
© Xephon Inc 2005

March 2005

57

In this issue

3 FICON – a basic guide
10 A C program generic socket

listener for OS/390 or z/OS
24 TCP – some future directions
27 The netstat command
34 IBM’s Communications

Controller z/Linux
39 Diagnosing routing problems via

the TCP open sequence
47 How to use HPRIP under

OS/390
57 SOAs and composite

applications
63 TCP/SNA news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

TCP/SNA Update
Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Colin Smith
E-mail: info@xephon.com

Subscriptions and back-issues
A year’s subscription to TCP/SNA Update,
comprising four quarterly issues, costs $190.00
in the USA and Canada; £130.00 in the UK;
£136.00 in Europe; £142.00 in Australasia and
Japan; and £140.50 elsewhere. In all cases the
price includes postage. Individual issues,
starting with the March 2000 issue, are available
separately to subscribers for $49.50 (£33.00)
each including postage.

TCP/SNA Update on-line
Code from TCP/SNA Update, and complete
issues in Acrobat PDF format, can be
downloaded from http://www.xephon.com/
tcpsna; you will need to supply a word from the
printed issue.

© Xephon Inc 2005. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.

Printed in England.

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the material
it contains. Neither Xephon nor the contributing
organizations or individuals accept any liability
of any kind howsoever arising out of the use of
such material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information, code,
JCL, EXECs, and other contents of this journal
before using it.

Contributions
When Xephon is given copyright, articles
published in TCP/SNA Update are paid for at
the rate of $160 (£100 outside North America)
per 1000 words and $80 (£50) per 100 lines of
code for the first 200 lines of original material.
The remaining code is paid for at the rate of $32
(£20) per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

 3© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

FICON – a basic guide

In this article I will present a basic overview of what FICON is,
and try to detail some of the general concepts behind it.

FICON stands for FIbre CONnectivity and is based on standard
fibre channel protocols. However, from Layer 4 up FICON has
been developed to be unique to the IBM mainframe
environment. It is a proprietary I/O protocol developed by IBM
for use between IBM (and compatible) mainframes and storage
devices. It takes the higher-layer ESCON protocol, analogous
to SCSI, and maps it onto a fibre channel transport. FICON
offers improved capability over ESCON in the following areas:

• Increased number of concurrent connections – 4,000
channels per control unit.

• Increased distance – maximum of 100 kilometres.

• Increased link bandwidth – full-duplex data rates of 200
and 400MB/sec.

• Increased channel device address support – 16,000
addresses per channel.

FICON, like all other IBM products, has a number of basic
terms that are key to its understanding. These follow in the
next few paragraphs.

In FICON a node is an endpoint that contains information. It
can be a computer, a disk device controller, or a peripheral
disk or tape device. Each node will have a unique 64-bit
identifier known as a Node_Name.

Each node must have at least one port to connect the node to
the FICON topology. This node port is referred to as an
N_Port. Each N_Port has a Port_Name, which is a unique 64-
bit identifier that is assigned at the time it is manufactured.
N_Port is not the only type of port. The others are detailed
below:

 4 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• E_Port – an expansion port is used to interconnect switches
and build a switched fabric.

• F_Port – a fabric port is used to connect an N_Port to a
switch that is not loop-capable.

• FL_Port – a fabric loop port is used to connect NL_Ports
to a switch in a loop configuration.

• G_Port – a generic port is a port that has not assumed a
role in the fabric.

• L_Port – a loop port is a port in a Fibre Channel Arbitrated
Loop (FC-AL) topology.

• NL_Port – a node loop port is an N_Port with loop
capabilities.

FICON directors are normally referred to as switches. There
are, of course, a number of terms pertaining to these, depending
on where the director is in the scheme’s topology. An entry
switch is the FICON Director that is directly connected to the
processor’s FICON channel and to the control unit that is its
destination or another FICON Director.

A cascaded switch is the FICON Director that connects to the
control unit and the entry switch.

The entry switch and cascaded switch are connected with an
Inter-Switch Link (ISL).

The Switch ID and switch address are used to address a
FICON Director. These are 1 byte in length.

A port address, another 1 byte value, is used to address the
physical port on the FICON Director.

One or more switches are normally connected to create what
is termed a ‘fabric’. This is what the N_Ports will be connected
to. A switched fabric takes advantage of aggregated bandwidth
via switched connections between N_Ports. The port connects
to the topology through an FC link. The FC link is a fibre optic
cable that has two strands – one is used to transmit a signal

 5© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

and the other to receive a signal. The FC link is used to
interconnect nodes and switches. The port-to-port connection
options are shown below:

• Node-to-node link (N_Port-to-N_Port).

• Node-to-switch link (N_Port-to-F_Port).

• Loop node-to-switch link (NL_Port-to-FL_Port).

• Switch-to-switch link (E_Port-to-E_Port).

As mentioned previously, both nodes and ports have unique
64-bit addresses that are used to identify them in a FICON
topology. These addresses are assigned by the manufacturer,
with a vendor-specific portion defined by the IEEE standards
committee. These addresses are called Node_Names and
Port_Names, and they are unique world-wide, they are referred
to as World-Wide Node_Name (WWNN) and World-Wide
Port_Name (WWPN). These unique names are normally
written as two sets of hexadecimal numbers, separated by a
colon. An example would be 09:43:11:49:41:01:D6:A9.

FICON on IBM zSeries mainframes can operate in one of
three modes. These are:

1 FICON conversion mode (FCV).

2 FICON native mode (FC).

3 Fibre Channel Protocol (FCP).

FICON enables multiple concurrent I/O operations to occur
simultaneously to multiple control units. This is one of the
differences between FICON and ESCON. FICON channels
also permit intermixing of large and small I/O operations on
the same link. This is a major change when compared with
ESCON channels. The data centre I/O configuration now has
increased connectivity flexibility owing to the increased I/O
rate, increased bandwidth, and multiplexing of mixed
workloads. When an application performs an I/O operation to
a device represented by a Unit Control Block (UCB), it initiates
an I/O request using macros or a supervisor call to the Input

 6 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Output Supervisor (IOS). The application or access method
also provides the channel program (Channel Command Words,
CCWs) and additional parameters in the Operation Request
Block (ORB). This request is queued on the UCB. The IOS will
service the request from the UCB on a priority basis. A Start
Subchannel (SSCH) instruction will be issued by the IOS, with
the Subsystem Identification word (SSID) representing the
device and the ORB as operands. The Channel Subsystem
(CSS) is signalled to perform the operation.

The most appropriate FICON channel is selected by the CSS.
The FICON channel will fetch channel programs (CCWs)
prepared by the application, fetch data from memory, or store
data into memory and present the status of the operation to
the application (I/O interrupt). The z/Architecture channel
commands, the data, and the status are packaged by the
FICON channel into FC-SB-2 (FC-4 layer) Information Units
(IUs). IUs from several different I/O operations to the same or
different control units and devices are multiplexed or
demultiplexed by the FC-2 layer (framing). Another fundamental
difference with ESCON is the CCW chaining capability of the
FICON architecture. While ESCON channel program operation
requires a Channel End/Device End (CE/DE) after execution
of each CCW, FICON supports CCW chaining without requiring
a CE/DE at the completion of each CCW operation.

On a FICON channel, CCWs are transferred to the control unit
without waiting for the first command response (CMR) from
the control unit or for a CE/DE after each CCW execution.

The medium of transmission for a FICON interface is a fibre
optic cable. This is a pair of optical fibres that provide two
dedicated, unidirectional, serial-bit transmission lines.
Information in a single optical fibre flows, bit by bit, in one
direction. One optical fibre is used to receive data while the
other is used to transmit data. Full duplex capabilities are
exploited for data transfer. The Fibre Channel Standard (FCS)
protocol specifies that for normal I/O operations, frames flow
serially in both directions, allowing several concurrent read

 7© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

and write I/O operations on the same link. You can begin to
see how much faster this type of transfer can be. The FC link
data rate is 1Gbps (100 MBps) for FICON feature ports, and
1Gbps or 2Gbps (200MBps) for FICON Express feature ports.
The 2Gbps link capability will be auto-negotiated by the
zSeries server and FICON Director, as well as the Director and
Control Units. This is transparent to the operating system and
application. With devices in general, the zSeries FICON
Express, FICON Director, and/or CU communicate and agree
on either a 1Gbps or 2Gbps (100MBps or 200MBps) link
speed. This is determined based on the supported speeds in
the zSeries server feature, FICON Director, and control unit,
as well as the fibre optic cable infrastructure capabilities.

The actual support for FICON requires certain levels of
hardware, software, and additional fixes. These are covered
in the next few paragraphs.

Native FICON channels on zSeries servers will support
cascaded Fibre Channel Directors. This is for a two-Director
configuration only. With cascading, a FICON native channel,
or a FICON native channel with channel-to-channel (FCTC)
function, can connect a server to a device or other server via
two native connected Fibre Channel Directors. This cascaded
Director support is for all Native FICON channels implemented
on FICON features on z900 servers, and FICON Express
features on z800, z900, z890, and z990 servers. No additional
zSeries hardware is required; however, you do need to have
the hardware enabled via an MCL that is a non-cost option
from IBM. FICON channels require z/OS V1R3 with PTFs
applied, or later releases of z/OS to allow the enablement of
cascaded FICON Directors. z/VM V4R4 or later also provides
this support. FICON support of cascaded Directors, sometimes
referred to as cascaded switching or two-switch cascaded
fabric, is for single-vendor fabrics only.

As with anything, cost savings at sites will vary depending on
infrastructure, workloads, and size of data transfers. However,
IBM reports that in general its customers with data centres

 8 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

located at two sites may reduce the number of cross-site
connections by using cascaded Directors. More savings could
be obtained by reducing the number of channels and switch
ports. Another important value of FICON support of cascaded
Directors is its ability to provide high integrity data paths. The
high integrity function is an integral component of the FICON
architecture when configuring FICON channel paths through
a cascaded fabric.

Operating system support for FICON is provided by IBM
across the range. Any zSeries server in Basic mode and LPAR
mode also provides support for FICON. The actual operating
system base levels are detailed below:

• z/OS – all in-service releases of z/OS.

• z/VM – all in-service releases of z/VM.

• VSE, VSE/ESA Version 2 Release 6, and higher.

• TPF Version 4 Release 1.

• Linux on zSeries.

The actual zSeries servers vary in what support for FICON is
offered. There are two types of FICON features available: the
zSeries FICON Express and the zSeries FICON features.
Both types support a long wavelength (LX) laser version and
a short wavelength (SX) laser version – see below:

• z800 servers support a maximum of 16 zSeries FICON
Express features (32 ports).

• z900 servers support a maximum of 48 FICON features
(96 ports). These can be zSeries FICON Express features,
zSeries FICON features, or a combination of both.

• z990 servers support a maximum of 60 features of zSeries
FICON Express totalling 120 ports. A maximum of 48
features are supported on a 2084-A08.

• z890 servers support a maximum of 20 features of zSeries
FICON Express totalling 40 ports. A maximum of 16
features are supported on a 2086-110.

 9© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Note: all of the FICON features occupy one slot in an I/O cage.

The maximum combined number of FICON or FICON Express,
OSA-Express, Crypto Express2, PCIXCC, PCICC, and PCICA
features supported by a server family are:

• 16 features for the z800 server.

• 48 features for the z900 server.

• 20 features for the z890 server, 16 features are supported
on a 2086-110.

• 60 features for the z990 server, 48 features are supported
on a 2084-A08.

The main advantages of FICON can be seen by comparing it
with ESCON. The following shows how it reduces the need for
more ESCON channels but provides similar connectivity. The
z900 server can have the equivalent concurrent I/O connectivity
of 928 ESCON channels, with 160 ESCON channels and 96
FICON channels installed. The z800 server can have the
equivalent concurrent I/O connectivity of 256 ESCON channel
connectivity equivalence with 32 FICON channels installed.
The z990 server can have the equivalent concurrent I/O
connectivity of 1320 ESCON channels, with 360 ESCON
channels and 120 FICON Express channels installed. The
z890 server can have the equivalent concurrent I/O connectivity
of 440 ESCON channels, with 120 ESCON channels and 40
FICON Express channels installed.

Overall, for the large mainframe environment, FICON provides
many advantages. It is an essential tool if you have dual site
copy in place using PPRC or GDPS.

More information can be obtained about FICON from these
IBM publications:

• FICON Introduction – SG24-5176

• zSeries Connectivity Handbook – SG24-5444

• IBM zSeries 900 Technical Guide – SG24-5975

 10 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

A C program generic socket listener for OS/390 or
z/OS

Communication is a big part of everyday life. We begin a
conversation expecting that someone is listening and will
respond to our question or request for information. We send
out e-mails and we make phone calls, hoping to communicate
with friends or colleagues – sometimes in the office just down
the hall, sometimes to a business partner across the city, or
sometimes to head office located in another country halfway
around the world. Many of the millions of computers in
existence today function in an analogous fashion – that is,
they try to communicate with other computers across the hall,
across the city, and at locations around the world. Just as it is
necessary for humans to have a common basis for
communication, usually the spoken language, for computer
systems to communicate, they must also agree on the
communication protocol. Today, in most cases, computers will
communicate across Internet connections using TCP/IP
(Transmission Control Protocol/Internet Protocol) as the
common communication protocol and, as with human verbal
communication, the target of a computer request for feedback
must be listening for requests before there can be a response.

• Getting Started with the IBM 2109 M12 FICON Director –
SG24-6089

• IBM zSeries 890 Technical Guide – SG24-6310

• IBM zSeries 800 Technical Introduction – SG24-6515

• IBM zSeries 990 Technical Guide – SG24-6947.

John Bradley
Systems Programmer
Meerkat Computer Services (UK) © Xephon 2005

 11© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

This is commonly referred to as a TCP/IP listener program.
Chances are, if you are using a Web browser to surf the
Internet or if you use e-mail to communicate with friends and
family, you are making use of TCP/IP and TCP/IP listener
programs.

THE SOCKET LISTENER

This article provides an example socket listener program
written in IBM C and designed for use on OS/390 or z/OS
systems. The fundamental listener requirements are all
demonstrated. These include the request for a socket
assignment by the socket() function call, providing a name for
the socket using the bind() function call, and an indication to
TCP/IP that the environment is ready to process requests via
the listen() function call. Once the application is successfully
listening for requests, it will acknowledge receipt of those
requests through either a select() or accept() function call. To
facilitate testing, this socket listener program is set up as a
trivial HTTP server so that a Web browser can be used to send
a request to this server program and receive simple responses.

PROGRAM COMPILATION, LINKAGE, AND EXECUTION

The HTTPSRV program is designed to be compiled and pre-
linked in IBM C mode. A reentrant (RENT) compile option is
recommended. Be sure to convert ‘[’ to X'AD' and ‘]’ to X'BD'
in the HTTPSRV C source code before running the compile.
See below for an example C compile job:

 //PROCS JCLLIB ORDER=(CBC.SCBCPRC)

 //STEP1 EXEC EDCC,CPARM='LIST',

 // CPARM2='RENT,NOSEARCH',

 // CPARM3='NOMAR,NOSEQ,NOOPT,LANGLVL(EXTENDED),SOURCE,LONGNAME,SSCOMM',

 // INFILE=c.source.pds(HTTPSRV),

 // OUTFILE='object.code.pds(HTTPSRVO),DISP=SHR',

 // SYSLBLK=8ØØØ

The example below provides a sample prelink job. The
c.source.pds is the dataset containing the HTTPSRV C
program, object.code.pds represents the target object code

 12 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

dataset, and SYSLBLK should specify the block size of the
target object code dataset. The example compile job assumes
a pre-existing object code dataset with a BLKSIZE of 8000.

 //PLKED1 EXEC PGM=EDCPRLK,PARM='UPCASE,OMVS',REGION=2Ø48K

 //SYSMSGS DD DSNAME=CEE.SCEEMSGP(EDCPMSGE),DISP=SHR

 //SYSLIB DD DSN=TCPIP.SEZARNT1,DISP=SHR

 //SYSOBJ DD DSN=object.code.pds,DISP=SHR

 //SYSMOD DD DSN=object.code.pds(HTTPSRV),DISP=SHR

 //SYSOUT DD SYSOUT=*

 //SYSPRINT DD SYSOUT=*

 //SYSIN DD *

 INCLUDE SYSOBJ(HTTPSRVO)

A linkedit job that can be used to create the HTTPSRV load
module is shown below:

 //IEWL EXEC PGM=HEWLHØ96,PARM='XREF,LIST,MAP,RENT'

 //SYSPRINT DD SYSOUT=*

 //SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(2,1))

 //OBJECT DD DSN=object.code.pds,DISP=SHR

 //SYSLIB DD DSN=TCPIP.SEZACMTX,DISP=SHR

 // DD DSN=CEE.SCEELKEX,DISP=SHR

 // DD DSN=CEE.SCEELKED,DISP=SHR

 // DD DSN=SYS1.CSSLIB,DISP=SHR

 // DD DSN=SYS1.LINKLIB,DISP=SHR

 //SYSLMOD DD DSN=load.library,DISP=SHR

 //SYSLIN DD *

 INCLUDE OBJECT(HTTPSRV) OBJ MODULE AFTER HTTPSRV PRELINK

 ENTRY CEESTART

 NAME HTTPSRV(R)

Before the HTTPSRV program is started, an appropriate
listener port should be selected. Consult your site’s TCP/IP
support person to determine an appropriate port number.
Also, the HTTPSRV program makes use of USS (Unix System
Services) supplied services so the userid that your HTTPSRV
program runs under should have an OMVS security segment
defined.

HTTPSRV should now be ready to be activated as a TCP/IP
listener. Sample JCL to invoke HTTPSRV is shown below – in
the example, the listener port is specified as 9010:

//HTTPSRV EXEC PGM=HTTPSRV,PARM='9Ø1Ø'

//STEPLIB DD DSN=load.library,DISP=SHR

//SYSPRINT DD SYSOUT=*

 13© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

When the HTTPSRV program has been activated with this
JCL, either through a started task or a batch job, you can test
your new listener. To validate the listener’s status, you can
issue the NETSTAT ALLC command from TSO. If the HTTPSRV
listener program is properly active, and assuming that the
jobname it is running under is HTTPSRV, you should see
output from the NETSTAT ALLC command similar to the
following:

EZZ235ØI MVS TCP/IP NETSTAT CS V2R1Ø TCPIP NAME: TCPIP

1Ø:56:52

EZZ2585I User Id Conn Local Socket Foreign Socket State

EZZ2586I ------- ---- ------------ -------------- -----

EZZ2587I HTTPSRV ØØØØ1FBØ Ø.Ø.Ø.Ø..9Ø1Ø Ø.Ø.Ø.Ø..Ø Listen

Depending on the number of TCP/IP applications your site is
running, you will probably see several other active jobnames
in this list. The existence of the HTTPSRV program’s jobname
with a state of Listen indicates that the program is successfully
listening for requests.

On your workstation, activate your favourite Web browser. For
example purposes, let’s assume the IP address of the OS/390
or z/OS system that HTTPSRV is running on is 10.0.2.2. To
test the HTTPSRV program, issue the following on your
browser’s Address line:

http://1Ø.Ø.2.2:9Ø1Ø/httptest

If HTTPSRV is properly contacted, it should return a response
to your browser and a window should be displayed that
contains the following message:

Server test request

The only ‘valid’ request other than httptest that the HTTPSRV
program is set up to accept is quit. Any request other than
httptest and quit will result in a window display containing the
following message:

Unknown request type

To terminate the HTTPSRV program, issue:

http://1Ø.Ø.2.2:9Ø1Ø/quit

 14 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

That should cause the HTTPSRV job to end on your OS/390
or z/OS system and your browser should display a window
with the following message:

Server termination request

Obviously, you will need to provide the IP address and port
number consistent with your system’s environment for the
browser-initiated requests.

THINGS TO KEEP IN MIND

A few things you should keep in mind when using the HTTPSRV
program or other similar tools are:

• Data transmitted via TCP/IP is almost always in ASCII
format. For OS/390 or z/OS listeners, expect the client
that initiated the request to be talking ASCII and format the
response accordingly. That will most likely necessitate
ASCII-to-EBCDIC and EBCDIC-to-ASCII translation. See
the __atoe() and __etoa() function calls in the HTTPSRV
source code.

• If data will be transmitted on an external network, consider
using encryption.

• The HTTPSRV program included with this article is a
single-threaded listener server. If your server will be
handling a high volume, you must consider multi-tasking
the listener and using the givesocket()/takesocket()
function pair.

CONCLUSION

The HTTPSRV program in this article makes use of some very
simple HTML to respond to browser requests directed to it. To
be more practical, you could add support to accept commands
that request a list of running jobs or the current CPU utilization,
or any one of a number of pieces of MVS information you
would normally be interested in. This program is meant to

 15© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

show how easily your OS/390 or z/OS server can fit into
today’s client/server world.

HTTPSRV.C
/*

 * This program provides a very basic TCP/IP socket listener for

 * OS/39Ø or z/OS systems.

 *

 * Once a connection has been accepted on the socket, any number of

 * actions are possible. In the case of this sample program, it

 * acts as a very basic HTTP server. The two operations that the

 * program can 'act' on are:

 *

 * GET /httptest

 * GET /quit

 *

 * The 'httptest' request will send a simple 'Server test request'

 * message back to the initiating Web browser. The 'quit' request

 * will send a 'Server termination request' message back to the

 * initiating Web browser and cause termination of the HTTP server

 * program. Any other requests targeted to this server program will

 * cause an 'Unknown request type' message to be sent back to the

 * initiating Web browser.

 *

 * This program is not a multi-tasking server and all data is

 * received and sent in plain text ASCII. Changing this program to

 * a multi-tasking server with encrypted data transmission would be

 * an obvious enhancement, however the primary objective of this

 * program is to demonstrate a socket listener environment for

 * OS/39Ø and z/OS.

 *

 * Once you have compiled, prelinked, and linked this program, you

 * can activate the HTTP server on your OS/39Ø or z/OS system. The

 * TCP/IP port that the server will listen on is specified in the

 * PARM value passed to the program at start-up as in:

 *

 * //HTTPSERV EXEC PGM=HTTPSERV,PARM='9Ø1Ø'

 *

 * In the above case, this HTTP server program will be listening on

 * port 9Ø1Ø. From a Web browser, you can direct a request to this

 * HTTP server as follows:

 *

 * http://ipaddr:port#/requesttype

 *

 * where 'ipaddr' is the IP address of the system the HTTP server

 * program is running on, 'port#' is the port number the server is

 * listening on, and 'requesttype' is either httptest or quit. If

 16 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 * this HTTP server program is running on a system with an IP address

 * of 1Ø.Ø.2.2 and was using port 9Ø1Ø, a browser request would

 * look like:

 *

 * http://1Ø.Ø.2.2:9Ø1Ø/httptest

 *

 * If you wanted to terminate the server from the browser, enter

 * the following (from the browser):

 *

 * http://1Ø.Ø.2.2:9Ø1Ø/quit

 *

 * This sample program uses HTML for feedback to the browser, but

 * you could add whatever you desire based on the command input and

 * feedback technique of your preference.

 *

 * Don't forget - the userid that this program is running under will

 * require an OMVS security segment for successful operation.

 */

#pragma runopts("POSIX(ON)")

#define MVS

#include <manifest.h>

#include <bsdtypes.h>

#include <socket.h>

#include <in.h>

#include <netdb.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include <tcperrno.h>

#include <stdio.h>

#include <unistd.h>

#define ERROR_SOCKET_CREATE -1ØØØ

#define ERROR_SOCKET_CONNECT -1ØØ1

#define ERROR_SOCKET_PORT_USED -1ØØ2

#define ERROR_SOCKET_BIND_DENIED -1ØØ3

#define ERROR_SOCKET_BIND -1ØØ4

#define ERROR_SOCKET_LISTEN -1ØØ5

#define ERROR_ACCEPT -1ØØ7

#define SELECT_WAIT 5

#define BUFSIZE 1Ø23

#define SOCKET_BACKLOG 5

/***/

/* */

 17© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

/* doaccept(int *socket#) */

/* */

/* doaccept() waits for a client connection to occur. A select() */

/* is performed waiting for socket connection to become active. */

/* The select() has a wait time option that causes the funcion */

/* to wake up after a period of none activity. Modify the wait */

/* time value specified in time.tv_sec as appropriate for your */

/* environment. */

/* */

/***/

int doaccept(int *s)

{

 int ret_code;

 char msg_buff[256];

 int temps;

 int clsocket;

 struct sockaddr clientaddress;

 int addrlen;

 int maxfdpl;

 struct fd_set readmask;

 struct fd_set writmask;

 struct fd_set excpmask;

 int rc;

 struct timeval time;

 temps = *s;

 time.tv_sec = SELECT_WAIT; // SELECT_WAIT is 5 seconds

 time.tv_usec = Ø;

 maxfdpl = temps + 1;

 FD_ZERO(&readmask);

 FD_ZERO(&writmask);

 FD_ZERO(&excpmask);

 FD_SET(temps, &readmask);

 rc = select(maxfdpl, &readmask, &writmask, &excpmask, &time);

 if (rc < Ø)

 {

 sprintf(msg_buff, "Error from select\n");

 tcperror(msg_buff);

 printf("doaccept() select() errno: %d...%d\n",

 errno,temps);

 return rc;

 }

 else if (rc == Ø) // Time limit has expired

 {

 return rc;

 }

 18 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 else

 {

 addrlen = sizeof(clientaddress);

 clsocket = accept(temps, &clientaddress, &addrlen);

 if (clsocket < Ø)

 {

 printf(" doaccept() accept() errno: %d...%d\n",

 errno,temps);

 }

 return(clsocket);

 }

}

/***/

/* */

/* Listener(int portNo, int backLog) */

/* */

/* Generic socket listener: */

/* */

/* This subroutine provides a basic, generic socket listener. */

/* The port number to be used is passed by the calling routine */

/* and this routine acquires a socket, applies a name to the */

/* socket using bind(), and readies the socket to accept client */

/* connection requests using listen(). At that point, requests */

/* sent by clients can be processed. */

/* */

/***/

int Listener(int portNo, int backLog)

{

 int listener, caller;

 int portArg;

 struct sockaddr_in address;

 int rc;

 struct clientid cid;

 char myname[8];

 char mysname[8];

 int clsocket;

 int ret_code;

 char msg_buff[256];

 int option_value;

 int option_len;

 int accept_fail_count;

 char line[32768] = {Ø};

 char out_line[8Ø92] = {Ø};

 int i, n, good_request;

 19© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 i = 256;

 ret_code = maxdesc(&i, &i);

 ret_code = getdtablesize();

 accept_fail_count = Ø;

 portArg = htons(portNo);

 memset(&address, Ø, sizeof(address));

 address.sin_family = AF_INET;

 address.sin_port = portArg;

 address.sin_addr.s_addr = htonl(INADDR_ANY);

 memset(&cid, Ø, sizeof(cid));

 rc = getclientid(AF_INET, &cid);

 memcpy(myname, cid.name, 8);

 memcpy(mysname, cid.subtaskname, 8);

/*

 * Acquire a socket.

 */

 listener = socket(AF_INET, SOCK_STREAM, Ø);

 if(listener < Ø)

 {

 printf("socket() failed rc %d errno %d\n",listener,errno);

 return ERROR_SOCKET_CREATE;

 }

/*

 * Set the socket option to allow reuse of the specified port if

 * it's for the same application.

 */

 option_value = 1;

 option_len = sizeof(option_value);

 rc = setsockopt(listener, SOL_SOCKET, SO_REUSEADDR,

 (char *) &option_value, option_len);

/*

 * Apply a unique local name to the socket.

 */

 rc = bind(listener, (struct sockaddr *)(&address), sizeof(address));

 if (rc < Ø)

 {

 if (errno != EADDRINUSE)

 {

 i = errno;

 printf("bind() failed rc %d errno %d\n",rc,errno);

 20 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 close(listener);

 if(i==EINVAL)

 return ERROR_SOCKET_PORT_USED;

 else if(errno==EACCES)

 return ERROR_SOCKET_BIND_DENIED;

 else

 return ERROR_SOCKET_BIND;

 }

/*

 * Loop for up to a minute if EADDRINUSE is being returned by the

 * bind() request.

 */

 for (i=Ø; i<3Ø; i++)

 {

 sleep(2);

 rc=bind(listener, (struct sockaddr *)(&address), sizeof(address));

 if (rc == Ø)

 {

 break;

 }

 }

 if (rc < Ø)

 {

 close(listener);

 return ERROR_SOCKET_BIND;

 }

 }

/*

 * Ready the socket to accept client connection requests.

 */

 if(listen(listener, backLog) < Ø)

 {

 i = errno;

 close(listener);

 return ERROR_SOCKET_LISTEN;

 }

 for(;;)

 {

/***/

/* */

/* The doaccept() function performs a select(), which will allow */

/* this program to "wake up" periodically. Using doaccept() can */

/* provide for more sophisticated operator command processing or */

/* management of a multi-tasking support routine environment, */

 21© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

/* which has not been demonstrated in this example program. */

/* */

/***/

 caller = doaccept(&listener); /* Do either this call or the */

 /* accept() call below - not both*/

/***/

/* */

/* Enable only one of the doaccept() or accept() function call */

/* statements. doaccept() uses a select() timer to periodically */

/* wake up. accept() will wait indefinitely for an incoming */

/* client connection. */

/* */

/***/

/* caller = accept(listener,NULL,NULL); */ /* Do either this call */

 /* or the doaccept() */

 /* call above - not both*/

 if(caller<Ø)

 {

 if(errno==EINTR || errno==EMFILE || errno==ENFILE ||

 errno==24 || errno==23)

 {

 if(errno==EINTR)

 {

 printf("System call ACCEPT interrupted. Trying again\n");

 }

 if(errno==EMFILE || errno==ENFILE || errno==24 || errno==23)

 {

 accept_fail_count = accept_fail_count + 1;

 if(accept_fail_count >= 15)

 {

 printf("accept() fail limit reached. Trying again\n");

 accept_fail_count = Ø;

 }

 }

 continue;

 }

 else

 {

 break;

 }

 }

 accept_fail_count = Ø;

/***/

/* */

 22 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

/* Determine whether we have a real accept condition or if we just */

/* did a timed select() wake up. */

/* */

/***/

 if (caller == Ø)

 {

/*

 * Use this 'if' block for internal processing. This code block will

 * be entered only if the select() function in doaccept() returns

 * on a time condition rather than an event condition.

 */

 }

 else

 {

 good_request = 1;

 n = read(caller, line, BUFSIZE);

 line[n] = Ø;

 __atoe(line);

 printf("Inbound request: %s\n",line);

 if (strncmp(line+5,"quit",4) == Ø)

 {

 printf("termination request\n");

/*

 * Build the HTML response string to indicate that the termination

 * request has been received.

 */

 strcpy(out_line,

 "<html><head><title>Term request acknowledged</title></

head>");

 strcat(out_line,

 "");

 strcat(out_line,

 "<p align=\"left\">Server termination request</

font>");

/*

 * Convert the response to ASCII and send it back to the browser.

 */

 __etoa(out_line);

 n = write(caller, out_line, strlen(out_line));

 shutdown(caller,2);

 close(caller);

 shutdown(listener,2);

 close(listener);

 return Ø;

 }

 else if (strncmp(line+5,"httptest",8) == Ø)

 {

 printf("request type is httptest\n");

 23© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

/*

 * Build the HTML response string to indicate that the test

 * request has been received.

 */

 strcpy(out_line,

 "<html><head><title>Test request acknowledged</title></

head>");

 strcat(out_line,

 "");

 strcat(out_line,

 "<p align=\"left\">Server test request");

/*

 * Convert the response to ASCII and send it back to the browser.

 */

 __etoa(out_line);

 n = write(caller, out_line, strlen(out_line));

 shutdown(caller,2);

 close(caller);

 }

 else

 {

 good_request = Ø;

 }

 if (good_request == Ø)

 {

 printf("Unknown request %s\n",line);

/*

 * Build the HTML response string to indicate that an invalid

 * request has been received.

 */

 strcpy(out_line,

 "<html><head><title>Unknown request type</title></head>");

 strcat(out_line,

 "");

 strcat(out_line,

 "<p align=\"left\">Unknown request type");

/*

 * Convert the response to ASCII and send it back to the browser.

 */

 __etoa(out_line);

 n = write(caller, out_line, strlen(out_line));

 shutdown(caller,2);

 close(caller);

 }

 }

 }

 sprintf(msg_buff, "accept failed\n");

 24 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 perror(msg_buff);

 return ERROR_ACCEPT;

 }

/*

 * The main routine extracts the program PARM representing the

 * port number to be used by this listener. It then calls the

 * Listener() function to perform the listener dialogue

 * processing.

 */

main(int argc, char *argv[])

{

 int err;

 int listener_port;

 if (argc != 2)

 {

 return(8);

 }

 listener_port = atoi(argv[1]);

 printf("Listen port is %d\n",listener_port);

 err = Listener(listener_port, SOCKET_BACKLOG);

 return err;

 }

Rudy Douglas
System Programmer (Canada) © Xephon 2005

TCP – some future directions

The success of the Internet has in part been due to the
maturity and stability of TCP/IP. The protocol is well-understood
and ubiquitous. This article looks at how TCP is measuring up
and likely to evolve in the near and mid-term future.

SECURITY

Although TCP is predominantly secure there are some security

 25© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

issues with both TCP and TCP/IP. A critical vulnerability was
discovered in TCP by the UK’s National Infrastructure Security
Co-ordination Centre in April 2004. The exposure could have
allowed hackers to crash vulnerable routers and as a result
disrupt Internet traffic. The key issue was that it is much easier
to reset TCP/IP sessions using spoofed packets than previously
thought. The most seriously-affected infrastructure was routers
running Border Gateway Protocol (BGP) because the protocol
requires a persistent TCP session between BGP peers. DNS
(Domain Name System), SSL (Secure Sockets Layer), and
other application protocols are also potentially vulnerable. It
should be noted that although the exposure was serious, the
Internet did not grind to a halt. Many workarounds existed and
fixes were rapidly deployed.

PERFORMANCE

There are signs that some of the largest users are beginning
to encounter performance problems with the protocol. This
has led some analysts to suggest that poor performance could
begin to impact smaller users in the mid-term future, as
processor capability and bandwidth increases.

A number of vendors have been working on technologies that
aim to improve the TCP architecture. However, most of these
are still experimental. Some of the issues with TCP can’t be
easily corrected, so there may be a need for new protocols or
possibly forks in TCP. The IETF is still some way off formally
identifying and evaluating these issues, so widespread support
for TCP fixes are still a long way off.

SOME RECENT EXPERIMENTAL TCP EXTENSIONS

A number of experimental TCP extensions have been
developed. Obviously these are not recommended for
deployment, but they may at some point be included in the
standard. They include:

• February 2003 (RFC 3465) TCP Congestion Control with

 26 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Appropriate Byte Counting ABC. Rather than using the
number of acknowledgements received, this methodology
for congestion control uses the number of bytes
acknowledged. It can be applied to Linux.

• April 03 (RFC 3522) The Eifel Detection Algorithm for
TCP. This experimental extension is used to detect spurious
timeouts. This is achieved through the use of timestamps.

• December 2003 (RFC 3649) HighSpeed TCP for Large
Congestion Windows. This extension modifies TCP’s
steady state behaviour, allowing very large windows to be
used efficiently.

• March 2004 (RFC 3742) Limited Slow-Start for TCP with
Large Congestion Windows. This extension uses a
modified slow-start behaviour in order to reduce data loss
when connections use extremely large windows.

For those wishing to view a complete list of RFCs and other
documents that define TCP and various TCP extensions that
have accumulated in the RFC series, a Roadmap for TCP
Specification Documents can be found on the IETF Web site
(www1.ietf.org/proceedings_new/04nov/IDs/draft-ietf-tcpm-
tcp-roadmap-00.txt). The IETF also produces a list of current
Internet-drafts, which can be accessed at www.ietf.org/ietf/
1id-abstracts.txt.

CONCLUSION

New and faster applications and next-generation network
topologies are all impacting transport protocols like TCP. It is
conceivable that TCP will need to be changed radically – this
could take place within a decade. Of course, if the migration
issues and problems that have accompanied the TCPIPv4-
TCP/IPv6 changeover are anything to go by, the implications
for a significant change to TCP would be monumental.

However, if the performance of TCP degrades, it could be
envisaged that there would be sufficient motivation from both

 27© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

The netstat command

The netstat command displays the network connections,
routing tables, the statistics on the interfaces, and other
information.

ACTIVE TCP/IP

To know how many TCP/IP stacks are active on the system,
from the SDSF (Spool Display and Search Facility) type the
following command:

D TCPIP

An example of output from the command is:

COUNT TCPIP NAME VERSION STATUS

---------- ------------------ ------------- -----------

 1 TCPØØ1 CS V1R4 ACTIVE

 2 TCPØØ2 CS V1R4 ACTIVE

 3 TCPØØ3 CS V1R4 ACTIVE

 4 TCPØØ4 CS V1R4 ACTIVE

As shown above, in this system there are four TCP/IP stacks,
each of which has a different primary IP address.

This means that this system works with four different networks.

ENVIRONMENT SET-UP

Before performing the commands, it is necessary to allocate
the SYSTCPD DDname for one of the TCP/IP stacks obtained

the vendor and use communities to change TCP. However, if
there is no reason for change then there will be no change of
protocols – it is too big a job.

John Edwards
Network Administrator (UK) © Xephon 2005

 28 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

with the command D TCPIP.

TSO environment

From TSO option number 6, type the following command:

ALLOC DD(SYSTCPD) DA(tcp-param-dataset) SHR REU

JCL environment

To activate the TCP/IP environment in a batch we must place
inside the JCL the following card:

//SYSTCPD DD DSN=tcp-param-dataset,DISP=SHR

where tcp-param-dataset is the dataset allocated to the
SYSTCPD DDname in the procedure that activates the TCP/
IP during the IPL.

Here is a TCP/IP start-up example:

//TCPØØ1 PROC

//TCPIP EXEC PGM=EZBTCPIP,REGION=8ØØØK,TIME=144Ø

//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)

//ALGPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)

//SYSOUT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)

//CEEDUMP DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)

//SYSERROR DD SYSOUT=*

//PROFILE DD DISP=SHR,DSN=TCPØØ1.LIB.PARM(PFTCPØØ1)

//SYSTCPD DD DISP=SHR,DSN=TCPØØ1.LIB.PARM(PRTCPØØ1)

ENVIRONMENTS FOR COMMANDS EXECUTION

The following environments are available for command
execution:

1 SDSF environment.

To perform a display on the TCP/IP, type the following
command:

/D TCPIP,proc-tcpname,NETSTAT ,CONN

2 TSO environment.

From TSO option number 6 type the following command:

 29© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

NETSTAT CONN TCP proc-tcpname

3 REXX environment.

The following is an example REXX program:

 If syscall('ON') > 3 then

 Do

 Say "Unable to establish the SYSCALL environment"

 Say "Return Code was " RC

 Return

 End

 "ALLOC DD(SYSTCPD) DA(tcp-param-dataset) SHR REU"

 address syscall

 call bpxwunix 'onetstat –c –p proc-tcpname',,out.

 Do I=1 to out.Ø

 Say out.i

 End

 exit

where proc-tcpname is the name of the TCP/IP that
appears in the column TCPIP NAME found from the
output of the command D TCPIP.

Note:

• The SYSCALL function is necessary to allow the
REXX to perform the USS commands.

• The allocation of the DDname SYSTCPD is necessary
to establish on which TCP/IP to address the
commands.

• The bpxwunix function performs the command netstat
in the USS environment.

USEFUL COMMANDS

Below we analyse the options used most frequently with the
netstat command.

For simplicity, from now on we will look only at the TSO
environment, for which all the following commands have been
typed from option number 6.

 30 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Help

Command:

TSO HELP NETSTAT

Description: it provides a detailed description of the netstat
command.

Active connections

Command:

NETSTAT CONN TCP proc-tcpname

where proc-tcpname is the name of the TCP/IP that appears
in the column TCPIP NAME found from the output of the
command D TCPIP.

Description: the CONN parameter provides information on the
TCP/IP ACTIVE connections.

Example:

• NETSTAT CONN TCP TCP001

• NETSTAT CONN TCP TCP004.

In the first example the result of the command netstat refers
to the active connections with TCP001, while the second
example refers to the display of active connections with the
TCP004.

The output of the command would look like:

User Id Conn Local Socket Foreign Socket State

-------- -------- ---------------- ------------------ ---------

AFØØ1 ØØØØØØ15 Ø.Ø.Ø..132Ø2 Ø.Ø.Ø.Ø..Ø Listen

BPXOINIT ØØØØØØ4E Ø.Ø.Ø..1ØØØ7 Ø.Ø.Ø.Ø..Ø Listen

CXSØØØØ1 ØØØØ237F 9.87.23Ø.21..3693 1Ø.1Ø.1ØØ.2Ø..9966 Establsh

TCPØØ1 ØØØØ24DØ 9.87.23Ø.123..21 1Ø.1Ø.1ØØ.4..1Ø89 Establsh

where:

• User Id is the name of the started task that has activated
the service.

 31© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

• Conn is a number that the system assigns to the
connection.

• Local Socket is the local address and the port number on
which the service is listening.

• Foreign Socket is the remote address and the port number
through which the client is connected to the service.

• State is the connection state.

State values:

• ESTABLISHED – the port has a connection in progress.

• SYN SENT – the port tries to establish a connection.

• SYN RECV – connection initialization.

• FIN WAIT1 – the port is closed and the connection is about
to end.

• FIN WAIT2 – the remote port concludes the connection
and is waiting for confirmation of the other side.

• TIME WAIT – the port is waiting for the confirmation of the
connection’s conclusion.

• CLOSED – the port is not in use.

• CLOSE WAIT – the remote port closes the connection and
is waiting for confirmation of the other side.

• LAST ACK – the remote port closes the connection and
the port it closed: we are waiting for the final confirmation.

• LISTEN – the port is listening, waiting for a connection to
be made.

• CLOSING – both the ports are closing the connection but
the data has not been sent completely.

• UNKNOWN – the state of the port is unknown.

 32 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Local address

Command:

NETSTAT HOME TCP proc-tcpname

where proc-tcpname is the name of the TCP/IP that appears
in the column TCPIP NAME found from the output of the
command D TCPIP.

Description: the HOME parameter provides information on all
addresses defined in the specific TCP/IP.

Example output from the command looks like:

Address Link Flag

--------------- ------------- -------

9.87.25Ø.13 VLINK4

9.87.11.9 VLINK3 P

9.87.2Ø.1 OSALINK1

9.87.1.2 EZAXCFØ1

127.Ø.Ø.1 LOOPBACK

The output shows that on this TCP/IP, four IP addresses are
defined:

• 9.87.250.13

• 9.87.11.9

• 9.87.20.1

• 9.87.1.2.

This means that if we perform the command ping ipaddress,
we get output similar to the following:

Pinging host 9.87.25Ø.13

Ping #1 response took Ø.ØØØ seconds

Telnet connections

Command:

NETSTAT TELNET TCP proc-tcpname

where proc-tcpname is the name of the TCP/IP that appears
in the column TCPIP NAME found from the output of the

 33© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

command D TCPIP.

Description: the TELNET parameter provides information on
all the connections with the telnet server inside to TCP/IP.

Example output from the command looks like:

Conn Foreign Socket State BytesIn BytesOut ApplName LuName

ØØØØØ1ØØ 172.25.128.68..3684 Establsh ØØ438911 14817Ø96 TPXØØ1 TØØTØØ1

ØØØØ24ØØ 192.168.21.3..2752 Establsh ØØØ553Ø3 Ø1Ø26Ø78 TPXØØ1 TØØTØØ5

ØØØØ2426 172.25.128.76..1Ø89 Establsh ØØØØ8796 ØØ399237 TPXØØ1 TØØT99

where:

• Conn is a number that the system assigns to the
connection.

• Foreign Socket is the remote address and the port through
which the telnet client is connected to the service.

• State is the connection state.

• BytesIn is the number of bytes sent by the client to the
server.

• BytesOut is the number of bytes sent by the server to the
client.

• ApplName is the application name that has performed the
connection.

• Luname is the terminal name that has performed the
connection.

TCP/IP information

Command:

NETSTAT UP TCP proc-tcpname

Description: the UP parameter provides information on the
date and the time of the TCP/IP start-up.

Example output from the command looks like:

Tcpip started at 15:19:29 on 1Ø/11/2ØØ4 with IPv6 disabled

 34 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Session drop

Command:

NETSTAT DROP conn-number TCP proc-tcpname

Description: the DROP parameter interrupts the session
specified by the parameter conn-number.

Conn-number is shown by the column CONN in the command
NETSTAT CONN or in the NETSTAT TELNET command.

Note: the DROP parameter is usable only by users belonging
to the RACF group MVS.VARY.TCPIP.DROP.

Magni Mauro
System Engineer (Italy) © Xephon 2005

IBM’s Communications Controller z/Linux

IBM’s Communications Controller z/Linux (CCL), previewed
in May 2004, when the Communications Server for Linux
(CSL) was being announced, should be available to mainframe
customers during the first half of 2005. It thus becomes IBM’s
second highly strategic z/Linux-based SNA migration offering,
indicating that z/Linux is likely to become a pivotal platform for
future TCP/SNA networking initiatives. CCL is a software
offering that runs on a z/Linux LAPR, which is meant to serve
as a replacement for the IBM 3745/3746 communications
controllers that were withdrawn from the market in September
2002.

Though the initial preview tended to portray it as the much-
needed migration option for SNI customers (since a 37xx
running ACF/NCP is a mandatory prerequisite), the CCLs
scope, in reality, is considerably broader than just SNI. CCL
V1, from day 1, will also support other high-end (and in some
cases specialized) 37xx/NCP capabilities such as XRF (IBM’s

 35© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

SNA-centric Extended Recovery Facility for sophisticated
mainframe disaster recovery scenarios), NCP boundary node
functionality (eg subarea/local address conversion), Boundary
Network Node for Frame Relay interworking, and SSCP
takeover. CCL, in effect, is a faithful emulation of 3745/46
hardware in software – to the point that it actually runs existing
ACF/NCP software along with a customer’s existing ACF/
NCP (and for that matter ACF/VTAM) definitions.

The goal of CCL, echoing IBM’s once sacrosanct backward
compatibility promise when it came to all systems, is to enable
37xx customers to continue their investment in ACF/NCP,
without any disruption or sacrifice, despite the withdrawal of
the ‘host’ hardware. The actual hardware interface between
the CCL software (emulating a 37xx) and the physical network
will be realized, exclusively, using OSA-Express adapters.
Since the latest OSA-Express adapters support only LAN
connectivity (and not even ATM any more), there is obviously
no direct support for serial links (eg SDLC, Frame Relay, or
X.25). If serial link support is a requirement, this has to be
realized using an appropriate feature on an SNA/APPN-
capable router (eg DLSw), with IBM recommending 3600
family routers from its networking partner Cisco. (CCL does
not plan to support X.25 NPSI. The few European and Asian
customers that may still have a need for an NPSI capability will
have to, yet again, seek support from Cisco, as opposed to
IBM.)

Despite their commonality in terms of running on z/Linux
LPARs, there is no inherent coupling between CCL and CSL.
CSL is thus definitely not a prerequisite for using CCL. CCL as
a 37xx replacement is squarely targeted at ‘classic SNA’
scenarios, whereas CSL, as a Communication Server gateway,
addresses the needs of TCP/SNA migration and
interoperability. It is, however, definitely possible to have both
CCL and CSL running, in parallel, on the same z/Linux LPAR
– where the CCL will be performing tasks hitherto associated
with 37xxs and ACF/NCP, while CSL will be delivering
interoperability-related functions such as tn3270(E) gateway
and Enterprise Extender (EE) relaying.

 36 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

SNI WITHOUT A 37XX

Much of the initial interest in CCL will still undoubtedly focus
on its SNI replacement capabilities since it was the SNI
customers who obviously felt most exposed and vulnerable
when the 37xxs were withdrawn. But, ironically, there will be
some valid resentment and recrimination, with IBM, quite
rightly, getting blamed for not even hinting at the possibility of
a CCL-like capability two years ago when the 37xx was being
withdrawn. Since around 1998, IBM, until it previewed the
CCL, had been steadfast in its claims that EE with the
Extended Border Node (EBN) feature was the strategic
replacement for SNI – even though this meant that customers
at both ends of an SNI connection had to adopt APPN in order
to use EE. There are those that have already adopted the EE/
EBN route and quite a few that were implementing APPN just
so that they could use EE/EBN.

The CCL solution for SNI avoids the need for implementing
APPN, though on the other hand it requires using a z/Linux
partition and the new (and as yet unproven) CCL. Thus there
are valid pros and cons to each of the options – though the
CCL option, in addition, has the virtue that, unlike the EE/EBN
approach, it can be implemented asymmetrically; ie just on
one side. This can be extremely important to SNI customers
since in most cases the two interconnected SNA networks
belong to separate enterprises, each with its own priorities,
budgets, and networking strategies. IBM, as is to be expected,
is, however, not touting CCL over EE/EBN. It does not advocate
that those who have decided to opt for the EE/EBN approach
now abandon it in favour of CCL – though many of those
customers will obviously feel pressurized to evaluate CCL.

The initial release of CCL will not support DLSw – maintaining
the status quo that DLSw has to be terminated (and started)
at a router outside the mainframe. Much of this had to do with
IBM’s hitherto backing of EE as the strategic means for routing
(as opposed to just transporting) SNA traffic over IP. Thus with
CCL V1, customers wishing to use IP connectivity for their SNI
connections are told to use external routers in order to obtain

 37© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

DLSw. IBM, however, plans to support DLSw in a subsequent
release of CCL! This is good news, but as with CCL’s SNI
capability it will be greeted with some level of consternation by
some – for, again, very valid reasons. In essence, with CCL,
IBM, more or less out the blue, is trying to rewrite its TCP/SNA
migration recommendations. It would have been useful to
have mainframe DLSw, which unlike EE is not contingent on
using APPN, five years ago. It would have been a great
adjunct to the OSA Express adapters. Now, when nearly
everybody already has a working TCP/SNA infrastructure in
place, with DLSw being terminated externally etc, IBM is
ready to change its mind.

MINIMAL CHANGES TO SNA DEFINITIONS

IBM claims that a paramount consideration during the design
and development stages of CCL was to ensure that any and
all changes to VTAM and NCP definitions would be kept to an
absolute minimum. Recognizing the strategic importance of
the SNI feature, there was particular emphasis on ensuring
that cut-over to CCL-based SNI connectivity could be achieved,
in all instances, on an asymmetrical basis; ie all changes
restricted to one side (the side with CCL).

Obviously, one cannot escape the fact that the CCL as a
mainframe resident software package is not a true, one-for-
one replacement for a 37xx – particularly in that it does not
support any serial links whatsoever. Hence all of the NCP
definitions have to be modified and updated to reflect total
LAN connectivity, via an OSA-Express adapter, with DLSw on
remote routers being used to support any serial links still
required within the network. Supporting LANs through ACF/
NCP is no longer new, with 37xx Token Ring support having
been viable as of the early 1990s. However, converting the
ACF/NCP definitions of a 37xx with even some serial ports to
work on a CCL, with just OSA connectivity, will still be a tedious
exercise requiring the specification of MAC addresses.

In addition to eliminating all serial connection definitions in

 38 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

NCP, a new PTF will be required to ACF/VTAM. The PTF is to
enable VTAM to activate and take ownership of an ACF/NCP
that is accessible across an OSA-Express LAN (rather than a
channel connection). There will also be a need to ensure that
the OSA-Express microcode is relatively recent; ie post-May
2004. It is definitely not as bad as it could have been, but it is
not going to be trivial either.

BOTTOM LINE

Overall, the CCL is a great addition to the TCP/SNA arsenal
of options, especially with the demise of the 37xxs. The
primary criticism that one can validly level against IBM is that
it was extremely late in informing the customer base of the
possibility of such a product. When the 37xxs were formally
withdrawn there was no talk whatsoever of IBM planning to
invest even a dime on a radically new replacement product. All
that IBM talked about was making do with existing solutions
such as EE, OSA-Express, DLSw etc. Then IBM discovered
z/Linux. The plans to introduce mainframe DLSw is a
noteworthy about-turn on IBM’s part.

Against this background one can indeed also be cynical, with
reason, about CCL as well as CSL. With these offerings IBM
is trying to generate interest in z/Linux. In essence these are
meant to be the ‘killer applications’ that motivate mainframe
customers to start embracing z/Linux. This said, one has to
admit that it is good to have a 37xx replacement, even if it is
totally software-based. It at least gives TCP/SNA customers
another option. So the bottom line has to be that one cannot
ignore CCL. At a minimum you have to evaluate it to see
whether it can play a meaningful role in the future of your TCP/
SNA network.

Anura Gurugé
Strategic Consultant (USA) © Xephon 2005

 39© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Diagnosing routing problems via the TCP open
sequence

INTRODUCTION

From analysing the TCP open sequence, I have obtained
clues that led to detecting improperly configured routes and
improving response times and network throughput. It may
come as a surprise that a simple thing like examining the TCP
Open can help solve such problems. When I do network
consulting and diagnostics at various companies, one of the
first things I do is examine the Open sequence for some of the
important applications for the installation.

First, let’s think about TCP architecture and where the Open
fits in. Then, I will show some sample TCP Opens from packet
traces. Finally, I will conclude by describing a case where we
found improper routing and were able to fix it.

TCP VIRTUAL CIRCUIT CREATION

The way TCP works is by creating a virtual circuit between the
two ends of the connection – the remote host and the local
host. The remote and local hosts are also known as ‘client’ and
‘server’ or ‘local address’ and ‘foreign address’. When the two
ends need to talk to each other using the TCP protocol, a
connection is established, which lasts for some period of time.
In fact, the connection lasts for the period of time bounded by
the Open and Close. To allow us to talk about this connection,
it is called a ‘virtual circuit’. All the TCP protocol functions take
place in the context of this virtual circuit.

Notice also that this virtual circuit has only two endpoints. You
may remember the SNA world with its multi-point circuits. In
SNA, a network circuit to an end user site could potentially
have a number of endpoints or drops. In TCP, all the circuits
are point-to-point. Conceptually, this makes flow control easier
to understand.

 40 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Everything in TCP happens over this virtual circuit between
the two endpoints. By everything, I mean data transmission,
flow control, and reliability. The reason TCP is different from
UDP is because it provides a ‘reliable’ method of transmission
– that is, it will try to ensure that your packet gets to the other
side completely and uncorrupted.

An open sequence and a close sequence, creating this
enduring connection, are a temporary marriage, if you will.
The TCP open sequence will establish the connection (perform
the marriage ceremony) and the TCP close sequence will
terminate the connection (perform the divorce). In UDP, a
connectionless protocol, none of this happens – you may
make your own analogies for this situation!

So, the first thing that has to happen in a virtual circuit is the
connection is opened.

TCP OPEN ARCHITECTURE

During the open sequence, TCP packets flow back and forth
with various bits of the header turned on. The header is the first
20 or so bytes of the TCP packet, which contains various
pieces of control information. Of course, IP adds a header as
well. We will look at exactly what the TCP header looks like in
a moment. To get back to the open sequence – first, a TCP
packet is sent from one side; then, in response, the other side
allocates buffers and other resources. This is called the SYN–
SYN/ACK sequence, or the TCP three-way handshake. At the
end of the handshake, if it is properly concluded, the connection
or virtual circuit is ready for data transmission.

In Figure 1, you will see the TCP open sequence. Take a look
and then we will discuss how this works.

The first packet sent is the SYN – Host1 sets the SYN bit in the
TCP header to request a TCP connection. The sequence
number is set to some random number (x). Since the SYN bit
is set, this sequence number (x) is used as the initial sequence
number.

 41© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

The next packet is the SYN/ACK – Host2 sets the SYN and the
ACK bits in the TCP header. Host2 sets its initial sequence
number as another random number (y). Host2 sets its window
to nn bytes. The assumption is that it has buffer space for nn
bytes of data. The ACK sequence number is set to x +1. This
says that Host2 expects a next byte sequence number of x+1.

The last packet is the ACK – Host1 acknowledges the segment,
completing the three-way handshake. The receive window is
set to the receiver’s buffer size. The ACK sequence number
is set to y + 1 to indicate the next expected sequence number.
At this point the client assumes that the TCP connection has
been established. Upon receipt of the ACK, Host2 also sets
the session to a state of established.

TCP HEADER

The TCP header is shown in Figure 2. The important pieces
for us at this point are the Sequence number, Acknowledge
number, the bits in the Code or Flag bits, and the Maximum
Segment Size (MSS) that is set in the TCP options field.

Figure 1: TCP open sequence

TCP open sequence

Host1 Host2

1

2

3

SYN

SYN/ACK

ACK

 42 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

TCP Send and Receive buffers are set in TCP profile and can
affect the speed of transmission. The size of the maximum
segment that can be sent over the connection is also negotiated
here.

TCP MAXIMUM SEGMENT SIZE NEGOTIATION

A TCP host is supposed to send an indication of how large a
segment it can transmit in the SYN packet if it is larger than
536. If the MSS is not sent, 536 is assumed. TCP segment
size can have a large impact on the network in terms of
performance. Remember, each packet has 40+ bytes for the
TCP and IP headers. Small segments will suffer from overhead.
On the other hand, if you send too large a segment, it may be
fragmented by IP because the routers cannot support such a
large packet size.

Let’s look at two TCP Opens and the MSS negotiation in each.

Octet Bits Len Name Comment
0-1 - 2 Source port -
2-3 - 2 Destination port -
4-7 - 4 Sequence number Position of the last byte we sent
8-11 - 4 Acknowledgement

number
Next byte we expect to receive

12 0-3 - Header length 4 bits. TCP header length including Options
12 4-7 - Reserved
13 - 1 Code or Flag bits 8 bits (6 are used)

bit 0 (URG) Urgent
bit 1 (ACK) Acknowledgement
bit 2 (PSH) PUSH
bit 3 (RST) Reset connection
bit 4 (SYN) Synchronize
bit 5 (FIN) Close connection

14-15 - 2 Window Amount of data we can accept
16-17 - 2 Checksum Checksum
18-19 - 2 Urgent pointer Points to urgent data
 TCP options Includes Maximum Segment Size

Figure 2: TCP header

 43© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

SAMPLE TCP OPEN

In the example below, you will see the first packet of an open
sequence between two ports:

1Ø HOST1 PACKET ØØØØØØØ4 2Ø:39:Ø4.4399Ø9 Packet Trace

 From Interface : CTCLINK1 Device: CTC Full=48

 Tod Clock : 2ØØ5/Ø1/Ø8 2Ø:39:Ø4.439899

 Sequence # : Ø Flags: Pkt

 IpHeader: Version : 4 Header Length: 2Ø

 Tos : ØØ QOS: Routine Normal Service

 Packet Length : 48 ID Number: CD1E

 Fragment : DontFragment Offset: Ø

 TTL : 118 Protocol: TCP CheckSum:

A72Ø FFFF

 Source : xxx.xxx.xxx.1Ø8

 Destination : yyy.yyy.yyy.3

 TCP

 Source Port : 4147 () Destination Port: 1Ø28 ()

 Sequence Number : 58Ø8Ø253 Ack Number: Ø

 Header Length : 28 Flags: Syn

 Window Size : 65535 CheckSum: 9F1C FFFF Urgent Data

Pointer: ØØØØ

 Option : Max Seg Size Len: 4 MSS: 1412

 Option : NOP

 Option : NOP

 Option : SACK Permitted

IP Header : 2Ø

ØØØØØØ 45ØØØØ3Ø CD1E4ØØØ 76Ø6A72Ø 41718A6C CØA8Ø4Ø3

Protocol Header : 28

ØØØØØØ 1Ø33Ø4Ø4 Ø3763BFD ØØØØØØØØ 7ØØ2FFFF 9F1CØØØØ Ø2Ø4Ø584 Ø1Ø1Ø4Ø2

The address is xxx.xxx.xxx.108 with a source port 4147, which
is asking to start a connection with destination address
yyy.yyy.yyy.3, port 1028. You may be wondering what
ephemeral port 1028 is – it so happens that this was a passive
FTP transfer to my PC. Notice that the SYN flag is set on.
Notice also that the ACK number starts with 0 and the
Sequence number starts with a random high number. This will
be used as the ‘seed’ for future ACKs. In this entry, you can
also see that the MSS or Maximum Segment Size is set to
1,412. This address, xxx.xxx.xxx.108 is suggesting that the
traffic between them flows at this size.

In the example below, you will see the second packet of this
open sequence:

 44 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

11 HOST1 PACKET ØØØØØØØ4 2Ø:39:Ø4.44Ø825 Packet Trace

 To Interface : CTCLINK1 Device: CTC Full=44

 Tod Clock : 2ØØ5/Ø1/Ø8 2Ø:39:Ø4.44Ø816

 Sequence # : Ø Flags: Pkt Out

 IpHeader: Version : 4 Header Length: 2Ø

 Tos : ØØ QOS: Routine Normal Service

 Packet Length : 44 ID Number: 869A

 Fragment : Offset: Ø

 TTL : 64 Protocol: TCP CheckSum:

63A9 FFFF

 Source : yyy.yyy.yyy.3

 Destination : xxx.xxx.xxx.1Ø8

 TCP

 Source Port : 1Ø28 () Destination Port: 4147 ()

 Sequence Number : 24781Ø133 Ack Number: 58Ø8Ø254

 Header Length : 24 Flags: Ack Syn

 Window Size : 32768 CheckSum: DCC7 FFFF Urgent Data

Pointer: ØØØØ

 Option : Max Seg Size Len: 4 MSS: 146Ø

IP Header : 2Ø

ØØØØØØ 45ØØØØ2C 869AØØØØ 4ØØ663A9 CØA8Ø4Ø3 41718A6C

Protocol Header : 24

ØØØØØØ Ø4Ø41Ø33 ØEC54855 Ø3763BFE 6Ø128ØØØ DCC7ØØØØ Ø2Ø4Ø5B4

Notice that the SYN and ACK flags are set on. Notice also that
the ACK number, 58080254, is one more than the preceding
sequence number of 58080253. This indicates that the previous
packet containing sequence number 58080253 was received
and the next byte this host expects is 58080254. Host
yyy.yyy.yyy.3 now seeds his ACKs with the random high
number 247810133, as shown in the Sequence number field.
This will be used as the ‘seed’ for future ACKs from the other
host. In this entry, you can also see that the MSS is set to
1,460. This is larger than the 1,412 size suggested by address
xxx.xxx.xxx.108. This host is saying that it is capable of
transmitting larger packets.

In the example below, you will see the last packet of this open
sequence:

13 HOST1 PACKET ØØØØØØØ4 2Ø:39:Ø4.746849 Packet Trace

 From Interface : CTCLINK1 Device: CTC Full=4Ø

 Tod Clock : 2ØØ5/Ø1/Ø8 2Ø:39:Ø4.746838

 Sequence # : Ø Flags: Pkt

 IpHeader: Version : 4 Header Length: 2Ø

 Tos : ØØ QOS: Routine Normal Service

 45© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 Packet Length : 4Ø ID Number: CD2Ø

 Fragment : DontFragment Offset: Ø

 TTL : 118 Protocol: TCP CheckSum:

A726 FFFF

 Source : xxx.xxx.xxx.1Ø8

 Destination : yyy.yyy.yyy.3

 TCP

 Source Port : 4147 () Destination Port: 1Ø28 ()

 Sequence Number : 58Ø8Ø254 Ack Number: 24781Ø134

 Header Length : 2Ø Flags: Ack

 Window Size : 65535 CheckSum: 7485 FFFF Urgent Data

Pointer: ØØØØ

IP Header : 2Ø

ØØØØØØ 45ØØØØ28 CD2Ø4ØØØ 76Ø6A726 41718A6C CØA8Ø4Ø3

Protocol Header : 2Ø

ØØØØØØ 1Ø33Ø4Ø4 Ø3763BFE ØEC54856 5Ø1ØFFFF 7485ØØØØ

Notice the ACK flag is set on. The virtual circuit has successfully
been created and data transmission can now start. In this
case, we will now see the data file requested begin to be
transferred.

ROUTING PROBLEM FOUND

Now, we look at the TCP Open, which led us to discover a
routing problem:

757 HOST2 PACKET ØØØØØØØ1 Ø7:5Ø:1Ø.15Ø65Ø Packet Trace

 From Interface : GBE2 Device: QDIO Ethernet Full=6Ø

 Tod Clock : 2ØØ4/12/Ø3 Ø7:5Ø:1Ø.15Ø649

 Sequence # : Ø Flags: Pkt Ver2

 Source Port : 3886 Dest Port: 5Ø23 Asid: ØØ66 TCB:

ØØØØØØØØ

 IpHeader: Version : 4 Header Length: 2Ø

 Tos : ØØ QOS: Routine Normal Service

 Packet Length : 6Ø ID Number: ØF74

 Fragment : Offset: Ø

 TTL : 64 Protocol: TCP CheckSum:

CACC FFFF

 Source : xxx.xxx.xxx.5

 Destination : yyy.yyy.yyy.241

 TCP

 Source Port : 3886 () Destination Port: 5Ø23 ()

 Sequence Number : 3392Ø23214 Ack Number: Ø

 Header Length : 4Ø Flags: Syn

 Window Size : 65535 CheckSum: 6EDE FFFF Urgent Data

Pointer: ØØØØ

 46 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 Option : Max Seg Size Len: 4 MSS: 8952

 Option : NOP

 Option : Window Scale OPT Len: 3 Shift: 1

 Option : NOP

 Option : NOP

 Option : Timestamp Len: 1Ø Value: DA182CA6 Echo:

ØØØØØØØØ

First, notice that in the example above the SYN to open the
sequence flows over interface GBE2 while the SYN/ACK,
shown below, flows over GBE1:

758 HOST1 PACKET ØØØØØØØ1 Ø7:5Ø:1Ø.15Ø761 Packet Trace

 To Interface : GBE1 Device: QDIO Ethernet Full=6Ø

 Tod Clock : 2ØØ4/12/Ø3 Ø7:5Ø:1Ø.15Ø761

 Sequence # : Ø Flags: Pkt Ver2 Out

 Source Port : 5Ø23 Dest Port: 3886 Asid: ØØ66 TCB:

ØØØØØØØØ

 IpHeader: Version : 4 Header Length: 2Ø

 Tos : ØØ QOS: Routine Normal Service

 Packet Length : 6Ø ID Number: F585

 Fragment : Offset: Ø

 TTL : 64 Protocol: TCP CheckSum:

E4BA FFFF

 Source : yyy.yyy.yyy.241

 Destination : xxx.xxx.xxx.5

 TCP

 Source Port : 5Ø23 () Destination Port: 3886 ()

 Sequence Number : 1441719441 Ack Number: 3392Ø23215

 Header Length : 4Ø Flags: Ack Syn

 Window Size : 65535 CheckSum: 4AD2 FFFF Urgent Data

Pointer: ØØØØ

 Option : Max Seg Size Len: 4 MSS: 146Ø

 Option : NOP

 Option : Window Scale OPT Len: 3 Shift: Ø

 Option : NOP

 Option : NOP

 Option : Timestamp Len: 1Ø Value: DA182CA7 Echo:

DA182CA6

So, the virtual circuit actually travels over two different interfaces
or physical paths. The installation wanted all traffic to and from
port 5023, which is used in this virtual circuit, to flow over
GBE2. They were not aware that the traffic was actually split
over two interfaces.

Notice also that the MSS in the first example starts out at

 47© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

8,952, but is negotiated down to 1,460! To see the new MSS,
take a look at the second example. This was definitely not
what they wanted to have happen. After examining the open
sequence, we were able to correct the routing and eliminate
many communications errors for these connections. The port
5023 was a critical production DB2 application, so this was
quite an important solution we were able to implement.

SUMMARY

We have discussed one way to find difficult problems on the
TCP/IP network. Many problems may occur on large TCP/IP
networks. Other ways exist to find such information, but
analysing traces will lead to a deep and fundamental knowledge
of your network, so you will be in a good position to resolve
problems.

Nalini Elkins
Inside Products (USA) © Xephon 2005

How to use HPRIP under OS/390

HPR nodes use the basic APPN CP-CP sessions unchanged.
HPR network nodes and basic APPN network nodes share a
common topology database. Nodes in the APPN network see
the nodes in the HPR portion of the network as basic APPN
nodes. Nodes in the HPR portion of the network can distinguish
between the APPN and HPR TGs and nodes.

HPR employs a route set-up protocol in order to obtain ANR
and RTP connection information about the selected path. Any
processing of packets required at the network connection and
transport connection sublayers is the responsibility of the
origin and destination endpoints of the packets. Endpoint
processing includes flow control, segmentation and
reassembly, and recovery of lost packets.

 48 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

The procedure is as follows:

1 Change the VTAM options in VTAMLST(ATCSTRxx) so
they look like:

CONNTYPE = LEN

CPCP = YES

DYNLU=YES

IOPURGE = 6Ø

INITDB = ALL

IPADDR = 192.DD.XXX.ZZ (* Address IP VIPA)

NODETYPE=NN

SORDER = APPN

SSEARCH=YES

TCPNAME = TCPIP

2 Use the new members in VTAMLST(ATCCONxx) to start
the network. Add members COSAPPN (from
SYS1.SAMPLIB) and IBMTGPS (from SYS1.SAMPLIB).

3 Change the OSA card:

• Activate node VTAM OSASF:

V NET,ACT,ID=xxxxxx

• Start OSASF:

S OSASF

• Get a table of the OSA card OSA (OAT) under TSO in
command mode:

ex 'sys1.sioasamp(ioacmd)'

• Choose option Get OSA Address Table:

6

• When message enter 0 to get help information for
get... appears, press Enter.

• When message enter chpid ...:

b4

• When message enter MVS dataset name...:

reseau.getoat.dujjmmaa

 49© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

• When message enter volser.... appears, press Enter
and wait for the end of the EXEC.

• For example, to change the file created for addresses
40- 42 and 50-52 (units 600, 601, 602, 603 for each
partition):

Ø2(Ø6Ø2) passthru Ø1 no Ø192.194.254.Ø4Ø S ALL

Ø192.194.49.Ø4Ø 255.255.255.Ø

Ø2(Ø6Ø2) passthru Ø1 no Ø192.194.254.Ø5Ø S ALL

Ø192.194.48.Ø5Ø 255.255.255.Ø

• Stop TCPIP:

P TCPIP ,......

• Link the OSA card with the file created in the last step,
‘reseau.getoat.dujjmmaa’:

sys1.sioasamp(ioacmd)

• Choose option Put OAT Address Table:

8

• When message enter 0 to get help information for
get... appears, press Enter.

• When you see message enter chpid ...:

b4

• When message enter MVS dataset name...:

reseau.getoat.dujjmmaa

• When you see message enter volser.... press Enter
and wait for the end of the EXEC.

Note: if there are two active partitions, the following
commands must be entered on both systems:

• Take off-line the units in the OSA list:

V (6ØØ-6Ø3,6FE),OFFLINE

• Take the chpids off-line:

CF CHP(B4), OFFLINE

 50 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• Bring the chpids on-line:

CF CHP(B4), ONLINE

• Bring the units online:

V (6ØØ-6Ø3,6FE),ONLINE

• Restart TCP/IP and its associated tasks:

S TCPIP

The physical units 600/601 on the production partition are:

Ø192.DD.254.4Ø

Ø192.DD.49.4Ø 255.255.255.Ø

The physical units 600/601 on the test partition are:

Ø192.DD.254.5Ø

Ø192.DD.48.5Ø 255.255.255.Ø

The physical units 602/603 on the production partition are:

Ø192.DD.254.42

Ø192.DD.49.4Ø 255.255.255.Ø

The physical units 602/603 on the test partition are:

Ø192.DD.254.52

Ø192.DD.48.5Ø 255.255.255.Ø

4 IPL:

• Change TCP/IP:

– for TCPIP.PARMLIB(DEV):

; OSA Port 1

DEVICE OSA1 LCS 6Ø2

LINK ETH1 ETHERNET 1 OSA1

; EE

DEVICE IUTSAMEH MPCPTP

LINK EELINK MPCPTP IUTSAMEH

; VIPA

DEVICE VIPA VIRTUAL Ø

LINK LVIPA VIRTUAL Ø VIPA

– for TCPIP.PARMLIB(START):

START OSA1

START IUTSAMEH

 51© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

– for TCPIP.PARMLIB(HOME):

o for the production partition:

HOME

 192.194.49.4Ø LVIPA

 192.194.254.4Ø ETH1

 192.194.49.41 EELINK

 ;PRIMARYINTERFACE ETH1

o for the test partition:

HOME

 192.194.48.5Ø LVIPA

 192.194.254.5Ø ETH1

 192.194.48.51 EELINK

 ;PRIMARYINTERFACE ETH1

o for TCPIP.PARMLIB(GEN):

ARPAGE 2Ø

IPCONFIG NODATAGRAMFWD ; Dans Stay Cool on OS/39Ø

; FIREWALL ; Activation firewall

 ARPTO 36ØØ

 IGNOREREDIRECT ; Necessary if OROUTED is utilized

 VARSUBNETTING ; Necessary if OROUTED is utilized

 SOURCEVIPA ; VIPA

SACONFIG DISABLE

TCPCONFIG RESTRICTLOWPORTS

 TCPSENDBFRSIZE 32K

 TCPRCVBUFRSIZE 32K

UDPCONFIG RESTRICTLOWPORTS

 UDPQUEUELIMIT

TRANSLATE

ITRACE OFF

o for OSA Menu (table OAT) (under TSO:
‘SYS1.SIOASAMP(IOACMD)’:

Ø2(Ø6Ø2) passthru Ø1 no Ø192.194.254.Ø4Ø SIU ALL

 Ø192.194.49.Ø4Ø 255.255.255.Ø

--

Ø2(Ø6Ø2) passthru Ø1 no Ø192.194.254.Ø5Ø SIU ALL

 Ø192.194.48.Ø5Ø 255.255.255.Ø

Before you PUTOAT, you should stop TCP/IP
and all the TCP/IP subtasks (nfs, ipprintwy,
tcpdns, tcpsntp, and tcprouted), and after
PUTOAT you have to put the units (600-
603,6fe) and the CHPID B4 offline. After putting

 52 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

them online, restart TCP/IP.

o for TCPIP.PARMLIB(ROUT):

; orouted Routing Information

BSDROUTINGPARMS TRUE

; Interface Max MTU Metric Subnet Mask

 ETH1 15ØØ Ø 255.255.255.Ø Ø

 LVIPA defaultsize Ø 255.255.255.Ø Ø

 EELINK defaultsize Ø 255.255.255.Ø Ø

ENDBSDROUTINGPARMS

o for TCPIP.PARMLIB(PROFILE):

 ;

INCLUDE TCPIP.PARMLIB(ESA1GEN) ; Options generales

INCLUDE TCPIP.PARMLIB(ESA1TELN) ; Telnet

INCLUDE TCPIP.PARMLIB(ESA1AUTO) ; Autolog

INCLUDE TCPIP.PARMLIB(ESA1PORT) ; Ports

INCLUDE TCPIP.PARMLIB(ESA1DEV) ; Devices & Links

INCLUDE TCPIP.PARMLIB(ESA1HOME) ; Adresses

;INCLUDE TCPIP.PARMLIB(ESA1GWAY) ; Gateway / BSDRouting

INCLUDE TCPIP.PARMLIB(ESA1ROUT) ; Gateway / BSDRouting

INCLUDE TCPIP.PARMLIB(ESA1STRT) ; Start

• Change Unix files:

– for file /etc/gateways:

options interface.scan.interval 9Ø

options interface.poll.interval 15

options interface EELINK 192.194.49.41 ripoff

net Ø.Ø.Ø.Ø gateway 192.194.254.7 metric 1 passive

– for file /etc/routed.profile:

; Parametres: cf IP configuration

RIP_SUPPLY_CONTROL: RIP2

RIP_RECEIVE_CONTROL: RIP2

RIP2_AUTHENTICATION_KEY:

• Accept changes in TCP/IP without stopping it:

V TCPIP,, O, TCPIP.PARMLIB(xxxGEN)

V TCPIP,,O, TCPIP.PARMLIB(xxxDEV)

V TCPIP,,O, TCPIP.PARMLIB(xxxHOME)

V TCPIP,,O, START , IUTSAMEH

V TCPIP,,O, TCPIP.PARMLIB(xxxROUT)

S TCPROUTED

• Changes in VTAM:

 53© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

– for PROCLIB VTAM (net):

//* ADDITIONAL DATASETS FOR NN

//*

//DSDB1 DD DISP=SHR,DSN=ESA1.DSDB1

//DSDB2 DD DISP=SHR,DSN=ESA1.DSDB2

//DSDBCTRL DD DISP=SHR,DSN=ESA1.DSDBCTRL

//TRSDB DD DISP=SHR,DSN=ESA1.TRSDB

(NB: for DSDB1, DSDB2, and TRSDB (LREC
=19200, and DSDBCTRL (20))

– changes to OPTIONS in VTAM
(VTAMLST(ATCSTRxx)):

CDSERVR = YES (for the 2 unique site servers)

CONNTYPE = LEN

CPCP = YES

DYNLU=YES

IOPURGE = 6Ø

INITDB = ALL

IPADDR = 192.dd.49.4Ø (VIPA Production)

 or 192.dd.48.5Ø (VIPA Test)

NODETYPE=NN

SORDER = APPN

SSEARCH=YES

TCPNAME = TCPIP

– add a model for TG (VTAMLST(HPRTRL)):

AHPRTRL VBUILD TYPE=MODEL

ISTP* PU TRLE=*,TGP=XCF,CONNTYPE=APPN

– add a major node XCA (VTAMLST(HPRXCA)):

AHPRXCA VBUILD TYPE=XCA

PHPRXCA PORT MEDIUM=HPRIP

GHPRXCA GROUP DIAL=YES,CALL=INOUT,DYNPU=YES,AUTOGEN=2Ø

– create a swnet node (VTAMLST(HPRyzz), eg:

o for the Toulouse production system use this in
VTAMLST:

XHPR131 VBUILD TYPE=SWNET,MAXGRP=192,MAXNO=192

PHPR131 PU ISTATUS=ACTIVE,CPNAME=TOULOUSE,NETID=CP, *

 TGN=6,TGP=ETHERNET,CONNTYPE=APPN

 PATH IPADDR=192.31.49.4Ø,GRPNM=GHPRXCA,PID=1,GID=1,USE=YES, *

 CALL=INOUT

o for the Toulouse test system use this in

 54 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

VTAMLST:

XHPR231 VBUILD TYPE=SWNET,MAXGRP=192,MAXNO=192

PHPR231 PU ISTATUS=ACTIVE,CPNAME=*****,NETID=CP, *

 TGN=6,TGP=ETHERNET,CONNTYPE=APPN

 PATH IPADDR=192.31.48.5Ø,GRPNM=GHPRXCA,PID=1,GID=1,USE=YES, *

 CALL=INOUT

o for the Bordeaux production system use this
in VTAMLST:

XHPR133 VBUILD TYPE=SWNET,MAXGRP=192,MAXNO=192

PHPR133 PU ISTATUS=ACTIVE,CPNAME=BORDEAUX,NETID=CP, *

 TGN=6,TGP=ETHERNET,CONNTYPE=APPN

 PATH IPADDR=192.33.49.4Ø,GRPNM=GHPRXCA,PID=1,GID=1,USE=YES, *

 CALL=INOUT

o for the Bordeaux test system use this in
VTAMLST:

XHPR233 VBUILD TYPE=SWNET,MAXGRP=192,MAXNO=192

PHPR233 PU ISTATUS=ACTIVE,CPNAME=AN2M33,NETID=CP, *

 TGN=6,TGP=ETHERNET,CONNTYPE=APPN

 PATH IPADDR=192.33.48.5Ø,GRPNM=GHPRXCA,PID=1,GID=1,USE=YES, *

 CALL=INOUT

etc.

o take into account the new members when
starting the two systems
(VTAMLST(ATCCONxx)):

COSAPPN (Recovery file on SYS1.SAMPLIB)

IBMTGPS (Recovery file on SYS1.SAMPLIB)

HPRTRL

HPRXCA

HPR194 *

HPR294 *

HPR131 *

HPR231 *

HPR133 *

NB: do not code the node of the system of the site
you are working at.

• DISPLAY under NetView:

– node TRL:

 DISPLAY NET,ID=HPRTRL,SCOPE=ALL

 55© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 NAME = TRLCP1 , TYPE = MODEL MAJOR NODE

 VTAMTOPO = REPORT , NODE REPORTED - YES

 MODELS:

 ISTP* TYPE = PU_T2 , RESET

 END

– node XCA:

DISPLAY NET,ID=HPRXCA,SCOPE=ALL

NAME = AHPRXCA , TYPE = XCA MAJOR NODE

STATUS= ACTIV , DESIRED STATE= ACTIV

 MEDIUM = HPRIP

 TCP/IP JOB NAME = TCPIP

 LOCAL IP ADDRESS 192.194.49.4Ø

I/O TRACE = OFF, BUFFER TRACE = OFF

 VTAMTOPO = REPORT , NODE REPORTED - YES

LINES:

OØØØØØØØ ACTIV

OØØØØØØ1 ACTIV

OØØØØØØ2 ACTIV

OØØØØØØ3 ACTIV

OØØØØØØ4 ACTIV

OØØØØØØ5 ACTIV

OØØØØØØ6 ACTIV

OØØØØØØ7 ACTIV

OØØØØØØ8 ACTIV

OØØØØØØ9 ACTIV

END

– node HPR:

 DISPLAY NET,ID=HPR294,SCOPE=ALL

 NAME = XHPR294 , TYPE = SW SNA MAJ NODE

 STATUS= ACTIV , DESIRED STATE= ACTIV

 VTAMTOPO = REPORT , NODE REPORTED - YES

 NETWORK RESOURCES:

 PHPR294 TYPE = PU_T2 , ACTIV

 STATE TRACE = OFF

 END

– node RTP (dynamic node):

DISPLAY NET,ID=ISTRTPMN,SCOPE=ALL

 ISTØ97I DISPLAY ACCEPTED

 ISTØ75I NAME = ISTRTPMN , TYPE = RTP MAJOR NODE

 IST486I STATUS= ACTIV , DESIRED STATE= ACTIV

 IST1486I RTP NAME STATE DESTINATION CP MNPS TYPE

 IST1487I CNRØØØØA CONNECTED CP.D94ESA2 NO LULU

 IST1487I CNRØØØØ9 CONNECTED CP.D94ESA2 NO LULU

 IST1487I CNRØØØØ5 CONNECTED CP.D94ESA2 NO RSTP

 IST1487I CNRØØØØ4 CONNECTED CP.D94ESA2 NO LULU

 56 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 IST1487I CNRØØØØ3 CONNECTED CP.D94ESA2 NO RSTP

 IST1487I CNRØØØØ2 CONNECTED CP.D94ESA2 NO CPCP

 IST1487I CNRØØØØ1 CONNECTED CP.D94ESA2 NO CPCP

 IST314I END

– node LCL:

 DISPLAY NET,ID=ISTLSXCF,SCOPE=ALL

 ISTØ97I DISPLAY ACCEPTED

 ISTØ75I NAME = ISTLSXCF , TYPE = LCL SNA MAJ NODE

 IST486I STATUS= ACTIV , DESIRED STATE= ACTIV

 ISTØ84I NETWORK RESOURCES:

IST1316I PU NAME = ISTPA1A2 STATUS = ACTIV--X- TRLE = ISTTA1A2

 IST15ØØI STATE TRACE = OFF

 IST314I END

– display topology:

DELAND D NET,TOPO,ID=D94ESA2,LIST=ALL

 ' ACP1N DELAND

 IST35ØI DISPLAY TYPE = TOPOLOGY

 IST1295I CP NAME NODETYPE ROUTERES CONGESTION CP-CP WEIGHT

 IST1296I CP.D94ESA2 NN 128 NONE YES *NA*

 IST1579I --

 IST1297I ICN/MDH CDSERVR RSN HPR

 IST1298I YES YES 23Ø4892 RTP

 IST1579I --

 IST1223I BN NATIVE TIME LEFT LOCATE SIZE

 IST1224I NO YES 11 16K

 IST1299I TRANSMISSION GROUPS ORIGINATING AT CP CP.D94ESA2

 IST1357I CPCP

 IST13ØØI DESTINATION CP TGN STATUS TGTYPE VALUE WEIGHT

 IST13Ø1I CP.CRETEIL 21 OPER INTERM YES *NA*

 IST13Ø1I CP.CRETEIL 6 OPER INTERM YES *NA*

 IST314I END

– display a session (CLIST lusid):

LUSID DSYIØØ12

CNMKWIND OUTPUT FROM D NET,SESSIONS,SID=DA5B9937ØD9Ø75B5 LINE Ø OF 27

 --------------------------- Top of Data -----------------------------

 ISTØ97I DISPLAY ACCEPTED

 IST35ØI DISPLAY TYPE = SESSIONS

 IST879I PLU/OLU REAL = CP.TSO2ØØØ2 ALIAS = ***NA***

 IST879I SLU/DLU REAL = CP.DSYIØØ12 ALIAS = ***NA***

 IST88ØI SETUP STATUS = ACTIV

 IST875I ADJSSCP TOWARDS PLU = ISTAPNCP

 IST875I ALSNAME TOWARDS PLU = CNRØØØØB

 IST933I LOGMODE=SNX327Ø2, COS=*BLANK*

 IST875I APPNCOS TOWARDS PLU = £CONNECT

 IST1635I PLU HSCB TYPE: BSB LOCATED AT ADDRESS X'Ø723E54Ø'

 57© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 IST1635I SLU HSCB TYPE: FMCB LOCATED AT ADDRESS X'Ø691CCB8'

 IST1636I PACING STAGE(S) AND VALUES:

 IST1644I PLU--STAGE 1----!----STAGE 2--SLU

 IST1638I STAGE1: PRIMARY TO SECONDARY DIRECTION - ADAPTIVE

 IST164ØI SECONDARY RECEIVE = 7

 IST1641I STAGE1: SECONDARY TO PRIMARY DIRECTION - ADAPTIVE

 IST1642I SECONDARY SEND: CURRENT = 1 NEXT = 1

 IST1638I STAGE2: PRIMARY TO SECONDARY DIRECTION - ADAPTIVE

 IST1639I PRIMARY SEND: CURRENT = 6 NEXT = 7

 IST164ØI SECONDARY RECEIVE = 7

 IST1641I STAGE2: SECONDARY TO PRIMARY DIRECTION - ADAPTIVE

 IST1642I SECONDARY SEND: CURRENT = Ø NEXT = 1

 IST1643I PRIMARY RECEIVE = 7

 IST1713I RTP RSCV IN THE DIRECTION OF THE PLU

 IST146ØI TGN CPNAME TG TYPE HPR

 IST1461I 21 CP.D94ESA2 APPN RTP

 IST314I END

Claude Dunand
Systems Programmer (France) © Xephon 2005

SOAs and composite applications

IBM, particularly when announcing CICS Transaction Server
for z/OS V3.1, Attachmate in the context of its new Synapta
branding, and BEA in general – just to name a few of the major
players – is now vociferously promoting the notion of Service-
Oriented Architecture-based (SOA) solutions. Consequently
host integration, a key technology within the overall Web-to-
host solution spectrum, dating back to at least 1998, is now
being subsumed by a new emphasis on SOA-based composite
applications – with the implication that host integration is now
passé and composite applications are the way of the future.

Before one gets too misled by what is in reality a whole bunch
of new terms to describe previously-known methodologies, it
is best to take stock of what SOA is all about and tie it into what
went before it. For a start, one should appreciate that host
integration is also an SOA-based solution, and that just

 58 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

because the term ‘SOA’ is new does not mean that SOA
concepts were not previously available. It is also important to
note, at the very outset, that, despite what marketers would
like us to believe, XML Web services are not the only way to
realize SOA-based solutions.

BEA, for example, defines SOA as follows: ‘SOA is a standards-
based organizational and design methodology that more
closely aligns IT with business processes using a collection of
shared services on a network. Using standard interfaces that
help mask the underlying technical complexity of the IT
environment, SOA enables greater re-use of IT assets.’
Essentially, all that this is saying is that SOA is about reusing
existing IT assets (ie application functionality to be precise)
using standards-based interfaces. Well, this was also what
host integration, which is all about reusing existing host
application business logic via technologies such as XML,
EJBs, .NET assemblies, and Web services, is also all about.

However, to be fair, host integration, as denoted by its name,
focused on capturing and reusing functionality from
applications running on traditional ‘hosts’ – ie mainframes,
iSeries, and Unix systems. Hence the connotation is that host
integration deals with ‘legacy’. In contrast, ‘composite
applications’, the term now preferred to describe the end-
result possible with SOA, has no explicit associations with
legacy applications – though reusing functionality from legacy
applications is definitely not ruled out, and in many cases will
be a requirement. Thus composite applications will be
something that the TCP/SNA community will have to come to
terms with rather quickly since this will be the terminology that
management would prefer to hear about.

COMPOSITE APPLICATIONS IN THE TCP/SNA WORLD

The best definition of a composite application, vis-à-vis the
goals of SOA, is to say that it is a new application that gainfully
makes use of functionality from other applications. Given the
software development methodologies already in place, it is

 59© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

not necessary to add any caveats to limit the scope of this
definition. Thus, note that there is no need to limit composite
applications to ones that insist on using only functionality that
is available as XML Web services. This is an unnecessary
restriction, particularly if a composite application for a particular
enterprise is just going to reuse application functionality from
applications currently owned by that enterprise. In many
cases it will be possible to create bona fide, SOA-based
composite applications using other object representation
mechanisms such as EJBs or .NET assemblies.

The whole notion of SOA is contingent upon the run-time
invocation and execution of the application functionality being
reused. This is what is meant by treating existing applications
as services that deliver reusable functionality for use by newer
applications. Host integration, à la IBM’s HATS V5,
NetManage’s OnWeb, Attachmate’s Synapta Service Builder,
or Seagull’s Transidiom, is also totally based on this service-
centric notion. With SOA one does not borrow functionality by
‘cutting-and-pasting’ code segments from other applications
into the new one. There is also no attempt made to convert
existing application code (or even application subroutines)
from its original ‘legacy’ programming languages (eg COBOL)
to more strategic, platform-independent variants (eg Java).

Experience, particularly the Y2K conversion, has proved that
trying to reuse application functionality (or recreate business
processes) at the source-code level is often not possible or
practical – primarily because of uncertainty as to reliability,
over the decades, of source-code maintenance and control. In
addition, if functionality in the form of source-code is desired
from third-party applications, as is invariably the case today,
one can also be faced with intellectual property, copyright, and
royalty issues. Hence the growing popularity of reusing
application functionality in the form of run-time services –
which is what SOA, in the end, is all about.

With the SOA approach, application functionality reuse is
realized through the standard function-call (or procedure/
subroutine-call) paradigm. The pivotal difference, however, is

 60 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

that the software functions being invoked, in real-time, will not
be a part of the calling application. In most cases the functions
being invoked will not even be running on the same platform
or even the same data centre. That’s why XML Web services
are often explained as being a platform- and language-
independent form of Remote Procedure Call (RPCs). Thus,
with SOA, a composite application written in C# per .NET
criteria and running on a Windows 2003 server could be
making function calls to CICS applications running on a
mainframe as well as to an RPG application running on an AS/
400.

DECOUPLING WEB SERVICES FROM SOA

SOA solutions do not always have to be based entirely on Web
services despite IBM (and others) being incapable of talking
of the one without unfailingly mentioning the other. Web
services just happen to be the newest (and most talked about)
enabling technology for SOA. Just because .NET assemblies,
EJBs, and for that matter CORBA, do not have the word
‘services’ in their names does not in any way mean that they
too do not fully support the creation of SOA-based solutions.
This distinction is important because there can be many
cases where one, particularly in the TCP/SNA world, may (and
should) use EJBs or .NET assemblies to create a Web
service.

There is nothing mystical about Web services. Web services,
from their inception, have always been about self-contained,
modular chunks of software with standards-based (ie XML-
defined) input and output. SOAP provides a way to remotely
invoke these chunks of software, where WSDL is a text file
that clearly defines (using XML) what that Web service is
intended to do, by specifying what input it expects and the
output it will generate. Note that all of the standards-related
aspects of Web services pertain to the I/O definitions (via
XML, WSDL), the preferred means for Web service invocation
(ie SOAP), and the optional service advertising mechanism
(ie UDDI).

 61© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

There are no standards or even conventions as to how the
actual body of a Web service (ie the business logic) should be
implemented. But this is intentional. It is this flexibility vis-à-
vis the actual implementation that makes Web services so
attractive and powerful. You can create a Web service using
any programming methodology – even Assembler, COBOL,
or FORTRAN. All that is mandatory is that its I/O requirements
are XML-based, and that it can be invoked remotely using a
SOAP-like mechanism. In practice, with the current emphasis
on object-oriented software development, most Web services
are created using .NET assemblies or EJBs.

If a Web service consists of a .NET assembly or EJB at its
core, one has to question what advantages one can derive
from using the Web service as opposed to directly accessing
the core object. The answer to this is very simple and somewhat
anticlimactic! The Web service provides an XML-defined I/O
mechanism that can be invoked using SOAP whereas the
native object scheme will use a less rigorously defined I/O
scheme. The issue thus boils down to the advantages of
having XML-defined I/O. Obviously, having XML-defined I/O,
to avoid any and all ambiguity, is extremely attractive and
desirable when one is trying to source functionality from a third
party – ie a service-provider.

This, in essence, should now put the potential role of Web
services vis-à-vis composite applications into perspective.
Going back to the four ‘topology’ categories listed above, it
should now be clear that Web services are most relevant if one
has to source functionality, over the Internet, from a previously
foreign service provider. If, on the other hand, your composite
applications are all going to be based on functionality culled
from applications already available on the corporate intranet,
or on an extranet with a preferred partner, you should retain
the option of being able to use EJBs or .NET assemblies in
addition to Web services. Forgoing that option is an
unnecessary and potentially costly constraint.

 62 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

If you would like to contribute an article to TCP/SNA
Update, send it to the editor, Trevor Eddolls, at
TrevorE@xephon.com.

BOTTOM LINE

SOA and composite applications have now become the latest
terms that professionals in the TCP/SNA community have to
contend with. Though newly coined, these terms, however,
deal with concepts and technologies familiar to those who
have been involved with Web-to-host. Host integration, a core
Web-to-host methodology, is very much an SOA-oriented
scheme, particularly so in that all major host integration
solutions support Web services – though it is indeed possible
to have SOA solutions that are not entirely based on Web
services. Whereas host integration focused on reusing legacy
‘assets’, composite applications do not pigeonhole themselves
just to legacy applications. In essence, composite applications
are a super-set of what is possible with host integration. This,
however, means that it is indeed possible to have a composite
application that reuses only application functionality from
legacy TCP/SNA applications.

Anura Gurugé
Strategic Consultant (USA) © Xephon 2005

TCP/SNA news

Inside Products has released Inside the Stack
(ItS), its interactive, graphical, Web-based
management solution, which is designed to help
diagnose and resolve problems in a z/OS TCP/
IP network.

The product offers Performance Problem
Determination Assistance (PPDA), a
knowledgebase approach to enable systems
programmers to benefit from the real-world
experience of their peers when diagnosing and
resolving problems.

Other key features of ItS include, a performance
dashboard, system usage statistics, a listener
performance profile, a real-time monitor, a
history monitor, an alert monitor, and automatic
assessment of trouble spots.

For further information contact:
Inside Products, 30 Los Helechos, Carmel
Valley, CA 93924, USA.
Tel: (831) 659 8360.
URL: www.inside-products.com.

* * *

NetManage has announced the latest version of
RUMBA, its solution for PC client access to
applications and databases on mainframes, and
other systems.

RUMBA is part of NetManage’s Host Services
Platform (HSP), allowing RUMBA
administrators to enable optional monitoring of
user host access activity and provides reports so
they can observe host usage patterns or
determine cost allocations.

For further information contact:
NetManage, 20883 Stevens Creek Blvd,
Cupertino, CA 95014, USA.
Tel: (408) 973 7171.
URL: www.netmanage.com/pressroom/
viewpress.asp?id=365.

* * *

TPS Systems has announced TPS/JES
Services, allowing companies to consolidate
older communications infrastructure to take
advantage of newer multi-protocol
communication technologies. Historically JES
subsystem relied on direct mainframe
connectivity or SNA networks. Companies that
rely on z/OS JES-based applications would like
to eliminate the need for existing SDLC WAN
networks. RJE services is one where a transfer
from SNA or BSC to TCP/IP is needed. TPS/
JES Services provides the migration from SNA
to TCP/IP.

TPS/JES Services is comprised of two
components: TPS/JES Services Server and
TPS/RJS (Remote JES Services) Client. The
Server operates as a z/OS component executing
in the MVS background to make JES2 and
JES3 available to a TCP/IP based client, TPS/
RJS, allowing a multitude of simultaneous Client
connections while maintaining only a single
instance of the Server.

For further information contact:
TPS Systems, 14100 San Pedro Avenue, Suite
600, San Antonio, TX 78232-4399, USA.
Tel: (210) 496 1984.
URL: www.tps.com.

* * *

x xephon

	FICON - a basic guide
	A C program generic socket listener for OS/390 or z/OS
	TCP - some future directions
	The netstat command
	IBM's Communications Controller z/Linux
	Diagnosing routing problems via the TCP open sequence
	How to use HPRIP under OS/390
	SOAs and composite applications
	TCP/SNA news

