both ‘Lights out’ and less drastic means of reducing Operations
staff through Automated Operations have made manual
procedures impractical – especially having the Console Operator
phone you every time there’s something you should know
about. A popular solution is to have software-initiated e-mail
sent to you, especially if you have a cell phone, Personal Digital
Assistant (PDA), or pager that can receive e-mail and notify you
as soon as it arrives.
Although any modern Automated Operations package has an
e-mail notification capability, there are three reasons why you
may want to have the batch job generate the e-mail itself:
• That’s where the problem occurred or was originally

identified.
• There’s usually more useful technical information available

that should go in the e-mail.
• Time is precious in critical situations, and it shouldn’t be

spent trying to remotely access the mainframe just so you
can read the diagnostic information that could have been in
the e-mail message.

 55© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

SMTP
Simple Mail Transfer Protocol (SMTP) is the Internet e-mail
protocol. It defines how to format the datastream to transmit the
text and headers of an e-mail message. To send e-mail, CS
provides the SMTPNOTE command in TSO, which you could
use in batch by running TSO in batch. But CS also provides a
direct batch interface through JES2 and JES3 (JESx); you can
even query the SMTP delivery queues.
This means your batch job writes output to a SYSOUT dataset
that JESx passes to CS’s SMTP address space. Although the
JESx SYSOUT class and SMTP address space names can be
changed, most installations stick to the IBM-supplied defaults
of B and SMTP. The DD name varies, but the batch job’s DD
statement looks as follows:
//SENDMAIL DD SYSOUT=(B,SMTP)

That SYSOUT output consists of CS SMTP commands. Four
SMTP commands are used to define an e-mail message. All
four are required, and must appear in the following order:
HELO, MAIL FROM, RCPT TO, and DATA. The third is a bit of
an exception, as multiple RCPT TO commands can be specified.
Only the first RCPT TO must appear where shown.

HELO
All SMTP commands begin with a four letter ‘word’. The HELO
command identifies the domain name of the sending host to
SMTP. If you’re unsure of the TCP/IP host name for the z/OS
system, it can be found in the TCPIP.DATA sequential dataset.
The default IBM DataSet Name (DSN) is TCPIP.TCPIP.DATA.
In it, you’ll usually find a HOSTNAME definition. From this
sample excerpt from the file, you would code HELO S390 as
follows:
; TCPIPJOBNAME describes the name of the non OE TCP/IP started task
; address space name.
TCPIPJOBNAME TCPIP
;
; HOSTNAME specifies the TCP host name of this system. If not
; specified, the default is P39Ø as defined in the EZAZSSI proc in

 56 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

; SYS1.PROCLIB.
;
HOSTNAME S39Ø
;

As the comments indicate, HOSTNAME need not be specified
in TCPIP.DATA. But checking SYS1.PROCLIB(EZAZSSI) on
the same system revealed no P390 value specified.
The semicolons (“;”) in column 1 of TCPIP.DATA indicate
comments, but there are so many, it can make it difficult to find
the actual definitions. One solution is to use the EXCLUDE (X)
command in the ISPF Editor’s View or Edit mode:
X ALL 1 X'5E'

This displays only the lines without a semicolon in column 1.
X'5E' is used instead of ";" (a semicolon in double quotes)
because the semicolon is the default value for ISPF’s Command
Delimiter, although this can be changed with Option 0 (zero),
ISPF Settings.

FROM/TO
The SMTP MAIL FROM command is mandatory and must
appear before any RCPT TO command. Both commands are
followed by a colon (‘:’), a less than sign (‘<’), the full path of a
single e-mail address and a greater than sign (‘>’). Up to 3,000
RCPT TO commands may be used to direct a single message
to 3,000 e-mail addresses.
It makes more sense to use your regular e-mail address as the
sender, rather than your e-mail address on the mainframe. After
all, how often do you check your mainframe e-mail?

DATA
The DATA command is entered alone on a line. All lines that
follow form the body of the message. A single period on a line
by itself ends the message body. When DATA is the last SMTP
command, the message body can be ended by the end-of-file,
eliminating the need for the period-only line.
If any line of the message body is longer than 80 characters, a

 57© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

continuation character can be used in column 80 to split the line
after columns 79, 158, 237, etc, as needed. You have a choice
of two continuation characters:
• Less than sign (‘<’)
• EBCDIC New Line (NL) character with a hexadecimal value

of 15.

JCL
To get those SMTP commands and the e-mail message body
to SMTP, the z/OS batch job must output them to a SYSOUT
dataset that JESx then routes to SMTP. As shown earlier,
unless the IBM defaults have been changed in your installation,
the DD statement is coded SYSOUT=(B,SMTP).
In a batch job, if the e-mail message will always be the same,
the simplest way to create it is to use an in-stream dataset and
copy it to the SMTP SYSOUT dataset. There are many ways to
do the copy: IEBGENER, ICEGENER, IDCAMS REPRO,
SyncSort, DFSORT, or ICETOOLS. But the SMTP sequence
numbers problem makes a Sort/Merge package the best choice.

SEQUENCE NUMBERS
CS programs, including SMTP and FTP, are probably the only
utilities, compilers, or other programs commonly used in batch
that do not, by default, accept ISPF sequence numbers (columns
73-80) in any (dataset that could conceivably come from an) in-
stream dataset. This is despite the fact that many people still
use sequence numbers in JCL to provide a form of change
control; the ISPF Editor codes a version number into the
sequence numbers of each changed line.
The presence of sequence numbers is the most common error
made when using SMTP in batch. This intolerance no doubt
results from the fact that column 80 is SMTP’s continuation
column.
If your e-mail message never exceeds a 72-character line

 58 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

length, the solution can be as simple as blanking out columns
73-80. In a
Sort/Merge package, use an INREC or OUTREC statement.

BATCH E-MAIL EXAMPLE
Putting the SMTP commands, JCL, and Sort/Merge statements
together, a simple batch job would look as follows:
//COPY EXEC PGM=ICEMAN
//SYSOUT DD SYSOUT=*
//SYSIN DD *
 INREC FIELDS=(1,72,8X)
 SORT FIELDS=COPY
//SORTIN DD *
HELO S39Ø
MAIL FROM: <Jon.Pearkins@Adiant.com>
RCPT TO: <Jon.Pearkins@Adiant.com>
DATA
Job CATCHK found ICF catalogue errors!
//SORTOUT DD SYSOUT=(B,SMTP)
//

Although not shown, there are sequence numbers on each line
of this batch job. This could be the entire batch job, triggered by
the Automated Operations system when job CATCHK returns
a non-zero condition code. Or it could be added to the CATCHK
job, along with a COND= parameter or an IF statement.

TRIGGERING THE MESSAGE
To trigger the message on any previous job step returning a
non-zero condition code, a COND parameter would be added
to the EXEC statement:
//COPY EXEC PGM=ICEMAN,COND=(Ø,GE)

The IF statement is much less confusing. The equivalent would
be:
//COPYIF IF (RC > Ø) THEN
//COPY EXEC PGM=ICEMAN,COND=(Ø,GE)
 .
 .
 .
//SORTOUT ...

 59© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

// ENDIF
//

If you want to use the same message for abends or previous job
steps not being run, you could expand the IF statement to read
as follows:
//COPYIF IF (CATCHK.RUN = FALSE OR ABEND OR RC > Ø) THEN

You can even check for specific Abend codes:
//COPYIF IF (ABENDCC=SØC4) THEN
//COPYIF IF (ABENDCC=UØØØ1) THEN

VERB
The fact that the SMTP batch interface is output-only can make
debugging difficult. Where do all the responses go, be they
error messages, return codes, positive or negative informational
feedback, statistics, or even a response to the SMTP HELP
command? Well, they all go to the batch SMTP response
dataset, but unfortunately this is automatically discarded unless
Verbose mode is turned on with the VERB command.
If you add a new line, VERB ON, before the HELO command,
SMTP will use the sender’s e-mail address specified by the
MAIL TO command to try to return the batch SMTP response
dataset. But, as the manual states:

“If an error occurs during the processing of commands over
a batch SMTP connection, such as reception of a negative
response (with a first digit of 4 or 5), an error report is mailed
back to the sender. The sender is determined from the last
MAIL FROM command received that was valid. If the
sender cannot be determined from a MAIL FROM command,
the sender is assumed to be the origination point of the
batch SMTP command dataset. The error report mailed to
the sender includes the batch SMTP response dataset and
the text of the undeliverable mail.”

Of course, if CS isn’t configured properly, you may never see the
batch SMTP response dataset, no matter what you do. And
seemingly valid e-mail address values may fail to work on the

 60 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MAIL FROM command. You should look for other indications
too, such as the situation I encountered recently on a test
system, when the TSO command SMTPNOTE returned the
following:
IKJ565ØØI COMMAND SMTPNOTE NOT FOUND

OTHER SMTP COMMANDS
The rest of the commands request information from SMTP:
• XPN. Checks whether the specified mailbox name exists

on the local host.
• HELP. Lists all the SMTP commands, or lists information on

a specified command.

Chapter
Version Manual title(s) Order # SMTP FTP Telnet REXEC/

RSH
z/OS z/OS Commun- SC31-8780 6 5 2 10

ications Server:
IP User’s Guide
(and Commands)

OS/390 OS/390 Comm- GC31-8514-06 6 5 2 11
V2.10 unications Server:

IP User’s Guide
OS/390 OS/390 GC31-8514 4 3 2 8
V2.5-2.9 eNetwork/

SecureWay
Communications
Server: IP User’s
Guide

OS/390 TCP/IP Version 3 SC31-7136 4 3 2 8
V1.1-2.4 for MVS: User’s

Guide
MVS/ESA TCP/IP Version 2 SC31-6087 12 - - -
with TCP/ for MVS: Program-
IP V2.2.1 mer’s Reference
TCP/IP TCP/IP Version 2 SC31-6088 - 4 2 11
V2.2.1 for MVS: User’s

Guide

Figure 1: IBM manual references

 61© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• NOOP. Returns a 250 OK response from SMTP.
• QUEU. Returns information on queued mail.
• QUIT. Never required in batch.
• RSET. Resets the SMTP connection.
• TICK. Inserts an identifier into the batch SMTP response

dataset.
• VRFY. Same as EXPN.
For more information, see the IBM manual appropriate for your
version of z/OS, OS/390, or TCP/IP (MVS/ESA) in Figure 1;
check the SMTP chapter number listed for a section entitled
‘SMTP Commands’. IBM manuals are also available on-line at
http://www.ibm.com/servers/eserver/zseries/zos/bkserv

SUBJECT, TO, CC
Among all the SMTP commands, you won’t find one to define
the Subject field of the e-mail message. In fact, RCPT TO
doesn’t fill in the To field, presumably because the e-mail
address could be a CC or BCC entry. SMTP determines all
these fields from the body of the message, and will even
override the From field obtained from the MAIL FROM command,
though the MAIL FROM value will still appear in the Return Path
field of the Internet mail header.
Revising the previous example, the SMTP command and
datastream would look as follows:
HELO S39Ø
MAIL FROM: <Jon.Pearkins@Adiant.com>
RCPT TO: <Jon.Pearkins@Adiant.com>
DATA
From: System Administrator <Jon.Pearkins@Adiant.com>
To: Jon E. Pearkins <Jon.Pearkins@Adiant.com>
Subject: CATCHK Problem
Job CATCHK found ICF catalogue errors!

 62 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

ATTACHMENTS
As its name states, SMTP is a Simple protocol that doesn’t
include support for attachments, encryption, or non-printable
text in e-mail – other Internet protocols address those needs.
However, you can dynamically generate data for an e-mail
message in z/OS batch, as in the following example:
//COPY EXEC PGM=ICEMAN
//SYSOUT DD SYSOUT=*
//SYSIN DD *
 INREC FIELDS=(1,72,8X)
 SORT FIELDS=COPY
//SORTIN DD *
HELO S39Ø
MAIL FROM: <Jon.Pearkins@Adiant.com>
RCPT TO: <Jon.Pearkins@Adiant.com>
DATA
From: System Administrator <Jon.Pearkins@Adiant.com>
To: Jon E. Pearkins <Jon.Pearkins@Adiant.com>
Subject: CATCHK Problem
Job CATCHK found ICF catalogue errors!
//SORTOUT DD DSN=&&FB8Ø,SPACE=(TRK,(2,5)),
// RECFM=FB,LRECL=8Ø,
// DISP=(NEW,PASS)
//LMCAT EXEC PGM=IDCAMS
//SYSPRINT DD DSN=&&VBA133,SPACE=(TRK,(2,5)),
// RECFM=VBA,LRECL=137,
// DISP=(NEW,PASS)
//SYSIN DD *
 LISTCAT ENTRIES(CATALOG.OS39Ø.MASTER) ALL
//CONVERT EXEC PGM=ICEMAN
//SYSOUT DD SYSOUT=*
//SYSIN DD *
 OUTFIL OUTREC=(6,79,1X),CONVERT
 SORT FIELDS=COPY
//SORTIN DD DSN=&&VBA133,DISP=(OLD,DELETE)
//SORTOUT DD DSN=&&FB8Ø,DISP=(MOD,PASS)
//SPOOL EXEC PGM=ICEMAN
//SYSOUT DD SYSOUT=*
//SYSIN DD *
 SORT FIELDS=COPY
//SORTIN DD DSN=&&FB8Ø,DISP=(OLD,DELETE)
//SORTOUT DD SYSOUT=(B,SMTP)
//

Four steps are required to add IDCAMS output to the end of an
e-mail message because SYSPRINT output from IDCAMS is
generated in 139-byte VBA records. DFSORT is used to

 63© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

convert the variable-length records to 80-byte Fixed Block (FB)
format.
If you need to see more than the first 79 characters of each
IDCAMS print line, change the OUTFIL in the CONVERT job
step to read:
OUTFIL OUTREC=(6,79,X'15',/,85,53,27X),CONVERT,VLFILL=C' '

This splits each IDCAMS print line into two, using the SMTP
continuation character (X'15') in column 80 to convince your e-
mail system to display the full 132 width of each line. By
DFSORT’s method of counting, column 6 is the first character
of the print line, with columns 1-4 the length field of each
variable-length record, and column 5 the carriage control
character. The slash splits the single input record into two
output records and VLFILL pads blanks on the end of any short
variable-length input records. CONVERT performs the variable-
to fixed-length conversion.
Note that this OUTFIL statement wasn’t tested in SyncSort, and
it won’t work in older versions of DFSORT – both the slash and
VLFILL were new to DFSORT Release 14, which first became
available in September 1998. To determine what Sort/Merge
product and version you’re currently running, run the following
batch job:
//VERS EXEC PGM=SORT
//SYSOUT DD SYSOUT=*
//SORTIN DD DUMMY
//SORTOUT DD DUMMY
//SYSIN DD DUMMY
//

Expect a Condition Code of 16, but on SYSOUT you should see
something like this:
ICEØØØI 1 - CONTROL STATEMENTS FOR 574Ø-SM1, DFSORT REL 14.Ø
ICEØ1ØA Ø NO SORT OR MERGE CONTROL STATEMENT
ICEØ52I 3 END OF DFSORT

If the size of the e-mail is a problem, selection logic could be
added to the Sort/Merge CONVERT job step. Alternatively, the
whole process could be written in REXX, running under TSO in

 64 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

batch, to isolate just the LISTCAT information required, and
even format it into the e-mail message itself.

TRANSFERRING FILES
There are many reasons why you might want to transfer
datasets or PDS members from one computer system to
another, and ftp is usually the best way to do it. One of your most
common needs is probably to share freeware or software
you’ve written yourself, usually as source code, but occasionally
as object code or a load module. Assuming your z/OS mainframe
is either the source or destination, the other system involved
might be another mainframe, a workstation, or a non-mainframe
host/server.
If a workstation is involved, it’s always best to initiate the ftp
transfer from the workstation, as they aren’t servers, and aren’t
set up to receive unexpected ftp requests at any moment of the
day. A workstation’s IP address is also neither fixed nor
predictable in today’s DHCP-based networks.
For other mainframes, a straight EBCDIC to EBCDIC transfer
is the goal, whether the program is source or machine-readable
code. Virtually all non-mainframe host/servers will involve
source code only and require translation between EBCDIC and
ASCII. However, there are some exceptions, such as cbttape.org,
where datasets are converted to TSO XMIT format, zipped in
EBCDIC, and transferred in binary.

FTP IN BATCH
CS supports ftp in z/OS batch, beyond the use of the ftp
command in batch TSO, though you’ll need a keen eye to spot
it in the CS IP User’s Guide and Commands manual. Section
4.9 is entitled ‘Submitting ftp requests in batch’. There, you’ll
find that the TSO FTP command and batch JCL listed below are
equivalent:
FTP 9.67.112.25
//FTP EXEC PGM=FTP,PARM='9.67.112.25'

 65© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

FTP commands are read from the INPUT DD name; like SMTP,
no sequence numbers are allowed. Server responses are listed
on either OUTPUT or SYSPRINT, whichever DD name is
present. There are a number of reasons why you might want to
include a DD statement for NETRC and store the ftp server’s ID
and password in a dataset or PDS member rather than at the
beginning of the INPUT dataset. For example, if INPUT is an in-
stream dataset (DD *), you may not want the password to
appear in the JCL (even though there are other ways to prevent
it from being printed in the job output). More likely, if there are
several batch jobs that use the same ftp ID and password, it
would be a lot easier to maintain if a password change meant
changing a single NETRC file, not every job’s JCL.
Many ftp sites maintain an anonymous log-on capability that
eliminates the concern over ID and password. You simply log in
with the ID of ANONYMOUS and use your e-mail address as a
password.

BETWEEN MAINFRAMES
To transfer a file from another mainframe, in this case a PDS
member from another z/OS system, the batch job might be as
shown below, without ISPF sequence numbers. NETRC would
normally be a common dataset or PDS member with many host
entries and shared with other batch jobs using FTP. Alternatively,
it might have a DSN of userid.NETRC so it would automatically
be used for all on-line ftp sessions under that Userid in TSO or
z/OS Unix System Services (USS). Here, simply to show
everything in one place, it’s an in-stream dataset:
//FTPTEST EXEC PGM=FTP,PARM='2Ø9.217.251.162'
//OUTPUT DD SYSOUT=*
//INPUT DD *
 CD FB132.DATA
 EBCDIC
 GET SHCMDTRP
 QUIT
//NETRC DD *
MACHINE 2Ø9.217.251.162 LOGIN JONPE PASSWORD MYPW
//

 66 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

CS contacts the host at IP address 209.217.251.162 (from
PARM=) on Port 21, the standard FTP port number, requesting
a connection. Once connected, a userid and password are
requested and provided (JONPE and MYPW) from NETRC.
Log-in is completed and ftp commands are accepted, as
entered on DD name INPUT:
• Change Directory (CD) into the JONPE.FB132.DATA PDS.
• Set the transfer type to EBCDIC to do a text transfer (not

binary) without any ASCII-EBCDIC conversion.
• Transfer (GET) the PDS member SHCMDTRP to your

mainframe.
• Terminate (QUIT) the FTP session.
Here’s what you’d see on the OUTPUT DD, routed to JESx
SYSOUT:
EZA1736I FTP 2Ø9.217.251.162
EZA145ØI IBM FTP CS V2R1Ø 2ØØØ Ø93 23:39 UTC
EZA1554I Connecting to: 2Ø9.217.251.162 port: 21.
22Ø-FTPD1 IBM FTP CS V2R1Ø at S39Ø, 23:49:16 on 2ØØ3-Ø1-13.
22Ø Connection will close if idle for more than 5Ø minutes.
EZA17Ø1I >>> USER JONPE
331 Send password please.
EZA17Ø1I >>> PASS
23Ø JONPE is logged on. Working directory is "JONPE.".
EZA146ØI Command:
EZA1736I CD FB132.DATA
EZA17Ø1I >>> CWD FB132.DATA
25Ø "JONPE.FB132.DATA" partitioned data set is working directory
EZA146ØI Command:
EZA1736I EBCDIC
EZA17Ø1I >>> TYPE E
2ØØ Representation type is Ebcdic NonPrint
EZA146ØI Command:
EZA1736I GET SHCMDTRP
EZA17Ø1I >>> PORT 2Ø9,217,251,162,8,2Ø1
2ØØ Port request OK.
EZA17Ø1I >>> RETR SHCMDTRP
125 Sending data set JONPE.FB132.DATA(SHCMDTRP) FIXrecfm 8Ø
25Ø Transfer completed successfully.
EZA1617I 9Ø4 bytes transferred in Ø.ØØ5 seconds.
 Transfer rate 18Ø.8Ø Kbytes/sec.
EZA146ØI Command:
EZA1736I QUIT

 67© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

EZA17Ø1I >>> QUIT
221 Quit command received. Goodbye.

The SHCMDTRP member ends up as a sequential dataset with
a DSN of userid.SHCMDTRP, where ‘userid’ is the RACF ID
under which the batch job was run. Despite the ‘FIXrecfm 80’
listed in the 125 Sending message, the dataset is created
Variable Blocked (VB) with a 256-byte record size (LRECL) and
6233-byte block size (BLKSIZE).
You can choose the DSN on your system by specifying it as the
second parameter of the ftp GET statement. Adding ‘(REPLACE’
to the end of the statement allows you to pre-allocate the
dataset. If you’d prefer a PDS member, specify the member
name instead of the DSN as the second parameter on the GET
statement, after having set the local directory to the PDS with
the LCD (Local Change Directory) command.

CONNECTING TO A NON-MAINFRAME
Only the transfer type differs when connecting to a non-
mainframe. The ftp SYSTEM command can be helpful, as it
indicates the operating system being run on the host. In the ftp
session above, the mainframe responded to the SYSTEM
command with a single line, split for printing below:
215 MVS is the operating system of this server.
 FTP Server is running on OS/39Ø UNIX System Services.

The non-mainframe host used in the next example responded:
215 UNIX Type: L8

IBM offers a pair of catalogue utilities as freeware at the
following address:
http://knowledge.storage.ibm.com/vsam/vsaminfo/downloadutilitys.shtml

The batch job to obtain the VVDSFIX tool might look as follows:
//ALLOCVV EXEC PGM=IEFBR14
//VVDSFIX DD DSN=&SYSUID..VVDSFIX.VER13.TRSD,DISP=(MOD,CATLG),
// DSORG=PS,
// LRECL=1Ø24,BLKSIZE=27648,RECFM=FB,SPACE=(CYL,(1,2))
//FTPTEST EXEC PGM=FTP
//OUTPUT DD SYSOUT=*

 68 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

//INPUT DD *
 FTP.SOFTWARE.IBM.COM
 ANONYMOUS
 JON.PEARKINS@ADIANT.COM
 CD s39Ø/mvs/tools
 BIN
 GET VVDSFIX.VER13.TRSD (REPLACE
 QUIT
//

Rather than use the PARM= and NETRC DD statement, the
site, ID, and password are coded as the first three lines of the
INPUT in-stream dataset. Because this Unix ftp server is case-
sensitive, the subdirectories (s390/mvs/tools) had to be coded
in lower-case, and the file (VVDSFIX.VER13.TRSD) had to be
coded as upper-case. BIN sets the transfer type to Binary,
ensuring that ASCII to EBCDIC translation doesn’t occur, nor
does the usual elimination of Nulls and other characters that
occurs with text transfers.
As documented on the VVDSFIX Instructions Web page, the
VVDSFIX sequential dataset must be pre-allocated, and the
REPLACE parameter must be used in the FTP GET statement.
Otherwise, the LRECL and other dataset attributes will be
incorrect. DISP=MOD was used so that the job could be re-run
without deleting the dataset.
The OUTPUT SYSOUT dataset looks like this:
EZA1736I FTP
EZA145ØI IBM FTP CS V2R1Ø 2ØØØ Ø93 23:39 UTC
EZA1456I Connect to ?
EZA1736I FTP.SOFTWARE.IBM.COM
EZA1554I Connecting to: dispsd-4Ø-www3.boulder.IBM.COM
 2Ø7.25.253.4Ø port: 21.
22Ø service.boulder.ibm.com FTP server
 (Version wu-2.6.2(1) Mon Dec 3 15:26:19 MST 2ØØ1) ready.
EZA1459I NAME (FTP.SOFTWARE.IBM.COM:JONPE):
EZA17Ø1I >>> USER ANONYMOUS
331 Guest login ok, send your complete e-mail address as password.
EZA1789I PASSWORD:
EZA17Ø1I >>> PASS
23Ø-Please read the file README
23Ø- it was last modified on Thu Aug 9 Ø8:15:27 2ØØ1 - 522 days ago
23Ø Guest login ok, access restrictions apply.
EZA146ØI Command:
EZA1736I CD s39Ø/mvs/tools

 69© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

EZA17Ø1I >>> CWD s39Ø/mvs/tools
25Ø CWD command successful.
EZA146ØI Command:
EZA1736I BIN
EZA17Ø1I >>> TYPE I
2ØØ Type set to I.
EZA146ØI Command:
EZA1736I GET VVDSFIX.VER13.TRSD (replace
EZA17Ø1I >>> PORT 2Ø9,217,251,162,8,2Ø3
2ØØ PORT command successful.
EZA17Ø1I >>> RETR VVDSFIX.VER13.TRSD
15Ø Opening BINARY mode data connection for
 VVDSFIX.VER13.TRSD (14336 bytes).
226 Transfer complete.
EZA1617I 14336 bytes transferred in 2.63Ø seconds.
 Transfer rate 5.45 Kbytes/sec.
EZA146ØI Command:
EZA1736I QUIT
EZA17Ø1I >>> QUIT
221-You have transferred 14336 bytes in 1 files.
221-Total traffic for this session was 14996 bytes in 1 transfers.
221-Thank you for using the FTP service on service.boulder.ibm.com.
221 Goodbye.

TELNET AND REXEC
ftp can’t do everything you might want to do, especially on
another z/OS host. For example, if you’re transferring software
that comes with a VSAM data file, ftp can’t help you as it can’t
transfer VSAM files. Your best bet is to REPRO the VSAM file
to a sequential dataset and then ftp GET the sequential dataset.
Actually, you would want to:
• LISTCAT the remote VSAM file to determine its attribute,

not just for a DEFINE CLUSTER on your local machine but
also for the sequential dataset you’ll need to create for
REPRO on the remote host.

• ALLOC the sequential dataset for REPRO.
• DELETE the sequential dataset before the ALLOC, in case

you need to re-run the job.
• REPRO the VSAM file to a sequential dataset.

 70 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Fortunately, these are all TSO commands, so there’s no need
to execute JCL in a batch job on the remote host. What’s more,
they can all be executed on a single line without any prompts.
Telnet, REXEC, and RSH can execute TSO commands on a
(remote) z/OS host. All three can be run (locally) in z/OS batch
outside of TSO. But according to the manual: “You cannot use
the TELNET command to log on to an MVS host from an
existing MVS line mode TELNET session.”
That leaves REXEC (Remote EXECute) and RSH (Remote
Shell Protocol). They use ports 512 and 514 respectively, which
may not be open on the remote site’s firewall. REXEC and RSH
are similar, but not identical, as the following batch job shows:
//REXEC EXEC PGM=REXEC,
// PARM='2Ø9.217.251.162 LISTCAT ENTRIES(TEST.VSAM) ALL'
//SYSPRINT DD SYSOUT=*
//NETRC DD *
MACHINE 2Ø9.217.251.162 LOGIN JONPE PASSWORD MYPW
//*
//RSH EXEC PGM=RSH,
// PARM='/-l JONPE/MYPW 2Ø9.217.251.162 LISTCAT'
//SYSPRINT DD SYSOUT=*
//

RSH doesn’t support NETRC, but it does support a
RHOSTS.DATA dataset in a different format. Also, in batch only,
a slash is required as the first character of the PARM field for
RSH. For more information on Telnet, REXEC, and RSH, see
the chapters in the IBM manual shown in Figure 1 for your
version of CS or TCP/IP.

CONCLUSION
There is, of course, much more that you can do with z/OS
Communications Server or its predecessors in a batch job,
especially if you include the batch TSO environment, EXEC
PGM=IKJEFT01. Not to mention what you can do from on-line
TSO.
Perhaps most intriguingly, there’s a lot you can do, remotely,
even from your workstation. You can, of course, send e-mail to

 71© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

the CS SMTP server and use the command line ftp and Telnet
clients of your Windows NT/2000/XP workstation. But I was
surprised to find that my Windows XP Professional workstation
has REXEC and RSH command line clients. Code some
commonly-used TSO commands as REXEC or RSH commands
in batch files, put short-cuts to the batch files on your XP
desktop, and you could avoid the tedious cycle of starting your
3270 emulator, logging on, typing the command(s), logging off,
and shutting down the emulator.
Jon E Pearkins
(Canada) © Xephon 2003

Information point – reviews

MVS FORUMS – http://www.mvsforums.com/helpboards
At first glance, networking is conspicuously absent from the
new MVS Forums. But digging into the Help Boards barely a
month after this site debuted, I unearthed lots of little gems. The
TSO and ISPF help board includes ‘ftp using REXX’, which
shows REXX code to use ftp to send and receive a PDS
member from another (mainframe or non-mainframe) host.
‘Other Technical Topics’ has several networking items.
‘Download All Members of a PDS to Workstation’ addresses an
FAQ on mainframe help desks, offering a number of solutions
using tools as diverse as IEBPTPCH, DFSORT, FTP, MGET,
XMIT, ZIP, and PROMPT OFF. ‘3270 Emulation’ looks at a few
cheap and free mainframe terminal emulators. And ‘MVS Chat’
details an intriguing project to host chat sessions on the
mainframe.
To date, there have been 951 posts from 277 registered users.
The site has already become a Website of the Week on
Xephon’s Mainframe Week. With this much momentum, the
next few months should see a huge growth in content.

 72 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

TECHTARGET NETWORK – http://www.SearchTechTarget.com
This is the main entry point to TechTarget. The search facility is
useful, allowing you, by default, to search all of their sites,
including the four discussed below. These four were selected
as they offer the most on networking. You’ll probably want to
register (free) if you get serious about any of the sites.

Mainframes – http://www.Search390.com
In the centre of the home page, in the ‘Browse links in these
categories’ section, you’ll see a picture of the Site Editor; click
on MORE CATEGORIES at the bottom of the section. Here are
the three most relevant categories, with the subcategories
you’ll see for each:
• Networking and communications, including client/server,

connections and interfaces, network management, SNA,
TCP/IP, and Web access.

• Web enabling the mainframe, including Web application
servers, e-commerce/e-business options, Web
interoperability, data access, and mainframe as Web host.

• Downloads, including IBM software downloads, IBM server
downloads, storage systems, and non-IBM sites.

Here, as in all parts of the TechTarget Network, subcategories
vary widely as to the number of:
• Custom-written TechTarget material versus links to other

sites.
• Links that are out of date, ie material no longer available on

the external Web site.

Networking – http://www.SearchNetworking.com
The home page is divided up into a number of sections,
including: featured topic, categories, today’s top news, what’s
new, product and vendors – a buyer’s guide, white papers, and
discussion forums.

 73© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

As with Search390, click on MORE CATEGORIES, but be
aware that the categories here aren’t platform-specific. They
include: Cisco Press Resource Centre, tutorials, security,
network design, installation and configuration, network and
systems management, standards and protocols, and storage
networks.

Web Services – http://www.SearchWebServices.com
The home page layout is similar to networking, with the MORE
CATEGORIES link leading you to a mostly non-platform-specific
list including: Web Services architect, Web Services basics,
SOAP, UDDI, WSDL, XML, and related protocols and APIs.

What Is? – http://www.WhatIs.com
More than a dictionary, whatis?com, as it likes to be known, has
encyclopaedia-length articles for each computing term, links to
additional material, and the subcategory where the term fits in
TechTarget.
Jon E Pearkins
(Canada) © Xephon 2003

E-mail alerts

Our e-mail alert service will notify you when new issues
of TCP/SNA Update have been placed on our Web site.
If you’d like to sign up, go to http://www.xephon.com/
tcpsna and click the ‘Receive an e-mail alert’ link.

 74 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

3174 24.28-30, 27.22, 27.48,
25.24, 40.18-24, 41.14-32,

42.51-59, 42.60-63
3270 datastream 42.35-50, 48.10-21
3745 25.24-27, 46.3-10
3746 46.3-10
Active Server Watcher 43.52-65
Address translation 36.3-18, 45.3-13
AnyNet 34.6, 42.22-34
APPN 26.27, 32.16
ATM 32.17, 34.61-63
Auditing 28.6-12
Automation 33.3-11
Availability 42.10-21
Bind 26.23-26
Buffer pool statistics 31.3-8
Certification 45.35-41
CICS 27.30
Clustering 36.32-42
CMIP alerts 26.3-17
CS/390 42.3-9
DLSw 29.13-15, 32.19, 34.5
Dynamic line updates 27.51-60
Dynamic reconfiguration 26.17-22
E-business 38.54-65
Education 44.24-68
Encapsulation 34.4
Enterprise Extender 43.3-9
Enterprise printing 35.29-37
Ethernet LAN 40.51-58
FEP 46.15-36
File transfer 24.6-28
FRAD 32.17
Frame relay 34.3
FTP 28.14-53, 30.11, 33.45-47,

38.3-4, 44.3-12, 47.39-59, 48.53-59
Fundamentals 47.3-8
Generalized Trace Facility (GTF) 21.30
Half-Session Control Block (HSCB)

21.3-29

March 1997 – March 2003 index

Items below are references to articles that have appeared in TCP/SNA Update since March
1996. References show the issue number followed by the page number(s). All these back-
issues of TCP/SNA Update can be ordered from Xephon. See page 2 for details.

High Performance Routing (HPR)
27.10-14, 34.4-5

HOD 46.44-48, 46.49-52
IBM enterprises 29.8-20
IMS 27.31
Independent logical units 26.23-38
Information 37.57-63, 38.66-71

39.53-63, 40.59-62, 41.63-66
43.66-70, 45.70, 48.68-71

Integration 34.3-7
Internet 30.3-8
IP Version 6 33.21-25, 37.3-17,

37.17-20
ISTCOSDF 28.12-14
ISTRACON 25.51-59
JES nodes 25.35-38, 27.31
LAN 29.8-20
Load balancing 36.32-42
Logon mode table 32.27-39, 33.25-44
LOSTERM 27.60-61, 28.57, 29.21
LPR 38.6
LUGROUP 24.3-6
LUSEED 24.3-6
MAC 29.11
Maintenance 33.3-11
Management 29.22-26
MCS 48.3-9
Migration 47.17-31
Monitoring host sites 43.49-52
Monitoring VTAM LUs 43.10-38
MVS system symbols 29.3-7
NCP 25.10-35, 26.31,

27.14-50, 29.46-59,
30.34.52, 31.16-18

NERD chart 48.22-52
NetMaster 25.34
NetView 25.35-38, 27.3-10,

28.14-53, 32.5-16, 40.36-50
NetView Distribution Manager 26.38-59,

38.22-53, 39.23-33, 41.33-61

 75© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

NetView Session Monitor 25.34
NetWare SAA 37.39-43
Network console 32.3-16,

33.11-21, 34.7-22
Network convergence 47.9-16
Network management 23.17-56, 40.36-50
NMVT 24.30-45
OMEGAMON for CICS 27.16
OS/2 32.22-26
OSI 35.9-13
OSI BER 26.4-8
OSPF 29.9
Pacing 25.21-24, 26.27, 27.33
Packet switching 37.44-57
Performance 27.14-50, 31.10-16
Performance tuning 39.3-7
Policy Agent 46.37-43
Portal 47.32-38, 48.59-68
Printing 39.34-41
QLLC 32.40-41
Reflection 41.14-32, 45.56-69, 46.49-52
Response times 27.22, 45.14-26
RIP 29.9
RUMBA 42.51-59
SAS/CPE 28.6-12
SCO Unix 28.54
Security 30.3-8, 45.27-34
Session management 40.3-17
S-HTTP 29.18-19
SMF 34.23-37, 35.13-28, 36.19-31
SMTP 29.27-46, 30.12-31, 31.19-48,

32.42-57, 33.48-63, 34.38-60,
35.38-67, 36.43-62, 37.21-37, 38.4-6

SNA 32.16-21, 32.39-41, 34.3-7
SNA APPC tuning 39.8-22

Sockets 31.8-9
SOLVE:Netmaster NTS 26.17-23
TCP/IP 28.53, 30.9-10,

32.16-21, 34.3-7
Telnet 37.39-43
Terminal emulation 41.14-32, 42.51-59

42.60-63, 45.56-69, 46.44-48
tn3270 34.6-7, 38.12-21
tn3270(E) server 38.12-21
Token Ring Network 25.13, 25.27-29,

40.51-58
Transferring files 46.11-14
TSO 32.22-26
Tuning 31.10-16
USS tables 28.53, 32.27-39
VBR 30.53-59
VIPA 42.10-21
VLAN 29.10-13
VTAM 33.3-11, 40.3-7, 42.3-9
VTAM applications 28.3-6
VTAM configuration restart 25.3-10
VTAM constants 25.51-59
VTAM exits 24.45-55, 40.3-7
VTAM monitor 35.3-8
VTAM session termination 27.61-63
WAN 30.31-33
WAP 41.3-4
Web server 31.48-63
Web Services 43.38-49, 47.60-66
Web-to-host 38.54-65, 39.42-53

41.3-4, 41.5-13, 44.12-24
Web-to-host glossary 40.25-35
X.25 28.54-57
XML 44.12-24, 45.42-55, 46.53-59
ZOC 42.60-63

Interested in writing an article, but not
sure what on?

We’ve been asked to commission articles on a variety
of TCP/SNA-related topics. Visit the TCP/SNA Update
Web site, http://www.xephon.com/tcpsna, and follow
the link to Opportunities for TCP/SNA specialists.

TCP/SNA news

WRQ has made a number of
announcements:
• WRQ Verastream Host Integrator 5.0’s

Design Tool now allows developers to mix
and match between 3270 screens that are
automatically converted to Web pages and
presented ‘as is’, and abstraction of legacy
functionality to make mainframe
applications more intuitive.

• WRQ Reflection 10.0 fully integrates
VBA 6.3 and adds an administrator’s
toolkit, an integrated OpenSSH client, and
a custom interface that displays Reflection
with a same look and feel as Windows XP,
and provides interoperability with WRQ
Reflection for the Web through settings
conversion capabilities between the two
products.

URLs:
http://www.wrq.com/aboutwrq/news/2002/
102102pr.html
http://www.wrq.com/aboutwrq/news/2002/
092502apr.html

* * *

IBM and Tivoli have made a number of
announcements:
• IBM’s new Application Workload

Modeller can be run on OS/390 2.10, z/OS
(202-338) or mainframe Linux (203-001)
to determine the network impact of an
application before it’s written.

• Session Manager for z/OS (202-349)
provides simultaneous access to multiple
terminal sessions through TCP/IP or
VTAM. Datastream optimization and a
performance monitor are also included.

• Tivoli Monitoring for Network
Performance (202-278) combines IBM

Tivoli NetView Performance Monitor 2.7
(202-008) and IBM Tivoli NetView for
TCP/IP Performance 1.4 (202-083) into a
single package.

• Tivoli Remote Control 3.8 (202-350) can
be run on SuSE Linux 7.0 for System/390,
adds support for Windows XP, has a
firewall friendly architecture, provides full
datastream encryption, and offers a new
Web interface.

• Tivoli System Automation for OS/390 (SA
OS/390) 2.2 (202-256) adds network
automation support for registering an
application with VTAM application node
recovery, issuing recovery commands for
all registered applications, and listing by
applications major nodes that are in use.

• Tivoli Switch Analyzer 1.2 (202-254) now
supports Linux for zSeries.

• Tivoli Monitoring for Transaction
Performance 5.1 (202-303) adds support
for transaction performance monitoring of
SAP and 3270 applications through
transaction simulation.

URL: http://www.ibmlink.ibm.com/
usalets&parms=H_nnn-nnn, where ‘nnn-
nnn’ is one of the numbers in brackets shown
above.

* * *

Software Diversified Services (SDS) has
released Vital Signs VisionNet (VSV) 5.1.0,
offering complete z/OS network
management and performance monitoring
through a new Web browser interface.

URL: http://www.sdsusa.com/vsv

* * *

x xephon

	Getting ready to implement Web services
	A TCP/IP transaction for linking CICS and PC programs
	The FTPPUT utility
	Communications Server in batch
	Information point - reviews
	March 1997 - March 2003 index
	TCP/SNA news

