
© Xephon plc 1999

February 1999

150

3 A concise LISTCAT ALL report
9 Splitting the XEDIT screen at the

cursor position
12 A full screen console interface –

part 7
34 Mouse on the mainframe
48 The DIRMAINT Synchronous

Application Interface

 2

VM Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38030
From USA: 01144 1635 38030
E-mail: xephon@compuserve.com

North American office
Xephon/QNA
1301 West Highway 407, Suite 201-405
Lewisville, TX 75077-2150
USA
Telephone: 940 455 7050

Editorial panel
Articles published in VM Update are
reviewed by our panel of experts. Members
of the panel include John Illingworth (UK),
Reinhard Meyer (Germany), Philippe
Taymans (Belgium), Romney White (USA),
Martin Wicks (UK), and Jim Vincent
(USA).

Subscriptions and back-issues
A year’s subscription to VM Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 1990 issue, are available separately
to subscribers for £16.00 ($23.00) each
including postage.

© Xephon plc 1999. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.
 Printed in England.

Editor
Robert Burgess

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, EXECs, and other contents of this
journal before making any use of it.

VM Update on-line
Code from VM Update can be downloaded
from our Web site at http://www.xephon.
com; you will need the user-id shown on your
address label.

Contributions
Articles published in VM Update are paid for
at the rate of £170 ($250) per 1000 words for
original material. To find out more about
contributing an article, without any
obligation, please contact us at any of the
addresses above and we will send you a copy
of our Notes for Contributors.

 3© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

A concise LISTCAT ALL report

The output generated by a LISTCAT ALL command is a comprehensive
source of information; however, for most practical purposes, just a
small part of this information is needed. Normally you just want to
know how many CI and CA splits a file has, how many extensions or
tracks it has allocated, and so on.

Based on this requirement, I have developed a REXX EXEC that
reads the output generated by LISTCAT ALL and creates a concise
report about the essentials of each cluster.

Figure 1 shows an example of such a report. In the first two columns,
there is the cluster name and type (K for KSDS, E for ESDS, R for
RRDS, L for Linear, and A for Alternate Index – although not a cluster,
I decided to consider it as such since it has data and index components).

The remaining fields (keys, record length, cisize, allocation type, etc)
all refer to the data component information.

If there is a cluster defined without an associated data element, its line
appears with the message ‘(No associations)’. The last three columns
are the number of extents, tracks per volume, and the volume. If a
volume is listed as candidate, both tracks and extents will be zero.

RUNNING VSAMLIST UNDER CMS

To run VSAMLIST under CMS, start by creating a CMS file containing
the LISTCAT output. After that, at the beginning of the EXEC, add a
line setting variable FICIN to the CMS name of that file, or have it
passed as an argument, and set variable FICOUT to the CMS name
that will hold the report.

For a VM/VSE system, my favourite method to create the LISTCAT
output is to link the DASD containing the catalog to be listed, access
it with a free drive letter (say ‘x’), issue a DLBL IJSYSCT x (VSAM,
and run an AMSERV LISTCAT file. This is an 80-byte fixed RECFM
CMS file containing just a line with ‘LISTCAT ALL CAT(catalog)’.

You might need to use a temporary mini-disk to hold the listing.

 4 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Figure 1: Example of output

 1
 1

4
De

c
19

98
 1

2:
18
:2
6

CA
TA
LO
G.
TR
AV

 P
ag
e:

1

 —
——

——
——

——
——

——
——

——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
—

 K
ey

Re
co
rd
Le
n

 S
pl
it
s

Al
lo
ca
ti
on

To
ta
l

Fr
ee
sp
c

 C
lu

st
er

 N
am

e

 T
yp
e

Le
 P
o

Av
g

Ma
x
 C
is
z
Sh
r

 C
i
 C
a

Pr
i
Se
c
Ty
p

Re
co
rd
s

By
te
s
Ex
t
 T
rk
s
vo
lu
me

 —
——

——
——

——
——

——
——

——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
—

 T
RA

V.
DE

VL
.B

AØ
3

K

14

2

 9
Ø

 9
Ø

51
2
2,
3

4

Ø

12
4

5
CY
L

 3
32
Ø9
5

6Ø
37
5Ø
4

2
 1
93
5
VO
L4
Ø5

Ø

Ø
VO
L4
Ø6

 T
RA

V.
DE

VL
.B

ØØ
1

K

 9

Ø

17
Ø

17
Ø
 1
Ø2
4
2,
3

Ø

Ø

 2
6

2
CY
L

5Ø
16
2

29
Ø5
Ø8
8

1

39
Ø
VO
L4
Ø5

 T
RA

V.
DE

VL
.B

ØØ
4

K

23

Ø

14
Ø

14
Ø
 1
Ø2
4
2,
3

 6
2

Ø

 4
2

2
CY
L

91
3Ø
Ø

56
48
38
4

1

63
Ø
VO
L4
Ø5

 T
RA

V.
DE

VL
.B

Ø1
N

E

 Ø

Ø

17
Ø

17
Ø
 3
58
4
2,
3

Ø

Ø

 5
5

5
TR
A

 1
48
8

23
Ø8
Ø9
6

1

 5
5
VO
LA
ØB

 T
RA

V.
DE

VL
.G

SL
I

K

27

Ø

 8
Ø

 8
Ø

51
2
2,
3
 6
69
7
 8
9

59
8
 5
Ø
CY
L

11
58
ØØ
8

14
49
24
67
2

4
11
22
Ø
VO
L4
Ø6

 T
RA

V.
DE

VL
.G

XØ
.T

ES
T

 (
No
 a
ss
oc
ia
ti
on
s)

 T
RA

V.
DE

VL
.I

GØ
1

K

1Ø

Ø

16
9

16
9
 1
Ø2
4
2,
3

Ø

Ø

8

2
CY
L

27
95
7

 3
56
35
2

2

15
Ø
VO
L4
Ø5

1

 3
Ø
VO
L4
Ø6

 T
RA

V.
DE

VL
.P

BC
F1

Ø1

K

23

Ø

 7
7

 7
7

51
2
2,
3

 2
4

Ø

89
2
 5
Ø
CY
L

12
74
65
5

12
ØØ
77
31
2

1
13
38
Ø
VO
L4
Ø6

 T
RA

V.
DE

VL
.P

BC
F1

Ø1
.A
IX
1

A

4Ø

5

 5
4
 3
Ø7
2
18
43
2
3,
3

Ø

Ø

 5
Ø

5
TR
A

45
41
5

 1
84
32
Ø

2

 5
5
VO
L4
Ø5

 T
RA

V.
DE

VL
.P

CD
FØ

Ø1

K

1Ø

Ø

 3
Ø

 3
Ø
 2
Ø4
8
2,
3

32
5

1

5

2
CY
L

13
31
3

24
88
32
Ø

1

 7
5
VO
L4
Ø5

 T
RA

V.
DE

VL
.P

CG
FØ

Ø1

K

2Ø

Ø

1Ø
Ø

41
3

51
2
2,
3

 7
Ø

6

 4
Ø

4
CY
L

 5
46
9

 1
22
52
67
2

1

6Ø
Ø
VO
L4
Ø5

 T
RA

V.
DE

VL
.S

LL
ØØ

R2

R

 Ø

Ø

16
Ø

16
Ø
12
28
8
2,
3

Ø

Ø

11
2
 1
5
CY
L

 7
87
5Ø
Ø

88
47
36
Ø

6
 2
8Ø
5
VO
L4
Ø5

 T
RA

V.
IO

DF
.C

LU
ST

ER
1

L

 Ø

Ø

Ø

Ø
 4
Ø9
6
1,
3

Ø

Ø

5

Ø
TR
A

Ø

Ø

1

5
VO
L4
ØØ

——
——

——
——

——
——

——
——

——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——
——

 5© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

VSAMLIST

/*= REXX ===*/
/* */
/* VSAMLIST: Extracts information from "LISTCAT ALL" listings. */
/* The input file for this EXEC is the listing generated */
/* by LISTCAT ALL CATALOG(catalog) and the output is a */
/* file with LRECL=133 and first-column control chars. */
/* */
/* Running this EXEC */
/* Under MVS: Allocate DDname FICIN to input and FICOUT to output */
/* Under VM: Set variables FICIN and FICOUT to CMS filenames */
/* */
/*==*/
execio 1 diskr ficin
if rc ¬=Ø then do
 say "Error reading input file"
 exit
end
pull linha
cc = left(linha,1)
data_flag = Ø
clu = Ø
do forever
 execio 1 diskr ficin
 if rc ¬=Ø then leave
 pull linha
 if cc then linha=substr(linha,2)
 call select_line_type
end
call write_output
saida:
exit
/*==*/
/* Select line type and extract values */
/*==*/
select_line_type:
 select
 when word(linha,1)="LISTING" then do
 catalog = center(word(linha,5),1ØØ)
 end
 when substr(linha,1,7)="CLUSTER" |,
 substr(linha,1,3)="AIX" then do
 clu = clu + 1
 cluster.clu = left(word(linha,3),44)
 data.clu = Ø
 v = Ø
 extent.clu.Ø = Ø
 data_flag = Ø
 if substr(linha,1,3)="AIX" then vstype.clu = "A"

 6 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 end
 when substr(linha,4,4)="DATA" then do
 data.clu = word(linha,3)
 data_flag = 1
 end
 when substr(linha,4,5)="INDEX" then do
 index.clu = word(linha,3)
 data_flag = Ø
 end
 when substr(linha,1,7)="NONVSAM" then do
 data_flag = Ø
 end
 otherwise nop
 end
 if data_flag then,
 select
 when substr(linha,8,6)="KEYLEN" then do
 linha = translate(linha," ","-")
 keylen.clu = right(word(linha,2),2)
 alrecl.clu = right(word(linha,4),5)
 cisize.clu = right(word(linha,8),5)
 end
 when substr(linha,8,3)="RKP" then do
 linha = translate(linha," ","-")
 keypos.clu = right(word(linha,2),2)
 mlrecl.clu = right(word(linha,4),5)
 end
 when substr(linha,8,8)="SHROPTNS" then do
 shropt.clu = substr(linha,17,3)
 if vstype.clu ¬="A" then do
 type = word(linha,5)
 select
 when type = "NONINDEXED" then vstype.clu = "E"
 when type = "INDEXED" then vstype.clu = "K"
 when type = "NUMBERED" then vstype.clu = "R"
 when type = "LINEAR" then vstype.clu = "L"
 otherwise nop
 end
 end
 end
 when substr(linha,8,7)="REC-TOT" then do
 linha = translate(linha," ","-")
 rectot.clu = right(word(linha,3),11)
 splici.clu = right(word(linha,6),5)
 end
 when substr(linha,8,7)="REC-DEL" then do
 linha = translate(linha," ","-")
 splica.clu = right(word(linha,6),3)
 extent.clu = right(word(linha,8),3)
 end

 7© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 when substr(linha,8,7)="REC-RET" then do
 linha = translate(linha," ","-")
 freeby.clu = right(word(linha,6),11)
 end
 when substr(linha,8,7)="SPACE-T" then do
 linha = translate(linha," ","-")
 sptype.clu = left(word(linha,3),3)
 end
 when substr(linha,8,7)="SPACE-P" then do
 linha = translate(linha," ","-")
 spprim.clu = right(word(linha,3),5)
 end
 when substr(linha,8,7)="SPACE-S" then do
 linha = translate(linha," ","-")
 spseco.clu = right(word(linha,3),4)
 end
 when substr(linha,8,6)="VOLSER" then do
 linha = translate(linha," ","-")
 v = v + 1
 extent.clu.Ø = extent.clu.Ø + 1
 extent.clu.v = word(linha,12)
 volume.clu.v = word(linha,2)
 tracks.clu.v = Ø
 end
 when substr(linha,8,6)="LOW-CC" then do
 linha = translate(linha," ","-")
 tracks.clu.v = tracks.clu.v + word(linha,8)
 end
 otherwise nop
 end
return
/*==*/
/* Write output file */
/*==*/
write_output:
 pagenum = Ø
 lines_per_page = 55
 za=" Key RecordLen "
 zb=" Splits Allocation Total Freespc"
 zc="Cluster Name Type Le Po Avg Max Cisz Shr "
 zd=" Ci Ca Pri Sec Typ Records Bytes Ext Trks Volume"
 z1 = za||zb
 z2 = zc||zd
 zØ = copies("-",131)
 call write_header
 do k = 1 to clu
 line = line + 1
 if line > lines_per_page then call write_header
 if data.k = Ø then do
 queue " "left(cluster.k,34)" (No associations)"

 8 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 execio 1 diskw ficout
 end
 else do
 tracks.k = right(tracks.k,5)
 queue " "left(cluster.k,34) vstype.k keylen.k ,
 keypos.k alrecl.k mlrecl.k cisize.k shropt.k ,
 splici.k splica.k spprim.k spseco.k sptype.k ,
 rectot.k freeby.k right(extent.k.1,3) ,
 right(tracks.k.1,5) volume.k.1
 execio 1 diskw ficout
 do j = 2 to extent.k.Ø
 line = line + 1
 queue copies(" ",114) right(extent.k.j,3) ,
 right(tracks.k.j,5) volume.k.j
 execio 1 diskw ficout
 end
 end
 end
 execio Ø diskw ficout "(finis"
return
/*==*/
/* Write output file header */
/*==*/
write_header:
 line = Ø
 pagenum = pagenum+1
 queue "1" date() time() catalog "Page: " pagenum
 queue " "zØ
 queue " "z1
 queue " "z2
 queue " "zØ
 execio 5 diskw ficout
return

Luis Paulo Figueiredo Sousa Ribeiro
Systems Programmer
Edinfor (Portugal) © Xephon 1999

Why not share your expertise and earn money at the same
time? VM Update is looking for REXX EXECs, macros,
program code, etc, that experienced VMers have written
to make their life, or the lives of their users, easier. Articles
can be of any length and can be sent or e-mailed to Robert
Burgess at any of the addresses shown on page 2. Why not
call now for a free copy of our Notes for contributors?

 9© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Splitting the XEDIT screen at the cursor position

XEDIT allows you to split the screen in many ways; however, because
it is necessary to enter depth, width, start line, and start column for
each screen with SET SCREEN DEFINE, most people use equal size
splits such as SET SCREEN 3 or SET SCREEN 2 V.

The following macro allows you to split the screen into two, three, or
four at the cursor position as detailed in the help file.

CURSPLIT HELPCMS

 +——————————————————————+
 | |
 | CURSPLIT XEDIT macro |
 | |
 +——————————————————————+

 This macro will split the screen into two, three, or four at the
 cursor position.

 CURSPLIT will split the screen horizontally.
 CURSPLIT V will split the screen vertically.
 CURSPLIT 4 will split the screen crosswise into four
 CURSPLIT 3 will split the screen into three, one screen full width
 above two others, all screens meeting at the cursor position.

 The cursor will then be placed at the start of the command line
 in the first logical screen. "SCR 1" will return to one logical
 screen.

 If the cursor position is such that the screens cannot be defined
 correctly then default sizes are used:

 CURSPLIT - splits horizontally across the middle
 CURSPLIT V - splits vertically down the middle
 CURSPLIT 3 - the top screen has a third of the full screen depth
 - the other screens have half the width
 CURSPLIT 4 - splits halfway down and halfway across

 It is recommended that a PF key should be set to CURSPLIT for
 ease of use. Splitting into 3 or 4 screens will not be
 frequent enough to justify the normal use of a PF key.

 10 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

CURSPLIT XEDIT

/***********************************
* Split screen at cursor position *
***********************************/

'EXTRACT /LSCREEN' /* get screen dimensions */
 /* and cursor position */
parse value cursadd() with physlin physcol .

arg parm .
select
 when parm='' then call splith /* horizontally */
 when parm='2' then call splith /* horizontally */
 when parm='V' then call splitv /* vertically */
 when parm='4' then call split4 /* crosswise */
 when parm='3' then call split3 /* 1 above 2 */
 otherwise 'HELP CURSPLIT'
end
'CURSOR CMDL'
exit

/*********************
* split horizontally *
*********************/
splith:
'SET SCREEN SIZE' physlin lscreen.5-physlin
if rc¬=Ø then
do /* cursor in wrong position */
 'SET SCREEN 2'
 'MSG Split across middle forced'
end
return

/*******************
* split vertically *
*******************/
splitv:
wid1 = physcol /* across to cursor position */
wid2 = lscreen.6-wid1 /* rest of width of screen */

'SET SCREEN DEFINE' lscreen.5 wid1 1 1 lscreen.5 wid2 1 wid1+1
if rc¬=Ø then
do /* cursor in wrong position */
 'SET SCREEN 2 V'

 'MSG Split down middle forced'
end
return

 11© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

/****************************
* split crossways into four *
****************************/
split4:
wid1 = physcol /* across to cursor position */
wid2 = lscreen.6-wid1 /* rest of width of screen */
dep1 = physlin /* down to cursor position */
dep2 = lscreen.5-physlin /* rest of depth of screen */

do until scrc=Ø
 'SET SCREEN DEFINE' dep1 wid1 1 1 , /* top left */
 dep1 wid2 1 wid1+1 , /* top right */
 dep2 wid1 dep1+1 1 , /* bottom left */
 dep2 wid2 dep1+1 wid1+1 /* bottom right */
 scrc = rc
 if rc¬=Ø then
 do /* cursor in wrong position - assume middle of screen */
 dep1 = lscreen.5%2 /* round down half of depth */
 dep2 = lscreen.5 - dep1 /* rest of depth */
 wid1 = lscreen.6%2 /* round down half of width */
 wid2 = lscreen.6 - wid1 /* rest of width */
 'MSG Default size forced'
 end
end
return

/*****************************
* split into 3 - one above 2 *
*****************************/
split3:
wid1 = lscreen.6 /* full width for top screen */
wid2 = physcol /* across to cursor position for second */
wid3 = lscreen.6-wid2 /* rest of width of screen for third */
dep1 = physlin /* down to cursor position for top screen */
dep2 = lscreen.5-physlin /* rest of depth of screen for others */

do until scrc=Ø
 'SET SCREEN DEFINE' dep1 wid1 1 1 , /* across the top */
 dep2 wid2 dep1+1 1 , /* bottom left */
 dep2 wid3 dep1+1 wid2+1 /* bottom right */
 scrc = rc
 if rc¬=Ø then
 do /* cursor in wrong position - */
 /* assume third of way down and halfway across */
 dep1 = lscreen.5%3 /* round down 1/3 of depth */
 dep2 = lscreen.5 - dep1 /* rest of depth */
 wid1 = lscreen.6 /* full width */
 wid2 = lscreen.6%2 /* round down half of width */
 wid3 = lscreen.6 - wid2 /* rest of width */
 'MSG Default size forced'

 12 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 end
end
return
/***
* Return cursor address *
* *
* Note: The cursor address from EXTRACT/CURSOR cannot be *
* be used satisfactorily if the cursor is not in the *
* same logical screen where the command is entered *
***/

cursadd:
stream = 'Ø3'x /* read modified command */
'PIPE VAR STREAM', /* pass value in variable to PIPES */
'| FULLSCREEN CONDREAD', /* read screen to get cursor address */
'| 327ØBFRA 2 TO16BIT', /* convert address from 12-bit to integer */
'| SPECS 2.2 C2D 1', /* pick out address and make decimal */
'| VAR CURS' /* get value into variable */

 /* physical screen width is in lscreen.6 */
lin = curs%lscreen.6 + 1
col = 1+curs-((lin-1)*lscreen.6)
return lin col

John Illingworth
Systems Engineer
Wm Morrison Supermarkets (UK) © Xephon 1999

A full screen console interface – part 7

Editor’s note: this month we continue the code for the full screen
console interface for Disconnected Service Machines (DSM). This
article is an extensive piece of work which will be published over
several issues of VM Update. It was felt that readers could benefit
from the entire article and from the individual sections. Any comments
or recommendations would be welcomed and should be addressed
either to Xephon or directly to the author at
fernando_duarte@vnet.ibm.com.

CSCRDF ASSEMBLE

 TITLE 'CSCRDF - CSC Read Data File record'
CSCRDF START X'Ø199EØ'

 13© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 PRINT NOGEN
 CSCHDR Read Data file
*
* Read Data File records
*
*
 USING UIDSECT,R8 UID (user) Block
 USING CCHSECT,R7 CCH (cache) Block
 SPACE 3
*
* Return to caller and keep the cc
*
*
RETURN BACK
 SPACE 3
*
* Read first record from disk (Free List and Cache are not searched)
*
* Output R7 addresses first record (cache image)
* If the Data File is empty a non-zero cc is returned
*
*
CSCRDFFT RELOC Read first record
 L R7,CACHEPTR Address last created record
 L R4,CCHRECNO Get record number
RDFF1ØØ LA R4,1(,R4) Increment
 C R4,DFOLDTOT After end of physical file
 BNH RDFF2ØØ
 LA R4,1 Yes, go back to first record
 C R4,DFCURR Is file empty?
 BH RETURN Yes, record not found
RDFF2ØØ BAS R14,GET Read record from disk
 TM DFOPTS-DFBUFF(R1),DFOCONT2 Is it a continuation record?
 BO RDFF1ØØ Yes, skip it and try next one
 IC R5,DFOPTS-DFBUFF(,R1) Load option byte
 LA R1,DFOCYCLE
 NR R5,R1 Keep only Cycle bit
 B RDFN#FT Build cache image and test
 SPACE
*
* Locate record by Date and Time
*
* Input R7 addresses reference record (cache image)
* Only CCHDATE and CCHTIME are checked
* Output R7 addresses requested record (cache image)
* If the record is not found a non-zero cc is returned
*
* The first record with Date/Time equal or greater than
* the specified is returned
*
*

 14 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

CSCRDFGO RELOC Locate the record
 L R1,CACHEPTR Address current record
 L R1,CCHFWD-CCHSECT(,R1) Address first cache record
 CLC CCHDATE,CCHDATE-CCHSECT(R1)
 BL RDFG3ØØ Not there, check Data File
 BH RDFG1ØØ Search cache records
 CLC CCHTIME,CCHTIME-CCHSECT(R1)
 BNH RDFG3ØØ Not in cache, check Data file
RDFG1ØØ C R1,CACHEPTR All cache searched?
 BE RDFG9ØØ Yes, record not found
 L R1,CCHFWD-CCHSECT(,R1) Address next record
 CLC CCHDATE,CCHDATE-CCHSECT(R1)
 BH RDFG1ØØ
 BL RDFG2ØØ Record found
 CLC CCHTIME,CCHTIME-CCHSECT(R1)
 BH RDFG1ØØ
RDFG2ØØ LR R7,R1 Address record
RDFG21Ø IC R5,CCHOPTS Load option byte
 LA R1,DFOCYCLE
 NR R5,R1 Keep only cycle bit
 B RDFN#GO Now select the right record
 SPACE
RDFG3ØØ L R1,CACHEPTR Record is already on disk
 L R5,DFOLDTOT Number of Data File records
 BCTR R5,Ø Do not search last block
 SRL R5,5 It could be partially written
 SLL R5,5 Each block has 32 DF records
 BNZ RDFG31Ø
 L R7,CACHEPTR Data file is empty
 L R7,CCHFWD Use first record from cache
 B RDFG21Ø
 SPACE
RDFG31Ø L R6,CCHRECNO-CCHSECT(,R1) Get current record number
 CR R6,R5 If it is the last block or the
 BNH RDFG32Ø Data File is being expanded
 SR R6,R6 Do not use any relocation
RDFG32Ø ST R6,RDFGRELO Store relocation value
 SR R6,R6
RDFG4ØØ LA R5,1(,R5) Add one to number of records
 SRL R5,1 Divide by 2, first interval
 AR R6,R5 Logical record number to read
 C R6,DFOLDTOT If it is after End-Of-File
 BNH RDFG5ØØ
 L R6,DFOLDTOT Read last Data File record
RDFG5ØØ LR R4,R6 Copy to R4
 A R4,RDFGRELO Relocate to physical record
 C R4,DFOLDTOT
 BNH RDFG51Ø
 S R4,DFOLDTOT Wrap around if required
RDFG51Ø BAS R14,GET Read record from Data File

 15© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 LA RØ,1 Is interval down to one?
 CR RØ,R5
 BE RDFG6ØØ Yes, terminate binary search
 CLC CCHDATE,DFDATE-DFBUFF(R1) Compare date
 BH RDFG4ØØ Too low, go forward
 BL RDFG52Ø Too high, go backward
 CLC CCHTIME,DFTIME-DFBUFF(R1)
 BH RDFG4ØØ
RDFG52Ø LA R5,1(,R5) Add one to interval
 SRL R5,1 Divide by two
 SR R6,R5 Go backward
 BP RDFG5ØØ If it is before first record
 LA R6,1 Read first record
 B RDFG5ØØ
 SPACE
RDFG6ØØ TM DFOPTS-DFBUFF(R1),DFOCONT2 Is this a continuation record
 BZ RDFG7ØØ No, almost done
 LA R4,1(,R4) Yes, read next physical record
 C R4,DFOLDTOT
 BNH RDFG61Ø
 LA R4,1 Wrap around if required
RDFG61Ø BAS R14,GET Go read the record
 B RDFG6ØØ Check again
 SPACE
RDFG7ØØ CLC CCHDATE,DFDATE-DFBUFF(R1) Is this really the record
 BH RDFG71Ø No, it is the following one
 BL RDFG73Ø Yes, we got it
 CLC CCHTIME,DFTIME-DFBUFF(R1) Maybe...
 BNH RDFG73Ø
RDFG71Ø SR RØ,RØ Required by next IC
 IC RØ,DFCNUM-DFBUFF(,R1) Number of DF records for message
 AR R4,RØ Address next message
 C R4,DFOLDTOT
 BNH RDFG72Ø
 S R4,DFOLDTOT Wrap around if required
RDFG72Ø BAS R14,GET Get next Record
RDFG73Ø IC R5,DFOPTS-DFBUFF(,R1) Load option byte
 LA R1,DFOCYCLE
 NR R5,R1 Keep only cycle bit
 BAS R14,READREC Build cache image
 B RDFN#GO Now select the right record
 SPACE
RDFG9ØØ LTR R14,R14 Generate a non-zero cc
 B RETURN Return, record not found
 SPACE
*
* Read next record
*
* Input R7 points to reference record (cache image)
* Output R7 addresses next record (cache image)

 16 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

* If the record is not found a non-zero cc is returned
*
* RDFN#FT is invoked by CSCRDFFT
* RDFN#GO is invoked by CSCRDFGO
*
*
CSCRDFNT RELOC Read next record
 IC R5,CCHOPTS Load option byte
 LA R1,CCHCYCLE
 NR R5,R1 Keep only Cycle bit
RDFN1ØØ SR RØ,RØ Required by next IC
 IC RØ,CCHCNUM Number of DF records for message
 L R4,CCHRECNO Get number of reference record
 AR R4,RØ First record of next message
RDFN#FT BAS R14,READREC Read and build cache image
 BNZ RETURN Not found
RDFN#GO LINK SELECT Check user selection
 BNZ RDFN1ØØ No good, read next one
 B RETURN We found it
 SPACE
*
* Read last record
*
* Output R7 addresses last record (cache image)
* If the record is not found a non-zero cc is returned
*
*
CSCRDFLT RELOC Read last record
 LA R4,1 Is Data File empty
 C R4,DFCURR It is if current record is zero
 BH RETURN File is empty, record not found
 L R7,CACHEPTR Address last created record
 LINK SELECT Check user selection
 BZ RETURN Good enough, use it
 B RDFP#LT Try to find it
 SPACE
*
* Read previous record
*
* Input R7 points to reference record (cache image)
* Output R7 addresses previous record (cache image)
* If the record is not found a non-zero cc is returned
*
* RDFP#LT is invoked by CSCRDFLT
*
*
CSCRDFPR RELOC Read previous record
RDFP#LT IC R5,CCHOPTS Load option byte (CSCRDFLT)
 LA R1,CCHCYCLE
 NR R5,R1 Keep only Cycle bit

 17© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

RDFP1ØØ SR RØ,RØ Required by next IC
 IC RØ,CCHPNUM DF records for previous message
 L R4,CCHRECNO Get number of reference record
 SR R4,RØ First record of previous message
 BP RDFP9ØØ If not positive
 LA R1,CCHCYCLE
 XR R5,R1 Reverse Cycle bit
 A R4,DFOLDTOT And wrap around file
RDFP9ØØ BAS R14,READREC Read and build cache image
 BNZ RETURN Not found
 LINK SELECT Check user selection
 BNZ RDFP1ØØ No good, read next one
 B RETURN We found it
 SPACE
*
* Read previous record from disk (Free List and Cache are not searched)
*
* Input R7 points to reference record (cache image)
* Output R7 addresses previous record (cache image)
* If the record is not found a non-zero cc is returned
*
*
CSCRDFDP RELOC Read previous record
 IC R5,CCHOPTS Load option byte
 LA R1,CCHCYCLE
 NR R5,R1 Get only cycle bit
 SR RØ,RØ Required by next IC
 IC RØ,CCHPNUM DF records used by previous msg
 L R4,CCHRECNO Current record number
 SR R4,RØ First DF record of previous msg
 BP RDFD9ØØ Read record
 XR R5,R1 Swap cycle bit
 A R4,DFOLDTOT Wrap around file
RDFD9ØØ BAS R14,READDISK Read and build cache image
 B RETURN Return, cc set by READDISK
 SPACE
*
* Restart Data file
*
* Output R1 addresses last record written (DF record image)
* R4 contains the record number pointed by R1
*
* This routine performs a binary search to locate the require record.
*
*
CSCRDFRS RELOC
 L R5,DFOLDTOT Number of record on DF file
 LA R4,1 Start with first record
 BAS R14,GET Read the record
 CR R4,R5 If DF has ONE record...

 18 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 BE RDFR9ØØ We found it
 IC R6,DFOPTS-DFBUFF(,R1) Load option byte
 LA R2,DFOCYCLE
 NR R6,R2 Keep only the cycle bit
RDFR1ØØ LA R5,1(,R5) (n + 1) / 2 is the new increment
 SRL R5,1
 AR R4,R5 Go forward
 C R4,DFOLDTOT Are we after the last record?
 BNH RDFR2ØØ
 L R4,DFOLDTOT Yes, use the last record
RDFR2ØØ BAS R14,GET Read the record
 IC RØ,DFOPTS-DFBUFF(,R1) Load new option byte
 LA R2,DFOCYCLE
 NR RØ,R2 Get new cycle bit
 LA R2,1
 CR R2,R5 Is the increment down to ONE
 BE RDFR3ØØ Yes, binary search is over
 CR RØ,R6 Compare cycle bits
 BE RDFR1ØØ They are the same, go forward
 LA R5,1(,R5) They are different...
 SRL R5,1
 SR R4,R5 Go backward...
 B RDFR2ØØ Read next record
 SPACE
RDFR3ØØ CR RØ,R6 Last check, same cycle bits
 BE RDFR9ØØ Yes, we got the record
 BCTR R4,Ø No, use previous record
 BAS R14,GET Read it
RDFR9ØØ BACK All done, return
 SPACE 3
*
* Input R4 contains the record number to read
* R5 contains the cycle bit (last byte)
* Output R7 addresses the record (cache image)
* If the record is not found a non-zero cc is returned
*
*
READREC L R7,UIDFREE2 last record on Free list
 OI UIDOPT1,UIDFFREE Set option
READ1ØØ C R4,CCHRECNO Check record number
 BE READ8ØØ Found it...
 L R7,CCHBWD Go back one Free entry
 LTR R7,R7 Is it the last one
 BNZ READ1ØØ No, test all entries
 NI UIDOPT1,X'FF'-UIDFFREE Yes, reset option
 L R7,CACHEPTR Try cache buffer
READ2ØØ C R4,CCHRECNO
 BE READ8ØØ Found it...
 L R7,CCHBWD
 C R7,CACHEPTR Search all records

 19© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 BNE READ2ØØ
READDISK ST R14,READSV14 Not found, get it from disk
 C R4,DFOLDTOT Out of DF file
 BNH READ3ØØ
 S R4,DFOLDTOT Yes, wrap around
 LA R1,DFOCYCLE
 XR R5,R1 Reverse Cycle bit
READ3ØØ C R4,DFOLDTOT File could be empty...
 BH READ9ØØ Record does not exist
 BAS R14,GET Read the record
 LA R7,RDFCACHE Address cache work area
 ST R4,CCHRECNO Store record number
 MVC CCHDFREC,Ø(R1) Move data from disk record
READ4ØØ TM DFOPTS-DFBUFF(R1),DFOCONT1 Multi-record message?
 BZ READ6ØØ
 LA R4,1(,R4) Yes, read next record
 C R4,DFOLDTOT End of Data file (physical)
 BNH READ5ØØ
 S R4,DFOLDTOT Wrap around
READ5ØØ BAS R14,GET Get next record
 SR R2,R2
 IC R2,DFRLEN-DFBUFF(,R1) Get message length (new section)
 SR R3,R3
 IC R3,CCHRLEN Get assembled message length
 LR RØ,R3
 AR RØ,R2 Combine the two parts
 STC RØ,CCHRLEN Store new length
 LA R3,CCHDATA(R3) Address to move new section
 BCTR R2,Ø Adjust length
 EX R2,READMVC Move new part
 B READ4ØØ Build complete message
 SPACE
READ6ØØ LINK PREFIX Get message prefix
 ST R5,READSVØ5 Save cycle bit
 LINK MATCH
 L R5,READSVØ5 Restore cycle bit
 BNZ READ7ØØ Message not defined
 BAS R14,CHECK Check if on Hold
READ7ØØ L R14,READSV14 Restore return address
READ8ØØ SR RØ,RØ Get new cycle bit
 IC RØ,CCHOPTS
 LA R1,DFOCYCLE
 NR RØ,R1
 CR RØ,R5 Is it the good one
 BNE READ9ØØ No, record was overwritten
 CR R14,R14
 BR R14
 SPACE
READ9ØØ LTR R14,R14
 BR R14

 20 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 SPACE
READMVC MVC Ø(*-*,R3),DFDATA-DFBUFF(R1)
 SPACE 3
*
* Read a DF record
*
* Input R4 contains the record number
* Output R1 addresses the record (DF image)
*
*
GET EQU *
 USING RDFSECT,R1
 LR R3,R4 Copy record number to read
 BCTR R3,Ø Calculate first record in block
 SRL R3,5 That's 32 records / 4K block
 SLL R3,5
 LA R3,1(,R3) We have the record number
 L R1,RDFPTR Address first RDF block
GET1ØØ L R2,RDFADDR Address correspondent buffer
 C R3,RDFREC Check record number
 BE GET2ØØ We found the buffer
 L R1,RDFFWD Check next buffer
 C R1,RDFPTR Is it the last buffer
 BNE GET1ØØ
 L R1,RDFFWD Yes, we need to read it
 ST R1,RDFPTR Select next RDF block
 L R2,RDFADDR Address buffer
 ST R3,RDFREC Store number of first record
 FSREAD FSCB=DFFILER,FORM=E,BUFFER=(R2),RECNO=(R3)
 LTR R15,R15
 BZ GET2ØØ We did it
 MSG Ø17Ø,RC Read error, close the shop
 LINK CLOSE
 SPACE
GET2ØØ LR R1,R4 Copy record number to read
 SR R1,R3 Calculate record offset
 SLL R1,7 DF record is 128 bytes long
 LA R1,Ø(R1,R2) Address required record
 BR R14
 DROP R1
 SPACE 3
*
* Check messages on Hold
*
*
CHECK EQU *
 TM CCHOPTS,CCHHOLD Is message on Hold
 BZR R14 No, all done
 L R1,HLDPTR Get list of messages
CHECK1ØØ LTR R1,R1 Do we have one

 21© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 BZ CHECK9ØØ No, reset option
 CLC CCHRECNO,CCHRECNO-CCHSECT(R1) Check record number
 BNE CHECK8ØØ
 CLC CCHDATE,CCHDATE-CCHSECT(R1) name
 BNE CHECK8ØØ
 CLC CCHTIME,CCHTIME-CCHSECT(R1) time
 BNE CHECK8ØØ
 CLC CCHUSER,CCHUSER-CCHSECT(R1) user-id
 BNE CHECK8ØØ
 BR R14 Found, still not released
 SPACE
CHECK8ØØ L R1,CCHFWD-CCHSECT(,R1) Scan all list
 B CHECK1ØØ
 SPACE
CHECK9ØØ NI CCHOPTS,X'FF'-CCHHOLD Message already released, reset
 ST R14,CHECSV14
 LINK PREFIX Restore also attributes
 L R14,CHECSV14
 BR R14
 SPACE 3
 DS ØD
RDFCACHE DS CL256 Area to build cache image
READSV14 DS F Save R14 READDISK
CHECSV14 DS F CHECK
READSVØ5 DS F Save R5 READDISK
RDFGRELO DS F Relocating record for CSCRDFGO
 SPACE
 CSCDATA
 CSCDS (UID,CCH,RDF)
 REGEQU
 END

CSCCPW ASSEMBLE

 TITLE 'CSCCPW - CSC Write CP message on disk'
CSCCPW START X'Ø15668'
 PRINT NOGEN
 CSCHDR Write disk file
*
* Write CP message on disk
*
*
 USING IPARML,R9 IUCV Parameter List
 USING UIDSECT,R8 UID (user) Block
 USING CCHSECT,R7 CCH (cache) Block
 BAS R14,CACHEREC Move record into cache
 LINK PREFIX Move record prefix
 LINK MATCH Check message
 ST R5,CPWRSVØ5 Save MSG entry address or zero

 22 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 SR R1,R1 Required by next IC
 IC R1,CCHRLEN Get message length
 LA R2,CCHDATA(R1) Address end of message
 LA R6,CCHDATA Address message
 MVC DFBUFF(DFDATA-DFBUFF),CCHDFREC Move date, time, etc...
CPWR1ØØ LA RØ,L'DFDATA Length of data area
 LR R1,R2 Last byte of message
 SR R1,R6 Length of message
 CR R1,RØ
 BNH CPWR2ØØ
 LR R1,RØ Too big, split
CPWR2ØØ STC R1,DFRLEN Store data length
 LTR R1,R1 Is length zero
 BNP CPWR21Ø Yes, no need to move data
 BCTR R1,Ø Prepare to EXecute
 EX R1,CPWRMVC Move data
 LA R6,1(R1,R6) Update pointer
CPWR21Ø L RØ,DFCURR Last data record written
 C RØ,DFOLDTOT Actual last record on file
 BL CPWR6ØØ
 BE CPWR5ØØ
 L R1,DFEXPLIN We are expanding
 LA R1,1(,R1) Number of expanded records
 ST R1,DFEXPLIN
 LR R1,RØ Last record written
 SRL R1,5 Is record number multiple of 32?
 SLL R1,5
 CR R1,RØ Is block full? (4K = 32 * 128)
 BNE CPWR3ØØ
 ST RØ,DFOLDTOT Yes, commit expansion
 FSCLOSE FSCB=DFFILEW
 FSOPEN FSCB=DFFILEW,FORM=E,CACHE=NO,OPENTYP=WRITE
CPWR3ØØ L RØ,DFCURR Last record written
 C RØ,DFNEWTOT New data file size
 BL CPWR8ØØ
 C RØ,DFOLDTOT Expansion completed
 BE CPWR4ØØ Commit if necessary
 ST RØ,DFOLDTOT
 FSCLOSE FSCB=DFFILEW
 FSOPEN FSCB=DFFILEW,FORM=E,CACHE=NO,OPENTYP=WRITE
CPWR4ØØ MSG Ø16Ø Display expansion completed msg
 B CPWR7ØØ Process record
 SPACE
CPWR5ØØ C RØ,DFNEWTOT Check against new file size
 BNL CPWR7ØØ
 MSG Ø161 Begin Data file expansion
 B CPWR8ØØ
 SPACE
CPWR6ØØ C RØ,DFNEWTOT Check new Data file size
 BNE CPWR8ØØ

 23© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 ST RØ,DFOLDTOT Store new Data file size
 LA R1,1 Prepare to truncate file
 AR RØ,R1
 LA R1,DFFILEW
 USING NUCON,RØ
 USING FSCBD,R1
 ST RØ,FSCBAITN Store new limit into FSCB
 DMSKEY NUCLEUS Get CMS nucleus key
 L R15,ATRUNC Truncate file
 DROP RØ,R1
 BASR R14,R15
 DMSKEY RESET Reset storage key
 MSG Ø162 Display file truncated message
 B CPWR7ØØ
 SPACE
CPWR7ØØ SR RØ,RØ Go back to the begin
 XI DFOPTS,DFOCYCLE Swap cycle bit
 TM DFOPTS,DFOCONT2 Is it first or only record?
 BO CPWR8ØØ
 XI CCHOPTS,DFOCYCLE Yes, also update cache record
CPWR8ØØ LA R1,1 Increment record pointer
 AR RØ,R1
 ST RØ,DFCURR Store it
 TM DFOPTS,DFOCONT2 Is it first or only record?
 BO CPWR81Ø
 ST RØ,CCHRECNO Yes, store record number (cache)
CPWR81Ø A R1,DFSSSLIN Increment number of messages
 ST R1,DFSSSLIN processed during this session
 CR R6,R2 Is message complete
 BE CPWR82Ø
 OI DFOPTS,DFOCONT1 No, set continuation bit
CPWR82Ø LR R1,RØ Record number to be written
 SRL R1,5 Calculate number of last record
 SLL R1,5 ...in the block (32 records)
 CR R1,RØ Is it last record of block
 BNE CPWR85Ø No, keep going
 SRL R1,5 Yes, get first record in block
 BCTR R1,Ø
 SLL R1,5
 LA RØ,1(,R1) First record of current block
 L R1,RDFPTR Address first read buffer
 USING RDFSECT,R1
CPWR83Ø L R1,RDFFWD Check all buffers
 C RØ,RDFREC Compare record numbers
 BE CPWR84Ø
 C R1,RDFPTR Process all buffers
 BNE CPWR83Ø
 B CPWR85Ø
 SPACE
CPWR84Ø XC RDFREC,RDFREC We found it, invalidate buffer

 24 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 DROP R1
 SPACE
CPWR85Ø L RØ,DFCURR Record number to write
 FSWRITE FSCB=DFFILEW,FORM=E,RECNO=(RØ)
 LTR R15,R15
 BZ CPWR86Ø
 MSG Ø163,RC We got a problem, close the shop
 LINK CLOSE
 SPACE
CPWR86Ø TM DFOPTS,DFOCONT1 Is message to be continued?
 BZ CPWR9ØØ No, done
 NI DFOPTS,X'FF'-DFOCONT1 Yes, reset continuation bit
 OI DFOPTS,DFOCONT2 Set continued bit
 B CPWR1ØØ Loop back
 SPACE
CPWR9ØØ BAS R14,BRDCAST Broadcast message
 BACK
 SPACE
CPWRMVC MVC DFDATA(*-*),Ø(R6) Move data into DFFILE record
 SPACE 3
*
* Move record into cache
*
*
CACHEREC EQU * Move record into cache
 ST R14,CACHSV14
 LA R6,CSCBUFF Address message
 LA R1,DIAGØØØC Work area for DIAG
 DIAG R1,RØ,X'ØØØC' Get date and time
 L R7,CACHEPTR Last entry updated
 IC RØ,CCHCNUM Records on Data File
 L R7,CCHFWD Address next entry
 STC RØ,CCHPNUM Records on DF for previous cache
 MVC CCHDATE(2),DIAGØØØC+6 Edit date to yy/mm/dd format
 MVI CCHDATE+2,C'/'
 MVC CCHDATE+3(5),DIAGØØØC
 MVC CCHTIME,DIAGØØØC+8 Move time
 MVC CCHUSER,Ø(R6) Move origin user-id from message
 MVC CCHOPTS,DFOPTS Reset all options but cycle bit
 NI CCHOPTS,DFOCYCLE
 LA R6,8(,R6) Skip *MSG user-id
 LA RØ,CLSCIF
 C RØ,IPTRGCLS
 BNE CACH1ØØ
 MVC CCHUSER,Ø(R6) Use user-id from SCIF instead
 LA R6,1Ø(,R6) Skip SCIF user-id
CACH1ØØ CLI 2(R6),C':' Check for time stamp
 BNE CACH12Ø
 CLI 5(R6),C':'
 BNE CACH12Ø
 LA RØ,8(,R6) Is it from current message?

 25© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 C RØ,CSCBUFFE
 BH CACH2ØØ No, left over from previous one
* MVC CCHTIME,Ø(R6) Move time to record prefix
 LA R6,8(,R6)
 CLI Ø(R6),C' '
 BNE CACH12Ø
 LA R6,1(,R6)
CACH12Ø CLC CCHUSER,Ø(R6) Skip user-id from message
 BNE CACH2ØØ
 LA R6,8(,R6)
 CLI Ø(R6),C' '
 BNE CACH2ØØ
 LA R6,1(,R6)
CACH2ØØ LA RØ,L'CCHDATA Length of data area
 L R1,CSCBUFFE End address of message
 SR R1,R6 Length of message
 CR R1,RØ
 BNH CACH21Ø
 LR R1,RØ Too big, truncate
CACH21Ø STC R1,CCHRLEN Store data length
 LA RØ,1 Find out how many DF records...
 C R1,DFLR1 ... are required for this cache
 BNH CACH22Ø
 LA RØ,2
 C R1,DFLR2
 BNH CACH22Ø
 LA RØ,3
CACH22Ø STC RØ,CCHCNUM
 LTR R1,R1 Is length zero
 BNP CACH23Ø Yes, no need to move data
 BCTR R1,Ø Prepare to EXecute
 EX R1,CACHMVC Move data
CACH23Ø ST R7,CACHEPTR Save pointer to current entry
 L R14,CACHSV14
 BR R14
 SPACE
CLSCIF EQU 8 SCIF message class for *MSG
CACHMVC MVC CCHDATA(*-*),Ø(R6) Move data into cache record
 SPACE 3
*
* Broadcast
*
*
 USING MSGSECT,R5
BRDCAST EQU * Broadcast
 ST R14,BRDCSV14
 LTR R5,R5 Check MATCH result
 BZ BRDC2ØØ No special processing
 TM MSGOPTS,MSGORTE Is message to be routed?
 BZ BRDC1ØØ
 BAS R14,ROUTE Yes, do it

 26 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

BRDC1ØØ TM MSGOPTS,MSGORLS Does message release others?
 BZ BRDC11Ø
 BAS R14,RELEASE Check messages to release
BRDC11Ø TM MSGOPTS,MSGUNIQ Is message to be held unique?
 BZ BRDC12Ø
 BAS R14,UNIQUE Release previous messages
BRDC12Ø TM MSGOPTS,MSGHOLD Is message to be held?
 BZ BRDC13Ø
 BAS R14,HOLD Add message to HOLD list
BRDC13Ø TM MSGOPTS,MSGOEXT Exit EXEC requested?
 BZ BRDC19Ø
 BAS R14,EXIT Invoke Exit EXEC
BRDC19Ø TM MSGOPTS,MSGNODSP NoDisplay message?
 BO BRDC8ØØ Yes, almost done...
BRDC2ØØ LA R8,SSSPTR Address list of active sessions
 SPACE
BRDC3ØØ L R8,UIDFWD Address active session
 LTR R8,R8
 BZ BRDC8ØØ All checked, refresh screens
 TM UIDOPT2,UIDAUTO Is session in auto refresh?
 BO BRDC31Ø Yes, check message
 TM UIDOPT3,UIDCMS Is CMS scroll active
 BZ BRDC3ØØ
 TM UIDOPT3,UIDCLEAR Yes, was screen cleared before
 BZ BRDC3ØØ
 NI UIDOPT3,X'FF'-UIDCLEAR Yes, reset clear option
 L RØ,CCHRECNO Load current record number
 ST RØ,UIDCMSTP Store as new top line
 B BRDC3ØØ
 SPACE
BRDC31Ø L R7,CACHEPTR Address current record
 LINK SELECT Is message expected by the user?
 BNZ BRDC3ØØ No, check another one
 TM UIDOPT1,UIDRLSE Any message released already
 BO BRDC3ØØ Wait, we must rebuild the screen
 L R7,UIDBUFF1 Start with first msg on screen
BRDC4ØØ TM CCHOPTS,CCHHOLD Is it on Hold
 BZ BRDC5ØØ
 C R7,UIDBUFF2 Yes, is it the last detail line?
 BE BRDC3ØØ Yes, check other sessions
 L R7,CCHFWD Try next screen line
 B BRDC4ØØ
 SPACE
BRDC5ØØ TM UIDOPT3,UIDCMS CMS scrolling?
 BO BRDC6ØØ Yes, process CMS style
 LINK DELETE Delete first scrollable line
 L R1,UIDBUFF2 Address last line on screen
 B BRDC7ØØ Add line and refresh user screen
 SPACE
BRDC6ØØ TM UIDOPT3,UIDCLEAR Was screen cleared?
 BO BRDC63Ø Yes, so clear it again

 27© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

BRDC61Ø L R1,CCHRECNO Is line in use?
 LTR R1,R1
 BNZ BRDC62Ø Yes, try next one
 CLI CCHUSER,X'ØØ' Is it a blank line?
 BNE BRDC62Ø No, keep trying
 TM UIDOPT3,UIDWRAP Yes, is Message Wrap active?
 BZ BRDC65Ø No, use the line
 CLI CCHLINE2,X'ØØ' Is line displayable?
 BE BRDC63Ø No, try clear the screen
 B BRDC65Ø Yes, use it
 SPACE
BRDC62Ø L R7,CCHFWD Address next line
 LTR R7,R7
 BNE BRDC61Ø Check all lines
BRDC63Ø LINK CLEAR Screen full, clear scroll lines
 L R7,CACHEPTR Address current record
 L RØ,CCHRECNO Load record number
 ST RØ,UIDCMSTP Save as new CMS top line
 NI UIDOPT3,X'FF'-UIDCLEAR Reset Clear option
 L R7,UIDBUFF1 Start with first msg on screen
BRDC64Ø TM CCHOPTS,CCHHOLD Is it on Hold
 BZ BRDC65Ø No, delete and add new one
 L R7,CCHFWD Yes, skip it
 B BRDC64Ø Locate message to replace
 SPACE
BRDC65Ø L R4,CCHBWD Address previous line
 LINK DELETE Delete first free line
 LR R1,R4 Add after previous...
BRDC7ØØ L R7,CACHEPTR Address current line
 LINK ADD Add current line
 OI UIDOPT4,UIDBSCR Option to rebuild user screen
 L R5,CPWRSVØ5 Restore MSG entry address
 LTR R5,R5 Entry found for this message?
 BZ BRDC71Ø No, keep going
 TM MSGOPTS,MSGALARM Should we beep beep?
 BZ BRDC71Ø
 OI UIDOPT4,UIDBALM Yes, set Alarm option
BRDC71Ø TM UIDOPT3,UIDWRAP Is Message Wrap active?
 BZ BRDC72Ø
 GO CSCWRP Yes, build partial lines
BRDC72Ø TM UIDOPT1,UIDCONN Is user connected?
 BO BRDC3ØØ Yes, there is no need do it
 TM UIDOPT1,UIDRMTE Is user remote?
 BO BRDC73Ø Yes, send data back
 GO CSCBLD Rebuild user screen (327Ø DS)
 LINK SEND Send it
 B BRDC3ØØ
 SPACE
BRDC73Ø GO CSCUSADP Send data back to user
 B BRDC3ØØ

 28 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 SPACE
BRDC8ØØ L R5,CPWRSVØ5 Restore MSG entry address
 LTR R5,R5 Entry found for this message?
 BZ BRDC9ØØ No, that's all
 TM MSGOPTS,MSGORLS+MSGUNIQ Was message releasing messages?
 BZ BRDC9ØØ
 GO CSCURLRF Yes, refresh rlsd msgs screens
BRDC9ØØ L R14,BRDCSV14 Return
 BR R14
 SPACE 3
*
* Release messages (Name / Release option)
*
*
RELEASE EQU * Release messages
 ST R14,RELESV14
 LA R2,MSGRLSE Address Release name
 L RØ,MSGPTR Address MSG Table
RELE1ØØ LTR R5,RØ End of MSG Table?
 BZ RELE9ØØ Yes, all done
 L RØ,MSGFWD Address next entry
 CLC MSGNAME,Ø(R2) Compare Name with Release
 BNE RELE1ØØ Not this one
 L R1,HLDPTR Found it now scan the Hold Table
RELE2ØØ LTR R7,R1 End of table?
 BZ RELE1ØØ Yes, check all MSG entries
 L R1,CCHFWD Address next message
 C R5,CCHBWD Check MSG address that cause Hol
 BNE RELE2ØØ
 STM RØ,R3,RELESAVE Found it, save work registers
 GO CSCURLPR Release message
 LM RØ,R3,RELESAVE Restore work registers
 B RELE2ØØ Check all messages
 SPACE
RELE9ØØ L R7,CACHEPTR Restore pointer to current line
 L R5,CPWRSVØ5 Restore MSG entry address
 L R14,RELESV14
 BR R14
 SPACE 3
*
* Process Unique messages
*
*
UNIQUE EQU * Process Unique messages
 ST R14,UNIQSV14
 L R1,HLDPTR Address messages on Hold
UNIQ1ØØ LTR R7,R1 Any message left?
 BZ UNIQ9ØØ No, all done
 L R1,CCHFWD Address next message
 C R5,CCHBWD Check Hold MSG entry

 29© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 BNE UNIQ1ØØ Not this one
 GO CSCURLPR Release message
UNIQ9ØØ L R7,CACHEPTR Address current line
 L R14,UNIQSV14
 BR R14
 SPACE 3
*
* Add message to Hold list
*
* Note: Backward pointer CCHBWD is used to save the MSGSECT address
* of the rule that put this message on Hold.
* Used to release UNIQUE messages.
*
*
HOLD EQU * Hold message
 ST R14,HOLDSV14
 LA RØ,CCHSIZE
 LINK OBTAIN Allocate storage
 MVC Ø(CCHSIZEB,R1),CCHSECT Copy message
 L R2,HLDLAST Address last entry
 LTR R2,R2 Is this the first message?
 BNZ HOLD1ØØ
 ST R1,HLDPTR Yes, store table address
 B HOLD9ØØ
 SPACE
HOLD1ØØ ST R1,CCHFWD-CCHSECT(,R2) Chain with old last message
HOLD9ØØ SR RØ,RØ
 ST RØ,CCHFWD-CCHSECT(,R1) Clear forward pointer
 ST R5,CCHBWD-CCHSECT(,R1) Save MSGSECT address
 ST R1,HLDLAST This is the new last message
 L R14,HOLDSV14
 BR 14
 SPACE 3
*
* Invoke Exit EXEC
*
*
EXIT EQU * Invoke Exit EXEC
 USING FSCBD,R1
 ST R14,EXITSV14
 LA R1,EXFILE Address FSCB
 MVC FSCBFN,MSGEXIT Move Exit name into FSCB
 FSSTATE FSCB=EXFILE Verify if EXEC exists
 LTR R15,R15 Yes, invoke exit EXEC
 BZ EXIT1ØØ
 LA R2,MSGEXIT No, address exit name
 MSG Ø164 Display error message
 B EXIT9ØØ
 SPACE
EXIT1ØØ MVC EXPLFN,MSGEXIT Move name into Parameter List

 30 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 MVC EXEPLMSG,MSGEXIT Build also EPL
 LA R1,EXEPLMSG+L'MSGEXIT Address end of EXEC name
EXIT2ØØ BCTR R1,Ø Remove traling blanks
 CLI Ø(R1),C' '
 BE EXIT2ØØ
 MVI 1(R1),C' ' Make sure we have one blank
 LA R1,2(,R1) Address to move message
 SR R2,R2 Required by next IC
 IC R2,CCHRLEN Load message length
 LA R2,CCHDATA-CCHDFREC(,R2) Add DF prefix length
 LA RØ,Ø(R2,R1) Calculate end address of message
 ST RØ,EXEPLEND Store into Extended PL
 BCTR R2,Ø Prepare to Execute
 EX R2,EXMVC Move DF record into EPL
 TM CSCFLGØ1,HNDIOS Check for Console trap
 BZ EXIT3ØØ
 HNDIO CLR,DEVNAME=CONS Disable trap
EXIT3ØØ CMSCALL PLIST=EXPL,EPLIST=EXEPL,COPY=NO Invoke exit EXEC
 TM CSCFLGØ1,HNDIOS
 BZ EXIT9ØØ
 WAITT Wait for I/O to complete
 L R2,ADDRCONS
 L R3,@CSCIOX
 LA R4,IOXBK
 HNDIO SET,DEVNAME=CONS,DEVICE=(R2),EXIT=(R3), *
 INTBLOK=((R4),L'IOXBK)
EXIT9ØØ L R14,EXITSV14
 BR R14
 SPACE
EXMVC MVC Ø(*-*,R1),CCHDFREC Move DF record into EPL
 DROP R1
 SPACE 3
*
* Route a message to one or more users
*
*
*
ROUTE EQU * Route message
 USING RTESECT,R3
 ST R14,ROUTSV14
 L RØ,RTEPTR Address Route table
 SR R4,R4 Zero counter
ROUT1ØØ LTR R3,RØ Check for End of table
 BZ ROUT6ØØ
 L RØ,RTEFWD Not yet, address following entry
 CLC MSGROUTE,RTENAME Compare route name
 BNE ROUT1ØØ Not this one, try next
 SR R6,R6 Route entry found
 IC R6,RTECNT Load number of Node/User pairs
ROUT2ØØ LR R1,R6 Copy

 31© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 BCTR R1,Ø Calculate offset
 SLL R1,4 That's 16 bytes per pair
 LA R1,RTENODE(R1) Address correct Node/User
 CLC CSCNODE,Ø(R1) Check node
 BE ROUT3ØØ It is the same, use CP to send
 BAS R14,SENDRSCS Not the same, use RSCS
 B ROUT4ØØ
 SPACE
ROUT3ØØ LA R1,L'RTENODE(,R1) Address destination user
 BAS R14,SENDCP Build and send message
ROUT4ØØ LA R4,1(,R4) Count messges sent
 BCT R6,ROUT2ØØ Process all Node/User pairs
 L RØ,RTEFWD Process all Route table
 B ROUT1ØØ
 SPACE
ROUT6ØØ LTR R4,R4 Did we send any message?
 BNZ ROUT9ØØ Yes, all done
 LA R1,MSGROUTE No, use route name as user-id
 BAS R14,SENDCP Send message to the same node
ROUT9ØØ L R14,ROUTSV14
 BR R14
 SPACE
*
* Build message (RSCS)
*
* Input R1 points to NODE/USER entry
*
*
SENDRSCS EQU *
 LA R2,CPWTEXT Address message work area
 MVC Ø(L'CPWSMSG,R2),CPWSMSG Move RSCS communication command
 MVI L'CPWSMSG(R2),C' ' Force a blank separator
 LA R2,L'CPWSMSG+1(,R2)
 MVC Ø(L'CSCRSCS,R2),CSCRSCS Move RSCS user-id
 MVI L'CSCRSCS(R2),C' '
 LA R2,L'CSCRSCS+1(,R2)
 MVC Ø(L'CPWMSG,R2),CPWMSG Move RSCS MSG command
 LA R2,L'CPWMSG(,R2)
 MVC Ø(L'RTENODE,R2),Ø(R1) Move destination Node-id
 MVI L'RTENODE(R2),C' '
 LA R2,L'RTENODE+1(,R2) Next free byte in message area
 LA R1,L'RTENODE(,R1) Address destination user-id
 B SENDALL EXECute CP/RSCS common code
 SPACE
*
* Build message (CP)
*
* Input R1 points to USER
*
*

 32 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

SENDCP EQU *
 LA R2,CPWTEXT Address message area
 MVC Ø(L'CSCMSGC,R2),CSCMSGC Move CP command (MSG or MSGNOH)
 MVI L'CSCMSGC(R2),C' ' At least one space is required
 LA R2,L'CSCMSGC+1(,R2) Advance pointer
 SPACE
SENDALL EQU * Common code to CP and RSCS
 MVC Ø(8,R2),Ø(R1) Move destination user-id
 LA R2,8(,R2) Skip user-id
 MVI Ø(R2),C' ' Force a blank separator
SEND1ØØ BCTR R2,Ø Check for multiple blanks
 CLI Ø(R2),C' '
 BE SEND1ØØ Found one, remove it
 MVC 2(L'CPWMSGB,R2),CPWMSGB Move message header
 LA R2,L'CPWMSGB+2(,R2)
 MVC Ø(L'CCHUSER,R2),CCHUSER Move originating user-id
 LA R2,L'CCHUSER(,R2)
SEND2ØØ BCTR R2,Ø Remove all blanks
 CLI Ø(R2),C' '
 BE SEND2ØØ
 MVC 1(L'CPWMSGE,R2),CPWMSGE Close message header (:)
 LA R2,L'CPWMSGE+1(,R2)
 LA RØ,CPWTEXT+L'CPWTEXT Address end of message area
 SR RØ,R2 Calculate amount of free space
 SR R1,R1
 IC R1,CCHRLEN Load message length
 CR RØ,R1 Space enough?
 BNL SEND3ØØ
 LR R1,RØ No, truncate message
SEND3ØØ BCTR R1,Ø Prepare to Execute
 EX R1,SENDMVC Move message text
 LA R2,1(R1,R2) Address end of message
 LA RØ,CPWTEXT Address message area
 SR R2,RØ Calculate message length
 O R2,CPWRESP Request CP response in buffer
 LA R1,CSCBUFF Address response buffer
 ST R3,SENDSVØ3 Save R3
 LA R3,1 Buffer length (dummy)
 DIAG RØ,R2,X'ØØØ8' Call CP to EXECute command
 L R3,SENDSVØ3 Restore R3
 BR R14
 SPACE
SENDMVC MVC Ø(*-*,R2),CCHDATA Move message text
 SPACE
 DROP R3,R5
 SPACE 3
CACHSV14 DS F Save R14 CACHEREC
BRDCSV14 DS F BRDCAST
RELESV14 DS F RELEASE
UNIQSV14 DS F UNIQUE

 33© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

HOLDSV14 DS F HOLD
EXITSV14 DS F EXIT
ROUTSV14 DS F ROUTE
SENDSVØ3 DS F R3 SEND
CPWRSVØ5 DS F R5 CPW (MSG entry addr)
RELESAVE DS 4F RØ-R3 RELEASE
 SPACE
@SCURLPR DC V(CSCURLPR) Release messages
@SCURLRF DC V(CSCURLRF) Refresh released messages scrns
DFLR1 DC A(L'DFDATA) Maximum length for 1 DF record
DFLR2 DC A(L'DFDATA*2) Maximum length for 2 DF records
 SPACE
CPWTEXT DS CL128 Area to build CP/RSCS message
 SPACE
CPWRESP DC X'4ØØØØØØØ' Request CP response in buffer
CPWSMSG DC C'SMSG ' RSCS communication command
CPWMSG DC C' MSG ' RSCS MSG command
CPWMSGB DC C'<CSC> ' Message header
CPWMSGE DC C': ' Termination of message header
 SPACE
 DS ØD
EXPL DC C'EXEC ' Parameter List for Exit EXEC
EXPLFN DC C' '
 DC X'FFFFFFFFFFFFFFFF'
EXEPLMSG DS CL256 Message that invoked exit
EXEPL DC A(EXPL) *1* Extended Parameter List
 DC A(EXEPLMSG) *2*
EXEPLEND DC A(*-*) *3*
 DC A(Ø) *4* Extended Parameter List word 4
EXFILE FSCB '* EXEC *',FORM=E
 SPACE 3
 CSCDATA
 CSCDS (CCH,UID,RDF,MSG,RTE)
 NUCON
 FSCBD
 REGEQU
 PRINT OFF
 COPY IPARML
 PRINT ON
 END

It is now possible to generate CSCSVP. The module will collect the
data and create the log file, but you cannot establish user sessions yet.
This will be possible after adding CSCSCN, CSCBLD, CSCUSC,
CSCUIN, and CSCSEV.

Editor’s note: this article will be continued next month.

Fernando Duarte
Analyst (Canada) © F Duarte 1999

 34 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Mouse on the mainframe

In this second article on the manipulation of System/390 applications
with a PC or workstation mouse, the author discusses writing REXX
programs with virtual screens and CMS windows.

INTRODUCTION

In a previous article in VM Update, Issue 146, October 1998, I
discussed the concept and rationale for writing user-oriented
System/390 applications that can be manipulated with a PC or
workstation mouse. ‘Pointer Enabled Tools’ or PETs were proposed
as productivity enhancements because clicking with a mouse on
predefined screen ‘hot spots’ takes considerably less effort and is less
error-prone than using keystrokes. Novice or casual VM/CMS users
find the PETs style interface dramatically easier to master than the
standard command line interface.

This article outlines one way in which PETs applications can be
written using REXX, CMS virtual screens and windows, and CMS
Pipelines. It is also relatively straightforward to write PETs for use
with XEDIT, using XEDIT subcommands and values returned by the
EXTRACT subcommand. These programming tools are generally
available with VM/CMS as delivered from IBM and no additional
software is required. Documentation on using the basic tools can be
found in system help files or in IBM reference manuals. This article
will show how these basic tools can be combined to create new PETs.

THE BASIC PROGRAM STRUCTURE

In general, PETs are written with a primary loop. Within the loop, the
program displays information in a CMS window and then pauses until
the user responds in some fashion. The program can then alter the
information displayed on the screen, perform a function, or exit,
according to directives specified by the user. Simplistically, the basic
steps in these programs are as follows:

• Start the program.

• Define and initialize virtual screens and windows.

 35© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

• Other initial processing.

• Loop:

– Display information.

– Pause and receive keystrokes (or ‘mouse clicks’) from the
user.

– Analyse the keystrokes and cursor position.

– Perform the requested function (or exit if requested).

– Update information on the virtual screen.

– Continue the loop.

• Delete virtual screens and windows (usually).

• Other termination processing.

• End the program.

The approach to programming PETs XEDIT macros varies somewhat
from that used to program EXECs. Programming an XEDIT macro
might include redefining the ‘meaning’ of the ENTER key, displaying
XEDIT reserved lines, and using the EXTRACT subcommand to
determine which keystrokes were pressed and the position of the
cursor on the screen when the last key was pressed. CMS virtual
screens and windows can be used if appropriate.

CMS VIRTUAL SCREENS AND WINDOWS

At the core of all interactive PETs are CMS virtual screens and CMS
windows. Virtual screens are writable ‘presentation spaces’ that can
contain text intended for display on a 3270 terminal. Conceptually,
virtual screens are rectangular spaces which contain lines of text.

Virtual screens can be 80 columns wide by 24 lines down, but they
need not be; they can be defined with fewer or more than 80 columns
and with a variable number of lines – virtual screens with thousands
of lines of data are possible.

Each virtual screen is associated with a CMS virtual window. CMS
windows are rectangular objects which map the contents of a virtual

 36 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

screen onto a real 3270 display. A window can be equal in size to a real
3270 display, or it may be smaller than a real device.

An open CMS window permits a user to view data on a virtual screen.
Figure 1 shows the relationship between a virtual screen containing
text and a window which facilitates viewing that text. In some cases,
the virtual screen and the window are defined in such a way that:

1 The window shows the entire contents of the virtual screen.

2 The window completely fills a standard 3270 display.

In other cases, the virtual screen is larger than the window (as shown
in Figure 1) and the window must be repositioned on the virtual screen
in order to view the ‘hidden’ contents.

Several steps are required to use virtual screens and windows. Each
step can be accomplished by issuing one or more CMS command from
within a REXX program. The basic steps are as follows:

1 Define the virtual screen size and other attributes.

2 Define the window size and other attributes.

3 Connect the window to the virtual screen.

Figure 1: Relationship between a CMS virtual screen and its
associated CMS window

CMS window

This text is not seen

This text
is seen

CMS virtual screen

 37© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

4 Write text into the virtual screen.

5 Open the window.

The process becomes a little more complex when more than one
virtual screen and more than one window are defined and in use.
Windows can be opened or closed, placed in front or behind other
windows, etc. Because an application can open several windows
simultaneously, some care should be taken to ensure that the result is
as usable and user-friendly as possible. Figure 2 shows the results
from an application called PLSERV that provides a front-end to
Listserv processing (a product of L-Soft International).

+ —— +

| Listserv Tasks (EVENTS-L) 1 to 12 of 12 |

| Select an + —— +

| —————————— | List Owner Tasks (EVENTS-L) 1 to 12 of 12 |

| Post a No | Select an + —— +

| Specify a | —————————— | Replies (EVENTS-L) 1 to 2 of 2 |

| | Check Lis | Select an item from the list. |

| List Loca | | —— |

| Mail Note | Add User | View Messages |

| Check Lis | Delete Us | Review Reader for Replies |

| | Query Use | |

| List Owne | Review th | |

| Subscribe | | |

| | Authorize | |

| View List | Query Use | |

| Xedit LIS | Revoke Us | |

| | | |

| | Unlock th | |

| | | |

| | | |

| | | P 1=Help 2=PXFiles 3=Quit 4=QExecs |

| | | F 7=Backward 8=Forward 9=Top 1Ø=Bottom |

| | P 1=Help | R E P L I E S |

| | F 7=Backwa + —— +

| P 1=Help | O W N E R |

| F 7=Backwa + —— +

| P L S E R V |

+ —— +

Figure 2: Example of simultaneously open CMS windows.

 38 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

DEFINING THE VIRTUAL SCREEN

A virtual screen is defined by issuing the VSCREEN command. For
example:

'VSCREEN DEFINE TESTSCRN 20 66 1 2'

where:

• ‘DEFINE’ is the VSCREEN command option.

• ‘TESTSCRN’ is the name of the virtual screen.

• ‘20’ is the number of scrollable lines of data in the virtual screen.

• ‘66’ is the number of columns in the virtual screen.

• ‘1’ is the number of ‘reserved lines’ at the top of the virtual screen.

• ‘2’ is the number of ‘reserved lines’ at the bottom of the virtual
screen.

Typically, reserved lines are used for non-varying information such as
titles or PF key definitions (eg 1=Help). Data lines are intended to be
written and possibly rewritten. But there is no strict requirement
governing the type of data that can be written to these different areas
on a virtual screen. The primary difference seems to be that data lines
can be scrolled and reserved lines are fixed in place.

DEFINING A WINDOW

A window is defined by issuing the WINDOW command. For
example:

'WINDOW DEFINE TESTWIN 2Ø 67 3 7'

where:

• ‘DEFINE’ is the WINDOW command option.

• ‘TESTWIN’ is the name of the window.

• ‘20’ is the number of lines in the window.

• ‘67’ is the number of columns in the window.

• ‘3’ specifies that the top row of the window is to be placed on line
3 of a real 3270 display.

 39© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

• ‘7’ specifies that the leftmost column of the window is to be
placed on column 7 of a real 3270 display.

There are, of course, options that can be specified when defining
virtual screens and windows. Options alter virtual screen and window
attributes such as colour, borders, whether or not data in a window is
fixed or scrollable, and so on. For details see the help files ‘HELP
VSCREEN DEFINE’ and ‘HELP WINDOW DEFINE’.

CONNECTING A WINDOW TO A VIRTUAL SCREEN

A window is connected to a specific virtual screen with the WINDOW
command. For example:

'WINDOW SHOW TESTWIN ON TESTSCRN 1 1'

where:

• ‘SHOW’ is the WINDOW command option.

• ‘TESTWIN’ is the name of the window.

• ‘TESTSCRN’ is the name of the virtual screen.

• ‘1’ specifies that line 1 of the virtual screen will be shown on the
top line of the window.

• ‘1’ specifies that column 1 of the virtual screen will be seen in the
leftmost column of the window.

WRITING TEXT TO A VIRTUAL SCREEN

Text is queued up for writing to a virtual screen with the VSCREEN
command. For example:

'VSCREEN WRITE TESTSCRN 9 1 66 (FIELD Hello, World!'

where:

• ‘WRITE’ is the VSCREEN command option.

• ‘TESTSCRN’ is the name of the virtual screen.

• ‘9’ specifies the line in which the text is to be written.

 40 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

• ‘1’ specifies the column in which the text is to be written.

• ‘66’ specifies the length of the text field to be written.

• ‘FIELD’ is a VSCREEN command option that specifies a field
definition.

• ‘Hello, World!’ is the text to be written to the virtual screen.

The length of the data string queued to a virtual screen should not
exceed one less than the width of the virtual screen, as specified in the
VSCREEN DEFINE command.

Text can be written to a virtual screen with the VSCREEN command
(there are other commands as well). For example:

'VSCREEN WAITREAD TESTSCRN'

where:

• ‘WAITREAD’ is the VSCREEN command option.

• ‘TESTSCRN’ is the name of the virtual screen.

Here, the WAITREAD command option writes any queued data to the
virtual screen and then waits for the user to respond. The user can enter
some text (if required), but he must press a PF key, a PA key, the
CLEAR key, or the ENTER key to terminate the WAITREAD.
VSCREEN stores the user-entered text and other information in
variables that can then be retrieved by the program.

Virtual screens and windows can be deleted with the appropriate
commands. For example:

'WINDOW DELETE TESTWIN'
'VSCREEN DELETE TESTSCRN'

VSCREEN and WINDOW commands can be included in a REXX
program in the usual manner, as follows:

/* Example of VSCREEN and WINDOW commands */

'VSCREEN DEFINE TESTSCRN 2Ø 66 1 2' /* Define the virtual screen.*/
'WINDOW DEFINE TESTWIN 2Ø 67 3 7' /* Define the window. */

'WINDOW SHOW TESTWIN ON TESTSCRN 1 1' /* Connect the window to the */

 41© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 /* virtual screen. */

'VSCREEN WRITE TESTSCRN 9 1 66 (FIELD', /* Queue a line of text to */
 'Hello, World!' /* the virtual screen. */

'VSCREEN WAITREAD TESTSCRN' /* Update the virtual screen */
 /* and await a response. */

'WINDOW DELETE TESTWIN' /* Delete the window. */
'VSCREEN DELETE TESTSCRN' /* Delete the virtual screen.*/

Exit

WRITING TO AND READING FROM WINDOWS

It may be appropriate to display some information in a window and
then close that window without further action. However, many
applications lend themselves to repeated interaction with end users.

In such cases, there may be a primary window that displays information
and receives text or directives from the end user, and then loops again
to refresh the text in the window or to receive additional directives.
The sample program that follows employs an appropriate looping
structure:

/* Looping with a virtual screen */

'VSCREEN DEFINE TESTSCRN 1Ø 36 1 2'
'WINDOW DEFINE TESTWIN 1Ø 37 8 15'
'WINDOW SHOW TESTWIN ON TESTSCRN 1 1'

Do loop = 1 By 1 Until(loop=3)
 Select;
 When loop = 1 Then datastring = 'Hello, World!'
 When loop = 2 Then datastring = 'Second time around.'
 When loop = 3 Then datastring = 'Well, this is it!'
 Otherwise NOP
 End
 'VSCREEN WRITE TESTSCRN 4 1 36 (FIELD' datastring
 'VSCREEN WAITREAD TESTSCRN'
 End loop

'WINDOW DELETE TESTWIN'
'VSCREEN DELETE TESTSCRN'
Exit

 42 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

If a virtual screen is defined with reserved lines at the top and/or
bottom, it may be appropriate to add static instructions on those lines
as a guide to users. The looping example is extended in the code below
to include commands that write a title on the top line of the virtual
screen and instructions on the bottom line. Please note that text can be
displayed in different colours according to the options specified on the
VSCREEN WRITE commands.

/* Writing static text on reserved lines */

'VSCREEN DEFINE TESTSCRN 10 36 1 2'
'WINDOW DEFINE TESTWIN 10 37 8 15'
'WINDOW SHOW TESTWIN ON TESTSCRN 1 1'

'VSCREEN WRITE TESTSCRN 1 1 36 (RES', /* Queue text to reserved line */
'YELLOW FIELD The World of Windows!' /* number 1 (the top). */

'VSCREEN WRITE TESTSCRN -2 1 36 (RES', /* Queue text to the second */
 'RED FIELD Press ENTER (or click', /* from the bottom reserved */
 'your mouse!)' /* line (the -2 line). */

'VSCREEN WRITE TESTSCRN -1 1 36 (RES', /* Queue text to the bottom */
 'RED FIELD to continue...' /* reserved line (the -1 line)*/

Do loop = 1 By 1 Until(loop=3)
 Select;
 When loop = 1 Then datastring = 'Hello, World!'
 When loop = 2 Then datastring = 'Second time around.'
 When loop = 3 Then datastring = 'Well, this is it!'
 Otherwise NOP
 End
 'VSCREEN WRITE TESTSCRN 4 1 36 (FIELD' datastring
 'VSCREEN WAITREAD TESTSCRN'
 End loop
'WINDOW DELETE TESTWIN'
'VSCREEN DELETE TESTSCRN'
Exit

Reading text from a window requires a user to enter information into
an ‘unprotected field’ in a window. Text entered in an unprotected
field is stored in a stem variable and can be retrieved by referring to
specific elements of that stem variable.

As a convenience, some provision should be made to properly
position the cursor so that a user need not spend time fiddling with the
arrow or tab keys. As a practical matter, it may be appropriate to alter

 43© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

some of the text on the virtual screen as the process continues.

The EXEC below displays a window, asks the user to enter his name,
receives the name, and then redisplays the window with altered text
and a new position for the cursor.

/* Reading text with a window */

'VSCREEN DEFINE TESTSCRN 1Ø 36 1 2'
'WINDOW DEFINE TESTWIN 1Ø 37 8 15'
'WINDOW SHOW TESTWIN ON TESTSCRN 1 1'

'VSCREEN WRITE TESTSCRN 1 1 36 (RES YELLOW FIELD',
 'Please enter your name.'
'VSCREEN WRITE TESTSCRN -2 1 36 (RES RED FIELD',
 'Press ENTER (or click your mouse!)'
'VSCREEN WRITE TESTSCRN -1 1 36 (RES RED FIELD to continue...'

/* The following lines queue the prompt, queue/define an unprotected */
/* field to receive the name, set the cursor in the first position of */
/* the unprotected field, refresh the virtual screen and await a */
/* response from the user. */

'VSCREEN WRITE TESTSCRN 4 1 11 (PROTECT GREEN FIELD Your name:'
'VSCREEN WRITE TESTSCRN 4 12 23 (NOPROTECT BLUE FIELD '
'VSCREEN CURSOR TESTSCRN 4 13 (DATA'
'VSCREEN WAITREAD TESTSCRN'

/* Element WAITREAD.3 contains information about the text which was */
/* typed into the window, including the line number, column number, */
/* and specific text. Parsing out "value" retrieves the user's name. */

Parse Var waitread.3 type ln cn value
name = Strip(value)

/* The following lines queue new text to the virtual screen, place the*/
/* cursor onto a lower reserved line, refresh the screen and await a */
/* response from the user. */

'VSCREEN WRITE TESTSCRN 1 1 36 (RES YELLOW FIELD' Left('Thanks!',35)
'VSCREEN WRITE TESTSCRN 4 1 36 (NOPROTECT FIELD' Left('Hello,'name,35)
'VSCREEN CURSOR TESTSCRN -2 8 (RESERVED'
'VSCREEN WAITREAD TESTSCRN'

'WINDOW DELETE TESTWIN'
'VSCREEN DELETE TESTSCRN'
Exit

 44 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

THE WAITREAD. STEM VARIABLE

The VSCREEN WAITREAD command performs several functions:

1 Virtual screens are refreshed with text previously queued to them.

2 The image displayed on the real 3270 screen is updated.

3 The next interrupt (ENTER, CLEAR, PA or PF key) is awaited.

4 Text entered by the user is retrieved and stored, along with
information about which key was pressed and the cursor position,
in elements of the WAITREAD. stem variable.

The elements of WAITREAD. contain the following information:

• WAITREAD.0 – the number of elements returned (excluding
WAITREAD.0).

• WAITREAD.1 – the specific interrupt key that was pressed.

• WAITREAD.2 – the position of the cursor when the interrupt
occurred.

• WAITREAD.3 through to WAITREAD.n – information about
fields that were changed; line number, column number, and
modified text.

An EXEC can examine the contents of WAITREAD.1 to determine
specifically which interrupt key was pressed. For example, if PF Key
3 was pressed, WAITREAD.1 would contain the following string:

'PFKEY 3'

or if the ENTER key was pressed, WAITREAD.1 would contain the
following string:

'ENTER'

An EXEC can examine the contents of WAITREAD.2 to determine
where the cursor was positioned on the virtual screen when the
interrupt occurred.

WAITREAD.2 will contain a string similar to this:

'CURSOR 3 10 DATA'

indicating that the cursor was on line 3, column 10; the virtual screen

 45© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

line was defined as a DATA line rather than a RESERVED line. Or,
WAITREAD.2 will contain a string similar to this:

'CURSOR 1 40 RESERVED'

indicating that the cursor was positioned on reserved line number 1
(the top of the virtual screen) in column 40.

An EXEC can examine the contents of the WAITREAD.3 through
WAITREAD.n stem variable elements and retrieve information about
virtual screen fields that have been changed. Information about the
first changed field (top to bottom, left to right) is stored in
WAITREAD.3. If changes were made to a second field on the same
virtual screen, then information about the second changed field is
stored in WAITREAD.4, and so forth. The value stored in
WAITREAD.0 can be examined to determine how many fields were
changed (the value in WAITREAD.0 minus 2). WAITREAD.3 and
later elements will contain a string similar to this:

'DATA 4 10 text which has been entered'

indicating that the string ‘text which has been entered’ was found in
a changed field, which starts in column 10 on data line 4 of the virtual
screen. If the text was changed in an unprotected reserved line, then
WAITREAD.3 would contain a string similar to this:

'RESERVED 1 3 text which has been entered on a reserved line'

The on-line help file can be reviewed for a more detailed description
of the WAITREAD. stem variable.

HELP VSCREEN WAITREAD

By carefully assessing the values returned in the WAITREAD. stem
variable elements, the REXX program can determine what text (if
any) was entered onto the screen, which interrupt key was pressed,
and the position of the cursor when that interrupt key was pressed.

HOW MOUSE CLICKS ARE RECEIVED AND INTERPRETED

From the previous discussions on virtual screens, CMS windows, and
the WAITREAD. stem variable, it should be clear that interactive
programs can be written that display information in windows and

 46 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

react to user keystrokes. For example, if a user presses PF Key 3, then
that fact is passed back to the program through the WAITREAD.1
variable. The program examines the value of WAITREAD.1, finds the
string ‘PFKEY 3’, and terminates normally:

Do loop = 1 By 1
 .
 .
If Left(waitread.1,8) = 'PFKEY 3' Then Leave loop
 .
 .
End loop
 .
 .
 .
Exit(Ø)

Similarly, if a user presses the ENTER key, the value of WAITREAD.1
is updated to contain the string ‘ENTER’. Furthermore, the position
of the cursor when the ENTER key is pressed is stored as the value of
the WAITREAD.2 variable. By parsing WAITREAD.2, the line and
column corresponding to the cursor’s position in the virtual screen can
be determined:

/* WAITREAD.2 contains a string similar to 'CURSOR 3 1Ø DATA' */
Parse Var WAITREAD.2 . lineno columno area .

Therefore, the program can learn the position of the cursor when the
ENTER key is pressed, and proceed accordingly.

In many 3270 terminal emulation software packages a mouse action
is (or can be) defined to emulate the two actions ‘set cursor’ and ‘press
enter’. A single click of the right mouse button, for example, can be
configured to emulate setting the 3270 cursor and pressing the
ENTER key.

In practice, the PC or workstation pointer is moved with the mouse to
some location on the screen, and the right mouse button is clicked.
That single click repositions the 3270 cursor in the active virtual
screen and sends an interrupt to CMS. CMS passes the information
along to the VSCREEN WAITREAD process as previously discussed,
and variables WAITREAD.1 and WAITREAD.2 are updated as if the
real ENTER key had been pressed. The PETs program logic examines
these variables and proceeds according to design.

 47© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

PETs programs are designed to handle mouse clicks in this manner. At
the same time they are designed to respond to standard keystrokes and
the normal interrupt keys. By handling both keyboard keystrokes and
mouse clicks equally well, PETs programs serve both traditional
mainframe users and people who prefer to use a mouse. By exploiting
this interesting synergy between the workstation mouse and CMS,
PETs can bring a new level of productivity and ease of use to the 3270
world.

A FINAL EXAMPLE

The EXEC presented below, while of limited practical value, combines
all the elements discussed in this article: virtual screen, CMS window,
infinite loop, WAITREAD processing, analysis of the WAITREAD.
stem variable values, functional selection, and screen/window clean-
up. In addition, the example shows how error messages might be
displayed when appropriate:

/* Sample Pointer Enabled Tool - Command Menu */

'VSCREEN DEFINE MENUSCRN 8 31 2 2' /* define screen */
'WINDOW DEFINE MENUWIN 8 32 8 24' /* define window */
'WINDOW SHOW MENUWIN ON MENUSCRN 1 1' /* connect w->s */

'VSCREEN WRITE MENUSCRN 1 1 31 (RES PR W FIELD', /* queue title */
 Center('Command Menu',29)
'VSCREEN WRITE MENUSCRN 1 1 31 (PR G FIELD Filelist'/* queue line 1 */
'VSCREEN WRITE MENUSCRN 2 1 31 (PR G FIELD Help' /* queue line 2 */
'VSCREEN WRITE MENUSCRN 3 1 31 (PR G FIELD RdrList' /* queue line 3 */
'VSCREEN WRITE MENUSCRN 4 1 31 (PR G FIELD SendFile'/* queue line 4 */
'VSCREEN WRITE MENUSCRN -1 1 31 (RES PR R FIELD', /* queue help */
 'Click on a command. PF3=Quit'

message = '' /* init error msg*/
Do loop = 1 By 1 /* loop forever */
 'VSCREEN WRITE MENUSCRN 2 1 31 (RES PR Y FIELD', /* queue err msg */
 Left(message,29)
 'VSCREEN CURSOR MENUSCRN 1 1 (DATA' /* set cursor */
 'VSCREEN WAITREAD MENUSCRN' /* refresh screen*/
 message = '' /* clear err msg */
 keystroke = Left(waitread.1,8) /* get keystroke */
 Parse Var waitread.2 . ln cn area . /* get line numb */
 Select;
 When keystroke = 'PFKEY 3' Then Leave loop /* pf3 pressed? */
 When ln = -1 & cn = -1 Then Leave loop /* outside win? */

 48 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 When area ¬= 'DATA' /* data area? */
 Then message = 'Incorrect selection'
 When ln = 1 Then 'EXEC FILELIST' /* line 1? */
 When ln = 2 Then 'HELP' /* line 2? */
 When ln = 3 Then 'EXEC RDRLIST' /* line 3? */
 When ln = 4 Then 'EXEC SENDFILE' /* line 4? */
 Otherwise message = 'Unknown option' /* set err msg */
 End
 End /* continue loop */

'WINDOW DELETE MENUWIN' /* delete window */
'VSCREEN DELETE MENUSCRN' /* delete screen */
Exit(0) /* end EXEC */

FURTHER INFORMATION

Further information about the PETs project can be found at the
following Web location: http://vm.uconn.edu/~pets/.

Editor’s note: in a future article, the author will discuss mouse-
clickable enhancements to XEDIT.

Richard G Ellis
Director, Computing and Information Systems
University of Connecticut (USA) © R G Ellis 1999

The DIRMAINT Synchronous Application Interface

Until recently, the Directory Maintenance Program Product
(DIRMAINT) has had an unsatisfactory programming interface.
Programs interacting with DIRMAINT have had to wait for messages
from the server, and then analyse text that contained a random mixture
of constant and variable data.

With Release 1.5, a new Synchronous Application Interface (SAPI)
has been introduced. This is briefly introduced as a GUPI in a 3-page
Appendix C to the Command Reference manual, but there is very little
explanation of how the interface should be used.

What has been provided in the SAPI interface is support for a new

 49© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

‘language’ for DIRMAINT messages. Alongside the default AMENG,
UCENG, and KANJI, there is now 1SAPI. If a DIRMAINT command
is issued with 1SAPI as the active language, communication between
the caller and the server uses SMSG and IUCV, and all responses will
be returned to the caller in one of two fixed formats. The standard
format is:

DVHrtnnnnnI REQUEST=number RTN=DVHrtn MSG=nnnn FMT=nn
SUBS= any number of tokens to be substituted in the message skeleton

If the last character of the ‘SUBS=’ string is a comma (which may
appear in the middle of a word), the message is followed by the second
format:

DVHmodnnnnI CONT=the rest of the string

Note that there is a single blank after ‘SUBS=’, but not after any of the
other ‘=’ keywords. With this fixed-format message pattern, it is much
easier to find the keywords required by the calling program, and
decide what action is needed next.

Appendix C describes ‘two sample programs’, DIRMSAPI and
DVHSAPI. In fact, only DIRMSAPI is a sample. If it is renamed to
filetype EXEC, it can be used from the console with exactly the same
syntax as the standard DIRMAINT EXEC, but its main use is to
demonstrate the interface with the DVHSAPI EXEC. This one is not
a sample, but a supported part of the DIRMAINT product – there have
even been APARs taken against it and fixed. It is designed to be used
only as a subroutine – that is why the DIRMSAPI sample is provided.
The user interface disk has two versions of the DVHSAPI EXEC, in
source and compiled form. The compiled version is obviously
preferable for production use, since it performs better, but the source
version has been put through the EXECUPDT process before release,
and all comments and indentation stripped out. So it is very difficult
to use as a tool to understand the interface. For that, you need to go to
the version on the maintenance disk. This is well commented, and
gives you a good idea of the broad pattern of the process.

It has to be said that this process is very complex, since a lot of
DIRMAINT’s server processing is asynchronous, and therefore
unsuited to a synchronous interface. The basic flow of DVHSAPI is
as follows:

1 Set up the Globalv values needed for the SAPI interface.

 50 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

2 Call the DIRMAINT EXEC with the command string.

3 Call WAKEUP (distributed with the DIRMAINT product as
DVHWAKE) to wait for incoming responses arriving in SMSGs.

4 Store them in a stem variable (stem DVHSAPI.).

5 When the final message has been received, or when WAKEUP
times out, it stores the DVHSAPI. stem variables in the calling
EXEC, and resets the original environment.

DVHSAPI is governed by state codes, which change as the forecast
messages are received. Only when the final message arrives will the
EXEC return to the caller with the appropriate return code. Within the
flow, there are a lot of complications, particularly those caused by
deleting mini-disks. Whereas most successful transactions end with
message DVHREQ2289I, when a disk is deleted, the DIRMAINT
server only does the preliminary work. The disk is then transferred to
a DATAMOVE machine (with an internal TMDISK command), and
a later series of messages reports the progress of the DLINK and
ZAPMDISK phases. (DLINK deletes Link records to the disk from
other user-ids, and ZAPMDISK finally deletes the disks and returns
the extent to the free pool.)

Since it is impossible to run a ZAPMDISK while any user has a link
to the disk, this means that the final messages for some DMDISK
commands can arrive long after the rest of the transaction has
completed. (The longest delay I have seen so far is six weeks, when
somebody tried to delete some SQL database disks without stopping
the server.)

It is because of this potential delay that WAKEUP is programmed to
time out. Control is returned to the calling EXEC within a reasonable
time, and it can process all the messages that have arrived so far.
However, any messages arriving later will be stored in the IUCV
buffer, and appear at the top of the messages from the next transaction.
You need to bear this in mind when designing the calling EXEC.

Appendix C is mostly made up of a section entitled Applied SAPI
Coding Rules. The first and third bullet points have been overtaken by
later PTFs, so they need major modification.

 51© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

The first bullet point discusses the need to issue:

EXEC DIRMAINT EXECLOAD

before issuing multiple DIRMAINT commands. If your caller is a
long-running application that is likely to continue across a restart of
the DIRMAINT server machine, it is essential that you have applied
the latest service. There can be an I/O error reading the WHERETO
DATADVH file on the user interface disk after a server restart. This
disk is permanently accessed by the EXECLOAD command, whereas
it is accessed and released for each individual command if the
EXECLOAD command has not been issued. A new PTF exploits
update-in-place for the file, which is rewritten as part of server
initialization, so that a user already accessing the disk will see the
changes to the file without reaccessing it.

It also suggests issuing an:

EXEC DIRMAINT EXECDROP

before the EXECLOAD. This is no longer necessary, since
EXECLOAD does it every time.

The third bullet point discusses return codes. There have been major
revisions to several of these, as well as some new messages for severe
errors, as a result of a new PTF for APAR VM61741. This was not
included in RSU9801, the latest at the time of writing. However, that
RSU also includes a lot of changes that enhance performance, and I
recommend installing it, or any later level.

The 1SAPI messages, although ideal for applications, are very difficult
for an ordinary reader to interpret. If you need to display or print the
messages, they can be translated to the normal format by calling
DVHMSG with your default language instead of 1SAPI. Specimen
code to do this is in the DIRMSAPI sample.

To sum up: the new SAPI interface makes it much easier to write
programs that depend on DIRMAINT messages, but you need to
analyse the DIRMSAPI sample carefully to see how to handle the new
message format. You should also be aware that delayed responses may
come into IUCV long after the main transaction has completed.

Alan Hakim
Hikmet (VM) Ltd (UK) © A W Hakim 1999

IBM has announced Automated Unix
System Option for VM, VSE, and OS/390.
Providing an automated Unix application
platform, it is designed not to require
OS/390 (MVS) skills for management or
maintenance. Typical OS/390 Unix-based
applications and enablers include Web
content hosting; e-business applications;
Lotus Domino; and Java applications and
applets.

For further information contact your local
IBM representative.

* * *

VM users can benefit from BOS-
complement from Open Software
Technologies, a context sensitive on-line
help and application documentation system
for VM, MVS, and VSE.

Users can interactively create pop-up help
windows and on-line application
documentation for mainframe applications
running under VTAM. BOS-complement
windows are integrated into applications and
immediately accessible by a PA or PF hotkey
without programming changes or compiles.
There is an import function for text
documents. System tables, VSAM files, and
all types of database can be directly accessed
for on-line help display.

For further information contact:
Open Software Technologies, 1230 Douglas
Avenue, 300 Longwood, FL 32779, USA.
Tel: (407) 788 7173.
URL: http://www.open-softech.com.

VM users can benefit from the Workstation
Group’s netCONVERT, a cross-platform
data conversion utility designed to convert
data between IBM mainframe and Unix
formats, as well as to support cross-platform
migration projects.

netCONVERT can run on VM and MVS in
addition to the major flavours of Unix.
Features in Version 2.10 include support for
mainframe F, FB, V, VB, and VBS formats;
direct read and write support for VSAM
files; support for ANSI fixed, variable, and
segmented record types, FORTRAN,
MicroFocus COBOL, text, and CSV; tape
input and output in IBM and ANSI label
formats; and a test data generator.

For further information contact:
The Workstation Group, 1900 North Roselle
Road, Suite 408, Schaumburg, IL 60195,
USA.
Tel: (847) 781 6940.
URL: http://www.wrkgrp.com.

* * *

IBM has announced Version 2 of its COBOL
and CICS Command Level Conversion Aid
(CCCA) for VM. Now a program product,
CCCA for VM Version 2 is designed to help
convert old COBOL source code to new
versions of COBOL. Also new in Version 2
is the capability to convert COBOL
applications to use the new IBM Millennium
Language Extensions.

For further information contact your local
IBM representative.

x xephon

VM news

	A concise LISTCAT ALL report
	Splitting the XEDIT screen at the cursor position
	A full screen console interface – part 7
	Mouse on the mainframe
	The DIRMAINT Synchronous Application Interface

