
© Xephon Inc 2005

June 2005

58

In this issue

3 Object creation options for
composite applications

8 Case study in TCP application
performance using SSL

19 IP tour
25 Using REXEC
57 RTM with TN3270(E) servers
63 TCP/SNA news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

TCP/SNA Update
Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Colin Smith
E-mail: info@xephon.com

Subscriptions and back-issues
A year’s subscription to TCP/SNA Update,
comprising four quarterly issues, costs $190.00
in the USA and Canada; £130.00 in the UK;
£136.00 in Europe; £142.00 in Australasia and
Japan; and £140.50 elsewhere. In all cases the
price includes postage. Individual issues,
starting with the March 2000 issue, are available
separately to subscribers for $49.50 (£33.00)
each including postage.

TCP/SNA Update on-line
Code from TCP/SNA Update, and complete
issues in Acrobat PDF format, can be
downloaded from http://www.xephon.com/
tcpsna; you will need to supply a word from the
printed issue.

© Xephon Inc 2005. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.

Printed in England.

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the material
it contains. Neither Xephon nor the contributing
organizations or individuals accept any liability
of any kind howsoever arising out of the use of
such material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information, code,
JCL, EXECs, and other contents of this journal
before using it.

Contributions
When Xephon is given copyright, articles
published in TCP/SNA Update are paid for at
the rate of $160 (£100 outside North America)
per 1000 words and $80 (£50) per 100 lines of
code for the first 200 lines of original material.
The remaining code is paid for at the rate of $32
(£20) per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

 3© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Object creation options for composite applications

Service-Oriented Architecture-based (SOA) solutions are now,
incontrovertibly, the topic du jour in the TCP/SNA world – with
IBM in particular now couching everything to do with application
integration in terms of being an SOA opportunity. Host
integration, the technology for creating objects out of data and
business logic from mission-critical host applications (in
particular mainframe and AS/400 SNA applications) for reuse
in new software development initiatives, has now become
passé. Though host integration is a bona fide SOA
methodology, IBM and others no longer want to have technology
that is limited just to ‘legacy’ host applications. Instead, with
SOA, the goal is to extend the object capture and reuse
principles advocated by host integration to apply to any and all
applications – rather than just to ‘legacy’ applications. This in
general is good news to the software developers in the TCP/
SNA community, since many of them, thanks to their exposure
to host integration technology (eg IBM’s Host Publisher), now
have a distinct head-start when it comes to SOA.

SOA, though presented as an architecture, is, in reality, more
a manifesto than a technical specification. The real
‘deliverables’ in the context of SOA are the so-called SOA-
based composite applications – where a composite application
is one that relies on functionality from other applications.
When it comes to a composite application, the ‘other
applications’ from which it borrows functionality can in theory
be a mix of contemporary applications (eg SAP R/3, Siebel,
PeopleSoft, etc) and legacy ‘green screen’ applications.
Irrespective of the nature and vintage of these ‘other
applications’ (ie the source applications), the functionality to
be reused by the new composite applications is expected to
be extractable and available in the form of remote invocable
software routines. Hence this sometimes confusing notion of
reusing software functionality in the form of services; services
in this context being nothing other than remotely invoked

 4 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

software subroutines or procedures. Thus, in essence, SOA-
based composite applications can be thought of as being built
around well-understood, conventional Remote Procedure Call
(RPC) disciplines.

XML Web services, the latest iteration of standard-based RPC
technology, is thus invariably positioned as the prerequisite
basis for composite applications. In reality, this emphasis on
Web services is nothing but posturing and propaganda by
companies (including IBM) that are desperate to justify their
backing and investment in XML technology. Software
developers in the TCP/SNA world need always to remember
that SOA is essentially just the latest ‘politically-acceptable’
means of referring to RPC. Thus, any and all RPC mechanisms,
including Unix RPCs, are genuinely valid options for creating
SOA-based composite applications. Therefore, if you already
have experience and objects in CORBA, Java Beans, EJBs,
COM, or .NET, do not in any way feel obliged to restart and get
everything in the form of Web services. The beauty of true
object technology is the ability to easily mix-and-match. It is
important not to lose sight of that.

THE OPTIONS FOR OBJECT CREATION

Unless you already have all the required software functionality
in some object form, the objects to be invoked by a new
composite application have to be created (and, obviously,
tested) before one can deploy that new application for mission-
critical production use. The rationale and justification for
developing composite applications hinges on the profitable
reuse of existing software functionality. If that is not the case,
one is back to dealing with new application development as
opposed to creating composite applications. So the issue
here boils down to how one goes about isolating and capturing
‘business logic’ from within existing applications – so that this
business logic can later be reinvoked (in isolation) from a new
composite application.

In reality, there are still only three ways to capture such

 5© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

business logic from existing applications and have them
invocable in the form of objects:

1 Programmatic schemes, typically involving the use of
application-specific adapters or connectors (such as those
available from IBM or iWay Software).

2 Screen-scraping (or 3270/5250/VT datastream
interception/decoding), either because there are no
appropriate adapters for the applications in question (the
object developer has prior experience with this approach
– given its ubiquitous use in most Web-to-host solutions),
or because the object developer intends to exploit the
capability that is possible with this approach to easily
‘combine, filter, and skip’ I/O fields .

3 Extracting the relevant source code segments if one is
confident that the application source code has been
diligently maintained and is up to date.

Screen-scraping, historically, has been a technique widely
used by the TCP/SNA community. The current trend, however
(particularly when dealing with CICS and IMS applications), is
to use adapters whenever possible. Adapters, in general, are
now available in both Java and .NET variants, with many of the
Java adapters now conforming to the J2EE Connector
Architecture (JCA). One, however, has to be extremely diligent
when evaluating and selecting adapters – especially for
mainframe-resident applications. As TCP/SNA developers
will readily appreciate, the design and the exact APIs accessed
by an adapter can have a profound impact on the performance
and scalability of an adapter in terms of the number of
transactions it can extract from a mainframe application over
a given period of time. Suffice it to say, some adapters can be
a couple of orders of magnitude faster than others! Thus, if
performance is a concern, as it invariably is with TCP/SNA
applications, make sure that you check the exact throughput
of an adapter before you commit to using it to realize your new
mission-critical application.

 6 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Objects (including Web services) that are to be used in
composite applications do not have to be, and in most cases
they will not be, self-contained units of software functionality.
While it is indeed possible to have totally self-contained
objects, such objects invariably fall into the ‘utility’ function
category (eg create a new display window), as opposed to
those that perform a complete business process. This is why,
especially in the TCP/SNA world, transactions will continue to
be the preferred ‘unit of work’ when it comes to object creation.

TRANSACTIONS AS THE BASIS FOR SOA

Software functionality being sought for reuse from an existing
application may never have been developed in a form
conducive to (or even accessible for) reuse in the form of an
object. That is an inescapable fact of life vis-à-vis SOA and
composite applications. In many cases the required
functionality may not even be implemented by a contiguous
‘block’ of software within the source application. Instead, there
could be significant branching and linking within the parent
application in order to deliver that functionality. This is invariably
the case with older ‘SNA’ applications, with the situation often
further exacerbated with on-the-fly fixes applied to these
applications in the form of object-code patches that involve
branching off to a new patch routine.

Hence the emphasis on transactions. Thus software
functionality, for example that representing a particular
business process, is invariably identified and extracted in
terms of a clearly defined and demarcated transaction. This is
prudent and pragmatic. End users and line-of-business
management, as well as programmers, can relate to specific
transactions performed by an application. Thus there is no
ambiguity when attempting to describe business processes
(and the software functionality that performs them) in terms of
transactions.

A transaction performs a predefined (and describable) process;
it has specific input/output characteristics, and one can typically

 7© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

determine whether it completed its designated task successfully
(or otherwise). Consequently, transactions (eg extract customer
record, update quantity in stock for this item) are the basic, as
well as the smallest, units-of-work when it comes to SOA-
based composite applications. Hence the granularity of the
functionality that can be extracted from a source application
will be governed by the nature of the transactions it supports.
Adapter-based programmatic access or screen-scraping can
be used to capture a transaction and represent it in the form
of an object or Web service.

Thus, contrary to a common misconception, one is not always
forced to rely on screen-scraping in order to create objects
using a transaction-oriented paradigm. It is, however, crucial
to note that an object or Web service representing a transaction
also has to contain all the necessary application access, user
authentication, and transaction location (ie navigation) data –
in addition to the I/O fields used by the transaction. Thus,
when dealing with host applications, many TCP/SNA
developers may still prefer to deal with a proven screen-
scraping scheme – particularly if they wish to capture ‘complex
transactions’ involving I/O fields from multiple screens – even
spanning multiple disparate applications.

It is, however, important never to lose sight of the fact that
SOA-based solutions, by definition, rely on RPC – in other
words, a run-time execution model. This means that the
source applications need to be up and running when a new
composite application invokes an object that sets out to obtain
functionality from one or more or those source applications.
Therefore, there always has to be a tight coupling between the
object sourcing phase and the application execution phase.
This explains the recent talk about ‘composite application
servers’. A composite application server is an extension and
refinement to traditional application servers à la IBM’s
WebSphere or BEA’s WebLogic. Composite application servers
cater for inescapable coupling between object creation and
application execution, and provide all the necessary automation
to greatly simplify and expedite object creation, application
synthesis, and the subsequent application deployment.

 8 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

BOTTOM LINE

There is nothing overtly new or magical about composite
applications. They are applications that make use of
functionality from other existing applications using the well
understood RPC paradigm – though the trend today is to
present the RPC mechanism in the form of XML Web services.
Transactions tend to be the optimum unit of work when it
comes to capturing existing application functionality for reuse
within contemporary composite applications. Programmatic
access or screen-scraping can be used to capture transactions
and create reusable objects or Web services. Such objects
and Web services, however, need to contain all the necessary
application access, user authorization, and transaction location
‘linkages’ in addition to the logic required to invoke the
transaction with the appropriate I/O fields. This leads to the
notion of composite application servers. At a minimum, a good
composite application server will provide comprehensive and
proven functionality for automated application connectivity,
stringent access control and user authentication, invoking
‘complex transactions’ involving I/O fields from multiple
screens, transaction coordination, process orchestration,
process automation (eg scripting), and supporting multiple
object technologies.

Anura Gurugé
Strategic Consultant (USA) © Xephon 2005

Case study in TCP application performance using
SSL

We recently assisted a large public university with a problem
in using a mainframe TCP application using Secure Sockets
Layer (SSL). At times, when students registered for a dormitory
room using their CICS Web-enabled application, the CICS

 9© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

region became ‘hung’ and had to be restarted. Also, students
were unable to use the application and many calls were
received by the Help Desk. Clearly, this was not a situation
that could be allowed to continue.

We will use this case to illustrate some basic issues in
troubleshooting TCP/IP problems:

1 Understand the exact nature of the problem.

2 Understand the architecture of the problem.

3 Be able to recreate the problem.

The path to a solution is not linear – much trial and error goes
into the process and I will describe the trials and errors that we
made in the hope that this will assist you in your own
troubleshooting efforts.

UNDERSTAND THE EXACT NATURE OF THE PROBLEM

This application allowed students to select accommodation
on the campus. They could choose residence hall, room-
mate, meal plan, and other related matters. The application
was available for one week out of the year. The university tried
to stage the use of the application by having honours students
and Seniors sign up the first day, Juniors the following day,
and so forth. The application worked well until the last day,
when students with poor grades, freshmen, and all others
were allowed in. Then, chaos erupted.

When I was first called in to investigate this problem, I was told
that on this last day the CICS region used so many resources
that it ‘hung’ and had to be restarted. At first glance, it seemed
that this issue was with the high number of resources being
used. So, my first approach was to try to understand how
much time the application was taking at the host and in the
network so that we could approach the application people to
discuss tuning efforts. I expected to see something like a
transaction taking 1 second average time with a light load and
increasing to 10 seconds when the load increased.

 10 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

UNDERSTAND THE ARCHITECTURE OF THE PROBLEM: INITIAL
APROACH

The next step was to understand the architecture of this
application. Students used this application via a Web page
using secure sockets. The secure sockets, or SSL, was
required because social security numbers, financial data, and
other private information might be shown. So the student
would log on to a Web page such as http://myuniversity.com/
cgi/securehousing.html.

This Web page was actually a CGI script running under the
HTTP Web server on the mainframe. The port used was port
443 for secure sockets. This CGI script then initiated a
connection to the CICS application to get the needed data and
pass it back – see Figure 1.

BE ABLE TO RECREATE THE PROBLEM: INITIAL APPROACH

Our first step in this stage was to see exactly how many
concurrent users we could get on the application before a
serious event such as a CICS lock-up occurred. We used a
load creation program that could log on to the application and
use various screens. This way, we could vary how many users
we had on and see the impact. We also logged on to the

Figure 1: Housing application architecture

http://myuniversity.com/cgi/securehousing.html

HTTP
server

CGI
script

CICS

 11© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

application ourselves during this time using test student IDs
so that we could see first-hand what a potential user might
experience.

Test 1

We then proceeded to our first test. Three of us tried to log on
and use the application while running the load simulator. We
watched the load on the HTTP server, TCP/IP, and the
mainframe CPU time. For the HTTP server, we watched how
many SSL threads were open. On the TCP/IP level, we ran a
TCP packet trace that we could later analyse for any problems.
For mainframe time, we collected SMF record type 30s to tell
us address space CPU time, paging, etc.

On our first test, we reached about 20 simultaneous users
before we could do no more. We three ‘real’ users experienced
serious delays in application usage. In fact, we could not log
in to the application at all at this point. This was our first
benchmark. It seemed that indeed the reports of the CICS
region becoming overloaded were true.

We could see that for the HTTP server, out of the 40 SSL
threads available, many remained open. From the SMF type
30, we could see the TCB and SRB usage for CICS growing
to about four times the normal level. The normal level was
about 300 CPU milliseconds per 15-minute interval; during
the test this increased to about 1,200 milliseconds per 15-
minute interval. Still, this did not seem so excessive that it
would cause a problem such as the CICS lock up and failure
to log in.

From the TCP packet trace, however, we started seeing a very
interesting phenomenon that led us away from our initial
hypothesis. We saw many TCP resets from ephemeral ports
to the CICS region. The resets appeared to come from the
same address as our TCP stack! The TCP reset packets are
shown below:

IP SRC = 123.45.123.6 IP DST = 123.45.123.6

 HDLEN = 5 TOS = XØØ TOTLEN = 4Ø ID = 19321 FLAGS = (none)

 12 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 FRAGOFF = Ø TTL = 64 PROTOCOL = TCP CHECKSUM = X8Ø9B FFFF

 TCP SRC PORT = 1273 TCP DST PORT = 3333

 SEQ NUM = 3985579497 ACK NUM = 3985622536 FLAGS = RST

 HDLEN = 5 WINDOW = Ø CHECKSUM = X3157 FFFF URGENT PTR = Ø

 HEADER LENGTH = XØØ28

This was quite interesting – who was sending all those resets
and why?

UNDERSTAND THE ARCHITECTURE OF THE PROBLEM: REFINE
UNDERSTANDING

We then sought to refine our understanding of the architecture.
We thought that possibly these resets were responsible for
the high CPU time and inability to log in. Who could be sending
these resets? Our first ideas as to the culprits were the HTTP
server or the CGI script. You can see from the output above
that the TCP source port is an ephemeral port 1273 going to
our CICS region 3333.

We never saw any session initiate (SYN-ACK) sequences
from this (or any other) ephemeral port. Nearly 100 packets
such as these were sent in a 2-minute period from various
ephemeral ports. These traces were taken on an OS/390
system, which does not tell us the address space ID that the
packet was sent on. On z/OS systems, the address space ID
information is available for TCP packets and might have made
our job somewhat easier.

HTTP configuration investigation

We looked at the HTTP configuration and found a number of
timeout and performance directives.

The HTTPD configuration performance directives are shown
below:

==

Performance directives.

==

MaxActiveThreads directive:

#

Defines the maximum number of threads in system thread pool.

 13© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

#

Default: 4Ø

Syntax: MaxActiveThreads <num>

MaxActiveThreads 4Ø

MaxPersistRequest directive:

#

Maximum number of request to receive on a persistent connection.

#

Default: 5

Syntax: MaxPersistRequest <num>

changed by xxx from 4 to 1 to turn off persistent connections

MaxPersistRequest 1

The HTTPD configuration timeout directives are shown below:

==

Timeout directives

==

#

Use these directives to:

* limit the time to wait for the client to send a request

after connecting to the server before cancelling the connection.

* limit the time to allow for sending output to the client.

* limit the time to allow for server scripts to finish.

(If the program does not finish within allotted time, the server

will send a TERM signal and then a KILL signal 5 seconds later

to stop the program.)

* limit the time to wait for the client to send a request

after establishing a persistent connection to the server

before cancelling the connection.

#

Default: InputTimeout 3Ø secs

Default: OutputTimeout 2 minutes

Default: ScriptTimeout 2 minutes

Default: PersistTimeout 5 secs

Syntax: <directive> <time-spec>

changed by xx to "maybe" boost speed for housing application

changed by xxx inputTimeout back to 3Ø from 15

changed by xxx PersistTimeout from 1 secs to 6Ø seconds

InputTimeout 3Ø secs

OutputTimeout 2 minutes

ScriptTimeout 2 minutes

PersistTimeout 6Ø secs

We could see the description of the timeout directives doing
things such as:

• Limiting the time to wait for the client to send a request

 14 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

after connecting to the server before cancelling the
connection.

• Limiting the time to allow for server scripts to finish. If the
program does not finish within an allotted time, the server
will send a TERM signal and then, 5 seconds later, a KILL
signal (to stop the program.)

• Limiting the time to wait for the client to send a request
after establishing a persistent connection to the server
before cancelling the connection.

This looked very suspicious to us. The university systems
programmers had tried to modify these parameters themselves
before calling me in for consultation. They had turned off the
MaxPersistRequest directive, which is the maximum number
of requests to receive on a persistent connection. The default
is 5; they had set it to 1 to turn off persistent connections.
Since there was also a PersistTimeout value of 60 seconds,
which will cancel the connection, we thought this might be a
problem.

Test 2

Then we proceeded to our second set of tests. We changed
the MaxPersistRequest to 100 and varied the timeout values:

• InputTimeout 30 seconds to 1 hour.

• OutputTimeout 2 minutes to 1 hour

• ScriptTimeout 2 minutes to 1 hour

• PersistTimeout 5 seconds to 1 hour.

We did not intend to leave the timeout values as 1 hour, but
just wanted to eliminate these as a problem area. When we
tried our stress test with 20 users, we still had problems
getting in! These timeout values did not seem to help us.

We were stumped at this point. We then turned to the CGI
script. We had looked at it before and could see a number of

 15© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

places where it closed a socket for various reasons such as
errors – see the socket close in CGI script below:

/**

 * die --- Print a message and die.

 **/

void die(const char *mesg, int sock)

 {

 printf("<body bgcolor=#AAFFFF>");

 printf("
<i>Error! : </i> %s. Try reloading, or contact

support.\n",mesg);

 fputs(mesg, stderr);

 fputc('\n', stderr);

 shutdown(sock, 2);

 exit(Ø);

 }

We did not see any error messages, but, just for ‘kicks’, we
disabled the socket closes. We thought it possible that the
script might be sending a close to the wrong socket.

Test 3

This actually seemed to help! We were now able to log in even
when 20 concurrent users were on. Log in was a little slow, but
once we got into the application, we had no problems. Then,
our systems programmers remembered that when the initial
problem had occurred, students had called in because they
were unable to log in and not because they had problems
when actually using the application! This led us to think about
what might be going on during the initial log in. Since the log
in was done using SSL, it was possible that there was a
problem with the SSL handshake.

We then thought to look at the SSL security directives. They
had coded the SSL Cipher Specs to go from highest strength
to lowest. We found some documentation for another Web
server that led us to believe that this may make the SSL
handshake longer. The SSL security directives are shown
below:

==

Security directives.

===

 16 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

SSLCipherSpec directive

#

Specify the methods of encryption that an SSL connection will

support. Each encoded cipher specification is tested in the

order specified for compatibility with the requester. If the

requester supports a method specified here, an SSL connection

can be established. If not, the connection is refused.

#

Default: All available cipher specifications are enabled by

default (see directives below)

#

Syntax: SSLCipherSpec <code>

#

where <code> is one of:

#

SSL V2:

#

Code Meaning Note Strength

==== ============= ==== ========

21 RC4 (128 bit) * (weaker)

22 RC4 (4Ø bit)

23 RC2 (128 bit) * |

24 RC2 (4Ø bit) V

26 DES (56 bit) *

27 Triple DES (192 bit) * (stronger)

#

SSL V3:

#

Code Meaning Note Strength

==== ============= ==== ========

33 RC4 MD5 (128 bit) (weaker)

34 RC4 MD5 (128 bit) *

35 RC4 SHA (128 bit) * |

36 RC2 MD5 (4Ø bit) V

39 DES SHA (56 bit)

3A Triple DES SHA (192 bit) * (stronger)

#

* Note: Not supported in versions available

outside North America.

#

Examples:

SSLCipherSpec 24

SSLCipherSpec 22

SSLCipherSpec 39

SSLCipherSpec 27

SSLCipherSpec 21

SSLCipherSpec 23

SSLCipherSpec 26

SSLCipherSpec 22

 17© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

SSLCipherSpec 24

SSLCipherSpec 3A

SSLCipherSpec 35

SSLCipherSpec 34

#SSLCipherSpec 39

SSLCipherSpec 33

SSLCipherSpec 36

Final test

So then we proceeded to what became our final test. The SSL
cipher specs were set from lowest strength to highest instead
of the way they had been coded – highest strength to lowest.
This way the first cipher to be attempted would be the lowest
strength cipher. This would take less time than the higher-
strength cipher:

• SSLCipherSpec 33

• SSLCipherSpec 21

• SSLCipherSpec 22

• SSLCipherSpec 23

• SSLCipherSpec 24

• SSLCipherSpec 35 etc.

We also disabled all socket closes in the CGI script and
increased the MaxPersistRequests to 100.

This allowed over 50 simultaneous users before any slowdowns
occurred! We were able to connect to the application, but
started slowing down when actually going from one page to
the next within the application. This was an increase of nearly
150% without causing problems with the CICS region. So,
now, any further improvements that could be made would
seem to be in the realm of the application.

CONCLUSION

The lessons learned from this case came from truly
understanding the problem and the architecture. As we said

 18 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Why not share your expertise and earn money at the
same time? TCP/SNA Update is looking for program
code, REXX EXECs, JavaScript, etc, that experienced
users of TCP and SNA have written to make their life, or
the lives of their users, easier. We are also looking for
explanatory articles, and hints and tips, from experienced
users. We would also like suggestions on how to improve
TCP/IP performance.

We will publish your article (after vetting by our expert
panel) and send you a cheque, as payment, and two
copies of the issue containing the article once it has
been published. Articles can be of any length and should
be e-mailed to the editor, Trevor Eddolls, at
trevore@xephon.com.

A free copy of our Notes for Contributors, which includes
information about payment rates, is available from our
Web site at www.xephon.com/nfc.

initially, for problem diagnosis, these are the key issues:

1 Understand the exact nature of the problem

2 Understand the architecture of the problem

3 Be able to recreate the problem.

If, at the outset, we had truly understood the nature of the
problem, ie students had problems logging in to the application,
instead of the symptom, ie CICS CPU usage was high, we
might have followed the right track earlier.

Nalini Elkins
Inside Products (USA) © Xephon 2005

 19© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

IP tour

In this article I will explain how one can determinate the
network address and broadcast address from a given IP
address and subnet address. I will also demonstrate the
basics of how IP packets get routed. The principles given here
apply to the old Class A, B, and C as well as CIDR (Classless
Inter-Domain Routing), that is, 32-bit IP addresses.

IP AND BINARY

An IP address is made up of four numbers – these are called
octets. Each octet has eight binary bits (8 bits=1 byte) that
represent each number. So, 8 * 4 = 32-bit address. A typical
IP address is split into two – the left part is used to hold the
network address, the right side is used to hold the host
address part. A Class C address format is:

<network>.<network>.<network>.<host>

 192 . 168 . 4 . 1Ø

Each byte of an IP address can contain a maximum value of
255. This is because the building blocks of an IP address are
binary – remember that there are 8 bits in 1 byte and 4 bytes
make up a 32-bit address. Each byte is represented using the
^2 (power of 2), with the MSB (most significant bit on the left)
as follows:

128 64 32 16 8 4 2 1 decimal

 1 1 Ø Ø Ø Ø 1 Ø binary

In the example above, the bits that are set on are 128 + 64 +
2, which equates to 194.

With the old Class network addresses, one was quite restricted
as to how the allotted IP range could be split into a network and
a host address part. With CIDR this is not the case – with a few
exceptions one is not limited as to how one can split the 32-
bit IP address. How subnets are used deserves an article by
itself; however, suffice it to say, the splitting of an IP address

 20 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

is done via the subnet. The subnet mask is used to split a large
network into smaller network chunks. Within the IP, the subnet
mask is used to achieve this. The mask is used to determine
within the IP address which is the network part and which is the
host part. The left-most side is the network address part, the
right-most side is the host address – where the split occurs
depends on how many (sub) networks and hosts one wishes
to have. One can think of this process as a sliding scale: the
more subnets one has, the fewer hosts one has to play with;
the more hosts one wants, the fewer subnets one can have –
get the picture? The subnet mask is sometimes appended to
the address, for notational purposes, like:

192.168.8.0/24

This would indicate that the network address part is
192.168.8.0; the /24 means that the subnet mask is allocated
24 bits, in other words the subnet is 255.255.255.0.

Deciding on a subnet mask is down to your current and, more
importantly, future networking needs. It is a good idea to have
subnets; in fact it is insane not to if the company is
geographically split. However, it is not imposed on you to have
one.

CALCULATING THE IP NETWORK ADDRESS PART

When presented with an IP address how does one know what
the network address is? Assume we have an IP address of
192.168.4.10. One cannot assume that the network part is
192.168.4. To figure out the network part, one must use the
subnet mask address and work out some binary arithmetic.

The IP address of 192.168.4.10 is represented in binary as
follows:

11000000 . 10101000 . 00000100 . 00001010

Let’s assume the subnet is set to 255.255.255.0.

In binary this is represented as follows:

 21© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

11111111 . 11111111 . 11111111 . 00000000

Notice that all the 1s amount to 24 – that’s /24 in notation.

Calculating the network address one has to carry out an ‘AND’
operation, that is, if both values are ‘1’, then the result will be
‘1’, otherwise the result is ‘0’. The AND is done on the IP and
subnet mask. Using the above IP and subnet address the
result is shown below:

11000000 . 10101000 . 00000100 . 00001010 (IP address)

11111111 . 11111111 . 11111111 . 00000000 (subnet mask)

11000000 . 10101000 . 00000100 . 00000000 (resulting AND)

This converts to 192.168.4.0, which is the network part address.

It is more commonly written as 192.168.4.0/24 (remember the
/24 results from the amount of 1s in the subnet).

The above example was an easy one; after all, the subnet
mask 255.255.255.0 is quite common. But what if the subnet
was 255.255.255.240? Using the same IP address,
192.168.4.10:

11000000 . 10101000 . 00000100 . 00001010 (IP address)

11111111 . 11111111 . 11111111 . 11110000 (subnet mask)

11000000 . 10101000 . 00000100 . 00000000 (resulting AND)

This converts to 192.168.4.0, which is the network part address.
It is more commonly written as 192.168.4.0/28.

CALCULATING THE IP BROADCAST ADDRESS PART

The broadcast address can also be calculated. The broadcast
is an address in ‘each’ subnet that can, literally, broadcast a
single packet to all IP-based hosts. It is used for DHCP and
initial IP connections. Using the examples above, all that is
required is to first negate or invert the subnet, usually called
the 1s complement. This means turn all 1s to 0s and vice
versa. Using this new address, an OR operation is performed

 22 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

against the original IP address (192.168.4.10). An OR operation
means if either value is 1 or 0, or if both values are 1, the result
is 1; otherwise, the result is 0.

The inverted subnet mask (255.255.255.0) in binary now
becomes:

00000000 . 00000000 . 00000000 . 11111111

Now, using the OR operation:

11000000 . 10101000 . 00000100 . 00001010 (IP address)

00000000 . 00000000 . 00000000 . 11111111 (inverted subnet)

11000000 . 10101000 . 00000100 . 11111111 (resulting OR)

The above result converts to 192.168.4.255. This is the
broadcast address. Notice that the last octet, which is the host
section in the resulting ‘OR’ operation, has all 1s. This must be
the case for all broadcast addresses.

For good measure and completeness, one can also calculate
the host part of an IP by ANDing the inverted subnet against
the IP address.

11000000 . 10101000 . 00000100 . 00001010 (IP address)

00000000 . 00000000 . 00000000 . 11111111 (inverted subnet
mask)

00000000 . 00000000 . 00000000 . 00001010 (resulting AND)

This converts to 0.0.0.10, which is the host part address of
192.168.4.10.

Though this article is not focusing on subnets, the subnet
mask is used on all the calculations. Thus far, you may be
asking yourself how one can tell how many networks one has,
or can have, within a given subnet mask. To determine this,
take the decimal value from the last octet in the subnet mask
and subtract that figure from 256. Looking at an example,
assume the subnet mask is 255.255.255.224 and the network
is 192.168.4.0 /27, so:

 23© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

256 – 224 = 32

Using this number one can now progress. Simply add 32 to
each previous last octet, starting at the network address
192.168.4.0:

• 192.168.4.0

• 192.168.4.32

• 192.168.4.64

• 192.168.4.96

• 192.168.4.128

• 192.168.4.160

• 192.168.4.192

• 192.168.4.224

In the above example eight networks can be used using the
subnet mask of 255.255.255.224.

SENDING PACKETS ONWARDS

When sending data across a network, the IP packet needs to
know where to go. The destination of the packet may well be
on a different network. Without doubt, the packet will eventually
arrive at the local default Gateway (unless the packet is sent
via a point-to-point host route). When a packet reaches its first
IP host/gateway/forwarder it will first AND the destination
address with its own subnet mask. If the result is the same
subnet mask, the gateway will forward it directly to the
destination host. If the subnet mask is different, it will forward
it to the next gateway. That gateway will then test to see
whether any of its routes has the same subnet mask. This
process is repeated until a gateway can match the subnet
mask of the packet. In short, the packet is being routed.

Assume host A has a subnet mask of 255.255.240.0/20. An IP
packet is sent to host B, which has the IP address 192.168.4.49.

 24 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

The following example in binary compares the IPs:

11111111 . 11111111 . 11110000 . 00000000 (subnet mask of
host A)

11000000 . 10101000 . 00000100 . 00110001 (IP of host B)

11000000 . 10101000 . 00000000 . 00000000 (resulting AND)

11000000 . 10101000 . 00000000 . 00000000 (network address
of host A)

The resulting AND result is compared with the network address
of host A. If they match, the packet is sent to host B. There is
a match in the above example so the packet is accepted or
sent, depending on the operation.

Each host with a network connection will have a routing table.
This can be displayed by issuing netstat commands.

Routes can be manually added or deleted using the route
command. The most basic format of the command is:

route <add|del> <-net|-host> <target IP> <netmask> <gw> <interface>

To add a point-to-point route from the local host to another
host only with an IP of 192.168.6.12, one could use:

route add –host 192.168.6.12 ethØ

Notice that there is no need to specify the netmask; a host
route implies a mask of 255.255.255.255.

To add a direct network route to the 192.168.8.0 network, one
could use:

route add –net 192.168.8.Ø netmask 255.255.255.Ø ethØ

Alternatively, the mask notation method could be used:

route add –net 192.168.8.Ø/24 ethØ

To add the route 172.22.10.0, with a mask of 255.255.255.0
that requires the gateway 192.168.8.1 to access it, one could
use:

route add –net 172.22.1Ø.Ø/24 gw 192.168.8.1 ethØ

 25© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

To delete a route, simply use the command one used to add
the route, but replace the ‘add’ with ‘del’.

There are two types of routing one can use: static or dynamic.
Static is the manual (or script) insertion of a route, which is
what has been demonstrated in the above examples. Dynamic
routing is a self-discovery daemon run by ‘routed’ or ‘gated’.
These daemons will self-managed the routing tables. Generally
I would use static routing because one has total control over
the route table one creates.

Understanding IP addresses requires binary arithmetic and
Boolean algebra (that’s the AND and OR operations). If this in
not your ‘cup of tea’, there are IP calculators/converters on the
Web that will do the conversions for you. I recommend using
these utilities anyway as a back-up/confirmation of one’s own
manual calculations.

David Tansley
Global Operations
ACE Overseas General (UK) © Xephon 2005

Using REXEC

The REXEC client in TCP/IP is a very powerful tool. It can be
used to execute commands or scripts on remote platforms.
We use this as a command and control mechanism to
administer and manage Unix and XP platforms from the
mainframe. We have two approaches to this: batch and on-
line.

The first uses REXEC in batch to coordinate activities on Unix
hosts with batch activities on the mainframe. For this I wrote
a batch REXX EXEC to run REXEC. This was done to
implement a level of security and to implement an approach
to determine whether the remote command succeeded or

 26 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

failed. The basic return code from REXEC simply lets you
know whether the command was successfully launched on
the target host. It is not an indicator of whether the command
actually worked or not. To solve that problem, my batch REXX
EXEC called REXECX appends an echo of $? to the command
string.

As you probably know, the $? variable in Unix is the closest
thing Unix has to a return code. This appears as the last line
of the output and REXECX parses the command output and
will exit using the $? value as REXECX’s return code. This
allows JCL condition code processing to depend on success
or failure of instream Unix steps.

The second issue was security. Nobody wanted the userid and
password for each host hardcoded in a REXX EXEC or in a
dataset that was accessible to the world. For this we
implemented a NETRC dataset. REXEC supposedly supports
NETRC, but I found it has problems, so REXECX will read the
syntactically valid NETRC member and parse it internally.
Using the dataset allows special access rules and read
access to only authorized users. Using a NETRC PDS also
avoids multiple copies of the same userid and password data
for target hosts. Our host names are all of eight characters, so
we chose to create a member in the NETRC PDS for each
host.

The second approach uses REXEC interactively from TSO/
ISPF. For this I wrote a REXEC dialog that prompts for the
remote command and displays the output in ISPF browse. It
stores the last used parameters in the ISPF profile and uses
an internal crypto routine to encrypt/decrypt any passwords
stored in the ISPF profile to avoid seeing any passwords in
clear text. It will also generate an audit log by user to keep
track of all commands executed.

REXECX REXX EXEC

/***/

/* REXX */

 27© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

/***/

/* Purpose: REXEC in batch to return a valid RC from the Remote CMD */

/*---*/

/* Syntax: REXECX host command */

/*---*/

/* Parms: HOST - IP Address or DNS name for target host */

/* COMMAND - Command to execute on the remote host */

/* */

/* Notes: Requires a valid NETRC file in the JCL */

/* */

/***/

/* Change Log */

/***/

/* Accept parms */

/***/

parse arg host command

/***/

/* If NETRC is allocated, open and parse */

/***/

if listdsi("NETRC" "FILE") = Ø then

 do

 "EXECIO * DISKR NETRC (STEM NETRC. FINIS"

 do n=1 to netrc.Ø

 parse var netrc.n . hostname . uid . pw .

 if hostname = host then leave

 end

 end

else

 do

 say 'NETRC file is missing RC=2Ø'

 exit 2Ø

 end

/***/

/* Format the REXEC command and append the ECHO RC=$? */

/***/

"REXEC -l" uid "-p" pw host command";echo RC=$?"

if RC <> Ø then exit RC

/***/

/* Read the contents of the OUTPUT DD (Remote output) */

/***/

"EXECIO * DISKR OUTPUT (STEM OUTPUT. FINIS"

/***/

/* Display the output */

/***/

do o=1 to output.Ø

 say strip(output.o)

end

/***/

/* Check last line for RC= string and EXIT with the CMDRC value ($?) */

/***/

 28 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

last = output.Ø

if left(output.last,3) = 'RC=' then

 do

 parse var output.last 'RC=' cmdrc .

 exit cmdrc

 end

else

 do

 say 'Error: Did not find RC= in the last line'

 say 'Last line was:' output.last

 exit 12

 end

REXECX JCL
//jobcard…

//***

//* REXEC COMMANDS *

//***

//REXEC EXEC PGM=IKJEFTØ1,

// PARM='REXECX myhost.com ps -ef'

//SYSEXEC DD DSN=my.exec.pds,DISP=SHR

//OUTPUT DD UNIT=VIO,SPACE=(TRK,(1,1Ø),RLSE),RECFM=VB,LRECL=1ØØØ

//NETRC DD DSN=my.netrc.pds(myhost),DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD DUMMY

IREXEC REXX EXEC
/***/

/* REXX */

/***/

/* Purpose: REXEC a command to a host */

/*---*/

/* Syntax: IREXEC */

/*---*/

/* Parms: N/A - N/A */

/* */

/* Notes: Will append an echo for $? after the command */

/* */

/***/

/* Change Log */

/*********** @REFRESH BEGIN START 2ØØ4/Ø3/Ø6 13:16:32 *************/

/* Standard housekeeping activities */

/***/

call time 'r'

parse arg parms

 29© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

signal on syntax name trap

signal on failure name trap

signal on novalue name trap

probe = 'NONE'

modtrace = 'NO'

modspace = ''

call stdentry 'DIAGMSGS'

module = 'MAINLINE'

push trace() time('L') module 'From:' Ø 'Parms:' parms

if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

call modtrace 'START' Ø

/***/

/* Set local estoeric names */

/***/

@vio = 'VIO'

@sysda = 'SYSDA'

/*********** @REFRESH END START 2ØØ4/Ø3/Ø6 13:16:32 *************/

/* Get all ISPF Profile variables */

/***/

call ispwrap 8 "VGET (RHOST RID RCMD1 RCMD2) PROFILE"

/***/

/* If the password was found decrypt it */

/***/

if ispwrap(8 "VGET (RPASS) PROFILE") = Ø then rpass = crypt(rpass)

/***/

/* Display panel to get REXEC details */

/***/

mem.1 = ")ATTR "

mem.2 = " @ TYPE(TEXT) COLOR(TURQ) "

mem.3 = " # TYPE(INPUT) CAPS(OFF) COLOR(GREEN) "

mem.4 = " $ TYPE(INPUT) CAPS(OFF) INTENS(NON) "

mem.5 = ")BODY EXPAND(//) WINDOW(76,5) "

mem.6 = "@Host : #Z "

mem.7 = "@UserID : #Z "

mem.8 = "@Password : $Z "

mem.9 = "@Command : #Z "

mem.1Ø = " : #Z "

mem.11 = ")INIT "

mem.12 = " .ZVARS = '(RHOST RID RPASS RCMD1 RCMD2)' "

mem.13 = ")PROC "

mem.14 = " VER (&RHOST,NB) "

mem.15 = " VER (&RID,NB) "

mem.16 = " VER (&RPASS,NB) "

mem.17 = " VER (&RCMD1,NB) "

mem.18 = ")END "

/***/

/* Display the Dynamic Panel */

/***/

call popdyn 'MEM' 4 'Enter' execname 'Parameters'

/***/

 30 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

/* ALLOC the OUTPUT VIO DSN */

/***/

"ALLOC F(OUTPUT) UNIT("@vio") SPACE(1 1) NEW CYLINDERS"

/***/

/* REXEC Command and append an echo for $? */

/***/

rcmd = rcmd1||rcmd2||';echo RC=$?'

call lock 'Executing command:' rcmd

"REXEC -l" rid "-p" rpass rhost rcmd

call rcexit RC 'REXEC Failure, reconfirm host, userid and password'

/***/

/* Encrypt the password and store all ISPF variables */

/***/

rpass = crypt(rpass)

call ispwrap "VPUT (RHOST RID RPASS RCMD1 RCMD2) PROFILE"

/***/

/* Scrape the RC= lines from the last line */

/***/

call tsotrap "EXECIO * DISKR OUTPUT (STEM OUTPUT. FINIS"

/***/

/* Check last line for RC= string and EXIT with the CMDRC value ($?) */

/***/

last = output.Ø

if left(output.last,3) = 'RC=' then

 do

 parse var output.last 'RC=' cmdrc .

 call msg 'Remote Command: "'rcmd'" executed on' rhost output.last

 end

else

 do

 msg1 = 'Remote Command Error: Did not find RC= in the last line'

 msg2 = 'Last line was:' output.last

 call msg msg1 msg2

 end

/***/

/* Log the command */

/***/

call logger 'RC='CMDRC rid rhost rcmd

/***/

/* Browse the OUTPUT */

/***/

call unlock

call brwsdd 'OUTPUT'

/***/

/* Shutdown */

/***/

shutdown: nop

/***/

/* Put unique shutdown logic before the call to stdexit */

/*********** @REFRESH BEGIN STOP 2ØØ2/Ø8/Ø3 Ø8:42:33 *************/

 31© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

/* Shutdown message and terminate */

/***/

 call stdexit time('e')

/*********** @REFRESH END STOP 2ØØ2/Ø8/Ø3 Ø8:42:33 *************/

/*********** @REFRESH BEGIN SUBBOX 2ØØ4/Ø3/1Ø Ø1:25:Ø3 *************/

/* */

/* 31 Internal Subroutines provided in IREXEC */

/* */

/* Last Subroutine REFRESH was 25 Jan 2ØØ5 23:31:17 */

/* */

/* */

/* RCEXIT - Exit on non-zero return codes */

/* TRAP - Issue a common trap error message using rcexit */

/* ERRMSG - Build common error message with failing line number */

/* STDENTRY - Standard Entry logic */

/* STDEXIT - Standard Exit logic */

/* MSG - Determine whether to SAY or ISPEXEC SETMSG the message */

/* DDCHECK - Determine whether a required DD is allocated */

/* DDLIST - Returns number of DDs and populates DDLIST variable */

/* DDDSNS - Returns number of DSNs in a DD and populates DDDSNS */

/* QDSN - Make sure there are only one set of quotes */

/* UNIQDSN - Create a unique dataset name */

/* TEMPMEM - EXECIO a stem into a TEMP PDS */

/* ISPWRAP - Wrapper for ISPF commands */

/* TSOTRAP - Capture the output from a TSO command in a stem */

/* SETBORD - Set the ISPF Pop-up active frame border colour */

/* LOCK - Put up a popup under foreground ISPF during long waits */

/* UNLOCK - Unlock from a popup under foreground ISPF */

/* PANDSN - Create a unique PDS(MEM) name for a dynamic panel */

/* POPDYN - Addpop a Dynamic Panel */

/* SAYDD - Print messages to the requested DD */

/* JOBINFO - Get job-related data from control blocks */

/* PTR - Pointer to a storage location */

/* STG - Return the data from a storage location */

/* STACK - UNLOAD, RELOAD, or LIST the Stack */

/* BRWSDD - Invoke ISPF Browse on any DD */

/* LOGGER - Append messages to a dynamic log */

/* CRYPT - Encryption/Decryption routine */

/* MODTRACE - Module Trace */

/* */

/*********** @REFRESH END SUBBOX 2ØØ4/Ø3/1Ø Ø1:25:Ø3 *************/

/*********** @REFRESH BEGIN RCEXIT 2ØØ4/11/Ø9 23:54:19 *************/

/* RCEXIT - Exit on non-zero return codes */

/*---*/

/* EXITRC - Return code to exit with (if non-zero) */

/* ZEDLMSG - Message text for it with for non-zero EXITRCs */

/***/

rcexit: parse arg EXITRC zedlmsg

 EXITRC = abs(EXITRC)

 if EXITRC <> Ø then

 32 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 do

 trace 'o'

/***/

/* If execution environment is ISPF then VPUT ZISPFRC */

/***/

 if execenv = 'TSO' | execenv = 'ISPF' then

 do

 if ispfenv = 'YES' then

 do

 zispfrc = EXITRC

/***/

/* Does not call ISPWRAP to avoid obscuring error message modules */

/***/

 address ISPEXEC "VPUT (ZISPFRC)"

 end

 end

/***/

/* If a message is provided, wrap it in date, time and EXITRC */

/***/

 if zedlmsg <> '' then

 do

 zedlmsg = time('L') execname zedlmsg 'RC='EXITRC

 call msg zedlmsg

 end

/***/

/* Write the contents of the Parentage Stack */

/***/

 stacktitle = 'Parentage Stack Trace ('queued()' entries):'

/***/

/* Write to MSGDD if background and MSGDD exists */

/***/

 if tsoenv = 'BACK' then

 do

 if subword(zedlmsg,9,1) = msgdd then

 do

 say zedlmsg

 signal shutdown

 end

 else

 do

 call saydd msgdd 1 zedlmsg

 call saydd msgdd 1 stacktitle

 end

 end

 else

/***/

/* Write to the ISPF Log if foreground */

/***/

 do

 zerrlm = zedlmsg

 33© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 address ISPEXEC "LOG MSG(ISRZØØ3)"

 zerrlm = center(' 'stacktitle' ',78,'-')

 address ISPEXEC "LOG MSG(ISRZØØ3)"

 end

/***/

/* Unload the Parentage Stack */

/***/

 do queued()

 pull stackinfo

 if tsoenv = 'BACK' then

 do

 call saydd msgdd Ø stackinfo

 end

 else

 do

 zerrlm = stackinfo

 address ISPEXEC "LOG MSG(ISRZØØ3)"

 end

 end

/***/

/* Put a terminator in the ISPF Log for the Parentage Stack */

/***/

 if tsoenv = 'FORE' then

 do

 zerrlm = center(' 'stacktitle' ',78,'-')

 address ISPEXEC "LOG MSG(ISRZØØ3)"

 end

/***/

/* Signal SHUTDOWN. SHUTDOWN label MUST exist in the program */

/***/

 signal shutdown

 end

 else

 return

/*********** @REFRESH END RCEXIT 2ØØ4/11/Ø9 23:54:19 *************/

/*********** @REFRESH BEGIN TRAP 2ØØ4/12/13 14:ØØ:48 *************/

/* TRAP - Issue a common trap error message using rcexit */

/*---*/

/* PARM - N/A */

/***/

trap: trace 'off'

 traptype = condition('C')

 if traptype = 'SYNTAX' then

 msg = errortext(RC)

 else

 msg = condition('D')

 trapline = strip(sourceline(sigl))

 msg = traptype 'TRAP:' msg', Line:' sigl '"'trapline'"'

 if trap = 'YES' & tsoenv = 'BACK' then

 do

 34 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 trap = 'NO'

 traplinemsg = msg

 say traplinemsg

 signal on syntax name trap

 signal on failure name trap

 signal on novalue name trap

 say

 say center(' Trace of failing instruction ',78,'-')

 trace 'i'

 interpret trapline

 end

 if trap = 'NO' & tsoenv = 'BACK' then

 do

 say center(' Trace of failing instruction ',78,'-')

 say

 end

 if tsoenv = 'FORE' then

 call rcexit 666 msg

 else

 call rcexit 666 traplinemsg

/*********** @REFRESH END TRAP 2ØØ4/12/13 14:ØØ:48 *************/

/*********** @REFRESH BEGIN ERRMSG 2ØØ2/Ø8/1Ø 16:53:Ø4 *************/

/* ERRMSG - Build common error message with failing line number */

/*---*/

/* ERRLINE - The failing line number passed by caller from SIGL */

/* TEXT - Error message text passed by caller */

/***/

errmsg: nop

 parse arg errline text

 return 'Error on statement' errline',' text

/*********** @REFRESH END ERRMSG 2ØØ2/Ø8/1Ø 16:53:Ø4 *************/

/*********** @REFRESH BEGIN STDENTRY 2ØØ4/11/23 21:54:51 *************/

/* STDENTRY - Standard Entry logic */

/*---*/

/* MSGDD - Optional MSGDD used only in background */

/***/

stdentry: module = 'STDENTRY'

 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

 parse arg sparms

 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 arg msgdd

 parse upper source . . execname . execdsn . . execenv .

/***/

/* Start-up values */

/***/

 EXITRC = Ø

 MAXRC = Ø

 trap = 'YES'

 ispfenv = 'NO'

 popup = 'NO'

 35© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 lockpop = 'NO'

 headoff = 'NO'

 hcreator = 'NO'

 keepstack = 'NO'

 lpar = mvsvar('SYSNAME')

 jobname = mvsvar('SYMDEF','JOBNAME')

 zedlmsg = 'Default shutdown message'

/***/

/* Determine environment */

/***/

 if substr(execenv,1,3) <> 'TSO' & execenv <> 'ISPF' then

 tsoenv = 'NONE'

 else

 do

 tsoenv = sysvar('SYSENV')

 signal off failure

 "ISPQRY"

 ISPRC = RC

 if ISPRC = Ø then

 do

 ispfenv = 'YES'

/***/

/* Check if HEADING ISPF table exists already, if so set HEADOFF=YES */

/***/

 call ispwrap "VGET (ZSCREEN)"

 if tsoenv = 'BACK' then

 htable = jobinfo(1)||jobinfo(2)

 else

 htable = userid()||zscreen

 TBCRC = ispwrap(8 "TBCREATE" htable "KEYS(HEAD)")

 if TBCRC = Ø then

 do

 headoff = 'NO'

 hcreator = 'YES'

 end

 else

 do

 headoff = 'YES'

 end

 end

 signal on failure name trap

 end

/***/

/* MODTRACE must occur after the setting of ISPFENV */

/***/

 call modtrace 'START' sigl

/***/

/* Start-up message (if batch) */

/***/

 startmsg = execname 'started' date() time() 'on' lpar

 36 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 if tsoenv = 'BACK' & sysvar('SYSNEST') = 'NO' &,

 headoff = 'NO' then

 do

 jobinfo = jobinfo()

 parse var jobinfo jobtype jobnum .

 say jobname center(' 'startmsg' ',61,'-') jobtype jobnum

 say

 if ISPRC = -3 then

 do

 call saydd msgdd 1 'ISPF ISPQRY module not found,',

 'ISPQRY is usually in the LINKLST'

 call rcexit 2Ø 'ISPF ISPQRY module is missing'

 end

/***/

/* If MSGDD is provided, write the STARTMSG and SYSEXEC DSN to MSGDD */

/***/

 if msgdd <> '' then

 do

 call ddcheck msgdd

 call saydd msgdd 1 startmsg

 call ddcheck 'SYSEXEC'

 call saydd msgdd Ø execname 'loaded from' sysdsname

/***/

/* If there are PARMS, write them to the MSGDD */

/***/

 if parms <> '' then

 call saydd msgdd Ø 'Parms:' parms

/***/

/* If there is a STEPLIB, write the STEPLIB DSN MSGDD */

/***/

 if listdsi('STEPLIB' 'FILE') = Ø then

 do

 steplibs = dddsns('STEPLIB')

 call saydd msgdd Ø 'STEPLIB executables loaded',

 'from' word(dddsns,1)

 if dddsns('STEPLIB') > 1 then

 do

 do stl=2 to steplibs

 call saydd msgdd Ø copies(' ',31),

 word(dddsns,stl)

 end

 end

 end

 end

 end

/***/

/* If foreground, save ZFKA and turn off the FKA display */

/***/

 else

 do

 37© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 fkaset = 'OFF'

 call ispwrap "VGET (ZFKA) PROFILE"

 if zfka <> 'OFF' & tsoenv = 'FORE' then

 do

 fkaset = zfka

 fkacmd = 'FKA OFF'

 call ispwrap "CONTROL DISPLAY SAVE"

 call ispwrap "DISPLAY PANEL(ISPBLANK) COMMAND(FKACMD)"

 call ispwrap "CONTROL DISPLAY RESTORE"

 end

 end

/***/

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 interpret 'trace' tracelvl

 return

/*********** @REFRESH END STDENTRY 2ØØ4/11/23 21:54:51 *************/

/*********** @REFRESH BEGIN STDEXIT 2ØØ4/Ø8/Ø2 Ø6:Ø6:4Ø *************/

/* STDEXIT - Standard Exit logic */

/*---*/

/* ENDTIME - Elapsed time */

/* Note: Caller must set KEEPSTACK if the stack is valid */

/***/

stdexit: module = 'STDEXIT'

 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

 parse arg sparms

 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 call modtrace 'START' sigl

 arg endtime

 endmsg = execname 'ended' date() time() format(endtime,,1)

/***/

/* if MAXRC is greater then EXITRC then set EXITRC to MAXRC */

/***/

 EXITRC = max(EXITRC,MAXRC)

 endmsg = endmsg 'on' lpar 'RC='EXITRC

 if tsoenv = 'BACK' & sysvar('SYSNEST') = 'NO' &,

 headoff = 'NO' then

 do

 say

 say jobname center(' 'endmsg' ',61,'-') jobtype jobnum

/***/

/* Make sure this isn't a MSGDD missing error then log to MSGDD */

/***/

 if msgdd <> '' & subword(zedlmsg,9,1) <> msgdd then

 do

 call saydd msgdd 1 execname 'ran in' endtime 'seconds'

 call saydd msgdd Ø endmsg

 end

 end

/***/

 38 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

/* If foreground, reset the FKA if necessary */

/***/

 else

 do

 if fkaset <> 'OFF' then

 do

 fkafix = 'FKA'

 call ispwrap "CONTROL DISPLAY SAVE"

 call ispwrap "DISPLAY PANEL(ISPBLANK) COMMAND(FKAFIX)"

 if fkaset = 'SHORT' then

 call ispwrap "DISPLAY PANEL(ISPBLANK)",

 "COMMAND(FKAFIX)"

 call ispwrap "CONTROL DISPLAY RESTORE"

 end

 end

/***/

/* Clean up the temporary HEADING table */

/***/

 if ispfenv = 'YES' & hcreator = 'YES' then

 call ispwrap "TBEND" htable

/***/

/* Remove STDEXIT and MAINLINE Parentage Stack entries, if there */

/***/

 call modtrace 'STOP' sigl

 if queued() > Ø then pull . . module . sigl . sparms

 if queued() > Ø then pull . . module . sigl . sparms

 if tsoenv = 'FORE' & queued() > Ø & keepstack = 'NO' then

 pull . . module . sigl . sparms

/***/

/* if the Parentage Stack is not empty, display its contents */

/***/

 if queued() > Ø & keepstack = 'NO' then

 do

 say queued() 'Leftover Parentage Stack Entries:'

 say

 do queued()

 pull stackundo

 say stackundo

 end

 EXITRC = 1

 end

/***/

/* Exit */

/***/

 exit(EXITRC)

/*********** @REFRESH END STDEXIT 2ØØ4/Ø8/Ø2 Ø6:Ø6:4Ø *************/

/*********** @REFRESH BEGIN MSG 2ØØ2/Ø9/11 Ø1:35:53 *************/

/* MSG - Determine whether to SAY or ISPEXEC SETMSG the message */

/*---*/

/* ZEDLMSG - The long message variable */

 39© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

/***/

msg: module = 'MSG'

 parse arg zedlmsg

 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

 parse arg sparms

 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 call modtrace 'START' sigl

/***/

/* If this is background or OMVS use SAY */

/***/

 if tsoenv = 'BACK' | execenv = 'OMVS' then

 say zedlmsg

 else

/***/

/* If this is foreground and ISPF is available, use SETMSG */

/***/

 do

 if ispfenv = 'YES' then

/***/

/* Does not call ISPWRAP to avoid obscuring error message modules */

/***/

 address ISPEXEC "SETMSG MSG(ISRZØØØ)"

 else

 say zedlmsg

 end

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 interpret 'trace' tracelvl

 return

/*********** @REFRESH END MSG 2ØØ2/Ø9/11 Ø1:35:53 *************/

/*********** @REFRESH BEGIN DDCHECK 2ØØ4/11/Ø9 22:48:36 *************/

/* DDCHECK - Determine whether a required DD is allocated */

/*---*/

/* DD - DDNAME to confirm */

/***/

ddcheck: module = 'DDCHECK'

 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

 parse arg sparms

 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 call modtrace 'START' sigl

 arg dd

 dderrmsg = 'OK'

 LRC = listdsi(dd "FILE")

/***/

/* Allow sysreason=3 & 22 to verify SYSOUT and tape DD statements */

/***/

 if LRC <> Ø & sysreason <> 3 & sysreason <> 22 then

 do

 dderrmsg = errmsg(sigl 'Required DD' dd 'is missing')

 call rcexit LRC dderrmsg sysmsglvl2

 40 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 end

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 interpret 'trace' tracelvl

 return

/*********** @REFRESH END DDCHECK 2ØØ4/11/Ø9 22:48:36 *************/

/*********** @REFRESH BEGIN DDLIST 2ØØ2/12/15 Ø4:54:32 *************/

/* DDLIST - Returns number of DDs and populates DDLIST variable */

/*---*/

/* N/A - None */

/***/

ddlist: module = 'DDLIST'

 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

 parse arg sparms

 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 call modtrace 'START' sigl

/***/

/* Trap the output from the LISTA STATUS command */

/***/

 call outtrap 'lines.'

 address TSO "LISTALC STATUS"

 call outtrap 'off'

 ddnum = Ø

/***/

/* Parse out the DDNAMEs and concatenate into a list */

/***/

 ddlist = ''

 do ddl=1 to lines.Ø

 if words(lines.ddl) = 2 then

 do

 parse upper var lines.ddl ddname .

 ddlist = ddlist ddname

 ddnum = ddnum + 1

 end

 else

 do

 iterate

 end

 end

/***/

/* Return the number of DDs */

/***/

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 interpret 'trace' tracelvl

 return ddnum

/*********** @REFRESH END DDLIST 2ØØ2/12/15 Ø4:54:32 *************/

/*********** @REFRESH BEGIN DDDSNS 2ØØ2/Ø9/11 ØØ:37:36 *************/

/* DDDSNS - Returns number of DSNs in a DD and populates DDDSNS */

/*---*/

 41© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

/* TARGDD - DD to return DSNs for */

/***/

dddsns: module = 'DDDSNS'

 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

 parse arg sparms

 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 call modtrace 'START' sigl

 arg targdd

 if targdd = '' then call rcexit 77 'DD missing for DDDSNS'

/***/

/* Trap the output from the LISTA STATUS command */

/***/

 x = outtrap('lines.')

 address TSO "LISTALC STATUS"

 dsnnum = Ø

 ddname = '$DDNAME$'

/***/

/* Parse out the DDNAMEs, locate the target DD and concatentate DSNs */

/***/

 do ddd=1 to lines.Ø

 select

 when words(lines.ddd) = 1 & targdd = ddname &,

 lines.ddd <> 'KEEP' then

 dddsns = dddsns strip(lines.ddd)

 when words(lines.ddd) = 1 & strip(lines.ddd),

 <> 'KEEP' then

 dddsn.ddd = strip(lines.ddd)

 when words(lines.ddd) = 2 then

 do

 parse upper var lines.ddd ddname .

 if targdd = ddname then

 do

 fdsn = ddd - 1

 dddsns = lines.fdsn

 end

 end

 otherwise iterate

 end

 end

/***/

/* Get the last DD */

/***/

 ddnum = ddlist()

 lastdd = word(ddlist,ddnum)

/***/

/* Remove the last DSN from the list if not the last DD or SYSEXEC */

/***/

 if targdd <> 'SYSEXEC' & targdd <> lastdd then

 do

 dsnnum = words(dddsns) - 1

 42 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 dddsns = subword(dddsns,1,dsnnum)

 end

/***/

/* Return the number of DSNs in the DD */

/***/

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 interpret 'trace' tracelvl

 return dsnnum

/*********** @REFRESH END DDDSNS 2ØØ2/Ø9/11 ØØ:37:36 *************/

/*********** @REFRESH BEGIN QDSN 2ØØ2/Ø9/11 Ø1:15:23 *************/

/* QDSN - Make sure there are only one set of quotes */

/*--*/

/* QDSN - The DSN */

/***/

qdsn: module = 'QDSN'

 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

 parse arg sparms

 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 call modtrace 'START' sigl

 parse arg qdsn

 qdsn = "'"strip(qdsn,"B","'")"'"

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 interpret 'trace' tracelvl

 return qdsn

/*********** @REFRESH END QDSN 2ØØ2/Ø9/11 Ø1:15:23 *************/

/*********** @REFRESH BEGIN UNIQDSN 2ØØ4/Ø9/Ø1 18:Ø3:Ø4 *************/

/* UNIQDSN - Create a unique dataset name */

/*---*/

/* PARM - N/A */

/***/

uniqdsn: module = 'UNIQDSN'

 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

 parse arg sparms

 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 call modtrace 'START' sigl

/***/

/* Compose a DSN using userid, exec name, job number, date, and time */

/***/

 jnum = jobinfo(1) || jobinfo(2)

 udate = 'D'space(translate(date('O'),'','/'),Ø)

 utime = 'T'left(space(translate(time('L'),'',':.'),Ø),7)

 uniqdsn = userid()'.'execname'.'jnum'.'udate'.'utime

 if sysdsn(qdsn(uniqdsn)) = 'OK' then

 do

/***/

/* Wait 1 seconds to ensure a unique dataset (necessary on z99Ø) */

/***/

 RC = syscalls('ON')

 43© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 address SYSCALL "SLEEP 1"

 RC = syscalls('OFF')

 uniqdsn = uniqdsn()

 end

/***/

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 interpret 'trace' tracelvl

 return uniqdsn

/*********** @REFRESH END UNIQDSN 2ØØ4/Ø9/Ø1 18:Ø3:Ø4 *************/

/*********** @REFRESH BEGIN TEMPMEM 2ØØ4/Ø9/Ø1 17:2Ø:19 *************/

/* TEMPMEM - EXECIO a stem into a TEMP PDS */

/*--*/

/* TEMPMEM - The member to create */

/***/

tempmem: module = 'TEMPMEM'

 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

 parse arg sparms

 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 call modtrace 'START' sigl

 arg tempmem

/***/

/* Create a unique DD name */

/***/

 if length(tempmem) < 7 then

 tempdd = '$'tempmem'$'

 else

 tempdd = '$'substr(tempmem,2,6)'$'

/***/

/* If TEMPDD exists, then FREE it */

/***/

 if listdsi(tempdd 'FILE') = Ø then "FREE F("tempdd")"

/***/

/* Generate the TEMPDSN */

/***/

 tempdsn = uniqdsn()'('tempmem')'

/***/

/* ALLOCATE the TEMP DD and member */

/***/

 call tsotrap "ALLOC F("tempdd") DA("qdsn(tempdsn)") NEW",

 "LRECL(8Ø) BLKS(Ø) DIR(1) SPACE(1) CATALOG",

 "UNIT("@sysda") RECFM(F B)"

/***/

/* Write the STEM to the TEMP DD */

/***/

 call tsotrap 'EXECIO * DISKW' tempdd '(STEM' tempmem'. FINIS'

/***/

/* DROP the stem variable */

/***/

 interpret 'drop' tempmem'.'

 44 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 interpret 'trace' tracelvl

 return tempdd

/*********** @REFRESH END TEMPMEM 2ØØ4/Ø9/Ø1 17:2Ø:19 *************/

/*********** @REFRESH BEGIN ISPWRAP 2ØØ2/Ø9/11 Ø1:11:43 *************/

/* ISPWRAP - Wrapper for ISPF commands */

/*---*/

/* VALIDRC - Optional valid RC from the ISPF command, defaults to Ø */

/* ISPPARM - Valid ISPF command */

/***/

ispwrap: module = 'ISPWRAP'

 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

 parse arg sparms

 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 call modtrace 'START' sigl

 parse arg ispparm

 zerrlm = 'NO ZERRLM'

/***/

/* If the optional valid_rc parm is present use it, if not assume Ø */

/***/

 parse var ispparm valid_rc isp_cmd

 if datatype(valid_rc,'W') = Ø then

 do

 valid_rc = Ø

 isp_cmd = ispparm

 end

 address ISPEXEC isp_cmd

 IRC = RC

/***/

/* If RC = Ø then return */

/***/

 if IRC <= valid_rc then

 do

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 interpret 'trace' tracelvl

 return IRC

 end

 else

 do

 perrmsg = errmsg(sigl 'ISPF Command:')

 call rcexit IRC perrmsg isp_cmd strip(zerrlm)

 end

/*********** @REFRESH END ISPWRAP 2ØØ2/Ø9/11 Ø1:11:43 *************/

/*********** @REFRESH BEGIN TSOTRAP 2ØØ2/12/15 Ø5:18:45 *************/

/* TSOTRAP - Capture the output from a TSO command in a stem */

/*---*/

/* VALIDRC - Optional valid RC, defaults to zero */

/* TSOPARM - Valid TSO command */

 45© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

/***/

tsotrap: module = 'TSOTRAP'

 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

 parse arg sparms

 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 call modtrace 'START' sigl

 parse arg tsoparm

/***/

/* If the optional valid_rc parm is present use it, if not assume Ø */

/***/

 parse var tsoparm valid_rc tso_cmd

 if datatype(valid_rc,'W') = Ø then

 do

 valid_rc = Ø

 tso_cmd = tsoparm

 end

 call outtrap 'tsoout.'

 tsoline = sigl

 address TSO tso_cmd

 CRC = RC

 call outtrap 'off'

/***/

/* If RC = Ø then return */

/***/

 if CRC <= valid_rc then

 do

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 interpret 'trace' tracelvl

 return CRC

 end

 else

 do

 trapmsg = center(' TSO Command Error Trap ',78,'-')

 terrmsg = errmsg(sigl 'TSO Command:')

/***/

/* If RC <> Ø then format output depending on environment */

/***/

 if tsoenv = 'BACK' | execenv = 'OMVS' then

 do

 say trapmsg

 do c=1 to tsoout.Ø

 say tsoout.c

 end

 say trapmsg

 call rcexit CRC terrmsg tso_cmd

 end

 else

/***/

/* If this is foreground and ISPF is available, use the ISPF LOG */

 46 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

/***/

 do

 if ispfenv = 'YES' then

 do

 zedlmsg = trapmsg

/***/

/* Does not call ISPWRAP to avoid obscuring error message modules */

/***/

 address ISPEXEC "LOG MSG(ISRZØØØ)"

 do c=1 to tsoout.Ø

 zedlmsg = tsoout.c

 address ISPEXEC "LOG MSG(ISRZØØØ)"

 end

 zedlmsg = trapmsg

 address ISPEXEC "LOG MSG(ISRZØØØ)"

 call rcexit CRC terrmsg tso_cmd,

 ' see the ISPF Log (Option 7.5) for details'

 end

 else

 do

 say trapmsg

 do c=1 to tsoout.Ø

 say tsoout.c

 end

 say trapmsg

 call rcexit CRC terrmsg tso_cmd

 end

 end

 end

/*********** @REFRESH END TSOTRAP 2ØØ2/12/15 Ø5:18:45 *************/

/*********** @REFRESH BEGIN SETBORD 2ØØ2/Ø9/11 Ø1:16:41 *************/

/* SETBORD - Set the ISPF Pop-up active frame border colour */

/*---*/

/* COLOR - Colour for the Active Frame Border */

/***/

setbord: module = 'SETBORD'

 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

 parse arg sparms

 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 call modtrace 'START' sigl

 arg color

/***/

/* Parse and validate colour */

/***/

 if color = '' then color = 'YELLOW'

/***/

/* Build a temporary panel */

/***/

 ispopt11.1=")BODY "

 ispopt11.2="%Command ===>_ZCMD + "

 47© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 ispopt11.3=")INIT "

 ispopt11.4="&ZCMD = ' ' "

 ispopt11.5="VGET (COLOR) SHARED "

 ispopt11.6="&ZCOLOR = &COLOR "

 ispopt11.7=".RESP = END "

 ispopt11.8=")END "

/***/

/* Allocate and load the Dynamic Panel */

/***/

 setdd = tempmem('ISPOPT11')

/***/

/* LIBDEF the DSN, VPUT @TFCOLOR, and run CUAATTR */

/***/

 call ispwrap "LIBDEF ISPPLIB LIBRARY ID("setdd") STACK"

 call ispwrap "VPUT (COLOR) SHARED"

 call ispwrap "SELECT PGM(ISPOPT) PARM(ISPOPT11)"

 call ispwrap "LIBDEF ISPPLIB"

 call tsotrap "FREE F("setdd") DELETE"

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 interpret 'trace' tracelvl

 return

/*********** @REFRESH END SETBORD 2ØØ2/Ø9/11 Ø1:16:41 *************/

/*********** @REFRESH BEGIN LOCK 2ØØ4/Ø9/Ø1 18:ØØ:Ø3 *************/

/* LOCK - Put up a popup under foreground ISPF during long waits */

/*---*/

/* LOCKMSG - Message for the pop-up screen */

/***/

lock: module = 'LOCK'

 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

 parse arg sparms

 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 call modtrace 'START' sigl

 parse arg lockmsg

 if lockmsg = '' then lockmsg = 'Please be patient'

 if tsoenv = 'FORE' then

 do

/***/

/* Use the length of the lockmsg to determine the pop-up size */

/***/

 if length(lockmsg) < 76 then

 locklen = length(lockmsg) + 2

 else

 locklen = 77

 if locklen <= 1Ø then locklen = 1Ø

/***/

/* Build a temporary panel */

/***/

 lock.1 = ")BODY EXPAND(//) WINDOW("locklen",1)"

 lock.2 = "%&LOCKMSG "

 48 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 lock.3 = ")END "

/***/

/* Lock the screen and put up a pop-up */

/***/

 call ispwrap "CONTROL DISPLAY LOCK"

 call popdyn 'LOCK' 8 execname 'Please be patient'

 lockpop = 'YES'

 end

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 interpret 'trace' tracelvl

 return

/*********** @REFRESH END LOCK 2ØØ4/Ø9/Ø1 18:ØØ:Ø3 *************/

/*********** @REFRESH BEGIN UNLOCK 2ØØ3/1Ø/18 Ø9:33:19 *************/

/* UNLOCK - Unlock from a pop-up under foreground ISPF */

/*---*/

/* PARM - N/A */

/***/

unlock: module = 'UNLOCK'

 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

 parse arg sparms

 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 call modtrace 'START' sigl

 if tsoenv = 'FORE' then

 do

 if lockpop = 'YES' then

 do

 call ispwrap "REMPOP"

 lockpop = 'NO'

 end

 if popup = 'YES' then

 do

 call setbord 'BLUE'

 call ispwrap "REMPOP"

 popup = 'NO'

 end

 end

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 interpret 'trace' tracelvl

 return

/*********** @REFRESH END UNLOCK 2ØØ3/1Ø/18 Ø9:33:19 *************/

/*********** @REFRESH BEGIN PANDSN 2ØØ4/Ø4/28 ØØ:46:Ø4 *************/

/* PANDSN - Create a unique PDS(MEM) name for a dynamic panel */

/*---*/

/* PANEL - Dynamic panel name */

/***/

pandsn: module = 'PANDSN'

 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

 parse arg sparms

 49© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 call modtrace 'START' sigl

 arg panel

 pandsn = uniqdsn()'('panel')'

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 interpret 'trace' tracelvl

 return pandsn

/*********** @REFRESH END PANDSN 2ØØ4/Ø4/28 ØØ:46:Ø4 *************/

/*********** @REFRESH BEGIN POPDYN 2ØØ2/Ø9/11 Ø1:15:11 *************/

/* POPDYN - Addpop a Dynamic Panel */

/*--*/

/* DYN - Dynamic panel name */

/* DYNROW - Default row for ADDPOP, defaults to 1 */

/* DYNMSG - ADDPOP Window title */

/***/

popdyn: module = 'POPDYN'

 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

 parse arg sparms

 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 call modtrace 'START' sigl

 parse arg dyn dynrow dynmsg

/***/

/* Set the default ADDPOP row location */

/***/

 if dynrow = '' then dynrow = 1

/***/

/* Set the default ADDPOP window title to the current exec name */

/***/

 if dynmsg = '' then dynmsg = execname

/***/

/* Check if the RETURN option is specified in the DYNMSG */

/***/

 dynreturn = 'NO'

 if word(dynmsg,1) = 'RETURN' then

 parse var dynmsg dynreturn dynmsg

/***/

/* Allocate and load the Dynamic Panel */

/***/

 dyndd = tempmem(dyn)

/***/

/* LIBDEF the POPDYN panel */

/***/

 call ispwrap "LIBDEF ISPPLIB LIBRARY ID("dyndd") STACK"

/***/

/* Change the Active Frame Colour */

/***/

 call setbord 'YELLOW'

/***/

/* set the POPUP variable if this is not a LOCK request */

 50 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

/***/

 if dyn = 'LOCK' & popup = 'NO' then

 popup = 'NO'

 else

 popup = 'YES'

/***/

/* Put up the pop-up */

/***/

 zwinttl = dynmsg

 call ispwrap "ADDPOP ROW("dynrow")"

 DRC = ispwrap(8 "DISPLAY PANEL("dyn")")

 call ispwrap "LIBDEF ISPPLIB"

 call tsotrap "FREE F("dyndd") DELETE"

/***/

/* Change the Active Frame Colour */

/***/

 call setbord 'BLUE'

/***/

/* Determine how to return */

/***/

 if dynreturn = 'NO' then

 call rcexit DRC 'terminated by user'

 if dynreturn = 'RETURN' & DRC = 8 then

 do

 call ispwrap "REMPOP"

 popup = 'NO'

 end

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 interpret 'trace' tracelvl

 return DRC

/*********** @REFRESH END POPDYN 2ØØ2/Ø9/11 Ø1:15:11 *************/

/*********** @REFRESH BEGIN SAYDD 2ØØ4/Ø3/29 23:48:37 *************/

/* SAYDD - Print messages to the requested DD */

/*---*/

/* MSGDD - DDNAME to write messages to */

/* MSGLINES - number of blank lines to put before and after */

/* MESSAGE - Text to write to the MSGDD */

/***/

saydd: module = 'SAYDD'

 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

 parse arg sparms

 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 call modtrace 'START' sigl

 parse arg msgdd msglines message

 if words(msgdd msglines message) < 3 then

 call rcexit 33 'Missing MSGDD or MSGLINES'

 if datatype(msglines) <> 'NUM' then

 call rcexit 34 'MSGLINES must be numeric'

/***/

 51© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

/* If this is not background then bypass */

/***/

 if tsoenv <> 'BACK' then

 do

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 interpret 'trace' tracelvl

 return

 end

/***/

/* Confirm the MSGDD exists */

/***/

 call ddcheck msgdd

/***/

/* If a number is provided, add that number of blank lines before */

/* the message */

/***/

 msgb = 1

 if msglines > Ø then

 do msgb=1 to msglines

 msgline.msgb = ' '

 end

/***/

/* If the linesize is too long break it into multiple lines and */

/* create continuation records */

/***/

 msgm = msgb

 if length(message) > 6Ø & substr(message,1,2) <> '@@' then

 do

 messst = lastpos(' ',message,6Ø)

 messseg = substr(message,1,messst)

 msgline.msgm = date() time() strip(messseg)

 message = strip(delstr(message,1,messst))

 do while length(message) > Ø

 msgm = msgm + 1

 if length(message) > 55 then

 messst = lastpos(' ',message,55)

 if messst > Ø then

 messseg = substr(message,1,messst)

 else

 messseg = substr(message,1,length(message))

 msgline.msgm = date() time() 'CONT:' strip(messseg)

 message = strip(delstr(message,1,length(messseg)))

 end

 end

 else

/***/

/* Build print lines. Default strips and prefixes date and timestamp */

/* @BLANK - Blank line, no date and timestamp */

/* @ - No stripping, retains leading blanks */

 52 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

/* @@ - No stripping, No date and timestamp */

/***/

 do

 select

 when message = '@BLANK@' then msgline.msgm = ' '

 when word(message,1) = '@' then

 do

 message = substr(message,2,length(message)-1)

 msgline.msgm = date() time() message

 end

 when substr(message,1,2) = '@@' then

 do

 message = substr(message,3,length(message)-2)

 msgline.msgm = message

 end

 otherwise msgline.msgm = date() time() strip(message)

 end

 end

/***/

/* If a number is provided, add that number of blank lines after */

/* the message */

/***/

 if msglines > Ø then

 do msgt=1 to msglines

 msge = msgt + msgm

 msgline.msge = ' '

 end

/***/

/* Write the contents of the MSGLINE stem to the MSGDD */

/***/

 call tsotrap "EXECIO * DISKW" msgdd "(STEM MSGLINE. FINIS"

 drop msgline. msgb msgt msge

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 interpret 'trace' tracelvl

 return

/*********** @REFRESH END SAYDD 2ØØ4/Ø3/29 23:48:37 *************/

/*********** @REFRESH BEGIN JOBINFO 2ØØ4/11/23 22:11:25 *************/

/* JOBINFO - Get job-related data from control blocks */

/*---*/

/* ITEM - Optional item number desired, default is all */

/***/

jobinfo: module = 'JOBINFO'

 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

 parse arg sparms

 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 call modtrace 'START' sigl

 arg item

/***/

/* Chase control blocks */

 53© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

/***/

 tcb = ptr(54Ø)

 ascb = ptr(548)

 tiot = ptr(tcb+12)

 jscb = ptr(tcb+18Ø)

 ssib = ptr(jscb+316)

 asid = c2d(stg(ascb+36,2))

 jobtype = stg(ssib+12,3)

 jobnum = strip(stg(ssib+15,5),'L',Ø)

 stepname = stg(tiot+8,8)

 procstep = stg(tiot+16,8)

 progname = stg(jscb+36Ø,8)

 jobdata = jobtype jobnum stepname procstep progname asid

/***/

/* Return job data */

/***/

 if item <> '' & (datatype(item,'W') = 1) then

 do

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 interpret 'trace' tracelvl

 return word(jobdata,item)

 end

 else

 do

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 interpret 'trace' tracelvl

 return jobdata

 end

/*********** @REFRESH END JOBINFO 2ØØ4/11/23 22:11:25 *************/

/*********** @REFRESH BEGIN PTR 2ØØ2/Ø7/13 15:45:36 *************/

/* PTR - Pointer to a storage location */

/*---*/

/* ARG(1) - Storage Address */

/***/

ptr: return c2d(storage(d2x(arg(1)),4))

/*********** @REFRESH END PTR 2ØØ2/Ø7/13 15:45:36 *************/

/*********** @REFRESH BEGIN STG 2ØØ2/Ø7/13 15:49:12 *************/

/* STG - Return the data from a storage location */

/*---*/

/* ARG(1) - Location */

/* ARG(2) - Length */

/***/

stg: return storage(d2x(arg(1)),arg(2))

/*********** @REFRESH END STG 2ØØ2/Ø7/13 15:49:12 *************/

/*********** @REFRESH BEGIN STACK 2ØØ4/Ø5/18 Ø9:25:Ø9 *************/

/* STACK - UNLOAD, RELOAD or LIST the Stack */

/*---*/

/* OPTION - UNLOAD, RELOAD or LIST */

 54 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

/***/

stack: arg stackopt

/***/

/* Unload the parentage stack to avoid display problems */

/***/

 if stackopt = 'UNLOAD' | stackopt = 'LIST' then

 do deq=1 to queued()

 pull stackinfo

 tempq.deq = stackinfo

 end

/***/

/* List the stack */

/***/

 if stackopt = 'LIST' then

 do req=deq-1 to 1 by -1

 say tempq.req

 end

/***/

/* Reload the parentage stack */

/***/

 if stackopt = 'RELOAD' | stackopt = 'LIST' then

 do req=deq-1 to 1 by -1

 push tempq.req

 end

 return

/*********** @REFRESH END STACK 2ØØ4/Ø5/18 Ø9:25:Ø9 *************/

/*********** @REFRESH BEGIN BRWSDD 2ØØ2/Ø9/11 Ø1:Ø5:Ø8 *************/

/* BRWSDD - Invoke ISPF Browse on any DD */

/*---*/

/* BRWSDD - Any DD to browse */

/***/

brwsdd: module = 'BRWSDD'

 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

 parse arg sparms

 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 call modtrace 'START' sigl

 arg brwsdd

 if brwsdd = '' then call rcexit 9Ø 'Browse DD missing'

 call ispwrap "LMINIT DATAID(DATAID) DDNAME("brwsdd")"

/***/

/* Browse the VIO dataset */

/***/

 call ispwrap "BROWSE DATAID("dataid")"

/***/

/* FREE and DELETE the VIO dataset */

/***/

 call ispwrap "LMFREE DATAID("dataid")"

 call tsotrap "FREE F("brwsdd")"

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 55© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 interpret 'trace' tracelvl

 return

/*********** @REFRESH END BRWSDD 2ØØ2/Ø9/11 Ø1:Ø5:Ø8 *************/

/*********** @REFRESH BEGIN LOGGER 2ØØ4/Ø9/27 14:ØØ:29 *************/

/* LOGGER - Append messages to a dynamic log */

/*---*/

/* LOGTEXT - The text to append to the log */

/***/

logger: module = 'LOGGER'

 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

 parse arg sparms

 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 call modtrace 'START' sigl

/***/

/* Log the supplied text */

/***/

 parse arg logtext

 jobname = left(mvsvar('SYMDEF','JOBNAME'),8)

 logpfx = date('S') time() lpar jobname left(userid(),7)

 logger.1 = logpfx logtext

 logfile = userid()'.'execname'.LOG'

 call tsotrap "ALLOC F(LOGGER) DA('"logfile"') MOD REUSE",

 "LRECL(2ØØ)"

 call tsotrap "EXECIO * DISKW LOGGER (STEM LOGGER. FINIS"

 call tsotrap "FREE F(LOGGER)"

/***/

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 interpret 'trace' tracelvl

 return

/*********** @REFRESH END LOGGER 2ØØ4/Ø9/27 14:ØØ:29 *************/

/*********** @REFRESH BEGIN CRYPT 2ØØ4/Ø9/29 16:44:54 *************/

/* CRYPT - Encryption/Decryption routine */

/*---*/

/* STRING - String to encrypt or decrypt */

/***/

crypt: procedure expose probe sigl modtrace

 module = 'CRYPT'

 if wordpos(module,probe) <> Ø then trace 'r'; else trace 'n'

 parse arg sparms

 push trace() time('L') module 'From:' sigl 'Parms:' sparms

 call modtrace 'START' sigl

/***/

/* Encryption/decryption */

/***/

 parse arg string

 chars = xrange('ØØ'x,'FF'x)

 do s=length(string) to 1 by -1

 univ = ''

 do c=1 to length(chars)

 56 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 if datatype(substr(chars,c,1),'S') = 1 then

 univ = univ||substr(chars,c,1)

 end

 b = random(1,length(univ),s)

 univ = substr(univ,b,length(univ)-b+1)||substr(univ,1,b-1)

 new = translate(substr(string,s,1),reverse(univ),univ)

 string = overlay(new,string,s)

 end

/***/

 pull tracelvl . module . sigl . sparms

 call modtrace 'STOP' sigl

 interpret 'trace' tracelvl

 return string

/*********** @REFRESH END CRYPT 2ØØ4/Ø9/29 16:44:54 *************/

/*********** @REFRESH BEGIN MODTRACE 2ØØ3/12/31 21:56:54 *************/

/* MODTRACE - Module Trace */

/*---*/

/* TRACETYP - Type of trace entry */

/* SIGLINE - The line number called from */

/***/

modtrace: if modtrace = 'NO' then return

 arg tracetyp sigline

 tracetyp = left(tracetyp,5)

 sigline = left(sigline,5)

/***/

/* Adjust MODSPACE for START */

/***/

 if tracetyp = 'START' then

 modspace = substr(modspace,1,length(modspace)+1)

/***/

/* Set the trace entry */

/***/

 traceline = modspace time('L') tracetyp module sigline sparms

/***/

/* Adjust MODSPACE for STOP */

/***/

 if tracetyp = 'STOP' then

 modspace = substr(modspace,1,length(modspace)-1)

/***/

/* Determine where to write the traceline */

/***/

 if ispfenv = 'YES' & tsoenv = 'FORE' then

/***/

/* Write to the ISPF Log, do not use ISPWRAP here */

/***/

 do

 zedlmsg = traceline

 address ISPEXEC "LOG MSG(ISRZØØØ)"

 end

 else

 57© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 say traceline

/***/

/* SAY to SYSTSPRT */

/***/

 return

/*********** @REFRESH END MODTRACE 2ØØ3/12/31 21:56:54 *************/

Robert Zenuk
Systems Programmer (USA) © Xephon 2005

RTM with TN3270(E) servers

Ever since the advent of 3270 terminals in the early 1970s, the
response times experienced by end users accessing real-
time interactive applications represented the unmistakable
health of mainframe-based networks. In the early days of
mainframe networking, when BSC held sway and network
management was, at best, embryonic, response times became
the pulse of a network. In the absence of other incisive
monitoring tools, response times were an infallible indicator of
overall network health. Changes in response times, especially
sudden degradations, were invariably a portent that something
was awry. As interactive, transaction-processing, mission-
critical applications gained popularity, employee productivity
and even the sacrosanct corporate bottom line became
inextricably linked with response times. By the 1980s, poor
response times, which sapped productivity and impacted
transaction volumes, were being explicitly cited as a lost
opportunity cost element vis-à-vis mission-critical operations.

Unbeknown to most, in the mid-1970s, a time when terminal
usage was still a relative novelty, IBM did some seminal
research into the end-user psychology of response times. A
key finding, which was constantly drummed into those of us
working on 3270 projects, was the importance of consistency.
End users, especially the so-called ‘heads-down’ users, fall
into a work rhythm dictated by the response times that they are

 58 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

experiencing. While they would subconsciously (which today
would be referred to as autonomically) compensate for minor
variations, any major changes (eg of 1 second more) would
result in alterations to work patterns and even habits. The
research found that response times became a kind of
metronome for office users. Obviously the issue here, yet
again, was that of maximizing productivity.

The optional IBM 3174 Response Time Monitor (RTM) feature
that was made available around 1984 (along with extensions
to the SNA Management Services request/response repertoire
to support this feature) was a breakthrough, not just for
accurate response time measurement but also for overall
mainframe network management. Now for the first time it was
possible to measure actual end user response times –
accurately, unambiguously, and, above all, consistently. The
3174 RTM measured actual, round-trip response times –
albeit collectively (as opposed to individually) for all the ‘dumb’
terminals attached to a given 3174. But at a time (just prior to
LANs) when terminals were coax-attached and PCs were
nascent, this was acceptable and adequate.

TN3270(E) RTM IS NOT THE SAME AS 3174 RTM

Though the term ‘RTM’ is still widely bandied about today in
the context of TCP/SNA networks (or even predominantly IP
networks), it is important to always remember that today’s
RTM measurements are not the same as what was measured
by 3174s. In general this is not an issue, especially when one
realizes that what one is always looking for in terms of
response times is fluctuations. Thus, as long as you have a
base-line and you measure fluctuations relative to that, it
doesn’t in the end really matter whether today’s RTM cannot
even come close to emulating the true end-to-end
measurements recorded by the 3174. Today’s network
topologies, TN server-based mainframe access, and the
ubiquitous use of multitasking PCs make it extremely difficult,
if not actually impossible, to come even close to mimicking the
3174 RTM methodology.

 59© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

With coax-attached, ‘dumb’ (ie no real processing done at the
‘head’), 3270 terminals, where all the keystroke handling and
datastream decoding was done at the 3x74 control unit,
accurately keeping track of exact round-trip response times
was easy. For each 3270 transaction, the 3174 RTM, in
essence, measured the time between when the keyboard was
locked (on the entry of an AID-generating key, eg Enter) and
when the keyboard was unlocked by a Write Control Word
(WCC) in the incoming 3270 datastream. This, from the
perspective of a 3270 end user, really was the measure of
what they perceived as their response time – and also
corresponded to the appearance and disappearance of the
little ‘transaction being processed’ clock icon on the 3270
status bar.

Tn3270(E) RTM does not measure its response times using
this approach. The mechanics of the tn3270(E) RTM feature
are actually spelled out as a part of the overall tn3270(E)
standard – with the relevant standard being RFC 2562. RFC
2562 was put forward by IBM in April 1999, entitled Definitions
of Protocol and Managed Objects for TN3270E Response
Time Collection Using SMIv2 (TN3270E-RT-MIB). Given that
it is from IBM, to its credit, it actually starts off by quite
emphatically spelling out the differences in response time
collection methodology. Unfortunately, with the exception of
the actual developers, most others that deal with tn3270(E)
RTM have rarely had the time to look at what IBM clearly points
out within this RFC.

THE TWO APPROACHES IN RFC 2562

The two approaches for measuring response times in a TCP/
SNA network, per the RFC, are:

1 The SNA MS-based RTM method as implemented on the
3174.

2 Timestamping using definite response flows.

Tn3270(E) servers that comply to RFC 2562, with IBM’s

 60 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

mainframe-resident Communication Server implementation
being key among these, will always use the latter approach;
ie the definite response timestamping at the tn3270(E) server.
The first thing to note here is that this timestamping, the basis
for tn RTM calculations, is performed at the interface between
the IP segment of the network and the start of what is the SNA
component of the network. Given that there are now two very
distinct networks involved – the TCP/IP network and the SNA
network – this timestamping scheme does enable one to
cleanly split out IP network transit times versus transit times
within the SNA network.

Figure 1 (where DR stands for definite response requested)
shows how and when the timestamps are taken by the
tn3270(E) server, with each timestamp identified by the letters
D, E, and F.

At this juncture it is imperative to clarify, particularly to those
who grew up with SNA, what ‘request’, ‘reply’, and ‘response’
mean in the RFC 2562 context – and hence in Figure 1 as well

SNA
application

tn3270(E)
client

Timestamps

tn3270(E) server

SNA network IP network

Initial SNA request
– with DR

+/- reply to initial
SNA request

Client response
application reply

Total response time = Timestamp F-Timestamp D

IP network transit time = Timestamp F-Timestamp E

D

E

F

Figure 1: Timestamps

 61© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

as with actual tn3270 RTM implementations. The message
unit (or segment) generated when a tn user hits PF8 during a
TSO session, to scroll down the screen, corresponds to the
initial SNA request. TSO’s ‘answer’ to this request is what is
considered to be the ‘reply’ to the initial SNA request. The final
‘response’ is the tn client’s positive or negative response to
TSO’s reply. Obviously this is different from a straight SNA
approach and moreover requires that the tn clients conform to
the RFC 2355 Telnet 3270 Enhancements standard so it is
able to successfully negotiate the RESPONSES (or timing-
mark) functions.

Though not the same as 3174 RTM, the tn3270(E) RTM is now
the only real standards-based option available to us. Once we
know what it measures, in terms of those timestamps, we can
correlate that to the overall ‘SNA’ data flows between the
desktop client and the mainframe SNA applications. This
enables us to establish the all important base-line and
furthermore split out the SNA transit times from those imposed
by the IP network. After that, what we really are trying to
monitor is variations from this baseline.

BOTTOM LINE

In the case of today’s TCP/SNA networks, not having an
incisive mainframe IP monitor means that you are flying blind
most of the time when it comes to overall system visibility and
awareness. Within that context, having a mainframe IP monitor
that supports RTM and complies with RFC 2562 is akin to
having radar. 3270 RTM, as has always been the case,
invariably permits you to see potential problems ‘beyond the
horizon’ and take evasive action before they cause service
disruption. With ‘zero-downtime’ operation and stringent
Service Level Agreements (SLAs) being the norm with most
TCP/SNA networks, tn3270(E) RTM is an invaluable
management tool. The fact that it uses a different methodology
from that pioneered by the 3174 does not, however, mean that
it is less valuable or less effective. As IBM discovered nearly

 62 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

30 years ago, the key thing that end users expect with 3270
response times is consistency. The RFC 2562 scheme, once
we work out what it does, definitely allows us to monitor
response time consistency and detect fluctuations. Tn3270(E)
RTM should thus be a vital tool in your TCP/SNA network
management toolkit.

Anura Gurugé
Strategic Consultant (USA) © Xephon 2005

TCP/SNA news

William Data Systems has announced Version
4.1 of EXIGENCE, its network problem
determination tool for z/OS.

The product eliminates the complexity and
overhead of defining, capturing, and analysing
IP and SNA traces. Traces captured by
EXIGENCE are formatted before being
presented to users and any exception conditions
are highlighted. EXIGENCE also presents an
explanation of any error, its most likely cause,
and a suggested solution.

Enhancements include: group trace (providing
simplified tracing across the sysplex); a Java-
based client; and full support for TCP/IP
Version 6.

For further information contact:
URL: www.willdata.com/v2/company/news-
050311.htm.

* * *

NetManage has announced Version 7.2 of
OnWeb, which transforms host processes,
business logic, and data into reusable
components, such as Web services, .NET
Assemblies, JavaBeans, Enterprise JavaBeans
(EJBs), and portlets, which can be integrated
with other enterprise applications or be used as
components in a new application. OnWeb
applications can be presented in a wide range of
formats and accessible from Web browsers,
PDAs, and other mobile devices.

New features include: improved SSL and SSH
support, improved integration capabilities to
ERP and CRM systems, databases,
middleware and Microsoft BizTalk 2004; and
enhanced monitoring and reporting capabilities.
The product now runs on AIX and Linux (on
Intel) systems.

For further information contact:
URL: www.netmanage.com/products/onweb/
index.asp.

* * *

William Data Systems has also announced
Version 3.3 of IMPLEX, its real-time IP
network monitor for z/OS.

This version provides a new, browser-based,
client interface that removes the need for
customers to install additional software on their
desktop. Being a two-tier client means that a
separate Web server is not required.

The product also has the advantage of not
impacting on bandwidth because the XML data
is no greater than the equivalent 3270
datastream, and has no processor overhead
because all graphical formatting is performed in
the browser.

For further information contact:
URL: www.willdata.com/v2/company/news-
150405.htm.

* * *

Tsarfin Computing has announced Version 5.4
of IPMonitor, its network monitoring software.

The product allows network administrators to
monitor any networked device on the Internet,
corporate intranet, or TCP/IP LAN and receive
alerts immediately via audible alarm, message,
e-mail, or third-party software when a
connection fails.

For further information contact:
URL: ipmonitor.tsarfin.com/.

* * *

x xephon

	Object creation options for composite applications
	Case study in TCP application performance using SSL
	IP tour
	Using REXEC
	RTM with TN3270(E) servers
	TCP/SNA news

