
© Xephon plc 1999

July 1999

155

3 Monitoring executing programs
8 VM/ESA data-in-memory

techniques
24 VM:Secure enhancement rules –

part 4
37 A full screen console interface –

part 12
52 VM news

 2

VM Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38030
From USA: 01144 1635 38030
E-mail: info@xephon.com

North American office
Xephon/QNA
1301 West Highway 407, Suite 201-405
Lewisville, TX 75077-2150
USA
Telephone: 940 455 7050

Editorial panel
Articles published in VM Update are
reviewed by our panel of experts. Members
of the panel include John Illingworth (UK),
Reinhard Meyer (Germany), Philippe
Taymans (Belgium), Romney White (USA),
Martin Wicks (UK), and Jim Vincent
(USA).

Subscriptions and back-issues
A year’s subscription to VM Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 1990 issue, are available separately
to subscribers for £16.00 ($23.00) each
including postage.

© Xephon plc 1999. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.
 Printed in England.

Editor
Robert Burgess

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, EXECs, and other contents of this
journal before making any use of it.

VM Update on-line
Code from VM Update can be downloaded
from our Web site at http://www.xephon.
com; you will need the user-id shown on your
address label.

Contributions
Articles published in VM Update are paid for
at the rate of £170 ($250) per 1000 words for
original material. To find out more about
contributing an article, without any
obligation, please contact us at any of the
addresses above and we will send you a copy
of our Notes for Contributors.

 3© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Monitoring executing programs

While working on Year 2000 problems over the last few years, I have
found that some users have developed various cloned versions of
production programs, and that these cloned versions reside on their
mini-disks instead of our production mini-disk. Even worse, the users
are often unaware of these local copies, because many were made
some time ago and have been forgotten. Although we are going to
ensure that programs on production disks are Year 2000-compliant,
we anticipate problems with these ‘undocumented’ local copies.

While it would be possible simply to scan all users’ mini-disks, a
better approach is to establish a monitor of the programs being
executed. In this way, we will avoid working on programs that are
never used – this consideration applies to the programs on production
disks as well.

The program CMGVAD performs just such monitoring. It must be
activated to work, for example, from PROFILE EXEC. When activated,
it NUCXLOADs itself and establishes system exit REXXEXIT. From
that point, every time REXX is starting or terminating an application,
it passes the control to CMGVAD with enabled EXECCOMM interface.
CMGVAD retrieves PARSE SOURCE and ARG information from
the EXEC being started. This information is sent via SMSG to a server
virtual machine (‘controller’).

On the controller, there is another EXEC (CMGDOG) constantly
running. CMGDOG accepts the messages and writes a log file. The
information it has allows further reporting, such as the sample
implemented statistics – which EXEC was executed and for how long.

CMGDOG writes the files with CSL routines. The reason for this
complexity is that this method allows another user to see the current
contents of the log file, not requiring CMGDOG to close it after each
record.

CMGDOG

/**/
parse source . env fn ft fm fa address .
if address = 'CMS' then do

 4 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 'CP SET SMSG IUCV'
 'PIPE COMMAND EXECDROP CMGDOG REXX'
 'EXECLOAD' fn ft fm '= REXX'
 'PIPE STARMSG | REXX' fn fm /* fm is a parm: output filemode */
 'EXECDROP' fn 'REXX'
 exit
 end

arg fm +1

fid = fn 'LOG' fm
p2 = 'WRITE NORECOVER NOCACHE V'
fn_ft = fn 'LOG'
call csl 'DMSOPEN RC RRC FID' length(fid) 'P2' length(p2) 'TOKENLOG'
 if rc<>Ø & rrc<>44Ø 3Ø then exit rc
fid1=fid
fid = fn 'STAT' fm
call csl 'DMSOPEN RC RRC FID' length(fid) 'P2' length(p2) 'TOKENSTAT'
 if rc<>Ø & rrc<>44Ø 3Ø then exit rc

say ,
 'Monitoring... results are in' fid1 'and' fid'. To finish, enter HMSG'

Do forever
 'READTO V'
 if rc=12 then leave
 parse var v 1 class +8 vmid +8 flag +1 'CMS' caller fn ft fm ,
 calledAs address x'Ø Ø ' parms
 out = left(date(),12) left(time(),8) left(vmid,8) ,
 left(fn,8) left(ft,8) left(fm,2) left(calledAs,8) parms
 if flag = 'I' then do /* init */
 stat.vmid.fn.time = time('S')
 stat.vmid.fn.date = date('B')
 Buf = 'S' out
 bufL = length(buf)
 call csl 'DMSWRITE RC RRC TOKENLOG 1 BUFL BUF BUFL Ø WU Ø FORCE 5'
 if rc>4 then signal error
 end

 else do /* termination */
 if symbol('STAT.'vmid'.'fn'.TIME') = 'VAR'
 then do /* calc elapsed time */
 elapsed = (date('B') - stat.vmid.fn.date)*24*36Ø Ø + ,
 time('S') - stat.vmid.fn.time
 eHours = elapsed%36Ø Ø
 eMins = (elapsed//36Ø Ø) % 6Ø
 eSec = (elapsed//6Ø)
 buf = 'E',
 left(subword(out,1,4),22) ,
 right(eHours,2,'Ø ')':'right(emins,2,'Ø')':'right(esec,2,'Ø ') ,
 ' ' ,
 subword(out,5)

 5© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 bufl = length(buf)
 call csl ,
 'DMSWRITE RC RRC TOKENSTAT 1 BUFL BUF BUFL Ø WU Ø FORCE 5'
 if rc>4 then signal error
 drop stat.vmid.fn.time stat.vmid.fn.date
 end
 buf = 'T' out; bufl = length(buf)
 call csl 'DMSWRITE RC RRC TOKENLOG 1 BUFL BUF BUFL Ø WU Ø FORCE 5'
 if rc>4 then signal error
 end
 call csl 'DMSCOMM RC RRC'
end /* do forever */
call csl 'DMSCLOSE RC RRC TOKENSTAT COMMIT 6'
call csl 'DMSCLOSE RC RRC TOKENLOG COMMIT 6'

CMGVAD

CMGVAD CSECT *
 SAVE (14,12)
 USING CMGVAD,R12
 LR R12,R15
 ST R13,SAVE+4
 LA R13,SAVE
* NUCXLOAD ME
 NUCEXT CLR,NAME=MYNAME
 LA R1,CMDNUCXLOAD
 MVC CMDNUCXLOAD+8,MYNAME MY NAME
 CMSCALL ERROR=ERR
* FIGURE THE ENTRY ADDRESS
 NUCEXT QUERY,NAME=MYNAME,ERROR=ERR MY OWN NAME
 LR R11,R1 RETURNED SCBLOCK IN (R1)
 USING SCBLOCK,R11
 L R2,SCBENTR NUCXLOAD ADDRESS
 LA R2,(LØ -CMGVAD)(R2) MAKE R2 -> ACTIVE ENTRY
* DECLARE REXX EXITS
 REXEXIT SET,NAME='CMGVADI',ENTRY=(2),INIT=YES,ERROR=ERR, —
 SYSTEM=YES
 REXEXIT SET,NAME='CMGVADT',ENTRY=(2),TERM=YES,ERROR=ERR, —
 SYSTEM=YES
 B EXIØ RETURN TO CMS
*
MYNAME DC CL8'CMGVAD'
CMDNUCXLOAD DC CL8'NUCXLOAD',CL8' ',CL8'(',CL8'SYSTEM',8X'FF'
*———
* THE FOLLOWING PART TAKES CONTROL FROM REXX WHEN LAUNCHING
* OR TERMINATING REXX APPLICATION.
* - ESTABLISH EXECCOMM INTERFACE
* - FIGURE THE NAME AND PARMS OF THE EXEC BEING STARTED
* - SMSG THAT INFO TO "CONTROLLER" VMID
LØ EQU * ACTIVE ENTRY

 6 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 SAVE (14,12)
 USING LØ ,12
 LR R12,R15
 ST R13,SAVE+4
 LA R13,SAVE
* EXTRACT ARG AND PARSE SOURCE INFO FROM THE EXEC BEING INITED

* FILL SHVBLOCKS:SOURCE AND ARGS
 LR R9,R1 PARMLIST ADDR -> R9
 LA R1Ø ,SHV1 1ST
 USING SHVBLOCK,R1Ø
 XC SHV1,SHV1 CLEAR FIELDS
 MVC SHVNEXT,=A(SHV2) NEXT BLOCK ADDR
 OI SHVCODE,SHVPRIV FUNCTION: FETCH PRIV INFO
 MVC SHVVALA,=A(PARM)
 MVC SHVBUFL,=A(L'PARM)
 LA R2,=C'ARG'
 ST R2,SHVNAMA PARSE ARG
 MVC SHVNAML,=F'3' (LENGTH OR 'ARG')
 LA R1Ø ,SHV2 2ND
 XC SHV2,SHV2 CLEAR FIELDS
 OI SHVCODE,SHVPRIV FUNCTION: FETCH PRIV INFO
 MVC SHVVALA,=A(SOURCE) OUTPUT BUFFER
 MVC SHVBUFL,=A(L'SOURCE) BUFFER LENGTH
 LA R2,=C'SOURCE'
 ST R2,SHVNAMA PARSE SOURCE
 MVC SHVNAML,=F'6' (LENGTH OF 'SOURCE')
 CMSCALL PLIST=PL,EPLIST=EPL, ISSUE EXECCOMM REQUEST —
 CALLTYP=SUBCOM,ERROR=ERR
 USING PARMLIST,R9 INIT OR TERM? PUT IN MESSAGE
 CLC EXITCODE,=X'Ø Ø Ø 9' IF EXITCODE<>'INIT' (Ø 9)
 BNE L2
 MVI INITORTERM,C'I' THEN PUT CODE 'I'
 B L3
L2 MVI INITORTERM,C'T' ELSE PUT CODE 'T'
L3 EQU *
* SMSG TO THE CONTROLLER
 LA R1Ø ,SHV2 2ND SHVBLOCK: PARSE SOURCE
 LA R4,L'SMSG COMMAND LENGTH
 LA R4,1(R4) +1 FOR I/T (ABOVE)
 LA R2,SMSGTEXT
 L R3,SHVVALL ARG LENGTH
 BCTR R3,Ø -1 FOR EX
 L R5,SHVVALA VALUE
 EX R3,MVC1 MVC SMSGTEXT,SHVVAL
 A R2,SHVVALL OFFSET BUFFER LOC
 A R4,SHVVALL OUTPUT LENGTH
 LA R1Ø ,SHV1 1ST SHVBLOCK: ARG
 L R3,SHVVALL SOURCE LENGTH
 LTR R3,R3 NULL ARG?
 BZ L1 YES, NOTHING TO INSERT

 7© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

* NO, INSERT ARG IN SMSG
 MVI Ø (R2),X'Ø Ø ' SEPARATE SOURCE/ARG W/X'Ø Ø '
 LA R2,1(R2) ADVANCE OUTPUT OFFSET
 LA R4,1(R4) LENGTH
 BCTR R3,Ø -1 FOR EX
 L R5,SHVVALA VALUE ADDR
 EX R3,MVC1 MVC SMSGTEXT,SHVVAL
 A R4,SHVVALL R4:=LEN(ARG)+LEN(SOURCE)+1
L1 EQU *
 LA R3,SMSG SMSG COMMAND TEXT
 LR R5,R4 LENGTH
 O R5,=X'4Ø Ø Ø Ø Ø Ø Ø ' RETURN RESPONSE IN BUFFER
 LA R4,RESPBUF ADDR...
 LA R6,L'RESPBUF LENGTH...
 DIAG R3,R5,X'Ø 8' TRANSMIT INFO TO LOGGER
 B EXIØ EXIT
 DS Ø F FOR SPEED
MVC1 MVC Ø (Ø ,R2),Ø (R5)
 B EXIØ
ERR EQU * SMSG ERROR TO CONTROLLER
 BALR R12,Ø
 USING *,R12
 LA R3,ERRMSG
 LA R5,L'ERRMSG
 O R5,=X'4Ø Ø Ø Ø Ø Ø Ø ' RETURN RESPONSE IN BUFFER
 LA R4,RESPBUF ADDR...
 LA R6,L'RESPBUF LENGTH...
 DIAG R3,R5,X'Ø 8'
 B EXIØ
EXIØ EQU *
 BALR R12,Ø
 USING *,R12
 L R13,SAVE+4
 XR R15,R15 RC:=Ø
 RETURN (14,12),RC=(15)
 DS Ø D
SAVE DS 18F
PL DC CL8'EXECCOMM'
EPL DC A(PL),A(Ø),A(Ø),A(SHV1)
SHV1 DS CL32
SHV2 DS CL32
SOURCE DS CL8Ø
PARM DS CL12Ø
SMSG DC C'SMSG CONTRLLR' HARDCODED CONTROLLER'S NAME
INITORTERM DS CL1
SMSGTEXT DS CL2Ø Ø
ERRMSG DC C'SMSG CONTRLLR ERROR IN CMGVAD'
RESPBUF DS CL8Ø
PARMLIST DSECT
EXITNAME DS CL8
EXITCODE DS H

 8 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

EXITSF DS CL2
EXITUW DS F

 EPLIST
 SHVBLOCK
 SCBLOCK
 REGEQU
 END

Vadim Rapp
Vadim Rapp Ltd (USA) © Xephon 1999

VM/ESA data-in-memory techniques

VM/ESA provides so many different techniques to put data in memory
and/or to share storage that some people get a bit lost – for example,
you may think that a VM dataspace can replace a saved segment.

All data-in-memory techniques are meant to boost the system’s
performance by reducing or eliminating I/Os or reducing real storage
consumption via sharing.

TERMINOLOGY

Before we discuss the pros and cons of the different data in memory
techniques, we will review some VM terminology:

• Module – a module is a CMS file containing an executable
program. A module resides on a mini-disk or SFS directory and
has to be loaded into storage before execution.

• Nucleus resident – most CMS commands are not modules, but are
nucleus resident programs. That is, their coding is included in the
CMS nucleus and, as the nucleus resides in a saved segment, their
code does not need to be read from disk at each invocation.

• Nucleus extension – a module can be made resident in storage via
the NUCXLOAD command. This means that it is loaded from
disk to storage only once and can then repeatedly be invoked from
there.

 9© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

• Link-edit – the process that ‘glues’ together different parts of a
program (such as subroutines). In CMS, those parts have a
filetype of TEXT or are members of a TXTLIB. The process
replaces the names of called subroutines with the address at
which they are loaded. LOAD is the native CMS linkage editor
and it creates MODULES. LKED is a CMS command that calls
the MVS linkage editor and creates executables in a LOADLIB.

• Relocatable – a program is said to be relocatable if it can be
executed at another address than the one at which it has been link-
edited. The linkage editor can save the list of subroutines in the
module, permitting the loader to adapt their addresses to the
storage locations where they are loaded, just before execution.
This is required for a program to be NUCXLOADed. A CMS
program can be made relocatable by using the RLDSAVE option
on the LOAD command.

• Reusable – a program is reusable when it can be re-executed
without reload from disk. In practice, this means the program
may have to re-initialize any area it might have changed during
a previous execution. It is obvious that the programmer has to
take care with this. This is also required for a program to be
NUCXLOADed.

• Re-entrant – for a program to be re-entrant it must not modify
itself, including data areas that are embedded within the program.
To get a re-entrant program, the programmer has to use specific
techniques. Because saved segments are read-only, re-entrancy
is, of course, a requirement for a program to be included in a saved
segment (otherwise modifications applied by one virtual machine
would also influence the program’s behaviour in other virtual
machines using the same segment).

• Address space – is the addressable storage area where programs
are executed and data resides. When a virtual machine is created,
CP immediately creates this space. The size of this space is equal
to the so-called VM size, defined in the CP directory, and can be
altered by a CP DEFine STORage command. An address space is
divided into segments of 1MB each in the XA architecture;
segments were 64KB in 370 architecture.

 10 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

SEGMENT TABLES, PAGE TABLES, AND PMB

Segment and page tables are built by CP and used by the hardware to
describe the virtual storage virtual machines. A segment table entry
points to a page table. A page table has 256 elements, and each entry
describes the state of a virtual storage page.

With the page table entries, the hardware can find whether a page is
in real storage, and where it is located. In VM/ESA, a page table is
placed at the start of a Page Management Block (PMB). The PMB also
includes information that allows you to find pages located on DASD
(eg in the paging areas).

DATA SPACES

Data spaces are similar to address spaces, but contain only data.
Programs cannot be executed directly from them. Data spaces can be
shared among users and are defined by the operating system at the
request of a program. Two types exist:

• ESA/370 data spaces are shareable only by operating systems
running in paging mode (ie CP, MVS, and VSE). They can exist
on any ESA-capable processor.

• ESA/390 VM data spaces are exclusive to VM and can be shared
between operating systems running with Dynamic Address
Translation OFF (ie CMS). These require an ES/9000 machine.

Both address spaces and data spaces are virtual storage and thus are
pageable.

SAVED SEGMENT

A saved segment (often called a shared segment) is an area of an
address space that can be shared among different virtual machines.
Saved segments can contain programs and/or data. Note that a saved
segment itself is non-relocatable in that it will always be loaded at the
same virtual address where it was generated.

Saved segments can be loaded by Diagnose 64, or, better, by CMS’
SEGMENT command or macro. When a segment is loaded, CP
changes the segment table of the virtual machine to make one or more

 11© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

entries point to the page tables of the saved segment. The pages of the
saved segment are not directly paged in – this will only happen when
users try to reference pages of the saved segment. When segment table
entries for different virtual machines point to the same page tables,
storage is shared. The information in the PMB will also guide CP’s
paging routines to page-in the pages from the spool (where the code
of saved segments resides).

LSEG

A logical saved segment (LSEG) is a CMS concept that eases the
inclusion of MODULEs, EXECs, etc into a saved segment. A classical
segment is one big piece of coding, whereas an LSEG is a kind of
library. When an LSEG gets loaded, all its objects become ‘known’ to
the virtual machine. That is, MODULEs are considered
NUCXLOADed, EXECs become EXECLOADed, etc. From then on,
the fact that the elements are in a saved segment is transparent and the
saved segment makes the code of the objects shareable among virtual
machines.

An LSEG resides in a PSEG (physical segment). When loading an
LSEG, CMS requests CP to get the appropriate PSEG. To CP, a PSEG
is an ordinary saved segment. The SYSTEM SEGID file on the S disk
defines the relationship between LSEGs and PSEGs. LSEGs are
created with the SEGGEN command (VMFBLD can call SEGGEN
as well).

FST

Each CMS-formatted mini-disk has a directory (list of the files and
their attributes). When a CMS mini-disk (or an SFS directory) is
accessed, this directory is copied from disk into the user’s address
space, where it is called a File Status Table (FST).

CU CACHEING

DASD control units can also keep data in their cacheing storage.
When the data to be read is available from the cache, it is sent to the
CPU roughly 10 times faster than when read from DASD. We won’t

 12 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

discuss this technique any further because it only speeds up I/O and
has little to do with storage sharing. The Redbook VM/ESA Storage
Management with Tuning Guidelines (GG24-3944) contains useful
information in this area and is recommended reading.

MINI-DISK CACHEING

Mini-disk cacheing (MDC) is a CP service to avoid disk I/O. When a
virtual machine reads a block from disk, CP saves a copy in real
storage. From then on, any user issuing an I/O for the same block gets
it transparently from CP’s in-storage copy. CP has an arbiter to
optimize the use of central and/or expanded storage for MDC and
paging.

Up through VM/ESA Release 1.2.1, MDC was limited to 4KB-
formatted CMS mini-disks and cacheing was done in expanded
storage only. Since VM/ESA Release 1.2.2, MDC is enhanced to
support any mini-disk (guest or CMS), and can use both central and
expanded storage.

SFS DATA SPACES

An SFS directory can be mapped to a VM data space (we’ll abbreviate
this technique to SFS-DS). For our discussion, SFS directories are
similar to mini-disks – you typically ACCESS them before using the
files. However, the SFS files are stored on the mini-disks owned by the
SFS server. If an SFS directory is associated with a VM data space, the
SFS server shares the data space with any user referencing the files.
This means that the transmission of file information is no longer over
APPC/VM path between the SFS server and the CMS client, but is
directly available in virtual storage. When the data space is created,
the data blocks on the SFS mini-disks are mapped to page frames in
the data space. The SFS server itself will not read the data into the data
space but, when the user references a file, CP will use its high-
performing paging routines to get the referenced data blocks from the
SFS mini-disks into the data space. Other users referencing the same
file refer to the same data space pages, so effectively sharing storage.

 13© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

VIRTUAL DISKS IN STORAGE

Virtual disks in storage (V-disks) were introduced by VM/ESA
Release 1.2.1. A V-disk is a mini-disk emulated in CP virtual storage
(and thus can be paged out). Virtual disks in storage behave as fast
9336 FBA disks. CP creates them in an ESA/370 data space. When the
system goes down, the data is lost. Virtual disks in storage can be
shared between virtual machines. They are accessed using any I/O
method supported by VM (SIO or SSCH for guests, Diagnose or
BLOCKIO for CMS).

Note that the pages in real storage being used by saved segment,
shared data spaces, and V-disks are considered to be ‘shared storage’.
This means that these pages are selected for paging out later than other
pages, regardless of how many virtual machines actually use them.

COMPARING THE TECHNIQUES

We will now cover the performance aspects for FSTs, programs, data
files, REXX EXECs, etc. In general, performance can be improved by
avoiding I/O and/or minimizing paging via storage sharing. But is a
virtual disk in storage equivalent to a saved segment? Is a data space
a winner? Do saved segments perform better than MDC?

We will start with programs. REXX EXECs are covered later because,
to computers, REXX EXECs are ordinary data files that get read and
handled by a real program, namely the REXX interpreter. CSP
applications have a similar behaviour, whereas compiled REXX
EXECs are a special case of modules.

THE BEST TECHNIQUE FOR PROGRAMS

One aspect to bear in mind is that, when a program executes, not all
of its subroutines will necessarily be executed. Exception or error
routines are examples of this. Loading them in storage is thus a form
of overhead that can only be avoided with some of the described
techniques.

For program products designed to use saved segments, the choice is
clear – you have to use them if you care about performance. Even if
there is only one user, there is a gain – because only referenced parts
of the program will be paged in.

 14 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

For MODULEs, you have a choice between:

• Leaving them on a mini-disk (and hoping for MDC benefits).

• Storing them in an SFS-DS .

• Copying them to a virtual disk in storage shared among all users.

• NUCXLOADing them (if reusable).

• Placing them in an LSEG (if re-entrant).

What are the pros and cons of each alternative? In the case of leaving
them on a mini-disk, performance is improved when the MDC has a
high hit ratio. When CMS reads the program, the I/O will be avoided
if CP still has a copy in the MDC. However:

• The running program itself is not shared, so each user of the
program has a separate copy in private storage.

• The whole program must be read, including exception routines
(it’s likely that these will be selected for page-out later because of
lack of reference).

• CP will not keep the program in MDC if it is not started
frequently. CP tends to cache what is read frequently, and a
program is only read when started.

With an SFS-DS, the CMS file containing the program may be in real
storage if it is often read. But since the program resides in a data space,
and programs can’t be executed from data spaces, it must be moved
to the user’s private address space. So the remarks on leaving them on
a mini-disk also apply here.

Storing on a virtual disk in storage is again similar to the SFS-DS
solution, but a virtual disk in storage is less practical for this purpose
because after each IPL you’d have to copy the programs from a real
disk to the virtual disk in storage. Virtual disks in storage are useful for
items that don’t support SFS (such as VSAM-formatted mini-disks or
VSE guest mini-disks).

By NUCXLOADing, you only read the program once and keep it in
private storage (from where it can be paged out to expanded storage
or to DASD). However, the program isn’t shared at all. The
NUCXLOAD technique is suitable if the program is exclusive to one

 15© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

or a few users. For example, the action routines of a PROP should be
NUCXLOADed (or EXECLOADed for EXECs) before starting the
program.

Only saved segments allow effective sharing of programs among
users and, as an extra benefit, only those parts that get executed will
be paged in.

Conclusions for programs

The best choice is to use saved segments whenever possible. However,
they require more planning and maintenance from the systems
programmer, while MDC and SFS-DS are more self-regulating
processes.

MDC, SFS-DS, and virtual disks in storage can speed up reading the
program from disk, but only if the file is read frequently.

THE BEST TECHNIQUE FOR DATA FILES

Data files can, of course, get the same benefits from MDC and virtual
disks in storage as is the case for programs. Using MDC requires
minimal effort from the systems programmer.

However, data can be stored in saved segments too, giving the great
advantage of sharing. The former 16MB limit explains why the
technique was not used frequently in the past.

Normally, programs that read data from shared segments instead of
disk have to be specifically designed to do so. However, with CMS
Pipelines, reading an EXECLOADed file or reading from disk becomes
transparent! Yes, loading a data file in storage with EXECLOAD is
fooling CMS, but it works and is supported by CMS Pipelines. Try
this, for example:

 PIPE LITERAL Card 2 | LITERAL Card 1 | > TEST FILE A
 EXECLOAD TEST FILE A MYTEST DATA
 PIPE < MYTEST DATA | CONSOLE

Because placing data in saved segments is so easy, it is worth
considering for highly-used data that is not frequently modified.

The very best would be the direct use of VM data spaces but that
requires the program to be adapted to use data spaces. You can,

 16 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

however, indirectly benefit from VM data spaces via the SFS-DS
technique, in which case your data processing program doesn’t
require change. But realize that, compared to direct use of VM data
spaces, you then share in ‘move mode’. That is, when your program
does a read to get data, CMS has to move it from the data space to the
program’s buffer. Note that with MDC, one also shares storage in
‘move mode’.

Improving your EXECs

Note first that, in this discussion, XEDIT macros and Pipeline stages
are also ‘EXECs’ – only the filetype differs – and so are compiled
REXX procedures, unless they are compiled into a TEXT object and
link-edited into a module.

For sharing and performance aspects, EXECs compare well to
programs. So the list of possibilities is very similar:

• Leave them on a mini-disk (and hope for MDC benefits).

• Store them in an SFS-DS.

• Copy them to a virtual disk in storage shared by all users.

• EXECLOAD them.

• Place them in an LSEG or in the CMSINST segment.

You could say that non-compiled EXECs are data to computers, so it
must be possible to interpret them directly from a VM data space.
Theoretically this is correct, but we’ve seen that accessing data
directly in a data space is not transparent and, for the moment, the
CMS REXX interpreter isn’t adapted to it. A REXX procedure can, of
course, be stored in an SFS-DS, but before execution it will be copied
into your address space. For frequently started procedures, the chances
are then great that no page-in is required.

Conclusions for EXECs

Place your highly used REXX EXECs in saved segments. Starting
with VM/ESA 1.1.0, REXX EXECs can be placed above the 16MB
line, relieving the former space constraint. EXEC2 EXECs can also
be put into saved segments, but only below 16MB. Although it’s clear

 17© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

that compiled EXECs run much faster, they result in about four times
larger files. This means that sharing the coding and avoiding the I/O
to load them is even more important once EXECs are compiled.

WHAT ABOUT FSTS?

FSTs can consume a lot of storage. An FST entry for a mini-disk file
needs 64 bytes (an entry for an SFS file is a little bigger). Thus, when
you ACCESS a mini-disk with 5,000 files, the cost in your address
space is over 300KB (75 pages), which all have to be read from disk
too. And, even though CMS is clever enough to use hashing techniques
to drastically minimize the number of pages to be scanned (two pages
per filemode), searching for files is a job CMS has to perform very
frequently.

How can we gain performance here?

• Mini-disk cacheing? Although MDC may speed up obtaining the
FSTs during ACCESS, it will not help the process of scanning the
FSTs. CMS keeps the FSTs in virtual storage so, to find a file, no
I/O is required. Since MDC works by eliminating I/Os, it will not
help here.

• Saved segments? FSTs fit well into saved segments. The pages
will effectively be shared (no moves required), but they must still
remain below 16MB. SAVEFD can be used to place FSTs in a
‘normal’ physical segment, while SEGGEN is the command to
place them in an LSEG. The drawback is that, each time something
changes on the mini-disk, the segment must be resaved (use
‘ACCESS (SAVEONLY’ to verify whether a segment is still
valid). Remember also that the FSTs for the S and Y disks are
saved together with the CMS saved system, so the 19E is a good
candidate to receive frequently used files.

• Data spaces? For an SFS-DS, the FSTs do reside in the shared
data space and they don’t have to be moved to your address space.
The extra advantage of an SFS-DS over a CMS mini-disk is that
not only are the FSTs shared, but also the files themselves.
Furthermore, the FSTs do not consume precious address space
below 16MB and they don’t have to be manually resaved after
files have been updated.

 18 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

So, saved segments are recommended for FSTs as well. Beware,
however, if you often update the disk and resave the segment, because
you will end with many copies of the saved segment, thereby reducing
the storage effectively shared. In an extreme case, each virtual
machine could have its own copy of the saved segment, and nothing
is shared any more. How many copies of a segment are acceptable? It
depends: for the CMS case, a little calculation seems to indicate that,
on a system where some 300 users log-on and back off daily, it is still
worthwhile to resave CMS when there are already 10 copies of the
CMS segment.

You can use the CP Q NSS USERS segname command to find out how
many copies exist and who’s using which copy. By restarting users of
obsolete class P segments, storage sharing is improved (the CPQUERY
EXEC – available on the VM download library – can help you with
this task).

HIGHEST ADDRESS

To complete this discussion, we will cover the ‘highest’ address one
should use with saved segments and virtual machine sizes.

In order to describe your address space, CP has to build a so-called
‘segment table’. Initially, your segment table has just enough entries
to describe your virtual machine size. When you activate a saved
segment that was generated at a higher address, CP needs to enlarge
your segment table. When you later detach the segment, CP will not
downsize your segment table because it thinks that you may use the
same segment again later on. Note that since CMS Release 6, saved
segments can be loaded inside the virtual machine size (but adding
SEGMENT RESERVE commands in the PROFILE or SYSPROF
EXEC may be required). And, obviously, the storage occupied by the
saved segments cannot be used as private read-write storage.

Knowing this, you should remember that there are three important
limits:

• A segment table describing 32MB fits into the base VMDBK
(Virtual Machine Description Block) and so has no additional
storage cost relative to smaller virtual address sizes.

 19© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

• From 33MB to 1024MB, the segment table needs one extra 4KB
page per user.

• Above 1024MB, CP needs yet another page, and it must be
contiguous with the other.

So, if possible, keep virtual machine sizes, and the most commonly
used saved segments, below 32MB. If that isn’t possible, then what?

• Up to VM/ESA 2.2.0, you can place them very high, but not above
1024MB. The extra real storage cost for a segment at 33MB or at
1024MB is exactly the same – one page per user.

• In VM/ESA 2.3.0, CP became a bit smarter. The unused upper
part of segment table pages is reclaimed by CP and used as system
‘free’ storage.

An example may better illustrate the difference. Suppose a user with
a DEF STOR of 32MB loads a 1MB segment located at 511MB. CP
fetches a free page, moves the user’s segment table inside it, and
updates the user’s control register seven to reflect the new segment
table location and size. It should be clear that half of the segment table
page is not used.

Before VM/ESA 2.3.0, that half page was indeed wasted. From 2.3.0
on, CP can use it for free storage.So, from 2.3.0 onwards, for segments
that must be placed above 32MB, you gain some space by placing
them as low as possible. Don’t be overly conservative – if 150 users
use a segment at 200MB instead of at 64MB, the extra storage cost is
only 32*(200-64)*150 bytes or 640KB.

CONCLUDING GUIDELINES

Data-in-memory techniques can greatly enhance the performance of
your system. These techniques eliminate I/Os and, when sharing
among users is possible, they reduce real storage consumption.

Saved segments

Even with MDC and VM data spaces, saved segments are invaluable
to share programs, EXECs, and mini-disk FSTs.

 20 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

VM data spaces

An SFS directory in a VM data space performs as well as mini-disks
with MDC and shared FSTs. In addition, you get better disk
management and you can share more data. Note, however, that SFS
file control directories (with full support of aliases, sharing, etc) can’t
be placed in a VM data space – only directory control directories can.

MDC

MDC is a good performance booster for mini-disks. Note that the
CMS mini-disks used by SQL/DS (now known as ‘DB2 for VM and
VSE’) and SFS servers are also eligible for MDC, resulting in an
effect of ‘bigger buffers’ for SFS and SQL/DS.

Note, though, that since VM/ESA 1.2.2, the MDC uses, by default,
full-track reads, which is good for sequential access (ie good for most
CMS files), but not for random access, such as SQL databases. For
SQL/DS, it is best to use the ‘SQL Dataspace Feature’, or, if using
VM/ESA 2.3.0 or 2.2.0+PTF UM28392, use the new ‘Record MDC’.
The mini-disks used by the SFS catalog (storage pool one) probably
also perform better with ‘Record MDC’.

Virtual disks in storage

Virtual disks in storage are primarily meant to be shared by VSE
guests, used by old CMS applications, or used as a replacement for
TDISKs. By old CMS applications, we mean applications that cannot
profit from such things as large virtual storage, VM data spaces, or
files in an SFS data space. Note, however, that virtual disks in storage
are not for free. With the current design, CP considers the pages in use
for a virtual disk in storage as shared storage, making them less
eligible to be paged out. Hence, a single user with a big and very active
virtual disk in storage can take over a big part of central storage.

NUCXLOAD

NUCXLOAD (or EXECLOAD for procedures) is easy to implement
and is especially useful when sharing is not important.

 21© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

CREATING LOGICAL SEGMENTS

We have been saying that saved segments are still the best option for
programs, EXECs, and FSTs. Creating logical segments is easy, but
many readers may not be familiar with this. Therefore it may be
appropriate to mention how LSEGs can be created. For more details,
refer to the VM/ESA Planning and Administration manual, or have a
look in the VM/ESA Performance manual.

To create an LSEG:

• Find out what objects you want to place in an LSEG – FSTs,
MODULEs, EXECs, XEDIT macros, etc. Apart from FSTs,
objects of different types can be placed in an LSEG. A PSEG hosts
one or more LSEGs. So, you also have to decide how many
LSEGs and PSEGs you’ll make. Here we’ll suppose you will
place your tools (REXX EXECs, XEDIT macros, and some
MODULEs) in one LSEG.

• Find a place in real storage to place the segment (remember that
LSEGs with FSTs or EXEC2 EXECs must be located below
16MB). Various tools exist to map the storage used by segments:

– VMFSGMAP, the official VM solution. Issue ‘EXEC
VMFSGMAP SEGBLD ESASEGS SEGBLIST’.
(Because we can’t remember that command, we created a
SEGMAP EXEC that simply issues the above command.)

– CPQUERY from the download library.

– QNSSMAP EXEC, the ‘quick and dirty’ solution that is
appended below.

• Define the segment skeleton. Suppose you found room at 25MB
and 1MB is enough, issue:

CP DEFSEG mypseg 19ØØ-19FF SR

• Define your storage at least 1MB higher than the address of the
segment.

• Use XEDIT to create the ‘mylseg LSEG’ file. Insert lines to
describe each object:

EXEC STARTXED EXEC * (INSTSEG

 22 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

EXEC SUBMIT EXEC *
EXEC OURPROFL XEDIT * (INSTSEG
EXEC OURFILEL EXEC * FILELIST EXEC
MODULE MYBROWSE MODULE *
EXEC SOMEPIPE REXX * (INSTSEG

You should note the option INSTSEG. It means that this EXEC is
considered to be part of the ‘CMS Installation Segment’ (CMSINST
by default). It influences when the EXEC will be found in the search
order:

• Without INSTSEG, the EXEC is considered EXECLOADed,
and it will be used even if the user has a copy on his A disk, for
example.

• With INSTSEG, when the EXEC will be found depends on the
setting of INSTSEG. By default, INSTSEG is ‘ON S’, which
means that this EXEC will be found just before the search of the
S disk starts. For example, if a STARTXED EXEC is found on the
R disk, the copy in the segment will not be executed, the disk
resident version is taken instead.

So, you must think carefully about the INSTSEG option.
EXECMAP can be used to see how often EXECs are executed.

• Use XEDIT to create the ‘mypseg PSEG’ file. In our case, only
one line is required:

LSEG mylseg LSEG

• Access the mini-disks containing your objects, and access CMS
resident (MAINT 190) in read/write mode as Z (this way SEGGEN
can update the SYSTEM SEGID file immediately).

• Save the PSEG and LSEG(s) by issuing:

SEGGEN mypseg PSEG A SYSTEM SEGID Z

• Now that the LSEG has been created, you must still make your
users use it. For FSTs, the ACCESS command will try to use the
segment automatically. For other objects, a ‘SEGMENT LOAD
mylseg (SYSTEM’ must be executed. So, you have to include a
SEGMENT LOAD in the SYSPROF EXEC, or in another EXEC
that your users execute before they use the code you carefully
placed in the LSEG.

 23© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

QNSSMAP EXEC

Here is the quick and dirty, but fast, QNSSMAP EXEC:

/* This EXEC creates a simple NSS MAP
 +—————————————————————————————+
 | format: |QNNSMAP <ALL> |
 +—————————————————————————————+
 - without option ALL: segment spaces, CMS, and GCS segments not listed
 - with option ALL: everything is listed
/* Don't XEDIT file if disconnected user */
parse upper source . . myname mytype . syn .
address command
parse upper arg all .
if all='ALL' then /* All stuff wanted, also CMS NSS-es */
'PIPE (end ?) CP Q NSS MAP', /* .. so must fill in cols 1-32 and */

 '|D: DROP 1', /* .. 52-61 of all records */
 '|F: FANOUT',
 '| SPEC 1-32 1 52.1Ø 33|NFIND _'||,
 '|J: JUXTAPOSE',
 '| SPEC 1-32 1 43-* 33 33.1Ø 52 |NFIND _'||,
 '| XLATE 33-37 A-F FA-FF',
 '| XLATE 2Ø-2Ø S L',/* SORT S(pace) Before M(ember)*/
 '| SORT 33-37 2Ø',
 '| XLATE 33-37 FA-FF A-F',
 '| XLATE 2Ø-2Ø L S',
 '|T: FANIN 1 Ø',
 '| > NSS MAP A',
 '?F:| SPEC 33-* |J:?D:|T:'

else
 'PIPE (end ?) CP Q NSS MAP',

 '|D: DROP 1',
 '|NFIND ___'||,
 '|NLOCATE 15.3 /NSS/',
 '|NLOCATE 15.6 /DCSS-S/',
 '|NLOCATE 15.6 /CPDCSS/',
 '|XLATE 33-37 A-F FA-FF',
 '|SORT 33-37',
 '|XLATE 33-37 FA-FF A-F',
 '|T: FANIN 1 Ø',
 '|> NSS MAP A',
 '?D:|T:'

if rc=Ø then do
 if linesize()>Ø then 'EXEC REXEDIT NSS MAP A NORC'
 else say 'NSS map stored in file NSS MAP A'

end
exit rc

Kris Buelens and Guy De Ceulaer
Advisory Systems Engineers
IBM (Belgium) © IBM (Belgium) 1999

 24 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

VM:Secure enhancement rules – part 4

This month we continue the article providing special macros that
enhance VM:Secure Rules to allow additional resource access control.

OBJEDIT VMSECURE

/* EDIT an Object Rules file */
/* NW */
'TRANSFER OUTPUT SYSID USERID'
Pull output sysid user
Call Trace output
Arg userid template . '(' xedit_parms
If user = sysid Then Exit -1 /* Don't use on SVM console */

'TEST PROCESS AUTHORIZ $OBJEDIT ANYUSR'
If rc ¬= Ø Then Exit -1
/**/
/* Common routine to load the OBJECT settings. */
/* Variables set: objcuu virt dev of object disk */
/* objmode file mode of disk */
/* objdefault ACCEPT|REJECT default */
/**/
'TEST CMS PIPE (name OBJCLOAD)',
 '< OBJECT SETTINGS |',
 'VAR OBJSET'
If Symbol('OBJSET') ¬= 'BAD' Then Interpret objset
If Symbol('OBJDEFAULT') = 'BAD' Then Do
 'TEST FORMAT EMSG 7ØØØE'
 Exit 299
 End
/***/
/* Common routine to check availability of OBJECT RULES */
/***/
'TEST CMS STATE OBJECTS LOCKED' objmode
If rc = Ø Then Do
 'TEST FORMAT EMSG 7ØØØE'
 Exit 299
 End
/***/

If userid = '' Then Do
 'TEST FORMAT EMSG Ø38E'
 Exit 24
 End
userobj = userid 'OBJECTS' objmode
lockname = objmode 'OBJECTS' userid

 25© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

userXedit = userid 'OBJECTS AØ'
workfile = userid 'CMSUT1' objmode
templatefile = template 'OBJECTS' objmode
defaultfile = 'OBJECT TEMPLATE' objmode
use_templatefile = Ø
'TEST CMS STATE' userobj
If rc ¬= Ø Then Do
 If template = '' Then templatefile = defaultfile
 'TEST CMS STATE' templatefile
 If rc ¬= Ø Then Do
 'TEST FORMAT EMSG 8ØØ3E User OBJECT' template
 Exit 28
 End
 use_templatefile = 1
 End
'TEST PROCESS AUTHORIZ $OBJEDIT' userid
If rc ¬= Ø Then Do
 'TEST FORMAT EMSG 265E OBJEDIT' userid
 Exit 1Ø
 End
'TEST USER EXECUTE ERASE' userXedit
If rc = 35Ø Then Exit 1ØØ
Else If rc = 36 Then Do
 'TEST FORMAT EMSG Ø38ØE'
 Exit 12
 End
'TEST LOCK COND PRIVATE DISK' lockname
If rc ¬= Ø Then Do
 'FORMAT EMSG 364E' userobj
 Exit 14
 End
If use_templatefile Then Do
 'TEST CMS COPYFILE' templatefile userobj
 crc = rc
 If rc ¬= Ø Then Do
 'TEST CMS ERASE' userobj
 'FORMAT EMSG 621E' crc 'COPYFILE'
 'LOCK CLEAR DISK' lockname
 Exit 16
 End
 End
'TEST USER COPYTO' userobj userXedit
If rc ¬= Ø Then Do
 'TEST USER EXECUTE ERASE' userXedit
 'LOCK CLEAR DISK' lockname
 'FORMAT EMSG Ø99I OBJEDIT'
 Exit 1ØØ
 End
Xedit:
'USER STACK LIFO CMS ERASE' userXedit
'TEST USER EXECUTE XEDIT' userXedit '(' xedit_parms

 26 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

If rc ¬= Ø Then Do
 'FORMAT EMSG 325E' rc userXedit
 'TEST USER EXECUTE DESBUF'
 If use_templatefile Then 'TEST CMS ERASE' userobj
 'LOCK CLEAR DISK' lockname
 Exit 22
 End
'TEST USER EXECUTE STATE' userXedit
If rc ¬= Ø Then Do
 Call NoChange
 'LOCK CLEAR DISK' lockname
 Exit Ø
 End
'TEST USER COPYFROM' userXedit workfile
crc = rc
If crc ¬= Ø Then Do
 'TEST CMS ERASE' workfile
 If use_templatefile Then 'TEST CMS ERASE' userobj
 'TEST USER EXECUTE ERASE' userXedit
 'LOCK CLEAR DISK' lockname
 'FORMAT EMSG 621E' crc 'COPYFROM'
 Exit 17
 End
'TEST EXEC OBJLOAD' userid
loadrc = rc
If rc = Ø Then Do
 'TEST CMS ERASE' userobj
 'TEST CMS RENAME' workfile userobj
 End
Else If rc = 24 Then Do Forever
 'FORMAT EMSG 469I'
 'TEST FORMAT PROMPT 4Ø4R'
 If rc ¬= Ø Then Call NoChange
 Pull ans .
 If ans = 'YES' Then Do
 'TEST CMS ERASE' workfile
 Signal XEDIT
 End
 Else If ans = 'NO' Then Do
 Call NoChange
 loadrc = Ø
 Leave
 End
 Else 'FORMAT EMSG 431E' ans
 End
Else Call NoChange
'TEST USER EXECUTE ERASE' userXedit
'LOCK CLEAR DISK' lockname

Exit loadrc
NOCHANGE:

 27© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

If use_templatefile Then 'TEST CMS ERASE' userobj
'TEST CMS ERASE' workfile
'FORMAT EMSG 8Ø12I'
Return

OBJEND VMSECURE

/* End all that is... */
/* NW */

'TRANSFER OUTPUT SYSID USERID'
Pull output sysid user
Call Trace output
If user ¬= sysid Then Exit -1 /* Only SVM can execute */
'TEST USER LOGOP VMXOBJRULES *ERROR* VM:Secure OBJECT RULES activation
failure.'
'TEST PROCESS SPAWN END FORCE'
'TEST PROCESS READY END FORCE'
'TEST PROCESS SWITCH'

OBJFOR VMSECURE

/* Check the access allowed for a particular user and OBJECT */
/* NW */

'TRANSFER OUTPUT SYSID USERID'
Pull output sysid user
Call Trace output
Arg foruser objname object_tokens
'TEST PROCESS AUTHORIZ $OBJFOR' user
If rc ¬= Ø Then Exit -1
If foruser = '' Then Do
 'TEST FORMAT EMSG Ø38E'
 Exit 24
 End
If objname = '' Then Do
 'TEST FORMAT EMSG 8ØØ6E'
 Exit 6
 End
/**/
/* Common routine to load the OBJECT settings. */
/* Variables set: objcuu virt dev of object disk */
/* objmode file mode of disk */
/* objdefault ACCEPT|REJECT default */
/**/
'TEST CMS PIPE (name OBJCLOAD)',
 '< OBJECT SETTINGS |',
 'VAR OBJSET'
If Symbol('OBJSET') ¬= 'BAD' Then Interpret objset

 28 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

If Symbol('OBJDEFAULT') = 'BAD' Then Do
 'TEST FORMAT EMSG 7ØØØE'
 Exit 299
 End
/***/
/* Common routine to check the availablity of OBJECT RULES.*/
/***/
'TEST CMS STATE OBJECTS LOCKED' objmode
If rc = Ø Then Do
 'TEST FORMAT EMSG 7ØØØE'
 Exit 299
 End
/***/
object_tokens = Space(object_tokens)
quiet = Abbrev('QUIET',quietopt,1)
'TEST CMS STATE' objname 'OBJDEF' objmode
If rc ¬= Ø Then Do
 'TEST FORMAT EMSG 82ØØE' objname
 Exit 28
 End

If object_tokens = '',
 | Pos('*',object_tokens) > Ø ,
 | Pos('%',object_tokens) > Ø Then Do
 'TEST FORMAT EMSG 82Ø1E' objname
 Exit 2
 End

'TEST CMS PIPE <' objname 'RULEDEF | VAR OBJDEF'
If Symbol('OBJDEF') ¬= 'BAD' Then Interpret objdef
Else Do
 'TEST FORMAT EMSG 82Ø2E' rc objname 'RULEDEF'
 Exit 3ØØ
 End

If tokens.objname ¬= Words(object_tokens) Then Do
 'TEST FORMAT EMSG 82Ø6E' objname tokens.objname
 Exit 4
 End

If default_action.objname ¬= '' Then
 objdefault = default_action.objname

select = objname||'FF'x||Left(object_tokens,1)
findwild = objname||'FF'x||'*'
lookfor = Translate(objname object_tokens,'FF'x,' ')
access_allowed = ''
universal_found = ''

'TEST CMS STATE SYSTEM OBJECTS' objmode
If rc = Ø Then Do
 'TEST CMS PIPE (ENDCHAR ?)|',

 29© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 '< SYSTEM USEROBJ |',
 'DROP 1 |',
 'A: FIND' select'|',
 'STEM SEARCH. |',
 'FIND' lookfor'_|',
 'VAR FOUND',
 '? A: |',
 'FIND' findwild'|',
 'VAR WILD'
 If found ¬= 'FOUND' Then Do
 access_allowed = Word(found,Words(found))
 universal_found = 'EXACT'
 End
 Else Do
 If wild = 'WILD' Then wild = ''
 If search.Ø > Ø | wild ¬= '' Then Do
 Parse Value FEntry() With syskey sysaccess sysmatch
 If syskey ¬= 'NOMATCH' Then Do
 universal_found = syskey
 access_allowed = sysaccess
 End
 End
 End
 End
'TEST CMS STATE' foruser 'OBJECTS' objmode
If rc = Ø Then Do
 'TEST CMS PIPE (ENDCHAR ?)|',
 '<' foruser 'USEROBJ |',
 'DROP 1 |',
 'A: FIND' select'|',
 'STEM SEARCH. |',
 'FIND' lookfor'_|',
 'VAR FOUND',
 '? A: |',
 'FIND' findwild'|',
 'VAR WILD'
 If found ¬= 'FOUND' Then
 access_allowed = Word(found,Words(found))
 Else Do
 If universal_found ¬= 'EXACT' Then Do
 If wild = 'WILD' Then wild = ''
 If search.Ø > Ø | wild ¬= '' Then Do
 Parse Value FEntry() With usrkey usraccess usrmatch
 If usrkey ¬= 'NOMATCH' Then
 If (universal_found usrkey = 'PATTERN PATTERN') |,
 (universal_found usrkey = 'WILDCARD WILDCARD' &,
 Length(usrmatch) >= Length(sysmatch)) Then
 access_allowed = usraccess
 End
 End
 End

 30 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 End
If access_allowed = '' Then access_allowed = objdefault
If access_allowed = 'ACCEPT' Then Do
 'TEST USER MSG' foruser 'access would be ACCEPTED for' object_tokens
 erc = Ø
 End
Else Do
 'TEST USER MSG' foruser 'access would be REJECTED for' object_tokens
 erc = 298
 End
Exit erc
/***/
FENTRY: Procedure Expose objname object_tokens search. wild

If wild ¬= '' Then pipestream = 'VAR WILD | STEM SEARCH. |'
Else pipestream = 'STEM SEARCH. |'
'TEST CMS PIPE(endchar ? name FENTRY)|',
 pipestream,
 'A: LOCATE 1-* /%/|',
 'B: FANIN |',
 'CHANGE 1-* /'||'FF'x||'/ /|',
 'SPECS W 2-* 1 |',
 'STEM SEARCH.',
'? A: |',
 'LOCATE 1-* /*/|',
 'SORT DESCENDING|',
 'B:'

If search.Ø = Ø Then Return 'NOMATCH'
tokenwords = Words(object_tokens)
matched_on = 'WILDCARD'
matchtok = ''

Do i = 1 to search.Ø
 match = 1
 Do t = 1 to tokenwords
 token = Word(search.i,t)
 searchtoken = Word(object_tokens,t)
 tokenlen = Length(searchtoken)
 wildcard = Pos('*',token)
 pattern = Pos('%',token)
 If WordPos('Ø',pattern wildcard) > Ø Then
 minchk = Max(pattern,wildcard)-1
 Else minchk = Min(pattern,wildcard)-1
 If Left(token,minchk) ¬== Left(searchtoken,minchk) Then Do
 match = Ø
 Leave t
 End
 Select
 When pattern > Ø & Length(token) ¬= tokenlen &,
 wildcard = Ø Then Do

 31© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 match = Ø
 Leave t
 End
 When pattern > Ø Then Do
 matched_on = 'PATTERN'
 Do While pattern > Ø
 searchtoken = Overlay('%',searchtoken,pattern)
 pattern = Pos('%',token,pattern+1)
 End
 If wildcard = Ø & searchtoken ¬= token Then Do
 match = Ø
 Leave t
 End
 If wildcard > Ø & ¬Check_WildCard(token,searchtoken) Then Do
 match = Ø
 Leave t
 End
 matchtok = matchtok token
 End
 When wildcard > Ø Then Do
 matched_on = 'WILDCARD'
 If ¬Check_WildCard(token,searchtoken) Then Do
 match = Ø
 Leave t
 End
 matchtok = matchtok token
 End
 Otherwise If token ¬= searchtoken Then Do
 match = Ø
 Leave t
 End
 Else Do
 matchtok = matchtok token
 End
 End
 End
 If match Then Do
 Return matched_on Word(search.i,Words(search.i)) Strip(matchtok)
 End
 End
Return 'NOMATCH'
/************************/
CHECK_WILDCARD: Procedure
Arg token , searchtoken
wildcard = Pos('*',token)
If wildcard = Length(token) Then Do
 wildcard = wildcard - 1
 If Left(searchtoken,wildcard) == Left(token,wildcard) Then Return 1
 Return Ø
 End
Else Do While Pos('*',token) > Ø

 32 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 Parse Value token With firstpart '*' . '.' token
 len = Length(firstpart)
 Parse Value searchtoken With srchfirst +(len) . '.' searchtoken
 If firstpart = '' Then Return 1 /* For "xxx*.*" entries */
 If firstpart ¬== srchfirst Then Return Ø
 End
If token ¬= '' & token ¬== searchtoken Then Return Ø
Return 1

OBJLOAD VMSECURE

/* Load USER OBJECT files */
/* NW */

'TRANSFER OUTPUT SYSID USERID'
Pull output sysid user
Call Trace output
'TEST PROCESS AUTHORIZ $OBJLOAD ANYUSR'
If rc ¬= Ø Then Exit -1

/**/
/* Common routine to load the OBJECT settings. */
/* Variables set: objcuu virt dev of object disk */
/* objmode file mode of disk */
/* objdefault ACCEPT|REJECT default */
/**/
'TEST CMS PIPE (name OBJCLOAD)',
 '< OBJECT SETTINGS |',
 'VAR OBJSET'
If Symbol('OBJSET') ¬= 'BAD' Then Interpret objset
If Symbol('OBJDEFAULT') = 'BAD' Then Do
 'TEST FORMAT EMSG 7ØØØE'
 Exit 299
 End
/**/
objdefloaded. = Ø
default. = ''
/**/

Arg loadwho . '(' loadopt .
'TEST PROCESS AUTHORIZ $OBJLOAD' loadwho
If rc ¬= Ø Then Do
 'TEST FORMAT EMSG 265E OBJLOAD' loadwho
 Exit 11
 End
If loadwho = '*' Then Do
 If user ¬= sysid Then Exit -1 /* Only SVM allowed */
 loadwho = '*ALL*'
 'TEST CMS PIPE(name LOADOBJ)|',
 'COMMAND LISTFILE * OBJECTS' objmode '|',

 33© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 'STEM FILE.'
 ten_percent = file.Ø%1Ø
 tell_at = Format(ten_percent,,Ø)
 told = 1
 'TEST CMS EXECDROP * USEROBJ'
 Do i = 1 to file.Ø
 If i = tell_at Then Do
 prct = tell_at/ten_percent*1Ø
 If prct > 1ØØ Then prct = 1ØØ
 'TEST FORMAT EMSG 8ØØ1I' prct file.Ø
 told = told + 1
 tell_at = Format(ten_percent*told,,Ø)
 If (tell_at/ten_percent*1Ø = 1ØØ & i ¬= file.Ø) |,
 tell_at > file.Ø Then tell_at = file.Ø
 End
 Call Build_Object_Load file.i
 erc = rc
 If erc ¬= Ø Then Do
 'TEST FORMAT EMSG 8ØØ5E' erc file.i
 Exit erc
 End
 If i//1Ø = Ø Then 'TEST YIELD'
 End
 End
Else Do
 userobj = loadwho 'CMSUT1' objmode
 'TEST CMS STATE' userobj
 If rc ¬= Ø Then Do
 'TEST FORMAT EMSG 8ØØ3E User OBJECT' loadwho
 Exit 28
 End
 Call Build_Object_Load userobj
 erc = rc
 If erc ¬= Ø Then Do
 'TEST FORMAT EMSG 8ØØ5E' erc userobj
 Exit 3Ø5
 End
 End
'TEST FORMAT EMSG 8ØØ2I User Objects loaded' loadwho
Exit

/**/
Build_Object_Load:
Arg fn ft fm .
'TEST CMS PIPE(ENDCHAR ?)|',
 '<' fn ft fm '|',
 'STRIP BOTH |',
 'SPECS RECNO 1 1-* NW |',
 'NLOCATE 12.1 /*/ |',
 'STEM REC.'

 34 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Do r = 1 to rec.Ø
 rec.r = Space(rec.r)
 Parse Value rec.r With recnum acc_rej objname object_tokens
 If WordPos(acc_rej,'ACCEPT REJECT') = Ø Then Do
 'TEST FORMAT EMSG Ø39E' acc_rej
 Call PROCESS_ERROR 24
 End
 If loadopt ¬= 'FAST' Then Do
 If ¬objdefloaded.objname Then Call Load_Object_Def
 Call Validate_Object
 End
 rec.r = acc_rej objname object_tokens
 End

fm = Left(fm,1)'3'
'TEST CMS PIPE(ENDCHAR ?)|',
 'LITERAL /**/ |',
 'APPEND STEM REC. |',
 'CHANGE 8-* / /'||'FF'x||'/|',
 'SPECS W 2 1 W 1 NW |',
 '>' fn 'LOAD' fm
If loadwho ¬= '*ALL*' Then
 'TEST CMS EXECDROP' fn 'USEROBJ'
'TEST CMS EXECLOAD' fn 'LOAD' fm fn 'USEROBJ'
erc = rc
If erc ¬= Ø Then Do
 'TEST FORMAT EMSG 8ØØ5E' erc fn 'LOAD' fm
 erc = 3Ø5
 End
Return erc

/***/
Load_Object_Def:
'TEST CMS STATE' objname 'OBJDEF' objmode
If rc ¬= Ø Then Do
 'TEST FORMAT EMSG 82ØØE' objname
 Call PROCESS_ERROR 24
 End

'TEST CMS PIPE <' objname 'RULEDEF | VAR OBJDEF'
If Symbol('OBJDEF') ¬= 'BAD' Then Interpret objdef
Else Do
 'TEST FORMAT EMSG 82Ø2E' rc objname 'RULEDEF'
 Call PROCESS_ERROR 299
 End
objdefloaded.objname = 1
Return Ø

/**/
Validate_Object:

 35© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

If object_tokens = '' Then Do
 'TEST FORMAT EMSG 82Ø1E' objname
 Call PROCESS_ERROR 24
 End

numtokens = Words(object_tokens)

If numtokens < tokens.objname Then Do
 Do t = numtokens+1 to tokens.objname
 If default.t.objname ¬= '' Then
 object_tokens = object_tokens default.t.objname
 Else Do
 'TEST FORMAT EMSG 82Ø4E' t objname
 Call PROCESS_ERROR 24
 End
 End
 End
Else If numtokens > tokens.objname Then Do
 'TEST FORMAT EMSG 82Ø3E' objname tokens.objname
 Call PROCESS_ERROR 24
 End

Do t = 1 to tokens.objname
 check = Word(object_tokens,t)
 length = Length(check)
 If check ¬= '*' Then Do
 If length > tokenmax.t.objname Then Do
 'TEST FORMAT EMSG 8Ø19E word' t ,
 'more max' tokenmax.t.objname
 Call PROCESS_ERROR 24
 End
 If length < tokenmin.t.objname Then Do
 'TEST FORMAT EMSG 8Ø19E word' t ,
 'less min' tokenmin.t.objname
 Call PROCESS_ERROR 24
 End
 tokenlist = Translate(token.t.objname,' ','|')
 If token.t.objname ¬= '' &,
 WordPos(check,tokenlist) = Ø Then Do
 'TEST FORMAT EMSG 8Ø2ØE word' t
 'TEST FORMAT EMSG 8Ø22I' tokenlist
 Call PROCESS_ERROR 24
 End
 End
 End
Return Ø

/***/
PROCESS_ERROR:
Arg erc .

 36 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

'TEST FORMAT EMSG Ø56I',
 recnum Translate(fn ft fm,'ØØ'x,' ')
Exit erc

OBJLOCK VMSECURE

/* Psuedo Lock/Unlock access to the OBJECT RULES */
/* NW */

'TRANSFER OUTPUT SYSID USERID'
Pull output sysid user
Call Trace output

If user ¬= sysid Then Exit -1 /* Only SVM allowed to issue */
Arg objmode . '(' opt .
If objmode = '' Then Do
 /**/
 /* Common routine to load the OBJECT settings. */
 /* Variables set: objcuu virt dev of object disk */
 /* objmode file mode of disk */
 /* objdefault ACCEPT|REJECT default */
 /**/
 'TEST CMS PIPE (name OBJCLOAD)',
 '< OBJECT SETTINGS |',
 'VAR OBJSET'
 If Symbol('OBJSET') ¬= 'BAD' Then Interpret objset
 If Symbol('OBJDEFAULT') = 'BAD' Then Do
 'TEST FORMAT EMSG 7ØØØE'
 Exit 299
 End
 End
 If opt = '' Then Do
 'TEST CMS PIPE VAR OBJSET | > OBJECTS LOCKED' objmode
 'TEST CMS STATE OBJECTS LOCKED' objmode
 'TEST USER MSG LOCKED on disk' objmode rc
 'TEST FORMAT EMSG 7ØØ2I LOCKED.'
 End
Else If opt = 'CLEAR' Then Do
 'TEST CMS ERASE OBJECTS LOCKED' objmode
 'TEST USER MSG UNLOCKED on disk' objmode
 'TEST FORMAT EMSG 7ØØ2I UNLOCKED.'
 End
Exit Ø

Editor’s note: this article will be concluded next month.

James S Vincent
Software Specialist
Nationwide Insurance (USA) © Nationwide Insurance 1999

 37© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

A full screen console interface – part 12

Editor’s note: the following article is an extensive piece of work which
will be published over several issues of VM Update. It was felt that
readers could benefit from the entire article and from the individual
sections. Any comments or recommendations would be welcomed and
should be addressed either to Xephon or directly to the author at
fernando_duarte@vnet.ibm.com.

CSCUOP ASSEMBLE

This module adds support for the OP command. It allows you to
operate a controlled DSM. The format is ‘OP x comm’, where ‘x’ is
the DSM prefix as defined in the configuration file and ‘comm’ is the
command to send. You must have class 06 and the DSM class. In the
following example CMS001 is allowed to operate RSCS but not
VTAM:

USER CMSØØ1 Classes Ø1 Ø2 Ø3 Ø4 Ø5 Ø6 25
PREFIX R RSCS Class 25 Blue
PREFIX V VTAM Class 26 Pink

Code

 TITLE 'CSCUOP - CSC Process User OP command'
CSCUOP START X'Ø1E5Ø8'
 PRINT NOGEN
 CSCHDR User OP command
*
* Process OP command
*
 USING UIDSECT,R8 UID (user) Block
 USING PFXSECT,R2 PFX Prefix table
 SPACE
 LA RØ,UOPTABLE Address table to search
 GO CSCSCN Do it
 BNZ UOP6ØØ Nothing found, that's bad news
 LTR R15,R15 Is it USer ...?
 BZ UOP2ØØ No, better be a valid prefix
 SR RØ,RØ Not more tables to look up
 GO CSCSCN Get user-id
 BNZ UOP62Ø Not there, more bad news
 LA RØ,8 Maximum for user-id length is 8
 CR RØ,R1

 38 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 BL UOP64Ø Too long
 MVC UOPUSER,SCANUPP Save user-id for now
 L R1,PFXPTR Address Prefix table
UOP1ØØ LTR R2,R1 Check for End-Of-Table
 BZ UOP66Ø User not on prefix table
 L R1,PFXFWD Address next entry
 CLC PFXUSER,UOPUSER Compare users
 BNE UOP1ØØ Not this one
 B UOP4ØØ Validate user-id
 SPACE
UOP2ØØ LA RØ,1 Maximum length for Prefix is one
 CR RØ,R1
 BL UOP7ØØ Too long
 L R1,PFXPTR Search Prefix table
UOP3ØØ LTR R2,R1 Check for End-Of-Table
 BZ UOP72Ø Not found, too bad
 L R1,PFXFWD Address next entry
 CLC PFXPREF,SCANUPP Compare prefixes
 BNE UOP3ØØ Not this one
 MVC UOPUSER,PFXUSER Prefix found, copy user-id
UOP4ØØ SR R1,R1 Validate user
 IC R1,PFXCLASS Get destination user class
 O R1,UIDCLASS Match with user classes
 C R1,UIDCLASS
 BNE UOP8ØØ User not authorized
UOP45Ø BAS R14,SEND
 B UOP9ØØ
 DROP R2
 SPACE
UOP6ØØ MSG Ø31Ø,USER Missing prefix or user-id
 B UOP9ØØ
 SPACE
UOP62Ø MSG Ø37Ø,USER Missing user-id value
 B UOP9ØØ
 SPACE
UOP64Ø MSG Ø371,USER User-id too long
 B UOP9ØØ
 SPACE
UOP66Ø MSG Ø372,USER User-id not defined
 B UOP9ØØ
 SPACE
UOP7ØØ MVC 2(L'DOTS,R6),DOTS Prefix not one byte long
 MSG Ø373,USER
 B UOP9ØØ
 SPACE
UOP72Ø MSG Ø374,USER Prefix not defined
 B UOP9ØØ
 SPACE
UOP8ØØ LA R6,UOPUSER User not authorized
 MSG Ø375,USER
* B UOP9ØØ

 39© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 SPACE
UOP9ØØ BACK
 SPACE 3
*
* Log user command and call CP to forward it to destination user-id
*
SEND EQU *
 ST R14,SENDSV14
 MVC OPCOMM(L'UOPUSER),UOPUSER Copy destination to CP SEND
 LA R4,OPCOMM+L'UOPUSER Address end of user-id
SEND1ØØ BCTR R4,Ø
 CLI Ø(R4),C' ' Remove trailing blanks
 BE SEND1ØØ
 MVI 1(R4),C' ' Keep one single blank
 LA R4,2(,R4) Address to move user command
 A R6,SCANLEN Skip prefix or user-id
 LA R6,1(,R6) Allow one space before command
 L R1,CSCBUFFE Address end of input data
 SR R5,R5 Possible length of user command
 CR R1,R6 Anything entered by the user
 BNH SEND2ØØ No, user just wants press ENTER
 SR R1,R6 Length of input command
 LR R5,R1 Copy to R5
 BCTR R1,Ø Prepare to EXecute
 EX R1,SENDMVC1 Move user command to CP area
SEND2ØØ LA R1,Ø(R5,R4) End address for CP command
 LA RØ,OPSEND Begin address
 SR R1,RØ Calculate length
 ST R1,OPLEN Store it
 LA RØ,OPSEND Address message area
 L R2,OPLEN Load message length
 O R2,UOPRESP Request CP response in buffer
 LA R1,CSCBUFF Address response buffer
 LA R3,L'CSCBUFF Buffer length
 DIAG RØ,R2,X'ØØØ8' Call CP to execute command
 LTR R3,R3 Any error message
 BZ SEND3ØØ No, log command
 ST R1,SCRMSG Yes, store address
 BCTR R3,Ø Do not display CP end NL (X'15')
 ST R3,SCRMSGL Store also length
 OI UIDOPT4,UIDBMSG+UIDBALM Display message and beep beep
 B SEND9ØØ
 SPACE
SEND3ØØ MVC CSCBUFF(8),UOPUSER Destination user-id
 LA R2,CSCBUFF+8 Prepare to log record
 MVC Ø(L'UOPIDBEG,R2),UOPIDBEG Move log record id <CSC ...
 LA R2,L'UOPIDBEG(,R2) Adjust pointer
 MVC Ø(L'UIDVMID,R2),UIDVMID Move originating user-id
 LA R2,L'UIDVMID(,R2) Adjust pointer
SEND4ØØ BCTR R2,Ø

 40 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 CLI Ø(R2),C' ' Remove trailing blanks
 BE SEND4ØØ
 LA R2,1(,R2)
 MVC Ø(L'UOPIDEND,R2),UOPIDEND End log record id >: ...
 LA R2,L'UOPIDEND(,R2)
 LTR R5,R5 Check user command length
 BZ SEND5ØØ Nothing...
 EX R1,SENDMVC2 Move user command
SEND5ØØ LA R1,Ø(R5,R2) Address end of log record
 ST R1,CSCBUFFE Store it for CSCCPW
SEND8ØØ ST R8,SENDUID Save address of our UID block
 GO CSCCPW Log User command on Data File
 L R8,SENDUID Restore our UID block address
SEND9ØØ L R14,SENDSV14
 BR R14
 SPACE
SENDMVC1 MVC Ø(*-*,R4),Ø(R6) Move user command to CP SEND
SENDMVC2 MVC Ø(*-*,R2),Ø(R4) Move user command to log record
 SPACE 3
SENDSV14 DS F Save area for SEND R14
SENDUID DS F UID block
 SPACE
UOPTABLE CMMD (B,ØØ,Ø2,USER,*) OP command options
 SPACE
UOPUSER DS CL8
UOPRESP DC X'4ØØØØØØØ' Request CP response in buffer
DOTS DC C'... ' Make some message look "nice"
UOPIDBEG DC C'<CSC ' Log record begin id (eye catch)
UOPIDEND DC C'>: ' Log record end id
 SPACE
OPLEN DS F Length of CP SEND command
OPSEND DC C'SEND ' Op command
OPCOMM DS CL8Ø Actual user command
 SPACE
 CSCDATA
 CSCDS (UID,PFX)
 REGEQU
 END

CSCUEX ASSEMBLE

This module adds support for the INCLUDE and EXCLUDE
commands. These allow you to select the messages to display.
INCLUDE R would display only messages from DSMs with the
prefix R.

 TITLE 'CSCUEX - CSC Process User Exclude/Include commands'
CSCUEX START X'Ø1DD7Ø'

 41© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 PRINT NOGEN
 CSCHDR User Exclude command
*
* Process EXCLUDE command
*
 USING UIDSECT,R8 UID (user) Block
 USING PFXSECT,R1 PFX (prefix) Block
 SPACE
EXCLUDE EQU * EXCLUDE command
 AR R6,R1 Skip command name
EXC1ØØ LA R6,1(,R6) Advance pointer
 C R6,CSCBUFFE Check for end of data
 BNL EXC8ØØ Nothing found, reset options
 CLI Ø(R6),C' ' Check for first non-blank
 BE EXC1ØØ Not yet, loop back
EXC2ØØ OI Ø(R6),X'4Ø' Dirty uppercase
 LA R1,PFXPTR Address Prefix table
EXC3ØØ L R1,PFXFWD Get next entry address
 LTR R1,R1 Is it valid?
 BZ EXC7ØØ No, the prefix was invalid
 CLC PFXPREF,Ø(R6) Check prefix
 BNE EXC3ØØ Not this one, try another
 TM UIDOPT2,UIDEXC Is Exclude option set?
 BO EXC4ØØ Yes, add new prefix
 TM UIDOPT2,UIDINC Is Include option set?
 BO EXC5ØØ Yes, remove new prefix
 MVC UIDSEL,BLANKS Nothing set, clear field
 OI UIDOPT2,UIDEXC Set Exclude option
EXC4ØØ BAS R14,ADDPREF Add new prefix
 BZ EXC9ØØ Check all prefixes
 B EXC6ØØ Unable to add prefix
 SPACE
EXC5ØØ BAS R14,DELPREF Delete new prefix
 BZ EXC9ØØ Did it work?
EXC6ØØ MSG Ø38Ø,USER No space in UIDSEL to add,
 B EXC9ØØ duplicate or not found
 SPACE
EXC7ØØ MSG Ø381,USER Invalid prefix, not on PFX table
 B EXC9ØØ Keep going, check all input
 SPACE
EXC8ØØ NI UIDOPT2,X'FF'-UIDINC-UIDEXC Reset Include and Exclude
EXC9ØØ LA R6,1(,R6) Advance pointer
 C R6,CSCBUFFE Anything left in the buffer
 BNL EXC91Ø No, all done...
 CLI Ø(R6),C' ' Yes, skip spaces
 BE EXC9ØØ
 B EXC2ØØ Process everything else
 SPACE
EXC91Ø CLC UIDSEL,BLANKS Any prefix left?
 BE EXC92Ø No, reset options

 42 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 BAS R14,SRTPREF Yes, sort them
 B EXC99Ø
 SPACE
EXC92Ø NI UIDOPT2,X'FF'-UIDINC-UIDEXC Reset options
EXC99Ø OI UIDOPT4,UIDBHDR Remember to refresh Header line
 NI UIDOPT4,X'FF'-UIDBSCR Also rebuild the screen
 BACK
 SPACE 3
*
* Process INCLUDE command
*
CSCUEXIN RELOC INCLUDE command
 AR R6,R1 Skip command name
INC1ØØ LA R6,1(,R6) Advance pointer
 C R6,CSCBUFFE Check for end of data
 BNL INC8ØØ Nothing found, reset options
 CLI Ø(R6),C' ' Check for first non-blank
 BE INC1ØØ Not yet, loop back
INC2ØØ OI Ø(R6),X'4Ø' Dirty uppercase
 LA R1,PFXPTR Address Prefix table
INC3ØØ L R1,PFXFWD Get next entry address
 LTR R1,R1 Is it valid?
 BZ INC7ØØ No, the prefix was invalid
 CLC PFXPREF,Ø(R6) Check prefix
 BNE INC3ØØ Not this one, try another
 TM UIDOPT2,UIDINC Is Include option set?
 BO INC4ØØ Yes, add new prefix
 TM UIDOPT2,UIDEXC Is Exclude option set?
 BO INC5ØØ Yes, remove new prefix
 MVC UIDSEL,BLANKS Nothing set, clear field
 OI UIDOPT2,UIDINC Set Include option
INC4ØØ BAS R14,ADDPREF Add new prefix
 BZ INC9ØØ Check all prefixes
 B INC6ØØ Unable to add prefix
 SPACE
INC5ØØ BAS R14,DELPREF Delete new prefix
 BZ INC9ØØ Did it work?
INC6ØØ MSG Ø38Ø,USER No space in UIDSEL to add,
 B INC9ØØ duplicate or not found
 SPACE
INC7ØØ MSG Ø381,USER Invalid prefix, not on PFX table
 B INC9ØØ Keep going, check all input
 SPACE
INC8ØØ NI UIDOPT2,X'FF'-UIDINC-UIDEXC Reset Include and Exclude
INC9ØØ LA R6,1(,R6) Advance pointer
 C R6,CSCBUFFE Anything left in the buffer
 BNL INC91Ø No, all done...
 CLI Ø(R6),C' ' Yes, skip spaces
 BE INC9ØØ
 B INC2ØØ Process everything else

 43© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 SPACE
INC91Ø CLC UIDSEL,BLANKS Any prefix left?
 BE INC92Ø No, reset options
 BAS R14,SRTPREF Yes, sort them
 B INC99Ø
 SPACE
INC92Ø NI UIDOPT2,X'FF'-UIDINC-UIDEXC Reset options
INC99Ø OI UIDOPT4,UIDBHDR Remember to refresh Header line
 NI UIDOPT4,X'FF'-UIDBSCR Also rebuild the screen
 BACK
 SPACE 3
*
* Add new prefix to existing list (UIDSEL)
*
ADDPREF EQU * Add new prefix to UIDSEL
 LA R2,UIDSEL-1 Prepare to loop
 LA R3,UIDSEL-1+L'UIDSEL Address last byte
ADDP1ØØ LA R2,1(,R2) Increment pointer
 CR R2,R3 End of field?
 BH ADDP2ØØ Yes, no space available
 CLI Ø(R2),C' ' Is it a blank?
 BE ADDP3ØØ Yes, add new prefix
 CLC Ø(1,R2),Ø(R6) Is the prefix already there?
 BNE ADDP1ØØ No, check all
ADDP2ØØ LTR R14,R14 Yes, don't create duplicates
 BR R14
 SPACE
ADDP3ØØ MVC Ø(1,R2),Ø(R6) Move new prefix
 CR R14,R14 Generate a zero cc
 BR R14
 SPACE
*
* Remove prefix from existing list (UIDSEL)
*
DELPREF EQU * Delete prefix from UIDSEL
 LA R2,UIDSEL-1 Prepare to loop
 LA R3,UIDSEL-1+L'UIDSEL Address last byte
DELP1ØØ LA R2,1(,R2) Increment pointer
 CR R2,R3 End of data?
 BHR R14 Yes, prefix not found
 CLC Ø(1,R2),Ø(R6) Is it this one?
 BNE DELP1ØØ No, keep trying
DELP2ØØ MVC Ø(1,R2),1(R2) Yes, shift other prefixes left
 LA R2,1(,R2) Advance pointer
 CR R2,R3 Everything shifted?
 BNH DELP2ØØ No, so do it
 MVI Ø(R3),C' ' Yes, clear last byte
 CR R14,R14 Generate a zero cc
 BR R14
 SPACE

 44 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

*
* Sort prefixes from existing list (UIDSEL)
*
* Note This routine uses a customized High Performance Special
* Sort Algorithm capable of sorting UIDSEL in less then
* twenty milliseconds on a medium size MP computer
*
SRTPREF EQU * Sort prefixes from UIDSEL
 LA R1,UIDSEL+l'UIDSEL Address end of UIDSEL field
SRTP1ØØ BCTR R1,Ø Go back one byte
 CLI Ø(R1),C' ' Is it a blank?
 BE SRTP1ØØ Yes, keep trying
 LA R2,UIDSEL-1 Prepare to loop
SRTP2ØØ LA R2,1(,R2) Address first or next byte
 CR R2,R1 Compare with last non-blank
 BER R14 All done, return
 LR R3,R2 Address byte being tested
SRTP3ØØ LA R3,1(,R3) Address next byte
 CR R3,R1 Still a valid address?
 BH SRTP2ØØ No, check other bytes
 CLC Ø(1,R2),Ø(R3) Compare bytes
 BL SRTP3ØØ Already in sequence, keep going
 IC RØ,Ø(,R2) Swap bytes
 MVC Ø(1,R2),Ø(R3)
 STC Ø,Ø(,R3)
 B SRTP3ØØ Sort them all
 SPACE 3
 CSCDATA
 CSCDS (UID,PFX)
 REGEQU
 END

CSCUST ASSEMBLE

This module adds support for the SET command. It performs no useful
function yet, except to prevent CSCSVP from abending.

 TITLE 'CSCUST - CSC Process User Set command'
CSCUST START X'Ø45678'
 PRINT NOGEN
 CSCHDR Set command
*
* Process Set command
*
* USING IPARML,R9 IUCV Parameter List
* USING UIDSECT,R8 UID (user) Block
* USING CCHSECT,R7 CCH (cache) Block
 SPACE
 LA RØ,SETTABLE

 45© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 GO CSCSCN
 BNZ UST8ØØ
 MSG 1233
 B UST9ØØ
 SPACE
UST8ØØ MSG Ø31Ø
* B UST9ØØ
 SPACE
UST9ØØ BACK
 SPACE 3
*
* Process OP subcommand
*
OP EQU * OP subcommand
 MSG 4455
 B UST9ØØ
 SPACE 3
SETTABLE CMMD (I,Ø2,Ø1,'OP ',OP), Set Command Options *
 (I,Ø2,Ø3,'XXXXX ',*)
OPTABLE CMMD (I,Ø2,Ø2,'ON ',*), OP options *
 (I,Ø2,Ø3,'OFF ',*)
 CSCDATA
* CSCDS (UID,RDF,PFX,MSG,CCH)
 REGEQU
 END

CSCOPC ASSEMBLE

This module is the main entry point for the CSCSVP operator
commands. It processes the CMS and END commands. The END
command terminates CSCSVP and the CMS command allows you to
enter any CMS command without terminating CSCSVP. Note that
data collection and user sessions are suspended while the CMS
command executes.

 TITLE 'CSCOPC - CSC Process Operator Commands (console input)'
CSCOPC START X'Ø17EF8'
 PRINT NOGEN
 CSCHDR Process Operator Commands
*
* Process Console command
*
*
 SR RØ,RØ
 ST RØ,SCANLEN Start new scan
 LA RØ,OPCTABLE
 GO CSCSCN Scan command name

 46 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 BNZ OPC1ØØ Nothing, display prompt
 LTR R15,R15 Is command valid?
 BNZ OPC2ØØ Yes, process it
 MSG Ø6ØØ No, display error message
OPC1ØØ MSG Ø6Ø1 Display CSC prompt message
 B OPC9ØØ
 SPACE
 USING CMDSECT,R2
OPC2ØØ MVC CSCCOMM,CMDNAME Save command name
 GO , Execute processing routine
 LR R2,R15
 MSG Ø6Ø2 Tell user command finished
OPC9ØØ BACK All done, go back
 SPACE
 DROP R2
 SPACE 3
*
* CMS Execute any CMS command
*
CMS EQU * CMS Execute any CMS command
 USING NUCON,RØ
 ST R14,CMDSV14
 SR RØ,RØ
 GO CSCSCN No table to search
 BZ CMS1ØØ Something found, process it
 MSG Ø61Ø,CC CMS command is missing
 L R14,CMDSV14
 BR R14
 SPACE
CMS1ØØ IPK Insert PSW key into R2
 ST R2,PSWKEY Save PSW key temporarily
 SR R2,R2 Zero register
 SPKA Ø(R2) Store PSW key of zero
 LR R1,R6 Address real CMS command
 L RØ,CSCBUFFE End address
 ST R1,CMSEPLA Build extended parameter list
 ST RØ,CMSEPLE
 SR RØ,R1 Command length into R1
 L 15,ASCANN Build tokenized PL for CMS
 BASR 14,15 Call CMS to do it
 L R2,PSWKEY Load previous PSW key
 SPKA Ø(R2) Store it into PSW
 TM CSCFLGØ1,HNDIOS Check for Console trap
 BZ CMS4ØØ
 HNDIO CLR,DEVNAME=CONS Disable trap
CMS4ØØ CMSCALL PLIST=CMSPL,EPLIST=CMSEPL,CALLTYP=SUBCOM
 LR R2,R15
 WAITT Wait for I/O to complete
 MSG Ø611 Display message end, enable cons

 47© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 B OPC9ØØ Do not display CSC msg (Ø6Ø2)
 DROP RØ
 SPACE 3
*
* End, Exit, Goback, Quit, Terminate... and close the shop
*
END EQU * END command
 ST R14,CMDSV14
 SR RØ,RØ No table to search
 GO CSCSCN Any operand?
 BNZ END1ØØ No, that's good news
 MSG Ø6Ø5,CC Display error message
 B END9ØØ
 SPACE
END1ØØ MSG Ø619 Tell everybody we are going
 OI CSCFLGØ2,WORKEND Remember to close the shop
 SR R15,R15 Nothing can go wrong (almost)
END9ØØ L R14,CMDSV14
 BR R14
 SPACE 3
CMDSV14 DS F Save area for input commands
PSWKEY DS F Save user PSW key
 SPACE
OPCTABLE CMMD (I,ØØ,Ø3,CMS,CMS), Operator commands *
 (I,ØØ,Ø3,END,END), *
 (I,ØØ,Ø3,BYE,END), *
 (I,ØØ,Ø4,EXIT,END), *
 (I,ØØ,Ø6,GOBACK,END), *
 (I,ØØ,Ø4,QUIT,END), *
 (I,ØØ,Ø9,TERMINATE,END), *
 (E,ØØ,Ø1,QUERY,CSCOPQ), *
 (E,ØØ,Ø3,START,CSCOPA), *
 (E,ØØ,Ø4,STOP,CSCOPASP)
 SPACE
CMSPL DC C'CMS '
CMSEPL DC A(CMSPL)
CMSEPLA DS F
CMSEPLE DS F
 DC F'Ø' *4* Extended Parameter List word 4
 SPACE
 LTORG
 SPACE
 CSCDATA
 CSCDS (CMD)
 REGEQU
 NUCON
 END

 48 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

CSCRLS ASSEMBLE

This module is invoked during termination of CSCSVP. It releases all
storage allocated and terminates all user sessions.

 TITLE 'CSCRLS - CSC Release allocated storage'
CSCRLS START X'Ø178A8'
 PRINT NOGEN
 CSCHDR Release allocated storage
*
* Release allocated storage... terminate all IUCV sessions
*
 USING UIDSECT,R8 UID (user) Block
 L RØ,TRACESZ *T* Start with Trace Table (testing)
 L R1,TRACEBEG *T*
 LINK RELEASE
 L RØ,CACHESZ Cache size
 L R1,CACHE
 LINK RELEASE
 L R1,PFXPTR Address Prefix Table
 SPACE
 USING PFXSECT,R1
REL1ØØ L R2,PFXFWD Save address of next entry
 LA RØ,PFXSIZE Entry length
 LINK RELEASE
 LTR R1,R2 Do all entries
 BNZ REL1ØØ
 DROP R1
 SPACE
 L R2,MSGPTR Address Message Table
 SPACE
 USING MSGSECT,R1
REL2ØØ LTR R1,R2 Check for end of table
 BZ REL3ØØ
 L R2,MSGFWD Save address of next entry
 LA RØ,MSGSIZE Entry length
 LINK RELEASE
 B REL2ØØ Do all entries
 DROP R1
 SPACE
REL3ØØ L R2,HLDPTR Address messages on Hold
 SPACE
 USING CCHSECT,R1
REL31Ø LTR R1,R2 Check messages on Hold
 BZ REL32Ø
 L R2,CCHFWD Save address of next entry
 LA RØ,CCHSIZE Entry length
 LINK RELEASE
 B REL31Ø Do all entries
 DROP R1
 SPACE

 49© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

REL32Ø L R2,RTEPTR Address Route table
 SPACE
 USING RTESECT,R1
REL33Ø LTR R1,R2 Check Route table entries
 BZ REL34Ø
 L R2,RTEFWD Save address of next entry
 LA RØ,RTESIZE Entry length
 LINK RELEASE
 B REL33Ø Do all entries
 DROP R1
 SPACE
REL34Ø L R2,USRPTR Address User table
 SPACE
 USING USRSECT,R1
REL35Ø LTR R1,R2 Check User table entries
 BZ REL36Ø
 L R2,USRFWD Save address of next entry
 LA RØ,USRSIZE Entry length
 LINK RELEASE
 B REL35Ø Do all entries
 DROP R1
 SPACE
REL36Ø L R2,RNDPTR Address Resource table
 SPACE
 USING RNDSECT,R1
REL37Ø LTR R1,R2 Check Resource table entries
 BZ REL4ØØ
 TM RNDOPT1,RNDOLCL Local Node has no buffers
 BO REL38Ø
 TM RNDOPT1,RNDOTMP Same for temporary entries
 BO REL38Ø
 LA RØ,RNDBUFSZ RND Send/Receive buffer size
 L R1,RNDSBUFF
 LINK RELEASE Release Send buffer
 LR R1,R2 Restore RND pointer
 LA RØ,RNDBUFSZ
 L R1,RNDRBUFF
 LINK RELEASE Release Receive buffer
 LR R1,R2 Restore RND pointer
REL38Ø L R2,RNDFWD Save address of next entry
 LA RØ,RNDSIZE Entry length
 LINK RELEASE
 B REL37Ø Do all entries
 DROP R1
 SPACE
REL4ØØ L R2,TMRPTR Address Event table
 SPACE
 USING TMRSECT,R1
REL41Ø LTR R1,R2 Check Event table entries
 BZ REL5ØØ
 L R2,TMRFWD Save address of next entry

 50 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 LA RØ,TMRSIZE Entry length
 LINK RELEASE
 B REL41Ø Do all entries
 DROP R1
 SPACE
REL5ØØ L R8,UIDPTR Pending sessions
 LTR R8,R8
 BZ REL6ØØ Not found...
REL51Ø LA RØ,UIDSIZE
 LR R1,R8
 L R8,UIDFWD Address following UID block
 LINK RELEASE Release UID block
 LTR R8,R8 Do all blocks
 BNZ REL51Ø
REL6ØØ L R8,SSSPTR Active sessions
 LTR R8,R8
 BZ REL7ØØ
 L RØ,UIDPID Get PATHID (first two bytes)
 GO CSCSEV Sever connection
 C R8,SSSPTR Was UID block released?
 BNE REL6ØØ Yes, next
 GO CSCUSARL No, release the UID block
 B REL6ØØ Sever all sessions
 SPACE
REL7ØØ L R2,RDFPTR Release all read DF buffers
 USING RDFSECT,R2
REL71Ø L R3,RDFFWD Address next entry
 LA RØ,512 Release buffer and RDF Block
 L R1,RDFADDR
 LINK RELEASE DF buffer
 LA RØ,RDFSIZE
 LR R1,R2
 LINK RELEASE RDF block
 LR R2,R3
 C R2,RDFPTR Do all buffers and RDF Blocks
 BNE REL71Ø
REL8ØØ L R2,FSALLDW Double words allocated
 S R2,FSRELDW Double words released
 BZ REL9ØØ Was everything released?
 SLL R2,3 No, convert dwords to bytes
 L R3,FSALL Number of allocations
 S R3,FSREL Subtract releases
 MSG Ø18Ø Display warning message
REL9ØØ BACK
 SPACE 3
 CSCDATA
 CSCDS (UID,RDF,PFX,MSG,RTE,RND,USR,TMR,CCH)
 REGEQU
 END

 51© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

CSCCLS ASSEMBLE

This module is invoked during termination of CSCSVP. It ends IUCV
and I/O interrupt processors.

 TITLE 'CSCCLS - CSC CLose the shop'
CSCCLS START X'Ø17BFØ'
 PRINT NOGEN
 CSCHDR Terminate
*
* Terminate IUCV and Console I/O processing
*
*
 TM CSCFLGØ1,CMSIUCVC Terminate IUCV session with CP
 BZ CLS1ØØ
 NI CSCFLGØ1,X'FF'-CMSIUCVC
 LA R2,CSCNAME
 CMSIUCV SEVER,NAME=(R2),PRMLIST=(R9)
 LTR R15,R15
 BZ CLS1ØØ
 MSG Ø19Ø,RC
 SPACE
CLS1ØØ TM CSCFLGØ1,HNDIUCVS Make CMS happy
 BZ CLS2ØØ
 NI CSCFLGØ1,X'FF'-HNDIUCVS
 LA R2,CSCNAME
 HNDIUCV CLR,NAME=(R2)
 LTR R15,R15
 BZ CLS2ØØ
 MSG Ø191,RC
 SPACE
CLS2ØØ TM CSCFLGØ1,HNDIOS Restore console processing
 BZ CLS9ØØ
 NI CSCFLGØ1,X'FF'-HNDIOS
 HNDIO CLR,DEVNAME=CONS
 LTR R15,R15
 BZ CLS9ØØ
 MSG Ø192,RC
CLS9ØØ BACK
 SPACE 3
 CSCDATA
 REGEQU
 END

Editor’s note: this article will be continued next month.

Fernando Duarte
Analyst (Canada) © F Duarte 1999

IBM has announced VM and VSE versions
of its DB2 Forms Version 1.0, for building
and distributing application front ends to
DB2 workstation databases. Applications
can be created by developers, governed by
administrators, and run by end users on
Windows 95, 98, and NT 3.51 or later.

It’s compliant with the Open Group’s
Distributed Relational Database
Architecture (DRDA). Global connectivity
is possible between DB2 Forms applications
and multiple DB2 database platforms via
publicly-accessible Internet connections,
dedicated dial-up lines, TCP/IP intranets, or
closed SNA environments.

For further information contact your local
IBM representative.

* * *

VM users can benefit from SDI’s Cache
Magic, a software implementation of the
DASD cacheing concept, available to all
software running under VM, regardless of
the version or release level.

Cache Magic automatically creates in-
memory cache storage for frequently used
DASD files. Because the data is in processor
storage, access is instantaneous. I/O activity
can be eliminated completely, even between
CPU and DASD control unit. As with a cache
DASD controller, Cache Magic maintains

the most active data in a buffer, avoiding the
need to read it from the disk. Requests to
write data are reflected immediately to the
disk, maintaining data integrity. Because
DASD I/O is at CPU speed, it approaches
that of solid-state devices, but without the
risk of data loss if a power failure occurs or
the need to transfer data files from other
devices.

Cache Magic is totally transparent, and data
is presented to applications exactly as it was
previously. Once installed, the full benefits
of the product can be obtained without any
changes to applications, movement of disk
files, or installation of new VM releases.

Manual cacheing of individual cache areas is
also permitted, providing users with
maximum control of their data. Various
configuration options are provided to allow
fine tuning. Individual applications or files
may be cached as desired.

For further information contact:
SDI, Account 62500, PO Box 210360,
Jamaica, NY 11431, USA.
Tel: (650) 572 1200.
SDI UK, PO Box 2360, London, W8 7ZS,
UK.
Tel: (0181) 759 8786.
URL: http://www.sdisw.com.

* * *

VM news

x xephon

	Monitoring executing programs
	VM/ESA data-in-memory techniques
	VM:Secure enhancement rules – part 4
	A full screen console interface – part 12
	VM news

