
December 1999

160

© Xephon plc 1999

3 Several ways to print files
12 An extended TIME function
19 A Script-to-HTML translator
28 Working with long REXX strings
39 EXCEL in REXX
46 A full screen console interface –

part 17
53 VM news

 2

VM Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38030
From USA: 01144 1635 38030
E-mail: trevore@xephon.com

North American office
Xephon/QNA
1301 West Highway 407, Suite 201-405
Lewisville, TX 75077-2150
USA
Telephone: 940 455 7050

Editorial panel
Articles published in VM Update are
reviewed by our panel of experts. Members
of the panel include Reinhard Meyer
(Germany), Philippe Taymans (Belgium),
Romney White (USA), Martin Wicks (UK),
and Jim Vincent (USA).

Subscriptions and back-issues
A year’s subscription to VM Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 1990 issue, are available separately
to subscribers for £16.00 ($23.00) each
including postage.

© Xephon plc 1999. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.
 Printed in England.

Editor
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, EXECs, and other contents of this
journal before making any use of it.

VM Update on-line
Code from VM Update can be downloaded
from our Web site at http://www.xephon.
com/vmupdate.html; you will need the user-
id shown on your address label.

Contributions
Articles published in VM Update are paid for
at the rate of £170 ($250) per 1000 words for
original material. To find out more about
contributing an article, without any
obligation, please contact us at any of the
addresses above and we will send you a copy
of our Notes for Contributors.

 3© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Several ways to print files

The utilities described here print files from VM in several different
ways. With these REXX procedures you can print CMS files and VM
spool files to RSCS connected printers, SNA printers, via the VSE
POWER list queue, or to TCP/IP printers.

PRSNA EXEC

PRSNA prints a CMS file or a VM spool RDR or PRT entry to a printer
via RSCS. The printer can be any RSCS printer; it does not have to be
an SNA printer. The syntax for the call is:

PRSNA printer fn ft <fm>
PRSNA printer PRT spoolnum
PRSNA printer RDR spoolnum

where:

• ‘printer’ is the printer name (eg P010109 or PRT4234).

• ‘fn’ is the filename.

• ‘ft’ is the filetype.

• ‘fm’ is the filemode (default A).

• ‘spoolnum’ is the spool-id.

Hardcoded values

The RSCS service machine is ‘RSCS’ – you should change this
accordingly. The printer names must be defined in RSCS as a directly-
connected printer or a VTAM-connected SNA printer (LU).

/**/
/* Print a file or spool entry to an RSCS printer */
/**/
/* Call: PRSNA printer fn ft <fm> */
/* PRSNA printer PRT spoolnum */
/* PRSNA printer RDR spoolnum */
/* printer = printer name (eg PØ1Ø1Ø9 or PRT4234) */
/* fn = filename */
/* ft = filetype */
/* fm = filemode (default A) */

 4 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

/* spoolnum = spool-id */
/**/
trace off
parse upper arg printer fn ft fm .
if printer = '?' then signal errparm
address xedit 'EXTRACT /FN /FT /FM /ALT'
if rc = Ø & ¬(FTYPE.1 = 'FILELIST' & right(FMODE.1,1) = Ø) then do
 if fn = '' then fn = FNAME.1
 if ft = '' then ft = FTYPE.1
 if fm = '' then fm = FMODE.1
 if alt.1 > Ø then address xedit 'SAVE'
 end
else do
 if printer = '' then signal errparm
 if fm = '' then fm = 'A'
end
'CP SET IMSG OFF'
/**/
/* PRT or RDR spool file: tag file, transfer to RSCS */
/**/
if fn = 'RDR' | fn = 'PRT' then do
 'CP TAG FILE' ft printer
 'CP TRANSFER' fn ft 'TO RSCS RDR'
 signal ende
end
/**/
/* CMD file: tag spool device and PRINT to RSCS RDR */
/**/
'CP SPOOL PRT TO RSCS'
'CP TAG DEV PRT' printer
'PRINT' fn ft fm
'CP TAG DEV PRT'
'CP SPOOL PRT FOR *'
'CP SET IMSG ON'
ende:
'CP SET IMSG ON'
exit
/**/
/* Help */
/**/
errparm:
'VMFCLEAR'
address cms 'type prsna exec * 1 12'

PRVSE EXEC

PRVSE prints a CMS file to the POWER LST queue. The syntax for
the call is:

PRVSE <vse> fn ft <fm> <(CL class> <CO copies>

 5© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

where:

• ‘vse’ is the VSE machine to which to submit the print job (default
comes from global variable $VSEDEF).

• ‘fn’ is the filename. If fn=SEL, then all files will be printed that
were previously selected by EXEC SEL1/SEL; ft is then ignored.

• ‘ft’ is the filetype.

• ‘fm’ is the filemode (default A).

• ‘class’ is the class in the LST queue (default D).

• ‘copies’ is the number of copies (default 1).

• ‘fn’, ‘ft’, ‘fm’ can also be generic (eg TEST*).

The output is shifted one column to the right, because the file is
submitted as data cards to the VSE job. This is done because the file
could contain VSE and/or POWER JECL cards that would be
(mis)interpreted by VSE or POWER.

A file PRVSE JOB is needed, containing a skeleton for the submitted
print job. The printing in VSE is done by program DTSRELST, an
ICCF utility program.

The output of DTSRELST is separated into the job control output and
the actual printed file by a utility, CAPRUTL0, which is included in
Computer Associates’ RAPS product – this can also print LST queue
entries to a CICS printer. If you don’t have CAPRUTL0, you will have
to separate the printed file and the job control pages manually.

The prerequisite procedures EXXX and INCLUDE XEDIT were
published in Saving all relevant VM/VSE data – part 2,VSE Update,
Issue 26, June 1997. SEL and SEL1, which are not mentioned here,
allow you to preselect files; they are then all printed with one call to
PRVSE.

/**/
/* Print CMS file via VSE to POWER LST queue */
/**/
/* Call: PRVSE <vse> fn ft <fm> <(CL class> <CO copies> */
/* vse = VSE machine to which to submit print job */
/* (default comes from global var $VSEDEF) */
/* */
/* fn = filename */

 6 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

/* if fn=SEL, then all files will be printed, */
/* that were previously selected by */
/* EXEC SEL1/SEL; ft is then ignored */
/* ft = filetype */
/* fm = filemode (default A) */
/* class = class in the LST queue (default D) */
/* copies= number of copies (default 1) */
/* fn, ft, fm can also be generic (eg TEST*) */
/**/
/* PS: The output if shifted one column to the right */
/**/
trace off
'GLOBALV SELECT $$GLOB$$ GET $vse1 $vse2 $vse3 $vsedef',
 '$sysid1 $sysid2 $sysid3 '
parse upper arg vse fn ft fm . '(' opts
if vse = '?' then signal errparm
if vse = substr($vse1,4,3) then vse = $vse1
if vse = substr($vse2,4,3) then vse = $vse2
if vse = substr($vse3,4,3) then vse = $vse3
address xedit 'EXTRACT /FN /FT /FM /ALT'
if rc = Ø & ¬(FTYPE.1 = 'FILELIST' & right(FMODE.1,1) = Ø) then do
 if vse = '' then vse = $vsedef
 if vse ¬= $vse1 & vse ¬= $vse2 & vse ¬= $vse3 then do
 vse = $vsedef
 parse upper arg fn ft fm . '(' opts
 end
 if fn = '' then fn = FNAME.1
 if ft = '' & fn ¬= 'SEL' then ft = FTYPE.1
 if fm = '' & fn ¬= 'SEL' then fm = FMODE.1
 if alt.1 > Ø then address xedit 'SAVE'
 end
else do
 if vse = '' then signal errparm
 if vse ¬= $vse1 & vse ¬= $vse2 & vse ¬= $vse3 then do
 vse = $vsedef
 parse upper arg fn ft fm . '(' opts
 end
end
if fn = 'SEL' & ft = '' then do
 fn = 'SEL$'
 ft = 'SEL$'
 fm = 'A'
end
if vse = '' | left(vse,2) = '(C' | fn = '' | left(fn,2) = '(C' | ,
 ft = '' | left(ft,2) = '(C' ,
 then signal errparm
if fm = '' | left(fm,2) = '(C' then fm = 'A'
parse upper arg . '(' opts
parse upper var opts 'CL' class .
if class = '' then class = 'D'

 7© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

parse upper var opts 'CO' copies .
if copies = '' then copies = '1'

if vse = $vse1 then sysid = $sysid1
 else if vse = $vse2 then sysid = $sysid2
 else sysid = $sysid3

/* A file PRVSE JOB must exist that contains the VSE job skeleton */

'EXECIO 1 CP (STR Q SET'
pull . msg .
'EXECIO Ø CP (STR SET MSG OFF'
'VSECMD' vse 'L LST,CFNO=PRVS,CCLASS=X'
'EXEC EXXX' vse fn ft fm 'PRVSE CLASS' class '$SHIFT$ DUMMY' ,
 'JOBNAME' fn 'COPIES' copies 'SYSID' sysid '(5'
/* $SHIFT$ tells EXXX that parameter '(SHIFT' is appended to INCLUDE */
/* Therefore INCLUDE XEDIT shifts the contents one column to the right*/

'EXECIO Ø CP (STR SET MSG' msg
exit
errparm:
'VMFCLEAR'
address cms 'type prvse exec * 1 19'

PRVSE JOB

* $$ LST CLASS=X,PRI=7,FNO=PRVS,DISP=L,SYSID=*SYSID*
// JOB PRVSE
// OPTION NOLOG
// UPSI 1Ø
// EXEC DTSRELST
/INCLUDE XXXXXXXX XXXXXXXX X
/*
* $$ LST CLASS=X,PRI=3,FNO=PRVS,DISP=L
// ASSGN SYSØØ1,DISK,VOL=DOSRES,SHR
// ASSGN SYSØØ2,DISK,VOL=SYSWK1,SHR
// EXEC CAPRUTLØ,SIZE=8ØK
INPUT *JOBNAME*,CPRI=7,CFNO=PRVS,ENDISP='PRI=3',FCB=$$BFCB22
REPORT *JOBNAME*,SELECT=(1,ALL,EQ,'// JOB PRVSE '), -
 LST='CLASS=X,DISP=L,FNO=PRVS,SYSID=*SYSID*'
REPORT *JOBNAME*,SELECT=NOMATCH, -
 LST='CLASS=*CLASS*,DISP=L,COPY=*COPIES*,SYSID=*SYSID*'
/*
/&

PRTCP EXEC

Let us assume you have a VM system that has TCP/IP installed, then

 8 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

PRTCP allows you to print a CMS file to a printer anywhere on the
TCP/IP network.

The syntax for the call is:

PRTCP printer fn ft <fm>

where:

• ‘printer’ is the printer name (from TCPIP LPD CONFIG).
Available TCP/IP printers are shown.

• ‘fn’ is the filename.

• ‘ft’ is the filetype.

• ‘fm’ is the filemode (default A).

Prerequisite is a TCP/IP service machine in VM with LPD/LPR
installed. You have to specify the destination printers in the LPD
CONFIG file of this service.

You need a CMSBATCH machine in the VM system that contains
TCP/IP.

Hardcoded values

The following are hardcoded values:

• ‘CMSBATCH’ is the CMS batch machine.

• ‘RSCS’ is the name of the RSCS machine.

• ‘SYS1’ is the name of the VM system that has TCP/IP installed.

• ‘TCPMAINT’ is the name of the TCP/IP maintenance machine.

• ‘592’ is the virtual address of the TCP/IP mini-disk with LPD/
LPR.

• ‘VMTCPIP’ is the TCP/IP host name of the VM TCP/IP system
(it must be defined in the HOSTS file and point to a TCP/IP
address, unless DNS is used).

/**/
/* Print file on a printer on the TCP/IP network */
/* */

 9© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

/**/
/* Call: PRTCP printer fn ft <fm> */
/* printer = printer name (from TCPIP LPD CONFIG) */
/* X = available TCP/IP printers are shown */
/* fn = filename */
/* ft = filetype */
/* fm = filemode (default A) */
/**/
trace off
'GLOBALV SELECT $$GLOB$$ GET $vse1 $vse2 $vse3 $vsedef',
 '$sysid1 $sysid2 $sysid3 '
parse upper arg printer fn ft fm .
if printer = '?' | printer = '' then signal help
call showprt

if fm = '' then fm = 'A'
fn = strip(fn)

address command 'ESTATE' fn ft fm
if rc ¬= Ø then do
 say 'file to print ('fn ft fm') does not exist; RC='rc
 exit
end

'LISTFILE' fn ft fm '(DATE STACK'
pull . . . recfm lrecl .
/**/
/* Copy print file to A disk (unpack if necessary) */
/**/
address cms set cmstype ht
'COPY' fn ft fm 'PRT JOB A (UNPACK REPLACE OLDD'
if rc = 32 /* file is not packed */
 then 'COPY' fn ft fm 'PRT JOB A (REPLACE OLDD'
/**/
/* Send job to CMSBATCH of the machine that has TCP/IP (via RSCS) */
/* The job MOVEs the file to print to a temporary file */
/* on the A disk of the CMSBATCH machine and then prints this temp */
/* file by LPR. */
/**/

'SPOOL PUN RSCS CONT'
'TAG PUN SYS1 CMSBATCH'
queue '/JOB CMSBATCH PRTCP'
queue 'CP LINK TCPMAINT 592 592 RR ALL'
queue 'ACC 592 Z'
queue 'FILEDEF INMOVE TERM (RECFM' recfm 'LRECL' lrecl 'BLOCK' lrecl
queue 'FILEDEF OUTMOVE DISK' fn ft 'A (RECFM' recfm 'LRECL' lrecl,
 'BLOCK' lrecl
queue 'MOVEFILE'
'EXECIO' queued() 'PUNCH'

 10 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

'PUNCH PRT JOB A (NOH'
queue '/*'
queue 'LPR' fn ft' A (HOST VMTCPIP PRINTER' printer
queue '/*'
'EXECIO' queued() 'PUNCH'
'CP SET IMSG OFF'
'SPOOL PUN NOCONT CLOSE'
'CP TAG DEV PUN'
'SPOOL PUN FOR *'
'CP SET IMSG ON'
exit
/**/
/* Show available TCP/IP printers */
/**/
showprt:
'SET CMSTYPE RT'
nrmax = 5

pr.1 = 'KYOES9'
pr.2 = 'KYOXP85'
pr.3 = 'EPSXP95'
pr.4 = 'TI'
pr.5 = 'PRT4234'

if printer ¬= 'X' then do
 do i = 1 to nrmax
 if printer = pr.i then return
 end
 say 'Please enter a valid printer name'
 exit
end

do until nr >= 1 & nr <= nrmax
 say 'The following TCP/IP printers are available'
 say ' '
 say ' 1 Kyocera F-8ØØ at ES/9ØØØ'
 say ' 2 Kyocera F-33ØØ at PC-Server Dept. 1'
 say ' 3 Epson at PC-Server Dept. 2'
 say ' 4 TI at RS-6ØØØ Dept. 3'
 say ' 5 IBM 4234 at ES/9ØØØ'
 say ' '
 say 'Please enter a number'
 pull nr
end

printer = pr.nr

'SET CMSTYPE HT'
return
/**/

 11© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

/* Help */
/**/
help:
'VMFCLEAR'
address cms 'type prtcp exec * 1 11'

PR EXEC

When you want to see a menu that shows you all available printing
methods, you can call PR EXEC. Please select one of the following:

• PRSNA – print file or spool entry to an SNA printer.

• PRINT – print file to VM Spool PRT queue.

• PRVSE – print file via VSE to the POWER LST queue.

• PRTCP – print file to TCP/IP printer.

When you select a number from this menu, you will get the help
function of the associated procedure.

/**/
/* Printing Menu */
/**/
/* */
/* Please select one of the following: */
/* */
/* 1 PRSNA Print file or spool entry to a SNA printer */
/* 2 PRINT Print file to VM Spool PRT queue */
/* 3 PRVSE Print file via VSE to the POWER LST queue */
/* 4 PRTCP Print file to TCP/IP printer */
/* */
/**/
trace off
'VMFCLEAR'
address cms 'type pr exec * 1 12'
pull nr
select
 when nr = '1' then 'EXEC PRSNA ?'
 when nr = '2' then 'HELP PRINT (ALL'
 when nr = '3' then 'EXEC PRVSE ?'
 when nr = '4' then 'EXEC PRTCP ?'
 otherwise nop
end
exit

Dr Reinhard Meyer (Germany) © Xephon 1999

 12 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

An extended TIME function

Some time ago I wrote a REXX function for date manipulation,
published in VM Update, Issue 143, July 1998. After that, I was asked
to create the obvious follow-up, a similar function for time
manipulation.

The result is TIMEFUNC. Like its predecessor, this EXEC should run
with any REXX interpreter. It can be used as a function or as a
command. As a function, the result is returned, and as a command it
is ‘said’. It has a quick on-line help, accessible by passing ‘?’ or
‘HELP’ as argument.

TIMEFUNC has two parameters, both optional, separated by a
comma. The first parameter is some kind of time input, and the second
is a one-letter code that designates the desired output format. These
codes and their output are shown in Figure 1. Note that B and D are
variants of the civil format, one without minutes and the other with
seconds added. The first parameter, the time input, can be a single
time, specified in any of the formats shown, or a pair of ‘times’,
separated by a ‘+’ or ‘-’ signal.

Code Output Example

N (Normal) hh:mm:ss 17:35:01

C (Civil) hh:mmxx 11:12pm

B hhxx 11pm

D hh:mm:ssxx 11:12:31pm

H Any number of hours 74

M Any number of minutes 6141

S Any number of seconds 369

Figure 1: Codes and output

 13© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

If a single time is specified, it will be converted to the requested output
format. If two times are given, they will be added or subtracted and the
result formatted as requested. The two times can have different
formats. If the input time is not specified, the result of the standard
REXX time() will be used as input (that is, the current time).

The detection of the input format is automatic, except for formats H,
M, and S – because a single number is not self-evident. In these cases,
add a letter (h, m, or s) to the number to indicate what it represents. In
some cases, the result time falls outside the current day. When this
happens, the output appears with a separate number (positive or
negative) representing the shifted number of days.

A few examples should help to understand how TIMEFUNC works
(see Figure 2). The quotes surrounding the arguments are not necessary,
in most cases.

TIMEFUNC

/* REXX *===*/
/* */
/* TIMEFUNC - An extended REXX time utility. Works as command or */
/* as function. The result is "said" or returned. */
/* Argument1: time_in default: current time */
/* or time1-time2 difference between two times */
/* Argument2: output format (optional: default is default_fmt_out) */
/* */
/*==*/

default_fmt_out = "N" /* default output fmt */
signal on error /* avoid crash with */
signal on syntax /* invalid input */
arg aaa
aaa = translate(aaa,"","'") /* get rid of quotes */
aaa = translate(aaa,"",'"') /* and separate args */
parse var aaa timein","fmt_out /* by the comma */
timein = space(timein,Ø) /* if no timein, */
if timein ="" then timein = time() /* get current time() */
if timein="?"|timein="HELP" then signal helpe
fmt_out = space(fmt_out,Ø)
if fmt_out ="" then fmt_out=default_fmt_out
parse source . calltype . /* find out how called*/
parse var timein time1"+"time2_more /* separate times by */
parse var time1 time1"-"time2_less /* + or - sign */
if time1 ="" then time1 = time() /* get current time() */
time2 = ""
operand = ""

 14 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

if time2_more <>"" then do
 operand = "+"
 time2 = time2_more
end
if time2_less <>"" then do

Input Result Comments

timefunc 09:28:19 Without arguments,

timefunc ‘,c’ 09:28am Current time in civil format

timefunc ‘,m’ 568 Current time in minutes

timefunc ‘,s’ 34099 Current time in seconds

timefunc ‘14:15:32,d’ 2:15:32pm Convert input hour to D format

timefunc ‘00:59:12,c’ 12:59am Convert input hour to C format

timefunc 545h 17:00:00 22 545 hours is 17 hours

timefunc ‘27h,m’ 1620 27 hours are 1620 minutes

timefunc ‘3602s,h’ 1 3602 seconds is one hour

timefunc ‘17:07:05-6:14’ 10:53:05 Difference between two times

timefunc ‘11:15am-16:30’18:45 -1 The resulting hour falls

timefunc ‘13:22+96h,c’ 1:22pm 4 The resulting hour is 4 days ahead

timefunc ‘13:22+96h,m’ 6562 Same thing, but in minutes

timefunc ‘-78m’ 08:10:19 Current time (omitted)

 same as time()

 and 22 days

 (remainders are truncated)

yesterday (-1)

less 78 minutes

Figure 2: Examples of TIMEFUNC usage

 15© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 operand = "-"
 time2 = time2_less
end
seconds_1 = calculate_seconds(time1) /* calculate seconds */
if seconds_1 < Ø then do /* of time1 */
 erro = seconds_1
 signal error
end
if time2 <>"" then do /* if time2 specified */
 seconds_2 = calculate_seconds(time2) /* calculate seconds */
 if seconds_2 < Ø then do /* of time2 */
 erro = seconds_2
 signal error
 end
 interpret abs_secs "=" seconds_1 operand seconds_2
end
else do /* calculate result */
 abs_secs = seconds_1 /* in seconds */
end
parse var abs_secs absolute_secs"."lixo /* get rid of decimals*/

/*==*/
/* Translate absolute seconds into days, hours, minutes, and seconds*/
/*==*/
days = Ø
final_secs = absolute_secs
if final_secs < Ø then,
 do until final_secs > Ø
 final_secs = final_secs + 864ØØ
 days = days-1
end
if final_secs > 864ØØ then,
 do until final_secs < 864ØØ
 final_secs = final_secs - 864ØØ
 days = days+1
end
if days = Ø then days=""
hours = final_secs % 36ØØ
final_secs = final_secs - 36ØØ*hours
mins = final_secs % 6Ø
secs = final_secs - 6Ø*mins
hours = right(hours,2,"Ø")
mins = right(mins,2,"Ø")
secs = right(secs,2,"Ø")
/*==*/
/* Select output type and format it */
/*==*/

out = Ø
select

 16 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 when fmt_out = "B" then do
 out = set_civil_hour(hours)
 output = space(out,Ø)
 end
 when fmt_out = "C" then do
 out = set_civil_hour(hours)
 output = word(out,1)":"mins||word(out,2)
 end
 when fmt_out = "D" then do
 out = set_civil_hour(hours)
 output = word(out,1)":"mins":"secs||word(out,2)
 end
 when fmt_out = "H" then do
 output = absolute_secs%36ØØ
 days = ""
 end
 when fmt_out = "M" then do
 output = absolute_secs%6Ø
 days = ""
 end
 when fmt_out = "N" then do
 output = hours":"mins":"secs
 end
 when fmt_out = "S" then do
 output = absolute_secs
 days = ""
 end
 otherwise do
 erro = -9Ø
 signal error
 end
end
if out < Ø then do
 erro = out
 signal error
end
if calltype = "COMMAND" then say output days
else return output days
exit

/*==*/
/* Subroutines */
/*==*/
set_civil_hour: procedure
 arg valor .
 valor = strip(valor,"L","Ø")
 select
 when valor<1 then return 12 "am"
 when valor>Ø & valor<12 then return valor "am"
 when valor=12 then return 12 "pm"

 17© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 when valor>12 then return valor-12 "pm"
 otherwise return -98
 end
return follow_the_white_rabbit

/*==*/
/* Procedure to calculate seconds and check input format for errors */
/* Returns a negative value if some inconsistency was found */
/*==*/
calculate_seconds: procedure
arg mytime
civil_format = Ø
if pos("AM",mytime) > Ø then do
 civil_format = 1
 mytime = left(mytime,length(mytime)-2)
end
if pos("PM",mytime) > Ø then do
 civil_format = 2
 mytime = left(mytime,length(mytime)-2)
end
if pos("H",mytime) > Ø then hours = 1
if pos("M",mytime) > Ø then minutes = 1
if pos("S",mytime) > Ø then seconds = 1
parse var mytime hh":"mm":"ss
if (hours=1|minutes=1|seconds=1) then do
 if mm<>""|ss<>"" then return -99
 mytime = left(mytime,length(mytime)-1)
end
if hours = 1 then return mytime*36ØØ
if minutes = 1 then return mytime*6Ø
if seconds = 1 then return mytime
if datatype(hh,"W") then do
 if hh > 23 then return -98
 if hh < Ø then return -98
 if hh > 12 & civil_format <>Ø then return -98
 if hh = Ø & civil_format <>Ø then return -98
 if civil_format = 1 & hh = 12 then hh = Ø
 if civil_format = 2 & hh < 12 then hh = hh + 12
 final_secs = hh*36ØØ
end
if datatype(mm,"W") then do
 if mm > 59 then return -96
 if mm < Ø then return -96
 final_secs = final_secs + mm*6Ø
end
if datatype(ss,"W") then do
 if ss > 59 then return -95
 if ss < Ø then return -95
 final_secs = final_secs + ss
end

 18 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

return final_secs

/*==*/
error:
syntax:
if calltype = "COMMAND" then,
 select
 when erro = -99 then say "Invalid format"
 when erro = -98 then say "Invalid hour"
 when erro = -96 then say "Invalid minutes"
 when erro = -95 then say "Invalid seconds"
 when erro = -9Ø then say "Invalid output format"
 otherwise say "Invalid parameters"
 end
exit -1

/*==*/

helpe:
say "TIMEFUNC 'parm1,parm2'"
say
say "parm1 can be one of the following:"
say " time1"
say " time1+time2"
say " time1-time2"
say
say " where time1 and time2 are specified in any of the following"
say " formats (they need not be the same for both):"
say
say " Format N - hh:mm:ss (example: 15:23:Ø9 "
say " Format B - hhxx (example: 3pm 12am "
say " Format C - hh:mmxx (example: 1:23pm 6:Ø8am "
say " Format D - hh:mm:ssxx (example: 7:3Ø:Ø9pm 9:12:Ø4pm"
say " Format H - hhh (example: 56h 8776h"
say " Format M - mmm (example: 545m 95m "
say " Format S - sss (example: 7441s 443s "
say
say "parm2 is the letter corresponding to the desired output format"
say
say " The output format has the form xxxxx dd where xxxxx is the"
say " time in the requested format and dd a number (positive or "
say " negative) that represents a number of days in case the difference"
say " between two times falls on a different day. If the difference"
say " falls on the same day, dd does not appear."

Luis Paulo Figueiredo Sousa Ribeiro
Systems Engineer
Edinfor (Portugal) © Xephon 1999

 19© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

A Script-to-HTML translator

S2H is a VM application that converts Script-VS files into HTML. Its
most direct use is to take text containing DCF and GML formatting
directives suitable for input to Script-VS and produce from it text for
display with an HTML browser, such as Netscape Communicator or
Microsoft Internet Explorer. In some instances, such a document may
be needed in both output forms; S2H allows document maintenance
to be confined to the Script file.

A second application arises in connection with orphaned Script files,
namely files that have been archived but for which the Script-VS
processor is no longer available to produce a formatted print file. The
remedy is to convert the Script file to HTML and print it using the
browser’s print function.

Thirdly, S2H provides a means for those familiar with Script to
produce Web pages without needing any knowledge of HTML.

The program produces complete HTML documents including <html>,
<head>, <title>, and <body> tags. It can also be invoked as a REXX
filter whose function is to produce line-by-line translation of DCF and
GML tags into HTML tags. All commonly used DCF/GML tags are
recognized and handled, including headings, lists, bold and italic
directives, and cross references (both to headings and to list items).
This is discussed in more detail in the program comments.

S2H EXEC

/* S2H EXEC */
/*Ø
SCRIPT-to-HTML translator. Reads a SCRIPT file as input and produces
an HTML file as output.
Call: S2H sfn [sft [sfm]] [,hfn [hft [hfm]]] Defaults are:
 sft: SCRIPT
 sfm: *
 hfn: sfn
 hft: HTML
 hfm: A

The output file may sometimes require fine-tuning. The auxiliary output
file sfn CMSUT1 A3 which contains any ignored DCF control words should
also be examined. Note that it is "read-once".

 20 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

For DCF control words (.xx) and GML tags (:xx) to be processed properly,
the SCRIPT file needs to conform to certain conventions:

1. If a line beginning with ".cm HTML" is found, all lines preceding
it are ignored. This allows skipping of the DCF control words used for
SCRIPT initialization. If there is no such line, the entire file is
processed.

This line has a second purpose: any text found following ".cm HTML"
will be used for the title of the HTML document. If the line is absent
or contains no title text, the text associated with any :title. tag is
used. Otherwise, the title will be the name of the SCRIPT file,
followed by its creation date.

2. The following DCF control words are recognized and processed as
indicated ("¬" means "not," "|" means "or"):

.br
 .fo off <PRE>

.bl

 .fo ¬off </PRE>

.ce ... <CENTER>...</CENTER> .nf off </PRE>

.ce on <CENTER> .nf ¬off <PRE>

.ce off </CENTER> .hr <HR>

.bf b;...;.pfhn ... <Hn>...</Hn> (n = 1-5)

.bf i;...;.pf <I>...</I> .sk|sp n n+1
's; at most 4

The only font names recognized are "b" for bold; "i" for italic. Font
changes must not be nested — .bf and .pf must strictly alternate. They
need not appear on the same line. (See :hpn below for another method
for emphasized text.)

Blank lines are treated as if .bl or .sp 1.

3. The following GML tags are recognized and processed as indicated:

:dl [compact]. <DL [COMPACT]> :esl.
:dt. <DT> :lq. <BLOCKQUOTE>
:dd. <DD> :elq. </BLOCKQUOTE>
:edl. </DL> :hp1. <I>
:gl [compact]. <DL [COMPACT]> :ehp1. </I>
:gt. <DT> :hp2.
:gd. <DD> :ehp2.
:egl. </DL> :hp3. <I>
:ol [compact]. <OL [COMPACT]> :ehp3. </I>
:eol. :p|pc. <P>
:ul [compact]. <UL [COMPACT]> :xmp. <PRE>
:eul. :exmp. </PRE>
:sl [compact]. <UL [COMPACT]> :lp. <P>

 :hn [id=xxx]. ... []<Hn>...</Hn> (n = 1-5)
 :hdref refid=xxx. ?X-REF?
 :li [id=xxx]. []<P>

 21© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 :liref refid=xxx. ?X-REF?
 :dthdr xxx. <DT>xxx
 :ddhdr xxx. <DD>xxx

4. If an input line begins ".cm#xx...x;yy...y", the string "xx...x" is
output verbatim while the strings ".cm#" and ";yy...y" are discarded.
This permits the input file to contain text xx...x solely for HTML
output and text yy...y solely for SCRIPT processing. Note that either
"xx...x" or ";yy...y" may be absent.

(Note: this program has been tested using VM/ESA CMS Pipelines 3.Ø1Ø9
and CMS Pipelines Runtime Library Distribution 1.Ø11Ø. The latter
provides features not available in the former and the program takes
account of this at run time. Users encountering difficulties with other
versions of PIPEs should inform the author or, better, download a
current version from pucc.princeton.edu in directory anonymou.376 .)
Ø*/

/* Acknowledgements:
Many thanks to John Hartmann, Rob vd Heij, and Melinda Varian for help
and advice on some rough spots.
*/
/*1 Initial boilerplate:
<HTML>
<HEAD>
<META CONTENT="Auto-translated from $SOURCE$ by S2H.">
<TITLE>
$TITLE$
</TITLE>
</HEAD>
<BODY BGCOLOR="#FFDØDØ" TEXT="#ØØØØØØ" LINK="#ØØ8ØØØ"
 VLINK="#ØØØØDØ" ALINK="#FØØØØØ">
1*/
/*2 Concluding boilerplate:
</BODY>
</HTML>
2*/

PARSE SOURCE . . fn ft fm . how . /* This file. */
IF how = "?" THEN SIGNAL rexx /* Called as a filter. */
ARG args
IF args = "" | args = "?" THEN DO /* Display help text. */
 "PIPE <" fn ft fm "| INSIDE '/*Ø' 'Ø*/' | >" fn "HELP A3"
 QUEUE "SUPERSET / FM S1 / PREF OFF / VER 1 79 / SCALE OFF"
 QUEUE "SET CURLINE ON 2"
 QUEUE ":1"
 "XEDIT" fn "HELP A (NOPROF"
 EXIT Ø
END

PARSE VAR args input","output

 22 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

PARSE VAR input in it im
IF it = "" THEN it = "SCRIPT"
IF im = "" THEN im = "*"
input = in it im
PARSE VAR output on ot om
IF on = "" | on = "=" THEN on = in
IF ot = "" THEN ot = "HTML"
IF om = "" THEN om = "A"
output = on ot om
auxiliary = in "CMSUT1 A3" /* Write discarded DCF cw's to this file. */
"PIPE (END | NAME prescan) CMS LISTFILE" input "(NOHEADER DATE",
 "| TAKE 1",
 "| a: FANOUT",
 "| SPEC W1-2 1",
 "| VAR source", /* Full name of input file. */
 "| a:",
 "| SPEC W8 1",
 "| VAR fdateØ", /* Date of creation. */
 "| a:",
 "| SPEC W1-3 1",
 "| GETFILES", /* Preview the file to see whether */
 "| b: CASEI FIND .CM HTML"||, /* input line ".CM HTML" is present. */
 "| TAKE 1", /* Abort the read if found. */
 "| SPEC W3-* 1", /* Save anything else on line for */
 "| VAR htmltitle", /* document title. */
 "| COUNT LINES",
 "| VAR htmlstart", /* True if found. */
 "| b:",
 "| CASEI FIND :title."||,
 "| TAKE 1",
 "| SPEC 8-* 1",
 "| VAR doctitle",
 "| COUNT LINES",
 "| VAR isdoctitle"
IF RC ¬= Ø THEN EXIT RC
SELECT
 WHEN htmlstart THEN DO
 input = input "| FRLAB .cm HTML| DROP 1"
 IF htmltitle = "" & isdoctitle THEN htmltitle = doctitle
 END
 WHEN isdoctitle THEN htmltitle = doctitle
OTHERWISE
 htmltitle = source "("fdateØ")"
END
PARSE VAR fdateØ mm "/" dd "/" yy
mm = WORD("January February March April May June July August September",
 "October November December", mm)
yy = 19ØØ+yy; IF yy < 1964 THEN yy + yy + 1ØØ /* No 2K problems here| */
fdate1 = mm dd+Ø"," yy /* File creation date — long form. */
"PIPE (END | NAME main) <" fn ft fm, /* This file. */
 "| a: INSIDE '/*1' '1*/'", /* Pick up initial boilerplate. */

 23© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 "| CHANGE '$SOURCE$'"source" ("fdateØ")'",/* (For <META> statement, */
 "| CHANGE" '1F'X"$TITLE$"'1F'X||htmltitle'1F'X, /* <TITLE> stmt.) */
 "| b: FANIN Ø 2 1", /* All output comes here. */
 "| >" output,
 "| a:",
 "| INSIDE '/*2' '2*/'", /* Pick up final boilerplate. */
 "| elastic", /* Buffer as necessary to prevent stall. */
 "| b:",
,
 "| <" input, /* Raw input data. */
 "| c: REXX (" fn ft fm ")", /* Translate SCRIPT file */
, /* using filter below starting at "rexx:". */
 "| b:", /* Write to output file. */
 "| c:", /* Rejects from filter come here. */
 "| >" auxiliary /* Ignored DCF control words to this file. */

EXIT RC

/*==*/
/* This filter processes all records from the input file, converting
DCF control words and GML tags to their corresponding HTML tags. Those
conversions that require merely a simple substitution are done using
LOOKUP against one or another table defined in comment lines below.
Those requiring more extensive manipulation are handled by one or
another of the pipe fragments immediately below.

Each of these fragments looks for a particular type of DCF control word
or GML tag. If found, it is processed and the result sent to "out:".
If not, control falls through to the next fragment. All the fragments
and look-ups are concatenated together in the CALLPIPE at the end. The
order in which they appear there is important — eg, one-line centres
must be disposed of before the look-up for .ce takes place.

DCF control words not recognized by this filter are written to the
secondary output at *.output.1:. GML tags not recognized by this filter
are written to the primary output at *.output:. */

REXX:

"CALLPIPE QUERY VERSION | SPEC W5 1 | VAR version"
PARSE VAR version vers "." relmod
recent = vers = 1 & relmod > Ø1Ø9
 /* If true, recent release of runtime library distribution. */

center =, /* .ce. */
 "| c1: FIND .CE| SPEC '<CENTER>' 1 W2-* N '</CENTER>' N | out: | c1:"

font =, /* .bf, .pf. */
 "| f1: CASEI FIND .BF B"||,
 "| f2: FANINANY | XLATE UPPER | f3: FANOUT",

 24 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 "| SPEC '</' 1 W2 N '>' N | f4: JUXTAPOSE | out:",
 "| f3: | SPEC '<' 1 W2 N '>' N | out: | f1:",
 "| f5: CASEI FIND .BF I| f2: | f5:",
,
 "| f6: FIND .PF| CHOP Ø | f4:"
IF recent THEN font = font, /* Use secondary output of JUXTAPOSE. */
 "| SPEC 'Warning: unterminated .BF' 1 3 NW | CONSOLE | f6:"
ELSE font = font "| f6:" /* No secondary output available. */

dcfhdr = "" /* .h1h5. */
DO i = 1 TO 5
 dcfhdr = dcfhdr,
 "| h"i": FIND .H"i"| SPEC '<H"i">' 1 W2-* N '</H"i">' N",
 "| out: | h"i":"
END

right =, /* .ri. */
 "| r1: FIND .RI| SPEC '<H4 ALIGN=RIGHT>' 1 W2-* N '</H4>' N",
 "| out: | r1:"
xref =, /* :liref., :hdref. */
 "| xr1: CASEI FIND :liref"||,
 "| xr2: FANINANY | SPLIT | CASEI FIND refid"||,
 "| SPEC '?X-REF?' N | out: | xr1:",
 "| xr3: CASEI FIND :hdref| xr2: | xr3:"
li =,
 "| li1: CASEI FIND :li id="||, /* :li id= */
 "| SPEC '<P>' N | out: | li1:"
hp =, /* :hp1.-:hp3. */
 "| CHANGE ':hp1.'<I>' | CHANGE ':ehp1.'</I>'",
 "| CHANGE ':hp2.'' | CHANGE ':ehp2.''",
 "| CHANGE ':hp3.'<I>' | CHANGE ':ehp3.'</I>'",
 "| CHANGE ':HP1.'<I>' | CHANGE ':EHP1.'</I>'",
 "| CHANGE ':HP2.'' | CHANGE ':EHP2.''",
 "| CHANGE ':HP3.'<I>' | CHANGE ':EHP3.'</I>'"
gmlhdr = ""
DO i = 1 TO 5 /* :hn. */
 gmlhdr = gmlhdr,
 "| h"i"1: CASEI FIND :h"i" id=| SPEC 8-* 1 | CHANGE '.' ' 1",
 "| SPEC '' N '<H"i">' N W2-* N '</H"i">' N",
 "| out: | h"i"1:",
 "| h"i"2: CASEI FIND :h"i"| CHANGE '.' ' 1",
 "| SPEC '<H"i">' N W2-* N '</H"i">' N | out: | h"i"2:"
END

dlhdr =, /* :dthd., :ddhd. */
 "| d1: CASEI FIND :dthd| CHANGE '.' '",
 "| SPEC '<DT>' 1 W2-* N '' N | out: | d1:",
 "| d2: CASEI FIND :ddhd| CHANGE '.' '",
 "| SPEC '<DD>' 1 W2-* N '' N | out: | d2:"

 25© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

/*d3 3-character DCF tag lookup table.
.bl

.br

.fo </PRE>
.nf <PRE>
.hr <HR>
.sk

.sp

d3*/

/*d5 5-character DCF tag lookup table.
.sk Ø

.sk 1

.sk

.sk 2

.sp Ø

.sp 1

.sp

.sp 2

d5*/

/*d6 6-character DCF tag lookup table.
.ce of </CENTER>
.ce on <CENTER>
.fo of <PRE>
.nf of </PRE>
d6*/

dcflookup =,
 "| l1: LOOKUP PAD BLANK ANYCASE 1-6 MASTER",
 "| l2: FANINANY", /* All successful LOOKUPs come here. */
 "| SPEC 8-* 1", /* Replace tag with table entry. */
 "| out:",
 "| <" fn ft fm, /* This file. */
 "| l3: INSIDE '/*d6' 'd6*/'", /* Pick up 6-char DCF lookup table. */
 "| l1:",
, /* Not found in 6-char table. Try 5-char table. */
 "| l4: LOOKUP PAD BLANK ANYCASE 1-5 MASTER",
 "| l2:",
 "| l3:",
 "| l5: INSIDE '/*d5' 'd5*/'",
 "| l4:",
,
 "| l6: LOOKUP PAD BLANK ANYCASE 1-3 MASTER",
 "| l2:",
 "| l5:",
 "| l7: INSIDE '/*d3' 'd3*/'",
 "| l6:"

/*g4 4-character GML tag lookup table.

 26 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

:p <P>
:li <P>
:dd <DD>
:dl <DL>
:dt <DT>
:gd <DD>
:gl <DL>
:gt <DT>
:lp <P>
:lq <BLOCKQUOTE>
:ol
:pc <P>
:ul
:ul
:xmp <PRE>
:edl </DL>
:egl </DL>
:eol
:esl
:eul
:elq </BLOCKQUOTE>
:exm </PRE>
g4*/

/*g5 5-character GML tag lookup table
:dl c <DL COMPACT>
:gl c <DL COMPACT>
:ol c <OL COMPACT>
:ul c <UL COMPACT>
:ul c <UL COMPACT>
g5*/

gmllookup =,
 "| l8: LOOKUP PAD BLANK ANYCASE 1-5 MASTER",
 "| l2:",
 "| l7:",
 "| l9: INSIDE '/*g5' 'g5*/'",
 "| l8:",
 "| l1Ø: LOOKUP PAD BLANK ANYCASE 1-4 MASTER",
 "| l2:",
 "| l9:",
 "| INSIDE '/*g4' 'g4*/'",
 "| l1Ø:"

TRACE OFF
"STREAMSTATE OUTPUT 1" /* Does calling pipeline expect 2ndary output? */
TRACE NORMAL
IF RC = -4 | RC = 12 THEN output1 = "" /* If not, don't generate any. */
ELSE output1 = "| *.output.1:" /* If so, implant secondary connector. */

 27© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

"CALLPIPE (END | NAME s2h) *.input:",
 "| STRIP TRAILING",
 "| a: CASEI FIND .CM#| CHOP STRING /;/ | SPEC 5-* 1",
, /* In ".cm#xxx;yyy" output xxx verbatim; discard yyy. */
 "| out: FANINANY", /* All processed output goes here. */
 "| *.output:",
,
 "| a:", /* Ordinary input (not ".cm#"). */
 "| b: NLOCATE W1", /* Select all blank lines. */
 "| SPEC '

' 1", /* Treat as if .bl. */
 "| out:",
,
 "| b:", /* Nonblank lines come here. */
 "| CHANGE ';.'"'1E'X".' | SPLIT AT 1E", /* Deconcatenate all lines */
 "| c: FIND .| XLATE 2-3 UPPER | SPLIT at ';'", /* containing DCF */
, /* control words and translate DCF control words to upper case. */
 "| d: FANINANY", /* All input data end up here. */
 hp, /* Do highlighted phrases first. */
 "| dcftags: NFIND ."||,
 "| gmltags: NFIND :"||,
 "| out:", /* If neither DCF nor GML, just write it out. */
,
 "| c:", /* Input data not starting with DCF control word. */
 "| d:", /* Merge with deconcatenated input data. */
,
 "| dcftags:", /* Process DCF control words. */
 dcfhdr,
 font,
 right,
 dcflookup,
 center, /* One-line centres must follow look-up. */
 output1, /* Unrecognized DCF tags go here. */
,
 "| gmltags:", /* Process GML tags. */
 gmlhdr,
 dlhdr,
 "| SPLIT '.' | e: NFIND :| out: | e:",
 xref,
 li,
 gmllookup,
 "| out:" /* Unrecognized GML tags go here. */
 EXIT

Editor’s note: readers wishing to discuss the material in this article
can contact the author at bec@nysernet.org.

Ben Chi
NYSERNet (USA) © Xephon 1999

 28 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Working with long REXX strings

Editor’s note: in the first article in this series, the authors examined
how parse can be used to improve performance. In this article they
will discuss how to handle long strings.

When writing REXX applications, there is often the need to build long
strings and/or decompose long strings. Performance may be adversely
affected by the way long strings are manipulated.

BUILDING UP STRINGS

EXECs often build a growing string in a DO loop. In this situation, we
made some surprising discoveries, namely, that the straightforward
solution becomes costly when the string being built is long, and
solutions that might appear ‘silly’ perform very well.

Using this knowledge, we can reduce the response time of an OS/2
REXX application from 2 to 0.3 seconds. The application did use
more than one ‘long’ string, but the lengths were not that special –
between 2,000 and 13,000 bytes.

Firstly, let’s show there really is a problem with the following
straightforward coding:

files=''
do n
 files=files fn ft fm
end

Our test was as follows: the DO loop was executed three times,
resulting in a string of 78 bytes. We then ran the DO loop 6 times, and
the length of the string became 156, and so on. The relative performance
table for VM and OS/2 is shown in Figure 1. The last row in the table
shows the results of our ‘better’ code (we won’t tell you now what the
improvement was, so read on).

It is clear that for both VM and OS/2, the time required to build the
string is not always proportional to the length of the string. REXX on
OS/2 starts to lose with strings of 600 characters and with a length of
2,498 the situation becomes really bad.

 29© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

String length 78 156 312 624 1248 2498 4992 9984 19968

Ideal time 100 200 400 800 1600 3200 6400 12800 25600

VM time required 100 173 314 696 1874 5147 13418 37609 111971

Improved VM code 105 185 401 846 1776 3770 11178 32803 96767

OS/2 time required 100 200 400 1133 6666 24166 171466 845000 3240000

Improved OS/2 code 110 212 415 883 3967 13383 63950 271667 1036667

Figure 1: Relative performance for VM and OS/2

REXX on VM starts very well, but, at 2,400 bytes, degradation is high.
Compared to OS/2, REXX on VM still handles strings of 20,000 bytes
very well.

We tried to solve this problem by looking for other coding techniques.
Some time ago, we learned that performanance on VM can be
improved by ‘pre-allocating the variable’ that will get the growing
string:

files=left('',1ØØØØ) /* Place 1ØØØØ spaces in var "files" */
files='' /* Make "files" empty again */
do ...
 files=files fn ft fm
end

On VM, this improves performance. An EXEC with DO 1000 extends
a string so that it gets a length of 26,000; we get the following results:

Interpreted, without preallocation: 1ØØ%, with preallocation: -3Ø%
Compiled, without preallocation: -59%, with preallocation: -61%

Interpreted, the gains are considerable. You can also see that simply
compiling the EXEC improves performance even more. But, in a
compiled EXEC, preallocating variables does not help. Why is this
faster? On VM, REXX will not free the storage occupied by a variable
when the variable is shortened; on the other hand, when a variable
grows, REXX must get new storage for it and move the content.
Because we knew this, it was already applied in the code that we used

 30 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

to produce the numbers in the table in Figure 1. On OS/2 this technique
does not help.

Let’s look at five alternatives that can be used to add elements to a
string:

do ... /* Straight forward */
 files=files fn ft fm
end
do ... /* use an intermediate variable */
 tt=fn ft fm
 files=files tt
end
 /* and, a very bad one: */
do ... /* use concatenation */
 files=files fn||' '||ft||' '||fm
end
do ... /* use a "nop" function */
 files=files space(fn ft fm)
end
do ... /* use parenthesis */
 files=files (fn ft fm)
end

Probably only the first and second alternatives are used very often.
Until a while ago, I would have said that the first one is the best, and
all others are silly, creating extra overhead. However, this is only true
when the string to build remains short.

Indeed, some of the alternatives above are silly, and tests reveal that
using them degrades performance even more. But, when looking for
miracles, all possible alternatives have to be tried. In the test, we
started with an empty string and made it longer, with the code
variations shown above, until the string reached a certain length. On
VM we measured one more length than on the PC platforms (on VM
a string of 780 characters does not suffer from the ‘long string
problem’; at 2KB, the problem starts to appear).

How the five alternatives shown above perform with different string
lengths is shown in Figure 2. We can draw the following conclusions
from the results:

• The needless concatenation creates much overhead, on VM as
well as on PCs, with short and long strings.

• Using an interim variable is almost always ‘cheap’ on the PC
platform.

 31© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Environment VM VM VM VM

String length 78 780 2,028 26,000

Simply append 100% 100% 100% 100%

With an interim variable+33% +27% +11% -14%

With concatenation +51% +61% +56% +25%

With SPACE() +102% +93% +62% -2%

With parenthesis +4% +9% -6% -19%

Figure 2a: Performance with different length strings

Environment OS/2 OS/2 OS/2 W95 W95 W95

String length 78 780 26,000 78 780 26,000

Simply append 100% 100% 100% 100% 100% 100%

With interim variable+16% -53% -59% -1% -44% -66%

With concatenation +32% +60% +64% +109% +168% +167%

With SPACE() +132% -13% -66% +92% -11% -65%

With parenthesis +0% -60% -68% +0% -45% -66%

Figure 2b: Performance with different length strings

• With SPACE, the overhead for short strings is very high. For long
strings though it helps, on PCs a lot.

• Our ‘wonderful’ solution is using parenthesis – little or no
overhead for short strings, a great help for long strings.

• When comparing the straightforward solution with the best, and

 32 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

worst one, on OS/2 the best one performs three times faster for
long strings.

So, how did we come to our ‘best’ solution?

The ‘long strings’ overhead can be explained as follows. When you
append three items to a string, REXX gets storage, appends the first
item, then it finds another item to append, gets more storage, etc.

For short strings, this is no problem, but when the string becomes long,
the overhead is high. So we searched for ways to have REXX treat the
stuff to append as one item. An interim variable is the obvious path.
This helps, but we kept searching because an extra variable surely
adds some overhead. So we tested with the concatenation. I thought
of using SPACE, and, during tests with long strings, SPACE helped
a lot (but not with short strings). Explaining the SPACE solution to a
colleague, I suddenly had the idea of using simple parenthesis – and,
yes, that’s the best for long strings. With the parenthesis, REXX first
joins the three items and appends that to the string.

As a conclusion for building strings, whenever you code an EXEC
with growing strings, use the parenthesis technique.

Having seen how to build long strings, let’s discuss how to ‘walk
through’ the elements of long strings.

HANDLING STRING ELEMENTS

Often, EXECs must ‘walk’ through strings and handle the elements.
Various techniques exist and, once again, there are good and bad
performers. Once more, a good technique for short strings may be bad
for long strings. On VM, I found that ‘eating it’ with parse worked
well, and surely faster than using WORD(string,i). An example of
both styles follows:

do i=1 to words(ftypes)
 ftype=word(ftypes,i)
 ...
end

As mentioned in the first article in this series, WORD() becomes very
costly to get the nth word when ‘n’ is high. With parse, the string held

 33© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

in ‘ftypes’ can only be processed once. If more than one pass is
required, we’d code:

ToEat=ftypes
do while ToEat<>''
 parse var ToEat ftype ToEat
 ...
end

This technique also works when the elements of the strings hold more
than a single word, such as in:

ToEat=files
do while ToEat<>''
 parse var ToEat fname ftype fmode ToEat
 ...
end

With our OS/2 application, we found that the ‘eating’ technique no
longer performed well when the string became long. As with building
strings, on VM this effect exists as well, but the strings can be much
longer before performance degrades.

The good news is that, with an appropriate technique, performance
can be dramatically improved. In the test case we made to perform our
measurements, the elements placed in the string contained three
words – filename, filetype, and filemode – and we tested with strings
of various lengths – 63 characters (3 elements), 630 characters, 6,300,
and 63,000 characters (3,000 elements).

The code to perform our tests was as follows:

/* Test performance of "walking" through a string */
/* Format: EATIT nbElements nbIterations */
/* where: nbElements = number of elements to place in the string */
/* nbIterations= number times we walk through the string */
parse arg n m . ; if n='' then n=1ØØØ ; if m='' then m=1Ø
parse source OpSys .
b='PROFILE EXEC A2' /* An element to place in the string */
files='' /* Build the string we'll "walk" though */
do n
 files=b files
end
say OpSys':' m 'Times through string with lng='length(files)

/**/
call CpuTime 'R'

 34 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

do m /* maybe repeat our test a couple of times */
 ToEat=files
 do while ToEat<>''
 parse var toEat fn ft fm ToEat
 end
end
t2=CpuTime('E')
say format(t2,3,3) 'parse var toEat fn ft fm ToEat'
.... etc for the other techniques

How did this behave? On OS/2 (Pentium 133MHz) ‘walking’ through
a string of 63,000 characters with the ‘eat’ technique cost 4.65
seconds, which we could reduce to 0.09 seconds. On VM (IBM 9672/
R65), ‘eating it’ cost 0.33 CPU seconds, and could be reduced to 0.07
seconds.

Let’s look at the possibilities we found to ‘walk’ through a string. For
each alternative, we directly examined how it performed in relation to
the ‘eat’ solution for a string of 63,000 characters. First, the two
alternatives encountered most often:

/*-1- eat the string ***/
/* VM: =1ØØ% OS/2: =1ØØ% W95: =1ØØ% */
 ToEat=files
 do while ToEat<>''
 parse var toEat fn ft fm ToEat
 end
/*-2- use WORD() ***/
/* VM: +7988% OS/2: +388% W95: +419% */
 do i=1 by 3 to words(files)
 fn=word(files,i);ft=word(files,i+2) ; fm=word(files,i+2)
 end

The ‘eat’ technique works well, except with long strings. The second
solution, based on WORD(), should be thrown away. It behaves very
badly with long strings (on OS/2, 22 seconds for a 63,000 character
string; on VM, 22 CPU seconds were required). This solution is
included to convince you that it should not be used; in none of our tests
was it faster than ‘eating’.

To solve our problem, we started looking for faster techniques.

Below, we show several alternatives. On PCs, most are better for long
strings, but they all require that the elements in the string have a fixed
length. In our test case, an element counts 21 characters and contains
filename, filetype, and filemode. Not all solutions produce exactly the

 35© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

same result: the words extracted may or may not contain trailing
blanks, and, depending on the application, these trailing blanks may
or may not matter. For example:

fytpe='EXEC'
data.ftype='xyz' /* Creates var "DATA.EXEC" */
ft='EXEC '
if data.ft='xyz' then /* References var "DATA.EXEC " */

So, bear this difference in mind while reading our alternatives.

/*-3- parse with columns ***************************************/
/* VM: +48% OS/2: -98% W95: -98% */
 do c=Ø by 21 to length(files)-1
 parse var files +(c) fn +9 ft +9 fm +2
 end
/*-4- but, above "fn" gets 9 chars; take only 8 ****************/
+* VM: +48% OS/2: -97% W95: -98% */
 do c=Ø by 21 to length(files)-1
 parse var files +(c) fn +8 +1 ft +8 +1 fm +2
 end
/*-5- but, now "fn" maybe have trailing spaces: remove them ****/
/* VM: +52% OS/2: -97% W95: -98% */
 do c=Ø by 21 to length(files)-1
 parse var files +(c) fn . +9 ft . +9 fm +2
 end
/*-6- maybe this works fast ? **********************************/
/* VM: +39% OS/2: +4.3% W95: -98% */
 do c=Ø by 21 to length(files)-1
 parse var files +(c) fn ft fm .
 end
/*-7- or is this thing fast ? **********************************/
/* VM: +42% OS/2: -98% W95: -98% */
 do c=Ø by 21 to length(files)-1
 parse var files +(c) fn ft fm . +21
 end
/*-8- use SUBSTR() and STRIP() *********************************/
/* VM: -58% OS/2: -94% W95: -96% */
 do c=1 by 21 to length(files)
 fn=strip(substr(files,c,8),'T')
 ft=strip(substr(files,c+9,8),'T')
 fm=substr(files,c+18,2)
 end
/*-9- take a small piece and parse that ************************/
/* VM: -79% OS/2: -97% W95: -97% */
 do c=1 by 21 to length(files)
 fid=substr(files,c,21); parse var fid fn ft fm .
 end

Some conclusions:

 36 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

• On VM, all except for the last two solutions are worse than
‘eating’.

• On OS/2 with classic REXX, there must be some performance
bug – solution ‘-6-’ is even slower than ‘eating’ the string (with
OO-REXX on Windows 95 or OS/2, solution ‘-6-’ works very
well too).

Surprisingly, the last solution with a temporary variable works well
everywhere.

The drawback for these solutions is that all elements in the string need
to have a fixed length. The following solutions don’t have this
requirement:

/*-1Ø- ***/
/*VM: -42% OS/2: -93% W95: -95% */
 b=space(files) /* Avoid extraneous spaces */
 do c=1 to length(b)
 tt=subword(substr(b,c,5Ø),1,3)
 fn=word(tt,1) ; ft=word(tt,2) ; fm=word(tt,3)
 c=c+length(tt)
 end
/*-11- ***/
/* VM: -61% OS/2: -94% W95: -95% */
 b=space(files) /* Avoid extraneous spaces */
 do c=1 to length(b)
 tt=subword(substr(b,c,5Ø),1,3)
 parse var tt fn ft fm .
 c=c+length(tt)
 end
/*-12***/
/* VM: -64% OS/2: -95% W95: -95% */
 b=space(files) /* Avoid extraneous spaces */
 do c=1 to length(b)
 parse value substr(b,c,5Ø) with fn ft fm .
 c=c+length(fn ft fm)
 end

These solutions also work well. How did we come to them? As we now
know that REXX has problems with long strings, in these solutions we
first extract a small piece and than unravel that further. The above code
is general, the elements can have varying length, but no element must
have more than 50 characters.

Note: we use LENGTH(), and warned you in the previous article

 37© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Figure 3: Performance figures for VM

E
nv

iro
nm

en
t

V
M

V
M

V
M

V
M

S
tr

in
g

le
ng

th
63

63
0

63
00

63
00

0

-1
-E

at
in

g
10

0%
10

0%
10

0%
10

0%

-2
-W

O
R

D
()

+
20

6%
+

72
0%

+
33

38
%

+
79

88
%

-3
-p

ar
se

fil
es

+
(c

)n
+

9t
+

9m
+

2
+

41
%

+
33

%
+

50
%

+
48

%

-4
-p

ar
se

fil
es

+
(c

)n
+

8+
1t

+
8+

1m
+

2
+

51
%

+
43

%
+

50
%

+
48

%

-5
-p

ar
se

fil
es

+
(c

)n
.+

9t
.+

9m
+

2
+

49
%

+
39

%
+

50
%

+
52

%

-6
-p

ar
se

fil
es

+
(c

)n
tm

.
+

33
%

+
24

%
+

38
%

+
39

%

-7
-p

ar
se

fil
es

+
(c

)n
tm

.
+

21
%

+
37

%
+

28
%

+
50

%

-8
-n

=
st

rip
(s

ub
st

r(
fil

es
,c

,8
),

T
);

t=
st

rip
(.

..)
+

22
9%

+
20

2%
+

75
%

-5
8%

-9
-f

id
=

su
bs

tr
(f

ile
s,

c,
21

);
pa

rs
ev

ar
fid

nt
m

+
78

%
+

50
%

-1
3%

-7
9%

-1
0-

sp
ac

e(
);

t=
su

bw
or

d(
su

bs
tr

(b
,c

,5
0)

,1
,3

);
n=

w
or

d(
t,1

);
...

;c
=

c+
l(t

)
+

33
5%

+
30

4%
+

13
8%

-4
2%

-1
1-

sp
ac

e(
);

t=
su

bw
or

d(
su

bs
tr

(b
,c

,5
0)

,1
,3

);
pa

rs
ev

ar
tn

...
;c

=
c+

l(t
)

+
22

2%
+

19
1%

+
75

%
-6

1%

-1
2-

sp
ac

e(
);

pa
rs

es
ub

st
r(

b,
c,

50
)w

ith
nt

m
;c

=
c+

ln
g(

nt
m

)
+

18
0%

+
15

0%
+

38
%

-6
4%

 38 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

against using WORDS() because that requires scanning. But, even on
PCs, the LENGTH() function performs well – as opposed to C-style
strings that are ended with an ‘X00’ character, REXX stores the length
of its strings, so it is available without scanning.

As you can imagine, the length of the string often greatly influences
the performance of the various techniques. Figure 3 shows different
lengths and solutions for VM.

Remember that techniques 3 to 9 can be used only when the elements
of the string have a fixed length. If your own EXEC is constructing this
string, it may be possible to add elements with a fixed length. When
you look back at the fastest way to build long strings you can see that
coding:

files=files left(fn ft fm,21)

can be faster than what you probably code now:

files=files fn ft fm

CONCLUSION

For VM, use the ‘eat’ technique for strings that are not expected to
become longer than about 6,000 characters. For longer strings, it
becomes worthwhile using another technique (number 12) or, with
fixed length elements, number 9.

On the PC platform, with classic REXX, use ‘eat’ for strings up to
about 600 characters. With OO-REXX, even for shorter strings, the
other techniques behave better than ‘eat’.

But don’t forget our ‘Lesson 1’ from the first article in this series. In
our tests, an element is composed of three words. Based on this study,
it should be clear that when elements have, for example, 10 words, the
best technique may be one other than the ‘best’ one listed in the table
above. You should use an EXEC as we did to compare the techniques.

Kris Buelens and Guy De Ceulaer
Advisory Systems Engineers
IBM (Belgium) © IBM (Belgium) 1999

 39© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

EXCEL in REXX

INTRODUCTION

EXCELRXX is a CMS EXEC that combines SQL query partial
results into an EXCEL table and calculates totals. Specification of
width and title is supported for each dynamically generated column.

EXCELRXX can process any number of input files and creates the
resulting table with no limitation on its size. Each file can be either
formatted or not formatted.

EXCELRXX EXEC USAGE

EXCELRXX EXEC does not have set parameters.

Input files and the parameters of the output table are defined during
interactive dialog. Input files must reside on the A mini-disk. They
should be grouped together by filename and filetype.

The group of files contains data for the corresponding column in the
generated table and is identified by its filename. The filename is the
same for all files in a given group.

Inside the group, files differ by filetype, which is an integer number,
starting at 1, with an increment of 1.

For each group of files, an index and a value field are defined. The
index field controls the generation of a row in the resulting table. The
content of the value field is accumulated in a given column, selected
by index row. This means that the value field must always contain a
number, not text.

For formatted files, index and value fields are declared as usual – by
first and last position in the record, or by first position in the record and
length.

For unformatted files (eg print files), fields are processed as words. In
this case, index and value fields are declared by the number of
corresponding words in the record.

 40 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

The following conditions must be taken into consideration before
using EXCELRXX:

• All input files must be sorted in ascending order by the selected
index field.

• As a temporary area, EXCELRXX uses CMS files named
$EXCEL$ <numbr> A. These files are erased during EXCELRXX
execution.

Example of input files, divided into two groups to create two columns
in the generated table, are:

• Group WEEKLY contains 2 files (WEEKLY 1 A and WEEKLY
2 A). ‘NAME’ is selected as the index field and ‘SALARY
WEEKLY’ as the value field:

file WEEKLY 1 A

EMPNO NAME JOB SALARY WEEKLY
—————————————————————————————
1 AA 2 3
1 AA 2 4
2 BB 2 5

file WEEKLY 2 A

EMPNO NAME JOB SALARY WEEKLY
————————————————————————————
2 BB 2 6

• Group BONUS contains 1 file (BONUS 1 A). NAME is selected
as the index field and BONUS as the value field.

file 1 A

DEPT NAME BONUS
————————————————
1 AA 1
1 CC 2

When the following declarations are made, EXCELRXX will generate
the table shown in Figure 1:

• NUMBER of columns in result table – 2.

• INDEX and VALUE fields definition – by word, sequential
number.

 41© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

+———————————————————————————————— +
| NAME | SALARY | BONUS |
|———————————————————————————————— |
| AA | 7 | 1 |
|———————————————————————————————— |
| BB | 11 | |
|———————————————————————————————— |
| CC | | 2 |
|———————————————————————————————— |
| | 18 | 3 |
+———————————————————————————————— +

• NAME and WIDTH for INDEX column – NAME, 10.

• NAME and WIDTH for column 1 – SALARY, 14.

• FILE NAME and NUMBER of files for column 1 – WEEKLY, 2.

• WORD NUMBER of INDEX and VALUE for column 1 – 2, 4.

• NAME and WIDTH for column 2 – BONUS, 8.

• FILE NAME and NUMBER of files for column 2 – BONUS, 1.

• WORD NUMBER of INDEX and VALUE for column 2 – 2, 3.

EXCELRXX EXEC

/**/
/*** *** ***/
/*** EXCELRXX EXCEL in REXX *** ***/
/*** *** ***/
/**/
 SIGNAL ON SYNTAX
 SET CMSTYPE HT
 ERASE $EXCEL$ '*' A
 STATE TABLE GEN A
 RC_SAVE = RC
 SET CMSTYPE RT
 CLRSCRN
 DO 9

Figure 1: Example of table generated by EXCELRXX

 42 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 SAY
 END
 IF RC_SAVE = Ø THEN
 DO
 SAY '— found' TABLE GEN A
 SAY '— Enter 1/Yes/ to erase'
 PULL ANS
 IF ANS ¬= 1 THEN
 EXIT
 ERASE TABLE GEN A
 END
 DO UNTIL DATATYPE(N_COLS, 'W')
 SAY '— Enter NUMBER of columns in result table, Ø-exit'
 PULL N_COLS
 IF N_COLS = Ø THEN
 EXIT
 END
 DO UNTIL VERIFY(FMT, '123') = Ø
 SAY '— INDEX and VALUE fields definition -'
 SAY ' 1 - by word seq number in file records'
 SAY ' 2 - by starting and ending column'
 SAY ' 3 - by starting column and length'
 SAY '— Enter 1/2/3 or Ø-exit'
 PULL FMT
 IF FMT = Ø THEN
 EXIT
 FMT = LEFT(FMT, 1)
 END
 TAB_WIDTH = Ø
 DO N_COL = 1 TO N_COLS
 IF N_COL = 1 THEN
 DO
 DO UNTIL DATATYPE(COL_WIDTH.Ø, 'W')
 SAY '— Enter NAME and WIDTH for INDEX column, Ø-exit'
 PULL COL_NAME.Ø COL_WIDTH.Ø
 IF COL_NAME.Ø = Ø THEN
 EXIT
 END
 TAB_WIDTH = TAB_WIDTH + COL_WIDTH.Ø
 END
 CLRSCRN
 DO 1Ø
 SAY
 END
 SAY ' >>> Column' N_COL 'processing <<<'
 DO UNTIL DATATYPE(COL_WIDTH.N_COL, 'W')
 SAY '— Enter NAME and WIDTH for' N_COL 'column, Ø-exit'
 PULL COL_NAME.N_COL COL_WIDTH.N_COL
 IF COL_NAME.N_COL = Ø THEN
 EXIT

 43© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 END
 TAB_WIDTH = TAB_WIDTH + COL_WIDTH.N_COL + 1
 DO UNTIL DATATYPE(N_FILES, 'W')
 SAY '— Enter FILE NAME and NUMBER of files for' N_COL ,
 'column, Ø-exit'
 PULL FN N_FILES
 IF FN = Ø THEN
 EXIT
 IF DATATYPE(N_FILES, 'W') THEN
 DO I = 1 TO N_FILES
 SET CMSTYPE HT
 STATE FN I A
 RC_SAVE = RC
 SET CMSTYPE RT
 IF RC_SAVE = Ø THEN
 ITERATE
 SAY '— not found ' FN I A
 N_FILES = A
 LEAVE
 END
 END
 DO UNTIL DATATYPE(N_INDEX, 'W') & DATATYPE(N_VALUE, 'W')
 IF FMT = '1' THEN
 SAY '— Enter WORD NUMBER of INDEX and VALUE in record' ,
 'for' N_COL 'col, Ø-exit'
 ELSE
 IF FMT = '2' THEN
 SAY '—Enter starting and ending column of INDEX' ,
 'and VALUE for' N_COL 'col, Ø-exit'
 ELSE
 SAY '—Enter starting column and length of INDEX' ,
 'and VALUE for' N_COL 'col, Ø-exit'
 IF FMT = '1' THEN
 PULL N_INDEX N_VALUE
 ELSE
 DO
 PULL N_INDEX N_VALUE S_INDEX S_VALUE
 IF ¬ (DATATYPE(S_INDEX, 'W') & DATATYPE(S_VALUE, 'W')) THEN
 N_VALUE = A
 END
 IF N_INDEX = Ø THEN
 EXIT
 END
 IF FMT = '2' THEN
 DO
 N_VALUE = N_VALUE - N_INDEX + 1
 S_VALUE = S_VALUE - S_INDEX + 1
 END
 SAY '— Processing of files for' N_COL 'column at' TIME(L)
 DO I = 1 TO N_FILES

 44 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 EXECIO '*' DISKR FN I A '(FINI STE ' BUF.I.
 I.I = 1
 END
 DO FOREVER
 PROC_INDEX = 'FFFFFFFFFFFFFFFFFFFF'X
 DO I = 1 TO N_FILES
 IF I.I <= BUF.I.Ø THEN
 DO
 J = I.I
 IF FMT = '1' THEN
 INDEX.I = WORD(BUF.I.J, N_INDEX)
 ELSE
 INDEX.I = SUBSTR(BUF.I.J, N_INDEX, N_VALUE)
 IF PROC_INDEX > INDEX.I THEN
 PROC_INDEX = INDEX.I
 END
 ELSE
 INDEX.I = 'FFFFFFFFFFFFFFFFFFFF'X
 END
 IF PROC_INDEX = 'FFFFFFFFFFFFFFFFFFFF'X THEN
 LEAVE
 PART_SUM = Ø
 DO I = 1 TO N_FILES
 IF PROC_INDEX = INDEX.I THEN
 DO FOREVER
 J = I.I
 IF FMT = '1' THEN
 VALUE = WORD(BUF.I.J, N_VALUE)
 ELSE
 VALUE = SUBSTR(BUF.I.J, S_INDEX, S_VALUE)
 PART_SUM = PART_SUM + VALUE
 J = J + 1
 I.I = J
 IF J > BUF.I.Ø THEN
 LEAVE
 IF FMT = '1' THEN
 IF PROC_INDEX ¬= WORD(BUF.I.J, N_INDEX) THEN
 LEAVE
 IF FMT ¬= '1' THEN
 IF PROC_INDEX ¬= SUBSTR(BUF.I.J,N_INDEX,N_VALUE) THEN
 LEAVE
 END
 END
 EXECIO 1 DISKW $EXCEL$ N_COL A '(' STR PROC_INDEX PART_SUM
 END
 DROP BUF.
 SAY '— Input files processed at' TIME(L)
 PULL
 END
 CLRSCRN

 45© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 DO 19
 SAY
 END
 SAY '— Begin table generation at' TIME(L)
 EXECIO 1 DISKW TABLE GEN A '(' STR '+' || ,
 COPIES('-', VALUE(TAB_WIDTH)) || '+'
 TITLE = '|' || CENTER(COL_NAME.Ø, COL_WIDTH.Ø) || '|'
 DO N_COL = 1 TO N_COLS
 EXECIO '*' DISKR $EXCEL$ N_COL A '(FINI STE ' BUF.N_COL.
 TITLE = TITLE || CENTER(COL_NAME.N_COL, COL_WIDTH.N_COL) || '|'
 I.N_COL = 1
 SUM.N_COL = Ø
 END
 ERASE $EXCEL$ '*' A
 EXECIO 1 DISKW TABLE GEN A '(VAR TITLE'
 EXECIO 1 DISKW TABLE GEN A '(' STR '|' || ,
 COPIES('-', VALUE(TAB_WIDTH)) || '|'
 DO FOREVER
 PROC_VALUE = 'FFFFFFFFFFFFFFFFFFFF'X
 DO N_COL = 1 TO N_COLS
 IF I.N_COL ¬> BUF.N_COL.Ø THEN
 DO
 I = I.N_COL
 VALUE.N_COL = WORD(BUF.N_COL.I, 1)
 IF PROC_VALUE > VALUE.N_COL THEN
 PROC_VALUE = VALUE.N_COL
 END
 ELSE
 VALUE.N_COL = ''
 END
 IF PROC_VALUE = 'FFFFFFFFFFFFFFFFFFFF'X THEN
 DO
 EXECIO 1 DISKW TABLE GEN A '(' STR '|' || ,
 COPIES('-', VALUE(TAB_WIDTH)) || '|'
 ROW = '|' || COPIES(' ', COL_WIDTH.Ø) || '|'
 DO N_COL = 1 TO N_COLS
 ROW = ROW || RIGHT(SUM.N_COL, COL_WIDTH.N_COL) || '|'
 END
 EXECIO 1 DISKW TABLE GEN A '(' STR ROW
 EXECIO 1 DISKW TABLE GEN A '(' STR '+' || ,
 COPIES('-', VALUE(TAB_WIDTH)) || '+'
 ROW = '|' || RIGHT(PROC_VALUE, COL_WIDTH.Ø) || '|'
 SAY '— Table generation successful at' TIME(L)
 EXIT
 END
 ROW = '|' || RIGHT(PROC_VALUE, COL_WIDTH.Ø) || '|'
 DO N_COL = 1 TO N_COLS
 IF PROC_VALUE = VALUE.N_COL THEN
 DO
 I = I.N_COL

 46 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 VALUE = WORD(BUF.N_COL.I, 2)
 I.N_COL = I.N_COL + 1
 SUM.N_COL = SUM.N_COL + VALUE
 ROW = ROW || RIGHT(VALUE, COL_WIDTH.N_COL) || '|'
 END
 ELSE
 ROW = ROW || RIGHT(' ', COL_WIDTH.N_COL) || '|'
 END
 EXECIO 1 DISKW TABLE GEN A '(' STR ROW
 END
SYNTAX:
 SAY '+++ EXELRXX abend due to data check at' TIME(L)
 SAY '>>> bad number follows at' TIME(L)
 SAY VALUE

Dobrin Goranov
Information Services Co (Bulgaria) © Dobrin Goranov 1999

A full screen console interface – part 17

Editor’s note: the following article is an extensive piece of work which
will be published over several issues of VM Update. It was felt that
readers could benefit from the entire article and from the individual
sections. Any comments or recommendations would be welcomed and
should be addressed either to Xephon or directly to the author at
fernando_duarte@vnet.ibm.com.

BACKWARD HELPCSC

.cm VM Software Services

.cm

.cs Ø on
 []CSC Tool[%
[%
[%
 Use the BACKWARD command to scroll backward the CSC log file.
 EXAMPLE: BACKWARD 3
 Scroll backward 3 screens of data.

.cs Ø off

.cs 1 on
 []CSC Tool[%
[]Purpose[%

 47© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 Use the BACKWARD command to scroll backward the CSC log file.
.cs 1 off
.cs 2 on
[]Format[%
 .-1-.
 >>—.'Backward-.—+—+——————————————————————————><
 '-BWD———' '-n-'

[]Class[%

 3
.cs 2 off
.cs 3 on
[]Operands[%

 n
 number of screens to scroll. The default is one.
.cs 3 off
.cs 4 on
.cs 4 off
.cs 5 on
[]Usage Notes[%

 1. PFØ7 and PF19 perform the command BACKWARD 1.

 2. BWD is a synonym for BACKWARD.

 3. The reference line for the BACKWARD command is the first line on
 screen. This may not be the expected result if you are on the
 current screen and have messages with the HOLD attribute. Using
 the BOTTOM command before solves this problem.

.cs 5 off

.cs 6 on
[]Messages[%
 Ø311E Invalid BACKWARD operand: operand
 Ø312E Unexpected BACKWARD operand: operand
.cs 6 off

BOTTOM HELPCSC

.cm VM Software Services

.cm

.cs Ø on
 []CSC Tool[%
[%
[%
 Use the BOTTOM command to show the last screen of data.
 EXAMPLE: BOTTOM
 Show last screen of data.
.cs Ø off
.cs 1 on

 48 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 []CSC Tool[%
[]Purpose[%

 Use the BOTTOM command to show the last screen of data.
.cs 1 off
.cs 2 on
[]Format[%

 >>—BOTtom—————————————————————————————————><

[]Class[%

 3
.cs 2 off
.cs 3 on
.cs 3 off
.cs 4 on
.cs 4 off
.cs 5 on
[]Usage Notes[%

 1. PFØ5 and PF17 are assigned to the BOTTOM command.

 1. BOTTOM is a Browse command. The screen is not refreshed when new
 messages are received by the service machine.

.cs 5 off

.cs 6 on
[]Messages[%
 Ø312E Unexpected BOTTOM operand: operand
.cs 6 off

BWD HELPCSC

.cm VM Software Services

.cm

.cs Ø on
 []CSC Tool[%
[%
[%
 Use the BWD command to scroll backward the CSC log file.
 EXAMPLE: BWD 3
 Scroll backward 3 screens of data.

.cs Ø off

.cs 1 on
 []CSC Tool[%
[]Purpose[%

 Use the BWD command to scroll backward the CSC log file.
.cs 1 off

 49© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

.cs 2 on

[]Format[%

 .-1-.
 >>—BWD—+—+———————————————————————————————><
 '-n-'

[]Class[%

 3
.cs 2 off
.cs 3 on
[]Operands[%

 n
 number of screens to scroll. The default is one.

.cs 3 off

.cs 4 on

.cs 4 off

.cs 5 on
[]Usage Notes[%

 1. PFØ7 and PF19 perform the command BWD 1.

 2. BWD is a synonym for BACKWARD.

 3. The reference line for the BACKWARD command is the first line on
 screen. This may not be the expected result if you are on the
 current screen and have messages with the HOLD attribute. Using
 the BOTTOM command before solves this problem.

.cs 5 off

.cs 6 on
[]Messages[%
 Ø311E Invalid BWD operand: operand
 Ø312E Unexpected BWD operand: operand
.cs 6 off

CLEAR HELPCSC

.cm VM Software Services

.cm

.cs Ø on
 []CSC Tool[%
[%
[%
 Use the CLEAR command to remove all scrollable lines from the screen.

 50 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 EXAMPLE: CLEAR
 Clear scrollable lines.

.cs Ø off

.cs 1 on
 []CSC Tool[%
[]Purpose[%

 Use the CLEAR command to remove all scrollable lines from the screen.
.cs 1 off
.cs 2 on

[]Format[%
 >>—Clear—————————————————————————————————><

[]Class[%

 2
.cs 2 off
.cs 3 on
.cs 3 off
.cs 4 on
.cs 4 off
.cs 5 on
[]Usage Notes[%

 1. CLEAR is only valid from a Current screen when the CMS switch is
 ON.

.cs 5 off

.cs 6 on
[]Messages[%
 Ø312E Unexpected CLEAR operand: operand
 Ø335E CLEAR is valid only in Refresh mode with CMS scroll ON
 Ø336E CLEAR only works if CMS scroll is active
.cs 6 off

CMS HELPCSC

.cm VM Software Services

.cm

.cs Ø on
 []CSC Tool[%
[%
[%
 Use the CMS command to execute a local CMS command.
 EXAMPLE: CMS QUERY DISK

 Execute CMS command QUERY DISK.

 51© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

.cs Ø off

.cs 1 on

 []CSC Tool[%
[]Purpose[%

 Use the CMS command to execute a local CMS command.
.cs 1 off
.cs 2 on

[]Format[%

 >>—CMS—.————.————————————————————————————><
 '-command-'

[]Class[%

 Ø

.cs 2 off

.cs 3 on
[]Operands[%

 command
 any CMS command. If omitted CMS subset environment is entered.

.cs 3 off

.cs 4 on

.cs 4 off

.cs 5 on
[]Usage Notes[%

 1. This is a local command, executed by the user program (CSCUSR).
 The service machine is not informed.

.cs 5 off

.cs 6 on
[]Messages[%

 Ø284W CMS command ended with non-zero return code
.cs 6 off

Editor’s note: subscribers can download the remaining code for this
article from www.sdsusa.com/vmupdate.html.

Fernando Duarte
Analyst (Canada) © F Duarte 1999

IBM has announced Version 2.2 of its
VisualAge PL/I family for OS/390,
replacing the PL/I for VM host compiler
product.

There’s been an easing of previous
restrictions in PL/I VM, plus enhancements
introduced in the workstation PL/I version,
as well as an automated date windowing
technique via the Millennium Language
Extensions.

A debug tool is included that supports
COBOL for VM and PL/I for VM.

For further information contact your local
IBM representative.

* * *

Tivoli has announced Version 3.7 of its
Storage Manager, S/390 Edition, which
replaces Version 3.1 of ADSM for VM/ESA.

OS/390 servers get better usability,
performance, and LAN-free data movement.

There’s now rapid recovery using portable
back-up sets, instant archiving, full
filesystem and raw logical volume back-ups,
exploitation of back-up-archive client multi-
threading, and dynamic self-tuning of
performance parameters.

Full filesystem or raw logical volume images
can be backed up and are managed as a single
object like any other object on the server. The
function will be implemented on AIX 4.3,
HP-UX 11.0, and Solaris 2.6 back-up-
archive clients. A new option allows the user
to perform an incremental by-image-date
back-up.

Storage Manager supports tape library
sharing in a SAN for SCSI libraries on NT-
based servers with IBM 3570 and STK
PowerVault 130T servers for LAN-free
back-up and recovery.

It uses an adaptive algorithm said to optimize
performance for individual customer
environments while minimizing
administrative intervention.

For further information contact your local
IBM representative.

* * *

IBM has announced plans to migrate VM
users to OS/390 with a free upgrade to the
operating system and middleware software
currently installed on the new Multiprise
3000s.

The OS/390 Workload Transition Offering
for VM and VSE deal lasts for 36 months
from the installation date.

It’s aimed at migrating VM and VSE users to
the e-business capabilities of OS/390,
including electronic transaction processing,
ERP, and business intelligence applications
not available on VM and VSE.

More generally, it’s also designed to make it
easier and cheaper to shift application
workloads from VM and/or VSE to OS/390.
The scheme covers all Multiprise 3000
models and any other processor eligible for
Growth Opportunity Licence Charge
(GOLC).

For further information contact your local
IBM representative.

VM news

x xephon

	 Several ways to print files
	 An extended TIME function
	 A Script-to-HTML translator
	 Working with long REXX strings
	 EXCEL in REXX
	 A full screen console interface – part 17
	 VM news

