
© Xephon Inc 2005

December 2005

60

In this issue

3 Sending e-mail with XMITIP
11 A multi-tasking TCP/IP socket

listener for OS/390 or z/OS
36 VTAM tuning statistics
71 Remote batch command

upgrade
80 March 2003–December 2005

index
81 TCP/SNA news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

TCP/SNA Update
Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Colin Smith
E-mail: info@xephon.com

Subscriptions and back-issues
A year’s subscription to TCP/SNA Update,
comprising four quarterly issues, costs $190.00
in the USA and Canada; £130.00 in the UK;
£136.00 in Europe; £142.00 in Australasia and
Japan; and £140.50 elsewhere. In all cases the
price includes postage. Individual issues,
starting with the March 2001 issue, are available
separately to subscribers for $49.50 (£33.00)
each including postage.

TCP/SNA Update on-line
Code from TCP/SNA Update, and complete
issues in Acrobat PDF format, can be
downloaded from http://www.xephon.com/
tcpsna; you will need to supply a word from the
printed issue.

© Xephon Inc 2005. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.

Printed in England.

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the material
it contains. Neither Xephon nor the contributing
organizations or individuals accept any liability
of any kind howsoever arising out of the use of
such material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information, code,
JCL, EXECs, and other contents of this journal
before using it.

Contributions
When Xephon is given copyright, articles
published in TCP/SNA Update are paid for at
the rate of $160 (£100 outside North America)
per 1000 words and $80 (£50) per 100 lines of
code for the first 200 lines of original material.
The remaining code is paid for at the rate of $32
(£20) per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

 3© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Sending e-mail with XMITIP

XMITIP is a mainframe mail application that is capable of
sending electronic mail to any Internet address and can also
send mainframe files in one of several different file attachment
formats. The Simple Mail Transport Protocol (SMTP) is used
for sending the mail with datasets attached using the
appropriate SMTP statements.

XMITIP is like TSO TRANSMIT using the Internet Protocol.

XMITIP can be executed as a step within a batch job, under
TSO as a command, or under ISPF using an ISPF interface.
It can also be used within an automated operations tool to
generate messages related to system events.

XMITIP can be used as a step within a batch job to send a
report generated by a job via e-mail rather than printing the
report. With this approach, the report will arrive in the intended
user’s electronic mail inbox within a few minutes of the job
completing.

Some of the features of XMITIP are:

• Send electronic mail to one or more addresses.

• Send a quick message as a page.

• Send one or more datasets as file attachments in one of
the following formats: plain text, HTML, Rich Text Format
(RTF), Portable Document Format (PDF), Comma
Separated Value (CSV), TSO Transmit (XMIT), and binary.

• Supports address lists.

• Supports CC and BCC.

• Supports priority, sensitivity, and importance.

The ISPF interface provides:

• Field-level help for all entry fields.

 4 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• Validation of all entered fields.

• Address table for look-up and selection.

• Dataset table for multiple dataset selection and formatting.

• Reports showing the complete XMITIP command syntax.

• An option to create a file with a complete batch job, which
can be submitted, browsed, edited, or copied.

XMITIP is written almost completely in z/OS REXX, with one
z/OS Assembler program that performs the MIME
(Multipurpose Internet Mail Encoding) used for PDF and
binary attachments. The ISPF interface is also written in z/OS
REXX using the z/OS ISPF APIs.

INSTALLATION

XMITIP is a tool that can be downloaded from the Web site
http://www.lbdsoftware.com/tcpip.html.

There is a zip file that must be expanded into a PC folder. To
install the product read the XMITIP Installation Guide in Adobe
Acrobat (PDF) or Microsoft Word (DOC) format.

This document will tell you how to upload to the mainframe the
xmitip.xmit file and how to convert it into the installation
partitioned dataset. It will also tell you how to customize the
package.

USAGE

The XMITIP parameters are detailed in the XMITIP manual.

XMITIP can be used in two ways:

• Batch mode

• Interactive mode (ISPF).

Batch mode

These examples show XMITIP batch mode utilization. Some

 5© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

things to be aware of are:

• The dataset referenced by the //SYSEXEC statement is
the location where the XMITIP application has been
installed.

• When the command exceeds one statement it must be
continued with either a + or a – on the statement
immediately before the continuation statement.

• The case of the command is not relevant. It can be all
upper case, all lower case, or mixed case. Note that the
subject is the only information in which you may be
concerned about case.

• Not all examples include a FROM keyword; however, it is
always good practice to include this keyword with your
primary e-mail address coded.

• Using ‘–’ for continuation will yield extra spacing which
may not be desirable in a long subject while using ‘+’ for
continuation will suppress the extra spacing.

Send a PDS member with no message

This example will send a member of a partitioned dataset with
no message text and a short subject to two users:

//JOB EXEC PGM=IKJEFT1B
//SYSEXEC DD DISP=SHR,DSN=user.lib.exec
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
%XMITIP (user1@domain.com user2@domain.com) nomsg file –
 'user.data.set(member)' –
 from myaddress@domain.com –
 subject 'send a file but no message'

Send a message to one address
//JOB EXEC PGM=IKJEFT1B
//SYSEXEC DD DISP=SHR,DSN=user.lib.exec
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *

 6 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

%XMITIP destaddr@domain.com msgds my.message.text –
 from myaddress@domain.com -
 subject 'test message'

Send a message with CC and FROM specified

This is an example of sending an e-mail with two CCs with a
FROM word specified:

//JOB EXEC PGM=IKJEFT1B
//SYSEXEC DD DISP=SHR,DSN=user.lib.exec
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
%XMITIP destaddr@domain.com msgds my.message.text subject –
 'Test message' –
 cc (user2@domain.com user3@domain.com) –
 from myaddress@domain.com
/*

Send a dataset in landscape with an 8-point font
//JOB EXEC PGM=IKJEFT1B
//SYSEXEC DD DISP=SHR,DSN=user.lib.exec
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//REPORT DD DISP=(OLD,DELETE),DSN=&&RPT
//SYSTSIN DD *
%XMITIP destaddr@domain.com nomsg filedd report subject –
 'passed report' –
 from myaddress@domain.com -
 format rtf/land/8
/*

Send a dataset to a list using blind copies
//STEP1 EXEC PGM=program
//SYSPRINT DD SYSOUT=*
//INPUT DD DISP=SHR,DSN=userid.input.dataset
//OUTPUT DD DISP=(,PASS),UNIT=SYSDA,DSN=&&RPT
//*
//STEP2 EXEC PGM=IKJEFT1B
//SYSEXEC DD DISP=SHR,DSN=user.lib.exec
//SYSPRINT DD SYSOUT=*
//ADDRLIST DD DSN=user.address.list
//SYSTSPRT DD SYSOUT=*
//REPORT DD DISP=(OLD,DELETE),DSN=&&RPT
//SYSTSIN DD *
%XMITIP * bcc user@domain.com nomsg filedd report -

 7© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

subject 'report distribution' –
from myaddr@domain.com addressfiledd addrlist
/*

This job is composed of two steps. The first one writes the
report in the DDname OUTPUT, and the second one sends the
file to the DDname ADDRLIST(filename user.address.list).
This file contains a list of destination addresses.

Send a dataset using an addressfile dataset
//JOB EXEC PGM=IKJEFT1B
//SYSEXEC DD DISP=SHR,DSN=user.lib.exec
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
%XMITIP * nomsg file ‘user.data.set(member)’ –
 subject ‘pds member’ –
 from myaddress@domain.com -
 Addressfile 'user.data.set(address)'
/*

where user.data.set(address) contains the following rows:

To user1@domain.com
CC user2@domain.org
Cc user3@domain.ca
Bcc user4@domain.uk

Using MSGQ

This example demonstrates a REXX EXEC that calls XMITIP
with the MSGQ option:

/* rexx */
queue “this is a row #1”
queue “this is a row #2”
queue “this is a row #3”
“%xmitip destaddr@domain.com subject ‘test of msgq’” ,
“msgq from myaddr@domain.com”

Send a dataset in RTF format using ZIP to save space
//JOB EXEC PGM=IKJEFT1B
//SYSEXEC DD DISP=SHR,DSN=user.lib.exec
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *

 8 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

%xmitip destaddr@domain.com nomsg file ‘user.weekly.report’ –
from myaddr@domain.com –
subject ‘weekly report’ format ziprtf/weekly.rtf/port/9/let
/*

Sample using MSGT
//JOB EXEC PGM=IKJEFT1B
//SYSEXEC DD DISP=SHR,DSN=user.lib.exec
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
xmitip myaddr@domain.com -
subject ‘Test message text and symbolics’ -
from myaddr@domain.com -
msgt ‘This is a test +
of the message text keyword +
\and testing the symbolics +
\date = &date and date-2 = &date-2 +
\sdate = &sdate and sdate-2 = &sdate-2 +
\udate = &udate and udate-2 = &udate-2 +
\day = &day and day-2 = &day-2 +
\sysid = &sysid \userid = &userid ‘
/*

Notice how the continuation lines are coded. The continuation
character is the – symbol or the + symbol. The quotes around
the message text are found only before the first character of
the text and after the last character – not around each line of
text. The \ starts a new line. Leading blanks will be included,
for example, after the ‘This is a test’ and before‘of the message
text’. To avoid the extra blanks, do not indent the message
text.

Sending a message to a pager if a job abnormally ends
....................
....................
//TEST1 IF (RC > 4 | ABEND = TRUE) THEN
//MAIL EXEC PGM=IKJEFT1B
//SYSEXEC DD DISP=SHR,DSN=user.lib.exec
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
xmitip 2227772424@message.paging.com +
page “job &job(&jobnum) has ended abnormally +
on &date at &time”

 9© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

/*
// ENDIF

In this example, if the highest return code (RC) for the previous
steps is greater than 4 or the job abends, the message will be
generated using the PAGE option and an e-mail address of a
text pager.

INTERACTIVE MODE

All the documentation of this article refers to XMITIP 4.22.

To start the program type XMITIP from TSO option 6, or TSO
XMITIP from any command line ISPF panel and the screen in
Figure 1 will be shown.

To get field information move the cursor to the right of the
arrow (===>) and press F1. For instance, the information
about the Subject field is shown in Figure 2.

The XMITIP ISPF interface is a quick way to send an SMTP

Figure 1: XMITIP start screen

 10 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

message. For instance, to send a simple message you need
to fill four fields:

• Recipient address, which is the mail address to send the
e-mail to.

• Subject, which is the subject field.

• From Address, which is my e-mail address.

• Message DSN.

There are two ways to fill the Message DSN field:

• Fill the name of the dataset where, before starting XMITIP,
we wrote the message text.

• Put * in the field. Write the message in the black screen.

Press ENTER and the F3 key. The message will be sent
automatically.

Magni Mauro
Systems Engineer (Italy) © Xephon 2005

Figure 2: Subject information

 11© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

A multi-tasking TCP/IP socket listener for OS/390 or
z/OS

TCP/IP socket listener programs are key server entities in
many of today’s client/server applications. On server systems
where request volume is high, being able to service multiple
requests simultaneously will generally provide better overall
throughput and increased client satisfaction. It’s in this type of
scenario that a multi-tasking server can be extremely beneficial.

Single-threaded listeners can be effective when server requests
are well spaced and no individual request is long running. If
there are times when server requests spike or if requests
processed by the server can be long running, using a multi-
tasking server is a far better option. However, a multi-tasking
server does not come without issues of its own. To effectively
use a multi-tasking server, the multi-tasking environment
must be managed by a main driver program and givesocket()/
takesocket() function calls must be introduced into the
environment. A single-threaded listener can operate with a
base set of TCP/IP-related functions that include: socket(),
bind(), listen(), and accept(). A multi-tasking listener should
replace accept() with a timed select(), and will also need to
use givesocket() and takesocket() to transfer ownership of an
active socket between the main driver task and the processing
subtask.

Presumably, the merits of a multi-tasking listener are
understood so this article will focus on an example. This article
presents a C/C++ multi-tasking listener for OS/390 or z/OS.
There are idiosyncrasies in using C/C++ in a multi-tasking
environment – primarily, which multi-tasking technique offers
the best option. The C Multi-Tasking Facility (MTF) can be
used, but it has some restrictions:

• A fixed maximum number of subtasks is set when the
multi-tasking environment is initialized.

 12 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• The subtasks are all permanently active.

• An abend in any one of the active subtasks renders the
entire MTF environment unusable.

Another option is the pthread_ suite of C/C++ functions,
although I make this claim cautiously because I have never
been able to get socket functions working properly in this
environment (this does not mean it doesn’t work, but only that
I have not been able to get it to work).

A third option is to use native MVS ATTACH/DETACH
capabilities. This can be done by creating C/C++ callable
functions, written in Assembler, that can perform the creation
and removal of subtasks as required. It is this latter option that
will be used in the program example in this article.

HOW THINGS WORK

For the purpose of discussion, the process we are examining
and the main driver program of the example will be referred to
as MTGSL (Multi-Tasking Generic Socket Listener). The
MTGSL is a collection of four programs:

1 MTGSL – a C/C++ program that acts as the main driver
program for the multi-tasking listener.

2 MTTSKCC – a C/C++ program that acts as the subtask
functional component. This is where the logic for the
listener functionality resides and where you would most
likely make code changes if you wanted to tailor this
listener to your specific requirements.

3 ATTACH – an Assembler program designed to be called
as a C/C++ function. It ATTACHes the specified program
as a subtask and formats the optional program parameters
to be usable by a C/C++ main() subtask program. In this
specific case, the optional program parameters are the
address of a subtask information structure created in the
main driver program.

 13© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

4 DETACH – an Assembler program designed to be called
as a C/C++ function. It is used to DETACH subtasks
created by the ATTACH() function.

The MTGSL main program establishes the active listener
environment. The listener port to be used is passed to the
main program as a parameter at program start-up. The main
program opens a socket connection (using the socket() function
call), acquires a name for the socket (with a bind() function
call), and establishes its intent to be a server (using the listen()
function call). When the listener is notified of an incoming
request (an active select() function), the main program must:

• Acquire a block of storage to be used to track the status
of the corresponding subtask (the SUBTASK_INFO
structure).

• Prepare to transfer socket ownership with a givesocket()
function call.

• ATTACH the subtask processing program (MTTSKCC).

The main program also ‘wakes up’ periodically if no new work
is identified. When this happens, the information regarding
outstanding subtasks is examined to determine whether socket
ownership has been transferred (in which case the main
program’s associated socket is closed) and to see whether
any of the subtasks have completed. If a subtask has
completed, the associated information storage block is
released. For this specific example, a check is also made to
see whether the corresponding subtask acknowledged a
request for listener termination and, if so, the listener is
terminated (upon completion of any and all existing subtasks).

PROGRAM COMPILATION AND LINKAGE

The ATTACH and DETACH programs should be assembled
with a standard assembly job that includes SYS1.MACLIB
and SYS1.MODGEN in the SYSLIB dataset concatenation.
The resulting object modules should be directed to an object

 14 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

code PDS that is the same one that will be used for the C/C++
programs’ compile and prelink. Before compiling the MTGSL
and MTTSKCC programs, be sure to convert all occurrences
of ‘[’ to X'AD' and all occurrences of ‘]’ to X'BD'. The following
compile job can be used:

//STEP1 EXEC EDCC,CPARM='LIST',
// CPARM2='RENT,NOSEARCH,NOMAR,NOSEQ,NOOPT',
// CPARM3='LANGLVL(EXTENDED),SOURCE,LONGNAME,SSCOMM',
// INFILE=c.source.code.pds(MTGSL),
// OUTFILE='object.code.pds(MTGSL),DISP=SHR',
// SYSLBLK=8ØØØ
//COMPILE.SYSLIB DD DSN=TCPIP.SEZACMAC,DISP=SHR
// DD DSN=CEE.SCEEH.H,DISP=SHR
// DD DSN=CEE.SCEEH.SYS.H,DISP=SHR)
//STEP2 EXEC EDCC,CPARM='LIST',
// CPARM2='RENT,NOSEARCH,NOMAR,NOSEQ,NOOPT',
// CPARM3='LANGLVL(EXTENDED),SOURCE,LONGNAME,SSCOMM',
// INFILE=c.source.code.pds(MTTSKCC),
// OUTFILE='object.code.pds(MTTSKCC),DISP=SHR',
// SYSLBLK=8ØØØ
//COMPILE.SYSLIB DD DSN=TCPIP.SEZACMAC,DISP=SHR
// DD DSN=CEE.SCEEH.H,DISP=SHR
// DD DSN=CEE.SCEEH.SYS.H,DISP=SHR

Note, the above JCL assumes a pre-existing object code PDS
with a blocksize of 8000. The resulting object modules should
be prelinked using a job similar to the following:

//PLKED1 EXEC PGM=EDCPRLK,PARM='UPCASE,OMVS',REGION=2Ø48K
//SYSMSGS DD DSNAME=CEE.SCEEMSGP(EDCPMSGE),DISP=SHR
//SYSLIB DD DSN=TCPIP.SEZARNT1,DISP=SHR
//SYSOBJ DD DSN=object.code.pds,DISP=SHR
//SYSMOD DD DSN=object.code.pds(MTGSLO),DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 INCLUDE SYSOBJ(MTGSL)
//PLKED2 EXEC PGM=EDCPRLK,PARM='UPCASE,OMVS',REGION=2Ø48K
//SYSMSGS DD DSNAME=CEE.SCEEMSGP(EDCPMSGE),DISP=SHR
//SYSLIB DD DSN=TCPIP.SEZARNT1,DISP=SHR
//SYSOBJ DD DSN=object.code.pds,DISP=SHR
//SYSMOD DD DSN=object.code.pds(MTTSKCCO),DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 INCLUDE SYSOBJ(MTTSKCC)

 15© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

When the ATTACH and DETACH programs have been
assembled and the MTGSL and MTTSKCC programs have
been compiled and prelinked, the following linkedit job can be
used to create the MTGSL and MTTSKCC load modules:

//IEWL EXEC PGM=HEWLHØ96,PARM='XREF,LIST,MAP,RENT'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(2,1))
//OBJECT DD DSN=object.code.pds,DISP=SHR
//SYSLIB DD DSN=TCPIP.SEZACMTX,DISP=SHR
// DD DSN=CEE.SCEELKEX,DISP=SHR
// DD DSN=CEE.SCEELKED,DISP=SHR
// DD DSN=SYS1.CSSLIB,DISP=SHR
//SYSLMOD DD DSN=load.library,DISP=SHR
//SYSLIN DD *
 INCLUDE OBJECT(MTGSLO)
 INCLUDE OBJECT(ATTACH)
 INCLUDE OBJECT(DETACH)
 ENTRY CEESTART
 NAME MTGSL(R)
 INCLUDE OBJECT(MTTSKCCO)
 ENTRY CEESTART
 NAME MTTSKCC(R)

ACTIVATING THE MTGSL LISTENER

The MTGSL listener can run as a batch job or started task on
your OS/390 or z/OS system. Be sure that the userid the batch
job or started task will be running under has an OMVS security
segment with the requisite information defined to allow for
communication with the TCP/IP stack. To start the multi-
tasking listener, use a job similar to the following:

//MTGSL EXEC PGM=MTGSL,PARM='9Ø1Ø',REGION=3M
//STEPLIB DD DSN=load.library,DISP=SHR

This example starts a multi-tasking listener that is listening on
port 9010. Ensure that whatever port number is provided in the
JCL PARM is available for use by your listener application –
you will have to ensure that it is not in use by another TCP/IP
application and that it is not an otherwise reserved port in TCP/
IP.

Things to note:

 16 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• If you want the printf() output from the main task and all
subtasks to be directed to the same output DD, include a
//SYSPRINT DD SYSOUT=* statement in the above JCL.
If no SYSPRINT DD is included in the MTGSL start-up
JCL, each subtask will allocate a new output DD with a
name prefixed with ‘SYS’ and a unique 5-digit suffix as in
SYS00013.

• The subtask program MTTSKCC is POSIX(OFF) by design.
Any C/C++ functions that require POSIX(ON) cannot be
used in MTTSKCC.

• To demonstrate the full potential of the multi-tasking
server, an artificial delay may need to be programmed into
the MTTSKCC program.

SETTING MTGSL INTO ACTION

The MTTSKCC subtask program is designed to process a
small subset of HTML formatted requests. If we assume that
MTGSL is running on a system with IP address 10.0.2.2 and
listening on port 9010, you can trigger a response to your
workstation’s Web browser by issuing the following on your
browser’s address line:

http://1Ø.Ø.2.2:9Ø1Ø/httptest

If MTGSL is properly contacted, it will return a response to the
browser and a browser window will be displayed containing
this message:

Server test request

MTGSL will also respond to:

http://1Ø.Ø.2.2:9Ø1Ø/quit

In this case, this will cause the listener to terminate on the
corresponding OS/390 or z/OS system and will cause a
window on your browser to display:

Server termination request

 17© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Any other message sent by the browser to MTGSL will cause
a response of:

Unknown request type

CONCLUSION

The extra effort required to set up a multi-tasking listener is
well worth the benefits that are gained over a single-threaded
listener. Being able to isolate the working components (the
subtasks) from the network infrastructure (the main listener
task) can provide significant advantages. Build into the
MTTSKCC program some of your own custom logic that
delivers a functional enhancement to your environment – who
knows what you might come up with.

MTGSL.C

/*
 * This program provides a multi-tasking TCP/IP socket listener for
 * OS/39Ø or z/OS systems.
 * Once a connection has been accepted on the socket, this program
 * will attach a subtask to process the incoming request. This
 * program keeps track of the status of subtasks using a data
 * structure to maintain subtask-specific information.
 * Once you have compiled, prelinked, and linked this program, you
 * can activate the listener on your OS/39Ø or z/OS system. The
 * TCP/IP port that the server will listen on is specified in the
 * PARM value passed to the program at start-up as in:
 * //MTGSL EXEC PGM=MTGSL,PARM='9Ø1Ø'
 * In the above case, this listener program will be listening on
 * port 9Ø1Ø. From a Web browser, you can direct a request to this
 * listener as follows:
 * http://ipaddr:port#/requesttype
 * where 'ipaddr' is the IP address of the system the HTTP server
 * program is running on, 'port#' is the port number the server is
 * listening on, and 'requesttype' is either httptest or quit. If
 * this listener program is running on a system with an IP address
 * of 1Ø.Ø.2.2 and was using port 9Ø1Ø, a browser request would
 * look like:
 * http://1Ø.Ø.2.2:9Ø1Ø/httptest
 * If you wanted to terminate the server from the browser, enter
 * the following (from the browser):
 * http://1Ø.Ø.2.2:9Ø1Ø/quit
 * This sample program uses HTML for feedback to the browser, but

 18 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 * you could add whatever you desire based on command input and
 * feedback technique of your preference.
 * Don't forget - the userid that this program is running under will
 * require an OMVS security segment for successful operation.
 */
#pragma runopts("POSIX(ON)")
/* Indicate to the compiler that standard OS linkage will be used. */
#ifdef __cplusplus
 extern "OS" int ATTACH(char*, unsigned char**, unsigned int*,
 unsigned int*, unsigned int*, ...);
 extern "OS" int DETACH(unsigned int*, char*);
#else
 #pragma linkage (ATTACH, OS)
 #pragma linkage (DETACH, OS)
#endif
#define MVS
#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>
#include <in.h>
#include <netdb.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <tcperrno.h>
#include <stdio.h>
#include <unistd.h>
typedef struct subtask_info { //Structure for maintaining subtask info
 char attach_workarea[26Ø];
 int socket;
 int take_socket;
 unsigned int ECB;
 unsigned int TCB;
 char myname[8];
 char mysname[8];
 int shutdown;
 struct subtask_info *next;
} SUBTASK_INFO;
#define ERROR_SOCKET_CREATE -1ØØØ
#define ERROR_SOCKET_CONNECT -1ØØ1
#define ERROR_SOCKET_PORT_USED -1ØØ2
#define ERROR_SOCKET_BIND_DENIED -1ØØ3
#define ERROR_SOCKET_BIND -1ØØ4
#define ERROR_SOCKET_LISTEN -1ØØ5
#define ERROR_SOCKET_INUSE -1ØØ6
#define ERROR_ACCEPT -1ØØ7
//#define SELECT_WAIT 5
#define SELECT_WAIT 2
#define BUFSIZE 1Ø23
#define SOCKET_BACKLOG 5

 19© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

/* doaccept(int *socket#) */
/* doaccept() waits for a client connection to occur. A select() */
/* is performed waiting for socket connection to become active. */
/* The select() has a wait time option that causes the function */
/* to wake up after a period of non-activity. Modify the wait */
/* time value specified in time.tv_sec as appropriate for your */
/* environment. */
int doaccept(int *s)
{
 char msg_buff[256];
 int temps;
 int clsocket;
 struct sockaddr clientaddress;
 int addrlen;
 int maxfdpl;
 struct fd_set readmask;
 struct fd_set writmask;
 struct fd_set excpmask;
 int rc;
 struct timeval time;
 temps = *s;
 time.tv_sec = SELECT_WAIT; // SELECT_WAIT is 5 seconds
 time.tv_usec = Ø;
 maxfdpl = temps + 1;
 FD_ZERO(&readmask);
 FD_ZERO(&writmask);
 FD_ZERO(&excpmask);
 FD_SET(temps, &readmask);
 rc = select(maxfdpl, &readmask, &writmask, &excpmask, &time);
 if (rc < Ø)
 {
 sprintf(msg_buff, "Error from select\n");
 tcperror(msg_buff);
 printf("doaccept() select() errno: %d...%d\n",
 errno,temps);
 return(rc);
 }
 else if (rc == Ø) // Time limit has expired
 {
 return(rc);
 }
 else
 {
 addrlen = sizeof(clientaddress);
 clsocket = accept(temps, &clientaddress, &addrlen);
 if (clsocket < Ø)
 {
 printf(" doaccept() accept() errno: %d...%d\n",
 errno,temps);
 }

 20 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 return(clsocket);
 }
}
/* dogive(int *socket#, char *name) */
/* dogive() "gives" a socket pointed to by socket# and owned by */
/* jobname name. */
int dogive(int *clsocket, char *myname)
{
 int rc;
 struct clientid cid;
 int temps;
 temps = *clsocket;
 memset(&cid, Ø, sizeof(cid));
 cid.domain = AF_INET;
 memcpy(cid.name, myname, 8);
 memcpy(cid.subtaskname, " ", 8);
 rc = givesocket(temps, &cid);
 return(rc);
}
/* Subtask_Complete_Check(SUBTASK_INFO *subtask_info_first, */
/* unsigned int *shutdown_flag) */
/* Subtask_Complete_Check() examines the subtask_info structures */
/* starting with subtask_info_first. If there are any structures */
/* on the chain, it determines whether the corresponding subtask */
/* has appropriately taken the assigned socket and if it has, it */
/* closes the parent task's socket. If the subtask has completed, */
/* this routine checks to see whether the associated subtask */
/* acknowledged a browser termination request and if it did, it */
/* sets the SHUTDOWN flag. As well, if the subtask has completed */
/* but the parent task's socket was not flagged as taken, this */
/* routine will do socket clean up. */
SUBTASK_INFO* Subtask_Complete_Check(SUBTASK_INFO *subtask_info_first,
 unsigned int *SHUTDOWN)
{
 SUBTASK_INFO *subtask_info_temp;
 SUBTASK_INFO *subtask_info_prev;
 SUBTASK_INFO *subtask_info;
 int i;
 unsigned int e;
 subtask_info_temp = subtask_info_first;
 subtask_info_prev = subtask_info_first;
 while (subtask_info_temp != NULL)
 {
 subtask_info = subtask_info_temp;
 printf("take_socket indicator: %d for socket %d\n",
 subtask_info->take_socket, subtask_info->socket);
 if (subtask_info->take_socket == 1)
 {
 shutdown(subtask_info->socket, 2);
 close(subtask_info->socket);

 21© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 subtask_info->take_socket = 99;
 }
 e = subtask_info->ECB;
 e = e >> 24;
 e = e & ØxØØØØØØ4Ø;
 if (e != Ø)
 {
 printf("Subtask complete\n");
 i = DETACH(&subtask_info->TCB,"NOSTAE");
 if (i != Ø)
 {
 printf("subtask failed to DETACH successfully; rc=%d\n",i);
 }
 if (subtask_info->shutdown == 1)
 {
 *SHUTDOWN = 1;
 }
 if (subtask_info->take_socket != 99)
 {
 shutdown(subtask_info->socket, 2);
 close(subtask_info->socket);
 }
 if (subtask_info == subtask_info_first)
 {
 subtask_info_first = subtask_info->next;
 subtask_info_temp = subtask_info_first;
 subtask_info_prev = subtask_info_first;
 }
 else
 {
 subtask_info_temp = subtask_info->next;
 subtask_info_prev->next = subtask_info_temp;
 }
 free(subtask_info);
 }
 else
 {
 subtask_info_prev = subtask_info_temp;
 subtask_info_temp = subtask_info_temp->next;
 }
 }
 return(subtask_info_first);
}
/* Listener(int portNo, int backLog) */
/* Generic socket listener: */
/* This subroutine provides a basic, generic socket listener. */
/* The port number to be used is passed by the calling routine */
/* and this routine acquires a socket, applies a name to the */
/* socket using bind(), and readies the socket to accept client */
/* connection requests using listen(). At that point, requests */

 22 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

/* sent by clients can be processed. */
int Listener(int portNo, int backLog)
{
 int listener, caller;
 int portArg;
 struct sockaddr_in address;
 int rc;
 struct clientid cid;
 char myname[8];
 char mysname[8];
 int clsocket;
 SUBTASK_INFO *subtask_info_first;
 SUBTASK_INFO *subtask_info_temp;
 SUBTASK_INFO *subtask_info_prev;
 SUBTASK_INFO *subtask_info;
 unsigned int SHUTDOWN;
 unsigned int workarea_addr;
 int ret_code;
 char msg_buff[256];
 int option_value;
 int option_len;
 int accept_fail_count;
 char line[32768] = {Ø};
 char out_line[8Ø92] = {Ø};
 int i, n, good_request;
 i = 256;
 ret_code = maxdesc(&i, &i);
 ret_code = getdtablesize();
 SHUTDOWN = Ø;
 subtask_info_first = NULL;
 accept_fail_count = Ø;
 portArg = htons(portNo);
 memset(&address, Ø, sizeof(address));
 address.sin_family = AF_INET;
 address.sin_port = portArg;
 address.sin_addr.s_addr = htonl(INADDR_ANY);
 memset(&cid, Ø, sizeof(cid));
 rc = getclientid(AF_INET, &cid);
 memcpy(myname, cid.name, 8);
 memcpy(mysname, cid.subtaskname, 8);
/* Acquire a socket. */
 listener = socket(AF_INET, SOCK_STREAM, Ø);
 if(listener < Ø)
 {
 printf("socket() failed rc %d errno %d\n",listener,errno);
 return ERROR_SOCKET_CREATE;
 }
/* Set the socket option to allow reuse of the specified port if
 * it's for the same application. */
 option_value = 1;

 23© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 option_len = sizeof(option_value);
 rc = setsockopt(listener, SOL_SOCKET, SO_REUSEADDR,
 (char *) &option_value, option_len);
/* Apply a unique local name to the socket. */
 rc = bind(listener, (struct sockaddr *)(&address), sizeof(address));
 if (rc < Ø)
 {
 if (errno != EADDRINUSE)
 {
 i = errno;
 printf("bind() failed rc %d errno %d\n",rc,errno);
 close(listener);
 if(i==EINVAL)
 return ERROR_SOCKET_PORT_USED;
 else if(errno==EACCES)
 return ERROR_SOCKET_BIND_DENIED;
 else
 return ERROR_SOCKET_BIND;
 }
/* Loop for up to a minute if EADDRINUSE is being returned by the
 * bind() request. */
 for (i=Ø; i<3Ø; i++)
 {
 sleep(2); // Wait for 2 seconds
 rc=bind(listener, (struct sockaddr *)(&address), sizeof(address));
 if (rc == Ø)
 {
 break;
 }
 }
 if (rc < Ø)
 {
 close(listener);
 return ERROR_SOCKET_INUSE;
 }
 }
/* Ready the socket to accept client connection requests. */
 if(listen(listener, backLog) < Ø)
 {
 i = errno;
 close(listener);
 return ERROR_SOCKET_LISTEN;
 }
 for(;;)
 {
/* The doaccept() function performs a select() which will allow */
/* this program to "wake up" periodically. Using doaccept() can */
/* provide for more sophisticated operator command processing and */
/* is useful for managing a multi-tasking environment as is */
/* demonstrated in this example. */

 24 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 caller = doaccept(&listener);
 if(caller<Ø)
 {
 if(errno==EINTR]] errno==EMFILE]] errno==ENFILE]]
 errno==24]] errno==23)
 {
 if(errno==EINTR)
 {
 printf("System call ACCEPT interrupted. Trying again\n");
 }
 if(errno==EMFILE]] errno==ENFILE]] errno==24]] errno==23)
 {
 accept_fail_count = accept_fail_count + 1;
 if(accept_fail_count >= 15)
 {
 printf("accept() fail limit reached. Trying again\n");
 accept_fail_count = Ø;
 }
 }
 continue;
 }
 else
 {
 break;
 }
 }
 accept_fail_count = Ø;
/* Determine whether we have a real accept condition or if we just */
/* did a timed select() wake up. */
 if (caller == Ø)
 {
 if (subtask_info_first != NULL)
 {
 subtask_info_first = Subtask_Complete_Check(subtask_info_first,
 &SHUTDOWN);
 }
 if (subtask_info_first == NULL && SHUTDOWN == 1)
 {
 return(Ø);
 }
 }
 else
 {
 subtask_info = (SUBTASK_INFO*)calloc(1,sizeof(SUBTASK_INFO));
 memset(subtask_info, Ø, sizeof(SUBTASK_INFO));
 memcpy(subtask_info->myname,myname,8);
 memcpy(subtask_info->mysname,mysname,8);
 subtask_info->socket = caller;
 subtask_info->take_socket = Ø;
 subtask_info->shutdown = Ø;

 25© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 subtask_info->next = NULL;
 if (subtask_info_first == NULL)
 {
 subtask_info_first = subtask_info;
 }
 else
 {
 subtask_info_temp = subtask_info_first;
 while (subtask_info_temp->next != NULL)
 {
 subtask_info_temp = subtask_info_temp->next;
 }
 subtask_info_temp->next = subtask_info;
 }
 printf("dogive() for socket %d and %s\n", caller, myname);
 i = dogive(&caller, myname);
 i = ATTACH("MTTSKCC ", &subtask_info,
 &subtask_info->ECB, &subtask_info->TCB,
 NULL, subtask_info);
 subtask_info_first = Subtask_Complete_Check(subtask_info_first,
 &SHUTDOWN);
 }
 }
 sprintf(msg_buff, "accept failed\n");
 perror(msg_buff);
 return ERROR_ACCEPT;
 }
/* The main routine extracts the program PARM representing the
 * port number to be used by this listener. It then calls the
 * Listener() function to perform the listener dialogue
 * processing. */
main(int argc, char *argv[])
{
 int err;
 int listener_port;
 if (argc != 2)
 {
 return(8);
 }
 listener_port = atoi(argv[1]);
 printf("Listen port is %d\n",listener_port);
 err = Listener(listener_port, SOCKET_BACKLOG);
 return err;
 }

MTTSKCC.C

/* The MTTSKCC program is ATTACHed as a subtask program from the
 * main listener program. MTTSKCC takes over a socket given to

 26 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 * a subtask by the main listener program, flags the socket as
 * being taken, and then completes the dialogue with the initiating
 * requestor.
 * The comments in the main listener program indicate the HTTP browser
 * requests that are addressed by this program's code. */
#pragma runopts (NOEXECOPS,NOARGPARSE)
#define MVS
#include <manifest.h>
#include <bsdtypes.h>
#include <socket.h>
#include <in.h>
#include <netdb.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <tcperrno.h>
#include <stdio.h>
#include <unistd.h>
typedef struct subtask_info { // Structure for maintaining subtask info
 char attach_workarea[26Ø];
 int socket;
 int take_socket;
 unsigned int ECB;
 unsigned int TCB;
 char myname[8];
 char mysname[8];
 int shutdown;
 struct subtask_info *next;
} SUBTASK_INFO;
struct PARM_STRUCT {
 struct PARMS *PARMS;
 };
struct PARMS {
 struct SUBTASK_INFO *PARM1;
 };
#define BUFSIZE 1Ø23
/* doget() will take over ownership for a specified socket from */
/* the primary listener task. */
int doget(int *clsocket, char *xtskname, char *xtsksname)
{
 int rc;
 int temps;
 struct clientid cid;
 memset(&cid, Ø, sizeof(cid));
 temps = *clsocket;
 memcpy(cid.name, xtskname, 8);
 memcpy(cid.subtaskname, xtsksname, 8);
 cid.domain = AF_INET;
 printf("doget() jobname: %s; give socket; %d\n", cid.name, temps);
 rc = takesocket(&cid, temps);

 27© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 printf("takesocket rc=%d; errno=%d\n", rc, errno);
 *clsocket = temps;
 return (rc);
}
/* MTTSKCC(int argc, char *argv[]) */
/* Generic socket listener subtask: */
/* This routines runs as a socket listener subtask. It takes */
/* the main task's socket and then performs the requested */
/* function as determined from the incoming HTML request. If a */
/* shutdown is requested, the appropriate SUBTASK_INFO structure */
/* field is set accordingly. */
main(int argc, char *argv[])
{
 char xtskname[8];
 char xtsksname[8];
 int rc;
 int clsocket;
 int caller;
 char line[32768] = {Ø};
 char out_line[8Ø92] = {Ø};
 int i, n, good_request;
 SUBTASK_INFO *subtask_info;
 subtask_info=(SUBTASK_INFO*)((((struct PARM_STRUCT*)argv[1])->PARMS)-
>PARM1);
 clsocket = subtask_info->socket;
 memcpy(&xtskname, subtask_info->myname, 8);
 memcpy(&xtsksname, subtask_info->mysname, 8);
 printf("myname %s\n",subtask_info->myname);
 printf("main task socket: %d\n",subtask_info->socket);
 rc = doget(&clsocket, xtskname, xtsksname);
 printf("doget() rc=%d\n",rc);
 if (rc >= Ø)
 {
 caller = rc;
 printf("subtask local socket is %d\n",caller);
 printf(" main task socket: %d\n",subtask_info->socket);
 subtask_info->take_socket = 1;
 good_request = 1;
 n = read(caller, line, BUFSIZE);
 line[n] = Ø;
 __atoe(line);
// printf("Inbound request: %s\n",line);
 if (strncmp(line+5,"quit",4) == Ø)
 {
 printf("termination request\n");
/* Build the html response string to indicate that the termination
 * request has been received. */
 strcpy(out_line,
 "<html><head><title>Term request acknowledged</title></head>");
 strcat(out_line,

 28 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 "");
 strcat(out_line,
 "<p align=\"left\">Server termination request");
/* Convert the response to ascii and send it back to the browser. */
 __etoa(out_line);
 n = write(caller, out_line, strlen(out_line));
 shutdown(caller,2);
 close(caller);
 subtask_info->shutdown = 1;
 }
 else if (strncmp(line+5,"httptest",8) == Ø)
 {
 printf("request type is httptest\n");
/* Build the html response string to indicate that the test
 * request has been received. */
 strcpy(out_line,
 "<html><head><title>Test request acknowledged</title></head>");
 strcat(out_line,
 "");
 strcat(out_line,
 "<p align=\"left\">Server test request");
/* Convert the response to ascii and send it back to the browser. */
 __etoa(out_line);
 n = write(caller, out_line, strlen(out_line));
 shutdown(caller,2);
 close(caller);
 }
 else
 {
 good_request = Ø;
 }
 if (good_request == Ø)
 {
 printf("Unknown request\n");
// printf("Unknown request %s\n",line);
/* Build the html response string to indicate that an invalid
 * request has been received. */
 strcpy(out_line,
 "<html><head><title>Unknown request type</title></head>");
 strcat(out_line,
 "");
 strcat(out_line,
 "<p align=\"left\">Unknown request type");
/* Convert the response to ascii and send it back to the browser. */
 __etoa(out_line);
 n = write(caller, out_line, strlen(out_line));
 shutdown(caller,2);
 close(caller);
 }
 }

 29© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 return Ø;
}

ATTACH.ASM

* This program provides support for a C/C++ ATTACH() function. *
* It is designed to function similarly to the ATTACH macro for *
* Assembler programs. The ATTACH() function supports a basic *
* program ATTACH with parameter passing support. This version *
* of the function does not support the more esoteric ATTACH macro *
* parameters, but does provide for specifying the address of a DCB *
* for an open TASKLIB DD. As well, for tasks that need to be *
* waited on for completion, the ATTACH() function supports the *
* passing of an ECB area address and a return area for the TCB *
* address. *
* This specific ATTACH() function expects to attach a C/C++ *
* main() program. It passes one parameter to the C/C++ program - *
* the address of a vector of parameter addresses built from the *
* optional parameters passed on the ATTACH() function call. *
* For this program the following register usage is in effect: *
* RØ - R1 : work registers, but generally available for use *
* by calls to system functions *
* R2 : used to save the incoming parameter address *
* R3 - R7 : work registers *
* R8 : used as base register for the required incoming *
* workarea *
* R9 : work register *
* R1Ø - R11 : reserved (future base register expansion) *
* R12 : base register *
* R13 : DSA/workarea address *
* R14 - R15 : work registers, return address and return code, but *
* generally available for use by calls to system *
* functions *

* Routine: ATTACH *
* Function: To provide MVS ATTACH capabilities from an IBM *
* C/C++ program. *
* Arguments: ATTACH program name address (right pad with blanks) *
* ATTACH() function workarea address. This workarea *
* must be a minimum of 256 bytes plus four bytes *
* for each optional parm that is passed. It *
* should not be modified by the calling program or *
* used for any other ATTACH() calls while this *
* task is active. *
* ECB area address (or NULL) *
* TCB area address (or NULL) *
* TASKLIB DCB area address (or NULL) *
* Optional parms to be passed to the attached program. *

 30 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

* The last parm address will have the x'8Ø' flag *
* set. You can pass up to 256 optional parms. *
* Return: Ø if the ATTACH is successful *
* -7 ATTACH failed. If an ECB area address has been *
* provided, the ECB area contains the ATTACH *
* return code. *
* -8 incorrect minimum number of parms. The ATTACH() *
* function call requires a minimum of five parms. *
* -9 no parms were detected on entry to ATTACH() *
* C usage: i = ATTACH(&pgm_name, &attach_workarea_addr, *
* &ecb, &tcb, &tasklib_dcb, *
* &opt_parm1, &opt_parm2, ... , &opt_parmn); *

ATTACH CSECT
ATTACH AMODE 31
ATTACH RMODE ANY
 EDCPRLG BASEREG=R12,DSALEN=WORKLEN
 USING ATTAWORK,R13 Addressability to temp storage
 LTR R1,R1 Parms ok?
 BZ RETNEGØ9 No - return -9
 LR R9,R1 Copy parm address
 L R2,Ø(,R9) Get buffer address
 N R2,=X'8ØØØØØØØ' Turn off address value
 C R2,=X'8ØØØØØØØ' Is this the last parm?
 BE RETNEGØ8 Yes - return -8
 L R2,4(,R9) Get buffer address
 N R2,=X'8ØØØØØØØ' Turn off address value
 C R2,=X'8ØØØØØØØ' Is this the last parm?
 BO RETNEGØ8 Yes - return -8
 L R2,4(,R9) Get buffer address
 L R8,Ø(,R2) Get WORKAREA address
 USING WORKAREA,R8 Set WORKAREA addressability
 LA R6,PARMS Get parm address area address
* R1 contains the address of the incoming parms. Check to *
* make sure that a valid, minimum number of parameters have been *
* passed. *
 ST R1,PARMØ Save incoming parm address
 LTR R1,R1 Parms ok?
 BZ RETNEGØ9 No - return -9
 LR R9,R1 Copy parm address
 L R2,Ø(,R9) Get buffer address
 ST R2,ATTAPGM Save pgm name address
 TM ATTAPGM,X'8Ø' Is this the last parm?
 BO RETNEGØ8 Yes - return -8
 L R2,4(,R9) Get buffer address
 ST R2,ATTAWRK Save work area address
 TM ATTAWRK,X'8Ø' Is this the last parm?
 BO RETNEGØ8 Yes - return -8
 L R2,8(,R9) Get buffer address
 ST R2,ATTAECB Save ECB address

 31© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 TM ATTAECB,X'8Ø' Is this the last parm?
 BO RETNEGØ8 Yes - return -8
 L R2,12(,R9) Get buffer address
 ST R2,ATTATCB Save TCB address
 TM ATTATCB,X'8Ø' Is this the last parm?
 BO RETNEGØ8 Yes - return -8
 L R2,16(,R9) Get buffer address
 ST R2,ATTATSKL Save TASKLIB DCB address
 LA R14,256 Set parm base number
 LA R15,256 Set parm base number
 TM ATTATSKL,X'8Ø' Is this the last parm?
 BNO MOREPRMS No - capture additional parms
 OI PARMS,X'8Ø' Set last parm flag
 B PASTPRMS Bypass parm capture
MOREPRMS DS ØH
 NI ATTATSKL,X'7F' Turn off the x'8Ø' flag
 OI FLAG1,PPARMS Set parm flag
 LA R1,PARMS Get parm addr save area addr
 LA R15,256 Set loop count
 LA R9,2Ø(,R9) Point to first parm addr
PARMLP DS ØH
 MVC Ø(4,R1),Ø(R9) Copy parm address
 TM Ø(R1),X'8Ø' Last parm?
 BNO PARMNEXT No - set up for next parm
 BCTR R15,Ø Reduce loop count by one
 B PASTPRMS Done with parms
PARMNEXT DS ØH
 LA R1,4(,R1) Point to next target area
 LA R9,4(,R9) Point to next source area
 BCT R15,PARMLP Check for more
 OI PARMS+255*4,X'8Ø' Set last parm flag
PASTPRMS DS ØH
 MVC PARMLN(2),=H'Ø' Set default parm length of Ø
 SR R14,R15 Calculate number of parms
 LTR R14,R14 Any parms?
 BZ NOPRMS No - bypass initialization
 LA R6,PARMS Get parm area address
 ST R6,PARMADDR Save it
 OI PARMADDR,X'8Ø' Set last parm flag
 MVC PARMLN(2),=H'4' Set length
NOPRMS DS ØH
 L R3,ATTAPGM Get pgm name address
 L R4,ATTAECB Get ECB area address
 L R5,ATTATCB Get TCB area address
 L R7,ATTATSKL Get TASKLIB DCB area address
 LTR R4,R4 An ECB address?
 BZ NODETACH No - DETACH isn't required
 LTR R5,R5 A TCB address?
 BZ NODETACH No - DETACH isn't required
 XC Ø(4,R4),Ø(R4) Clear the ECB

 32 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

* ATTACH the requested program. *
 LA R6,PARMLN Get parm addr
 MVC ATTACHWK(ATTACHLN),ATTACHLS Copy the model
 LTR R7,R7 A TASKLIB DCB?
 BNZ TASKLIB1 Yes - issue ATTACH with TASKLIB
 ATTACHX EPLOC=(R3), ** Specified program **X
 ECB=(R4), ** Target ECB **X
 PARAM=((R6)), ** Specify parameters **X
 MF=(E,ATTAPARM), ** Indicate dynamic parm area **X
 VL=1, ** Set X'8Ø' bit on last parm **X
 SF=(E,ATTACHWK) ** Indicate execute form **
 LTR R15,R15 All's well?
 BNZ RETNEGØ7 No - save RC in ECB area
 ST R1,Ø(,R5) Save TCB address
 B RETURNOK Return
TASKLIB1 DS ØH
 L R7,Ø(,R7) Get TASKLIB DCB address
 ATTACHX EPLOC=(R3), ** Specified program **X
 ECB=(R4), ** Target ECB **X
 PARAM=((R6)), ** Specify parameters **X
 TASKLIB=(R7), ** TASKLIB DCB **X
 MF=(E,ATTAPARM), ** Indicate dynamic parm area **X
 VL=1, ** Set X'8Ø' bit on last parm **X
 SF=(E,ATTACHWK) ** Indicate execute form **
 LTR R15,R15 All's well?
 BNZ RETNEGØ7 No - save RC in ECB area
 ST R1,Ø(,R5) Save TCB address
 B RETURNOK Return
NODETACH DS ØH
* ATTACH the requested program. *
 LA R6,PARMLN Get parm addr
 MVC ATTACHWK(ATTACHLN),ATTACHLS Copy the model
 LTR R7,R7 A TASKLIB DCB?
 BNZ TASKLIB2 Yes - issue ATTACH with TASKLIB
 ATTACHX EPLOC=(R3), ** Specified program **X
 PARAM=((R6)), ** Specify parameters **X
 MF=(E,ATTAPARM), ** Indicate dynamic parm area **X
 VL=1, ** Set X'8Ø' bit on last parm **X
 SF=(E,ATTACHWK) ** Indicate execute form **
 LTR R15,R15 All's well?
 BNZ RETNEGØ7 No - save RC in ECB area
 B RETURNOK Return
TASKLIB2 DS ØH
 L R7,Ø(,R7) Get TASKLIB DCB address
 ATTACHX EPLOC=(R3), ** Specified program **X
 PARAM=((R6)), ** Specify parameters **X
 TASKLIB=(R7), ** TASKLIB DCB **X
 MF=(E,ATTAPARM), ** Indicate dynamic parm area **X
 VL=1, ** Set X'8Ø' bit on last parm **X
 SF=(E,ATTACHWK) ** Indicate execute form **

 33© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 LTR R15,R15 All's well?
 BNZ RETNEGØ7 No - save RC in ECB area
 B RETURNOK Return
RETURNOK EQU *
 MVC RETCODE(4),=F'Ø' Set return code to Ø
 B RETURN Return
RETNEGØ7 EQU *
 ST R15,Ø(,R4) Save RC in ECB area
 MVC RETCODE(4),=F'-7' Set return code to -7
 B RETURN Return
RETNEGØ8 EQU *
 MVC RETCODE(4),=F'-8' Set return code to -8
 B RETURN Return
RETNEGØ9 EQU *
 MVC RETCODE(4),=F'-9' Set return code to -9
 B RETURN Return
RETURN EQU *
 L R15,RETCODE Load return code
 EDCEPIL
ATTACHLS ATTACHX SF=L
ATTACHLN EQU *-ATTACHLS
 LTORG
ATTAWORK EDCDSAD
WORKLEN EQU *-ATTAWORK
WORKAREA DSECT
ATTAWRKL DS F Length of this WORKAREA
PARMØ DS F Address of incoming parms
ATTAPGM DS F Address of ATTACH pgm name
ATTAWRK DS F Address of this WORKAREA
ATTAECB DS F Address of the ATTACH ECB
ATTATCB DS F Address of TCB addr return area
ATTATSKL DS F Address of TASKLIB DCB addr
RETCODE DS F Return code
DBL1 DS 2D Dbl work work area
DBL2 DS 2D Dbl work work area
FLAGS DS ØF
FLAG1 DS XL1
PPARMS EQU X'8Ø'
FLAG2 DS XL1
FLAG3 DS XL1
FLAG4 DS XL1
ATTAPARM DS F
PARMLIST DS ØF,H
PARMLN DS H
PARMADDR DS CL4,F
ATTACHWK DS ØD,CL(ATTACHLN)
PARMS DS 256F Incoming parm addresses
WORKLEN2 EQU *-PARMØ
RØ EQU Ø
R1 EQU 1

 34 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R1Ø EQU 1Ø
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 END

DETACH.ASM

* This file contains the Assembler support code for a DETACH() *
* function call. This routine is intended to be called from *
* IBM C/C++ programs and is used to remove a previously created *
* subtask. *
* Register Usage Conventions: *
* RØ - R1 : work registers, but generally available for use *
* by calls to system functions *
* R2 : used to save the incoming parameter address *
* R3 - R9 : work registers *
* R1Ø - R11 : reserved (future base register expansion) *
* R12 : base register *
* R13 : DSA/workarea address *
* R14 - R15 : work registers, return address and return code, but *
* generally available for use by calls to system *
* functions *

* Routine: DETACH *
* Function: To provide MVS DETACH capabilities from an IBM *
* C/C++ program. *
* Arguments: TCB area address *
* STAE option indicator address (STAE/NOSTAE) *
* Return: Ø if the DETACH is successful *
* -1 task was DETACHed while active *
* -8 incorrect number of parms. the DETACH() function *
* call requires a tcb address parm. *
* -9 no parms were detected on entry to DETACH() *
* C Usage: i = DETACH(&tcb, &stae_opt); *

DETACH CSECT
DETACH AMODE 31

 35© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

DETACH RMODE ANY
 EDCPRLG BASEREG=R12,DSALEN=WORKLEN
 LR R2,R1 Save incoming parm addr
 USING DETAWORK,R13 Addressability to temp storage
 ST R2,PARMØ Save incoming parm address
 LTR R2,R2 Parms ok?
 BZ RETNEGØ9 No - return -9
 L R9,Ø(,R2) Get buffer address
 ST R9,DETATCB Save TCB address
 TM DETATCB,X'8Ø' Is this the last parm?
 BO RETNEGØ8 Yes - return -8
 L R9,4(,R2) Get buffer address
 ST R9,DETASTAE Save STAE option indicator addr
 TM DETASTAE,X'8Ø' Is this the last parm?
 BNO RETNEGØ8 No - return -8
 L R1,DETASTAE Get STAE option indicator addr
 CLC Ø(4,R1),=C'STAE' STAE=YES?
 BE STAEYES Yes - DETACH with STAE=YES
 B STAENO No - DETACH with STAE=NO
* DETACH the requested TCB (STAE=YES). *
STAEYES DS ØH
 L R5,DETATCB Get TCB area addr
 DETACH (R5),STAE=YES DETACH
 LTR R15,R15 All's well?
 BNZ RETNEGØ1 No - return -1
 MVC RETCODE(4),=F'Ø' Set return code
 B RETURN Return
* DETACH the requested TCB (STAE=NO). *
STAENO DS ØH
 L R5,DETATCB Get TCB area addr
 DETACH (R5),STAE=NO DETACH
 LTR R15,R15 All's well?
 BNZ RETNEGØ1 No - return -1
 MVC RETCODE(4),=F'Ø' Set return code
 B RETURN Return
RETNEGØ1 DS ØH
 MVC RETCODE(4),=F'-1' Set return code to -1
 B RETURN Return
RETNEGØ8 DS ØH
 MVC RETCODE(4),=F'-8' Set return code to -8
 B RETURN Return
RETNEGØ9 DS ØH
 MVC RETCODE(4),=F'-9' Set return code to -9
 B RETURN Return
RETURN DS ØH
 L R5,RETCODE Copy the return code
 LR R15,R5 Load return code
 EDCEPIL
 LTORG
DETAWORK EDCDSAD

 36 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

VTAM tuning statistics

As is commonly known, tuning is the process of balancing the
network load among resources so as to eliminate congestion
on any one resource. One needs to tune VTAM in order to get
optimal service while using the least amount of resources.
One of the objectives of tuning VTAM is to use storage in the
host processor and in the communication controller more
efficiently and to lessen the load on the host processor. The
picture may get clearer if you regard the elements of a network
as a series of related storage spaces. A host processor
provides storage for VTAM and application programs.
Communication controllers contain storage for NCPs and

PARMØ DS F Address of incoming parms
DETATCB DS F Address of TCB
DETASTAE DS F STAE option indicator address
RETCODE DS F Return code
DBL1 DS 2D Dbl word work area
DBL2 DS 2D Dbl word work area
WORKLEN EQU *-DETAWORK
RØ EQU Ø
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R1Ø EQU 1Ø
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
 END

Rudy Douglas
System Programmer (Canada) © Xephon 2005

 37© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

related programs. Cluster controllers and programmable
peripheral nodes also contain storage space. In the case of
VTAM we know that it must use storage to build control blocks
to keep track of sessions, blocks of data, and other information.
If your system needs exceed your storage capacity, you might
experience degraded response times. Thus, in order to use
the storage more efficiently, you should avoid allocating too
many VTAM buffers in the host and choose a more appropriate
buffer size in the communication controller. In a similar
fashion, an NCP can exceed its storage capacity if it receives
more data from other parts of the network than it can send out.

In general, to tune your environment, you need to be able to
collect information about your network. You need to know how
to gather and analyse tuning statistics, determine the amount
of coattailing (when more than one piece of data is being
transferred in or out of the host with a single I/O operation)
taking place in your network, analyse slowdown conditions,
and monitor your common storage areas. VTAM provides
several operator commands and other facilities to help you
gather this information. Some statistics pertinent to VTAM
internal performance activity and resource utilization are
collected by VTAM application programs known as monitors.
After a monitor obtains the data, it can report information to its
end users. VTAM can also record tuning statistics about some
of its activities. You can use these statistics to adjust VTAM
and NCP variables to improve performance. You can use
tuning statistics to gather information on communications
between VTAM and any of the following channel-attached
nodes:

• Communication controllers

• Adjacent host processors

• SNA cluster controllers.

GATHERING TUNING STATISTICS

By using the TNSTAT start option in the VTAM start-up
parameters (member ATCSTR00 on the dataset specified by

 38 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

the VTAMLST DD card in the VTAM start-up procedure) or the
MODIFY TNSTAT command, you can collect data that will
help you set the proper values on resource definition operands
that control VTAM I/O operations in your system. TNSTAT
need not be specified in the VTAM start list to later activate
tuning statistics. You may use the display tuning statistics
command (D NET,TNSTAT) to determine several things:
global setting for collecting tuning statistics; whether tuning
statistics data is directed to the system console; the time
interval between tuning statistics summaries; whether TRLE-
controlled devices are collecting statistics and if so, the TRLE
names; and whether devices subsequently activated will
collect tuning statistics.

You can use VTAM tuning statistics to gather information on
the following connections:

• SNA controllers

• Channel-to-channel

• Multipath channel

• TCP.

Tuning statistics can be activated or inactivated for all devices
simultaneously (global tuning statistics), and tuning statistics
can also be activated or inactivated based on a Transport
Resource List Entry name (TRLE tuning statistics). When a
TRLE is first activated, the tuning statistics state for that TRLE
is set to the global tuning statistics state. For instance, if global
tuning statistics are active, TRLE tuning statistics are active
for that TRLE. The System Management Facility (SMF) is
required to record tuning statistics. Tuning statistics can
optionally be displayed at the system console using the CNSL
operand, and statistics are always recorded in the appropriate
tuning statistics file. This file is an SMF dataset. The tuning
statistics record is SMF record type 50. The format depends
on the resource for which the tuning I/O operation is collected.
The tables 41, 42, 43, 44 and 45 in section 10 of z/OS V1R4.0
CS: SNA Network Implementation Guide (SC31-8777-02)

 39© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

show the formats that can be present in a tuning statistics
record. A single set of VTAM tuning statistics can be enough
to indicate how a network is operating. However, these statistics
become more valuable as you compare sets of values over
time to see trends or the effects caused by changing buffer
pool specifications and operands. You should analyse tuning
statistics before and after making any change that might affect
system performance.

CODE

In order to extract VTAM tuning statistics information from
SMF data, I have constructed a three-part job stream. In the
first part (DUMP50), SMF records 50 are extracted from the
SMF weekly dataset to a file, which can be used as a base of
archived records.

Please note that the sorting of SMF data may issue an error
message (ICE204A), set a return code of 16 and terminate if
it detects an incomplete spanned record. In order to overcome
this potential obstacle, DFSORT’s SPANINC=RC4 option was
used to remove the incomplete spanned records. It should be
noted that SPANINC=RC0 tells DFSORT (Release 14) to
issue a warning message, set a return code of 0, and eliminate
all incomplete spanned records it detects. Valid records (that
is, complete spanned records) are recovered and written to
the output dataset, while SPANINC=RC4 does the same thing
as SPANINC=RC0, but with a return code of 4 instead of 0.
The shipped default is SPANINC=RC16.

In the second step (COPY50) previously extracted records
(selection being defined by INCLUDE’s condition) are sorted
and copied to a file, which is the input to analysis and reporting
VTAMSTAT EXEC invoked in the last step (VTAMST).

There are six reports generated by this REXX EXEC. The first
one is Tuning statistics report for SNA controllers, which
provides information about the state of data-transfer operations
between VTAM and one channel-attached SNA controller

 40 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

(communication or cluster controller). Please remember that
VTAM uses channel programs to send data to SNA controllers.
The amount of data that VTAM can read in one operation
depends on the number of buffers used by a read channel
program and on the size of each buffer. Each record of this
report contains statistics that cover the time period since the
last tuning statistics record was written for that controller or
channel-to-channel connection. There are several things to
take into account when reviewing this report:

• Cntl is the name of the user-defined channel-attached
SNA cluster controller or the name of the channel link that
attaches the communication controller for which the
statistics are gathered. For a VTAM-generated channel-
link name, this field contains the channel unit address
followed by -L.

• The maximum number of dump-load-restart requests
(DLRMAX) number refers to the entire domain, not to the
SNA controller named in the report. This value can be
used to determine the proper setting for the DLRTCB start
option, which determines how many dump-load-restart
requests can be processed concurrently. If DLRMAX
consistently exceeds DLRTCB, it indicates that VTAM is
serializing requests on the available TCBs and that
performance might be affected.

• The total number of read channel programs issued (CHRD)
to read data does not include the read that informs the
cluster controller to clear its buffers.

• The total number of attention interrupts received from a
controller (ATTN) includes the total number of read
attentions (RDATN).

• Several performance notes are added, a calculation of
which was based on recommendations one may find
described in chapter 10.1.2.5, ‘Analyzing Tuning Statistics’,
of the manual mentioned above.

The second report, Tuning statistics report for channel-to-

 41© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

channel adapters, provides information about VTAM performing
I/O operations across a channel-to-channel link. In this case,
VTAM uses channel programs to send data to other hosts.

VTAM channel-to-channel I/O operations, which are similar to
SNA controller operations, are impacted by factors such as
VTAM I/O buffer size, the channel delay, and the maximum
number of buffer pages on the CTC definitions. The amount of
data that VTAM can read in one operation depends on the
number of buffers used by a read channel program and on the
size of each buffer. Each record of this report contains
information about the state of data transfer operations between
two VTAMs (using channel-to-channel adapters). By analysing
statistics provided by this report, you can select I/O buffer
sizes, data transfer delay, and other options that can improve
performance of these I/O operations. During periods of the
day when it is most likely that you will experience performance
problems, turn on the tuning statistics. For channel-to-channel
attachments, turn on tuning statistics at each processor by
using the following operator command:

F NET,TNSTAT,CNSL,TIME=1.

Again, there are several things to take into account when
reviewing this report:

• The number of channel programs issued (CHNRM) that
VTAM used to send data to the node on the other side of
the adapter will be greater than or equal to the sum of write
triggers. The difference between CHNRM and the sum of
the write triggers represents the following: the number of
channel programs with write data that are initiated by an
attention (ATTN) from the other host when data was
queued, but a channel program with write data could not
be triggered. As you increase the value of the DELAY
operand for the channel-to-channel adapter, the difference
between CHNRM and the sum of the write triggers may be
greater.

• ATTN is the number of times a channel program is
initiated because the other host has data to send. This

 42 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

statistic cannot be correlated with any of the other statistics
that are provided; it is simply a value indicating the
number of attention interrupts. When compared over an
interval of time, ATTN usually does not equal the sum of
triggers at the other host. VTAM counts only the first event
that initiates an I/O operation, and when both hosts try to
write at once, one of the hosts receives an attention that
is not counted in its tuning statistics.

• There are several triggers one should review. Timers
trigger represents the number of times a channel program
with write data is started because the period specified for
queueing channel-to-channel PIUs has expired (if session
traffic is heavy, the desirable value is 0; if session traffic
is light, a low value rather than 0 is desirable). Increasing
the DELAY operand on the LINE definition statement or
using transmission priority 2 may decrease the value of
timers. The desirable TIMERS value is 0, but an occasional
non-zero value is acceptable. For channel-to-channel
attachments, if the TIMERS value in any tuning statistics
record is too large, deactivate the channel-attachment
major node at each host processor, and activate a
previously-defined major node in which DELAY=0 has
been specified on the LINE definition statement.

The queue depth limit trigger represents the number of
times a channel program is initiated because the queue
limit has been reached. This number should be higher
than that of the timers trigger. Please note: if DELAY=0 is
specified for the channel-to-channel adapter, the TIMERS
and QDPTH tuning statistics may be misleading (ie if
DELAY=0, qdpth indicates the number of channel programs
that wrote data to the channel-to-channel adapter. VTAM
determines the QDPTH limit based on usage except in the
case of DELAY=0; if DELAY=0, timers does not increment).

The capacity limit trigger (BUFCAP) shows the number of
times a channel program with write data is initiated because
there is enough data to fill the read buffers of the host on

 43© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

the other end of the channel. The value will also be
incremented if a channel program with write data is
initiated because of residual PIUs left on the data queue
after a channel program with write data containing a full
write buffer of data has completed. If BUFCAP is always
0, the other VTAM host has too many read buffers.

The high priority request trigger (PRI) shows the number
of times a channel program with write data is started
because a high priority PIU is on the outbound channel
queue; that is, the PIU is running under transmission
priority 2 or is a virtual route pacing response. If this
number is high and there is very little transmission priority
2 traffic over this channel, the minimum virtual route
window sizes are probably too small. The higher this
number is in relation to the sum of TIMERS + QDPTH +
BUFCAP, the less outbound coattailing occurs, and the
more CPU time is used for each PIU. You can also use
VTAM tuning statistics to analyse a virtual route impact on
the channel-to-channel connection. A virtual route that
uses transmission priority 2 and traverses the channel-to-
channel connection causes VTAM immediately to schedule
the data transfer operation. Another virtual route pacing
response is high-priority traffic, which has the same
effect. The PRI tuning statistic in VTAM indicates the
number of times that a VTAM channel program is started
to transfer this high priority data (TP2 or VR pacing
response) to the other VTAM host. If this number is high
and the channel-to-channel connection is not used
extensively for TP2 traffic, the minimum virtual route
pacing window size is probably too small. Also, the higher
this number is in relation to the sum of TIMERS, QDPTH,
and BUFCAP, the less outbound coattailing occurs.

• You can also analyse the average number of bytes
transferred per I/O operation by dividing the total number
of bytes transferred (RDBUF) by the number of READ
channel programs (CHNRM).

 44 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

The next report, Tuning statistics report for TCP connections,
provides information about VTAM performing I/O operations
across TCP connections. By analysing data provided by
VTAM and calculated statistics, you can improve performance
of I/O operations.

The next three reports pertain to multipath channel (MPC)
connections using XCF or channel connectivity and it is
generated from SMF 50 records of Version 02. This situation
presented a bit of a problem, since IBM did not consider them
to be three distinct types of records. Therefore, I have
investigated the record extension length in the second step
(COPY50) so as to get the extension length pertaining to
multipath channel connections using XCF records. Please
take a note of the COPY50 step output and change the xcfoff
value of the VTAMSTAT EXEC accordingly.

The first report from this set is Tuning statistics report for
multipath channel connections using XCF. As we know, with
XCF multipath channel attachment, VTAM uses the MVS XCF
signalling facility to send data to other hosts. Each tuning
statistics record contains information about the state of data
transfer operations between two VTAMs (using multipath
channel connections). By analysing statistics provided by this
report, you can select I/O buffer sizes and other options that
can improve performance of these I/O operations. There are
two distinct types of tuning statistics – the first record contains
statistics for the entire MPC group while the second record
contains statistics for the READ/WRITE subchannel.

The second report from this set is Tuning statistics report for
multipath channel connections. This is a case of MPC channel
connectivity attachment when VTAM performs I/O operations
across multiple single-direction channel links. To perform I/O
operations VTAM uses channel programs or Direct Memory
Access (DMA) when transmitting and receiving data. By
analysing statistics provided by VTAM, you can select I/O
buffer sizes, data transfer delay, and other options that can
improve performance of these I/O operations. There are three

 45© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

distinct types of tuning statistics: the first record contains
statistics for the entire MPC group while the subsequent
records contain statistics for each write subchannel, and each
read subchannel. There are several things to take into account
when reviewing this report:

• VTAM provides the following levels of MPC capability:
High-Performance Data Transfer (HPDT) and non-HPDT.

• HPDT MPC connections provide more efficient transfer of
data than non-HPDT MPC connections. They do this by
using HPDT services to provide the following functions:

– data packing without data movement: this process
decreases consumption of CPU cycles by reducing
the internal movement of data, thus increasing the
availability of MIPS (million instructions per second)
for user processing.

– chain scheduling of channel programs: this process
reduces operating system I/O invocations and CPU
overhead.

• HPDT services are available over connections to other
nodes that implement HPDT MPC. Applications that use
high-performance data transfer services rely on HPDT
MPC connections for path length reductions and
performance enhancements when sending and receiving
data.

• Non-HPDT MPC connections do not use HPDT services.
Non-HPDT MPC connections can be considered
synonymous with APPN Host-to-Host Channel (AHHC)
connections. Non-HPDT multipath channels use a special
data block called a sweep that is exchanged with the
adjacent host to verify that data has not been lost. A host
initiating a sweep request holds all outbound multipath
channel transmissions until it receives a sweep reply from
the adjacent host. A sweep is initiated when either of the
following occurs:

 46 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 – a timer expires in the host with the higher subarea
number

 – the receive queue depth in either host is excessive.

The host initiating the sweep sends the sequence number
of the last output transmit block. The adjacent host
compares this number with its last input transmit block
sequence number. The adjacent host then sends a
response to the initiating host that includes the adjacent
host last output transmit block sequence number. The
initiating host makes the same comparison. If the numbers
do not match, or the sweep does not complete within a
time limit, the multipath channel group will be inactivated.
Otherwise, normal flow continues. The tuning statistics
contain a count of how many sweeps are initiated by an
expired timer and how many are initiated by excessive
receive queue depth.

• For HPDT MPC connections, tsweep and qsweep are
always 0.

The last report from MPC connections pertains to OSA-
Express connections. Again, there are basically two different
types of tuning statistics: the first record contains statistics for
the entire MPC group while the subsequent records contain
statistics for OSA-Express datapath queues (READ queue as
well as WR/x queue). Please note that many of the statistics
in this group contain both a count and an overflow. Both the
count and overflow are maintained in unsigned 32-bit variables
(unless otherwise indicated). Since an unsigned 32-bit variable
can only contain a value up to and including 4294967295
('FFFFFFFF'X), the variable will wrap through 0 if an increment
results in this value being exceeded. When such a wrap
occurs, the overflow is incremented by 1. Therefore the total
count is determined as follows: Total = (overflow * 4294967296)
+ count.

Sample JCL to execute SMF type 50 data extract and VTAM
statistics reporting:

 47© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

//* UNLOAD SMF5Ø RECORDS FROM VSAM OR VBS TO VB *
//* Note: change the DUMPIN DSN=your.smfdata to be the name of *
//* the dataset where you currently have SMF data being *
//* recorded. It may be either SMF weekly dataset or an active *
//* dump dataset. If you chose the latter, then prior to *
//* executing this job, you need to terminate SMF recording *
//* of the currently active dump dataset for allow the *
//* unload of SMF records. *
//* Also, change the DCB reference to match the name of your *
//* weekly SMF dump dataset. *
//DUMP5Ø EXEC PGM=IFASMFDP
//DUMPIN DD DISP=SHR,DSN=your.smfdata
//DUMPOUT DD DISP=(NEW,PASS),DSN=&&SMF5ØOUT,UNIT=SYSDA,
// SPACE=(CYL,(5,5)),DCB=(your.smfweekly.dataset)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 INDD(DUMPIN,OPTIONS(DUMP))
 OUTDD(DUMPOUT,TYPE(5Ø))
/*
//* COPY VBS TO VB, DROP HEADER/TRAILER RECORDS, SORT ON DATE/TIME *
//* Note: change the SMF5Ø DSN=hlq.SMF5Ø.DATA to be the name of *
//* the dataset you'll use in the last step. *
//COPY5Ø•©ŠEXEC PGM=ICETOOL
//TOOLMSG DD SYSOUT=*
//DFSMSG DD SYSOUT=*
//RAWSMF DD DSN=&&SMF5ØOUT,DISP=SHR
//SMF5Ø DD DSN=hlq.SMF5Ø.DATA,SPACE=(CYL,(x,y)),UNIT=SYSDA,
// DISP=(NEW,CATLG,KEEP),
// DCB=(RECFM=VB,LRECL=32756,BLKSIZE=3276Ø)
//REPORT DD SYSOUT=*
//TOOLIN DD *
 SORT FROM(RAWSMF) TO(SMF5Ø) USING(SMFI)
 DISPLAY FROM(SMF5Ø) LIST(REPORT) -
 TITLE('VTAM statistics records collected') -
 HEADER('SMF Date') ON(11,4,DT1,E'9999/99/99') -
 HEADER('SMF time') ON(Ø7,4,TM1,E'99:99:99') -
 HEADER('ID') ON(19,8,CH) -
 HEADER('Version') ON(65,2,CH) -
 HEADER('Extension') ON(63,1,BI)
//SMFICNTL DD *
 OPTION SPANINC=RC4,VLSHRT
 INCLUDE COND=(6,1,BI,EQ,5Ø)
 SORT FIELDS=(11,4,PD,A,7,4,BI,A)
/*
//* FORMAT VTAM Statistics TYPE 5Ø records *
//* Note: change the SYSEXEC DSN=your.rexx.library to be the name *
//* of the dataset where you have placed the VTAMSTAT REXX EXEC. *
//* Also, change the SMF5Ø DSN=hlq.SMF5Ø.DATA to the name of *
//* the dataset you have created in the previous step. *
//VTAMST EXEC PGM=IKJEFTØ1,REGION=ØM

 48 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

//SYSEXEC DD DISP=SHR,DSN=your.rexx.library
//SMF5Ø DD DISP=SHR,DSN=hlq.SMF5Ø.DATA
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
prof nopref
%VTAMSTAT
/*

VTAMSTAT reporting EXEC:

/* REXX VTAM Tuning Statistics */
/* Valid subtypes: */
/* Ø1.Channel-to-Channel Adapters */
/* Ø2.Multipath Channel Connections Using XCF */
/* Ø2.Multipath Channel Connections (MPC and OSA-E) */
/* Ø3.TCP Connections */
/* Ø4.SNA Controllers */
xcfoff = ???? /* Extension length pertaining to XCF records:*/
 /* change ???? with Extension value of version*/
 /* Ø2 records (see output of step 2 of JCL job*/
interval = 3ØØ /* Interval duration in seconds: change to */
 /* value you have specified in MODIFY TNSTAT */
 /* command */
MAXBFRU = 1Ø /* Needs customization */
Numeric digits 32
userid=SYSVAR(SYSUID)
/* Part 1: Handle report files allocation & datasets */
/* existence */
r5Øsna = userid||'.sna.xrep'
If SYSDSN(r5Øsna) = 'OK'
Then "DELETE "r5Øsna" PURGE"
 "ALLOC FILE(SNARPT) DA("r5Øsna")",
 "UNIT(SYSALLDA) NEW TRACKS SPACE(1,1) CATALOG",
 "REUSE LRECL(115) RECFM(F B) "
r5Øtcp = userid||'.tcp.xrep'
If SYSDSN(r5Øtcp) = 'OK'
Then "DELETE "r5Øtcp" PURGE"
 "ALLOC FILE(TCPRPT) DA("r5Øtcp")",
 "UNIT(SYSALLDA) NEW TRACKS SPACE(1,1) CATALOG",
 "REUSE LRECL(15Ø) RECFM(F B) "
r5Øctc = userid||'.ctc.xrep'
If SYSDSN(r5Øctc) = 'OK'
Then "DELETE "r5Øctc" PURGE"
 "ALLOC FILE(CTCRPT) DA("r5Øctc")",
 "UNIT(SYSALLDA) NEW TRACKS SPACE(1,1) CATALOG",
 "REUSE LRECL(14Ø) RECFM(F B) "
r5Øxcf = userid||'.xcf.xrep'
If SYSDSN(r5Øxcf) = 'OK'
Then "DELETE "r5Øxcf" PURGE"

 49© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 "ALLOC FILE(XCFRPT) DA("r5Øxcf")",
 "UNIT(SYSALLDA) NEW TRACKS SPACE(1,1) CATALOG",
 "REUSE LRECL(12Ø) RECFM(F B) "
r5Ømpc = userid||'.mpc.xrep'
If SYSDSN(r5Ømpc) = 'OK'
Then "DELETE "r5Ømpc" PURGE"
 "ALLOC FILE(MPCRPT) DA("r5Ømpc")",
 "UNIT(SYSALLDA) NEW TRACKS SPACE(1,1) CATALOG",
 "REUSE LRECL(12Ø) RECFM(F B) "
r5Øosa = userid||'.osa.xrep'
If SYSDSN(r5Øosa) = 'OK'
Then "DELETE "r5Øosa" PURGE"
 "ALLOC FILE(OSARPT) DA("r5Øosa")",
 "UNIT(SYSALLDA) NEW TRACKS SPACE(1,1) CATALOG",
 "REUSE LRECL(12Ø) RECFM(F B) "
time = Ø; tims = Ø; timc = Ø; timx = Ø
Totsna = Ø; Totctc = Ø; Tottcp = Ø; Totxcf = Ø
Totmpc = Ø; Totosa = Ø; inrec = Ø
/* Print reports header */
/* Channel-to-Channel Connections report header */
cdr.1 = left('Tuning I/O Operations for Channel-to-Channel
Connections',8Ø)
cdr.2 = left(' ',1,' ')
cdr.3 =left('Report produced on',18),
 ||left(' ',1,' ')||left(date(),12),
 ||left('at',3,' ')||left(time(),1Ø)
cdr.4 = left(' ',1,' ')
cdr.5 = left('Reporting interval (sec.):',26)||left(interval,4)
cdr.6 = left(' ',1,' ')
cdr.7 = left('Date Time',21) left('ID',8),
 left('CHNRM',8) left('CHMAX',8) left('RDBUF',8),
 left('ATTN',6) left('TIMERS',6) left('QDPTH',6),
 left('BUFCAP',6) left('PRI',6) left('SLODN',6),
 left('IPIU',8) left('OPIU',8) left('DRLMAX',6),
 left('WRBUF',6)
cdr.8 =left('-',13Ø,'-')
/* Tuning Statistics Report for MPC using XCF */
xdr.1 = left('Tuning Statistics File Report for MPC using XCF',99)
xdr.2 = left(' ',1,' ')
xdr.3 =left('Report produced on',18),
 ||left(' ',1,' ')||left(date(),12),
 ||left('at',3,' ')||left(time(),1Ø)
xdr.4 = left(' ',1,' ')
xdr.5 = left('Reporting interval (sec.):',26)||left(interval,4)
xdr.6 = left(' ',1,' ')
xdr.7 = left('Date Time',21) left('TRLE',8) ,
 left('READ',8) left('WRITE',8) left("R/W: ",6) ,
 left('TSWEEP',6) left('QSWEEP',6) left('TOKEN',6) ,
 left('INLP',6) left('ONLP',6) left('NLPBYC',7) ,
 left('NLPBYCO',7)

 50 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

xdr.8 =left('-',1Ø6,'-')
/* SNA report header */
hdr.1 = left('Tuning Statistics File Report for SNA Controllers',9Ø)
hdr.2 = left(' ',1,' ')
hdr.3 =left('Report produced on',18),
 ||left(' ',1,' ')||left(date(),12),
 ||left('at',3,' ')||left(time(),1Ø)
hdr.4 = left(' ',1,' ')
hdr.5 = left('Reporting interval (sec.):',26)||left(interval,4)
hdr.6 = left(' ',114,' ')
hdr.7 = left('Date Time',21)||left('Cntl',9),
 left('DLRMAX',7) left('CHWR',6) left('CHRD',6),
 left('ATTN',6) left('RDATN',6) left('IPDU',6),
 left('OPDU',6) left('RDBUF',6) left('SLODN',6),
 left('INLP',6) left('ONLP',6) left('BFNLP',5)
hdr.8 =left('-',115,'-')
/* TCP/IP report header */
hdd.1 = left('Tuning Input/Output (I/O) Operations for TCP
Connections',99)
hdd.2 = left(' ',1,' ')
hdd.3 =left('Report produced on',18),
 ||left(' ',1,' ')||left(date(),12),
 ||left('at',3,' ')||left(time(),1Ø)
hdd.4 = left(' ',1,' ')
hdd.5 = left('Reporting interval (sec.):',26)||left(interval,4)
hdd.6 = left(' ',1,' ')
hdd.7 = left('Date Time',21) left('ID',8) ,
 left('TYPE',7) left('ATTN',7) left('RSIO',8) ,
 left('WSIO',6) left('INPACKET',8) left('OTPACKET',8),
 left('ARPACKET',8) left('AWPACKET',8) left('MAXRCVD',8) ,
 left('MAXSENT',8) left('INBYTE',7) left('OUTBYTE',9) ,
 left('ARBYTE',8) left('AWBYTE',7)
hdd.8 =left('-',15Ø,'-')
 /* Main processing loop */
 DO FOREVER
 "EXECIO 1 DISKR SMF5Ø"
 inrec = inrec + 1
 IF RC ¬= Ø THEN call End_of_file
 else do
 PARSE PULL record
 PARSE VAR record header 15 rest
 smf5Ørty = c2d(substr(header,2,1)) /* Record type */
 call SMF5Ø_header
 end
 End
 /* Part 3: End of input file */
End_of_file:
ml.1 =" "
ml.2 ="Multipath Channel Connections legend "
ml.3 =" "

 51© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

ml.4 ="MPC LINE - the name of the link for which tuning statistics are "
ml.5 =" being recorded. "
ml.6 ="IPDU - the total no. of inbound PDUs received. "
ml.7 ="OPDU - the total no. of outbound PDUs transmitted. "
ml.8 ="TSWEEP - the no. of sweeps initiated as a result of a "
ml.9 =" time-out. "
ml.1Ø="QSWEEP - the no. of sweeps initiated as a result of "
ml.11=" excessive receive queue depth. "
ml.12="DEV - the hexadecimal subchannel address of the device "
ml.13=" for which tuning statistics are being recorded. It "
ml.14=" corresponds to one of the addresses coded on the READ,"
ml.15=" WRITE, or DATAPATH statement on the LINE or TRLE "
ml.16=" definition statement. "
ml.17="DIR - the direction of this resource: READ, WRITE, or "
ml.18=" WR/x (where x is the QDIO write priority level). "
ml.19="BSIZE - the maximum buffer size supported by this device. "
ml.2Ø="MAXBYTES - the no. of bytes used in the largest channel program."
ml.21=" This field provides information about the utilization"
ml.22=" or packing of data into the transmit or receive "
ml.23=" buffer. As this no. approaches bsize, this indicates "
ml.24=" that maximum instantaneous utilization of the device's"
ml.25=" buffer has occurred. "
ml.26="SIO - the no. of start I/O operations counted for the "
ml.27=" subchannel. This no. is reset each time VTAM reports "
ml.28=" tuning statistics. "
ml.29="SLOWDOWN - the no. of times slowdown mode has been entered. If "
ml.3Ø=" slowdown is incrementing, this indicates a lack of available "
ml.31=" I/O buffers. If DIR = READ, slowdown is incremented every time"
ml.32=" the channel program cannot be reinitiated immediately because"
ml.33=" of lack of I/O buffers to unpack the inbound data. "
ml.34="BYTECNTO - PDU byte count overflow. "
ml.35="BYTECNT - byte count is the accumulated no. of bytes of PDUs "
ml.36=" transmitted on the WRITE subchannel or received on the READ "
ml.37=" subchannel. "
ml.38="INLP - the total no.of inbound NLPs received. "
ml.39="ONLP - the total no.of outbound NLPs transmitted. "
ml.4Ø="NBYTECTO - NLP byte count overflow. "
ml.41="NBYTECT - the NLP byte count. This value represents the "
ml.42=" accumulated no. of bytes of NLPs transmitted on the "
ml.43=" WRITE subchannel or received on the READ subchannel "
Select
 when Totmpc > Ø then do
 "EXECIO * DISKW MPCRPT (STEM ml.)"
 end
 otherwise do
 mpf.1 = 'Total number of MPC records is Ø.'
 mpf.2 = 'No report is being produced.'
 "EXECIO * DISKW MPCRPT (STEM mpf.)"
 end
End

 52 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

os.1 =" "
os.2 ="OSA specific legend: "
os.3 =" "
os.4 ="PCIREAL - real PCI count. The higher the ratio of real PCI to "
os.5 =" virtual PCI, the less successful QDIO is at avoiding the "
os.6 =" overhead of the system interrupt handler. "
os.7 ="PCIREALO- real PCI overflow. "
os.8 ="PCIVIRT - virtual PCI count. The higher the ratio of virtual PCI"
os.9 =" to real PCI, the more successful QDIO is at avoiding the"
os.1Ø=" overhead of the system interrupt handler. "
os.11="PCIVIRTO- virtual PCI overflow. "
os.12="SBALCNTI- Storage Block Address List (SBAL) count is accumulated"
os.13=" no. of SBALs used for I/O on the QDIO WRITE priority level or"
os.14=" the QDIO READ data transfer point. "
os.15="SBALCNTO- SBAL count overflow. "
os.16="PACKCNT - packet count: represents the accumulated no of packets"
os.17=" transmitted on the QDIO WRITE priority level or received on"
os.18=" the QDIO READ data transfer point. A packet is a single unit"
os.19=" of data presented to the QDIO device driver. "
os.2Ø="PACKCNTO - packet count overflow. "
os.21="SIGACNT - Signal Adapter (SIGA) count: the accumulated no. of "
os.22=" SIGA instructions issued for the QDIO WRITE priority level."
os.23=" SIGA tells the QDIO adapter that data is ready to be written."
os.24="SIGACNTO - SIGA count overflow. "
os.25="PCITHRSH - threshold PCI count. A count of zero indicates the "
os.26=" QDIO device driver is providing sufficient resources to keep"
os.27=" pace with the inbound data stream from the adapter. "
os.28="PCITHRSO - threshold PCI overflow. "
os.29="PCIUNPRD - unproductive PCI count. An unproductive PCI will "
os.3Ø=" occur when a virtual PCI causes the processing of read"
os.31=" completions for which a real PCI is pending. An unproductive "
os.32=" PCI indicates the system interrupt handler overhead was"
os.33=" incurred unnecessarily. "
os.34="PCIUNPRO - unproductive PCI overflow. "
os.35="rprocdef - read processing deferral count. A read processing "
os.36=" deferral occurs when the QDIO PCI Exit must defer a read "
os.37=" completion because a control block cannot be obtained to "
os.38=" represent the inbound data. "
os.39="RPROCDEO - read processing deferral overflow. "
os.4Ø="RREPLDEF - read replenishment deferral count. A read "
os.41=" replenishment deferral occurs when the QDIO PCI Exit does not "
os.42=" have enough available read buffers to tack-in a new read. "
os.43="RREPLDEO - read replenishment deferral overflow. "
os.44="NOREADS - reads exhausted count. This value is incremented by 1"
os.45=" each time the QDIO PCI Exit is invoked and it detects that all"
os.46=" the read buffers are full. A zero total is preferred because "
os.47=" lack of read buffers may result in the adapter discarding"
os.48=" inbound data. Examination of the read processing and read"
os.49=" replenishment deferral counts may indicate the reason the"
os.5Ø=" QDIO device driver is not providing sufficient resources to"

 53© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

os.51=" accept the inbound data from the adapter. "
os.52="NOREADSO - reads exhausted overflow. "
os.53="SBALMAX - the maximum no. of active SBALs at the completion of "
os.54=" the write initiation process for the QDIO WRITE priority level."
os.55=" The value range is: Ø-128 (Ø - the priority level had no "
os.56=" outbound activity in the interval; 128 - at one point in the"
os.57=" interval ALL the SBALs for the priority level were active)."
os.58="SBALAVG - the average no. of active SBALs at the completion of "
os.59=" the write initiation process for the QDIO WRITE priority level."
os.6Ø=" This value will be in the range Ø-128 (Ø meaning the priority"
os.61=" level had no outbound activity in the interval and 128"
os.62=" meaning that every time the QDIO write initiator completed,"
os.63=" all 128 SBALs were active). "
os.64="QDPTHMAX- the maximum no. of work elements left on the outbound"
os.65="work queue at the completion of the write initiation process for"
os.66=" the QDIO WRITE priority level. This value will be a no. in"
os.67=" the range Ø-54 or a character constant > 254. "
os.68="QDPTHAVG- the average no. of work elements left on the outbound"
os.69=" work queue at the completion of the write initiation process of"
os.7Ø=" the QDIO WRITE priority level. This value will be in the"
os.71=" range Ø-254 or a character constant >254. A nonzero value for"
os.72=" either of these fields suggests the adapter is not accepting"
os.73=" outbound data as fast as the device driver is presenting it."
Select
 when Totmpc > Ø then do
 "EXECIO * DISKW OSARPT (STEM os.)"
 end
 otherwise do
 opf.1 = 'Total number of OSA-Express records is Ø.'
 opf.2 = 'No report is being produced.'
 "EXECIO * DISKW OSARPT (STEM opf.)"
 end
End
desc.1 = " "
desc.2 = "LEGEND: "
desc.3 = " "
desc.4 = "Cntl - the name of the user-defined channel-attached SNA "
desc.5 = "cluster controller or the name of the channel link that "
desc.6 = "attaches the communication controller for which the stats are"
desc.7 = "gathered. For a VTAM-generated channel-link name, this "
desc.8 = "field contains the channel unit address followed by -L. "
desc.9 = " "
desc.1Ø= "DLRMAX - maximum number of dump-load-restart requests "
desc.11= "that were awaiting processing or were being processed "
desc.12= "at one time during the interval. This number refers "
desc.13= "to the entire domain, not to the SNA controller named "
desc.14= "in the report. "
desc.15= " "
desc.16= "CHWR - the total number of write channel programs issued "
desc.17= "during the interval. "

 54 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

desc.18= " "
desc.19= "CHRD - the total number of read channel programs issued "
desc.2Ø= "to read data. It does not include the read that informs "
desc.21= "the cluster controller to clear its buffers. "
desc.22= " "
desc.23= "ATTN - the total number of attention interrupts received "
desc.24= "from a controller, including the total number of READ "
desc.25= "ATTENTION (RDATN). The NCP raises an attention interrupt when"
desc.26= "data waiting to be sent to VTAM and no channel operation "
desc.27= "is active. "
desc.28= " "
desc.29= "RDATN - the number of times that VTAM, after reading data, "
desc.3Ø= "is requested with an attention to read more data. "
desc.31= "This is a count of the number of times a VTAM read "
desc.32= "operation failed to empty the waiting NCP buffers completely."
desc.33= " "
desc.34= "IPDU - the total number of inbound (to VTAM) PDUs (messages) "
desc.35= "received from this controller. "
desc.36= " "
desc.37= "OPDU - the total number of outbound (from VTAM) PDUs sent "
desc.38= "to this controller. "
desc.39= " "
desc.4Ø= "RDBUF - the total number of read buffers used. "
desc.41= "ie the number of VTAM buffers used for NCP data transfer. "
desc.42= " "
desc.43= "SLODN - the total number of times the controller "
desc.44= "has entered a slowdown condition; for NCP, this is "
desc.45= "the number of times the CWALL buffer threshold has "
desc.46= "been reached. In other words, this state is entered when "
desc.47= "the NCP buffer pool is nearly depleted and prevents "
desc.48= "acceptance of any further messages, either from the network "
desc.49= "or from VTAM. "
desc.5Ø= " "
desc.51= "INLP - the total number of inbound (to VTAM) NLPs "
desc.52= "received from this controller. "
desc.53= " "
desc.54= "ONLP - the total number of outbound (from VTAM) NLPs "
desc.55= "sent to this controller. "
desc.56= " "
desc.57= "BFNLP - the total number of read buffers used for NLPs. "
Select
 when Totsna ¬= Ø then do
 msn.1 = left(' ',1,' ')
 msn.2 = left('Total number of SNA records: ',29) left(Totsna,4)
 "EXECIO * DISKW SNARPT (STEM msn.)"
 "EXECIO * DISKW SNARPT (STEM desc.)"
 end
 otherwise do
 msn.1 = 'Total number of SNA records is Ø.'
 msn.2 = 'No report is being produced.'

 55© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 "EXECIO * DISKW SNARPT (STEM msn.)"
 end
End
lab.1 =" "
lab.2 ="LEGEND: "
lab.3 =" "
lab.4 ="ID - the name of the link for which tuning statistics are "
lab.5 =" being recorded, and is the name specified on the LINE "
lab.6 =" definition statement in the associated channel-attached major "
lab.7 =" node. "
lab.8 ="TYPE - the TCP/IP resource type, which can be one of these: "
lab.9 =" CDLC - Channel data link control "
lab.1Ø =" CLAW - Common link access to work stations "
lab.11 =" CTC - Channel to channel "
lab.12 =" LCS - LAN channel station "
lab.13 =" HYP - Hyper Channel "
lab.14 =" "
lab.15 ="RSIO - the number of READ start I/Os issued. "
lab.16 ="WSIO - the number of WRITE start I/Os issued. "
lab.17 ="INPACKET - the number of inbound TCP/IP packets received. "
lab.18 ="OTPACKET - the number of outbound TCP/IP packets sent. "
lab.19 ="ARPACKET - the average number of TCP/IP packets received. "
lab.2Ø ="AWPACKET - the average number of TCP/IP packets sent. "
lab.21 ="MAXRCVD - the largest TCP/IP packet received. "
lab.22 ="MAXSENT - the largest TCP/IP packet sent. "
lab.23 ="INBYTE - the number of inbound TCP/IP bytes received. "
lab.24 ="OUTBYTE - the number of outbound TCP/IP bytes sent. "
lab.25 ="ARBYTE - the average number of TCP/IP bytes received. "
lab.26 ="AWBYTE - the average number of TCP/IP bytes sent. "
lab.27 =" "
lab.28 ="For CLAW resources only: "
lab.29 =" "
lab.3Ø ="READCCW - the number of READ CCWs used. "
lab.31 ="WRITECCW - the number of WRITE CCWs issued. "
lab.32 ="SIOs R/W - No. of READ/WRITE SIOs. "
lab.33 ="APPEND - the number of WRITE appends done. "
lab.34 ="PCICNT - the number of PCI interrupts received. "
Select
 when Tottcp ¬= Ø then do
 mtn.1 = left(' ',1,' ')
 mtn.2 = left('Total number of TCP records: ',29) left(Tottcp,4)
 "EXECIO * DISKW TCPRPT (STEM mtn.)"
 "EXECIO * DISKW TCPRPT (STEM lab.)"
 end
 otherwise do
 mtn.1 = 'Total number of SNA records is Ø.'
 mtn.2 = 'No report is being produced.'
 "EXECIO * DISKW TCPRPT (STEM mtn.)"
 end
End

 56 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

ctc.1 =" "
ctc.2 ="LEGEND: "
ctc.3 =" "
ctc.4 ="ID - provides the name of the link through which the tuning"
ctc.5 =" statistics are taken. "
ctc.6 ="CHNRM - the number of channel programs issued that VTAM used "
ctc.7 =" to send data to the node on the other side of the adapter."
ctc.8 ="CHMAX - Ø because all channel programs are the same size. "
ctc.9 ="RDBUF - the total number of input bytes transferred "
ctc.1Ø =" during the measurement period. "
ctc.11 ="ATTN - the number of times a channel program is initiated "
ctc.12 =" because the other host has data to send. "
ctc.13 ="TIMERS- the number of times a channel program with write data "
ctc.14 =" is started because the period specified for queuing "
ctc.15 =" channel-to-channel PIUs has expired. "
ctc.16 =" "
ctc.17 ="QDPTH - the number of times a channel program is initiated "
ctc.18 =" because the queue limit has been reached. "
ctc.19 =" This number should be higher than TIMERS. "
ctc.2Ø ="BUFCAP- the number of times a channel program with write data "
ctc.21 =" is initiated because there is enough data to fill the "
ctc.22 =" read buffers of the host on the other end of the "
ctc.23 =" channel. "
ctc.24 ="PRI - the number of times a channel program with write data is"
ctc.25 =" started because a high priority PIU is on the outbound"
ctc.26 =" channel queue; that is, the PIU is running under "
ctc.27 =" transmission priority 2 or is a virtual route pacing response"
ctc.28 ="SLODN - the number of times that this VTAM had channel "
ctc.29 =" programs with write data blocked by a slowdown condition in "
ctc.3Ø =" the other VTAM. "
ctc.31 ="IPIU - the number of inbound PIUs. The average number of PIUs"
ctc.32 =" for each channel program can be calculated from the "
ctc.33 =" sending side as OPIU / (CHNRM + CHMAX). "
ctc.34 ="OPIU - the number of outbound PIUs. The average number of "
ctc.35 =" output PIUs for each channel program with write data can be "
ctc.36 =" calculated as OPIU / (CHNRM + CHMAX). "
ctc.37 ="DLRMAX- indicates the maximum number of dump-load-restart "
ctc.38 =" requests that were awaiting processing or were being "
ctc.39 =" processed at one time during the interval. This number"
ctc.4Ø =" refers to the entire domain, not to the SNA controller"
ctc.41 =" named in the report. "
ctc.42 ="WRBUF - total number of output bytes transferred "
ctc.43 =" during the measurement period. "
Select
 when Totctc > Ø then do
 "EXECIO * DISKW CTCRPT (STEM ctc.)"
 end
 otherwise do
 mcg.1 = 'Total number of CTC records is Ø.'
 mcg.2 = 'No report is being produced.'

 57© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 "EXECIO * DISKW CTCRPT (STEM mcg.)"
 end
End
xcflab.1 =" "
xcflab.2 ="LEGEND: "
xcflab.3 =" "
xcflab.4 ="TRLE - TRLE name "
xcflab.5 ="READ - Number of read records "
xcflab.6 ="WRITE - Number of write records "
xcflab.7 ="R/W - Number of READ/WRITE records "
xcflab.8 ="TSWEEP - The number of sweeps initiated during a time-out"
xcflab.9 ="QSWEEP - The number of sweeps initiated due to excessive "
xcflab.1Ø =" receive queue depth. "
xcflab.11 ="TOKEN - The XCF token MVS assigned to the adjacent VTAM"
xcflab.12 ="INLP - Number of inbound NLPs "
xcflab.13 ="ONLP - Number of outbound NLPs "
xcflab.14 ="NLPBYC - NLP byte count "
xcflab.15 ="NLPBYCO- NLP byte count overflow "
xcflab.16 ="XCF id - XCF identifier "
xcflab.17 ="RDWR - READ/WRITE indicator "
xcflab.18 ="BSIZE - The maximum buffer size supported by the device"
xcflab.19 ="MAXBYTES-number of bytes used in the largest channel
program"
xcflab.2Ø ="RCVD - Number of received bytes "
xcflab.21 ="RCVDO - Receive byte overflow count "
xcflab.22 ="SEND - Sent byte count "
xcflab.23 ="SENDO - Send byte overflow count "
Select
 when Totxcf > Ø then do
 "EXECIO * DISKW XCFRPT (STEM xcflab.)"
 end
 otherwise do
 mcf.1 = 'Total number of XCF records is Ø.'
 mcf.2 = 'No report is being produced.'
 "EXECIO * DISKW XCFRPT (STEM mcf.)"
 end
End
 /* Close & free all allocated files */
 "EXECIO Ø DISKR SMF5Ø (FINIS"
 "EXECIO Ø DISKR SNARPT (FINIS"
 "EXECIO Ø DISKR TCPRPT (FINIS"
 "EXECIO Ø DISKR CTCRPT (FINIS"
 "EXECIO Ø DISKR XCFRPT (FINIS"
 "EXECIO Ø DISKR MPCRPT (FINIS"
 "EXECIO Ø DISKR OSARPT (FINIS"
 say "Channel-to-Channel Adapters report" r5Øctc
 say "Multipath Channel Connections: XCF report" r5Øxcf
 say "Multipath Channel Connections: MPC report" r5Ømpc
 say "Multipath Channel Connections: OSA-E report .." r5Øosa
 say "TCP Connections report" r5Øtcp

 58 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 say "SNA Controllers report........................" r5Øsna
 "FREE FILE(SMF5Ø SNARPT TCPRPT CTCRPT XCFRPT MPCRPT OSARPT)"
 EXIT Ø
SMF5Ø_header:
 /* Part 2: Basic section of tuning statistics records */
smf5Øtme = smf(c2d(substr(header,Ø3,Ø4))) /* Time record was written */
smf5Ødte = substr(c2x(substr(header,Ø7,Ø4)),3,5)
 /* Date record was written */
smf5Øsid = substr(header,11,Ø4) /* System Identification */
SMF_date = left(Date('N',smf5Ødte,'J'),11)
smf5Ørty = substr(rest,47,2) /* Record subtype */
 Select
 when smf5Ørty = "Ø1" then call VTAM_CTC
 when smf5Ørty = "Ø2" then call VTAM_MPC
 when smf5Ørty = "Ø3" then call VTAM_TCP
 when smf5Ørty = "Ø4" then call VTAM_SNA
 otherwise nop
 End /* of select */
return
VTAM_CTC:
 /* Ø1: Tuning Statistics for Channel-to-Channel Adapters */
Totctc = Totctc +1
 /* Print CTCA report header */
Select
 when Totctc = 1 then do
 "EXECIO * DISKW CTCRPT (STEM cdr.)"
 end
 otherwise nop
End
Select
 when timc = smf5Øtme then linc = left(' ',8,' ')
 otherwise linc = left(smf5Øtme,8)
End
 PARSE var rest
ctcactc = substr(rest,1,8) /* CTCA name (ID) */
ctcadlr = c2d(substr(rest,9,4)) /* Dump-Load*Restart*request count */
ctcachn = c2d(substr(rest,13,4)) /*Normal-sized ch. pgm. count (CHNRM)*/
ctcachl = c2d(substr(rest,17,4)) /*Large-sized ch. pdm. count (CHMAX) */
ctcaatr = c2d(substr(rest,21,4)) /* Attentions (total) (ATTN) */
ctcawbf = c2d(substr(rest,25,4)) /* No. of write buffers used(WRBUF)*/
ctcaipi = c2d(substr(rest,29,4)) /* No. of PIUs inbound (IPIU) */
ctcaopi = c2d(substr(rest,33,4)) /* No. of PIUs outbound (OPIU) */
ctcardb = c2d(substr(rest,37,4)) /* Total input bytes used (RDBUF) */
ctcaslw = c2d(substr(rest,41,4)) /* No. of slowdowns (SLODN) */
ctcaex1 = c2d(substr(rest,45,1)) /* CTCA extension length */
ctcacat = c2d(substr(rest,46,1)) /* CTCA attachment type */
ctcattg = c2d(substr(rest,49,4))
 /*Ch.pgm starts - timer (TIMERS) trigger*/
ctcaqdp = c2d(substr(rest,53,4)) /*Ch.pgm starts - queue depth (QDPTH)*/
ctcabcy = c2d(substr(rest,57,4))

 59© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 /* Ch.pgm starts - dest.capacity (BUFCAP)*/
ctcapri = c2d(substr(rest,61,4)) /*Ch.pgm starts - high priority (PRI)*/
ctca.1 = right(Date('N',smf5Ødte,'J'),11) linc,
 left(ctcactc,8) right(ctcachn,8) ,
 right(ctcachl,8) right(ctcardb,8) ,
 right(ctcaatr,6) right(ctcattg,6) ,
 right(ctcaqdp,6) right(ctcabcy,6) ,
 right(ctcapri,6) right(ctcaslw,6) ,
 right(ctcaipi,8) right(ctcaopi,8) ,
 right(ctcadlr,6) right(ctcawbf,6)
 "EXECIO * DISKW CTCRPT (STEM ctca.)"
 timc = smf5Øtme
 /* The average number of PIUs during the interval */
Select
 when ctcaipi > Ø then aipi =avg(ctcaipi) /* Avg.no. IPIU */
 otherwise aipi = ' '
End
Select
 when ctcaopi > Ø then aopi =avg(ctcaopi) /* Avg.no. OPIU */
 otherwise aopi = ' '
End
 /* The average no. of bytes transferred per I/O operation */
Select
 when ctcardb > Ø then avgioby = format((ctcardb/ctcachn),5,3)
 otherwise avgioby = ' '
End
timesum = ctcattg + ctcaqdp + ctcabcy + ctcapri
timesum1= ctcattg + ctcaqdp + ctcabcy
Select
 when ctcachn > Ø then CØØ = format((ctcachn/timesum),5,3)
 otherwise CØØ = ''
End
Select
 when ctcattg = Ø then CØ1 = 'Heavy session traffic'
 otherwise CØ1 = 'Light session traffic'
End
Select
 when ctcapri > timesum1 then CØ2 = 'Outbound coattailing decreasing'
 otherwise CØ2 = ' '
End
/* Find the average number of output PIUs for each channel */
/* program with write data. */
CØ3 = ctcaopi/(ctcachn + ctcachl)
/* Print performance notes */
perc.1 = left('Performance notes ',2Ø),
 left('Send data index:',16) left(CØØ,6)
perc.2 = left(' ',2Ø,' ') left('Sess.traffic:',16) left(CØ1,3Ø)
perc.3 = left(' ',2Ø,' ') left('Coattailing:',16) left(CØ2,3Ø)
perc.4 = left(' ',2Ø,' ') left('Avg.I/O bytes :',16) left(avgioby,9)
perc.5 = left(' ',2Ø,' ') left('Avg.I/O weight:',16) left(CØ3,7)

 60 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

perc.6 = left(' ',2Ø,' ') left('Avg. IPIU :',16) left(aipi,7)
perc.7 = left(' ',2Ø,' ') left('Avg. OPIU :',16) left(aopi,7)
perc.8 = left(' ',2Ø,' ')
Select
 when ctcachn > Ø then do
 "EXECIO * DISKW CTCRPT (STEM perc.)"
 end
 otherwise nop
End
return
VTAM_TCP:
 /* Ø3: Tuning Statistics for TCP Connections */
 Tottcp = Tottcp +1
 /* Print TCP/IP report header */
Select
 when Tottcp = 1 then do
 "EXECIO * DISKW TCPRPT (STEM hdd.)"
 end
 otherwise nop
End
Select
 when time = smf5Øtme then line = left(' ',8,' ')
 otherwise line = left(smf5Øtme,8)
End
 PARSE var rest
tcpiplne = substr(rest,1,8) /* TCP line name */
tcpipcwr = c2d(substr(rest,13,4)) /* No.of write channel pgm. */
tcpipcrd = c2d(substr(rest,17,4)) /* No.of read channel pgm. */
tcpipatn = c2d(substr(rest,21,4)) /* Attentions (total) */
tcpipmsn = c2d(substr(rest,25,4)) /*Largest outbound packet sent*/
tcpipmrc = c2d(substr(rest,29,4)) /* Largest packet received */
tcpipex3 = c2d(substr(rest,45,1)) /* Extension length */
tcpippui = c2d(substr(rest,65,4)) /* Inbound packet count */
tcpippuo = c2d(substr(rest,69,4)) /* Outbound packet count */
tcpipbyi = c2d(substr(rest,73,4)) /* Inbound byte count */
tcpipbyj = c2d(substr(rest,77,4)) /*Inbound byte count, overflow*/
tcpipbyo = c2d(substr(rest,81,4)) /* Outbound byte count */
tcpipbyk = c2d(substr(rest,85,4)) /*Outbound byte count, overflow*/
tcpipleg = c2d(substr(rest,89,1)) /* TCP legacy type */
 Select
 when tcpipleg = 16 then legacy = 'CTC'
 when tcpipleg = 32 then legacy = 'LCS'
 when tcpipleg = 48 then do
 legacy = 'CLAW'
 tcpipint = c2d(substr(rest,94,4)) /* No. of PCI interrupts */
 tcpiprcc = c2d(substr(rest,98,4)) /* No. of READ CCWs completed*/
 tcpipwcc = c2d(substr(rest,1Ø2,4)) /*No. of WRITE CCWs completed*/
 tcpipwap = c2d(substr(rest,1Ø6,4)) /* No. of WRITE appends */
 tcpiprws = c2d(substr(rest,11Ø,4)) /* No. of READ/WRITE SIOs */
 end

 61© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 when tcpipleg = 64 then legacy = 'CDLC'
 when tcpipleg = 8Ø then legacy = 'HYPER'
 when tcpipleg = 96 then legacy = 'SameHost'
 otherwise nop
 End /* of select */
 /* Calculate the average per second */
 arpacket = avg(tcpippui) /* avg. no of TCP/IP packets received */
 awpacket = avg(tcpippuo) /* avg. no.of TCP/IP packets sent */
 arbyte = avg(tcpipbyi) /* avg. no.of TCP/IP bytes received */
 awbyte = avg(tcpipbyo) /* avg. no.of TCP/IP bytes sent */
tcp.1 = right(Date('N',smf5Ødte,'J'),11) line,
 left(tcpiplne,8) left(legacy,6) ,
 right(tcpipatn,4) right(tcpipcrd,8),
 right(tcpipcwr,8) right(tcpippui,8),
 right(tcpippuo,8) right(arpacket,8),
 right(awpacket,8) right(tcpipmrc,8),
 right(tcpipmsn,8) right(tcpipbyi,8),
 right(tcpipbyo,8) right(arbyte,8) ,
 right(awbyte,8)
 "EXECIO * DISKW TCPRPT (STEM tcp.)"
 time = smf5Øtme
claw.1 = left('Additional info:',16),
 left('READCCW: ',8) right(tcpiprcc,8)
claw.2 = left(' ',16,' ') left('WRITECCW: ',1Ø) right(tcpipwcc,8)
claw.3 = left(' ',16,' ') left('SIOs R/W: ',1Ø) right(tcpiprws,8)
claw.4 = left(' ',16,' ') left('APPEND: ',1Ø) right(tcpipwap,8)
claw.5 = left(' ',16,' ') left('PCIICNT: ',1Ø) right(tcpipint,8)
 Select
 when tcpipleg = 48 then do
 "EXECIO * DISKW TCPRPT (STEM claw.)"
 end
 otherwise nop
 End
return
VTAM_SNA:
 /* Ø4: Tuning Statistics for SNA Controllers */
 Totsna = Totsna +1
 /* Print SNA report header */
Select
 when Totsna = 1 then do
 "EXECIO * DISKW SNARPT (STEM hdr.)"
 end
 otherwise nop
End
 PARSE var rest
snaØ4nme = substr(rest,1,8) /* Locally attchd intelligent controller */
snaØ4dlr = c2d(substr(rest,9,4)) /* Dump-Load*Restart*request count */
snaØ4cwr = c2d(substr(rest,13,4)) /* No.of write channel programs */
snaØ4crd = c2d(substr(rest,17,4)) /* No.of read channel programs */
snaØ4atn = c2d(substr(rest,21,4)) /* Attentions (total) */

 62 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

snaØ4atr = c2d(substr(rest,25,4)) /* Attentions on read */
snaØ4pui = c2d(substr(rest,29,4)) /* Pio's inbound */
snaØ4puo = c2d(substr(rest,33,4)) /* Pio's outbound */
snaØ4buf = c2d(substr(rest,37,4)) /* Read buffers used */
snaØ4sld = c2d(substr(rest,41,4)) /* Times NCP entered slowdown */
snaØ4ex4 = c2d(substr(rest,45,1)) /* Extension length */
snaØ4inl = c2d(substr(rest,69,4)) /* No. of inbound NLPs (INLP) */
snaØ4onl = c2d(substr(rest,73,4)) /* No. of outbound NLPs (ONLP) */
snaØ4rnl = c2d(substr(rest,77,4)) /* No. of NLP read buffers */
/* Compare the number of attention interrupts with */
/* channel READs (AØ1) - inbound coattailing. */
Select
 when snaØ4atn = Ø then AØ1 =' '
 when snaØ4atn > snaØ4crd then AØ1 ='A normal condition'
 when snaØ4atn = snaØ4crd then AØ1 ='CPU util.overhead '
 otherwise AØ1 ='CPU util.increased'
End
Select
 when snaØ4atn > Ø then Incoix = format((snaØ4atn/snaØ4crd),5,3)
 otherwise Incoix = ' '
End
/* The inbound coattailing index (BØ1) */
Select
 when snaØ4pui > Ø then Icx = format((snaØ4pui/snaØ4crd),5,3)
 otherwise Icx ='Ø'
End
/* Analyse IOBUF size (AØ2) */
Select
 when snaØ4buf = Ø then AØ2 = ' '
 when snaØ4buf > (2*snaØ4pui) then AØ2 = 'IOBUF too small'
 when snaØ4buf = snaØ4pui then AØ2 = 'IOBUF too large'
 otherwise AØ2 = ' '
End
/* Analyse data transfer operations (AØ3) VTAM <----> SNA */
Inbdt = MAXBFRU*snaØ4crd /* inbound data transfer */
/* pkk is a ratio of Inbound data transfer and the number */
/* of channel READs. It should be close to 1. Otherwise, */
/* data is not being transferred for all the channel */
/* command words (CCWs) in the read channel program. */
Select
 when snaØ4buf > Ø then pkk = format((Inbdt/snaØ4buf),5,3)
 otherwise pkk ='Ø'
End
Select
 when snaØ4buf < Inbdt then AØ3 = 'MAXBFRU too large '
 otherwise AØ3 = ' '
End
/* Examine the read attention (RDATN) information (AØ4) */
Select
 when snaØ4atr = Ø then AØ4 = 'MAXBFRU or IOBUF too large'

 63© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 when snaØ4atr > (snaØ4crd*Ø.1) then AØ4 = 'MAXBFRU or IOBUF too small'
 otherwise AØ4 = ' '
End
/* The read attention (RDATN) index */
K = snaØ4crd*Ø.1
Select
 when snaØ4atr = Ø then readix = snaØ4atr
 when snaØ4atr > (snaØ4crd*Ø.1) then readix = format((snaØ4atr/k),5,3)
 otherwise readix =' '
end
/* Analyse the outbound data transfer operation (AØ5) - */
/* the outbound coattailing index */
Select
 when snaØ4puo > snaØ4cwr then AØ5 = 'VTAM using cpu cycles blockage'
 otherwise AØ5 = ' '
End
Select
 when snaØ4puo > Ø then Ocx = format((snaØ4puo/snaØ4cwr),5,3)
 otherwise Ocx ='Ø'
End
/* NCP slowdown (AØ6) */
Select
 when snaØ4sld > Ø then aØ6 = 'NCP delay parameter is too high'
 otherwise AØ6 = ' '
End
/* I/O index (read vs write: AØ7) */
Select
 when snaØ4crd > Ø then AØ7 = format((snaØ4crd/snaØ4cwr),5,3)
 otherwise AØ7 = ' '
End
 Select
 when tims = smf5Øtme then lins = left(' ',8,' ')
 otherwise lins = left(smf5Øtme,8)
 End
sna.1 = right(Date('N',smf5Ødte,'J'),11) lins,
 left(snaØ4nme,9) right(snaØ4dlr,4),
 right(snaØ4cwr,6) right(snaØ4crd,6),
 right(snaØ4atn,6) right(snaØ4atr,6),
 right(snaØ4pui,6) right(snaØ4puo,6),
 right(snaØ4buf,6) right(snaØ4sld,6),
 right(snaØ4inl,6) right(snaØ4onl,6),
 right(snaØ4rnl,6)
 "EXECIO * DISKW SNARPT (STEM sna.)"
drop sna.
 tims = smf5Øtme
/* Print performance notes */
perf.1 = left('Performance notes ',2Ø),
 left('CPU impact:',11) left(Incoix,9) left(' - ',3),
 left(AØ1,18)
perf.2 = left(' ',2Ø,' ') left('In coat.ix:',11) left(Icx,9)

 64 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

perf.3 = left(' ',2Ø,' ') left('VTAM block:',11) left(Ocx,9),
 left(' - ',3) left(AØ5,3Ø)
perf.4 = left(' ',2Ø,' ') left('I/O index:',11) left(AØ7,9)
perf.5 = left(' ',2Ø,' ') left('IOBUF size:',12) left(AØ2,4Ø)
perf.6 = left(' ',2Ø,' ') left('Transfer:',11) left(pkk,9),
 left(' - ',3) left(AØ3,3Ø)
perf.7 = left(' ',2Ø,' ') left('Read attn:',12) left(AØ4,5Ø)
perf.8 = left(' ',2Ø,' ') left('NCP Slow:',12) left(AØ6,5Ø)
perf.9 = left(' ',2Ø,' ')
Select
 when snaØ4buf ¬= Ø then do
 "EXECIO * DISKW SNARPT (STEM perf.)"
 end
 otherwise nop
End
return
VTAM_MPC:
 /* Ø2: Multipath Channel Connections */
 /* Customization is needed here: */
 /* replace the 'xcfoff' by extension length pertaining to */
 /* subtype Ø2. The value of extension length you have just */
 /* got displayed by ICETOOL in a previous step. */
End
 PARSE var rest
 smf5Øex2 = c2d(substr(rest,45,1)) /* Extension length */
 Select
 when smf5Øex2 = "xcfoff" then call MPC_XCF
 otherwise call MPC_CHC
 End /* of select */
return
MPC_XCF:
 /* Ø2: Multipath Channel Connections using XCF */
Totxcf = Totxcf + 1
 /* Print MPC XCF report header */
Select
 when Totxcf = 1 then do
 "EXECIO * DISKW XCFRPT (STEM xdr.)"
 end
 otherwise nop
End
 Select
 when timx = smf5Øtme then linx = left(' ',8,' ')
 otherwise linx = left(smf5Øtme,8)
 End
 PARSE var rest
xcf5Øtrl = substr(rest,1,8) /* TRLE name */
xcf5Ømvs = c2d(substr(rest,13,8)) /* MVS token */
xcf5Øexx = c2d(substr(rest,45,1)) /* Extension length */
xcf5Øctc = c2d(substr(rest,46,1)) /* CTCA attachment type */
smf5Ørty = substr(rest,47,2) /* Record subtype

 65© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

/* ------------ common: first and next record --------*/
xcf5Øxyi = c2d(substr(rest,77,4)) /* Number of inbound NLPs (INLP) */
xcf5Øxyj = c2d(substr(rest,81,4)) /* Number of outbound NLPs (ONLP) */
xcf5Øxyo = c2d(substr(rest,85,4)) /* NLP byte count */
xcf5Øxyk = c2d(substr(rest,89,4)) /* NLP byte count overflow */
 Select
 when xcf5Øctc = 1 then call XCF_first
 when xcf5Øctc = 3 then call XCF_next
 otherwise nop
 End
return
XCF_first:
 /* Ø2: Multipath Channel Connections using XCF - group summ */
 PARSE var rest
xcf5Øfts = c2d(substr(rest,21,4)) /* Number of timer sweeps */
xcf5Øfqs = c2d(substr(rest,25,4)) /* Number of queue sweeps */
xcf5Øfnw = c2d(substr(rest,29,4)) /* Number of write records */
xcf5Øfnr = c2d(substr(rest,33,4)) /* Number of read records */
xcf5Øfrw = c2d(substr(rest,37,4)) /* Number of READ/WRITE rec.s */
 /* The 1st record contains stat for the entire XCF group */
xcff.1 = right(Date('N',smf5Ødte,'J'),11) linx,
 left(xcf5Øtrl,8) , /* TRLE name */
 right(xcf5Øfnr,8) , /* Number of read rec. */
 right(xcf5Øfnw,8) , /* Number of write rec. */
 right(xcf5Øfrw,8), /* No.of READ/WRITE rec. */
 right(xcf5Øfts,6) , /* TSWEEP */
 right(xcf5Øfqs,6) , /* QSWEEP */
 right(xcf5Ømvs,1Ø), /* TOKEN */
 right(xcf5Øxyi,8) , /* INLP */
 right(xcf5Øxyj,8) , /* ONLP */
 right(xcf5Øxyo,8) , /* NLP byte count */
 right(xcf5Øxyk,8) /* NLP byte count overflw*/
 "EXECIO * DISKW XCFRPT (STEM xcff.)"
 timx = smf5Øtme
 drop xcff.
return
XCF_next:
 /* Ø2: Multipath Channel Connections using XCF - next rec */
 PARSE var rest
xcf5Ønrb = c2d(substr(rest,21,4)) /* Number of received bytes*/
xcf5Ønbo = c2d(substr(rest,25,4)) /* Receive byte overflow */
xcf5Ønxc = substr(rest,29,4) /* XCF identifier */
xcf5Ønbz = c2d(substr(rest,33,4)) /* Transmit block size */
xcf5Ønrw = substr(rest,37,4) /* READ/WRITE indicator */
xcf5Ønsb = c2d(substr(rest,41,4)) /* Sent byte count */
xcf5Ønso = c2d(substr(rest,49,4)) /* Send byte overflow count*/
xcf5Ønxz = c2d(substr(rest,61,4)) /* Max transmit size */
 /* The 2nd record contains stats for the READ/WRITE subchannel*/
xcfn.1 = left('Subchannel R/W data:',2Ø) left('XCF id.',8),
 left(xcf5Ønxc,5) left('RDWR: ',8) left(xcf5Ønrw,5)

 66 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

xcfn.2 = left(' ',2Ø,' ') left('BSIZE: ',8) right(xcf5Ønbz,7)
xcfn.3 = left(' ',2Ø,' ') left('MAXBYTES',8) right(xcf5Ønxz,7)
xcfn.4 = left(' ',2Ø,' ') left('RCVD:',8) right(xcf5Ønrb,7)
xcfn.5 = left(' ',2Ø,' ') left('RCVDO:',8) right(xcf5Ønbo,7)
xcfn.6 = left(' ',2Ø,' ') left('SEND:',8) right(xcf5Ønsb,7)
xcfn.7 = left(' ',2Ø,' ') left('SENDO:',8) right(xcf5Ønso,7)
xcfn.8 = left(' ',2Ø,' ') left('INLP :',8) right(xcf5Øxyi,7)
xcfn.9 = left(' ',2Ø,' ') left('ONLP :',8) right(xcf5Øxyj,7)
xcfn.1Ø= left(' ',2Ø,' ') left('NLPBC:',8) right(xcf5Øxyo,7)
xcfn.11= left(' ',2Ø,' ') left('NLPBCO:',8) right(xcf5Øxyk,7)
xcfn.12= left(' ',2Ø,' ')
 "EXECIO * DISKW XCFRPT (STEM xcfn.)"
drop xcfn.
return
MPC_CHC:
 /* Ø2.Multipath Channel Connections (MPC and OSA-E) */
 PARSE var rest
ctcatyp = c2d(substr(rest,46,1)) /* CTCA attachment type */
 Select
 when ctcatyp = 1 then call MPC_group
 when ctcatyp = 2 then call MPC_chan
 when ctcatyp = 4 then call MPC_osae
 otherwise nop
 End
return
MPC_group:
 /* Ø2.Multipath Channel Connections (MPC and OSA-E) group */
 PARSE var rest
mpc_line = substr(rest,1,8) /* MPC line name */
dlrmax = c2d(substr(rest,9,4)) /* Dump-Load*Restart*request count */
ipiu = c2d(substr(rest,13,4)) /* No.of inbound PIUs */
opiu = c2d(substr(rest,17,4)) /* No.of outbound PIUs */
tsweep = c2d(substr(rest,21,4)) /* No.of timer sweeps */
qsweep = c2d(substr(rest,25,4)) /* No.of queue sweeps */
wrrec = c2d(substr(rest,29,4)) /* No.of write records */
readrec = c2d(substr(rest,33,4)) /* No.of read records */
inlp = c2d(substr(rest,77,4)) /* Number of inbound NLPs (INLP) */
onpl = c2d(substr(rest,81,4)) /* Number of outbound NLPs (ONLP) */
nbytect = c2d(substr(rest,85,4)) /* NLP byte count */
nbytecto = c2d(substr(rest,89,4)) /* NLP byte count overflow */
nosasec = c2d(substr(rest,93,4)) /* No. of OSA-E datapath queues */
 /* The 1st record contains stat for the entire group */
 /* for both types of connections (MPC Channel and MPC OSA-E) */
mpcgr.1 = left('Statistics for the entire MPC group',5Ø),
 right(Date('N',smf5Ødte,'J'),11)
mpcgr.2 = left('MPC line name: ',22) left(mpc_line,8)
mpcgr.3 = left('Dump*Load*Restart: ',22) right(dlrmax,7)
mpcgr.4 = left('Number of read rec.:',22) right(readrec,8)
mpcgr.5 = left('Number of write rec.:',22) right(wrrec,8)
mpcgr.6 = left('TSWEEP:',22) right(tsweep,6,)

 67© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

mpcgr.7 = left('QSWEEP:',22) right(qsweep,6)
mpcgr.8 = left('INLP :',22) right(ipiu,8)
mpcgr.9 = left('ONLP :',22) right(opiu,8)
mpcgr.1Ø= left('NLP byte count: ',22) right(nbytect,8)
mpcgr.11= left('NLP byte count over: ',22) right(nbytecto,8)
mpcgr.12= left(' ',2,' ')
return
MPC_chan:
 /* Ø2.Multipath Channel Connections - the subsequent rec. */
 /* CTCA attachment type is X'Ø2' */
Totmpc = Totmpa + 1;
 PARSE var rest
mpc_line = substr(rest,1,8) /* MPC line name */
dlrmax = c2d(substr(rest,9,4)) /* Dump*Load*Restart request count */
devadr = substr(rest,29,4) /* Device address */
bsize = c2d(substr(rest,33,4)) /* Transmit block size */
dir = substr(rest,37,4) /* Subchannel polarity */
bytecnt = c2d(substr(rest,41,4)) /* Transmit byte count */
bytecnto = c2d(substr(rest,49,4)) /* Overflow byte count */
slowdown = c2d(substr(rest,53,4)) /* Slowdown frequency */
sio = c2d(substr(rest,57,4)) /* No.of SIO issued */
maxbytes = c2d(substr(rest,61,4)) /* Max transmit size */
inlp = c2d(substr(rest,77,4)) /* Number of inbound NLPs (INLP) */
onpl = c2d(substr(rest,81,4)) /* Number of outbound NLPs (ONLP) */
nbytect = c2d(substr(rest,85,4)) /* NLP byte count */
nbytecto = c2d(substr(rest,89,4)) /* NLP byte count overflow */
 /* The subsequent records contain statistics for each write*/
 /* and read subchannel. */
mpchn.1 = left('Statistics for each read and write subchannel',7Ø)
mpchn.2 = left('MPC line name: ',22) left(mpc_line,8)
mpchn.3 = left('Dump*Load*Restart: ',22) right(dlrmax,7)
mpchn.4 = left('Device address :',22) right(devadr,8)
mpchn.5 = left('Subchannel polarity :',22) right(dir,8)
mpchn.6 = left('Transmit block size : ',22) right(bsize,6)
mpchn.7 = left('Transmit byte count :',22) right(bytecnt,8)
mpchn.8 = left('Overflow byte count :',22) right(bytecnto,8)
mpchn.9 = left('Slowdown frequency :',22) right(slowdown,8)
mpchn.1Ø= left('No.of SIO issued :',22) right(sio,8)
mpchn.11= left('Max transmit size :',22) right(maxbytes,8
mpchn.12= left('INLP :',22) right(ipiu,8)
mpchn.13= left('ONLP :',22) right(opiu,8)
mpchn.14= left('NLP byte count: ',22) right(nbytect,8)
mpchn.15= left('NLP byte count over: ',22) right(nbytecto,8)
 /* Print MPC group stat first and then statistics */
 /* for each read and write of subchannel. */
 "EXECIO * DISKW MPCRPT (STEM mpcgr.)"
 "EXECIO * DISKW MPCRPT (STEM mpchn.)"
drop mpcgr.
return
MPC_osae:

 68 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 /* Ø2.Multipath Channel OSA-Express Connections. */
 /* CTCA attachment type is X'Ø4'. */
 /* Statistics for each OSA-Express datapath queue. */
 /* Print the 1st record which contains stat for the entire */
 /* group (connections type is: MPC OSA-E. */
 Totosa = Totosa + 1;
"EXECIO * DISKW OSARPT (STEM mpcgr.)"
drop mpcgr.
 PARSE var rest
dir = substr(rest,37,4) /* Subchannel polarity */
 Select
 when dir = "READ" then call MPC_osaer
 otherwise call MPC_osaew
 End
return
MPC_osaer:
 /* Statistics for OSA-Express READ datapath queue. */
 PARSE var rest
mpc_line = substr(rest,1,8) /* MPC line name */
dlrmax = c2d(substr(rest,9,4)) /* Dump*Load*Restart request count */
dir = substr(rest,37,4) /* Subchannel polarity */
bytecnt = c2d(substr(rest,41,4)) /* Transmit byte count */
bytecnto = c2d(substr(rest,49,4)) /* Overflow byte count */
inlp = c2d(substr(rest,77,4)) /* Number of inbound NLPs (INLP) */
onpl = c2d(substr(rest,81,4)) /* Number of outbound NLPs (ONLP) */
nbytect = c2d(substr(rest,85,4)) /* NLP byte count */
nbytecto = c2d(substr(rest,89,4)) /* NLP byte count overflow */
pcirealo = c2d(substr(rest,97,4)) /* Real PCI overflow */
pcireal = c2d(substr(rest,1Ø1,4)) /* Real PCI count */
pcivirto = c2d(substr(rest,1Ø5,4)) /* Virtual PCI overflow */
pcivirt = c2d(substr(rest,1Ø9,4)) /* Virtual PCI count */
pcithrso = c2d(substr(rest,113,4)) /* Threshold PCI overflow */
pcithrsh = c2d(substr(rest,117,4)) /* Threshold PCI count */
pciunpro = c2d(substr(rest,121,4)) /* Unproductive PCI overflow */
pciunprd = c2d(substr(rest,125,4)) /* Unproductive PCI count */
rprocdeo = c2d(substr(rest,129,4)) /* Processing deferrals overflow */
rprocdef = c2d(substr(rest,133,4)) /* Processing deferrals */
rrepldeo = c2d(substr(rest,137,4)) /* Replenishment deferrals overflow*/
rrepldef = c2d(substr(rest,141,4)) /* Replenishment deferrals */
noreadso = c2d(substr(rest,145,4)) /* Reads exhausted overflow */
noreads = c2d(substr(rest,149,4)) /* Reads exhausted */
sbalcnto_r c2d(substr(rest,143,4)) /* Storage Block Addr.list count
overflow */
sbalcnt_r= c2d(substr(rest,147,4)) /* Storage Block Addr.list count */
packcnto = c2d(substr(rest,151,4)) /* Packet count overflow */
packcnt = c2d(substr(rest,155,4)) /* Packet count */
 /* Print statistics for OSA-Express READ datapath queue. */
osarh.1 = left('Statistics for OSA-Express READ datapath queue',7Ø)
osarh.2 = left('MPC line name: ',22) left(mpc_line,8)
osarh.3 = left('Dump*Load*Restart: ',22) right(dlrmax,7)

 69© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

osarh.4 = left('Subchannel polarity:',22) right(dir,4)
osarh.5 = left('Transmit byte count: ',22) right(bytecnt,7)
osarh.6 = left('Overflow byte count:',22) right(bytecnto,7)
osarh.7 = left('No.of inbound NLPs: ',22) right(inlp,7)
osarh.8 = left('No.of outbound NLPs:',22) right(onpl,7)
osarh.9 = left('NLP byte count :',22) right(nbytect,7) ,
 left('Overflow :',1Ø) right(nbytecto,7)
osarh.1Ø= left('Real PCI count:',22) right(pcireal,7) ,
 left('Overflow: ',1Ø) right(pcirealo,7)
osarh.11= left('Virtual PCI count :',22) right(pcivirt,7) ,
 left('Overflow: ',1Ø) right(pcivirto,7)
osarh.12= left('Threshold PCI count: ',22) right(pcithrsh,7) ,
 left('Overflow: ',1Ø) right(pcithrso,7)
osarh.13= left('Unproductive PCI count: ',22) right(pciunprd,7) ,
 left('Overflow:',1Ø) right(pciunpro,7)
osarh.14= left('Processing deferrals: ',22) right(rprocdef,7) ,
 left('Overflow:',1Ø) right(rprocdeo,7)
osarh.15= left('Replenishment deferrals: ',22) right(rrepldef,7) ,
 left('Overflow: ',1Ø) right(rrepldeo,7)
osarh.16= left('Reads exhausted: ',22) right(noreads,7) ,
 left('Overflow: ',1Ø) right(noreadso,7)
osarh.17= left('SBAL count: ',22) right(sbalcnt_r,7),
 left('Overflow: ',1Ø) right(sbalcnto_r,7)
osarh.18= left('Packet count: ',22) right(packcnt,7) ,
 left('Overflow: ',1Ø) right(packcnto,7)
osarh.19= left(' ',1,' ')
"EXECIO * DISKW OSARPT (STEM osarh.)"
drop osarh.
return
MPC_osaew:
 /* Statistics for OSA-Express WR/x datapath queue. */
 PARSE var rest
mpc_line = substr(rest,1,8) /* MPC line name */
dlrmax = c2d(substr(rest,9,4)) /* Dump*Load*Restart request count */
dir = substr(rest,37,4) /* Subchannel polarity */
bytecnt = c2d(substr(rest,41,4)) /* Transmit byte count */
bytecnto = c2d(substr(rest,49,4)) /* Overflow byte count */
inlp = c2d(substr(rest,77,4)) /* Number of inbound NLPs (INLP) */
onpl = c2d(substr(rest,81,4)) /* Number of outbound NLPs (ONLP) */
nbytect = c2d(substr(rest,85,4)) /* NLP byte count */
nbytecto = c2d(substr(rest,89,4)) /* NLP byte count overflow */
sbalmax = c2d(substr(rest,97,4)) /* Maximum Storage Block Addr.lists*/
sbalavg = c2d(substr(rest,1Ø1,4)) /* Average Storage Block Addr.lists*/
qdpthmax = c2d(substr(rest,1Ø5,4)) /* Maximum queue depth */
qdpthavg = c2d(substr(rest,1Ø9,4)) /* Average queue depth */
sigacnto = c2d(substr(rest,113,4)) /* Signal Adapter overflow */
sigacnt = c2d(substr(rest,117,4)) /* Signal Adapter count */
sbalcnto_w=c2d(substr(rest,121,4)) /* Storage Block Addr.list cnt.ovfl*/
sbalcnt_w= c2d(substr(rest,125,4)) /* Storage Block Addr.list count */
packcnto = c2d(substr(rest,129,4)) /* Packet count overflow */

 70 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

packcnt = c2d(substr(rest,133,4)) /* Packet count */
 /* Print statistics for OSA-Express WR/x datapath queue. */
osawh.1 = left('Statistics for OSA-Express WR/x datapath queue',7Ø)
osawh.2 = left('MPC line name: ',22) left(mpc_line,8)
osawh.3 = left('Dump*Load*Restart: ',22) right(dlrmax,7)
osawh.4 = left('Subchannel polarity:',22) right(dir,4)
osawh.5 = left('Transmit byte count: ',22) right(bytecnt,7)
osawh.6 = left('Overflow byte count:',22) right(bytecnto,7)
osawh.7 = left('No.of inbound NLPs: ',22) right(inlp,7)
osawh.8 = left('No.of outbound NLPs:',22) right(onpl,7)
osawh.9 = left('NLP byte count :',22) right(nbytect,7) ,
 left('Overflow :',1Ø) right(nbytecto,7)
osawh.1Ø= left('Maximum SBAL :',22) right(sbalmax,7)
osawh.11= left('Average SBAL :',22) right(sbalavg,7)
osawh.12= left('Maximum queue depth: ',22) right(qdpthmax,7)
osawh.13= left('Average queue depth: ',22) right(dpthavg,7)
osawh.14= left('Signal Adapter count :',22) right(sigacnt,7) ,
 left('Overflow: ',1Ø) right(sigacnto,7)
osawh.15= left('Storage Block Addr.list :',22) right(sbalcnt_w,7),
 left('Overflow: ',1Ø) right(sbalcnto_w,7)
osawh.16= left('Packet count : ',22) right(packcnt,7) ,
 left('Overflow: ',1Ø) right(packcnto,7)
osawh.17= left(' ',1,' ')
"EXECIO * DISKW OSARPT (STEM osawh.)"
drop osawh.
return
SMF: procedure
 /* REXX - convert a SMF time to hh:mm:ss:hd format */
arg time
time1 = time % 1ØØ
 hh = time1 % 36ØØ; hh = right("Ø"||hh,2)
 mm = (time1 % 6Ø) - (hh * 6Ø); mm = right("Ø"||mm,2)
 ss = time1 - (hh * 36ØØ) - (mm * 6Ø); ss = right("Ø"||ss,2)
 fr = time // 1ØØØ; fr = right("Ø"||fr,2)
rtime = hh||":"||mm||":"||ss||":"||fr
return rtime
AVG: procedure expose interval
/* REXX - calculate avg. value */
arg var
 SELECT
 when var ¬= Ø Then do
 a = var / interval
 b = trunc(a,2)
 end
 otherwise b = Ø.Ø
 END
 return b

Mile Pekic
Systems Programmer (Serbia and Montenegro) © Xephon 2005

 71© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Remote batch command upgrade

The two programs below, srvcmds and client, are upgrades to
the code given in the article ‘Remote batch command’ published
in TCP/SNA Update, September 2005, issue 59. They add
three important functions:

1 Sending remote command to the console.

2 Integrating with job scheduling.

3 Printing the report to a dataset.

The server program (srvcmds) can be installed on more than
o n e
z/OS partition, while the client program (client) is installed on
only one z/OS partition.

Servers and client must be in the same network.

SRVCMDS

This code is added at the end of the SERVERCMDS code
published in the previous article.

/conscmds:
cnscmd = parms
 cart = sysvar('SYSUID')||time()
/*---*/
/* Console Environment */
/*---*/
 x = MSG('OFF')
 SD=SYSVAR("SOLDISP")
 USD=SYSVAR("UNSDISP")
 If SD = 'YES' Then
 "CONSPROF SOLDISP(NO)" /* Console Profile: solicited */
 If USD = 'YES' Then /* Unsolicited must be NO to be */
 "CONSPROF UNSOLDISP(NO)" /* able to catch command response*/
 "CONSPROF SOLNUM(9999) UNSOLNUM(Ø)"
 if rc <> Ø then do
 Say "**** Userid" userid "needs CONSOLE authority"
 "CONSOLE DEACTIVATE"
 Exit
 end

 72 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 x = MSG('ON')
 "CONSOLE ACTIVATE NAME(MYNAME)" /* Activate CONSOLE service */
 if rc <> Ø then do
 Say "Console Activate RC= " rc
 "CONSOLE DEACTIVATE"
 Exit
 end
 "CONSOLE SYSCMD("cnscmd") CART("cart")"
 getcode = GETMSG('cons_msg.','SOL',cart,,2Ø)
 y=cons_msg.Ø /* Send back data in reverse order */
 do i = 1 to cons_msg.Ø /* Send back data in reverse order */
 msg.wsock.y=cons_msg.i /* Send back data in reverse order */
 y = y -1 /* Send back data in reverse order */
 drop cons_msg.i
 end
 "CONSOLE DEACTIVATE" /* Close console session */
 If SD = 'YES' Then
 "CONSPROF SOLDISP("SD")" /* Restore soldisp origial value */
 If USD = 'YES' Then
 "CONSPROF UNSOLDISP("USD")" /* Restore unsoldisp origial value */
 x = MSG('OFF')
return cons_msg.Ø
prep_cmd:
poscmd = pos('CMD:',stringword.wsock)
posdsn = pos('DSN:',stringword.wsock)
if posdsn = Ø then posdsn = length(stringword.wsock) + 1
pcmdp4 = (poscmd + 4)
diff = posdsn - pcmdp4
stringall = substr(stringword.wsock,pcmdp4,diff)
command = word(stringall,1)
lcommand = length(command)
lp1 = lcommand + 1
parms = strip(substr(stringall,lp1))
return

CLIENT
/* rexx */
/* The program has two target : */
/* 1) Retrieve System info from the servers */
/* 2) Send TSO command to the servers: */
/* can be used to manage RACF on other systems */
/* or to send a tso command */
/* on more systems (tso netstat,ping,listc...) */
/* Syntax : */
/* client server_ipaddress port_number command */
/*EG: */
/*client IP:1Ø.1Ø.98.22 PORT:35ØØØ CMD:sysinfo (retrieve system info) */
/*client IP:1Ø.1Ø.98.22 PORT:35ØØØ CMD:TSO lu userid (Racf command) */

 73© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

/*client IP:1Ø.1Ø.98.22 PORT:35ØØØ CMD:TSO netstat (get tcpip info) */
/*client IP:1Ø.1Ø.98.22 PORT:35ØØØ CMD:CONSOLE D J,L (Display jobs) */
/*client IP:1Ø.1Ø.98.22 PORT:35ØØØ CMD:shutdown (Shtdwn remote server)*/
/*client IP:1Ø.1Ø.98.22 PORT:35ØØØ + */
/* CMD:CONSOLE D SMF DSN:alias.report (The console command */
/* will be printed in the file : alias.report) */
x='SOCKET'('SocketSetStatus')
/***** This call returns the status of the socket set ******
If the socket is connected the result could be :
--> Ø myID Connected Free 17 Used 23
Ø -> Return code
myID -> Socket set ID
Connected -> Socket set is connected
Free 17 -> Number of free sockets in the socket set
Used 23 -> Number of allocated sockets in the socket set
If the socket is NOT connected the result could be :
--> 2ØØ5 ESUBTASKNOTACTIVE Subtask not active
This is a error code.
It indicates that the socket it is not allocated
**/
IF WORD(x,1)='Ø' THEN DO
 x='SOCKET'('Terminate')
 END
ARG string
PARSE VAR string ipaddress sport command dsnprint
string = strip(string)
sport = strip(sport)
string = strip(string)
swprt = Ø
if pos('DSN:',dsnprint) > Ø then call check_input
else do
 ipaddress = strip(substr(ipaddress,4))
 sport = strip(substr(sport,6))
 command = strip(substr(command,5))
 end
/* Debug
say "ip " ipaddress
say "sport " sport
say "command" command
say "prtdsn " prtdsn
*/
if swprt = 1 then
 do
 rc_lis = LISTDSI(prtdsn) /* Rc=Ø file already exist*/
 if rc_lis = Ø then
 do
 prtdsn = strip(prtdsn)
 "alloc dd(prtfile) da("prtdsn") shr reu"
 say " "
 say "File: "prtdsn" already exist"

 74 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 say " "
 say "Report printed in: "prtdsn
 say " "
 say " "
 end
 else
 do
 say " "
 say " "
 say " "
 "ALLOC DD(prtfile) da("prtdsn")",
 "UNIT(SYSALLDA)" ,
 "NEW TRACKS SPACE(9,9)",
 "REUSE LRECL(8Ø) RECFM(F B) BLKSIZE(312Ø)"
 if rc = Ø then
 say "File :"prtdsn" allocated"
 else do
 say "File " prtdsn ,
 "not allocated.Rc="rc
 exit
 end
 say " "
 say " "
 end
 end
/* Initialize client control information */
rc_exit = Ø
port = sport
/* Initialization */
x='SOCKET'('Initialize','CLICMDS')
/*** This call preallocates the number of sockets in a socket set ***
The result could be : Ø CLICMDS 4Ø TCP1ØØØ1
Ø -> Return code
CLICMDS -> Socket set name
4Ø -> The number of preallocated sockets in a socket set
TCP1ØØØ1 -> The name of the TCP/IP service
**/
IF WORD(x,1)¬='Ø' THEN DO
 SAY 'Error initializing CLICMDS'
 EXIT
 END
IF ipaddress='NONE' THEN DO
 x='SOCKET'('GetHostId')
/****** This call returns the ipaddress for the current host ****
The result could be : Ø 128.228.1.2
Ø -> Return code
128.228.1.2 -> Host ipaddress
**/
 IF WORD(x,1)¬='Ø' THEN DO
 SAY 'Error trying to get host id'

 75© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 SIGNAL clean_up
 END
 ELSE ipaddress=WORD(x,2)
 END
/* Initialize for receiving lines sent by the server. */
x = 'SOCKET'('Socket')
/* This call creates an IPv4 socket in the active socket set ****
 * and returns a socket identification ***
The result could be : Ø 1
Ø -> Return code
1 -> Socket ID
**/
IF WORD(x,1)¬='Ø' THEN DO
 SAY 'Error issuing socket'
 SIGNAL clean_up
 END
/* Pick up the client socket id */
clisock=WORD(x,2)
/* Get the host name */
x='SOCKET'('GetHostName')
/****** This call returns the name of the host ****
The result could be : Ø PROD
Ø -> Return code
PROD -> Host name
**/
IF WORD(x,1)¬='Ø' THEN DO
 SAY 'Error getting host name'
 SIGNAL clean_up
 END
hostname = WORD(x,2)
/* Issue af_inet */
x='SOCKET'('Connect',clisock,'AF_INET' port ipaddress)
/****** Tries to establish a connection to another socket ***
The result could be : Ø
Ø -> Return code
**/
IF WORD(x,1)¬='Ø' THEN DO
 SAY 'Error issuing AF_INET. Rc :' word(x,1)
 if word(x,1) = 61 then say "==> The server is down"
 SIGNAL clean_up
 END
/* Send the information to the server */
x='SOCKET'('Send',clisock,userid() string)
/****** Sends the outgoing data message to a connected socket **
The result could be : Ø 14
Ø -> Return code
14 -> Length of the data sent
**/
IF WORD(x,1)¬='Ø' THEN DO
 SAY 'Error issuing send'

 76 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 SIGNAL clean_up
 END
/* Wait for lines sent by the server */
DO FOREVER
/* Read the data. Data is returned as a rc len data field */
x='SOCKET'('Read',clisock)
/****** This call reads up to maxlength bytes of data, **
 ** the default is 1Ø,ØØØ **
The result could be : Ø 1613 The IPL LOAD PARM used was 3D21SVM1
Ø -> Return code
1613 -> Data length
The IPL LOAD PARM used was 3D21SVM1 --> data
**/
IF WORD(x,1) ¬='Ø' THEN DO
 PARSE VAR x . error
 SAY 'Error issuing recv' error
 SIGNAL clean_up
 END
/* allow for the line being null. Abort the connection if it is. */
IF WORD(x,2)='Ø' THEN LEAVE
/* Get the actual data */
PARSE VAR x . . dataline
DO UNTIL INDEX(dataline,'ØD'x)=Ø
 PARSE VAR dataline trueline 'ØD'x dataline
 SAY trueline
 if swprt = 1 then do
 push trueline
 "execio 1 diskw prtfile"
 end
 if pos('UNABLE',trueline) > Ø |,
 pos('ERROR',trueline) > Ø |,
 pos('INVALID',trueline) > Ø |,
 pos('MISSING',trueline) > Ø |,
 pos('NOT FOUND',trueline) > Ø then rc_exit = 99
 END
END
if swprt = 1 then
 do
 "EXECIO Ø DISKW prtfile (FINIS"
 /* "free dd(prtfile) da("prtdsn")"
 say "rc free " rc */
 end
EXIT rc_exit
/* Terminate and exit */
clean_up:
x='SOCKET'('Terminate','CLICMDS')
/***** This call closes all sockets in the socket set ******
The result could be : Ø CLICMDS
Ø -> Return code
CLICMDS -> Subtask Id

 77© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

**/
RETURN
check_input:
ippre=substr(ipaddress,1,3)
portpre=substr(sport,1,5)
cmdpos = pos('CMD:',string)
cmdpre=substr(string,1,4)
dsnpos = pos('DSN:',string)
diff = dsnpos - cmdpos
if dsnpos > Ø
 then do
 prtpre = 'DSN:'
 prtdsn = strip(substr(string,dsnpos+ 4))
 swprt = 1
 end
 if cmdpos > Ø then
 do
 cmdpre = 'CMD:'
 command = strip(substr(string,cmdpos,diff))
 end
ipaddress = strip(substr(ipaddress,4))
sport = strip(substr(sport,6))
command = strip(substr(command,5))
/* debug
say "ip " ipaddress "pre " ippre
say "spo" sport "portpre " portpre
say "cmd" command "cmdpre " cmdpre
say "prt" prtdsn "prtpre " prtpre
*/
if ipaddress = ' ' | sport = ' ' | command = ' ' |,
 prtdsn = ' ' ,
 | ippre ¬= 'IP:' | portpre ¬= 'PORT:' ,
 | cmdpre ¬= 'CMD:' | prtpre ¬= 'DSN:'
 then do
 say " "
 say " "
 say "**"
 say " Invalid Syntax.The correct syntax is:"
 say " Example -> IP:1Ø.1Ø.1Ø.3 PORT:1946 CMD:sysinfo +"
 say " DSN:userid.prt.report"
 say "**"
 say " "
 exit
 end
return

Each server must be authorized to execute the console
command. The RACF commands are:

• Add the console profile key to the tsoauth class:

 78 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

RDEFINE TSOAUTH CONSOLE

• Authorize user1 and user2 to access tsoauth class:

PERMIT CONSOLE ACCESS(READ) CLASS(TSOAUTH) ID(user1,user2,etc)

Modify the IKJTSOxx member of SYS1.PARMLIB library. If
these statements are not present, add them:

CONSOLE INITUNUM(1ØØØ) /* ALLOCATE COMMAND CONSOLE */ +
 INITSNUM(1ØØØ) /* */ +
 MAXUNUM(1ØØØØ) /* */ +
 MAXSNUM(1ØØØØ) /* */
PLATPGM NAMES(/* ALLOCATE COMMAND CONSOLE */ +
 CONSPROF) /* */

Modify the AUTHCMD NAMES section to add a CONSPROF
statement:

AUTHCMD NAMES(
 CONSPROF

The syntax for using the client is:

client IP:server_ipaddress PORT:port_number CMD:command DSN:dataset-name

The commands are:

• SYSINFO – this parameter obtains the system report from
the server.

• SHUTDOWN– this parameter executes the server
shutdown.

• TSO – tsocommand.

• CONSOLE – this parameter sends commands to the
console.

The DSN:dataset-name parameter redirects the command
output to the file specified. If the command started from the
client has a return code not equal to zero, the job step return
code is set to 99. For example:

//useridCL JOB (TSO,SIG),'.JSERVER.',MSGCLASS=R,
// NOTIFY=userid,REGION=8M,CLASS=A,TIME=144Ø
//STEPØ1 EXEC PGM=IKJEFTØ1,DYNAMNBR=5Ø,REGION=6M
//SYSPROC DD DSN=alias.user.lib,DISP=SHR
//SYSTCPD DD DSN= alias.user.lib(TCPIPPAR),DISP=SHR

 79© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

//SYSTSPRT DD SYSOUT=*
//SYSTSOUT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
PROFILE NOPREFIX
CLIENT IP:172.22.64.31 PORT:1957 CMD:TSO LISTC ENT(alias.lib.jcl)
/*
//STEPØ2 EXEC PGM=IKJEFTØ1,DYNAMNBR=5Ø,REGION=6M,
// COND=(4,LE,STEPØ1)
//SYSTSPRT DD SYSOUT=*
//SYSTSOUT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
PROFILE NOPREFIX
TSO LISTA

If we suppose that alias.lib.jcl does not exist, the step01 return
code is 99 and step02 will be flushed.

If we want to change the return code value, edit the client
REXX program and modify the 99 value – see line number
252:

ØØ252 pos('NOT FOUND',trueline) > Ø then rc_exit = 99

Magni Mauro
Systems Engineer (Italy) © Xephon 2005

 80 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

March 2003–December 2005 index

Items below are references to articles that have appeared in TCP/SNA Update since
issue 53, March 2003. References show the issue number followed by the page
number(s). Subscribers can download copies of all issues in Acrobat PDF format
from Xephon’s Web site.
3270(E) 58.55-59
Addresses 58.18-23
AIX 53.45-57
Apias 3.1 56.53-56
ASCII 53.19-20
CCL 57.33-37
CICS 54.5-13
Commands 54.25-27, 59.41-42
Communications Server 56.18-22
Composite applications 57.55-59, 58.3-8
Diagnostics 54.32-36
EBCDIC 53.19-20
Enterprise Extender 6.31-56
Ethernet 54.3-5, 54.48-59
FICON 57.3-9
File transfer 55.3-12,

56.22-51, 56.56-58
FTP 53.3-11, 53.45-57,

54.14-25, 54.37-47,
55.39-42, 55.46-68, 59.3-7

Grid computing 53.21-27
HiperSockets 55.42-45
HPRIP 57.45-55
IPv6 59.20-40
JES/328X 56.3-5
KVM 56.5-18
Linux 56.18-22
Listener 57.10-23, 60.10-34
Management 55.68-71

Monitoring 56.58-62,
57.37-45, 59.43-63

Multi-tasking 60.10-34
Netstat 57.26-32
Non-QDIO 54.3-5
OSA-Express 54.3-5
Performance 58.8-17
PL/I 54.5-13
Printing 56.3-5
Remote batch 59.21-40, 60.67-75
REXEC 58.24-55, 59.3-7
RTM 58.55-59
SMTP 55.12-38
SNMP 55.69-71
SOA 57.55-59, 58.3-8
SOAP 53.27-44
Sockets 53.12-18
SSL 58.8-17
Syntax 59.8-19
Tapes 55.39-42
TCP/IP 54.5-13, 54.25-27
Trace 56.58-62
Tuning 60.34-66
VB6 54.5-13
VPS 59.8-19
VTAM 60.34-66
XMIT 54.37
XMITIP 60.3-10

TCP/SNA news

For network printing, Capella Technologies has
announced Multi-Host Print (MHP), which is a
printer-resident memory module that converts
IPDS and SCS datastreams into a format
compatible with HP LaserJet printers. The
MHP module also includes a forms overlay
component for sprucing up SCS reports with
graphics.

The first component takes basic SNA
Character Stream (SCS) and high-end
Intelligent Printer Data Stream (IPDS) output
from mainframe and OS/400 servers, and
converts it into the Printer Control Language
(PCL) format supported by the HP LaserJets.

For further information contact:
URL: www.capellatech.com/documents/
MHP%20Press%20Release.pdf.

* * *

AES has announced Version 4.0 of CleverView
for cTrace Analysis. The product’s real-time
tracing capability allows it to identify unexpected
complications and facilitate their resolution by
visualizing and diagnosing the problem.

Key features include session response time
reports that summarize all sessions between a
local and remote IP, and a sequence of
execution report that provides details of the
packets exchanged during a given session.
Message data from different sources can be
viewed, including EBCDIC and ASCII.

For further information contact:
URL: www.aesclever.com/
index.php?f=ctrace&page=solutions.

* * *

Rocket Software has announced Version 2.2 of

NetCure, its service-assurance software for
enterprises and service providers.

NetCure is designed to reduce the time required
to isolate, diagnose, and resolve business
infrastructure problems. NetCure also identifies
potential performance degradation in
applications and networks in advance,
automatically notifying appropriate operations
personnel or triggering corrective actions before
business services are critically impacted.

NetCure discovers both physical and logical
network topology including routers, switches,
chassis, slot, port, interface, and VLAN
configurations. NetCure continuously monitors
and detects any changes to the environment and
automatically updates its topology model to
reflect the changing environment.

For further information contact:
URL: www.rocketsoftware.com/netcure.

* * *

NewEra Software has announced that it will
support the IBM Health Checker Framework,
an integral part of IBM system availability
assurance strategy delivered as part of z/OS
V1.7.

NewEra views the Health Checker Framework
s an enabler for thousands of System Inspectors
currently available in its products, IMAGE
Focus and IMAGE Sentry. Their System
Inspectors are designed to validate the
correctness, integrity and state of z/OS
configuration components, most notably the
operating system and its subsystems JES,
VTAM, and TCP/IP.

For further information contact:
URL: www.newera.com.

x xephon

	Sending e-mail with XMITIP
	A multi-tasking TCP/IP socket listener for OS/390 or z/OS
	VTAM tuning statistics
	Remote batch command upgrade
	March 2003-December 2005 index
	TCP/SNA news

