

© Xephon Inc 2004

March 2004

53

In this issue

TCP/SNA

3 Dynamically invoking ftp
12 Using the REXX Sockets

interface to monitor a z/OS
system from the Web

19 C2ASCII – ASCII to EBCDIC
conversion macro

22 Grid computing – the next step
for TCP/SNA

29 Using SOAP on a regular basis
48 Automatic ftp to another AIX site
62 March 1997 – March 2004 index
64 TCP/SNA news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

TCP/SNA Update
Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Fiona Hewitt
E-mail: fionah@xephon.com

Publisher
Nicole Thomas
E-mail: nicole@xephon.com

Subscriptions and back-issues
A year’s subscription to TCP/SNA Update,
comprising four quarterly issues, costs
$190.00 in the USA and Canada; £130.00 in
the UK; £136.00 in Europe; £142.00 in
Australasia and Japan; and £140.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
March 2000 issue, are available separately to
subscribers for $49.50 (£33.00) each
including postage.

Editorial panel
Articles published in TCP/SNA Update are
reviewed by our panel of experts. Members
include John Bradley (UK), Carlson Colomb
(Canada), Anura Gurugé (USA), Jon
Pearkins (Canada), and Tod Yampel (USA).

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.

Printed in England.

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations
or individuals accept any liability of any
kind howsoever arising out of the use of
such material. Readers should satisfy
themselves as to the correctness and
relevance to their circumstances of all advice,
information, code, JCL, EXECs, and other
contents of this journal before using it.

Contributions
When Xephon is given copyright, articles
published in TCP/SNA Update are paid for at
the rate of $160 (£100 outside North
America) per 1000 words and $80 (£50) per
100 lines of code for the first 200 lines of
original material. The remaining code is paid
for at the rate of $32 (£20) per 100 lines. To
find out more about contributing an article,
without any obligation, please download a
copy of our Notes for Contributors from
www.xephon.com/nfc.
TCP/SNA Update on-line
Code from TCP/SNA Update, and complete
issues in Acrobat PDF format, can be
downloaded from http://www.xephon.com/
tcpsna; you will need to supply a word from
the printed issue..

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Dynamically invoking ftp

In today’s cyber world, transferring files between systems is a
very common requirement, and OS/390 (z/OS) systems cannot
be excluded from this activity. VTAM and SNA on MVS have
been augmented by TCP/IP on later generation MVS/ESA
systems and its successors OS/390 and z/OS. TCP/IP has
become an integral networking component in the mainframe
world.
The common TCP/IP applications are all available on z/OS.
This includes ftp (file transfer protocol), the common application
for transferring files between different physical or logical systems.
ftp on z/OS can be invoked interactively through TSO or
through a standard z/OS batch job (see Chapters 3 and 4 in the
IP User’s Guide from the IBM Communications Server
bookshelf), but you may sometimes need to perform file transfer
operations within the framework of program logic.
The FTPLINK program presented with this article provides
sample code to invoke ftp dynamically from within a wrapper
program. This can be beneficial if you need to perform a file
transfer operation that’s a requirement of a larger process that
involves programming decisions before and/or after the file
transfer operation. Using dynamic linkage from a program
environment can provide more flexibility than using a multi-step
batch job with condition code checking. FTPLINK demonstrates
how this can be accomplished.
On completion of the ftp operation, FTPLINK will examine the
contents of the ftp OUTPUT dataset (for FTPLINK, the dataset
assigned to the OUTPUT DD statement must be a real dataset
on DASD, not a JES SYSOUT dataset) and determine, to the
best of its abilities, whether or not the file transfer operation
completed successfully. Depending on your requirements, you
can include additional logic based on file transfer success or
failure.
FTPLINK subscribes to all the traditional ftp requirements and

 4 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

inputs. The EXEC statement PARM can be used to pass
parameter values to ftp – one of the more useful ones being the
(EXIT parameter that indicates to ftp that it should pass back a
failure return code if the ftp operation is unsuccessful. The
NETRC DD statement can be used to pass netrc information to
ftp. The INPUT DD statement can be used to pass ftp commands.
As mentioned earlier, the OUTPUT DD is used to capture
output from ftp – the output contained in this dataset is used by
FTPLINK to assess the success of the file transfer operation.
Shown below is some sample JCL to linkedit FTPLINK:
//IEWL EXEC PGM=HEWLHØ96,PARM='XREF,LIST,MAP'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(2,1))
//OBJECT DD DSN=object.library,DISP=SHR
//SYSLMOD DD DSN=load.library,DISP=SHR
//SYSLIN DD *
 INCLUDE OBJECT(FTPLINK)
 ENTRY FTPLINK
 NAME FTPLINK(R)

Sample JCL for running the FTPLINK program is shown below,
and also in the comments for the FTPLINK program.
//FTPLINK EXEC PGM=FTPLINK,REGION=8192K
//STEPLIB DD DSN=load.library,DISP=SHR
//SYSPRINT DD SYSOUT=*
//OUTPUT DD DSN=output.dataset,DISP=SHR
//INPUT DD DSN=ftp.input.commands,DISP=SHR
//SYSTCPD DD DSN=TCPIP.TCPDATA,DISP=SHR <=== optional
//NETRC DD DSN=userid.NETRC,DISP=SHR <=== optional

As mentioned earlier, FTPLINK uses standard FTP inputs and
outputs. This includes parameter values specified in the PARM
keyword of the EXEC statement and the use of INPUT, OUTPUT,
NETRC, and SYSPRINT DD statements. The IP User’s Guide
provides details.
In order to successfully use FTPLINK, you’ll require proper
security access. This will include security product OMVS
segment definitions for the batch job’s userid (and its default
group) and appropriate access to the IP stack.

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

FTPLINK will issue various messages to the operator console
and the job’s message log depending on the status of the file
transfer operation.
Try FTPLINK in your environment. You probably have some
very practical uses for a wrapper similar to it.

FTPLINK

* *
* The FTPLINK program provides an example of dynamically invoking *
* the FTP TCP/IP application from within an existing program *
* framework. This can prove to be extremely beneficial if a file *
* transfer operation is integral to a sequence of events that *
* are happening within a program's logic. *
* *
* The FTPLINK program will dynamically link to FTP and then *
* examine the resulting OUTPUT file contents to determine whether *
* the FTP request was a success or not. This check can then be *
* incorporated into further program logic. *
* *
* The dynamic invocation of FTP will subscribe to the standard *
* requirements of an online or direct batch invovation of FTP. *
* That is, an INPUT file of FTP commands should be allocated and *
* a NETRC DD can be used as well. *
* *
* The OUTPUT DD should specify a dasd dataset and not a JES *
* SYSOUT dataset as FTPLINK is designed to read the OUTPUT *
* dataset's content, as produced by FTP, from a dasd dataset. *
* *
* Sample JCL for invoking FTPLINK would look something like: *
* *
* //FTPLINK EXEC PGM=FTPLINK,REGION=8192K *
* //STEPLIB DD DSN=load.library,DISP=SHR *
* //SYSPRINT DD SYSOUT=* *
* //OUTPUT DD DSN=output.dataset,DISP=SHR *
* //INPUT DD DSN=ftp.input.commands,DISP=SHR *
* //SYSTCPD DD DSN=TCPIP.TCPDATA,DISP=SHR <=== optional *
* //NETRC DD DSN=userid.NETRC,DISP=SHR <=== optional *
* *
* The FTPLINK program will pass the parameter address it detects *
* to the FTP application so you can specify normal FTP parameters *
* using PARM= on the EXEC statement. Specifying PARM='(EXIT' *
* will cause the FTP application to return a non-zero return code *
* if a failure is detected in FTP. A WTO message will be issued *
* by the FTPLINK program in this case. The WTO message will *
* indicate the FTP subcommand return code and FTPD reply code. *

 6 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

* *

FTPLINK CSECT
FTPLINK AMODE 31
FTPLINK RMODE 24
 STM R14,R12,12(R13) Save incoming registers
 LR R12,R15 Copy module base address
 USING FTPLINK,R12 Set module addressability
 LR R3,R13 Save incoming savearea address
 LR R1Ø,R1 Save incoming parm address
 STORAGE OBTAIN,LENGTH=WORKLEN,LOC=BELOW
 LR RØ,R1 Copy storage address
 LR R13,R1 Again
 LR R14,R1 And again
 L R1,=A(WORKLEN) Get storage length
 XR R15,R15 Set fill byte value
 MVCL RØ,R14 Clear working storage
 USING WORKAREA,R13 Set addressability to workarea
 ST R3,SAVEAREA+4 Save old savearea address
 ST R1Ø,PARMADDR Save incoming parm address

* Any pre-FTP logic you might need could be inserted here. *

 L R1,PARMADDR Use passed parm address for FTP
 MVC LINKWRK(LINKLN),LINKLS Move in LINK model
 LINK EP=FTP,SF=(E,LINKWRK) Link to FTP
 ST R15,FTPRC Save the FTP return code

** WTO 'FTP has completed'

 MVC DCB1WRK(DCB1LN),OUTPUT Copy the DCB model
 OI OPENLST,X'8Ø' Set parm bit on
 OPEN (DCB1WRK,INPUT),MODE=31,MF=(E,OPENLST) Open the dataset
 TM DCB1WRK+48,X'1Ø' Open successful?
 BO OPENOK Yes - go on
 WTO 'FTPLINK - Open failed for OUTPUT'
 B RETURN12 Pack it in

OPENOK DS ØH
** WTO 'OUTPUT file opened'

* The FTP request has completed and the OUTPUT dataset has been *
* opened successfully. Check the data in the OUTPUT dataset to *
* determine if the request completed as expected. *

GETLOOP DS ØH
 GET DCB1WRK,INBUFF Read a record
 CLC INBUFF(22),=C'226 Transfer complete.' A success msg?
 BE GOODFTP Yes - set success flag
 CLC INBUFF(36),=C'25Ø Transfer completed successfully.' OK?

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 BE GOODFTP Yes - set success flag
 CLC INBUFF(9),=C'EZA1617I ' Byte count message?
 BE GTBYTCNT Yes - save byte count
 B GETLOOP Get next record
GOODFTP DS ØH
 OI FLAG1,FTPOK Set success flag
 B GETLOOP Get next record
GTBYTCNT DS ØH
 LA R1,INBUFF+9 Get starting address
 LA R14,BYTECNT Get target area address
 XR R15,R15 Clear counter
 MVI BYTECNT,C' ' Set fill byte
 MVC BYTECNT+1(39),BYTECNT Clear the target area
CNTLP DS ØH
 CLI Ø(R1),C' ' End of byte count?
 BE CNTDONE Yes - wrap that up
 MVC Ø(1,R14),Ø(R1) Copy the next transfer count byte
 LA R1,1(,R1) Point to next source byte
 LA R14,1(,R14) Point to next target byte
 LA R15,1(,R15) Add one to byte count length
 B CNTLP Check for more
CNTDONE DS ØH
 ST R15,CNTLEN Save the length
 B GETLOOP Get next record
INDONE DS ØH
 OI CLOSELST,X'8Ø' Set parm bit on
 CLOSE (DCB1WRK),MODE=31,MF=(E,CLOSELST) Close the dataset
 TM FLAG1,FTPOK FTP success?
 BNO RETURNØ8 No - we're done
 MVC WTOGWRK(WTOGLN),WTOGLS Copy WTO model
 MVC WTOGWRK+4(L'MSGØ1),MSGØ1 Copy first part of message
 MVC WTOGWRK+4+L'MSGØ1(L'BYTECNT),BYTECNT Copy byte count
 WTO MF=(E,WTOGWRK) Issue the WTO
** WTO 'FTPLINK - FTP completed successfully'

* If we get here, the FTP operation to the target system completed *
* successfully. *
* *
* This is where you would insert logic for successful post-FTP *
* functions. *

RETURN DS ØH
 L R3,SAVEAREA+4 Copy incoming savearea address
 LR R1,R13 Get current working storage addr
 STORAGE RELEASE,LENGTH=WORKLEN,ADDR=(R1)
 LR R13,R3 Reload incoming savearea address
 LM R14,R12,12(R13) Restore registers
 XR R15,R15 Set return code
 BR R14 Return

 8 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

RETURNØ8 DS ØH

* *
* If a PARM='(EXIT' was specified on the EXEC statement and FTP *
* experienced a failure condition, the return code from FTP will *
* be non-zero and it will contain specific information about the *
* failure - namely the FTP subcommand that caused the failure and *
* the corresponding reply code. Check for a non-zero return code *
* and format an appropriate output message if this condition *
* exists. *
* *

 L R15,FTPRC Get return code from FTP
 LTR R15,R15 A non-zero return code?
 BZ NOFTPRC No - bypass message
 CVD R15,DBL1 Convert to decimal
 L R15,DBL1+4 Load significant part
 SRL R15,4 Dump the 'sign'
 ST R15,DBL2 Save the return code
 UNPK DBL1(9),DBL2(5) Unpack the value
 NC DBL1(8),=8X'ØF' Clear the high order nibbles
 TR DBL1(8),=C'Ø123456789' Make the value readable
 MVC WTOGWRK(WTOGLN),WTOGLS Copy WTO model
 MVC WTOGWRK+4(L'MSGØ2A),MSGØ2A Copy first part of message
 IC R1,DBL1+3 Get first byte of subcmd code
 N R1,=X'ØØØØØØØF' Turn off first nibble
 MH R1,=H'1Ø' Multiply by 1Ø
 IC RØ,DBL1+4 Get second byte of subcmd code
 N RØ,=X'ØØØØØØØF' Turn off first nibble
 AR R1,RØ Add to first byte
 LA R15,SUBCMDTB Get address of subcommand table
 LA R14,CMD255 Get end of table address
SUBCMDLP DS ØH
 CR R15,R14 Subcommand no good?
 BNL SUBCMDNG Yes - format message
 CH R1,Ø(,R15) A subcommand match?
 BE SUBCMDOK Yes - format message
 LA R15,CMDENT(,R15) Point to next entry
 B SUBCMDLP Check it out
SUBCMDNG DS ØH
 LA R15,CMD99 Get catch-all subcmd address
SUBCMDOK DS ØH
 XR R14,R14 Clear R14
 ICM R14,B'ØØ11',2(R15) Get length of subcommand
 BCTR R14,Ø Reduce by one for EX
 EX R14,SUBCMDMV Copy subcommand
 LA R15,WTOGWRK+4+L'MSGØ2A+1(R14) Point to new target area
 MVC Ø(L'MSGØ2B,R15),MSGØ2B Copy in second part of message
 MVC MSGØ2OF1(2,R15),DBL1+3 Copy the subcommand code
 MVC MSGØ2OF2(3,R15),DBL1+5 Copy the FTPD reply code

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 WTO MF=(E,WTOGWRK) Issue the WTO
NOFTPRC DS ØH
 L R3,SAVEAREA+4 Copy incoming savearea address
 LR R1,R13 Get current working storage addr
 STORAGE RELEASE,LENGTH=WORKLEN,ADDR=(R1)
 LR R13,R3 Reload incoming savearea address
 LM R14,R12,12(R13) Restore registers
 LA R15,8 Set return code
 BR R14 Return

RETURN12 DS ØH
 L R3,SAVEAREA+4 Copy incoming savearea address
 LR R1,R13 Get current working storage addr
 STORAGE RELEASE,LENGTH=WORKLEN,ADDR=(R1)
 LR R13,R3 Reload incoming savearea address
 LM R14,R12,12(R13) Restore registers
 LA R15,12 Set return code
 BR R14 Return

LINKLS LINK SF=L
LINKLN EQU *-LINKLS

OUTPUT DCB MACRF=(GM),DDNAME=OUTPUT,DSORG=PS,EODAD=INDONE
DCB1LN EQU *-OUTPUT

WTOGLS WTO ' x
 x
 ',MF=L
WTOGLN EQU *-WTOGLS

MSGØ1 DC C'FTPLINK - FTP operation completed. Byte transfer coux
 nt was '

MSGØ2A DC C'FTPLINK - Non-zero FTP return code. FTP subcommand '
MSGØ2B DC C' (command code xx). FTPD reply code xxx.'
MSGØ2OF1 EQU 15 Offset for command code
MSGØ2OF2 EQU 37 Offset for FTPD reply code

CMDENT EQU 16 Length of following table entries
SUBCMDTB DS ØD
* +CMD cd +CMD ln+SUBCOMMAND name+
* ------- ------ ---------------
CMDØØ DC AL2(ØØ),AL2(5),CL12'NOCMD'
CMDØ1 DC AL2(Ø1),AL2(9),CL12'AMBIGUOUS'
CMDØ2 DC AL2(Ø2),AL2(1),CL12'?'
CMDØ3 DC AL2(Ø3),AL2(7),CL12'ACCOUNT'
CMDØ4 DC AL2(Ø4),AL2(6),CL12'APPEND'
CMDØ5 DC AL2(Ø5),AL2(5),CL12'ASCII'
CMDØ6 DC AL2(Ø6),AL2(6),CL12'BINARY'
CMDØ7 DC AL2(Ø7),AL2(2),CL12'CD'

 10 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

CMDØ8 DC AL2(Ø8),AL2(5),CL12'CLOSE'
CMDØ9 DC AL2(Ø9),AL2(3),CL12'TSO'
CMD1Ø DC AL2(1Ø),AL2(4),CL12'OPEN'
CMD11 DC AL2(11),AL2(5),CL12'DEBUG'
CMD12 DC AL2(12),AL2(7),CL12'DELIMIT'
CMD13 DC AL2(13),AL2(6),CL12'DELETE'
CMD14 DC AL2(14),AL2(3),CL12'DIR'
CMD15 DC AL2(15),AL2(6),CL12'EBCDIC'
CMD16 DC AL2(16),AL2(3),CL12'GET'
CMD17 DC AL2(17),AL2(4),CL12'HELP'
CMD18 DC AL2(18),AL2(7),CL12'LOCSTAT'
CMD19 DC AL2(19),AL2(4),CL12'USER'
CMD2Ø DC AL2(2Ø),AL2(2),CL12'LS'
CMD21 DC AL2(21),AL2(7),CL12'MDELETE'
CMD22 DC AL2(22),AL2(4),CL12'MGET'
CMD23 DC AL2(23),AL2(4),CL12'MODE'
CMD24 DC AL2(24),AL2(4),CL12'MPUT'
CMD25 DC AL2(25),AL2(4),CL12'NOOP'
CMD26 DC AL2(26),AL2(4),CL12'PASS'
CMD27 DC AL2(27),AL2(3),CL12'PUT'
CMD28 DC AL2(28),AL2(3),CL12'PWD'
CMD29 DC AL2(29),AL2(4),CL12'QUIT'
CMD3Ø DC AL2(3Ø),AL2(5),CL12'QUOTE'
CMD31 DC AL2(31),AL2(6),CL12'RENAME'
CMD32 DC AL2(32),AL2(8),CL12'SENDPORT'
CMD33 DC AL2(33),AL2(8),CL12'SENDSITE'
CMD34 DC AL2(34),AL2(4),CL12'SITE'
CMD35 DC AL2(35),AL2(6),CL12'STATUS'
CMD36 DC AL2(36),AL2(9),CL12'STRUCTURE'
CMD37 DC AL2(37),AL2(7),CL12'SUNIQUE'
CMD38 DC AL2(38),AL2(6),CL12'SYSTEM'
CMD39 DC AL2(39),AL2(5),CL12'TRACE'
CMD4Ø DC AL2(4Ø),AL2(4),CL12'TYPE'
CMD41 DC AL2(41),AL2(3),CL12'LCD'
CMD42 DC AL2(42),AL2(7),CL12'LOCSITE'
CMD43 DC AL2(43),AL2(4),CL12'LPWD'
CMD44 DC AL2(44),AL2(5),CL12'MKDIR'
CMD45 DC AL2(45),AL2(6),CL12'LMKDIR'
CMD46 DC AL2(46),AL2(8),CL12'EUCKANJI'
CMD47 DC AL2(47),AL2(8),CL12'IBMKANJI'
CMD48 DC AL2(48),AL2(7),CL12'JIS78KJ'
CMD49 DC AL2(49),AL2(7),CL12'JIS83KJ'
CMD5Ø DC AL2(5Ø),AL2(9),CL12'SJISKANJI'
CMD51 DC AL2(51),AL2(4),CL12'CDUP'
CMD52 DC AL2(52),AL2(5),CL12'RMDIR'
CMD53 DC AL2(53),AL2(7),CL12'HANGEUL'
CMD54 DC AL2(54),AL2(7),CL12'KSC56Ø1'
CMD55 DC AL2(55),AL2(8),CL12'TCHINESE'
CMD56 DC AL2(56),AL2(7),CL12'RESTART'
CMD57 DC AL2(57),AL2(4),CL12'BIG5'

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

CMD58 DC AL2(58),AL2(5),CL12'BLOCK'
CMD59 DC AL2(59),AL2(8),CL12'COMPRESS'
CMD6Ø DC AL2(6Ø),AL2(4),CL12'FILE'
CMD61 DC AL2(61),AL2(5),CL12'PROXY'
CMD62 DC AL2(62),AL2(6),CL12'RECORD'
CMD63 DC AL2(63),AL2(8),CL12'SCHINESE'
CMD64 DC AL2(64),AL2(5),CL12'STREAM'
CMD65 DC AL2(65),AL2(4),CL12'GLOB'
CMD66 DC AL2(66),AL2(6),CL12'PROMPT'
CMD67 DC AL2(67),AL2(4),CL12'UCS2'
CMD99 DC AL2(99),AL2(7),CL12'UNKNOWN'
CMD255 DC AL2(255),AL2(6),CL12'TBLEND'

 LTORG ,

* Executed instructions. *

SUBCMDMV MVC WTOGWRK+4+L'MSGØ2A(*-*),4(R15) Copy subcommand

* Dynamic storage DSECT. *

WORKAREA DSECT
SAVEAREA DS 18F Savearea
PARMADDR DS F Incoming parm address
FTPRC DS F Return code from FTP
DBL1 DS 2D Work area
DBL2 DS 2D Work area
LINKWRK DS ØD,CL(LINKLN) LINK SF=E work area
OPENLST OPEN (,),MODE=31,MF=L OPEN MF=E work area
CLOSELST CLOSE (,),MODE=31,MF=L CLOSE MF=E work area
FLAGS DS ØF
FLAG1 DS X Flag byte
FTPOK EQU X'8Ø' FTP success message flag
BYTECNT DS CL4Ø Byte count value savearea
CNTLEN DS F Length of byte count
INBUFF DS CL133 Input record
DCB1WRK DS ØD,CL(DCB1LN) DCB work area
WTOGWRK DS ØD,CL(WTOGLN) WTO MF=E work area
WORKLEN EQU *-WORKAREA Dynamic storage length

RØ EQU Ø
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9

 12 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

R1Ø EQU 1Ø
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 END

Rudy Douglas
(Canada) © Xephon 2004

Using the REXX Sockets interface to monitor a
z/OS system from the Web

IBM supplies two sample REXX programs in the TCP/IP
SEZAINST library, namely RSSERVER and RSCLIENT for IP
Version 4. There are also samples for IP Version 6, but this
article concentrates on the IP Version 4 ones. They are all
documented in the z/OS Communications Server: IP Application
Programming Interface Guide manual (SC31-8788).
The sample programs demonstrate the use of the REXX
Sockets interface, and are intended to be used together. The
server is started from a dedicated TSO userid (or batch job),
binds a socket for a specified port number, and then waits for
incoming requests. The client is run from another session to
send a request to that port; the request is in the form of a
number, which the server interprets and responds to by sending
back that number of lines of text, generated internally.
I started by selecting an unused port and setting this up on a
single LPAR in order to have two TSO sessions communicate
with one another. I then tried with the server and the client on
different LPARs (which is to say, with different IP addresses).
Once again I was successful, after modifying the client to use
the IP address of the server LPAR.
That seemed to be about as far as I could go with the samples,

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

until it suddenly occurred to me that there was surely no reason
why the server had to be called only by the sample client
program, nor indeed why the client program even had to be a
REXX program running on a z/OS mainframe. Why not, I
thought, have the client be the Web browser running on my PC?
I immediately set about testing that possibility, and was soon
gratified to discover that there was no problem: the RSSERVER
sample program could respond to a request from a client which
was a Web browser on a PC in just the same way as to
RSCLIENT.
I had to deal with one minor issue, however; namely, the
obvious one, that the PC is an ASCII device, whereas the
mainframe is EBCDIC. This meant that the request that
RSSERVER received had to be translated into EBCDIC in
order to be understood, and the response had, likewise, to be
translated into ASCII or else the Web browser just displayed
what appeared to be garbage.
I now had a slightly modified RSSERVER that could receive a
request from the Web and send lines of text. Once again, I felt
that this was a neat result, but not necessarily very useful.
When I put more thought into it, however, I realized two things:
• First, that ‘lines of text’ is not a limiting concept in the world

of the Web, for HTML pages themselves are really mostly
just lines of text.

• Second, that once a REXX program has control on a z/OS
mainframe, it can extract just about any data it desires from
system control blocks.

This meant that I already had the basic skeleton for writing a
system which would allow me to monitor almost any aspect of
the mainframe directly from my Web browser.
As an illustration of the power of this concept, the following
modifications can be made to the supplied RSSERVER program,
which enable it to call another REXX program, which in turn

 14 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

returns to the browser a formatted HTML display of information
about the active jobs running on the system.
I have also added an option to tell the server to shut itself down
cleanly when it receives a ‘q’ command from the client.
In RSSERVER, find line 77:
port = '1952' /* The port used for the service */

and change the port number to one appropriate for your site.
Then find the comment on line 138 (but note that the same
comment appears again on line 157):
/* Get nodeid, userid and number of lines to be sent */

and the comment on line 176:
/* Unknown event (should not occur) */

Delete all the lines between these comments, and add these in
their place:
 if keyword='READ' & ts¬=s then do
 parse value Socket('Recv',ts) with len data .
 request = substr(data,6,4)
 command = substr(data,6,1)
 if command = '71'x then do /* ascii 'q' */
 say 'RSSERVER: Request to quit'
 call addsock(ts)
 msg = '2Ø52535345525645522Ø69732Ø7175697474696E672Ø'x
 /* Ascii R S S E R V E R i s q u i t t i n g */
 call Socket 'Send',ts,msg
 call Socket 'Close',ts
 call delsock(ts)
 signal Terminate
 end
 else do
 call addsock(ts)
 end
 end
 if keyword='WRITE' then do
 if request = '6A6F6273'x then do /* ascii 'jobs' */
 call JOBINFO ts
 end
 call Socket 'Close',ts
 call delsock(ts)
 end
 end

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Finally, find the comment:
/* Terminate and exit */

and add this label immediately after it:
Terminate:

The call to program JOBINFO is executed when the following
URL is accessed from a Web browser, either by directly typing
it at the Addressfield, or as a link from another page:
<http://your.mf.ipaddr:nnnn/jobs>http://your.mf.ipaddr:nnnn/jobs

where nnnn is the port number specified on line 77 of RSSERVER
as noted above.
Here is my sample program JOBINFO, which displays the
CSTOR and cpu time used by all jobs currently active on the
system. In order to demonstrate some additional flexibility, the
program will highlight in red any cpu time figure over 1,000
seconds:
/*----------------------------- Rexx -------------------------------*/
/* JOBINFO -- Rexx/Sockets Web Server HTML page generator */
/*--*/
 numeric digits 21
 parse arg ts
 call JOBIHDR ts
 cvt = storage(d2x(16),4)
 rce = storage(d2x(c2d(cvt)+c2d(x2c(Ø49Ø))),4)
 asvt = storage(d2x(c2d(cvt)+c2d(x2c(Ø22C))),4)
 asvu = storage(d2x(c2d(asvt)+c2d(x2c(Ø2Ø4))),4)
 maxu = c2d(asvu)
 addr = d2x(c2d(asvt)+c2d(x2c(Ø21Ø)))
 asve = storage(addr,4)
 do i = 1 to maxu
 unus = bitor(substr(asve,1,1),'7F'x)
 if unus = 'FF'x then
 nop
 else do
 jbn = d2x(c2d(storage(d2x(c2d(asve)+c2d(x2c(ØØAC))),4)))
 if jbn = Ø then do
 jbn = d2x(c2d(storage(d2x(c2d(asve)+c2d(x2c(ØØBØ))),4)))
 end
 jobn = storage(jbn,8)
 if jobn = 'INIT ' then
 nop

 16 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 else do
 ejst = storage(d2x(c2d(asve)+c2d(x2c(ØØ4Ø))),8)
 ejst = c2d(ejst)/(4Ø96*1ØØØØØØ)
 srbt = storage(d2x(c2d(asve)+c2d(x2c(ØØC8))),8)
 srbt = c2d(srbt)/(4Ø96*1ØØØØØØ)
 asn = storage(d2x(c2d(asve)+c2d(x2c(ØØ24))),2)
 rax = storage(d2x(c2d(asve)+c2d(x2c(Ø16C))),4)
 fmct = storage(d2x(c2d(rax)+c2d(x2c(ØØ2C))),4)
 cfr = format(c2d(fmct),6)
 cmb = format(cfr/256,4,1)
 cput = format(ejst+srbt,6,2)
 call htmlset
 end
 end
 addr = d2x(x2d(addr)+4)
 asve = storage(addr,4)
 end
/* Optionally place a call to an HTML footer routine, JOBIFTR, here */
 return
/*--*/
/* Set up fields for HTML */
/*--*/
 htmlset:
 e1 = '<tr><td width="1Ø%" valign="middle">'
 e2 = ''
 e3 = '<p align="left">' || jobn || '</td>'
 call htmlgen
 e1 = '<td width="1Ø%" valign="middle">'
 e3 = '<p align="right">' || cfr || '</td>'
 call htmlgen
 e3 = '<p align="right">' || cmb || '</td>'
 call htmlgen
 if cput > 999.99 then
 color = '"#DDØØØØ"'
 else
 color = '"#33CC33"'
 e2 = ''
 e3 = '<p align="right">' || cput || '</td></tr>'
 call htmlgen
 return
/*--*/
/* HTML generation */
/*--*/
 htmlgen:
 em = e1 || e2 || e3
 address linkmvs "C2ASCII em"
 call Socket 'Send',ts,em
 return

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

JOBINFO calls program JOBIHDR to write the HTML header
section of the page. This header is set up in a disk file that
JOBIHDR reads, which allows the user to make the header
information as simple or complicated as desired (including the
use of special framing and formatting, logos and banners)
without having to alter the REXX code at all:
/*----------------------------- Rexx -------------------------------*/
/* JOBIHDR -- Rexx/Sockets Web Server HTML page header */
/*--*/
 trace o
 parse arg ts
 done = 'n'; am = ''
 do while done = 'n'
 "execio 1 diskr jobihdr"
 if rc = Ø then
 do
 parse pull em
 call htmlgen
 end
 else
 done = 'y'
 end
 "execio Ø diskr jobihdr (finis"
 return
/*--*/
/* HTML generation */
/*--*/
 htmlgen:
 address linkmvs "C2ASCII em"
 call Socket 'Send',ts,em
 return

If so desired, a similar routine can be added to JOBINFO where
indicated, to insert additional footer HTML. This optional program,
JOBIFTR, would be almost identical to JOBIHDR, except for
reading from DDNAME jobiftr.
Below is a sample of some very simple header HTML that
establishes a table framework and column headings for the
detail lines that JOBINFO will supply, and is placed in a
member in a PDS that is accessible via the JCL shown later:
 <html><head><title>Job information</title></head>

 <p align="center"><center><table border cellspacing=1 width=6ØØ>

 18 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 <tr><td width="1Ø%" valign="middle">
 <p align="left">Jobname</td>
 <td width="1Ø%" valign="middle">
 <p align="right">CSTOR frames</td>
 <td width="1Ø%" valign="middle">
 <p align="right">Megabytes</td>
 <td width="1Ø%" valign="middle">
 <p align="right">CPU seconds</td></tr>

The final piece of the jigsaw is the EBCDIC to ASCII conversion,
for which I use the excellent routine C2ASCII, which was
described in MVS Update issue 176 (May 2001), in the article
entitled ‘Utilities for FTP’ (C2ASCII is reprinted immediately
after this article).
The modified RSSERVER program can be started with the
following JCL:
 //RSSERVER EXEC PGM=IRXJCL,PARM='RSSERVER'
 //STEPLIB DD DSN=YOUR.LOADLIB,DISP=SHR
 //SYSEXEC DD DSN=YOUR.SYSEXEC,DISP=SHR
 //JOBIHDR DD DSN=YOUR.HTML(JOBIHDR),DISP=SHR
 //* JOBIFTR DD DSN=YOUR.HTML(JOBIFTR),DISP=SHR
 //SYSTSPRT DD SYSOUT=X
 //SYSTSIN DD DUMMY

C2ASCII is linked into the STEPLIB dataset, the REXX programs
RSSERVER, JOBINFO, and JOBIHDR (and an optional
JOBIFTR) are placed in the SYSEXEC dataset, and the HTML
read by JOBIHDR is placed in the appropriate PDS member. In
my example, a PDS specified FB,80,3200 worked perfectly, but
HTML lines have no intrinsic length limitation so a greater
record length may be desired. I have tested with a PDS
specified VB,27994,27998 with success.
I run RSSERVER as a started task, and shut it down from my
Web browser by entering
<http://your.mf.ipaddr:nnnn/q>http://your.mf.ipaddr:nnnn/q

Naturally, the ‘jobs’ in
<http://your.mf.ipaddr:nnnn/jobs>http://your.mf.ipaddr:nnnn/jobs

can be replaced by any other characters, and RSSERVER can

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

simply be extended to call additional programs based on
JOBINFO.
The following is an extract from a Web page I’ve created as a
menu for some different options I use:

IPL data
System info
Job stats
ENQs
Quit, shut RSSERVER

Patrick Mullen
Consultant (Canada) © Xephon 2004

C2ASCII – ASCII to EBCDIC conversion macro

This conversion macro is referred to in the previous article,
‘Using the REXX Sockets interface to monitor a z/OS system
from the Web’ (pp 12-18).

EBCDIC TO ASCII CONVERSION
/* REXX */
/* */
/* This edit macro is designed to convert EBCDIC data to ASCII */
/* */
ADDRESS ISREDIT
'MACRO'
'(start) = LINENUM .ZF'
'(endit) = LINENUM .ZL'
DO point=start UNTIL point>=endit
 '(line) = LINE' point
 address linkmvs "C2ASCII line"
 'LINE' point '= (line)'
 END
"LOCATE 1"
EXIT 1

 20 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

ASSEMBLER ROUTINE C2ASCII

**
* C2ASCII: CONVERT DATA TO ASCII
**
C2ASCII AMODE 31
C2ASCII RMODE ANY
C2ASCII CSECT
 BAKR 14,Ø
 LR 12,15
 USING C2ASCII,12
 L 1,Ø(1)
 LH 5,Ø(1) * GET THE LENGTH OF THE PARAMETER
 LA 4,2(1)
 XLATE (4),(5),TO=A
 PR
 END

ASCII TO EBCDIC CONVERSION
/* REXX */
/* */
/* This edit macro is designed to convert ASCII data to EBCDIC */
ADDRESS ISREDIT
'MACRO'
'(start) = LINENUM .ZF'
'(endit) = LINENUM .ZL'
DO point=start UNTIL point>=endit
 '(line) = LINE' point
 address linkmvs "C2EBCDIC line"
 'LINE' point '= (line)'
 END
"LOCATE 1"
EXIT 1

ASSEMBLER ROUTINE C2EBCDIC

**
* C2EBCDIC: CONVERT DATA TO EBCDIC
**
C2EBCDIC AMODE 31
C2EBCDIC RMODE ANY
C2EBCDIC CSECT
 BAKR 14,Ø
 LR 12,15
 USING C2EBCDIC,12

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 L 1,Ø(1)
 LH 5,Ø(1) * GET THE LENGTH OF THE PARAMETER
 LA 4,2(1)
 XLATE (4),(5),TO=E
 PR
 END

Systems Programmer (UK) © Xephon 2004

Code from TCP/SNA Update articles

As a free service to subscribers and to remove the
need to rekey the scripts, code from individual articles
of TCP/SNA Update can be accessed on our Web site,
at http://www.xephon.com/tcpsna
You will be asked to enter a word from the printed
issue.

 22 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Grid computing – the next step for TCP/SNA

Grid computing is now one of IBM’s strategic, very high-profile
initiatives. The first sentence of its 12 December 2003 press
release entitled ‘IBM Expands Grid and Autonomic Computing
Services’ read: “IBM continues to bring the business benefits of
grid computing to clients with the introduction of expanded Grid
and Autonomic Computing services.” What’s significant here is
IBM’s clear assertion about the business benefits of grid
computing, thus showing (yet again) its conviction that grid
computing technology is applicable not only to scientific and
academic computing, but to the commercial sector as well. This
is why it will become the next important technology in the TCP/
SNA application arena.
Grid computing isn’t new for IBM. For the last two years, all of
its mainframe-related announcements have referred to grid
computing, albeit typically in conjunction with a discussion of
autonomic (Project eLiza) computing, as in the case of the
above quoted press release. Although grid computing and
autonomic computing are very different, stand-alone initiatives,
IBM’s penchant for talking about the two together relates to the
fact that grid computing exemplifies certain facets of both the
self-optimizing and the self-configuring disciplines of autonomic
computing. Grid computing is really another form of client/
server-oriented distributed computing. It’s a means of exploiting
unused computer resources (ie processor cycles, memory, or
storage) on a cooperative, but typically temporary, basis. As
such, from an IBM perspective, grid computing impinges on
both workload management (as in the zSeries’ Intelligent
Resource Director (IRD)) and the whole sphere of ‘on-demand’
computing.

SCAVENGING COMPUTER RESOURCES
Although grid computing is not in any way limited to specific
computer systems or types, it’s the abundance of PCs in

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

today’s world that provides the clear motivation for pursuing this
technology. In any enterprise with upwards of 50 PCs, the
chances are that at any given time less than 40% of the
combined processing power, memory, and storage will be in
use. And that statistic is for normal working hours: the processing
and memory resources of most desktop PCs in such enterprises
are totally unused outside that time. Contemporary enterprises
therefore have a surfeit of valuable but unused computing
power that could be gainfully used if there were a systematic
means for harnessing this power. This is where grid computing
comes in.
IBM cites its experiences with Bowne & Co of New York
(www.bowne.com), a company that, among other things,
specializes in offering a comprehensive array of transactional
and compliance-related services to clients for creating,
managing, translating, and distributing finance-oriented,
mission-critical documents (eg mandatory stock market reports).
It refers to this service as ‘Financial Print’. Given the various
immovable but periodic deadlines associated with most financial
documents (eg month-end, quarter-end, year-end, tax filing,
etc), the demands for computing, memory, and printing
capabilities at Bowne fluctuate wildly depending on the time of
year.
Although IBM’s capacity on-demand (CoD) features on its
zSeries, pSeries, and iSeries machines can address this
problem, capacity on demand doesn’t help customers harness
the unused computing resources they already have. Grid
computing, however, does, and this is the solution that Bowne
adopted.
Another well-known example of grid computing in the commercial
world is provided by Pratt & Whitney (www.pratt-whitney.com),
maker of jet engines. Pratt & Whitney needs extensive CPU
resources and computer memory to perform complex air-flow
simulations and stress test analysis. Rather than resorting to
super-computers for these tasks as it used to, Pratt & Whitney
now uses a grid computing network made up of 5,000 desktop
workstations, spread across three of its locations.

 24 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

THE DISPATCH MODEL WITH SETI@HOME
The Search for Extraterrestrial Intelligence (SETI) at Home
(setiathome.ssl.berkeley.edu), orchestrated by Berkeley
University, is another well-known example of grid computing.
SETI is trying to detect signs of extraterrestrial life by analysing
radio frequencies emanating from space to determine whether
they contain non-random patterns that might have been
generated by intelligent beings. The amount of radio frequency
data being analysed is enormous, and even Berkeley, with all
its cutting-edge computing power, doesn’t have enough capacity
to do the necessary number-crunching in ‘real-time’. It therefore
came up with a grid computing solution that would make use of
the unused computing resources of PCs around the world,
irrespective of whether they were home-based or installed
within an enterprise.
Berkeley devised an ingenious grid computing client that works
as a screen-saver by graphically displaying via a colourful, 3-
D spectrum chart the radio frequencies currently being analysed
by a particular workstation. It created screen-saver clients for
a variety of desktop platforms, including Windows, Mac, OS/2,
BeOS, and OpenVMS. Once installed, each screen saver
communicates with a central SETI server at Berkeley, over the
Internet, to request small ‘units of work’ representing some
amount of radio frequency data that needs to be analysed
according to the SETI algorithms. The SETI server provides
each screen-saver client with appropriate ‘units of work’ using
grid computing’s ‘request model’ of processing.
With this type of ‘request model’ operation, when a grid computing
client is ready to process a new unit of work, it contacts a
designated server and indicates its availability. The server then
sends it a unit of work for processing. The client processes this
unit of work when the necessary processing resources are
available. In the SETI@Home example, the client needs to be
able to do the necessary processing in the current unit of work
in non-contiguous ‘bites’ of time, as and when the machine it’s
running on is not being used for other work. When the client
finishes processing that unit of work, it contacts the server again

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

and uploads the completed results back to the server.
In the ‘dispatch model’, a central server contacts various clients
with new units of work that they’re expected to process when
they have the necessary time (eg unused CPU cycles) or
resources (eg unused main memory). When a client has
processed the unit of work previously dispatched to it, it returns
the results to the server using a pre-agreed protocol. The server
synthesizes the results received from various clients, according
to a larger algorithm, while continuing to dispatch new units of
work to clients that have successfully completed their prior
tasks.

TYPES OF GRID
There are currently three main types of computational grid,
each best suited to a different type of application:
1 Scavenging grids
2 Computational grids
3 Data grids.
Scavenging grids, as their name suggests, set out to scavenge
for unused computer resources that can be profitably exploited
by other applications. They are primarily implemented with
desktop workstations (eg PCs), although this grid methodology
could also be used with servers. All of the examples cited above
fall into this scavenging category of grid computing.
By contrast, grid computing involving high-performance servers
(eg mainframes or Unix systems) is typically realized using
computational grids, enabling the workload management
capabilities of these servers to be harnessed to support a pre-
determined grid computing application.
With computational grids, there are pre-determined policies as
to how various resources on the machines involved will be
‘roped in’ to perform grid-related work. It’s also worth noting that
IBM’s WebSphere Application Server Version 5 now supports

 26 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

grid computing via the ‘server allocation’ feature that was
introduced in May 2003. Server allocation extends load-
balancing across application servers to the point where all
WebSphere Application Servers installed within an enterprise,
irrespective of the exact platforms on which they’re running,
appear as a single, unified application execution environment
to the ‘guest’ applications that run on these servers.
While scavenging and computational grids deal with the sharing
of CPU cycles and computer memory, data grids address how
unused storage on systems can be shared by other applications.

GRID COMPUTING USING WEB SERVICES
Those of you who are familiar with XML Web services should
see some similarity in the distributed computing paradigms
being advocated by grid computing and Web services. Web
services postulates client/server distributed mechanisms so
that new applications can avail themselves of value-added
functionality from external sources. Grid computing, on the
other hand, advocates a client/server distributed mechanism,
so that applications can avail themselves of additional processing
resources available from external sources. Once you see this
relationship, you can even start to identify scenarios where both
methodologies could work together in a synergistic manner.
A new e-business application that relies on Web services for
additional functionality could at the same time use grid computing
to realize the horsepower it needs to complete all of its
processing. So, rather than relying on additional processors or
memory using a capacity-on-demand scheme, corporations
could, provided that they had the appropriate grid-centric
workload management infrastructure, think about exploiting
grid computing using the inevitable unused processing power
that’s always on tap across all organizations.
Thanks to the Open Grid Services Architecture (OGSA), Web
services has now assumed a pivotal role in grid computing.
OGSA is a key standard endorsed in June 2002 by the Global

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Grid Forum – one of the more influential bodies promoting this
technology. OGSA has since been implemented in the Globus
Toolkit 3 (the Globus Alliance – www.globus.org – is an
academia-oriented initiative sponsored by IBM, Microsoft, Cisco,
and NASA).

OPEN GRID SERVICES ARCHITECTURE
OGSA is a standard for the overall structure and services that
are to be provided in future grid environments. With OGSA, all
grid resources, whether logical or physical, are represented as
services – where a service is considered to be a network-
enabled resource that delivers a predefined functional capability
that can be invoked and used through the exchange of specific
messages. OGSA will go a long way towards helping to
commercialize grid computing, by defining a clear and consistent
framework that addresses the overall structure and services
that are to be provided in future grid environments.
OGSA is built upon Web services. In effect, it melds together
grid computing with Web services –- or, to be more precise,
Web services-related technologies such as XML, SOAP, Web
Services Description Language (WSDL), WS-Security, and
WS-Coordination. The fundamental building block of OGSA is
a ‘grid service’, where a grid service is essentially an enhanced
Web service.
Everything to do with OGSA therefore revolves around Web
services. So much so that Globus now positions OGSA as
representing the evolution of grid computing towards a grid
system architecture based on Web services concepts and
technologies. In essence, OGSA leverages Web services to
slowly but surely move grid computing towards a highly service-
oriented architecture (SOA) model.
Grid computing has also done a grand job of back-filling the
holes that we still have in the Web services ‘fabric’. The basic
problem here is that there are no predefined backbone services
with regard to Web services. In other words, there are no

 28 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

standard services per se for the life-cycle management of a
Web service. Life-cycle management is crucial in the case of
grid services – mainly because they tend to be much more
transient (ie separate units of work rather than multiple calls to
the same piece of software).
OGSA shows the Web services camp some of the things that
they should be thinking about. What’s likely to happen, however,
is that there will be more and more collaboration between the
camps, with each borrowing inspiration and ideas from the
other.

SUMMARY
Grid computing is neither new, a novelty, nor just a passing fad.
It sets out to address how unused computer resources can be
harnessed and put to good use. This is of particular interest
since so much desktop computing power goes unused, even
though enterprises feel that they need more powerful systems.
IBM sees grid computing as an extension to its on-demand
computing initiative, which is why it often combines grid
computing with autonomic computing.
The new OGSA standard brings the best of Web services
methodology into the grid arena, in the form of grid services.
Grid services therefore become another class of killer application
for Web services, alongside portal and smart-phone applications.
The introduction of Web services into the grid arena also
highlights intriguing scenarios in which Web services and grid
services can work in tandem, each addressing a very different
need of an application.
The bottom line of all of this is that grid computing is going to be
an important technology in the IBM world – particularly in the
context of large-scale, mission-critical applications such as
those associated with TCP/SNA. Which makes this an excellent
time to start learning about it.
Anura Gurugé
Strategic Consultant (USA) © Xephon 2004

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Using SOAP on a regular basis

Although SOAP is inextricably linked with XML Web services,
the technology is by no means restricted to Web services.
Rather, SOAP (which, as of Version 1.2, is now a bona fide
standard endorsed by the World Wide Web Consortium (W3C))
is a strategic, XML-based messaging technology. It also
facilitates remote procedure call invocation. It can be thought of
as a kind of poor man’s equivalent of IBM’s WebSphere
MQSeries, albeit one that’s totally XML-centric.
SOAP is the latest in a long line of distributed computing
initiatives – which, in this context, includes CORBA as well as
Microsoft’s COM/DCOM, although it’s not meant to totally
displace either of these powerful, object-oriented methodologies.
SOAP sets out to be a simpler alternative without all the high-
end bells and whistles (eg automatic garbage collection).
SOAP is a messaging scheme that works by exchanging XML
documents. It is formally characterized as a lightweight
communications protocol for exchanging XML-based
information between applications, in a decentralized, distributed
environment such as the Web. Think of SOAP, to begin with, as
‘XML datagrams’.
XML is a mechanism for describing the meaning and context of
data, and is contingent on both sides (ie creator and subsequent
reader or consumer) being privy to some common ‘intelligence’
(eg XML schema or DTD). XML’s initial focus, understandably,
was all about being flexible and extensible, and having the
necessary industry- and application-specific ‘vocabularies’ (or
dialects) to facilitate b2b e-business. But the real scope of XML
is limited to XML documents – that is, plain text files containing
data annotated with XML notation. XML doesn’t deal with how
XML documents can be exchanged between interested parties;
that’s where SOAP comes in. SOAP (which is no longer an
acronym – ie SOAP stands for SOAP) provides a generalized
and extensible document exchange capability for XML, which
is totally independent of Web services.

 30 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

THE NEED FOR SOAP
In order to appreciate the rationale for SOAP in the context of
XML without involving Web services in any way, let’s take a look
at the supply chain management (SCM) scenario of a supplier
wishing to notify some of its customer base, programmatically,
about new pricing data. With today’s expertise in XML and the
ready availability of the appropriate industry-specific
‘vocabularies’, it wouldn’t be difficult to create the necessary
‘price update’ XML document. But the challenge now becomes
that of conveying this document to all the intended recipients in
an automated, program-to-program manner.
It’s obviously not enough to send the XML document over HTTP
as an e-mail attachment or via ftp to each of the recipients. This
doesn’t address the fundamental, program-to-program criteria;
nor does it offer XML-oriented, application-level ‘transaction’
coordination, payload security, or guaranteed delivery.
SOAP sets out to address all of these distributed computing-
related, message delivery requirements. SOAP can sustain
any type of XML messaging application need, including those
for one-way messaging, multicasting (or broadcasting), request-
response interactions, and coordinated, sequential workflow
progressions. It also includes the option of a simple but powerful
RPC-type mechanism, allowing you to conduct XML-based,
program-to-program, request/response-oriented RPC-like
transactions that can be visualized as follows:
• placeOrder()
• getCreditRating()
• findCurrentWeather()
• getStockPrice()
• updatePurchaseOrder()
• obtainShipDate()
It is the powerful, platform- and programming-language-
independent RPC mechanism of SOAP that’s of special interest

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

in the case of Web services. This RPC capability highlights the
potential relationship between XML documents, SOAP, and
Web services because each of the procedure calls shown
above could be to a Web service that performs that function.
Although SOAP is invariably associated with this type of RPC
mode operation, it’s important to note that this is only one of the
messaging modes that can be used with SOAP. In reality, RPC
mode representation is an optional SOAP capability.

THE RPC CAPABILITY
What SOAP really does when it comes to RPCs is provide a
generalized mechanism for representing and encapsulating
RPCs within SOAP messages. In theory, any of the schemes
used by today’s programming languages to define and invoke
procedures or object-oriented ‘methods’ can be mapped and
represented by a SOAP message, which would typically be
delivered to the remote ‘server’ via an HTTP POST command.
Let’s take as an example the ‘findCurrentWeather’ Web service,
which, when given a zip code, returns an XML document that
contains the current temperature, anticipated temperature range,
current disposition (eg cloudy), and so on. A SOAP-based call
to this service, which is hypothetically assumed to be available
as a method at ‘www.your-weather.com’, would look as follows:
<w:findCurrentWeather xmlns:w="http://www.your-weather.com/">
 <w:sZipCode xsi:type="xsd:string">Ø3249</w:sZipCode>
</w: findCurrentWeather>

The response to this call will be returned in another SOAP
message.

A MORE COMPLEX SOAP EXAMPLE
Now let’s look at the overall structure of a representative, but
relatively simple, SOAP-based transaction. Imagine a
hypothetical, on-line book ordering scenario between a book
retailer and a publisher realized via an ‘eOrder’ SOAP request.
The SOAP request sent from the book retailer to the publisher

 32 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

will contain retailer identification, PO details, and information
about the book. To achieve this, our customer will send the
following ‘orderItem’ SOAP request to the supplier, which
includes information such as the customer identification (ie
RetailID), the item number, item name, item description, quantity
ordered, wholesale price, and so on – in this case using HTTP
as the transport mechanism:
POST /Orders HTTP/1.1
Host: www.megapublisher.com
Content-Type: application/soap+xml; charset="utf-8"
Content-Length: nnnn

<?xml version=‘1.Ø’ ?>
<soap:Envelope xmlns:soap="http://www.w3.org/2ØØ3/Ø5/soap-envelope">
 <soap:Header>
 <o:eOrder
 xmlns:o="http://www.megapublisher.com/orders"
 soap:encodingStyle="http://megapublisher.com/encoding"
 soap:mustUnderstand="true">
 </o:eOrder>
 </soap:Header>
 <soap:Body>
 <m:onlineOrder>
 soap:encodingStyle="http://www.w3.org/2ØØ3/Ø5/soap-encoding"
 xmlns:m="http:// www.megapublisher.com/orders/">
 <m:eOrder xmlns:m="http:// www.megapublisher.com/orders">
 <m:retailerCode>UKØ216987</m:code>
 <m:retailerName>TechBooks</m:retailerName>
 <m:invoiceNumber>MgTec533</m:invoiceNumber>
 <m:isbnNumber>1-55558-28Ø-X</m:isbnNumber>
 <m:author>Guruge</m:author>
 <m:title>Corporate Portals</m:title>
 <m:quantity>1ØØ</m:quantity>
 <m:shipping>standard</m:shipping>
 </m:onlineOrder>
 </soap:Body>
</soap:Envelope>

The above SOAP request, delivered to the book publisher (ie
‘MegaPublisher.com’) via HTTP, will result in the ‘eOrder’
method being invoked at: www.megapublisher.com/orders/.
SOAP itself doesn’t specify, or care, how this method is
implemented. It also doesn’t get involved in how this request is
processed. Its express goal is just to deliver the request, in the
form of an invocation, to the intended remote method, along

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

with the enclosed input data. The receiver, in this case the
HTTP server at ‘MegaPublisher.com’, could use a standard
CGI script, or invoke a Java servlet or .NET process, to process
this order and return an appropriate acknowledgement (eg
order confirmation number and an estimated delivery date).

SOAP MESSAGES AND NAMESPACES
Even a cursory examination of the above SOAP example will
show that it consists of four distinct parts. The first four lines,
starting with ‘POST’, talk about HTTP, identify the (remote)
host, and specify a content type for the message. These four
SOAP transport-related lines are known as the SOAP ‘binding’
(or, in this instance, the SOAP-HTTP binding, given that the
transport is http). Within this, the first two lines, which are HTTP-
specific, are known as the HTTP request.
Straight after the XML declaration, which comes next, you can
find the start of a SOAP envelope. This envelope, which in
essence subsumes the entire SOAP message, is in turn made
up of two parts: the SOAP header and the SOAP body. All
SOAP messages conform to this overall structure.
In addition, the abundance of colons in the above example
(since each element name is prefixed, as well as the four
occurrences of the key-word ‘xmlns’) indicates that XML
namespaces are an integral concept within SOAP. XML
namespaces is the standard XML mechanism to ensure that
the meaning of XML elements with regard to a given XML
document are not mistaken or misinterpreted. The prefixed
element names with regard to a specific XML namespace
ensure the uniqueness of XML elements within a particular
context.
This explains the significance of XML namespaces with regard
to SOAP. Since SOAP is a messaging scheme, the underlying
implication is that an XML document transported using SOAP
will be read and interpreted at a different site from where the
original XML document was originally conceived. In addition, a

 34 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

recipient could receive XML documents from different sources
that contain the same elements, but each with a slightly
different nuance. The use of XML namespaces eliminates such
ambiguity and makes sure that a recipient of an XML document
has a way to unequivocally validate the intent of the elements
contained in that document.

Figure 1: Layering of SOAP on top of the transport layer

Application/
Web service

SOAP

Application
protocol

Transport

SOAP SOAP SOAP SOAP

HTTP SMTP FTP

TCP

Message
queueing

TCP TCP TCP TCP

Application/
Web service

Application/
Web service

Application/
Web service

Application/
Web service

Application/
Web service

SOAP
protocol
binding

SOAP
protocol
binding

SOAP
protocol
binding

SOAP
protocol
binding

SOAP
protocol
binding

SOAP
protocol
binding

SOAP
protocol
binding

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

THE KEY ATTRIBUTES OF SOAP
The primary attributes of SOAP can be summarized as follows:
• SOAP is an XML-based messaging scheme.
• SOAP works between applications.
• SOAP can readily be used between disparate platforms.
• SOAP supports the encapsulation and remote delivery of

RPCs.
• SOAP is programming language agnostic.
• SOAP enables XML to be communicated over HTTP.
• SOAP, however, is not restricted to HTTP.
• SOAP relies heavily on XML namespaces.
• SOAP is what is used by Web services for their I/O

operations.
• SOAP is also considered to be what remotely invokes Web

services.
Given these attributes, it’s easy to surmise the relationship
between SOAP and Web services. SOAP, at least for the time
being, is a fundamental, prerequisite building block for XML
Web services. SOAP is the preferred mechanism for sending
input to, and receiving output from, conventional XML Web
services. It’s therefore the underlying communications
mechanism for today’s Web services. Since a Web service
requires input parameters in order to be activated, SOAP is also
considered to be what invokes a Web service, given that it is
what delivers the input parameters.

XML OVER HTTP
Contrary to popular belief, SOAP is not a transport mechanism
but rather a messaging mechanism which is meant to be used
on top of standard transport protocols. The layering of SOAP on
top of the transport layer is clearly shown in Figure 1 (where

 36 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

SOAP can be used by ‘standard’ applications as well as XML
Web services). SOAP can be used across HTTP, TCP, SMTP,
ftp, message queueing (eg IBM’s WebSphere MQ), or even
other RPC mechanisms. However, HTTP is the preferred and
most widely used transport scheme for SOAP, in the context of
Web services as well as other scenarios.
HTML over HTTP is what the Web is all about. But with SOAP,
you can have XML over HTTP. The SOAP specification
acknowledges this ‘made in heaven’ relationship aspect of
SOAP and HTTP. Although it is stated that SOAP is not limited
for use with HTTP, the only transport ‘binding’ shown in the
original SOAP specification (known as the 1.1 specification)
was that for HTTP.
Given that SOAP is a messaging scheme, which moreover has
structures known as ‘envelopes’ and ‘payloads’, it has become
accepted to use a postal analogy to describe SOAP, although
the analogy is somewhat limited. Nonetheless it would be
remiss not to at least mention it in passing, given its widespread
usage within the industry. SOAP, according to this analogy, is
all about the item that is to be mailed. It describes how that item
(ie the payload) is to be packaged in a modular manner. That’s
where the SOAP envelope comes in.
But SOAP doesn’t dictate how this envelope containing the
payload (ie the message) gets delivered to the intended recipient.
Nowadays, with conventional paper-based mail, you have
multiple delivery options, including normal mail, express mail
service (eg FedEx), and courier. These are transport options –
the message is the same, but the delivery characteristics are
very different. The same is true with SOAP and the various
transports over which it can be used.

FIREWALL TRAVERSAL
When used on top of HTTP, SOAP messages can typically
cross corporate firewalls and evade standard packet-filtering
policies, since HTTP, as the basis for interacting with Web
servers, is given free access. Ironically, one of the motivations

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

for developing SOAP was the fact that when used with HTTP
it could indeed be a powerful remote procedure call mechanism
that would not be blocked by a corporate firewall; CORBA- and
the DCOM-based distributed computing approaches needed
specific ports to be opened in the firewall in order for them to get
through. Since network administrators are invariably reluctant
to open up new ports on firewalls, this was yet another problem
that beset the CORBA and DCOM approaches. Suffice to say
that SOAP’s ability to get through firewalls using HTTP is now
a source of some concern, and one of the security-related
issues that has to be dealt with in the context of Web services.
However, despite how it may seem at first sight, this firewall
traversal capability is not an overt security exposure. This is
because just getting one or more SOAP messages through a
firewall is unlikely in itself to pose any kind of threat or cause any
damage. SOAP always works in application-to-application,
sender-to-receiver mode. This means that a SOAP message
that crosses a firewall is simply a harmless ‘lost transmission’
unless it is received and acted upon by an application (or Web
service) running behind the firewall. The secret for enforcing
SOAP-level security is to ensure that any SOAP-capable
application (or Web service) deployed behind a firewall is
authorized, trusted, and regularly monitored.

SOAP PROVIDES INSPIRATION FOR WEB SERVICES
SOAP predates the advent of Web services. Indeed, it was
really the creation of SOAP that got people thinking about the
possibility of Web services. The origins of SOAP can be traced
back to XML-RPC. XML-RPC was developed in early 1998 by
a few visionaries working for Userland Software, DevelopMentor,
and Microsoft (with the names of Dave Winer of Userland
Software and Don Box of DevelopMentor inextricably associated
with the development of XML-RPC and its influence on the
creation of SOAP). XMP-RPC, as its name suggests, is a
simple RPC mechanism that is realized using XML over HTTP.
XML-RPC demonstrated that XML’s scope didn’t have to be
limited to that of representing the exact meaning of a structured

 38 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

document. With XML-RPC, XML could also serve as the basis
for a powerful, standards-based, distributed transaction
processing scheme. XML-RPC is still in use today, although
SOAP has in many ways supplanted it as its more strategic and
widely known descendant.
Following XML-RPC, Microsoft and DevelopMentor went on to
investigate transport-independent, XML-based messaging
schemes that could be used for distributed computing. They
were striving for a mechanism that was simpler to deploy and
use than either DCOM or CORBA, which were considered at
that time to be the long-term solutions for component-based,
distributed computing, with the former being Microsoft-specific
while the latter was ‘open’ and vendor-independent. The resulting
specification, which was known as SOAP 1.0, was ready in
September 1999. In order to garner sufficient market backing
for this specification, Microsoft sought other partners. The
result was the SOAP 1.1 specification, which was authored by
representatives from Microsoft, DevelopMentor, IBM/Lotus,
and UserLand Software.
The 1.1 specification was submitted to W3C on 8 May 2000.
Collaborating on SOAP provided IBM and Microsoft with the
inspiration and impetus to flesh out the notion of XML Web
services that would use this new XML-based messaging scheme
as their I/O mechanism. IBM, Microsoft, and Ariba thus went on
to create the specifications for WSDL and UDDI, which were
made public six months after the unveiling of SOAP.
In addition to the four companies that ‘authored’ it (keeping in
mind that Lotus is a division of IBM), the submission of the
SOAP 1.1 specification to W3C was further endorsed by other
then big names in the industry, including Ariba, Compaq, H-P,
SAP, IONA Technologies, and CommerceOne. Given this wide
and influential industry backing, W3C did not subject this
specification to the rigorous ratification process that is typically
the norm. Bowing to the momentum that SOAP had already
picked up by that stage, and the fact that SOAP implementations
were already in progress, particularly from Microsoft (ie

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Microsoft’s SOAP Toolkit 1.0, which was available in the
Summer of 2000) and the Java camp (led by IBM and Apache),
W3C accepted SOAP 1.1 as a de facto industry standard.
SOAP 1.1 was not as precise as some would have wished, and
there were some interoperability issues between different
implementations of the 1.1 specification. This led to the W3C’s
XML Protocol Working Group initiating work on a SOAP 1.2
specification that attempted to address the nearly 400 technical
and editorial issues cited against the original specification.

SOAP IMPLEMENTATIONS
In order to be able to use SOAP in practice, in the real world,
irrespective of whether it is for use with Web services or with
non-Web services-related software, you need an actual software
implementation of the SOAP specification. However, this is not
going to be an impediment, given that there are currently over
70 SOAP implementations covering all popular hardware and
software permutations. A relatively comprehensive list of current
SOAP implementations can be found at: www.xmethods.net.
In general, developers will not set out to directly generate and
receive SOAP messages. Instead, when developing Web
services that will use SOAP for their I/O operations, they would
typically opt to use a SOAP Toolkit, an application development
‘studio’ product (eg IBM’s WebSphere Studio Application
Developer, BEA WebLogic Workshop, and Microsoft’s Visual
Studio .NET 2003), or a Web services-specific toolkit (eg IBM’s
Web Services Toolkit (WSTK) or Microsoft’s WSTK) to help
them create, parse, and manage the necessary SOAP
messages.
SOAP-based Web services (or other applications) once
developed using a toolkit or a ‘studio’ will typically be deployed,
at least on the server-side, on top of application servers (eg
IBM’s WebSphere Application Server, BEA’s WebLogic Server,
Microsoft’s .NET Framework, Apache Tomcat, Sun ONE, and
the ‘open-source’ Jboss) that in turn will support SOAP-based

 40 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

messaging over a variety of different transports. On the client
side, SOAP support can generally be obtained in two distinct
ways depending on the platform in question. Microsoft’s .NET
Framework, which is available for Windows XP, Windows CE,
.NET 4.2, and Windows Mobile 2003, includes built-in support
for SOAP. Microsoft’s technology overview for .NET Framework
1.1 starts off with a statement that runs as follows: “the .NET
Framework 1.1, used for building and running all kinds of
software, including Web-based applications, smart client
applications, and XML Web services-components facilitate
integration by sharing data and functionality over a network
through standard, platform-independent protocols such as
XML (Extensible Markup Language), SOAP, and http”. If,
instead, Java- or C++-based support is required on a client, you
would typically include the necessary SOAP libraries, provided
by the original development tool, as an overall part of the Java
or C++ code that would be downloaded to the client.
Some of the best known and most widely used SOAP
implementations include the following:
• Microsoft’s SOAP Toolkit 2.0
• IBM’s Java-based SOAP4J, which went on to become the

Apache SOAP project
• SOAP::Lite for Perl
• EasySOAP++
• GLUE.

MICROSOFT’S SOAP TOOLKIT
Given its pioneering work on SOAP, it’s not surprising that
Microsoft was one of the first to offer a SOAP implementation.
This was the so-called SOAP Toolkit 1.0, which was available
in the summer of 2000, shortly after SOAP 1.1 had been
formulated and submitted to the W3C. This initial Toolkit did not
support WSDL (which was at that stage still being formulated),
and only accommodated RPC-mode transactions over HTTP.

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Version 2 of this toolkit, which received widespread publicity
within the software development community and, as such,
became a de facto standard for this genre, was officially
available as of April 2001. Although Microsoft came out with a
Version 3 in July 2002, it’s still the 2.0 toolkit that most
developers have in mind when they think about SOAP-specific
development options from Microsoft.
The SOAP Toolkit permits developers to add XML Web Service
functionality to existing Microsoft COM-oriented applications
and components. The Toolkit is heavily WSDL-centric. It includes
a WSDL generator that will automatically generate WSDL
descriptions of existing COM libraries. It can be used by itself
or in conjunction with Microsoft Visual Studio .NET. The primary
features of the 2.0 Toolkit include:
• A client-side component that permits applications to invoke

SOAP-based Web service operations as described by the
WSDL definition for that service.

• A server-side component that generates SOAP messages
from COM object method calls according to the WSDL
description, albeit only when augmented with Microsoft-
specific Web Services Meta Language (WSML) files.

• The necessary code to transmit, read, ‘serialize’, and
process SOAP messages.

The 3.0 Toolkit included support for sending and receiving
attachments (eg pictures). Remember that this type of
attachment handling essentially falls into the realm of SOAP
bindings (eg SMTP with MIME), SOAP extensibility, and SOAP
encoding. It’s therefore a legitimate implementation-related
option. Microsoft sets out to further extend this capability by
adding support for Direct Internet Message Encapsulation
(DIME)-based attachments, where DIME is a new proposed
standard, for use with SOAP, which (similar to MIME) will allow
any file, of arbitrary type, to be attached to a SOAP message.
There is also a generic type mapper to facilitate the mapping of
complex data types to the necessary WSDL and WSML
descriptions.

 42 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

SOAP IN JAVA
On the Java side, Apache Axis, from The Apache Software
Foundation (www.apache.org), the doyen of Web-oriented
open-software, is now the ‘gold standard’ when it comes to
SOAP implementations. Apache Axis, which includes support
for WSDL as well as XML-RPC, supersedes the well-known
Apache SOAP project. This project, in turn, got its impetus
when IBM donated its SOAP4J implementation to Apache.
Axis; this is positioned as a SOAP engine, is 1.2 compliant, and
can effectively be thought of as Apache SOAP 3.0.
Axis not only offers new features – such as WSDL and XML-
RPC – but also represents a total rewrite of the original SOAP4J
code, as well as a move, within this code, from the display-
oriented XML DOM API to the more appropriate, inter-program-
oriented SAX API. The Axis implementation is also credited
with being much faster than the Apache SOAP version.
The Axis SOAP engine is available as a simple, small-footprint,
stand-alone server. It’s also available as a ‘plug-in’ that can be
seamlessly integrated into application (or servlet) servers. The
Axis SOAP implementation is already in use by IBM, Apple,
Borland, Macromedia, and Jboss, amongst others. IBM’s market-
leading WebSphere Application Server 5.0 has the Axis software
built in. IBM’s WSTK also uses the Axis software. Axis, like the
Microsoft SOAP Toolkit, provides support for attachments but,
whereas the Microsoft Toolkit is COM-centric, Axis is Java
Bean oriented. Thus, for example, it will automatically ‘serialize’
Java Beans, with the added option of customizable mapping to
specific XML fields or attributes.

SOAP INTEROPERABILITY
Interoperability, as mentioned earlier, was an issue with SOAP
1.1 implementations. Various efforts are therefore afoot to
ensure that this will not continue to be a stumbling block down
the road, particularly with 1.2-based implementations. The
SOAP 1.2 specification therefore includes an ‘Assertions and
Test Collection’ test suite. There’s also the Web Services

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Interoperability (WS-I) organization, founded by Accenture,
BEA, H-P, IBM, Intel, Microsoft, Oracle, SAP, and Fujitsu in
February 2002. Since then, Sun, Cisco, and many others have
joined WS-I in various capacities.
WS-I is an open industry organization whose goal is to promote
Web services interoperability across platforms, operating
systems, and programming languages. WS-I sets out to work
across the industry and standards organizations as an end-
user-focused ‘advocacy’ that provides guidance about best
practices regarding Web services and the standards on which
they were based. One of its explicit charters is that of creating,
promoting, and supporting generic protocols for the interoperable
exchange of messages between Web services. Individual
implementers such as Apache are also doing their part to foster
interoperability. The Axis SOAP engine, for example, has been
subjected to a Java-related interoperability test specified by
Java creator and mentor Sun.
The bottom line here is that Web services development,
deployment, or exploitation is in no way going to be hindered by
the paucity of SOAP implementations or by interoperability
fears. The fact that the SOAP specification doesn’t currently
address the needs of transaction processing scenarios could
be an issue as more and more organizations opt to start
exploiting Web services for production applications. For the
time being, however, these issues can be effectively addressed
by using SOAP over a transport scheme that does offer the
necessary transactional processing oriented features (eg a
cross-platform, message queuing scheme such as IBM’s
WebSphere MQ).
Most major toolkits and ‘studios’ targeted at Web service
developers offer SOAP functionality for the application servers
that will be used as the execution environments for Web
services. This means that the choice as to which SOAP
implementation an organization uses will invariably be dictated
by the overall software development preferences and dictates
of that organization. If it favours .NET-based software
development, it will most likely start by looking at Microsoft’s

 44 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Visual Studio .NET 2003, SOAP Toolkit 3.0, and WSDK options.
If, on the other hand, it happens to be a Java-shop, it will most
likely start with one of the popular Java studios and application
servers, such as IBM’s WebSphere or BEA WebLogic. Then
there are all the other language-specific options for C++, Perl,
and so on.

THE SOAP 1.2 INITIATIVE
SOAP 1.2 was expected, at a minimum, to do the following:
• Develop an ‘envelope-oriented’ encapsulation scheme for

XML data so that it could be transferred in an interoperable
manner between disparate systems, allowing for future
extensibility and evolution in terms of distributed systems –
particularly in terms of possible intermediary nodes that
may occur between the transmitter and the receiver, where
these intermediaries could be in the form of gateways,
caches, or application-level ‘proxies’.

• Ensure, with the cooperation of the IETF, an operating
system- (and programming language-) independent means
for representing the contents of the SOAP envelope when
SOAP is used for RCP-related operations.

• Define a mechanism based on XML schema data types (eg
xsd:string, xsd:integer, xsd:decimal and xsd:Boolean) to
represent necessary data (where such a process for
representing data so that it can be correctly interpreted at
the remote end is referred to as ‘data serialization’).

• To define, yet again with the cooperation of the IETF, a non-
exclusive transport mechanism that could be layered on
top of HTTP.

The SOAP 1.2 specification, sanctioned as an official W3C
‘recommendation’, was made available on 24 June 2003. This
W3C recommendation status makes SOAP 1.2 a bona fide
standard. The 1.2 specification consists of two parts:

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• SOAP Version 1.2 Part 1: Messaging Framework
• SOAP Version 1.2 Part 2: Adjuncts.
These two parts, which constitute the technical body of the
specification, were edited by representatives from Canon, IBM,
Microsoft, and Sun. This technical portion of the specification is
augmented by an introductory primer, which is referred to as
‘SOAP Version 1.2 Part 0: Primer’. This document was edited
by a representative of Ericsson. The complete 1.2 document
set, however, is considered to consist of one other document,
the SOAP Version 1.2 Specification Assertions and Test
Collection. This document, which is essentially a test plan for
1.2, was created by representatives from Active Data Exchange,
AT&T, IONA Technologies, Oracle, Unisys, and W3C.
The Assertions and Test Collection is designed to foster
interoperability between diverse 1.2 implementations. Given
that interoperability was an issue with 1.1, it’s easy to appreciate
the motivation for this specification validating suite of tests. This
document captures assertions found in the SOAP Version 1.2
Part 1 and Part 2 specifications, and provides a set of tests that
indicate whether the assertions are properly implemented in a
given SOAP implementation.
These tests are meant to help SOAP implementers check how
well their creations comply with the actual specification. A
SOAP 1.2 implementation that passes all of the tests specified
in this document may claim to conform to the 24 June 2002
SOAP 1.2 Test Suite – this being the date that this document
was accepted as a W3C recommendation. In theory, all those
implementations that successfully pass the entire suite of tests
contained in this document should be able to cleanly interoperate
with each other without encountering unexpected exceptions.
However, the successful completion of this test suite doesn’t
necessarily guarantee total SOAP 1.2 compliance. The test
suite admits up-front that it doesn’t test all aspects, and in
particular it doesn’t test those facets of an implementation that
are considered to reflect the core, mandatory SOAP 1.2

 46 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

requirements spelt out in the specification. Despite this, however,
it’s definitely worthwhile having a test suite that sets out to
validate a relatively large part of the overall specification.

XML INFOSET
On a related subject, the 1.2 specification also strives to be as
unambiguous as possible, especially when describing the
structure of the XML-based documents, yet again in order to
minimize potential implementational variations that could result
in interoperability issues. Part 1 of the specification that deals
with the composition of SOAP messages therefore resorts to
the use of ‘XML Information Set’ (XML InfoSet) conventions.
XML InfoSet is a relatively new W3C standard that was formally
ratified in October 2001.
XML InfoSet is designed to provide a consistent set of definitions
for use in other specifications that need to refer to the information
in a well-formed XML document. The XML InfoSet is an abstract
dataset for XML documents. In effect, it’s a guide for writing
more rigorous XML, and emphasizes the use of XML
namespaces to eliminate ambiguity. Given this mission to
promote better structured XML documents, it’s easy to
understand its appeal to those crafting the SOAP 1.2
specification. With the use of InfoSet, SOAP 1.2 also shifts the
data serialization (ie ‘remote’ data representation) issue to
correspond with the transport that’s to be used. It’s therefore left
to the specification for a transport binding to dictate the
serialization scheme that will be used with that transport.
Other than the use of InfoSet, with its emphasis on namespaces,
most of the other changes between 1.1 and 1.2 tend to be in the
realm of technical refinement, and are somewhat esoteric. For
example, with 1.1 it was possible to have other elements,
known as ‘trailers’, after the payload-carrying body element of
a SOAP message. In other words, there could be elements
between </s:Body> and </s:Envelope>. SOAP 1.2 does not
permit such trailers.

 47© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

In order to be as flexible and extensible as possible, SOAP
advocates a message transfer model where there can be a
chain of SOAP-cognisant nodes between the originator and
receiver of a message. Each node in the chain can process a
part of the overall SOAP message. Nodes that perform some
level of processing on a SOAP message are known as SOAP
‘endpoints’. The processing performed by intermediary
endpoints typically relates to header items within the SOAP
message.

BOTTOM LINE
Despite its close association with XML Web services, SOAP is
a strategic, stand-alone messaging mechanism with a powerful
and useful RPC capability. It augments and complements XML
by providing a standard means by which XML documents can
be conveyed to one or more recipients in a systematic manner.
Given that it can be used across many different transports,
including HTTP, SOAP provides a standard means by which to
transfer XML over HTTP. SOAP implementations are widely
available for all popular computing platforms and, with Version
1.2, interoperability between disparate implementations should
no longer be an issue. Given that SOAP, now as a bona fide
W3C standard, is gaining increasing attention as an XML-
centric, application-to-application messaging and RPC-
invocation scheme, independent of its role with Web services,
this is a good time to start brushing up on SOAP.
Anura Gurugé
Strategic Consultant (USA) © Xephon 2004

 48 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Automatic ftp to another AIX site

The utility presented here enables files to be transported from
an AIX system to another server, without any ftp coding in a user
application.

REQUIREMENTS
The following resources are required on each machine:
• One ftp user: ftp_user
• One filesystem: /ftp
• One ini file: /home/data/ftp.ini
• Two crontab entries: one for ftp to receive and one for ftp to

send.
The following resources are generated by the application:
• One or more ftp-commandfile(s): triggerfile to activate the

send or receive action.
• File(s) to be transported.
Also required is a user to send files to the other server. Although
you can use root or another user, it’s much better to use a
dedicated user for ftp. This user will always be present, and it’s
the only one that will ftp files to another site.
The user on the receiving site is root: only this user can switch
between several other users without giving passwords. It may
need to do this in order to:
• Start up a database (user: oracle)
• Start applications owned by and using a specific owner, eg

concurrent processes user = applmgr, logistic processes
: user = logic1, development processes user = develop1

The structure of the filesystem /ftp is as follows:

 49© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 |-- backup
 |-- receive -|
 | |-- error
 /ftp -|
 | |-- backup
 |-- send -|
 |-- error

The ini file contains parameters for ftp: replace or append files,
and what command has to be started if a command file appears,
etc.
The crontab entries will start the ftp scripts – ftp_receive and
ftp_send – every ten minutes.
The command files trigger a required send or receive action.
The command file will be sent once all the files are present; only
then can you be sure that all the files are complete.

HOW IT WORKS

File ftp.ini
Before you can send files, you have to make an entry in ftp.ini.
This ini-file will be used by the ftp_receive and ftp_send scripts.
Two examples of ftp.ini are shown below.
On the send site:
 [test.cmd]
action=
cmd_bef_send=
cmd_aft_send=
description=load files into the remote database
name=test_load.cmd
path=
script=

On the receive site:
[test_load.cmd]
action=replace
cmd_bef_send=
cmd_aft_send=
description=load files from the master database
name=

 50 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

path=/interface
script=test_load Ø7

Figure 1 shows a list of entries and their values.
In order to use this utility some recoding is necessary. To
simplify this, the ftp utility can execute scripts before and after
an ftp. So you can split your coding and code only the creation
of a command file.
Some applications will execute remote commands after an ftp.
To make that possible, the entry ‘script’ has been added. This
script seeks its datasets in a particular directory. To minimize
rewriting the application, the entry ‘path’ has been added: move
the files to that path.

EXAMPLE OF SENDING FILES
This example uses the ini files coded above.
The application has to put the files, which have to be transferred,
in the /ftp/send directory. After that, it generates the command
file test.cmd and puts this in the /ftp/send directory too.

Entry Possible values and explanation Used by
action= replace: rewrite existing files Receiver

append: append to existing files.
cmd_bef_send= ftp coding that will be involved before Sender

the ftp of the files is started.
cmd_aft_send= ftp coding that will be included after Sender

the ftp of the data files.
name= name of command file at the other site. Receiver and

It's possible to send the command file sender
with another name, because at the other
side the name of the original command
file may be used for something else.

path= path where ftp_receive has to put the Receiver
files.

script-= command that will be executed after Receiver
a succesful ftp at receive site.

Figure 1: Entry values

 51© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

At this point the application can stop.
The script ftp_send will be started from the crontab within ten
minutes. The files will be sent to their destination in the directory
/ftp/receive, and the command file will be transferred with the
new name test_load.cmd. After a successful ftp, the script will
move the transferred files into a back-up directory.
At the destination site, ftp_receive finds the command file
test_load.cmd. The script searches in the ftp.ini and copies the
files in /interface – existing files will be overwritten. The files are
moved into /ftp/receive/backup. It then executes the script
test_load with the parameter 07.

Command file
The command file is filled by the script that generates the files,
and contains the destination and the filenames that have to be
sent to the other site.

Example command file test.cmd
target_site
dump_file1.dmp
dump_file1.log

In this example, the files dump_file1.dmp and dump_files1.log
and the command file test.cmd will be transferred to the site
target_site.
The complete result after a successful ftp will be as follows:
At the sending site:
 /ftp/send/backup/dump_file1.dmp.date-time
 /ftp/send/backup/dump_file1.log.date-time
 /ftp/send/backup/test.cmd.date-time.ftp
 /ftp/send/backup/test.cmd.date-time

At the receiving site after ftp_receive:
 /interface/dump_file1.dmp
 /interface/dump_file1.log
 /ftp/receive/backup/dump_file1.dmp.date-time

 52 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 /ftp/receive/backup/dump_file1.log.date-time
 /ftp/receive/backup/test_load.cmd.date-time

Note that date-time is a date time stamp of the format: MMDD-
hhmmss (MonthDay-HourMinuteSecond).

THE FILESYSTEM /FTP
The following code will create a filesystem /ftp of 100 Mb. If you
want to make it larger, change 13 into the number you need.
To make a logical volume labelled ftp with a size of 13 PPs
(ppsize of the vg volumegroup1 = 8 Mb):
mklv -y'ftp' -t'jfs' -x'25' volumegroup1 13

Create a normal journalled filesystem called ftp with a mount
point /ftp in the previous logical volume:
crfs -v jfs -d'ftp' -m'/ftp' -A''`locale yesstr | awk -F: '{print $1}'`'' -p'rw' -
t''`locale nostr | awk -F: '{print $1}'`'' -a frag='4096' -a nbpi='4096' -a ag='8'

Mount the filesystem mount /ftp.

FTP_USER
The user will use the group ftp. If you want to use another group,
eg system, use that one; if you want to use the group ftp and it
doesn’t exist, create the group with the following command:
mkgroup -'A' ftp

The user is created by issuing the following command:
mkuser -a "id=220" "pgrp=ftp" "su=false" "home=/ftp" "gecos=ftp batch user" "fsize=-1"
"ftp_user"

Reset the password of ftp_user to a known one: nothing.
Press on the <ENTER> key in response to the next two
questions asked by the command passwd.

PASSWD FTP_USER
Login as ftp_user and set the ftp_user password by typing the

 53© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

following command:
passwd

Create the adjusting directory structure in /ftp.
As root:
Change the owner of the ftp filesystem to ftp_user:
chown ftp_user:ftp /ftp

Become ftp_user and set up all the directories and files:
su - ftp_user

Fill the password file, replace “the ftp_user password” with the
actual password of ftp_user
echo "the ftp_user password" >ftp_user_password

Create the directories:
mkdir receive
mkdir send
cd receive
mkdir backup
mkdir error
cd ../send
mkdir backup
mkdir error

Make it possible for everyone to put files in /ftp/send:
cd /ftp
chmod 777 send

The ftp of files can be right or wrong
• If it’s right:

– At the sender, the files will be moved to /ftp/send/
backup followed by a timestamp.

– At the receiver. the files will be moved to /ftp/receive/
backup followed by a timestamp.

• If it’s wrong:
– At the sender, the problem may be that some files do

 54 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

not exist, the ftp went wrong, script(s) do not exist, or an
entry in ftp.ini is not there. The files will be moved to /
ftp/send/error followed by a timestamp, and an
administrator will need to resolve the error or wait until
the site is up again, and resubmit the files to the ftp-
system by using ftp_restart.

– At the receiver, the problem may be that the script
which has to be executed does not exist, the entry in
ftp.ini is not there, or the target directory is missing. The
files will be moved to /ftp/receive/error followed by a
timestamp. Once again, an administrator will need to
resolve the problem.

The back-up directories are meaningful, and are created to
ensure that the ftp can always be restarted.
Users are sometimes unsure exactly what data was loaded in
their system. They can easily look into the flat files to find any
data they’re missing.

CRONTAB ENTRIES
We have to use two crontabs: one of the user ftp_user and one
of the user root.
The crontab of the user ftp_user has just one entry:
Ø,1Ø,2Ø,3Ø,4Ø,5Ø * * * * /home/oper/ftp_send

The crontab of the user root has two entries added:
5,15,25,35,45,55 * * * * /home/oper/ftp_receive
Ø 4 * * 6 /home/oper/ftp_cleanup

SCRIPTS
The ftp_receive script has to be executed by the user root
because the script, which has to be executed after the receive,
may change from the user, eg Oracle. Only the user root can
freewheel between users without knowing their passwords.

 55© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

The ftp_send and ftp_receive scripts will be executed every ten
minutes to trigger command files. The ftp_cleanup script will be
executed every Saturday at 4 o’clock.

ftp_cleanup
The ftp_cleanup script will remove old files which exist in the /
ftp/send/backup, /ftp/send/error, /ftp/receive/error, and /ftp/
receive/backup directories. The script will also replace a
triggerfile and log all the removed files.

ftp_send
The ftp_send script will read one or more command file(s). The
first line is always the destination (eg target_site). The next
lines are the files which have to be transferred, and each file will
be checked to see whether it exists. If a file does not exist, the
ftp will not take place and all the other files called in the
command file will be moved into the error directory. If all the files
are present, the ftp session will start and the files will be
transferred. After the ftp, the script checks that all files have
been sent to their destination. If everything is OK, the files will
be moved to the back-up directory; otherwise, the files will be
transported to the error directory and a message will be
generated.
If ftp_send is already executing, the script ends. Once it has
ended three times, it will generate a message; after ending four
times without any action, it will give a serious warning.

ftp_receive
ftp_receive will check to ensure that all the files are present.
If any file is missing or the destination directory does not exist,
or if the script which has to be executed does not exist, the files
will be moved to the error directory and the script called in ftp.ini
will not be started in the background.
Only if all files are present and everything else is ok will the files

 56 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

be copied to their target directory and moved to the back-up
directory. After moving the datasets, the script called in ftp.ini is
started in the background, and ftp_receive will end.

ftp_restart
The ftp_restart script can be used when an ftp session fails, for
example when the destination cannot be reached.
You can start it by typing ftp_restart on the prompt. The script
will return a screen containing the sessions and the time when
they failed. You can choose one entry to restart. The files will be
transferred to
/ftp/send, and the ftp system will process the files in the next
loop. Any error will be shown.
You can also add the script in the crontab. When started, this
will restart all the failed sessions except those which cannot be
restarted – for example where files are missing or the destination
cannot be reached. After a session has been restarted a certain
number of times, an error message will be produced and the ftp-
session will be skipped.
An example crontab entry for ftp_user is shown below:
3,13,23,33,43,53 * * * * /home/oper/ftp_restart

THE CODING
All the scripts use the ‘script logging system’, which contains
logmsg, logfile, and d_msg. These scripts are used to log all the
processes.
(The coding scripts are available for download from our Web
site. See the end of the article for further details.)

 57© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

EXAMPLE LOGGING ENTRIES

ftp_receive

Example 1 : ftp_receive did find all files and started a command
15/Ø9/99 Ø3:Ø5:Ø1 24876 root ftp_receive - ftp - bls_ecodet_goe_R1.cmd: chown
applmgr:dba /oraapplx/applmgr/product/1Ø7/sch/1.Ø/gldata/ijnp*.* started
15/Ø9/99 Ø3:Ø5:Ø2 24876 root ftp_receive - ftp - bls_ecodet_goe_txtR1.cmd: chown
applmgr:dba /oraapplx/applmgr/product/1Ø7/sch/1.Ø/log/ijnp*.txt started

Example 2 : ftp received all files but there is no path and no action
defined in ftp.ini
15/Ø9/99 1Ø:55:ØØ 937ØØ root /home/oper/ftp_receive - ftp - files_order.cmd: Path
not found in ftp.ini
15/Ø9/99 1Ø:55:Ø1 937ØØ root /home/oper/ftp_receive - ftp - files_order.cmd: No
action defined in ftp.ini

Example 3 : error in ftp.ini
28/Ø5/99 1Ø:35:Ø2 root ftp_receive - ftp - bls_ecodet_R1.cmd: Path not found in
ftp.ini
28/Ø5/99 1Ø:35:Ø2 root ftp_receive - ftp -

28/Ø5/99 1Ø:35:Ø3 root ftp_receive - ftp - *
*
28/Ø5/99 1Ø:35:Ø3 root ftp_receive - ftp - * bls_ecodet_R1.cmd: error in file(s)/
ftp.ini, chown_to_ applmgr NOT started *
28/Ø5/99 1Ø:35:Ø3 root ftp_receive - ftp - * call standby
*
28/Ø5/99 1Ø:35:Ø3 root ftp_receive - ftp - * Script halted
*
28/Ø5/99 1Ø:35:Ø4 root ftp_receive - ftp - *
*
28/Ø5/99 1Ø:35:Ø4 root ftp_receive - ftp -

ftp_send

Example 1 : file does not exist --> ftp does not take place
15/Ø9/99 1Ø:4Ø:Ø1 539Ø4 ftp_user ftp_send - ftp -

15/Ø9/99 1Ø:4Ø:Ø1 539Ø4 ftp_user ftp_send - ftp - *
*

 58 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

15/Ø9/99 1Ø:4Ø:Ø1 539Ø4 ftp_user ftp_send - ftp - * file_order.cmd: File /ftp/send/
order_12 not present *
15/Ø9/99 1Ø:4Ø:Ø1 539Ø4 ftp_user ftp_send - ftp - * call standby
*
15/Ø9/99 1Ø:4Ø:Ø1 539Ø4 ftp_user ftp_send - ftp - *
*
15/Ø9/99 1Ø:4Ø:Ø1 539Ø4 ftp_user ftp_send - ftp -

Example 2 : All files exists and ftp went OK
15/Ø9/99 14:3Ø:Ø1 8913Ø ftp_user /home/oper/ftp_send - ftp - file_pickera: ftp to
picker_server is okay
15/Ø9/99 14:3Ø:Ø3 8913Ø ftp_user /home/oper/ftp_send - ftp - file_pickerd: ftp to
picker_server is okay
15/Ø9/99 15:4Ø:Ø2 99Ø7Ø ftp_user /home/oper/ftp_send - ftp - file_pickerf: ftp to
picker_server is okay
15/Ø9/99 15:4Ø:Ø4 99Ø7Ø ftp_user /home/oper/ftp_send - ftp - file_pickerj: ftp to
picker_server is okay
15/Ø9/99 15:4Ø:Ø5 99Ø7Ø ftp_user /home/oper/ftp_send - ftp - file_picker.cmd: FTP to
picker_server is okay
15/Ø9/99 15:4Ø:Ø5 99Ø7Ø ftp_user /home/oper/ftp_send - ftp - file_picker.cmd: all
files to picker_server transferred

Example 3 : FTP of the previous session is still busy, script deletes
lockfile
16/Ø9/99 19:47:41 27488 ftp_user /home/oper/ftp_send ------- Lock found in
ftp_send
16/Ø9/99 19:57:41 31466 ftp_user /home/oper/ftp_send ------- Lock found in
ftp_send
16/Ø9/99 2Ø:Ø7:41 23326 ftp_user /home/oper/ftp_send ------- Lock found in
ftp_send
16/Ø9/99 2Ø:Ø7:41 26432 ftp_user /home/oper/ftp_send ------- Ftp is locked 3Ø
minutes
16/Ø9/99 2Ø:Ø7:41 26432 ftp_user /home/oper/ftp_send ------- Checking ftp in
ps -ef
16/Ø9/99 2Ø:Ø7:41 26432 ftp_user /home/oper/ftp_send ------- No ftp in ps -
ef, removing lockfile

Example 4 : FTP of the previous sessions is still busy, user has to
check ftp
19/Ø9/99 19:49:41 17468 ftp_user /home/oper/ftp_send ------- Lock found in
ftp_send
19/Ø9/99 19:59:41 17472 ftp_user /home/oper/ftp_send ------- Lock found in
ftp_send
19/Ø9/99 2Ø:Ø9:41 1748Ø ftp_user /home/oper/ftp_send ------- Lock found in
ftp_send

 59© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

19/Ø9/99 2Ø:Ø9:45 1748Ø ftp_user /home/oper/ftp_send ------- Ftp is locked 3Ø
minutes
19/Ø9/99 2Ø:Ø9:45 1748Ø ftp_user /home/oper/ftp_send ------- Checking ftp in
ps -ef
19/Ø9/99 2Ø:Ø9:45 1748Ø ftp_user /home/oper/ftp_send ------- Ftp still busy,
giving
it 1Ø minutes more before serious warning
19/Ø9/99 2Ø:Ø9:45 1748Ø ftp_user /home/oper/ftp_send ------- Lock found in
ftp_send
19/Ø9/99 2Ø:1Ø:3Ø 1751Ø ftp_user /home/oper/ftp_send ------- Ftp is locked 4Ø
minutes
19/Ø9/99 2Ø:1Ø:3Ø 1751Ø ftp_user /home/oper/ftp_send ------- Checking ftp in
ps -ef
19/Ø9/99 2Ø:1Ø:3Ø 14888 ftp_user /home/oper/ftp_send - ftp -

19/Ø9/99 2Ø:1Ø:31 14888 ftp_user /home/oper/ftp_send - ftp - *
 *
19/Ø9/99 2Ø:1Ø:31 14888 ftp_user /home/oper/ftp_send - ftp - * Check ftp:
ftp session 4Ø minutes busy *
19/Ø9/99 2Ø:1Ø:31 14888 ftp_user /home/oper/ftp_send - ftp - *
call standby *
19/Ø9/99 2Ø:1Ø:31 14888 ftp_user /home/oper/ftp_send - ftp - *
 *
19/Ø9/99 2Ø:1Ø:31 14888 ftp_user /home/oper/ftp_send - ftp -

19/Ø9/99 2Ø:1Ø:32 1751Ø ftp_user /home/oper/ftp_send ------- Lock found in
ftp_send

ftp_cleanup
15/Ø9/99 Ø1:45:55 538Ø8 root /home/oper/ftp_cleanup ------- Begin
15/Ø9/99 Ø1:47:15 538Ø8 root /home/oper/ftp_cleanup ------- End

entries in /home/data/ftp_removed:
/ftp/send/backup/order_1.cmd
/ftp/send/backup/order_1.cmd.ftp
/ftp/send/backup/picker_2
/ftp/send/backup/picker_12
/ftp/send/backup/picker_17
/ftp/send/backup/picker_19
/ftp/receive/backup/file_Ø1.dmp
/ftp/receive/backup/file_Ø8.dmp
/ftp/receive/backup/file12.dmp
/ftp/receive/backup/file19.dmp
/ftp/receive/backup/file22.dmp
/ftp/receive/backup/file24.dmp
/ftp/receive/backup/wms_11.cmd

 60 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

/ftp/receive/backup/wms_14.cmd
/ftp/receive/error/bls_ecodet_1.cmd
/ftp/receive/error/bls_ecodet_R1.cmd

ftp_restart

example1 : ftp_restart started on the prompt
The following ftps have been stopped due to errors:
Nr Command-file Date
1 : testftp1.cmd Ø7/Ø8 1Ø:5Ø:ØØ
2 : testftp2.cmd Ø7/Ø8 1Ø:4Ø:ØØ
3 : testftp3.cmd Ø6/Ø8 1Ø:4Ø:ØØ

Ø : Quit

Which FTP can be restarted ? 2

The following files have been transferred the previous time:
ØØ1893COØ1.NEW

 Send again? y/N: n

The files mentioned above will not been transferred again.

The following files will be transferred to server1.domain3.company
ØØØØØØØOØ1.OLD

FTP of testftp2.cmd processing for restart

*
* FTP of testftp2.cmd is ready to restart
* FTP of testftp2.cmd will be processed in the next loop of ftp_send
*

example2 : logging ftp_restart started in the background
Ø6/Ø9/Ø1 15:Ø3:Ø8 119942 ftp_user ftp_restart ------- Processing testftp1.cmd
Ø6/Ø9/Ø1 15:Ø3:1Ø 119942 ftp_user ftp_restart ------- The following files have
already been transferred and will not be transferred:
Ø6/Ø9/Ø1 15:Ø3:11 119942 ftp_user ftp_restart -------
Ø6/Ø9/Ø1 15:Ø3:11 119942 ftp_user ftp_restart ------- The following files will be
transferred to server2.domain1.company
Ø6/Ø9/Ø1 15:Ø3:11 119942 ftp_user ftp_restart ------- PROD.UCTION.FILE1
Ø6/Ø9/Ø1 15:Ø3:12 119942 ftp_user ftp_restart ------- Processing testftp2.cmd
Ø6/Ø9/Ø1 15:Ø3:14 119942 ftp_user ftp_restart ------- The following files have
already been transferred and will not be transferred:

 61© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Ø6/Ø9/Ø1 15:Ø3:15 119942 ftp_user ftp_restart ------- ØØ1893COØ1.NEW
Ø6/Ø9/Ø1 15:Ø3:15 119942 ftp_user ftp_restart ------- The following files will be
transferred to server1.domain3.company
Ø6/Ø9/Ø1 15:Ø3:15 119942 ftp_user ftp_restart ------- ØØØØØØØOØ1.OLD
Ø6/Ø9/Ø1 15:Ø3:16 119942 ftp_user ftp_restart ------- Processing testftp3.cmd
Ø6/Ø9/Ø1 15:Ø3:18 119942 ftp_user ftp_restart ------- The following files have
already been transferred and will not be transferred:
Ø6/Ø9/Ø1 15:Ø3:19 119942 ftp_user ftp_restart ------- ØØØ136COØ8.NEW
Ø6/Ø9/Ø1 15:Ø3:19 119942 ftp_user ftp_restart ------- The following files will be
transferred to server6.domain2.company.nl
06/09/01 15:03:19 119942 ftp_user ftp_restart ------- There are no files to
send, files will be moved to /ftp/send/backup

The code for this article is available for download from our Web
site, at www.xephon.com/extras/autoftp.txt.

Teun Post, Schuitema N.V.
(The Netherlands) © Xephon 2004

 62 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

March 1997 – March 2004 index

Items below are references to articles that have appeared in TCP/SNA Update since March
1997. References show the issue number followed by the page number(s). All these back-
issues of TCP/SNA Update can be ordered from Xephon. See page 2 for details.

3174 24.28-30, 27.22, 27.48,
25.24, 40.18-24, 41.14-32,

42.51-59, 42.60-63
3270 datastream 42.35-50, 48.10-21
3745 25.24-27, 46.3-10
3746 46.3-10
Active Server Watcher 43.52-65
Address translation 36.3-18, 45.3-13
AIX 53.45-57
AnyNet 34.6, 42.22-34
APPN 26.27, 32.16
ASCII 53.19-20
ATM 32.17, 34.61-63
Auditing 28.6-12
Automation 33.3-11
Availability 42.10-21
Bind 26.23-26
Buffer pool statistics 31.3-8
Certification 45.35-41
CICS 27.30
Clustering 36.32-42
CMIP alerts 26.3-17
CS/390 42.3-9
DLSw 29.13-15, 32.19, 34.5
Dynamic line updates 27.51-60
Dynamic reconfiguration 26.17-22
EBCDIC 53.19-20
E-business 38.54-65
Education 44.24-68
Encapsulation 34.4
Enterprise Extender 43.3-9
Enterprise printing 35.29-37
Ethernet LAN 40.51-58
FEP 46.15-36
File transfer 24.6-28
FRAD 32.17
Frame relay 34.3
FTP 28.14-53, 30.11, 33.45-47,

38.3-4, 44.3-12, 47.39-59, 48.53-59,
51.49-62, 52.3-26, 53.3-11, 53.45-57

FTPOSTPR 51.49-62

FTPSMFEX 51.49-62
Fundamentals 47.3-8
Generalized Trace Facility (GTF) 21.30
Grid computing 53.21-27
Half-Session Control Block (HSCB)

21.3-29
High Performance Routing (HPR)

27.10-14, 34.4-5
HOD 46.44-48, 46.49-52
HPR 52.27-29
IBM enterprises 29.8-20
IMS 27.31
Independent logical units 26.23-38
Information 37.57-63, 38.66-71

39.53-63, 40.59-62, 41.63-66
43.66-70, 45.70, 48.68-71, 50.60-62

Integration 34.3-7
Internet 30.3-8
IP Version 6 33.21-25, 37.3-17,

37.17-20
ISTCOSDF 28.12-14
ISTRACON 25.51-59
JES nodes 25.35-38, 27.31
LAN 29.8-20
Load balancing 36.32-42
Logon mode table 32.27-39, 33.25-44
LOSTERM 27.60-61, 28.57, 29.21
LPR 38.6
LUGROUP 24.3-6
LUSEED 24.3-6
MAC 29.11
Maintenance 33.3-11
Management 29.22-26
MCS 48.3-9
Migration 47.17-31
Monitoring host sites 43.49-52
Monitoring VTAM LUs 43.10-38
MVS system symbols 29.3-7
NCP 25.10-35, 26.31,

27.14-50, 29.46-59,
30.34.52, 31.16-18

 63© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

NERD chart 48.22-52
NetMaster 25.34
NetView 25.35-38, 27.3-10,

28.14-53, 32.5-16, 40.36-50, 52.46-67
NetView Distribution Manager 26.38-59,

38.22-53, 39.23-33, 41.33-61
NetView Session Monitor 25.34
NetWare SAA 37.39-43
Network console 32.3-16,

33.11-21, 34.7-22
Network convergence 47.9-16
Network management 23.17-56, 40.36-50
NMVT 24.30-45
OMEGAMON for CICS 27.16
OS/2 32.22-26
OSA-Express 50.3-10
OSI 35.9-13
OSI BER 26.4-8
OSPF 29.9
Pacing 25.21-24, 26.27, 27.33
Packet switching 37.44-57
Performance 27.14-50, 31.10-16
Performance monitoring 51-13-29
Performance tuning 39.3-7
Policy Agent 46.37-43
Portal 47.32-38, 48.59-68
Printing 39.34-41, 50.40-56
QLLC 32.40-41
Reflection 41.14-32, 45.56-69, 46.49-52
Response times 27.22, 45.14-26
RIP 29.9
RUMBA 42.51-59
SAS/CPE 28.6-12
SCO Unix 28.54
Security 30.3-8, 45.27-34
Session management 40.3-17
S-HTTP 29.18-19
SMF 34.23-37, 35.13-28, 36.19-31
SMTP 29.27-46, 30.12-31, 31.19-48,

32.42-57, 33.48-63, 34.38-60,
35.38-67, 36.43-62, 37.21-37, 38.4-6

SNA 32.16-21, 32.39-41, 34.3-7

SNA APPC tuning 39.8-22
SOAP 53.27-44
Sockets 31.8-9, 53.12-18
SOLVE:Netmaster NTS 26.17-23
TCP/IP 28.53, 30.9-10,

32.16-21, 34.3-7
Telnet 37.39-43, 51.29-49
Terminal emulation 41.14-32, 42.51-59

42.60-63, 45.56-69, 46.44-48, 50.56-60
tn3270 34.6-7, 38.12-21
tn3270(E) server 38.12-21
Token Ring Network 25.13, 25.27-29,

40.51-58
Transferring files 46.11-14
TSO 32.22-26
Tuning 31.10-16
UDDI 52.30-45
USS tables 28.53, 32.27-39
VBR 30.53-59
VIPA 42.10-21
VLAN 29.10-13
VTAM 33.3-11, 40.3-7, 42.3-9
VTAM applications 28.3-6
VTAM configuration restart 25.3-10
VTAM constants 25.51-59
VTAM dumps 50.11-21
VTAM exits 24.45-55, 40.3-7
VTAM monitor 35.3-8
VTAM session termination 27.61-63
WAN 30.31-33
WAP 41.3-4
Web server 31.48-63
Web Services 43.38-49, 47.60-66,

50.22-32, 50.33-39
Web-to-host 38.54-65, 39.42-53

41.3-4, 41.5-13, 44.12-24, 51.63-67
Web-to-host glossary 40.25-35
X.25 28.54-57
XML 44.12-24, 45.42-55, 46.53-59
z990 51.3-12
ZOC 42.60-63

TCP/SNA news

Websense, the provider of employee Internet
management (EIM) solutions, has
announced that its content filtering solution
is now available on Nokia’s purpose-built IP
security appliances.

The combination enables businesses to
detect and manage employee access to the
Internet and other network-based
applications, such as instant messaging,
peer-to-peer (P2P) file-sharing, and
streaming media.

Features include:
• A large database of Web sites.
• Advanced filtering for pop-up ads, Internet

radio and TV, spyware, and mobile
malicious code.

• Flexible filtering options, including time-
based quotas, warn/continue, and
password authentication.

• Dynamic network protocol management
for instant messaging, P2P, and streaming
media.

• Support for real-time and trend reporting
tools such as Websense Reporter,
Websense Explorer, and Websense Real-
time Analyzer.

Websense has also announced that
Websense Enterprise, along with its desktop
security solution Client Application
Manager (CAM), can stop blended threats
like W32/Mydoom and other similar worms.

URL: http://www.websense.com/nokia

* * *

x xephon

	Dynamically invoking ftp
	Using the REXX Sockets interface to monitor a z/OS system from the Web
	C2ASCII - ASCII to EBCDIC conversion macro
	Grid computing - the next step for TCP/SNA
	Using SOAP on a regular basis
	Automatic ftp to another AIX site
	March 1997 - March 2004 index
	TCP/SNA news

