150

February 1999

]
In this issue

3 Aconcise LISTCAT ALL report

9 Splitting the XEDIT screen at the
cursor position

12 A full screen console interface —
part 7

34 Mouse on the mainframe

48 The DIRMAINT Synchronous
Application Interface

© Xephon plc 1999

VM Update

Published by Editor

Xephon Robert Burgess

27-35 London Road))

Newbury Disclaimer

Berkshire RG14 1JL Readers are cautioned that, although the

England information in this journal is presented in

Telephone: 01635 38030 good faith, neither Xephon nor the

From USA: 01144 1635 38030 organizations or individuals that supplied

E-mail: xephon@compuserve.com information in this journal give any warranty

or make any representations as to the

North American office accuracy of the material it contains. Neither

Xephon/QNA Xephon nor the contributing organizations or

1301 West Highway 407, Suite 201-405 individuals accept any liability of any kind

Lewisville, TX 75077-2150 howsoever arising out of the use of such

USA material. Readers should satisfy themselves

Telephone: 940 455 7050 as to the correctness and relevance to their
. circumstances of all advice, information,

Editorial panel code, JCL, EXECs, and other contents of this

Articles published inVM Update are journal before making any use of it.
reviewed by our panel of experts. Members

of the panel include John Illlingworth (UK), VM Updateon-line

Reinhard Meyer (Germany), PhilippeCode fromVM Updatecan be downloaded

Taymans (Belgium), Romney White (USA),from our Web site at http://www.xephon.
Martin Wicks (UK), and Jim Vincent com;you will need the user-id shown on your
(USA). address label.

Subscriptions and back-issues Contributions

A year’s subscription tovM Update Articles published ivM Updateare paid for
comprising twelve monthly issues, costst the rate of £170 ($250) per 1000 words for
£180.00 in the UK; $275.00 in the USA andriginal material. To find out more about
Canada; £186.00 in Europe; £192.00 ioontributing an article, without any
Australasia and Japan; and £190.56bligation, please contact us at any of the
elsewhere. In all cases the price includemddresses above and we will send you a copy
postage. Individual issues, starting with thef ourNotes for Contributors

January 1990 issue, are available separately

to subscribers for £16.00 ($23.00) each

including postage.

© Xephon plc 1999. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

2

A concise LISTCAT ALL report

The outputgenerated by a LISTCAT ALLcommand is acomprehensive
source of information; however, for most practical purposes, just a
small part of this information is needed. Normally you just want to
know how many Cl and CA splits a file has, how many extensions or
tracks it has allocated, and so on.

Based on this requirement, | have developed a REXX EXEC that
reads the output generated by LISTCAT ALL and creates a concise
report about the essentials of each cluster.

Figure 1 shows an example of such a report. In the first two columns,
there is the cluster name and type (K for KSDS, E for ESDS, R for
RRDS, L for Linear, and Afor Alternate Index — although not a cluster,

| decided to consideritas such since it has data and index components).

The remaining fields (keys, record length, cisize, allocation type, etc)
all refer to the data component information.

If there is a cluster defined without an associated data element, its line
appears with the message ‘(No associations)’. The last three columns
are the number of extents, tracks per volume, and the volume. If a
volume is listed as candidate, both tracks and extents will be zero.

RUNNING VSAMLIST UNDER CMS

Torun VSAMLIST under CMS, start by creating a CMS file containing
the LISTCAT output. After that, at the beginning of the EXEC, add a
line setting variable FICIN to the CMS name of that file, or have it
passed as an argument, and set variable FICOUT to the CMS name
that will hold the report.

For a VM/VSE system, my favourite method to create the LISTCAT
output is to link the DASD containing the catalog to be listed, access
it with a free drive letter (say ‘X’), issue a DLBL IJSYSCT x (VSAM,
and run an AMSERYV LISTCAT file. This is an 80-byte fixed RECFM
CMS file containing just a line with ‘LISTCAT ALL CAT(catalog)’.

You might need to use a temporary mini-disk to hold the listing.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 3

@evyI0A G T 0 [/} vdL 8§ g 0 €T 9607 @ [} g 0 1 T431SNTI°4001 " AVYL
G@YI10A G@8¢ 9 @9€E/¥88 00S/8L TAD ST ¢IT @ @ €°C 88221 @91 @91 @ @ d c4@@11S T TA3Q " AVYL
S@YI0A @9 T ¢/[9¢G¢¢T 697G TAY v o 9 0L €°¢2ls €Iy @01 @ @2 A 1004934 TAIA°AVYL
S@YI10A SL T 02eE88Y¢ EIEET TAY ¢ G 1 Ge¢ €°2 8v@e @¢ a¢e g o1 A 1004024 TA30°AVYL
S@¥I10A GS ¢ @eeEvsl STvSY vdL 9§ 0§ g 0 €°C 2Ev8T ¢LAE VS S oy Vv IXIV T@T428d " TA30 AVYEL
9@¥10A @8EET T ¢I€LL@BeT S99VL<T TAD @G ¢68 @ V¢ €°¢ 21§ /1L LL g €2 T8T434d " TAIA " AVYL
9@¥10A @€ T
G@YI10A ST ¢ ¢G€9GE LS6/2 T ¢ 8 g o €°C v¢@T 69T 69T @ 0T ¥ T@9I°TAIA"AVYEL
(suoljetoosse oN) L1S3L @X9 TA30Q°AVYL
90¥10A @22TT ¥ ¢/9¥¢6¥¥T 8O@8STI TA) @S 869 68 L[699 €°2 ¢IS 08 28 @ Le A I7S9 A0 AVYL
d@vI0A §G T 96080¢¢ 8811 vdL 9§ §G g 0 €°C ¥85¢ @LT O@LT @ 0 3 NT@d TA3A°AVYL
S@YI10A €9 T v¥8EBYIS 00eT6 TAY ¢ ¢t g 29 €°C ve@1T @Y1 @Y1 @ €2 A Y009 1A30° AVYL
S@YI10A @6E T 880S@6¢ ¢910S TA ¢ 9¢ g o €°C ve@1T 9.1 @LT @ 6 A T0@4°TA3A° AVYL
9@v10N @ [}
S@YI10A GE6T ¢ Vv@SLE@9 G60cEC TA G vel @ ¥ €°¢C 215 06 26 ¢ v1 €ava 1A30°AVYL
QWN|OA SYJ] 13X S93Ag SpJ0I23Yy dA] 295 Lud ey L) JyS ZSsL) XeR Ay 0d 97 9dA | QWeN Jaisn|)
2dso9d4 Le30| uoLledo| Ly s311ds ua7pJ0I3y Koy

T :9bed

AVHL*90TVLYD

9¢:8T1:¢T 8661 290 vI T

Example of output

Figure 1

© 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492

VSAMLIST

/*= REXX */
/* */
/* VSAMLIST: Extracts information from "LISTCAT ALL"™ 1listings. */
/* The input file for this EXEC is the Tisting generated */
/* by LISTCAT ALL CATALOG(catalog) and the output is a */
/* file with LRECL=133 and first-column control chars. */
/* */
/* Running this EXEC */
/* Under MVS: Allocate DDname FICIN to input and FICOUT to output */
/* Under VM: Set variables FICIN and FICOUT to CMS filenames */
/* */
/* */

execio 1 diskr ficin
if rc =0 then do
say "Error reading input file"
exit
end
pull Tlinha
cc = left(linha,l)
data_flag = @
clu=20
do forever
execio 1 diskr ficin
if rc =0 then leave
pull Tlinha
if cc then linha=substr(linha,?2)
call select_line_type
end
call write_output
saida:
exit
/* */
/* Select line type and extract values */
/* */
select_line_type:
select
when word(1inha,1)="LISTING" then do
catalog = center(word(linha,5),100)
end
when substr(linha,1,7)="CLUSTER" |,
substr(linha,1,3)="AIX" then do
clu=clu +1
cluster.clu = Teft(word(linha,3),44)
data.clu = @
v=2>0
extent.clu.@ =0
data_flag = @
if substr(linha,1,3)="AIX" then vstype.clu = "A"

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

end

when substr(linha,4,4)="DATA" then do
data.clu = word(1inha,3)
data_flag =1

end

when substr(linha,4,5)="INDEX" then do
index.clu = word(linha,3)
data_flag = @

end

when substr(linha,1,7)="NONVSAM" then do
data_flag = @

end

otherwise nop
end
if data_flag then,
select

when substr(1inha,8,6)="KEYLEN" then do
linha = translate(linha,”™ ","-")
keylen.clu = right(word(linha,2),2)
alrecl.clu = right(word(linha,4),5)
cisize.clu right(word(1linha,8),5)

end

when substr(linha,8,3)="RKP" then do
linha = translate(linha,”™ ","-")
keypos.clu = right(word(linha,?2),2)
mlrecl.clu = right(word(linha,4),5)

end

when substr(Tinha,8,8)="SHROPTNS"™ then do
shropt.clu = substr(linha,17,3)
if vstype.clu —=="A" then do

type = word(linha,b)

select
when type = "NONINDEXED" then vstype.clu = "E"
when type = "INDEXED" then vstype.clu = "K"
when type = "NUMBERED" then vstype.clu = "R"
when type = "LINEAR" then vstype.clu = "L"
otherwise nop

end

end

end

when substr(linha,8,7)="REC-TOT" then do
linha = translate(linha,”™ ","-")
rectot.clu = right(word(linha,3),11)
splici.clu = right(word(linha,6),5)

end

when substr(linha,8,7)="REC-DEL" then do
linha = translate(linha,”™ ","-")
splica.clu = right(word(linha,6),3)
extent.clu = right(word(1inha,8),3)

end

6 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

when substr(linha,8,7)="REC-RET" then do
linha = translate(linha,”™ ","-")
freeby.clu = right(word(linha,6),11)

end

when substr(linha,8,7)="SPACE-T" then do
linha = translate(linha,”™ ","-")
sptype.clu = left(word(linha,3),3)

end

when substr(linha,8,7)="SPACE-P" then do
linha = translate(linha,”™ ","-")
spprim.clu = right(word(linha,3),5)

end

when substr(linha,8,7)="SPACE-S" then do
linha = translate(linha,”™ ","-")
spseco.clu = right(word(linha,3),4)

end

when substr(1inha,8,6)="VOLSER" then do

linha = translate(linha,”™ ","-")
v=yv+1
extent.clu.@ = extent.clu.@ + 1
extent.clu.v = word(linha,12)
volume.clu.v = word(linha,?2)
tracks.clu.v = 0

end

when substr(linha,8,6)="LOW-CC" then do

linha = translate(linha,”™ ","-")
tracks.clu.v = tracks.clu.v + word(linha,8)
end
otherwise nop
end
return
/* */
/* Write output file */
/* */
write_output:
pagenum = 0@
lines_per_page = 55
za="" Key RecordLen "
zb="" Splits Allocation Total Freespc"
zc="Cluster Name Type Le Po Avg Max Cisz Shr "
zd="" Ci Ca Pri Sec Typ Records Bytes Ext Trks Volume”
z1 = za||zb
z2 = zc||zd
z@ = copies(™-",131)

call write_header
do k =1 to clu
line = line + 1
if 1ine > lines_per_page then call write_header
if data.k = @ then do
queue " "left(cluster.k,34)" (No associations)"

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

execio 1 diskw ficout
end
else do
tracks.k = right(tracks.k,5)
queue " "left(cluster.k,34) vstype.k keylen.k ,
keypos.k alrecl.k mlrecl.k cisize.k shropt.k ,
splici.k splica.k spprim.k spseco.k sptype.k ,
rectot.k freeby.k right(extent.k.1,3) ,
right(tracks.k.1,5) volume.k.1
execio 1 diskw ficout
do j = 2 to extent.k.@
line = line + 1
queue copies("™ ",114) right(extent.k.j,3) ,
right(tracks.k.j,5) volume.k.]
execio 1 diskw ficout

end
end

end

execio @ diskw ficout "(finis"

return

/* */
/* Write output file header */
/* */
write_header:

line = @

pagenum = pagenum+l

queue "1" date() time() catalog "Page: " pagenum

queue " "z@

queue " "zl

queue " "z2

queue " "z@

execio 5 diskw ficout

return

Luis Paulo Figueiredo Sousa Ribeiro
Systems Programmer
Edinfor (Portugal) © Xephon 1999

Why not share your expertise and earn money at the same
time? VM Update 1s looking for REXX EXECs, macros,
program code, etc, that experienced VMers have written
to make their life, or the lives of their users, easier. Articles
can be of any length and can be sent or e-mailed to Robert
Burgess at any of the addresses shown on page 2. Why not
call now for a free copy of our Notes for contributors?

8 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Splitting the XEDIT screen at the cursor position

XEDIT allows you to splitthe screen in many ways; however, because

it is necessary to enter depth, width, start line, and start column for

each screen with SET SCREEN DEFINE, most people use equal size
splits such as SET SCREEN 3 or SET SCREEN 2 V.

The following macro allows you to split the screen into two, three, or
four at the cursor position as detailed in the help file.

CURSPLIT HELPCMS

| |
| CURSPLIT XEDIT macro |

This macro will split the screen into two, three, or four at the
cursor position.

CURSPLIT will split the screen horizontally.

CURSPLIT V will split the screen vertically.

CURSPLIT 4 will split the screen crosswise into four

CURSPLIT 3 will split the screen into three, one screen full width
above two others, all screens meeting at the cursor position.

The cursor will then be placed at the start of the command Tine
in the first logical screen. "SCR 1" will return to one logical
screen.

If the cursor position is such that the screens cannot be defined
correctly then default sizes are used:

CURSPLIT - splits horizontally across the middle

CURSPLIT V - splits vertically down the middle

CURSPLIT 3 - the top screen has a third of the full screen depth
- the other screens have half the width

CURSPLIT 4 - splits halfway down and halfway across

It is recommended that a PF key should be set to CURSPLIT for
ease of use. Splitting into 3 or 4 screens will not be
frequent enough to justify the normal use of a PF key.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 9

CURSPLIT XEDIT

/***********************************

* Split screen at cursor position *
***********************************/

"EXTRACT /LSCREEN' /* get screen dimensions */
/* and cursor position */
parse value cursadd() with physlin physcol

arg parm .

select
when parm='"' then call splith /* horizontally */
when parm='2" then call splith /* horizontally */
when parm='V' then call splitv /* vertically */
when parm='4"' then call split4 /* crosswise */
when parm='3" then call split3 /* 1 above 2 */
otherwise 'HELP CURSPLIT'

end

"CURSOR CMDL'

exit

/*********************

* split horizontally *
*********************/
splith:
'SET SCREEN SIZE' physlin 1screen.5-physlin
if rc—==@ then
do /* cursor in wrong position */
'SET SCREEN 2°'
'MSG Split across middle forced’
end
return

/*******************

* split vertically *
*******************/

splitv:
widl = physcol /* across to cursor position */
wid2 = Tscreen.6-widl /* rest of width of screen */

'SET SCREEN DEFINE' Tscreen.5 widl 1 1 Tscreen.5 wid2 1 widl+l
if rc==@ then
do /* cursor in wrong position */

'SET SCREEN 2 V'

"MSG Split down middle forced'

end
return

10 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

/****************************

* split crossways into four *
****************************/

split4d:
widl = physcol /* across to cursor position */
wid2 = Tscreen.6-widl /* rest of width of screen */
depl = physTin /* down to cursor position */
dep2 = lscreen.5-physlin /* rest of depth of screen */
do until scrc=0
'SET SCREEN DEFINE' depl widl 1 1 , /* top left */
depl wid2 1 widl+1l , /* top right */
dep2 widl depl+l 1 , /* bottom left */
dep2 wid2 depl+l widl+l /* bottom right */
scrc = rc
if rc—=@ then
do /* cursor in wrong position - assume middle of screen */
depl = 1screen.b5%2 /* round down half of depth */
dep2 = lscreen.5 - depl /* rest of depth */
widl = Tscreen.6%2 /* round down half of width */
wid2 = Tscreen.6 - widl /* rest of width */
'MSG Default size forced'
end
end
return

/*****************************

* split into 3 - one above 2 *
*****************************/

split3:

widl = Tscreen.6 /* full width for top screen */
wid2 = physcol /* across to cursor position for second */
wid3 = Tscreen.6-wid2 /* rest of width of screen for third */
depl = physlin /* down to cursor position for top screen */
dep2 = lscreen.5-physlin /* rest of depth of screen for others */

do until scrc=0
"SET SCREEN DEFINE' depl widl 1 1 , /* across the top */

dep2 wid2 depl+l 1 , /* bottom left */
dep2 wid3 depl+l wid2+1 /* bottom right */

scrc = rc

if rc—=@ then

do /* cursor in wrong position - */

/* assume third of way down and halfway across */

depl = 1screen.5%3 /* round down 1/3 of depth */
dep2 = lscreen.5 - depl /* rest of depth */
widl = Tscreen.6 /* full width */
wid2 = Tscreen.6%2 /* round down half of width */
wid3 = Iscreen.6 - wid?2 /* rest of width */

'MSG Default size forced'

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 11

end
end
return
/***

* Return cursor address

*

* Note: The cursor address from EXTRACT/CURSOR cannot be

* be used satisfactorily if the cursor is not in the

* same logical screen where the command is entered
***/

* % ok ok ok

cursadd:

stream = '"03'x /* read modified command */

"PIPE VAR STREAM', /* pass value in variable to PIPES */
"| FULLSCREEN CONDREAD', /* read screen to get cursor address */
"| 327@BFRA 2 TO16BIT', /* convert address from 12-bit to integer */
"| SPECS 2.2 C2D 1°, /* pick out address and make decimal */
"| VAR CURS' /* get value into variable */

/* physical screen width is in Iscreen.6 */
1in = curs%lscreen.6 + 1
col = I+curs-((lin-1)*T1screen.6)
return 1in col

John lllingworth
Systems Engineer
Wm Morrison Supermarkets (UK) © Xephon 1999

A full screen console interface — part 7

Editor’s note: this month we continue the code for the full screen
console interface for Disconnected Service Machines (DSM). This
article is an extensive piece of work which will be published over
several issues &fM Update It was felt that readers could benefit
from the entire article and from the individual sections. Any comments
or recommendations would be welcomed and should be addressed
either to Xephon or directly to the author at
fernando_duarte@vnet.ibm.com.

CSCRDF ASSEMBLE

TITLE 'CSCRDF - CSC Read Data File record’
CSCRDF START X'@199E@"’

12 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

PRINT
CSCHDR

*

*

*

*
USING
USING
SPACE

*

*

*

*

RETURN BACK
SPACE

P R

CSCRDFFT RELOC

L

L
RDFF100 LA

C

BNH

LA

C

BH
RDFF20@ BAS

™

BO

IC

LA

NR

B

SPACE

* % ok ok ok ok ok kK ok oF oF

NOGEN

Read Data File records

UIDSECT,R8
CCHSECT,R7
3

Return to caller and keep the cc

3

Read Data file

UID (user) Block
CCH (cache) Block

Read first record from disk (Free List and Cache are not searched)

OQutput R7 addresses first record (cache image)

If the Data File is empty a non-zero cc is returned

R7,CACHEPTR
R4,CCHRECNO
R4,1(,R4)
R4,DFOLDTOT
RDFF200
R4,1
R4,DFCURR
RETURN
R14,GET

Read first record

Address last created record
Get record number

Increment

After end of physical file

Yes, go back to first record
Is file empty?

Yes, record not found

Read record from disk

DFOPTS-DFBUFF(R1),DFOCONT2 Is it a continuation record?

RDFF100
R5,DFOPTS-DFBUFF(,R1)
R1,DFOCYCLE

R5,R1

RDFN#FT

Locate record by Date and Time

Yes, skip it and try next one
Load option byte

Keep only Cycle bit
Build cache image and test

Input R7 addresses reference record (cache image)

Only CCHDATE and CCHTIME are checked

Output R7 addresses requested record (cache image)

If the record is not found a non-zero cc is returned

The first record with Date/Time equal or greater than
the specified is returned

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

CSCRDFGO

RDFG100

RDFG200
RDFG210

RDFG300

RDFG310

RDFG320

RDFG409

RDFG509

RDFG510

14

RELOC
L

L

CLC
BL

BH
CLC
BNH

BE

CLC
BH
BL
CLC
BH
LR
IC
LA
NR

SPACE

BCTR
SRL
SLL
BNZ

SPACE

CR
BNH
SR
ST
SR
LA
SRL
AR

BNH

LR

BNH

BAS

© 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

R1,CACHEPTR

R1,CCHFWD-CCHSECT(,R1)

Locate the record
Address current record
Address first cache record

CCHDATE,CCHDATE-CCHSECT(R1)

RDFG300
RDFG100

Not there, check Data File
Search cache records

CCHTIME,CCHTIME-CCHSECT(R1)

RDFG309
R1,CACHEPTR
RDFG90@

R1,CCHFWD-CCHSECT(,R1)

Not in cache, check Data file
A1l cache searched?

Yes, record not found

Address next record

CCHDATE,CCHDATE-CCHSECT(R1)

RDFG100
RDFG209

Record found

CCHTIME,CCHTIME-CCHSECT(RI1)

RDFG100
R7,R1
R5,CCHOPTS
R1,DFOCYCLE
R5,R1
RDFN#GO

R1,CACHEPTR
R5,DFOLDTOT
R5,0

R5,5

R5,5
RDFG310
R7,CACHEPTR
R7,CCHFWD
RDFG210

Address record
Load option byte

Keep only cycle bit
Now select the right record

Record is already on disk
Number of Data File records
Do not search Tast block

It could be partially written
Each block has 32 DF records

Data file is empty
Use first record from cache

R6,CCHRECNO-CCHSECT(,R1) Get current record number

R6,R5
RDFG320
R6,R6
R6,RDFGRELO
R6,R6
R5,1(,R5)
R5,1

R6,R5
R6,DFOLDTOT
RDFG509
R6,DFOLDTOT
R4,R6
R4,RDFGRELO
R4,DFOLDTOT
RDFG510
R4,DFOLDTOT
R14,GET

If it is the Tast block or the

Data File is being expanded
Do not use any relocation
Store relocation value

Add one to number of records
Divide by 2, first interval
Logical record number to read
If it is after End-0f-File

Read Tast Data File record
Copy to R4
Relocate to physical record

Wrap around if required
Read record from Data File

RDFG520

RDFG60@@

RDFG610

RDFG709

LA RO,1 Is interval down to one?
CR R@,R5

BE RDFG6O@ Yes, terminate binary search
CLC CCHDATE,DFDATE-DFBUFF(R1) Compare date

BH RDFG400 Too low, go forward

BL RDFG520 Too high, go backward

CLC CCHTIME,DFTIME-DFBUFF(R1)
BH RDFG409

LA R5,1(,R5) Add one to interval

SRL R5,1 Divide by two

SR R6,R5 Go backward

BP RDFG500 If it is before first record
LA R6,1 Read first record

B RDFG500

SPACE

™ DFOPTS-DFBUFF(R1),DFOCONT2 Is this a continuation record
BZ RDFG700 No, almost done

LA R4,1(,R4) Yes, read next physical record
C R4 ,DFOLDTOT

BNH RDFG610@

LA R4,1 Wrap around if required

BAS R14,GET Go read the record

B RDFG600@ Check again

SPACE

CLC CCHDATE,DFDATE-DFBUFF(R1) Is this really the record

BH RDFG710 No, it is the following one

BL RDFG730 Yes, we got it

CLC CCHTIME,DFTIME-DFBUFF(R1) Maybe...
BNH RDFG730

RDFG71@ SR R@,RO Required by next IC
IC R@,DFCNUM-DFBUFF(,R1) Number of DF records for message
AR R4 ,R0O Address next message
C R4 ,DFOLDTOT
BNH RDFG720
S R4 ,DFOLDTOT Wrap around if required
RDFG72@ BAS R14,GET Get next Record
RDFG73@ IC R5,DFOPTS-DFBUFF(,R1) Load option byte
LA R1,DFOCYCLE
NR R5,R1 Keep only cycle bit
BAS R14,READREC Build cache image
B RDFN4GO Now select the right record
SPACE
RDFG9A@ LTR R14,R14 Generate a non-zero cc
B RETURN Return, record not found
SPACE
*
* Read next record
*
* Input R7 points to reference record (cache image)
*

OQutput R7 addresses next record (cache image)

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

15

If the record is not found a non-zero cc is returned

RDFN#FT is invoked by CSCRDFFT
RDFN#GO is invoked by CSCRDFGO

* ok ok ok ok oF

CSCRDFNT RELOC
IC R5,CCHOPTS
LA R1,CCHCYCLE
NR R5,R1 Keep only Cycle bit
RDFN1@@ SR R@,RO Required by next IC

Read next record
Load option byte

IC R@,CCHCNUM

L R4,CCHRECNO
AR R4,RO

RDFN#FT BAS R14,READREC
BNZ RETURN

RDFN#GO LINK SELECT
BNZ RDFN100
B RETURN
SPACE

Read Tast record

* % ok ok ok ok o

CSCRDFLT RELOC

LA R4,1

C R4,DFCURR
BH RETURN

L R7,CACHEPTR
LINK SELECT

BZ RETURN

B RDFPHLT
SPACE

Read previous record

Number of DF records for message
Get number of reference record
First record of next message
Read and build cache image

Not found

Check user selection

No good, read next one

We found it

OQutput R7 addresses Tast record (cache image)
If the record is not found a non-zero cc is returned

Read Tast record

Is Data File empty

It is if current record is zero
File is empty, record not found
Address last created record
Check user selection

Good enough, use it

Try to find it

Input R7 points to reference record (cache image)
OQutput R7 addresses previous record (cache image)
If the record is not found a non-zero cc is returned

RDFP#LT is invoked by CSCRDFLT

T T T T N S

*

CSCRDFPR RELOC

RDFP#LT IC R5,CCHOPTS
LA R1,CCHCYCLE
NR R5,R1 Keep only Cycle bit

Read previous record
Load option byte (CSCRDFLT)

16 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

RDFP10@ SR
IC
L
SR
BP
LA
XR
A
RDFP99@ BAS
BNZ
LINK
BNZ
B
SPACE

* ok kK ok ok ok oF

CSCRDFDP RELOC

IC

LA

NR

SR

IC

L

SR

BP

XR

A
RDFD92@ BAS

B

SPACE

Restart Data

Output

T T T T N S

CSCRDFRS RELOC
L
LA
BAS
CR

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

RO, RO
R@,CCHPNUM
R4,CCHRECNO
R4,R0
RDFP90@
R1,CCHCYCLE
R5,R1
R4,DFOLDTOT
R14,READREC
RETURN
SELECT
RDFP100
RETURN

Required by next IC

DF records for previous message
Get number of reference record
First record of previous message
If not positive

Reverse Cycle bit

And wrap around file

Read and build cache image
Not found

Check user selection

No good, read next one

We found it

Read previous record from disk (Free List and Cache are not searched)

Input R7 points to reference record (cache image)
OQutput R7 addresses previous record (cache image)

If the record is not found a non-zero cc is returned

R5,CCHOPTS
R1,CCHCYCLE
R5,R1

RO, RO
R@,CCHPNUM
R4,CCHRECNO
R4,R0
RDFD909
R5,R1
R4,DFOLDTOT
R14,READDISK
RETURN

file

Read previous record
Load option byte

Get only cycle bit

Required by next IC

DF records used by previous msg
Current record number

First DF record of previous msg
Read record

Swap cycle bit

Wrap around file

Read and build cache image
Return, cc set by READDISK

R1 addresses last record written (DF record image)
R4 contains the record number pointed by Rl

R5,DFOLDTOT
R4,1
R14,GET
R4,R5

This routine performs a binary search to locate the require record.

Number of record on DF file
Start with first record
Read the record

If DF has ONE record...

17

BE RDFR9@®Q We found it
IC R6,DFOPTS-DFBUFF(,R1) Load option byte
LA R2,DFOCYCLE
NR R6,R2 Keep only the cycle bit
LA R5,1(,R5) (n +1) / 2 is the new increment
SRL R5,1
AR R4 ,R5 Go forward
C R4,DFOLDTOT Are we after the last record?
BNH RDFR20@
L R4,DFOLDTOT Yes, use the Tast record
BAS R14,GET Read the record
IC RO,DFOPTS-DFBUFF(,R1) Load new option byte
LA R2,DFOCYCLE
NR R@,R2 Get new cycle bit
LA R2,1
CR R2,R5 Is the increment down to ONE
BE RDFR300 Yes, binary search is over
CR R@,R6 Compare cycle bits
BE RDFR100@ They are the same, go forward
LA R5,1(,R5) They are different...
SRL R5,1
SR R4 ,R5 Go backward...
B RDFR200@ Read next record
SPACE
CR R@,R6 Last check, same cycle bits
BE RDFR90G0@ Yes, we got the record
BCTR R4,0 No, use previous record
BAS R14,GET Read it
RDFR90® BACK A11 done, return
SPACE 3
*
* Input R4 contains the record number to read
* R5 contains the cycle bit (last byte)
* Output R7 addresses the record (cache image)
* If the record is not found a non-zero cc is returned
*
*

READREC L R7,UIDFREE2 last record on Free 1list
01 UIDOPT1,UIDFFREE Set option

READ1G® C R4 ,CCHRECNO Check record number
BE READ8@®? Found it...

L R7,CCHBWD Go back one Free entry

LTR R7,R7 Is it the Tast one

BNZ READ10@ No, test all entries

NI UIDOPT1,X'FF'-UIDFFREE Yes, reset option

L R7,CACHEPTR Try cache buffer
READ20@ C R4 ,CCHRECNO

BE READB@Q Found it...

L R7,CCHBWD

C R7,CACHEPTR Search all records

18 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

BNE
READDISK ST

BNH

LA
XR
READ399 C
BH
BAS
LA
ST
MVC
READ499 TM
BZ
LA

BNH

READ5@@ BAS
SR
IC
SR
IC
LR
AR
STC
LA

BCTR

EX

SPACE
READ6@@ LINK

ST

LINK

BNZ
BAS
READ700 L
READ8@P® SR
IC
LA
NR
CR
BNE
CR
BR

SPACE

READ99@ LTR
BR

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

READ200
R14,READSV14
R4,DFOLDTOT
READ300
R4,DFOLDTOT
R1,DFOCYCLE
R5,R1
R4,DFOLDTOT
READ90@
R14,GET
R7,RDFCACHE
R4,CCHRECNO

CCHDFREC,@(R1)

Not found, get it from disk
Out of DF file

Yes, wrap around

Reverse Cycle bit

File could be empty...
Record does not exist

Read the record

Address cache work area
Store record number

Move data from disk record

DFOPTS-DFBUFF(R1),DFOCONT1 Multi-record message?

READ60@
R4,1(,R4)
R4,DFOLDTOT
READ520
R4,DFOLDTOT
R14,GET
R2,R2

R2,DFRLEN-DFBUFF(,R1)

R3,R3
R3,CCHRLEN
R@,R3
R@,R2
R@,CCHRLEN

R3,CCHDATA(R3)

R2,0
R2,READMVC
READ400

PREFIX
R5,READSV@5
MATCH
R5,READSV@5
READ700
R14,CHECK
R14,READSV14
R@, RO
R@,CCHOPTS
R1,DFOCYCLE
R@,R1

R@,R5
READ90@
R14,R14

R14

R14,R14
R14

Yes, read next record
End of Data file (physical)

Wrap around
Get next record

Get message length (new section)
Get assembled message length

Combine the two parts

Store new length

Address to move new section
Adjust Tength

Move new part

Build complete message

Get message prefix
Save cycle bit

Restore cycle bit
Message not defined
Check if on Hold
Restore return address
Get new cycle bit

Is it the good one
No, record was overwritten

19

SPACE
READMVC MVC

@(*-*,R3),DFDATA-DFBUFF(R1)

Input R4 contains the record number
Output R1 addresses the record (DF image)

Copy record number to read
Calculate first record in block
That's 32 records / 4K block

We have the record number
Address first RDF block
Address correspondent buffer
Check record number

We found the buffer

Check next buffer

Is it the last buffer

Yes, we need to read it
Select next RDF block
Address buffer

Store number of first record

FSREAD FSCB=DFFILER,FORM=E,BUFFER=(R2),RECNO=(R3)

SPACE 3
*
* Read a DF record
*
*
*
*
*
GET EQU *
USING RDFSECT,R1
LR R3,R4
BCTR R3,0
SRL R3,5
SLL R3,5
LA R3,1(,R3)
L R1,RDFPTR
GET100 L R2,RDFADDR
C R3,RDFREC
BE GET200
L R1,RDFFWD
C R1,RDFPTR
BNE GET100
L R1,RDFFWD
ST R1,RDFPTR
L R2,RDFADDR
ST R3,RDFREC
LTR R15,RI5
BZ GET200
MSG @170@,RC
LINK CLOSE
SPACE
GET200 LR R1,R4
SR R1,R3
SLL R1,7
LA R1,0(R1,R2)
BR R14
DROP R1
SPACE 3
*
* Check messages on Hold
*
*
CHECK EQU =
™ CCHOPTS,CCHHOLD
BZR RI14
L R1,HLDPTR
CHECK1@@ LTR RI1,R1

20 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

We did it
Read error, close the shop

Copy record number to read
Calculate record offset
DF record is 128 bytes long
Address required record

Is message on Hold
No, all done

Get Tist of messages
Do we have one

BZ

CHECK900 No, reset option

CLC CCHRECNO,CCHRECNO-CCHSECT(R1) Check record number
BNE CHECK800
CLC CCHDATE, CCHDATE-CCHSECT(R1) name
BNE CHECKB8@0
CLC CCHTIME,CCHTIME-CCHSECT(R1) time
BNE CHECK8@0
CLC CCHUSER,CCHUSER-CCHSECT(R1) user-id
BNE CHECK800
BR R14 Found, still not released
SPACE
CHECK8@@ L R1,CCHFWD-CCHSECT(,R1) Scan all 1list
B CHECK100
SPACE
CHECK9@@ NI CCHOPTS,X'FF'-CCHHOLD Message already released, reset
ST R14,CHECSV14
LINK PREFIX Restore also attributes
L R14,CHECSV14
BR R14
SPACE 3
DS @D
RDFCACHE DS CL256 Area to build cache image
READSV14 DS F Save R14 READDISK
CHECSV14 DS F CHECK
READSV@5 DS F Save R5 READDISK
RDFGRELO DS F Relocating record for CSCRDFGO
SPACE
CSCDATA
CSCDS (UID,CCH,RDF)
REGEQU
END
CSCCPW ASSEMBLE
TITLE 'CSCCPW - CSC Write CP message on disk’
CSCCPW START X'@15668'
PRINT NOGEN
CSCHDR Write disk file
*
* Write CP message on disk
*
*
USING IPARML,R9 IUCV Parameter List
USING UIDSECT,R8 UID (user) Block
USING CCHSECT,R7 CCH (cache) Block
BAS R14,CACHEREC Move record into cache
LINK PREFIX Move record prefix
LINK MATCH Check message
ST R5,CPWRSV@5 Save MSG entry address or zero

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

21

SR R1,R1 Required by next IC

IC R1,CCHRLEN Get message length
LA R2,CCHDATA(RL) Address end of message
LA R6,CCHDATA Address message
MVC DFBUFF(DFDATA-DFBUFF),CCHDFREC Move date, time, etc...
CPWR1#@ LA R@,L'DFDATA Length of data area
LR R1,R2 Last byte of message
SR R1,R6 Length of message
CR R1,R@
BNH CPWR2@@
LR R1,R0O Too big, split
CPWR20@ STC R1,DFRLEN Store data length
LTR R1,R1 Is length zero
BNP CPWR212 Yes, no need to move data
BCTR R1,0 Prepare to EXecute
EX R1,CPWRMVC Move data
LA R6,1(R1,R6) Update pointer
CPWR210 L R@,DFCURR Last data record written
C R@,DFOLDTOT Actual Tlast record on file

BL CPWR60Q
BE CPWR500

L R1,DFEXPLIN We are expanding

LA R1,1(,R1) Number of expanded records

ST R1,DFEXPLIN

LR R1,R0 Last record written

SRL R1,5 Is record number multiple of 327
SLL R1,5

CR R1,R@ Is block full? (4K = 32 * 128)
BNE CPWR300

ST R@,DFOLDTOT Yes, commit expansion

FSCLOSE FSCB=DFFILEW
FSOPEN FSCB=DFFILEW,FORM=E,CACHE=NO,OPENTYP=WRITE

CPWR300 L R@,DFCURR Last record written
C RA,DFNEWTOT New data file size
BL CPWR8@0
C R@,DFOLDTOT Expansion completed
BE CPWR400 Commit if necessary

ST R@,DFOLDTOT
FSCLOSE FSCB=DFFILEW
FSOPEN FSCB=DFFILEW,FORM=E,CACHE=NO,OPENTYP=WRITE

CPWR4QQ MSG 2160 Display expansion completed msg
B CPWR700 Process record
SPACE
CPWR5@@ C R@,DFNEWTOT Check against new file size
BNL CPWR7@0
MSG @161 Begin Data file expansion
B CPWR8@®
SPACE
CPWR6@GA C R@,DFNEWTOT Check new Data file size

BNE CPWR8@%

22 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

CPWR700

CPWR80Q

CPWR81Q

CPWR820

CPWR830

CPWR840

ST

R@,DFOLDTOT

LA R1,1

AR R@,R1

LA R1,DFFILEW
USING NUCON,R®@

USING FSCBD,R1

ST R@,FSCBAITN
DMSKEY NUCLEUS

L R15,ATRUNC

DROP R@,RI1

BASR R14,R15

DMSKEY RESET

MSG @162

B CPWR700

SPACE

SR R@, RO

XI DFOPTS,DFOCYCLE
™ DFOPTS,DFOCONT2
BO CPWR800O

XI CCHOPTS,DFOCYCLE
LA R1,1

AR R@,R1

ST R@,DFCURR

™ DFOPTS,DFOCONT2
BO CPWR81@

ST R@,CCHRECNO

A R1,DFSSSLIN

ST R1,DFSSSLIN

CR R6,R2

BE CPWR820

01 DFOPTS,DFOCONT1
LR R1,RO

SRL R1,5

SLL R1,5

CR R1,R0

BNE CPWR858

SRL R1,5

BCTR R1,0

SLL R1,5

LA R@,1(,R1)

L R1,RDFPTR

USING RDFSECT,R1

L R1,RDFFWD

C R@,RDFREC

BE CPWR840

C R1,RDFPTR

BNE CPWR838@

B CPWR85@

SPACE

XC RDFREC,RDFREC

Store new Data file size
Prepare to truncate file

Store new Timit into FSCB
Get CMS nucleus key
Truncate file

Reset storage key
Display file truncated message

Go back to the begin
Swap cycle bit
Is it first or only record?

Yes, also update cache record
Increment record pointer

Store it
Is it first or only record?

Yes, store record number (cache
Increment number of messages

)

processed during this session

Is message complete

No, set continuation bit

Record number to be written
Calculate number of last record
...in the block (32 records)

Is it Tlast record of block

No, keep going

Yes, get first record in block

First record of current block
Address first read buffer

Check all buffers
Compare record numbers

Process all buffers

We found it, invalidate buffer

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

23

DROP R1
SPACE

CPWR850 L R@,DFCURR

Record number to write

FSWRITE FSCB=DFFILEW,FORM=E,RECNO=(R@)

LTR R15,R15

BZ CPWR860@

MSG @163,RC

LINK CLOSE

SPACE
CPWRB6Z TM DFOPTS,DFOCONT1

BZ CPWR90@

NI DFOPTS,X'FF'-DFOCONT1

01 DFOPTS,DFOCONT2

B CPWR10@

SPACE
CPWR9@@ BAS

BACK

SPACE
CPWRMVC MVC DFDATA(*-*),0@(R6)

SPACE 3

R14,BRDCAST

Move record into cache

* ok ok *

CACHEREC EQU *
ST R14,CACHSV14
LA R6,CSCBUFF
LA R1,DIAGP@@C

DIAG R1,R@,X'000C’
L R7,CACHEPTR
IC R@,CCHCNUM

L R7,CCHFWD

STC R@,CCHPNUM
MVC CCHDATE(2),DIAGP2@C+6
MVI CCHDATE+2,C' /"
MVC CCHDATE+3(5),DIAGR@AC
MVC CCHTIME,DIAGP292C+8
MVC CCHUSER,@(R6)
MVC CCHOPTS,DFOPTS
NI CCHOPTS,DFOCYCLE
LA R6,8(,R6)
LA RA,CLSCIF
C R@,IPTRGCLS
BNE CACH100
MVC CCHUSER,@(R6)
LA R6,10(,R6)
CACH1@8 CLI 2(R6),C":"
BNE CACH120
CLI 5(R6),C":"
BNE CACH120@
LA R@,8(,R6)

We got a problem, close the shop

Is message to be continued?
No, done

Yes, reset continuation bit
Set continued bit

Loop back

Broadcast message

Move data into DFFILE record

Move record into cache

Address message

Work area for DIAG

Get date and time

Last entry updated

Records on Data File

Address next entry

Records on DF for previous cache
Edit date to yy/mm/dd format

Move time
Move origin user-id from message
Reset all options but cycle bit

Skip *MSG user-id

Use user-id from SCIF instead
Skip SCIF user-id
Check for time stamp

Is it from current message?

24 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

CACH120

CACH200

CACH210

CACH220

CACH230

CLSCIF
CACHMVC

A

BRDCAST

BH
MVC
LA
CLI
BNE
LA
CLC
BNE
LA
CLI
BNE
LA
LA
L
SR
CR
BNH
LR
STC
LA
C
BNH
LA
C
BNH
LA
STC
LTR
BNP
BCTR
EX
ST
L
BR
SPACE
EQU
MVC
SPACE

Broadcast

USING
EQU
ST
LTR
BZ

™

BZ
BAS

R@,CSCBUFFE
CACH200
CCHTIME,@(R6)
R6,8(,R6)
@(R6),C"
CACH120
R6,1(,R6)
CCHUSER,@(R6)
CACH200
R6,8(,R6)
@(R6),C"
CACH200
R6,1(,R6)
R@,L"CCHDATA
R1,CSCBUFFE
R1,R6

R1,R0
CACH210
R1,RO
R1,CCHRLEN
RO,1
R1,DFLR1
CACH220

R@,2
R1,DFLR2
CACH220

R@,3
R@,CCHCNUM
R1,R1
CACH230

R1,0
R1,CACHMVC
R7,CACHEPTR
R14,CACHSV14
R14

8

CCHDATA(*-*),0(R6)

3

MSGSECT,R5
*
R14,BRDCSV14
R5,R5
BRDC200

MSGOPTS,MSGORTE

BRDC100
R14,ROUTE

No, left over from previous one
Move time to record prefix

Skip user-id from message

Length of data area
End address of message
Length of message

Too big, truncate

Store data Tength

Find out how many DF records...
. are required for this cache

Is length zero

Yes, no need to move data
Prepare to EXecute

Move data

Save pointer to current entry

SCIF message class for *MSG
Move data into cache record

Broadcast

Check MATCH result
No special processing
Is message to be routed?

Yes, do it

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

25

BRDC100

BRDC11@

BRDC120

BRDC130

BRDC190
BRDC200

BRDC300

BRDC310@

BRDC400

BRDC500

BRDC600@

26

™
BZ
BAS
™
BZ
BAS
™
BZ
BAS
™
BZ
BAS
™
BO
LA
SPACE

LTR
BZ
™
BO
™
BZ
™
BZ
NI

ST

SPACE

LINK
BNZ
™
BO

™
BZ

BE

SPACE
™

BO
LINK

SPACE
™
BO

© 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

MSGOPTS,MSGORLS
BRDC11@
R14,RELEASE
MSGOPTS,MSGUNIQ
BRDC120
R14,UNIQUE
MSGOPTS,MSGHOLD
BRDC130
R14,HOLD
MSGOPTS,MSGOEXT
BRDC190
R14,EXIT
MSGOPTS,MSGNODSP
BRDC8MO
R8,SSSPTR

R8,UIDFWD

R8,R8

BRDC8MO
UIDOPT2,UIDAUTO
BRDC310@
UIDOPT3,UIDCMS
BRDC300
UIDOPT3,UIDCLEAR
BRDC300
UIDOPT3,X'FF'-UIDCLEAR
R@,CCHRECNO
R@O,UIDCMSTP
BRDC300

R7,CACHEPTR
SELECT

BRDC300
UIDOPT1,UIDRLSE
BRDC300
R7,UIDBUFF1
CCHOPTS,CCHHOLD
BRDC500
R7,UIDBUFF2
BRDC300
R7,CCHFWD
BRDC400

UIDOPT3,UIDCMS
BRDC600O

DELETE
R1,UIDBUFF2
BRDC700

UIDOPT3,UIDCLEAR
BRDC630

Does message release others?

Check messages to release
Is message to be held unique?

Release previous messages
Is message to be held?

Add message to HOLD 1ist
Exit EXEC requested?

Invoke Exit EXEC

NoDisplay message?

Yes, almost done...

Address 1list of active sessions

Address active session

A11 checked, refresh screens
Is session in auto refresh?
Yes, check message

Is CMS scroll active

Yes, was screen cleared before
Yes, reset clear option

Load current record number
Store as new top line

Address current record

Is message expected by the user?
No, check another one

Any message released already
Wait, we must rebuild the screen
Start with first msg on screen
Is it on Hold

Yes, is it the Tast detail line?
Yes, check other sessions
Try next screen line

CMS scrolling?

Yes, process CMS style

Delete first scrollable line
Address last Tline on screen

Add Tine and refresh user screen

Was screen cleared?
Yes, so clear it again

BRDC610@

BRDC620

BRDC630

BRDC640

BRDC650

BRDC700

BRDC710

BRDC720

BRDC730

L
LTR
BNZ
CLI
BNE
™
BZ
CLI
BE
B
SPACE

LTR
BNE
LINK

ST
NI

™
BZ

SPACE

LINK
LR

LINK
01

L
LTR
BZ
™
BZ
0I
™
BZ
GO
™
BO
™
BO
GO
LINK
B
SPACE
GO

B

R1,CCHRECNO
R1,R1

BRDC620
CCHUSER,X'20"
BRDC620
UIDOPT3,UIDWRAP
BRDC650
CCHLINEZ,X'20°’
BRDC630

BRDC650

R7,CCHFWD

R7,R7

BRDC610@

CLEAR
R7,CACHEPTR
R@,CCHRECNO
R@O,UIDCMSTP
UIDOPT3,X'FF'-UIDCLEAR
R7,UIDBUFF1
CCHOPTS,CCHHOLD
BRDC650
R7,CCHFWD
BRDC640

R4,CCHBWD
DELETE

R1,R4
R7,CACHEPTR

ADD
UIDOPT4,UIDBSCR
R5,CPWRSV@5
R5,R5

BRDC710@
MSGOPTS,MSGALARM
BRDC710@
UIDOPT4,UIDBALM
UIDOPT3,UIDWRAP
BRDC720

CSCWRP
UIDOPT1,UIDCONN
BRDC300
UIDOPT1,UIDRMTE
BRDC730

CSCBLD

SEND

BRDC300

CSCUSADP
BRDC300

Is 1Tine in use?

Yes, try next one

Is it a blank 1ine?

No, keep trying

Yes, is Message Wrap active?
No, use the Tine

Is 1ine displayable?

No, try clear the screen

Yes, use it

Address next Tine

Check all 1lines
Screen full,
Address current record
Load record number

Save as new CMS top line
Reset Clear option

Start with first msg on screen

Is it on Hold
No, delete and add new one
Yes, skip it
Locate message to replace

Address previous line

Delete first free line

Add after previous...

Address current line

Add current Tine

Option to rebuild user screen
Restore MSG entry address
Entry found for this message?
No, keep going

Should we beep beep?

Yes, set Alarm option
Is Message Wrap active?

Yes, build partial lines

Is user connected?

Yes, there is no need do it
Is user remote?

Yes, send data back

Rebuild user screen (3270 DS)
Send it

Send data back to user

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

clear scroll lines

27

* %k F

SPACE

Restore MSG entry address
Entry found for this message?
No, that's all

MSGOPTS,MSGORLS+MSGUNIQ Was message releasing messages?

L R5,CPWRSV@5
LTR R5,Rb5

BZ BRDC90@

™

BZ BRDC900@

GO CSCURLRF

L R14,BRDCSV14
BR R14

SPACE 3

EQu *

ST R14,RELESV14
LA R2 ,MSGRLSE

L RO ,MSGPTR

LTR R5,R0@

BZ RELE90D

L RO ,MSGFWD

CLC MSGNAME,@(R2)
BNE RELE100

L R1,HLDPTR

LTR R7,RI1

BZ RELE100

L R1,CCHFWD

C R5,CCHBWD

BNE RELE200

STM R@,R3,RELESAVE
GO CSCURLPR

LM R@,R3,RELESAVE
B RELE200

SPACE

L R7,CACHEPTR

L R5,CPWRSV@5

L R14,RELESV14
BR R14

SPACE 3

EQU
ST
L
LTR
BZ
L

C

© 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Process Unique messages

*

R14,UNIQSV14
R1,HLDPTR
R7,R1
UNIQ920
R1,CCHFWD
R5,CCHBWD

Yes, refresh rlsd msgs screens
Return

Release messages (Name / Release option)

Release messages

Address Release name

Address MSG Table

End of MSG Table?

Yes, all done

Address next entry

Compare Name with Release

Not this one

Found it now scan the Hold Table
End of table?

Yes, check all MSG entries
Address next message

Check MSG address that cause Hol

Found it, save work registers
Release message

Restore work registers

Check all messages

Restore pointer to current line
Restore MSG entry address

Process Unique messages

Address messages on Hold
Any message left?

No, all done

Address next message
Check Hold MSG entry

UNIQ90@ L R7,CACHEPTR Address current line
L R14,UNIQSV14
BR R14
SPACE 3
*
* Add message to Hold Tist
*
* Note: Backward pointer CCHBWD is used to save the MSGSECT address
* of the rule that put this message on Hold.
* Used to release UNIQUE messages.
*
*
HOLD EQU * Hold message
ST R14,HOLDSV14
LA R@,CCHSIZE
LINK OBTAIN Allocate storage
MVC @(CCHSIZEB,R1),CCHSECT Copy message
L R2,HLDLAST Address last entry
LTR R2,R2 Is this the first message?
BNZ HOLD10@
ST R1,HLDPTR Yes, store table address
B HOLD90@
SPACE
HOLD1@@ ST R1,CCHFWD-CCHSECT(,R2) Chain with old last message
HOLD9@@ SR R@, RO
ST RO,CCHFWD-CCHSECT(,R1) Clear forward pointer
ST R5,CCHBWD-CCHSECT(,R1) Save MSGSECT address
ST R1,HLDLAST This is the new Tast message
L R14,HOLDSV14
BR 14
SPACE 3
*
* Invoke Exit EXEC
*
*
EXIT EQU * Invoke Exit EXEC
USING FSCBD,R1
ST R14,EXITSV14
LA R1,EXFILE Address FSCB
MVC FSCBFN,MSGEXIT Move Exit name into FSCB
FSSTATE FSCB=EXFILE Verify if EXEC exists
LTR R15,R15 Yes, invoke exit EXEC
BZ EXIT100
LA R2 ,MSGEXIT No, address exit name
MSG 2164 Display error message
B EXITO00Q
SPACE
EXIT10@0 MVC EXPLFN,MSGEXIT Move name into Parameter List

BNE UNIQ1@0
GO CSCURLPR

Not this one
Release message

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

29

MVC EXEPLMSG,MSGEXIT

LA R1,EXEPLMSG+L"MSGEXIT
EXIT209 BCTR R1,0

CLI @(R1),C"

BE EXIT200

MVI 1(R1),C" '

LA R1,2(,R1)

Build also EPL
Address end of EXEC name
Remove traling blanks

Make sure we have one blank
Address to move message
SR R2,R2 Required by next IC
IC R2,CCHRLEN Load message Tength
LA R2,CCHDATA-CCHDFREC(,R2) Add DF prefix Tength
LA R@,0(R2,R1) Calculate end address of message
ST R@,EXEPLEND Store into Extended PL
BCTR R2,0 Prepare to Execute
EX R2,EXMVC Move DF record into EPL
™ CSCFLG@1,HNDIOS Check for Console trap
BZ EXIT300
HNDIO CLR,DEVNAME=CONS Disable trap
EXIT30@ CMSCALL PLIST=EXPL,EPLIST=EXEPL,COPY=NO Invoke exit EXEC
™ CSCFLG@1,HNDIOS
BZ EXITI0@

WAITT Wait for I/0 to complete

L R2,ADDRCONS

L R3,@CSCIOX

LA R4, I0XBK

HNDIO SET,DEVNAME=CONS,DEVICE=(R2),EXIT=(R3), *

INTBLOK=((R4),L"IOXBK)
EXIT900 L R14,EXITSV14
BR R14
SPACE
EXMVC MVC @(*-*,R1),CCHDFREC
DROP R1
SPACE 3

Move DF record into EPL

Route a message to one or more users

* ok Kk ok ok

ROUTE EQu *
USING RTESECT,R3
ST R14,ROUTSV14
L R@O,RTEPTR
SR R4,R4
ROUT1M® LTR R3,RO
BZ ROUT600

Route message

Address Route table
Zero counter
Check for End of table

L R@,RTEFWD Not yet, address following entry
CLC MSGROUTE,RTENAME Compare route name

BNE ROUT100 Not this one, try next

SR R6,R6 Route entry found

IC R6,RTECNT Load number of Node/User pairs
LR R1,R6 Copy

© 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

BCTR R1,0

SLL R1,4

LA R1,RTENODE(RI)
CLC CSCNODE,@(R1)
BE ROUT300

BAS R14,SENDRSCS

B ROUT409
SPACE
ROUT300 LA R1,L"RTENODE(,R1)
BAS R14,SENDCP
ROUT400 LA R4,1(,R4)
BCT R6,R0OUT200
L R@,RTEFWD
B ROUT100
SPACE
ROUT6@PA LTR R4,R4

ROUT990 L

DV ok kK ok ok ok

* % K ok ok oF

BNZ ROUT900

LA R1,MSGROUTE
BAS R14,SENDCP
R14,ROUTSV14
BR R14

SPACE

Build message (RSCS)

Calculate offset

That's 16 bytes per pair
Address correct Node/User
Check node

It is the same, use CP to send
Not the same, use RSCS

Address destination user
Build and send message
Count messges sent

Process all Node/User pairs
Process all Route table

Did we send any message?

Yes, all done

No, use route name as user-id
Send message to the same node

Input RI points to NODE/USER entry

ENDRSCS EQU *

LA R2,CPWTEXT

MVC @(L'CPWSMSG,R2),CPWSMSG

MVI L'CPWSMSG(R2),C" '
LA R2,L"CPWSMSG+1(,R2)

MVC @(L'CSCRSCS,R2),CSCRSCS

MVI L'CSCRSCS(R2),C" '
LA R2,L"CSCRSCS+1(,R2)

MVC @(L'CPWMSG,R2),CPWMSG

LA R2,L"'CPWMSG(,R2)

MVC @(L'RTENODE,R2),@(R1)

MVI L'RTENODE(R2),C" '
LA R2,L"'RTENODE+1(,R2)
LA R1,L"RTENODE(,R1)

B SENDALL

SPACE

Build message (CP)

Input R1 points to USER

Address message work area
Move RSCS communication command
Force a blank separator

Move RSCS user-id

Move RSCS MSG command
Move destination Node-id
Next free byte in message area

Address destination user-id
EXECute CP/RSCS common code

© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

SENDCP EQU *
LA R2,CPWTEXT Address message area
MVC @(L'CSCMSGC,R2),CSCMSGC Move CP command (MSG or MSGNOH)
MV I L'CSCMSGC(R2),C" ' At least one space is required
LA R2,L'CSCMSGC+1(,R2) Advance pointer
SPACE

SENDALL EQU *
MVC @(8,R2),@(R1)
LA R2,8(,R2)
MVI @(R2),C' '

Common code to CP and RSCS
Move destination user-id
Skip user-id

Force a blank separator

SEND1@@ BCTR R2,0 Check for multiple blanks
CLI g(R2),C" '
BE SEND10@@ Found one, remove it
MVC 2(L'CPWMSGB,R2),CPWMSGB Move message header
LA R2,L'CPWMSGB+2(,R2)
MVC @(L'CCHUSER,R2),CCHUSER Move originating user-id
LA R2,L'CCHUSER(,R2)
SEND20@ BCTR R2,0 Remove all blanks
CLI @g(rR2),C" "
BE SEND20@
MVC 1(L'CPWMSGE,R2),CPWMSGE Close message header (:)
LA R2,L'CPWMSGE+1(,R2)
LA R@,CPWTEXT+L'CPWTEXT Address end of message area
SR R@,R2 Calculate amount of free space
SR R1,R1
IC R1,CCHRLEN Load message Tength
CR R@,R1 Space enough?
BNL SEND30@0@
LR R1,R0O No, truncate message
SEND3@@ BCTR R1,0 Prepare to Execute
EX R1,SENDMVC Move messagde text
LA R2,1(R1,R2) Address end of message
LA R@,CPWTEXT Address message area
SR R2,R0O Calculate message length
0 R2,CPWRESP Request CP response in buffer
LA R1,CSCBUFF Address response buffer
ST R3,SENDSV@3 Save R3
LA R3,1 Buffer length (dummy)
DIAG R@,R2,X'0008' Call CP to EXECute command
L R3,SENDSV@3 Restore R3
BR R14
SPACE
SENDMVC MVC @(*-*,R2),CCHDATA Move message text
SPACE
DROP R3,R5
SPACE 3
CACHSV14 DS F Save R14 CACHEREC
BRDCSV14 DS F BRDCAST
RELESV14 DS F RELEASE
UNIQSV14 DS F UNIQUE

32

© 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

HOLDSV14 DS F HOLD
EXITSV14 DS F EXIT
ROUTSV14 DS F ROUTE
SENDSV@3 DS F R3 SEND
CPWRSV@5 DS F R5 CPW (MSG entry addr)
RELESAVE DS 4F R@-R3 RELEASE
SPACE
@SCURLPR DC V(CSCURLPR) Release messages
@SCURLRF DC V(CSCURLRF) Refresh released messages scrns
DFLR1 DC ACL'DFDATA) Maximum Tength for 1 DF record
DFLR2 DC A(CL'DFDATA*2) Maximum Tength for 2 DF records
SPACE
CPWTEXT DS CL128 Area to build CP/RSCS message
SPACE
CPWRESP DC X'40000000" Request CP response in buffer
CPWSMSG DC C'SMSG ' RSCS communication command
CPWMSG DC C' MSG ' RSCS MSG command
CPWMSGB DC C'<CSc> Message header
CPWMSGE DC cr. Termination of message header
SPACE
DS @D
EXPL DC C'EXEC ! Parameter List for Exit EXEC
EXPLFN DC c' !
DC X'FFFFFFFFFFFFFFFF’
EXEPLMSG DS CL256 Message that invoked exit
EXEPL DC ACEXPL) *1* Extended Parameter List
DC ACEXEPLMSG) *2*
EXEPLEND DC A(*-*) *3*
DC A(D) *4* Extended Parameter List word 4
EXFILE FSCB '* EXEC *',FORM=E
SPACE 3
CSCDATA
CSCDS (CCH,UID,RDF,MSG,RTE)
NUCON
FSCBD
REGEQU
PRINT OFF
COPY IPARML
PRINT ON
END

It is now possible to generate CSCSVP. The module will collect the
data and create the log file, but you cannot establish user sessions yet.
This will be possible after adding CSCSCN, CSCBLD, CSCUSC,
CSCUIN, and CSCSEV.

Editor’s note: this article will be continued next month

Fernando Duarte
Analyst (Canada) © F Duarte 1999

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 33

Mouse on the mainframe

In this second article on the manipulation of System/390 applications
with a PC or workstation mouse, the author discusses writing REXX
programs with virtual screens and CMS windows.

INTRODUCTION

In a previous article ivM Update Issue 146, October 1998, |
discussed the concept and rationale for writing user-oriented
System/390 applications that can be manipulated with a PC or
workstation mouse. ‘Pointer Enabled Tools’ or PETs were proposed
as productivity enhancements because clicking with a mouse on
predefined screen ‘hot spots’takes considerably less effort and is less
error-prone than using keystrokes. Novice or casual VM/CMS users
find the PETs style interface dramatically easier to master than the
standard command line interface.

This article outlines one way in which PETs applications can be
written using REXX, CMS virtual screens and windows, and CMS
Pipelines. It is also relatively straightforward to write PETs for use
with XEDIT, using XEDIT subcommands and values returned by the
EXTRACT subcommand. These programming tools are generally
available with VM/CMS as delivered from IBM and no additional
software is required. Documentation on using the basic tools can be
found in system help files or in IBM reference manuals. This article
will show how these basic tools can be combined to create new PETSs.

THE BASIC PROGRAM STRUCTURE

In general, PETs are written with a primary loop. Within the loop, the
program displays information ina CMS window and then pauses until
the user responds in some fashion. The program can then alter the
information displayed on the screen, perform a function, or exit,
according to directives specified by the user. Simplistically, the basic
steps in these programs are as follows:

o Start the program.
 Define and initialize virtual screens and windows.

34 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

e Other initial processing.
* Loop:
— Display information.

— Pause and receive keystrokes (or ‘mouse clicks’) from the
user.

— Analyse the keystrokes and cursor position.
— Perform the requested function (or exit if requested).
— Update information on the virtual screen.
— Continue the loop.
» Delete virtual screens and windows (usually).
e Other termination processing.
 End the program.

The approach to programming PETs XEDIT macros varies somewhat
from that used to program EXECs. Programming an XEDIT macro
mightinclude redefining the ‘meaning’ of the ENTER key, displaying
XEDIT reserved lines, and using the EXTRACT subcommand to
determine which keystrokes were pressed and the position of the
cursor on the screen when the last key was pressed. CMS virtual
screens and windows can be used if appropriate.

CMS VIRTUAL SCREENS AND WINDOWS

At the core of all interactive PETs are CMS virtual screens and CMS
windows. Virtual screens are writable ‘presentation spaces’ that can
contain text intended for display on a 3270 terminal. Conceptually,
virtual screens are rectangular spaces which contain lines of text.

Virtual screenganbe 80 columns wide by 24 lines down, but they
need not be; they can be defined with fewer or more than 80 columns
and with a variable number of lines — virtual screens with thousands
of lines of data are possible.

Each virtual screen is associated with a CMS virtual window. CMS
windows are rectangular objects which map the contents of a virtual

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 35

screen onto areal 3270 display. Awindow can be equal in size to areal
3270 display, or it may be smaller than a real device.

An open CMS window permits a user to view data on a virtual screen.
Figure 1 shows the relationship between a virtual screen containing
text and a window which facilitates viewing that text. In some cases,
the virtual screen and the window are defined in such a way that:

1 The window shows the entire contents of the virtual screen.
2 The window completely fills a standard 3270 display.

In other cases, the virtual screen is larger than the window (as shown
in Figure 1) and the window must be repositioned on the virtual screen
in order to view the ‘hidden’ contents.

Several steps are required to use virtual screens and windows. Each
step can be accomplished by issuing one or more CMS command from
within a REXX program. The basic steps are as follows:

1 Define the virtual screen size and other attributes.
2 Define the window size and other attributes.
3 Connect the window to the virtual screen.

This text is not seen <«—— CMS virtual screen

This text

iSs seen
< CMS window

Figure 1: Relationship between a CMS virtual screen and |ts
associated CMS window

36 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

4 Write text into the virtual screen.
5 Open the window.

The process becomes a little more complex when more than one
virtual screen and more than one window are defined and in use.
Windows can be opened or closed, placed in front or behind other
windows, etc. Because an application can open several windows
simultaneously, some care should be taken to ensure that the result is
as usable and user-friendly as possible. Figure 2 shows the results
from an application called PLSERV that provides a front-end to
Listserv processing (a product of L-Soft International).

+ +
| Listserv Tasks (EVENTS-L) 1 to 12 of 12 |

| Select an + +

| | List Owner Tasks (EVENTS-L) 1 to 12 of 12

| Post a No | Select an + +
| Specify a | | Replies (EVENTS-L) 1 to 2 of 2

| | Check Lis | Select an item from the 1ist.

| List Loca | | |
| Mail Note | Add User | View Messages

| Check Lis | Delete Us | Review Reader for Replies

| | Query Use |

| List Owne | Review th |

Subscribe		
	Authorize	
View List	Query Use	

| Xedit LIS | Revoke Us |

| | | |
| | Unlock th |

| | | |
I I I I
		P 1=Help 2=PXFiles 3=Quit 4=QExecs
		F 7=Backward 8=Forward 9=Top 1@=Bottom
	P 1=Help	REPLIES
	F 7=Backwa + +	
P 1=Help	OWNER	

| F 7=Backwa + +

| PLSERV |

+ +

Figure 2: Example of simultaneously open CMS windows.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 37

DEFINING THE VIRTUAL SCREEN

A virtual screen is defined by issuing the VSCREEN command. For
example:

"VSCREEN DEFINE TESTSCRN 20 66 1 2°'
where:
« ‘DEFINE’is the VSCREEN command option.
« ‘TESTSCRN' is the name of the virtual screen.
e ‘20’is the number of scrollable lines of data in the virtual screen.
‘66’ is the number of columns in the virtual screen.
 ‘l’isthe number of ‘reservedlines’ atthe top of the virtual screen.

e ‘2"iIs the number of ‘reserved lines’ at the bottom of the virtual
screen.

Typically, reserved lines are used for non-varying information such as
titles or PF key definitions (eg 1=Help). Data lines are intended to be
written and possibly rewritten. But there is no strict requirement
governing the type of data that can be written to these different areas
on a virtual screen. The primary difference seems to be that data lines
can be scrolled and reserved lines are fixed in place.

DEFINING A WINDOW

A window is defined by issuing the WINDOW command. For
example:

'"WINDOW DEFINE TESTWIN 20 67 3 7'
where:
 ‘DEFINE’is the WINDOW command option.
e ‘TESTWIN'is the name of the window.
o ‘20’is the number of lines in the window.
 ‘67'is the number of columns in the window.

« ‘3 specifies that the top row of the window is to be placed on line
3 of a real 3270 display.

38 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

o ‘7’ specifies that the leftmost column of the window is to be
placed on column 7 of a real 3270 display.

There are, of course, options that can be specified when defining
virtual screens and windows. Options alter virtual screen and window
attributes such as colour, borders, whether or not data in a window is
fixed or scrollable, and so on. For details see the help files ‘HELP
VSCREEN DEFINE’ and ‘HELP WINDOW DEFINE’.

CONNECTING AWINDOW TO AVIRTUAL SCREEN

Awindow is connected to a specific virtual screen with the WINDOW
command. For example:

"WINDOW SHOW TESTWIN ON TESTSCRN 1 1°
where:
e ‘SHOW’is the WINDOW command option.
e ‘TESTWIN'is the name of the window.
« ‘TESTSCRN' is the name of the virtual screen.

‘1’ specifies that line 1 of the virtual screen will be shown on the
top line of the window.

« ‘1’specifies that column 1 of the virtual screen will be seenin the
leftmost column of the window.

WRITING TEXT TO AVIRTUAL SCREEN

Text is queued up for writing to a virtual screen with the VSCREEN
command. For example:

"VSCREEN WRITE TESTSCRN 9 1 66 (FIELD Hello, World!’

where:

‘WRITE' is the VSCREEN command option.
‘TESTSCRN’ is the name of the virtual screen.
‘9’ specifies the line in which the text is to be written.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 39

« ‘1’ specifies the column in which the text is to be written.
‘66’ specifies the length of the text field to be written.

« ‘FIELD’ is a VSCREEN command option that specifies a field
definition.

« ‘Hello, World! is the text to be written to the virtual screen.

The length of the data string queued to a virtual screen should not
exceed one less than the width of the virtual screen, as specified in the
VSCREEN DEFINE command.

Text can be written to a virtual screen with the VSCREEN command
(there are other commands as well). For example:

"VSCREEN WAITREAD TESTSCRN'

where:
« ‘WAITREAD'is the VSCREEN command option.
e ‘TESTSCRN' is the name of the virtual screen.

Here, the WAITREAD command option writes any queued data to the
virtual screen and then waits for the user to respond. The user can enter
some text (if required), but he must press a PF key, a PA key, the
CLEAR key, or the ENTER key to terminate the WAITREAD.
VSCREEN stores the user-entered text and other information in
variables that can then be retrieved by the program.

Virtual screens and windows can be deleted with the appropriate
commands. For example:

"WINDOW DELETE TESTWIN'
"VSCREEN DELETE TESTSCRN'’

VSCREEN and WINDOW commands can be included in a REXX
program in the usual manner, as follows:

/* Example of VSCREEN and WINDOW commands */
"VSCREEN DEFINE TESTSCRN 20 66 1 2°' /* Define the virtual screen.*/
'"WINDOW DEFINE TESTWIN 20 67 3 7' /* Define the window. */

'"WINDOW SHOW TESTWIN ON TESTSCRN 1 1° /* Connect the window to the */

40 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

/* virtual screen. */

"VSCREEN WRITE TESTSCRN 9 1 66 (FIELD', /* Queue a line of text to */

'Hello, World!' /* the virtual screen. */
"VSCREEN WAITREAD TESTSCRN' /* Update the virtual screen */
/* and await a response. */

"WINDOW DELETE TESTWIN' /* Delete the window. */
'VSCREEN DELETE TESTSCRN' /* Delete the virtual screen.*/

Exit

WRITING TO AND READING FROM WINDOWS

It may be appropriate to display some information in a window and
then close that window without further action. However, many
applications lend themselves to repeated interaction with end users.

In such cases, there may be a primary window that displays information
and receives text or directives from the end user, and then loops again
to refresh the text in the window or to receive additional directives.
The sample program that follows employs an appropriate looping
structure:

/* Looping with a virtual screen */

'"VSCREEN DEFINE TESTSCRN 18 36 1 2°'
'"WINDOW DEFINE TESTWIN 18 37 8 15°'
"WINDOW SHOW TESTWIN ON TESTSCRN 1 1°

Do Toop =1 By 1 Until(loop=3)

Select;
When Toop = 1 Then datastring
When Toop 2 Then datastring
When Toop = 3 Then datastring
Otherwise NOP
End

'"VSCREEN WRITE TESTSCRN 4 1 36 (FIELD' datastring

'VSCREEN WAITREAD TESTSCRN'

End Toop

'Hello, World!'
'Second time around.'
'Well, this is it!’

"WINDOW DELETE TESTWIN'
"VSCREEN DELETE TESTSCRN'’
Exit

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 41

If a virtual screen is defined with reserved lines at the top and/or
bottom, it may be appropriate to add static instructions on those lines
as aguide to users. The looping example is extended in the code below
to include commands that write a title on the top line of the virtual
screen and instructions on the bottom line. Please note that text can be
displayed in different colours according to the options specified on the
VSCREEN WRITE commands.

/* Writing static text on reserved Tines */

"VSCREEN DEFINE TESTSCRN 10 36 1 2°'
"WINDOW DEFINE TESTWIN 10 37 8 15°'
"WINDOW SHOW TESTWIN ON TESTSCRN 1 1°

'VSCREEN WRITE TESTSCRN 1 1 36 (RES', /* Queue text to reserved line */
'"YELLOW FIELD The World of Windows!' /* number 1 (the top). */

'VSCREEN WRITE TESTSCRN -2 1 36 (RES', /* Queue text to the second */
'RED FIELD Press ENTER (or click', /* from the bottom reserved */

'your mouse!)’ /* 1line (the -2 line). */

'VSCREEN WRITE TESTSCRN -1 1 36 (RES', /* Queue text to the bottom */
'RED FIELD to continue...’ /* reserved line (the -1 line)*/

Do Toop =1 By 1 Until(loop=3)

Select;
When Toop = 1 Then datastring = 'Hello, World!'
When Toop = 2 Then datastring = 'Second time around.’
When Toop = 3 Then datastring = 'Well, this is it!"’
Otherwise NOP
End

"VSCREEN WRITE TESTSCRN 4 1 36 (FIELD' datastring

"VSCREEN WAITREAD TESTSCRN'

End Toop
'"WINDOW DELETE TESTWIN'
'VSCREEN DELETE TESTSCRN'
Exit
Reading text from a window requires a user to enter information into
an ‘unprotected field’ in a window. Text entered in an unprotected
field is stored in a stem variable and can be retrieved by referring to

specific elements of that stem variable.

As a convenience, some provision should be made to properly
position the cursor so that a user need not spend time fiddling with the
arrow or tab keys. As a practical matter, it may be appropriate to alter

42 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

some of the text on the virtual screen as the process continues.

The EXEC below displays a window, asks the user to enter his name,
receives the name, and then redisplays the window with altered text
and a new position for the cursor.

/* Reading text with a window */

"VSCREEN DEFINE TESTSCRN 18 36 1 2°'
"WINDOW DEFINE TESTWIN 19 37 8 15°'
"WINDOW SHOW TESTWIN ON TESTSCRN 1 1°

'"VSCREEN WRITE TESTSCRN 1 1 36 (RES YELLOW FIELD',
'Please enter your name.’
'VSCREEN WRITE TESTSCRN -2 1 36 (RES RED FIELD',
'Press ENTER (or click your mouse!)’
'"VSCREEN WRITE TESTSCRN -1 1 36 (RES RED FIELD to continue...'

/* The following lines queue the prompt, queue/define an unprotected */
/* field to receive the name, set the cursor in the first position of */
/* the unprotected field, refresh the virtual screen and await a */
/* response from the user. */

"VSCREEN WRITE TESTSCRN 4 1 11 (PROTECT GREEN FIELD Your name:'
'VSCREEN WRITE TESTSCRN 4 12 23 (NOPROTECT BLUE FIELD '
"VSCREEN CURSOR TESTSCRN 4 13 (DATA’

"VSCREEN WAITREAD TESTSCRN'

/* Element WAITREAD.3 contains information about the text which was */
/* typed into the window, including the 1line number, column number, */
/* and specific text. Parsing out "value" retrieves the user's name. */

Parse Var waitread.3 type 1n cn value
name = Strip(value)

/* The following lines queue new text to the virtual screen, place the*/
/* cursor onto a lower reserved line, refresh the screen and await a */
/* response from the user. */

"VSCREEN WRITE TESTSCRN 1 1 36 (RES YELLOW FIELD' Left('Thanks!',35)
'"VSCREEN WRITE TESTSCRN 4 1 36 (NOPROTECT FIELD' Left('Hello, 'name,35)
"VSCREEN CURSOR TESTSCRN -2 8 (RESERVED'

"VSCREEN WAITREAD TESTSCRN'

"WINDOW DELETE TESTWIN'

'VSCREEN DELETE TESTSCRN'
Exit

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 43

THE WAITREAD. STEM VARIABLE
The VSCREEN WAITREAD command performs several functions:

Virtual screens are refreshed with text previously queued to them.

2 The image displayed on the real 3270 screen is updated.
3 The nextinterrupt (ENTER, CLEAR, PA or PF key) is awaited.
4 Text entered by the user is retrieved and stored, along with

information about which key was pressed and the cursor position,
in elements of the WAITREAD. stem variable.

The elements of WAITREAD. contain the following information:

« WAITREAD.O — the number of elements returned (excluding
WAITREAD.O).

« WAITREAD.1 — the specific interrupt key that was pressed.

« WAITREAD.2 — the position of the cursor when the interrupt
occurred.

« WAITREAD.3 through to WAITREAD.n — information about
fields that were changed; line number, column number, and
modified text.

An EXEC can examine the contents of WAITREAD.1 to determine
specifically which interrupt key was pressed. For example, if PF Key
3 was pressed, WAITREAD.1 would contain the following string:

'PFKEY 3’

or if the ENTER key was pressed, WAITREAD.1 would contain the
following string:

"ENTER'

An EXEC can examine the contents of WAITREAD.2 to determine
where the cursor was positioned on the virtual screen when the
interrupt occurred.

WAITREAD.2 will contain a string similar to this:

"CURSOR 3 10 DATA’

indicating that the cursor was on line 3, column 10; the virtual screen

44 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

line was defined as a DATA line rather than a RESERVED line. Or,
WAITREAD.2 will contain a string similar to this:

"CURSOR 1 40 RESERVED'

indicating that the cursor was positioned on reserved line number 1
(the top of the virtual screen) in column 40.

An EXEC can examine the contents of the WAITREAD.3 through
WAITREAD.n stem variable elements and retrieve information about
virtual screen fields that have been changed. Information about the
first changed field (top to bottom, left to right) is stored in
WAITREAD.3. If changes were made to a second field on the same
virtual screen, then information about the second changed field is
stored in WAITREAD.4, and so forth. The value stored in
WAITREAD.O can be examined to determine how many fields were
changed (the value in WAITREAD.O minus 2). WAITREAD.3 and
later elements will contain a string similar to this:

'DATA 4 10 text which has been entered’

indicating that the string ‘text which has been entered’ was found in
a changed field, which starts in column 10 on data line 4 of the virtual
screen. If the text was changed in an unprotected reserved line, then
WAITREAD.3 would contain a string similar to this:

'RESERVED 1 3 text which has been entered on a reserved line’

The on-line help file can be reviewed for a more detailed description
of the WAITREAD. stem variable.

HELP VSCREEN WAITREAD

By carefully assessing the values returned in the WAITREAD. stem
variable elements, the REXX program can determine what text (if
any) was entered onto the screen, which interrupt key was pressed,
and the position of the cursor when that interrupt key was pressed.

HOW MOUSE CLICKS ARE RECEIVED AND INTERPRETED

From the previous discussions on virtual screens, CMS windows, and
the WAITREAD. stem variable, it should be clear that interactive
programs can be written that display information in windows and

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 45

react to user keystrokes. For example, if a user presses PF Key 3, then
that fact is passed back to the program through the WAITREAD.1
variable. The program examines the value of WAITREAD.1, finds the
string ‘PFKEY 3’, and terminates normally:

Do Toop =1 By 1
If Left(waitread.1,8) = "PFKEY 3' Then Leave loop

End Toop

Exit(@)

Similarly, ifauser pressesthe ENTER key, the value of WAITREAD.1

IS updated to contain the string ‘ENTER’. Furthermore, the position
of the cursor when the ENTER key is pressed is stored as the value of
the WAITREAD.2 variable. By parsing WAITREAD.2, the line and
column corresponding to the cursor’s positionin the virtual screen can
be determined:

/* WAITREAD.2 contains a string similar to "CURSOR 3 1@ DATA' */
Parse Var WAITREAD.2 . lineno columno area .

Therefore, the program can learn the position of the cursor when the
ENTER key is pressed, and proceed accordingly.

In many 3270 terminal emulation software packages a mouse action
is (or can be) defined to emulate the two actions ‘set cursor’and ‘press
enter’. A single click of the right mouse button, for example, can be
configured to emulate setting the 3270 cursor and pressing the
ENTER key.

In practice, the PC or workstation pointer is moved with the mouse to
some location on the screen, and the right mouse button is clicked.
That single click repositions the 3270 cursor in the active virtual
screen and sends an interrupt to CMS. CMS passes the information
alongtothe VSCREEN WAITREAD process as previously discussed,
and variables WAITREAD.1 and WAITREAD.2 are updated as if the
real ENTER key had been pressed. The PETs program logic examines
these variables and proceeds according to design.

46 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

PETSs programs are designed to handle mouse clicks in this manner. At
the same time they are designed to respond to standard keystrokes and
the normal interrupt keys. By handling both keyboard keystrokes and
mouse clicks equally well, PETs programs serve both traditional
mainframe users and people who prefer to use a mouse. By exploiting
this interesting synergy between the workstation mouse and CMS,
PETs can bring a new level of productivity and ease of use to the 3270
world.

A FINAL EXAMPLE

The EXEC presented below, while of limited practical value, combines
all the elements discussed in this article: virtual screen, CMS window,
infinite loop, WAITREAD processing, analysis of the WAITREAD.
stem variable values, functional selection, and screen/window clean-
up. In addition, the example shows how error messages might be
displayed when appropriate:

/* Sample Pointer Enabled Tool - Command Menu */
'VSCREEN DEFINE MENUSCRN 8 31 2 2°' /* define screen */
'"WINDOW DEFINE MENUWIN 8 32 8 24' /* define window */
"WINDOW SHOW MENUWIN ON MENUSCRN 1 1°' /* connect w->s */
"VSCREEN WRITE MENUSCRN 1 1 31 (RES PR W FIELD', /* queue title */
Center('Command Menu',29)
"VSCREEN WRITE MENUSCRN 1 1 31 (PR G FIELD Filelist'/* queue T1ine 1 */
'"VSCREEN WRITE MENUSCRN 2 1 31 (PR G FIELD Help' /* queue line 2 */
'"VSCREEN WRITE MENUSCRN 3 1 31 (PR G FIELD RdrList' /* queue Tine 3 */
'"VSCREEN WRITE MENUSCRN 4 1 31 (PR G FIELD SendFile'/* queue Tine 4 */

'"VSCREEN WRITE MENUSCRN -1 1 31 (RES PR R FIELD', /* queue help */
'Click on a command. PF3=Quit’

message = '' /* init error msg*/

Do loop =1 By 1 /* loop forever */

'"VSCREEN WRITE MENUSCRN 2 1 31 (RES PR Y FIELD', /* queue err msg */
Left(message,?29)

'VSCREEN CURSOR MENUSCRN 1 1 (DATA' /* set cursor */
'VSCREEN WAITREAD MENUSCRN' /* refresh screen*/
message = '' /* clear err msg */
keystroke = Left(waitread.1,8) /* get keystroke */
Parse Var waitread.2 . In cn area . /* get Tine numb */
Select;

When keystroke = "PFKEY 3' Then Leave Toop /* pf3 pressed? */

When 1n = -1 & cn = -1 Then Leave loop /* outside win? */

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 47

When area —-= 'DATA’ /* data area? */

Then message = 'Incorrect selection’

When ITn = 1 Then 'EXEC FILELIST' /* Tine 17 */
When 1n = 2 Then 'HELP' /* line 27 */
When 1n = 3 Then "EXEC RDRLIST' /* line 37 */
When Tn = 4 Then "EXEC SENDFILE’ /* line 47 */
Otherwise message = 'Unknown option'’ /* set err msg */

End
End /* continue loop */
'"WINDOW DELETE MENUWIN' /* delete window */
'VSCREEN DELETE MENUSCRN' /* delete screen */
Exit(0) /* end EXEC */

FURTHER INFORMATION

Further information about the PETs project can be found at the
following Web location: http://vm.uconn.edu/~pets/.

Editor's note: in a future article, the author will discuss mouse-
clickable enhancements to XEDIT.

Richard G Ellis
Director, Computing and Information Systems
University of Connecticut (USA) © R G Ellis 1999

The DIRMAINT Synchronous Application Interface

Until recently, the Directory Maintenance Program Product
(DIRMAINT) has had an unsatisfactory programming interface.
Programs interacting with DIRMAINT have had to wait for messages
from the server, and then analyse text that contained a random mixture
of constant and variable data.

With Release 1.5, a new Synchronous Application Interface (SAPI)
has been introduced. This is briefly introduced as a GUPI in a 3-page
Appendix C to th€ommand Referenaganual, but there is very little
explanation of how the interface should be used.

What has been provided in the SAPI interface is support for a new

48 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

‘language’for DIRMAINT messages. Alongside the default AMENG,
UCENG, and KANJI, there is now 1SAPI. Ifa DIRMAINT command

Is issued with 1SAPI as the active language, communication between
the caller and the server uses SMSG and IUCV, and all responses will
be returned to the caller in one of two fixed formats. The standard
format is:

DVHrtnnnnnI REQUEST=number RTN=DVHrtn MSG=nnnn FMT=nn
SUBS= any number of tokens to be substituted in the message skeleton

If the last character of the ‘SUBS=" string is a comma (which may
appear inthe middle of aword), the message is followed by the second
format:

DVHmodnnnnI CONT=the rest of the string

Note that there is a single blank after ‘SUBS='", but not after any of the
other ‘="keywords. With this fixed-format message pattern, itis much
easier to find the keywords required by the calling program, and
decide what action is needed next.

Appendix C describes ‘two sample programs’, DIRMSAPI and
DVHSAPI. In fact, only DIRMSAPI is a sample. If it is renamed to
filetype EXEC, it can be used from the console with exactly the same
syntax as the standard DIRMAINT EXEC, but its main use is to
demonstrate the interface with the DVHSAPI EXEC. This one is not

a sample, but a supported part of the DIRMAINT product —there have
even been APARSs taken against it and fixed. It is designed to be used
only as a subroutine —that is why the DIRMSAPI sample is provided.
The user interface disk has two versions of the DVHSAPI EXEC, in
source and compiled form. The compiled version is obviously
preferable for production use, since it performs better, but the source
version has been put through the EXECUPDT process before release,
and all comments and indentation stripped out. So it is very difficult
to use as a tool to understand the interface. For that, you need to go to
the version on the maintenance disk. This is well commented, and
gives you a good idea of the broad pattern of the process.

It has to be said that this process is very complex, since a lot of
DIRMAINT’s server processing is asynchronous, and therefore
unsuited to a synchronous interface. The basic flow of DVHSAPI is
as follows:

1 Set up the Globalv values needed for the SAPI interface.

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 49

2 Call the DIRMAINT EXEC with the command string.

Call WAKEUP (distributed with the DIRMAINT product as
DVHWAKE) to wait for incoming responses arriving in SMSGs.

Store them in a stem variable (stem DVHSAPI.).

5 When the final message has been received, or when WAKEUP
times out, it stores the DVHSAPI. stem variables in the calling
EXEC, and resets the original environment.

DVHSAPI is governed by state codes, which change as the forecast
messages are received. Only when the final message arrives will the
EXEC return to the caller with the appropriate return code. Within the
flow, there are a lot of complications, particularly those caused by
deleting mini-disks. Whereas most successful transactions end with
message DVHREQ2289I, when a disk is deleted, the DIRMAINT
server only does the preliminary work. The disk is then transferred to
a DATAMOVE machine (with an internal TMDISK command), and

a later series of messages reports the progress of the DLINK and
ZAPMDISK phases. (DLINK deletes Link records to the disk from
other user-ids, and ZAPMDISK finally deletes the disks and returns
the extent to the free pool.)

Since it is impossible to run a ZAPMDISK while any user has a link
to the disk, this means that the final messages for some DMDISK
commands can arrive long after the rest of the transaction has
completed. (The longest delay | have seen so far is six weeks, when
somebody tried to delete some SQL database disks without stopping
the server.)

It is because of this potential delay that WAKEUP is programmed to
time out. Control is returned to the calling EXEC within a reasonable
time, and it can process all the messages that have arrived so far.
However, any messages arriving later will be stored in the IUCV
buffer, and appear at the top of the messages from the next transaction.
You need to bear this in mind when designing the calling EXEC.

Appendix C is mostly made up of a section entigiplied SAPI
Coding RulesThe first and third bullet points have been overtaken by
later PTFs, so they need major modification.

50 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

The first bullet point discusses the need to issue:

EXEC DIRMAINT EXECLOAD

before issuing multiple DIRMAINT commands. If your caller is a
long-running application that is likely to continue across a restart of
the DIRMAINT server machine, it is essential that you have applied
the latest service. There can be an I/O error reading the WHERETO
DATADVH file on the user interface disk after a server restart. This
disk is permanently accessed by the EXECLOAD command, whereas
it is accessed and released for each individual command if the
EXECLOAD command has not been issued. A new PTF exploits
update-in-place for the file, which is rewritten as part of server
initialization, so that a user already accessing the disk will see the
changes to the file without reaccessing it.

It also suggests issuing an:

EXEC DIRMAINT EXECDROP

before the EXECLOAD. This is no longer necessary, since
EXECLOAD does it every time.

The third bullet point discusses return codes. There have been major
revisions to several of these, as well as some new messages for severe
errors, as a result of a new PTF for APAR VM61741. This was not
included in RSU9801, the latest at the time of writing. However, that
RSU also includes a lot of changes that enhance performance, and |
recommend installing it, or any later level.

The 1SAPI messages, although ideal for applications, are very difficult
for an ordinary reader to interpret. If you need to display or print the
messages, they can be translated to the normal format by calling
DVHMSG with your default language instead of 1SAPI. Specimen
code to do this is in the DIRMSAPI sample.

To sum up: the new SAPI interface makes it much easier to write
programs that depend on DIRMAINT messages, but you need to
analyse the DIRMSAPI sample carefully to see how to handle the new
message format. You should also be aware that delayed responses may
come into IUCV long after the main transaction has completed.

Alan Hakim
Hikmet (VM) Ltd (UK) © A W Hakim 1999

© 1999. Reproduction prohibited. Please inform Xephon of any infringement. 51

VM news

IBM has announced Automated UnixVM users can benefit from the Workstation
System Option for VM, VSE, and OS/390.Group’s netCONVERT, a cross-platform
Providing an automated Unix applicationdata conversion utility designed to convert
platform, it is designed not to requiredata between IBM mainframe and Unix
0S/390 (MVS) skills for management orformats, as well as to support cross-platform
maintenance. Typical OS/390 Unix-basednigration projects.
applications and enablers include Web
content hosting; e-business applicationsnetCONVERT can run on VM and MVS in
Lotus Domino; and Java applications andaddition to the major flavours of Unix.
applets. Features in Version 2.10 include support for
mainframe F, FB, V, VB, and VBS formats;
For further information contact your local direct read and write support for VSAM

IBM representative. files; support for ANSI fixed, variable, and
segmented record types, FORTRAN,
*okox MicroFocus COBOL, text, and CSV; tape

input and output in IBM and ANSI label
VM users can benefit from BOS- formats; and a test data generator.
complement from Open Software
Technologies, a context sensitive on-ling-or further information contact:
help and application documentation systenThe Workstation Group, 1900 North Roselle
for VM, MVS, and VSE. Road, Suite 408, Schaumburg, IL 60195,
USA.
Users can interactively create pop-up helel: (847) 781 6940.
windows and on-line application URL: http://www.wrkgrp.com.
documentation for mainframe applications
running under VTAM. BOS-complement *okox
windows are integrated into applications and
immediately accessible by a PA or PF hotkeyBM has announced Version 2 of its COBOL
without programming changes or compilesand CICS Command Level Conversion Aid
There is an import function for text (CCCA) for VM. Now a program product,
documents. System tables, VSAM files, andCCCA for VM Version 2 is designed to help
all types of database can be directly accessednvert old COBOL source code to new

for on-line help display. versions of COBOL. Also new in Version 2
is the capability to convert COBOL
For further information contact: applications to use the new IBM Millennium

Open Software Technologies, 1230 Douglakanguage Extensions.

Avenue, 300 Longwood, FL 32779, USA.

Tel: (407) 788 7173. For further information contact your local
URL.: http://www.open-softech.com. IBM representative.

QO xephon

	A concise LISTCAT ALL report
	Splitting the XEDIT screen at the cursor position
	A full screen console interface – part 7
	Mouse on the mainframe
	The DIRMAINT Synchronous Application Interface

