Assembler Language Programming
for
IBM System z™ Servers

Version 2.00

John R. Ehrman

IBM Silicon Valley Lab

Second Edition (February 2016)

IBM welcomes your comments. Please address them to

John Ehrman

IBM SiTicon Valley Lab
555 Bailey Avenue

San Jose, CA 95141
ehrman@us. ibm.com

© Copyright IBM Corporation 2015
US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

il Assembler Language Programming for IBM System z™ Servers Version 2.00

Contents

Figures xvi
Tables XXix
Foreword 1
Outline and Overview 1
Programming Environments 2
Levels of Difficulty (*) 2
Exercises and Programming Problems 2
Some Personal Observations 2
Von Neumann Architecture 5
Why Program in Assembler Language (and Why Not)? 5
Assembler Language Misconceptions 8
Chapter I: Getting Started 11
1. Some Basic Items 12
1.1. Notation and Terminology 12

1.2. Instruction Elements 13
1.2.1. Register Names 14

2. Binary and Hexadecimal Numbers 16
2.1. Positional Notation and Binary Numbers 16
2.2. Hexadecimal Numbers 17
2.3. Converting Integers from One Base to Another (*) 19
2.4. Examples of General Conversions (¥) 22
2.5. Number Representations 24
2.6. Logical (Unsigned) Representation 25
2.7. Two's Complement (Signed) Representation (*) 25
2.8. Computing Two's Complements 27
2.9. Sign Extension 30
2.10. Binary Addition 31
2.11. Binary Subtraction 32
2.12. How Additions and Subtractions Are Actually Performed (*) 34
2.13. A Circular View of Binary Arithmetic (*) 36
2.14. Logical (Unsigned) and Arithmetic (Signed) Results (*) 37
2.15. Examples of Representations (¥) 38
Chapter II: System z 41
3. Conceptual Structure of System z 42
3.1. Memory Organization 43
3.2. Central Processing Unit 45
3.3. General Registers 45
3.4. Floating-Point Registers 46
3.5. Program Status Word (PSW) 47
3.6. Other Registers 48
3.7. Input-Output (I/O) 48
3.8. Features, Facilities, and ASSiStS 48
3.9. Microprograms and Millicode (*) 48

4. Instruction Execution 50
4.1. Basic Instruction Cycle 50
4.2. Basic Instruction Types 51
4.3. Instruction Lengths 53
4.4. Some Operation Codes (*) 54
4.5. Interruptions (¥) L. 55
4.6. Exceptions and Program Interruptions (*) 56
4.7. Machine Language and Assembler Language 58
4.8. Processor Evolution 59

5. Memory Addressing 61
5.1. The Addressing Halfword 62

Contents iil

5.2. Examples of Effective Addresses 63
53.Indexing 63
5.4. Examples of Indexing 65
5.5. Addressing Problems (*) 66
5.6. Address Translation and Virtual Memory (¥*) 67
S5.7.8ummary 68
Chapter III: Assembler Language Programs 71
6. Assembler Language 72
6.1. Processing Your Program 72
6.1.1. Assembly 72

6.1.2. Linking 73

6.1.3. Loading and Execution 73

6.2. Preparing Assembler Language Statements 74
6.3. Statement Fields 76
6.3.1. What's in a Name Field? (*) 79

6.4. Writing Programs 79
6.5. A Sample Program 80
6.6. Basic Macro Instructions 82
6.7. Summary e 82

7. Self-Defining Terms and Symbols 85
7.1. Self-Defining Terms 85
7.2. EBCDIC Character Representation 87
7.3. Symbols and Attributes 89
7.4. Program Relocatability 91
7.5. The Location Counter 92
7.6. Assigning Values to Symbols 93
7.7. Symbols and Variables 94

8. Terms, Operators, Expressions, and Operands 96
8.1. Terms and Operators e 96
8.2. EXPressions 97
8.3. Evaluating Assembly-Time Expressions (*) 98
8.4. Examples 100
8.5. Machine Instruction Statement Operand Formats 102
8.6. Details of Expression Evaluation (*) 103

9. Instructions, Mnemonics, and Operands 106
9.1. Basic RR-Type Instructions 106
9.2. Writing RR-Type Instructions 107
9.3. Basic RX-Type Instructions 108
9.4. Writing RX-Type Instructions 108
9.5. Explicit and Implied Addresses 109
9.6. Typical RS- and SI-Type Instructions 111
9.7. Writing RS- and SI-Type Instructions 111
9.8. Typical SS-Type Instructions 113
9.9. Writing SS-Type Instructions 113
9.10. Summary 115

10. Establishing and Maintaining Addressability, 116
10.1. The BASR Instruction 116
10.2. Computing Displacements 117
10.3. Explicit Base and Displacement 119
10.4. The USING Assembler Instruction and Implied Addresses 120
10.5. Location Counter Reference 121
10.6. Destroying Base Registers 122
10.7. Calculating Displacements: the Assembly Process, Pass One 123
10.8. Calculating Displacements: the Assembly Process, Pass Two 125
10.9. Multiple USING Table Entries 127
10.10. The DROP Assembler Instruction 128
10.11. Addressability Errors 129
10.12. Resolutions With Register Zero (*) 130
10.13. Summary 132
10.13.1. How the Assembler Helps 133

iv Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter IV: Defining Constants and Storage Areas 135

11. Defining Constants e 136
11.1. Defining Constants e 137
11.2. DC Instruction Statements and Operands 138

11.2.1. Blanks in Nominal Values 138
11.3. Boundary Alignment 139
11.4. Length Modifiers 140
11.5. Duplication Factors and Multiple Operands 141
11.6. Multiple Nominal Values 142
11.7. Length Attributes 143
11.8. Decimal Exponents (¥) 143

11.8.1. Decimal Exponents 143

11.8.2. Exponent Modifiers 144

12. Basic Constants 146
12.1. F-Type and H-Type Constants 146
12.2. A-Type Address Constants 147
12.3. Y-Type Address Constants 149
12.4. Constants of Types C, X, and B 150
12.5. Padding and Truncation 152
12.6. Literals 154
12.7. The LTORG Assembler Instruction 156
12.8. Type Extensions 157

13. Data Storage Definition 159
13.1. Storage Areas: The DS Assembler Instruction 159
13.2. Zero Duplication Factor 160
13.3. The EQU Assembler Instruction 162
13.4. EQU Instruction Extended Syntax (¥) 166
13.5. The ORG Assembler Instruction 167
13.6. Parameterization 169
13.7. Constants Depending on the Location Counter 171
13.8. Assembly Time and Execution Time, Revisited (*) 173
13.9. Summary Observations 174

Chapter V: Basic Instructions 177

14. General Register Data Transmission 178
14.1. Load and Store Instructions 179
14.2. Multiple Loads and Stores 180
14.3. Halfword Data 182
14.4. Insert and Store Character 184
14.5. ICM and STCM Instructions 185
14.6. RR-Type Data Transmission Instructions 187
14.7. Load, Store, and Insert for 64-bit General Registers 189
14.8. RRE-Type Data Transmission Instructions for 64-bit General Registers . . . 192
14.9. The Load and Test Instructions 193
14.10. Mixed 32- and 64-bit Operands, 194
14.11. Other General Register Load Instructions (¥) 195

14.11.1. Load Byte Instructions 196

14.11.2. Load Logical Character Instructions 196

14.11.3. Load Logical Halfword Instructions 197

14.11.4. Load Logical (Word) Instructions 197

14.11.5. Load Logical Thirty One Bit Instructions 197
14.12. Misunderstandings to Avoid L 198
14.13. Summary 199

15. Testing the Condition Code: Conditional Branching 204
15.1. The Branch Address 204
15.2. The Branch Mask and Branch Condition 205
15.3. Examples of Conditional Branch Instructions 206
15.4. No-Operation Instructions, 206

15.4.1. Special No-Operation Instructions (*) 206
15.5. Conditional No-Operation 207
15.6. Extended Mnemonics 210
15.7. A Comment on Programming Style 212

Contents V

15.8. A Design Oversight and a Modern “Correction™ (*) 212

15.9. Summary 213

16. Fixed-Point Binary Addition, Subtraction, and Comparison 216
16.1. Signed-Arithmetic Add and Subtract Instructions 216
16.2. Signed-Arithmetic Operations Using 32-Bit Registers 217
16.2.1. Condition Code Settings After Arithmetic 218

16.3. Signed-Arithmetic Operations Using 64-Bit Registers 221
16.4. Signed-Arithmetic Compare Instructions 222
16.5. Logical-Arithmetic Add and Subtract Instructions 224
16.6. Add With Carry, Subtract With Borrow (*) 228
16.7. Operations With Mixed 64-Bit and 32-Bit Operands 229
16.8. Logical-Arithmetic Compare Instructions 232
16.9. Retrieving and Setting the Program Mask (*) 234
16.10. Summary 235

17. Binary Shifting 242
17.1. Unit Shifts 243
17.2. Single-Length Logical Shifts 245
17.2.1. Three-Operand Shift Instructions 247

17.3. Double-Length Logical Shifts 248
17.4. Arithmetic Shift Instructions 252
17.5. Rotating Shifts 257
17.6. Calculated Shift Amounts 257
17.7. Bit-Length Constants (¥*) 259
17.8. Summary 260

18. Binary Multiplication and Division 264
18.1. Overview of Multiplication Instructions 264
18.2. Arithmetic (Signed) Multiplication Instructions 265
18.2.1. Double-Length Arithmetic Products 265
18.2.2. Single-Length Arithmetic Products 267

18.3. Logical (Unsigned) Multiplication Instructions 270
18.4. How Multiplication Is Done (*) 272
18.5. Division Instructions 274
18.6. Arithmetic (Signed) Division Instructions 275
18.6.1. Double-Length Division 275

18.6.2. Single-Length Division 278

18.7. Logical (Unsigned) Division Instructions 279
18.8. How Division Is Done (*) 280
18.9. Summary 283

19. Logical Operations 288
19.1. Logical Operations 289
19.2. Register-Based Logical Instructions 289
19.3. Logical AND 290
19.4. Logical OR 291
19.5. Logical Exclusive OR 292
19.6. Interesting Uses of Logical Instructions (*) 295
19.7. Summary 297
Chapter VI: Addressing, Immediate Operands, and Loops 301
20. Address Generation and Addressing Modes 302
20.1. Address Generation 302
20.1.1. Address Generation With 12-Bit Displacements 302
20.1.2. Address Generation With 20-Bit Displacements 302
20.1.3. Address Generation With Relative-Immediate Operands 305

20.2. Addressing Modes 307
20.3. Load Address Instructions 309
20.4. 64-Bit Virtual Addresses 314
20.5. Summary 314

21. Immediate Operands 316
21.1. Insert and Load Instructions with Immediate Operands 318
21.1.1. Logical-Immediate Insert Instructions 318
21.1.2. Arithmetic- and Logical-Immediate Load Instructions 318

21.2. Arithmetic Instructions with Immediate Operands 321

Vi Assembler Language Programming for IBM System z™ Servers Version 2.00

21.2.1. Arithmetic-Immediate Add and Subtract Instructions 321

21.2.2. Arithmetic-Immediate Compare Instructions 322
21.2.3. Arithmetic-Immediate Multiply Instructions 322
21.3. Logical Operations with Immediate Operands 323
21.3.1. Logical-Immediate AND Instructions 323
21.3.2. Logical-Immediate OR Instructions 323
21.3.3. Logical-Immediate XOR Instructions 324
214, Summary 325
22. Branches, Loops, and Indexing 329
22.1. Branch Relative on Condition Instructions 329
22.2. A Simple Example of a Loop 331
22.3. Simple Tables and Array Indexing 332
22.4. Branch on Count Instructions 334
22.5. Looping in General 338
22.6. Branch on Index Instructions 340
22.7. Examples Using BXLE 343
22.8. Examples Using BXH 346
22.9. Specialized Uses of BXH and BXLE (*) 347
22.10. Summary 349
Chapter VII: Bit and Character Data 351
23. Bit and Byte Data and Instructions 352
23.1. SI- and SIY-Type Instructions 352
23.2. MVI Instructions 353
23.3. NI, OI, and XI Instructions 353
23.4. CLI Instructions 354
23.5. Test Under Mask Instructions 356
23.6. Bit Data 358
23.7. Avoiding Bit-Naming Problems (*) 359
23.8. A Data Conversion Example 361
23.9. Instruction Modification (*) 361
23.10. Summary 363
24. Character Data and Basic Instructions 365
24.1. Basic SS-Type Instructions 365
24.2. Operand Specifications and Explicit Lengths 366
24.3. Symbol Length Attribute References 368
24.4. Implied Lengths 368
24.5. The Encoded Length “L” and Program Length “N” 370
24.6. The MVC and MVCIN Instructions 372
24.6.1. MVC: Move Characters, 372
24.6.2. MVCIN: Move Characters Inverse 373
24.6.3. MVCOS: Move Characters With Optional Specifications (*) 374
24.7. The NC, OC, and XC Instructions 376
24.8. The CLC Instruction 378
24.9. The TR (translate) Instruction 379
24.10. The TRT and TRTR Instructions 383
24.10.1. TRT . . . 384
24.10.2. TRTR . . . 387
24.11. The Execute Instructions 389
24.11.1. Execute Instruction Without Target-Instruction Modification 390
24.11.2. Execute Instruction with Target-Instruction Modification 391
24.11.3. Comments on the Execute Instructions (*) 392
24.11.4. Modifiable Parts of Instructions 393
2412, Summary 396
25. Character Data and Extended Instructions 403
25.1. Move Long and Compare Logical Long 403
25.1.1. MVCL 405
25.1.2. CLCL 407
25.2. Move Long and Compare Logical Long Extended 410
252.1. MVCLE 411
25.22. CLCLE 413
25.3. Special “C-String” Instructions 415

Contents Vil

25.4. Search String Instruction 415

25.5. Move String Instruction 417
25.6. Compare Logical String Instruction 419
25.7. Translate Extended Instruction 421
25.8. Compare Until Substring Equal Instruction (*) 423
25.9. Summary 425
26. Other Types of Character Data (*) 428
26.1. Character Representations 428
26.1.0. An Early Character Encoding 428
26.1.1. BCD characters 429
26.2. EBCDIC Representations and Code Pages 430
26.3. ASCII 432
26.4. Double-Byte EBCDIC Data (*) 434
26.4.1. The DBCS Option (*) 436
26.4.2. G-Type DBCS Constants and Self-Defining Terms (*) 436
26.4.3. Continuation Rules for DBCS Data (*) 437
26.5. Unicode 438
26.5.1. The Unicode Representation 438
26.5.2. Glyphs and Characters, 439
26.5.3. Unicode Character Constants 439
26.6. Unicode Instructions 441
26.6.1. String Search, Move, and Compare 441
26.6.2. Optional Operands (¥) 443
26.6.3. Translation 444
26.6.4. Conversion Among Transformation Formats (¥) 447
26.7. Translate and Test Extended 450
26.8. Byte Reversal and Workstation Data 453
26.8.1. Byte-Reversing Instructions L. 453
26.9. Summary 456
Chapter VIII: Zoned and Packed Decimal Data and Operations 459
27. Zoned and Packed Decimal Representations 460
27.1. Zoned Decimal Representation 460
27.1.1. Why Zoned Decimal Is The Way It Is (*) 463
27.2. Zoned Decimal Constants 464
27.3. Packed Decimal Representation 465
27.4. Packed Decimal Constants 467
27.4.1. Scale Attributes and Packed Decimal Constants (*) 467
27.5. Converting Between Packed and Zoned 469
27.6. The PACK Instruction 471
27.7. The UNPK Instruction 474
27.8. Packing and Unpacking ASCII and Unicode Data (*) 478
27.8.1. Packing ASCII and Unicode Data 478
27.8.2. Unpacking ASCII and Unicode Data 479
27.9. Printing Hexadecimal Values 481
27.10. Summary 483
28. Packed Decimal Arithmetic 484
28.1. General Rules 484
28.1.1. Precision and Accuracy 485
28.2. Decimal Addition and Subtraction 485
28.3. Decimal Comparison 487
28.4. Decimal Multiplication 489
28.5. Decimal Division 490
28.6. True Decimal Addition (*) 492
28.7. Complement Decimal Addition (*) 493
29. Packed Decimal Instructions 497
29.1. TP Instruction 498
29.2. ZAP Instruction 499
29.3. AP and SP Instructions 501
29.4. CP Instruction 503
29.5. MP Instruction 506
29.6. DP Instruction 509

Assembler Language Programming for IBM System z™ Servers Version 2.00

29.7. SRP Instruction
29.7.1. Biased and Unbiased Rounding with SRP (*) . ..
29.8. MVO Instruction
29.9. Decimal Shifting Using MVO (*)
29.9.1. Shift Right an Odd Number of Digits
29.9.2. Shift Left an Odd Number of Digits
29.9.3. Shifting an Even Number of Digits
29.9.4. Shifting Left an Even Number of Digits
29.9.5. Shifting Right an Even Number of Digits

29.10. Scaled Packed Decimal Computations: General Rules

29.10.1. Precision and Scale
29.10.2. General Rules: Addition and Subtraction
29.10.3. General Rules: Multiplication
29.10.4. General Rules: Division (*)
29.10.5. COBOL and PL/I Notations (*)
29.11. Example of a Packed Decimal “Business” Computation
29.11.1. The Wholesaler's Calculation
29.11.2. The Retailer's Calculation
29.11.3. Comments
29.11.4. Using Integer and Scale Attributes (¥)
29.12. Summary
30. Converting and Formatting Packed Decimal Data
30.1. CVD, CVDY, and CVDG Instructions
30.2. CVB, CVBY, and CVBG Instructions
30.3. Editing Overview
30.4. Simple Examples of Editing
30.5. Single-Field Editing
30.5.1. Editing Negative Values
30.5.2. Protecting High-Order Fields
30.6. The EDMK Instruction
30.7. Editing Multiple Fields (*)
30.8. Summary Comments on Editing (*)

Chapter IX: Floating-Point Data and Operations
31. Floating-Point Numbers: Introduction
31.1. Scaled Fixed-Point Arithmetic
31.2. Mixed Integer-Fraction Representation
31.2.1. Scaled Fixed-Point Binary Arithmetic (*)
31.2.2. Scaled Fixed-Point Binary Constants (*)

31.3. Converting Fractions Between Bases (*)
31.4. Why Use Floating-Point Numbers?
31.4.1. Precision and Accuracy

31.5. Floating-Point Representations
31.5.1. Left Normalization

31.5.2. Right Normalization
31.5.3. No Normalization
31.5.4. Some Additional Details (*)

31.6. System z Floating-Point Representations
31.7. System z Floating-Point Registers
31.8. Floating-Point Constants

31.9. Representation-Independent Floating-Point Instructions

31.9.1. Register-Storage Instructions
31.9.2. Register-Register Instructions
31.9.3. Load-Zero Instructions
31.9.4. GPR-FPR Copying Instructions
31.9.5. Sign-Copying Instruction
31.10. Summary
32. Basic Concepts of Floating-Point Arithmetic
32.1. Floating-Point Multiplication
32.2. Pre-Normalization of Fraction Operands
32.3. Floating-Point Rounding
32.4. Guard and Rounding Digits (*)

Contents 1X

32.5. Integer-Based Representations (¥) L.
32.6. Floating-Point Division
32.7. Floating-Point Addition and Subtraction
32.8. Floating-Point Precision
32.9. Floating-Point Range
32.10. Exponents and Characteristics
32.11. Summary
33. Hexadecimal Floating-Point Data and Operations
33.1. Hexadecimal Floating-Point Data
33.2. Writing Hexadecimal Floating-Point Constants
33.2.1. Decimal Exponents
33.3. Modifiers
33.3.1. Length Modifiers
33.3.2. Scale Modifiers (*)
33.3.3. Exponent Modifiers
33.4. Subtypes Qand H (*)
33.4.1. LQ-Type Constants
33.4.2. Subtype H
33.4.3. Difficult Numbers (*)
33.5. Basic Hexadecimal Floating-Point Instructions
33.6. Hexadecimal Floating-Point RR-Type Data-Movement Instructions
33.7. Hexadecimal Floating-Point Multiplication
33.7.1. Exponent Overflow and Underflow.
33.8. Hexadecimal Floating-Point Division
33.8.1. The Halve Instructions (*)
33.9. Hexadecimal Floating-Point Addition and Subtraction
33.9.1. Unnormalized Addition and Subtraction
33.9.2. Older Uses of Unnormalized Addition (*)
33.10. Adding Operands of Like Sign (*)
33.11. Adding Operands of Unlike Sign (*)
33.11.1. Hexadecimal Floating-Point Complement Addition (*)
33.11.2. Implementing Hexadecimal Floating-Point Complement Addition (*)
33.12. Hexadecimal Floating-Point Comparison
33.13. Rounding and Lengthening Instructions
33.13.1. Rounding Instructions
33.13.2. Lengthening Instructions
33.14. Converting Between Binary Integers and HFP
33.14.1. Converting Binary Integers to Hexadecimal Floating-Point
33.14.2. Converting Hexadecimal Floating-Point to Binary Integers
33.15. Hexadecimal Floating-Point Integers and Remainders (¥)
33.16. Square Root Instructions (¥)
33.17. Multiply and Add/Subtract Instructions (*)
33.18. Some Hexadecimal Floating-Point History (¥*)
33.18.1. Zeroing Floating-Point Registers
33.18.2. Hexadecimal Floating-Point to Binary Conversion Comments (*) .
33.18.3. Initial System/360 Oversights
33.19. Summary
34. Binary Floating-Point Data and Operations
34.1. Binary Floating-Point Data
34.1.1. Data Representations
34.1.2. Normal Numbers
34.1.3. Special Values
34.1.4. Range of the Representation
34.2. Writing Binary Floating-Point Constants
34.2.1. Decimal Exponents and Exponent Modifiers
34.2.2. Length Modifiers (*)
34.3. Binary Floating-Point Arithmetic in General
34.3.1. Rounding Modes
34.3.2. Denormalized Numbers
34.3.3. Arithmetic with Zero, Infinity, and NaNs
34.4. Binary Floating-Point Exceptions, Interruptions, and Controls
34.4.1. Binary Floating-Point Exceptions (¥*)

X Assembler Language Programming for IBM System z™ Servers Version 2.00

34.4.2. FPC Register Instructions (¥)
34.4.3. Exception Actions (¥)
34.4.4. Scaled Exponents (*)
34.5. Basic Binary Floating-Point Instructions
34.6. Binary Floating-Point RR-Type Data Movement Instructions
34.7. Binary Floating-Point Multiplication
34.8. Binary Floating-Point Division
34.9. Binary Floating-Point Addition and Subtraction
34.10. Binary Floating-Point Comparison
34.10.1. Compare and Signal (*)
34.11. Binary Floating-Point Rounding and Lengthening Instructions (*)
34.11.1. Rounding Instructions (¥)
34.11.2. Lengthening Instructions (*)
34.12. Converting Between BFP and Binary Integers (*)
34.12.1. Converting Binary Integers to Binary Floating-Point (*)
34.12.2. Converting Binary Floating-Point to Binary Integers (*)
34.13. Binary Floating-Point Integers and Remainders (*)
34.13.1. Load FP Integer Instructions
34.13.2. Divide to Integer Instructions (*)
34.14. Binary Floating-Point Square Root Instructions (*)
34.15. Binary Floating-Point Multiply and Add/Subtract (*)
34.16. Summary
35. Decimal Floating-Point Data and Operations
35.1. Representations
35.1.1. Conceptual View of the Decimal Floating-Point Representation
35.2. System z Decimal Floating-Point Data Encoding and Representation (*) . .
35.2.1. Decimal Floating-Point Data Encoding (*)
35.2.2. Decimal Floating-Point Data Representation (¥*)
35.2.3. Decimal Floating-Point Combination Field (*)
35.3. Decimal Floating-Point Constants
35.3.1. Rounding-Mode Suffixes for Decimal Floating-Point Constants
35.3.2. Decimal Exponents and Modifiers
35.4. Decimal Floating-Point Data Classes (*)
35.5. Decimal Floating-Point Operations: Rounding, Quanta, and Exceptions . . .
35.5.1. Rounding
35.5.2. Preferred Exponent and Quantum
35.5.3. DFP Exceptions
35.4.4. Overflow/Underflow Scale Factors (*)
35.6. Decimal Floating-Point Data Movement Instructions
35.6.1. Copy Sign
35.6.2. Copy between General and Floating-Point Registers
35.6.3. Copy Among Floating-Point Registers
35.7. Decimal Floating-Point Arithmetic Instructions
35.7.1. Multiplication
35.7.2. Division
35.7.3. Addition and Subtraction
35.8. Decimal Floating-Point Compare Instructions
35.8.1. Compare
35.8.2. Compare and Signal
35.8.3. Compare Biased Exponent
35.9. Converting Decimal Floating-Point To and From Fixed Binary
35.9.1. Convert From Fixed Binary To DFP
35.9.2. Convert From DFP To Fixed Binary
35.10. Converting Decimal Floating-Point To/From Packed and Zoned Decimal .
35.10.1. Convert To/From Signed Packed Decimal
35.10.2. Convert To/From Unsigned Packed Decimal
35.10.3. Convert To/From Zoned Decimal
35.11. Decimal Floating-Point Load Operations
35.11.1. Load and Test, Complement, Negative, and Positive
35.11.2. Load Floating-Point Integer
35.11.3. Load Lengthened
35.11.4. Load Rounded

Contents

xi

35.12. Decimal Floating-Point Miscellaneous Operations (¥)
35.12.1. Set Decimal Rounding Mode
35.12.2. Extract and Insert Biased Exponent
35.12.3. Extract Significance L
35.12.4. Shift Significand Left/Right
35.12.5. Quantize
35.12.6. Reround
35.12.7. Decimal Floating-Point Data Groups (*)

35.13. Example of a Decimal Floating-Point “Business” Computation
35.13.1. The Wholesaler's Calculation
35.13.2. The Retailer's Calculation
35.13.3. Comparing Packed and Floating Decimal

35.14. Decimal Floating-Point Binary-Significand Format (*)

35.15. Summary

36. Floating-Point Summary

36.1. Floating-Point Data Representations

36.2. Floating-Point Properties

36.3. Floating-Point Exceptions

36.4. Defining Floating-Point Constants

36.5. Converting Among Decimal, Hexadecimal and Binary Representations . . .
36.5.1. In-Out Conversions
36.5.2. Out-In Conversions
36.5.3. The PFPO Instruction (*)

36.6. “Real” and “Realistic” (Floating-Point) Arithmetic

36.7. When Does Zero Not Behave Like Zero? (*)
36.7.1. Hexadecimal Floating-Point
36.7.2. Binary Floating-Point
36.7.3. Decimal Floating-Point

36.8. Examples of Former Floating-Point Representations and Behaviors (*) . . .

36.9. Summary

Chapter X: Large Programs and Modularization

37. Subroutines and Linkage Conventions
37.1. Basic Concepts
37.1.1. Linkage
37.1.2. The Branch and Save Instructions
37.1.3. Argument Passing
37.1.4. Returned Values
37.1.5. Status Preservation
37.2. A General Linkage Convention
37.3. Argument Passing L
37.3.1. Variable-Length Argument Lists
37.3.2. Argument Lists with 64-Bit Addresses
37.4. Save Areas
37.4.1. Extended Save Area Conventions (¥)
37.4.2. Format-4 Save Area Conventions for 64-bit Registers (*)
37.4.3. Format-5 Save Area Conventions for 32- and 64-bit Registers (*)
37.5. Additional Conventions (¥)
37.5.1. Entry Point Identifiers (*)
37.5.2. Calling Point Identifiers (*)
37.5.3. Save Area Return Flags (*),
37.5.4. Return Codes (¥)
37.5.5. Conventions for Floating-Point Registers
37.5.6. Main-Program Parameters
37.6. Assisted Linkage (*)
37.7. Lowest Level Subroutines
37.8. Summary
37.8.1. Standard Linkage Conventions
38. Large Programs, Control Sections, and Linking
38.1. Uniform Addressability for Large Programs
38.1.1. Other Techniques (*),
38.2. Simplifying Addressability Problems in Large Programs

Assembler Language Programming for IBM System z™ Servers Version 2.00

38.2.1. Internal Subroutines Without Local Addressability
38.2.2. Internal Subroutines With Local Addressability
38.2.3. Minimizing the Number of Base Registers
38.2.4. Relative Branches, Immediate Operands, and Long Displacements
38.2.5. Separating Instructions and Data
38.3. Separate Assemblies
38.4. Control Sections
38.4.1. Resuming Control Sections
38.4.2. Literals in Multi-Section Assemblies (*)
38.4.3. Location Counter Discontinuities (*)
38.4.4. Section Alignment (*)
38.4.5. Threaded Location Counters (*)
38.4.6. The “Location Counter” Instruction LOCTR (*)
38.5. External Symbols
38.5.1. EXTRN and WXTRN Statements
38.5.2. V-Type Address Constants
38.5.3 ENTRY Statement
38.5.4. The External Symbol Dictionary Listing
38.5.5. External Symbol Addressing and Residence Modes
38.6. Object Modules
38.6.1. Relocation Dictionary and External Symbol Dictionary
38.7. Program Linking: Combining Object Modules
38.7.1. Assigning COMMON Sections
38.7.2. Relocating Address Constants
38.7.3. External Dummy Sections (*) L.
38.7.4. Loading Object Modules (*)
38.8. Load Modules and Program Objects
38.8.1. External Subroutines and Assisted Linkage: Overlay (¥)
38.8.2. Program Objects (*)
38.8.3. The “Class Attribute” Instruction CATTR
38.8.4. Programming for Program Objects
38.8.5. Comparing Load Modules and Program Objects
38.9. Loading Saved Modules into Storage
38.9.1. Loading Load Modules
38.9.2. Loading Program Objects
38.10. Changing Addressing Modes
38.10.1. The BASSM Instruction
38.10.2. The BSM Instruction
38.10.3. Branch and Return With Addressing Mode Change
38.10.4. Load Logical Thirty-One Bits Instructions
38.11. Summary

Chapter XI: Dummy Sections, Enhanced USINGs, and Data Structures

39. Dummy Control Sections and Enhanced USING Statements
39.1. Dummy Control Sections
39.2. Multiple Data Structures
39.3. Shortcomings of Ordinary USING Statements

39.3.1. Ordinary USINGs
39.4. Labeled USING Statements and Qualified Symbols
39.4.1. Qualified Symbols
39.4.2. Dropping a Labeled USING Statement
39.4.3. Labeled USING Statement Summary
39.5. Dependent USING Statements
39.5.1. Definition of Dependent USING Statements
39.5.2. Examples of Dependent USING Statements
39.5.3. Mapping a CSECT as a DSECT
39.5.4. Dropping Dependent USINGs
39.5.5. Dependent USING Statement Summary
39.6. Labeled Dependent USING Statements
39.6.1. Nesting Structures Addressed with Ordinary USINGs
39.6.2. Nesting Structures Addressed with Labeled USINGs
39.6.3. Nested Structures Addressed with Labeled Dependent USINGs

Contents

39.6.4. Multiple Nesting of Identical Structures 893

39.6.5. Mapping an Array of Identical Data Structures 895
39.6.6. Two MVS Data Control Blocks (DCBs) in a Program 896
39.7. Example of a Large “Personnel-File” Record (*) 897
39.7.1. Personnel-File Record Example: Comparing Birth Dates 902
39.7.2. Personnel-File Record Example: Comparing Different Dates 902
39.7.3. Personnel-File Record Example: Copying Addresses 903
39.8. Summary ... 904
39.8.1. USING Statement Summary 904
39.8.2. DROP Statement Summary 905
40. Basic Data Structures 907
40.1. One-Dimensional Arrays 908
40.2. Two-Dimensional Arrays 910
40.3. General Array Subscripts 913
40.3.1. Multi-Dimensional Arrays (¥) 913
40.3.2. Non-Homogeneous Arrays (Tables) 914
40.4. Address Tables 917
40.5. Searching an Ordered Array 919
40.6. Stacks . .. 923
40.6.1. An Example Using a Stack 923
40.6.2. An Example Implementing a Stack 924
40.7. Lists . . . L 927
40.7.1. List Insertion 927
40.7.3. List Deletion 929
40.7.4. Free Storage Lists 929
40.8. QUEUeS 934
40.9. Trees 937
40.10. Hash Tables 941
40.11. Summary 944
Chapter XII: System Services, Reenterability, and Recursion 949
41. Using System Services 950
41.1. Invoking System Services 950
41.2. Invoking System Services with Macro Instructions 951
41.3. Macro Formats: Standard, List, and Execute 952
41.3.1. List form with Empty Argument List 953
41.3.2. Register Forms and Arguments 954
41.3.3. MODE=24, MODE=31 954
41.3.4. Mixed Case Macro Arguments 955
41.3.5. The SYSSTATE Macro 955
41.4. Causing Abnormal Termination 956
41.5. Storage Management 957
41.5.1. The GETMAIN Macro 958
41.5.2. The FREEMAIN Macro 959
41.5.3. The STORAGE Macro 960
41.5.4. Subpools (*) 961
41.5.5. Optional Operands (*) 961
41.6. Basic Input and Output 962
41.6.1. A Simple Scenario 962
41.6.2. Access Techniques and Access Methods 966
41.6.3. The Data Control Block (DCB) 966
41.6.4. Important Record Formats 968
41.6.5. Opening the DCB 969
41.6.6. Closing the DCB 970
41.6.7. The DCBD Macro and the IHADCB Dummy Section 970
41.6.8. The DCBE Macro and 31-bit Address Mode 971
41.6.9. /O Summary 971
41.6.10. A Sample Program 971
41.7. Handling Program Interruptions 972
41.7.1. Program Interruptions 973
41.7.2. Establishing a Program Interruption Exit 973
41.7.3. Terminating a Program Interruption Exit 974

XiV Assembler Language Programming for IBM System z™ Servers Version 2.00

41.7.4. Handling a Program Interruption 975

41.8. Abnormal Terminations of Any Kind 976

41.8.1. The ESTAE Macro 978

41.8.2. Interruption Processing 979

41.8.3. Percolation and Retry 979

41.8.4. Summary 980

41.9. Summary 981

42. Reenterability and Recursion 983
42.1. Reenterability 983

42.1.1. What it Means in General 983

42.1.2. What it Means in Practice 984

42.1.3. Assembly-Time Considerations 984

42.1.4. At Linking Time 984

42.1.5. Techniques 985

42.2. Recursion 987
42.3.Summary 992
Appendix A: Conversion and Reference Tables 995
Hexadecimal Digits in Decimal and Binary 995
Hexadecimal Addition and Multiplication Tables 996
Powers of 2 997
Multiples of Powers of Sixteen 1000
Powers of 10 in Hexadecimal 1001
Hexadecimal and Decimal Integers 1003
Conversion Tables for Hexadecimal Fractions 1011
EBCDIC Character Representation in Assembler Language Programs 1012
ASCII Character Representation in Assembler Language Programs 1013
DC Statement Types e 1014
Appendix B: Simple I/O Macros 1015
B.1. Macro Facilities 1015
B.1.1. The CONVERTI Macro Instruction 1016
B.1.2. The CONVERTO Macro Instruction 1017
B.1.3. The DUMPOUT Macro Instruction 1018
B.1.4. The PRINTLIN Macro Instruction 1018
B.1.5. The PRINTOUT Macro Instruction 1019
B.1.6. The READCARD Macro Instruction 1020
B.1.7. PRINTOUT and DUMPOUT Header 1020

B.1.8. Usage Notes 1021

B.2. Sample Program 1021
B.3. The Macro Instruction Definitions 1022
B.3.1. Operating System Environment and Installation Considerations 1023

B.4.1. CONVERTI Macro Definition 1024
B.4.2. CONVERTO Macro Definition 1024
B.4.3. DUMPOUT Macro Definition 1025
B.4.4. PRINTLIN Macro Definition 1026
B.4.5. PRINTOUT Macro Definition 1026
B.4.6. READCARD Macro Definition 1028

B.4.7. $$GENIO Macro Definition 1028
Glossary of Terms and Abbreviations 1041
Bibliography 1057
Basic References 1057
System/360 Architecture History 1058
Assembler Design and Implementation L 1058
Other General References 1058
Acknowledgments 1059
Notices 1061

Contents XV

Trademarks L 1061

xvi

Suggested Solutions to Selected Exercises and Programming Problems 1063
Section 1 Solutions 1064
Section 2 Solutions 1065
Section 3 Solutions 1071
Section 4 Solutions 1072
Section 5 Solutions 1074
Section 6 Solutions 1076
Section 7 Solutions 1077
Section 8 Solutions 1079
Section 9 Solutions 1082
Section 10 Solutions L 1083
Section 11 Solutions 1085
Section 12 Solutions L 1086
Section 13 Solutions L 1088
Section 14 Solutions L 1093
Section 15 Solutions L 1096
Section 16 Solutions L 1098
Section 17 Solutions 1112
Section 18 Solutions L 1124
Section 19 Solutions L 1137
Section 20 Solutions 1142
Section 21 Solutions L 1145
Section 22 Solutions L 1148
Section 23 Solutions 1156
Section 24 Solutions 1158
Section 25 Solutions 1170
Section 26 Solutions 1175
Section 27 Solutions 1180
Section 28 Solutions 1187
Section 29 Solutions 1189
Section 30 Solutions 1197
Section 31 Solutions L 1204
Section 32 Solutions 1209
Section 33 Solutions 1212
Section 34 Solutions 1223
Section 35 Solutions 1230
Section 36 Solutions 1238
Section 37 Solutions 1241
Section 38 Solutions 1249
Section 39 Solutions 1261
Section 40 Solutionso 1264
Section 41 Solutions 1275
Section 42 Solutions 1278

Index . . . 1281

Figures
1. Example of numbering and notation Lo 12
2. One stage of a binary adder 35
3. “Circular” representation of two's complement representation 36
4. Conceptual structure of a typical computer 42
5. Conceptual structure of System z 43
6. A byte containing 8 binary digits L 43
7. A portion of memory, with addresses shown above each byte 43
8. A portion of memory 44

Assembler Language Programming for IBM System z™ Servers Version 2.00

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.

A single 64-bit general register L 45

All sixteen general registers 46
Four Floating-Point Registers 47
Sketch of a Program Status Word 47
Basic instruction cycle 50
Instruction formats and data interactions 52
Opcode bit patterns for typical instruction types 53
Instruction cycle with interruptions 55
Typical instruction format for old computers 61
Structure of an addressing halfwordo 62
Sketch of Effective Address calculation 62
RX-type instruction, showing index register specification digit 64
Sketch of Effective Address calculation with indexing 64
31-bit Virtual Address 68
Simple view of Assembler processing 72
Simple view of program linking 73
Simple view of program loading and execution 74
Assembler Language statement columnso 75
Comment statement examples 76
Block comments 76
Statement fields for machine, assembler, and macro-instruction statements 77
A machine instruction statement 78
An assembler instruction statement 78
The macro-instruction statement RETURN 78
A complete Assembler Language program 81
RX Instruction with explicit operands L. 109
A simple program segment 117
Simple program segment with assembled contents 118
Same program segment, at different memory addresses 118
Same program segment, with assembled contents 118
Program segment with pre-calculated explicit base and displacements 119
Program segment with explicit base and Assembler-calculated displacements 119
Program Segment with USING Instruction 120
Sample program segment with erroneous statement 122
Sketch of pass one of an assembly L 124
Sketch of pass two of an assembly L 125
USING Table with one entry 126
Program segment with second USING statement 127
USING Table with multiple entries 127
Assembled contents when two USINGs are active 128
USING Table after DROP statement 129
USING Table after second DROP statement 130
Implied and explicit length specifications 140
Multiple constants 142
F-type constant with decimal exponent 146
Character, hexadecimal, and binary constants 150
Length attribute reference to two constants, one a literal 155
Describing fields of a (U.S.) telephone number 160
Describing fields of an Assembler Language statement 161
Define a group of words 161
Describing fields of an Assembler Language statement using ORG instructions 167
Describing an Assembler symbol cross-reference listing line 171
32-bit portion of a 64-bit general register 178
Sign extension by LH instruction L. 183
Loss of significant digits using STH/LH 183
Loss of significant digits using STH/LH 183
Action of IC and STC instructions 185
Interchanging two bytes with IC and STC 185
Inserting a small number into a register L. 185
Examples of some RR-type instructions 188
64-bit general register 189
Sign extension by LGH instruction 191

Figures xvii

71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.

Examples of some RR-type instructions for 64-bit operands 192
Sign extension by LHR instruction 193
Sign extension for instructions with mixed 32- and 64-bit signed operands 195
Sign extension by Load Byte instructions 196
Zero extension by Load Logical Character instructions 197
Operation of Load Logical Halfword instructions 197
Operation of Load Logical word instructions 197
Operation of Load Logical Thirty One Bits instructions 198
Examples of conditional branch instructions 205
CNOP alignments and operands 209
Calculate a sum with an intermediate test 217
Calculate the sum of the first N odd integers 218
Example of arithmetic addition and subtraction 218
Testing the result of arithmetic instructions 218
Calculate a 64-bit sum with an intermediate test 221
Adding two 64-bit numbers 221
Examples of arithmetic comparisons 222
Calculate the sum of N odd integers 223
Adding two 64-bit numbers logically Lo 225
Double-length complementation 225
Double-length complementation, a simpler way 226
Double-length addition 226
Double-length subtraction 226
Example of logical addition and subtraction 227
Double-length addition with carry 229
Double-length subtraction with borrow 229
Sign extension for instructions with mixed 32- and 64-bit signed operands 230
Calculate a 64-bit sum with an intermediate test 230
Calculate a 64-bit sum with an intermediate test 230
Sign extension for instructions with mixed 32- and 64-bit unsigned operands 231
Examples of logical comparisons 232
Comparing logically ordered values 233
Bit positions used by IPM and SPM instructions (System/360 PSW sketch) 234
Register contents before shifting oL 243
Logical unit shift left 244
Logical unit shift right 244
Arithmetic unit shift right 244
Arithmetic unit shift left o000 oo 244
Rounding an integer to the next higher multiple of 8 246
A 6-byte data entry L 246
Storage definitions for a 6-byte dataentry 246
Using shift instructions for a 6-byte data item 246
Shifting to make the low-order bitone (1) 248
Shifting to make the low-order bitone (2), 249
Four integers packed in a 32-bit word L 249
Extracting one packed integer from a 32-bit word 249
Unpacking four unsigned integers using right shifts 250
Unpacking four unsigned integers using left shifts 250
Unpacking four signed integers 254
Logical rotate unit shift 257
Packing four unsigned bit-length constants in a 32-bit word 260
Packing four signed bit-length constants in a 32-bit word 260
General layout of multiplication operands 265
Double-length product of multiply operations 266
Calculate the sum of the first 10 cubed integers 267
[Mustration of binary multiplication 273
General result of divide operation 274
Operands of double-length division, 275
Example of division by 3 276
Example of rounded integer division oL 276
Example of rounded integer division with signed dividend 277
Ensuring a valid arithmetic division L 277

Xviii Assembler Language Programming for IBM System z™ Servers Version 2.00

133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.

Causing a fixed-point divide interruption 277
Operands of single-length division before division 278
Operands of single-length division after division 278
Example of logical division 280
Mustration of binary division 282
Logical operations AND, OR, and XOR 289
Examples of logical operations L 290
Inserting a new integer value using AND and OR 291
Data masking using Exclusive OR 292
Rounding to the next multiple of 8 L 293
Rounding to the next multiple of 8 L 293
Complementing a double-length integer 293
Effective Address generation for long-displacement instructions 303
Addressability range with 12-bit displacements 304
Addressability range with 20-bit displacements 304
Effective Address formation for relative-immediate instructions 305
Areas of memory addressed by three AMODEs 308
System z PSW showing addressing-mode bits, 308
Loading integer constants with the LAY instruction 310
Counting number of shifts to make rightmost bit a 1-bit 311
Using LA to set a branch address 311
64-bit Virtual Address 314
64-bit Virtual Address with Region Indexes 314
Instruction classes, including RI, RIL 316
Four halfwords in a 64-bit general register 317
Operation of six Insert Immediate instructions 318
Operation of LHI instruction, 319
Operation of LGHI instruction 319
Examples of load-immediate instructions 320
Operation of six logical load instructions 320
Extracting an unsigned integer value using AND Immediate 323
Inserting a new integer value using AND Immediate 323
Data masking using immediate operands 324
Data masking using a symbolically defined immediate operand 324
A simple loop to scan and replace characters 332
A simple loop, using indexing 333
Indexing into a branch table 333
A backward loop to scan and replace characters 334
Calculate the sum of the first N odd integers 335
Store the cubes of the first 10 integers 336
Sketch of a Do-Until loop 339
Sketch of a Do-While loop 339
Store the cubes of the first 10 integers in a different way 340
Operation of BXH and BXLE instructions 342
Operation of BXH and BXLE instructions 342
Replacing special characters with blanks, using BXLE 343
Creating a table of cubed integers using BXLE 344
Creating a table of cubed integers using BXLE 344
Creating a table of cubed integers with addresses as controls 344
Creating a table of cubed integers using BXH 346
Creating a table of cubed integers, using BXH in a special way 346
Examples of the MVI instruction 353
Examples of the NI instruction 354
Examples of the OI instruction 354
Example of the XI instruction 354
A simpler loop to scan and replace characters 355
Setting an overflow-indication flag bit 0oL 357
Adding alternate list elements twice 357
Defining bit names safely 360
Using safely-defined bit names 360
Converting a binary integer to characters 361
Adding alternate list elements twice, with program modification 362

Figures Xix

195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.

Adding alternate list elements twice, without program modification
Assembler Language syntax of basic SS-type instructions
Examples of SS-type instruction operands L
SS-type instruction using a Length Attribute reference
Examples of Length Specification Bytes
Emulated operation of MVC instruction
Example of Move Inverse instruction
Emulated operation of MVCIN instruction
Example of MVCOS instruction
Inserting bits in a word using logical SS-type instructions
Emulating the TR instruction
TR instruction to change special characters to blanks
Translating hex digits to EBCDIC characters (1)
Translating hex digits to EBCDIC characters (2)
Searching for punctuation characters using CLI
Searching for punctuation characters using TRT
Using TRT to validate numeric characters
Using TRT to scan for embedded quotations
Using TRT to scan a string of names and build an occurrence list
Using TRTR to validate numeric characters
Scanning a string backward using CLI
Scanning a string backward using TRTR
Executing a list of instructions
Executing a list of instructions
Constructing an executed instruction
Moving a string of bytes of unknown length
Register use by CLCL and MVCL
Conceptual execution of the MVCL instruction
Using MVCL to set a field to blanks
Moving a message with padding and length checking
Conceptual execution of the CLCL instruction
Using CLCL to test for blanks
Comparing two records without padding
Register use by MVCLE and CLCLE
Conceptual execution of the MVCLE instruction
Using MVCLE to set a field to blanks
Using MVCLE to initialize an area to zero
Conceptual execution of the CLCLE instruction
Using CLCLE to test for all blanks
Registers bounding the SRST search string
Conceptual execution of the SRST instruction
Conceptual execution of the MVST instruction
Moving a null-terminated string
Using MVST to isolate comma-separated tokens
Conceptual execution of the CLST instruction
Translating characters to upper case with TRE
Examples using the CUSE instruction
Fragment of an Institute-machine punched paper tape
Mixed single- and double-byte EBCDIC characters
Examples of DBCS data
Extended continuation for DBCS data
CU-type constant generating Unicode characters
Using MVCLU to initialize an area to Unicode spaces
Using CLCLU to test for Unicode spaces
Assembler instruction statement for RRF-type instructions with an optional operand

Using TRTT to translate from DBCS to Unicode
Translating a long string with TR and MVC, and with TROO
Bits of a UTF-16 Unicode character
Bits of a UTF-16 Unicode surrogate pair
Bits of a UTF-32 Unicode character from a UTF-16 surrogate pair
Example of using TRTE
Big-Endian storage representation of X'87654321"'

XX Assembler Language Programming for IBM System z™ Servers Version 2.00

257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.

Little-Endian storage representation of X'87654321'
Byte reversal by LRV, LRVR, and STRYV instructions
Byte reversal by LRVH and STRVH instructions
Four integers packed in a Big-Endian 32-bit word
The same four integers packed in a Little-Endian 32-bit word
Zone and numeric digits of a byte
Example of MVN and MVZ instructions
Zoned decimal sign conventions
A zoned decimal numbero oL
Zoned decimal constants with implied lengths
Zoned decimal constants with explicit lengths 0L
Representation of a packed decimal number
Packed decimal constants with implied lengths
Packed decimal constants with explicit lengths
Format of typical two-length SS-type instructions
Examples of assembled PACK and UNPK instructions
Zoned and packed forms of +12345 L
PACK instruction operation
Converting from zoned to packed decimal using PACK
Examples of the PACK instruction
Digit swap using PACK
Operation of the UNPK instruction
Example of an UNPK instruction
Examples of UNPK instructions
Digit swap using UNPK
Packing ASCII characters
Packing Unicode characters
Unpacking to ASCII and Unicode characters
Unpacking hex digits (incorrectly)
Unpacking hex digits (correctly)
Converting hex data to printable characters
Operands for packed decimal division,
Assembler Language syntax of the TP instruction
Examples of the ZAP instruction
Using ZAP to initialize a table of packed decimal operands
Initializing a table of decimal numbers using MVC
Examples of the AP and SP instructions, .
Adding a table of 50 packed decimal numbers
Adding positive and negative items separately
Finding the largest item in a table, .
Example of decimal multiplication L.
Using MP to square a table of decimal numbers
Using ZAP to set correct decimal multiplicand length
Using ZAP to set correct decimal multiplicand length
Generating O— using MP
Decimal division using DP
Decimal division using Length Attribute References for operands
Computing the average of a table of decimal numbers
Assembler Language format of SRP machine instruction statement
Shifting a decimal operand left 3 places using SRP
Shifting a decimal operand right 2 places using SRP
Shifting a decimal operand right 1 place with rounding using SRP
Shifting a decimal operand with an EXecuted SRP
Operation of the MVO instruction
Two Examples of MVO results
Shifting a decimal operand right an odd number of digits
Shifting a decimal operand right an odd number of digits
Shifting a decimal operand left an odd number of digits
Shifting a decimal operand left by one digit
Shifting a decimal operand left by three or more digits
Shifting a decimal operand left an even number of digits
Shifting a decimal operand left an even number of digits

Figures

xxi

319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
346.
347.
348.
349.
350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.
375.
376.
377.
378.
379.
380.

Shifting a decimal operand left an even number of digits
Shifting a decimal operand right an even number of digits
Shifting a decimal operand right an even number of digits
Ensuring decimal point alignment for packed decimal addition
A business calculation in packed decimal, part 1
A business calculation in packed decimal, part2 L.
A business calculation in packed decimal, part3 L
A business calculation in packed decimal, part4
Integer and Scale Attributes
Using Scale Attributes in a SRP instruction
Converting a 64-bit binary integer to packed decimal
Using CVD to format page numbers, .
Converting decimal characters to binary
Sketch of an editing operation
Representation of an editing pattern
Convert a packed decimal integer to characters using UNPK
Convert a packed decimal integer to characters using ED
Converting a 32-bit binary integer to characters
Editing a binary integer with separating commas
Editing a signed number
Using field protection with ED
Edited result with a floating currency symbol
Edited result with a properly placed floating currency symbol
Integer value with optional sign and separating commas
Editing two packed decimal numbers into a single field
Editing multiple values
Logical-operation description of the editing process
ED and EDMK operation
A data item containing an integer value oL
A data item containing integer and fraction parts
Values with radix point outside the digits
Calculating a tax amount in scaled fixed decimal arithmetic
Calculating a tax amount in scaled fixed binary arithmetic
Two binary constants scaled by 2**28 Lo
Defining a scaled binary constant 10¥*12
Multiplying two scaled binary numbers L.
Examples of data with widely ranging values
A typical floating-point representation
An example of a floating-point representation using 4 decimal digits
Another example of a floating-point representation using 4 decimal digits
A floating-point representation showing left normalized and unnormalized values

A floating-point representation showing right normalized and unnormalized values

A floating-point representation showing values without normalization
Floating-point numbers with signed exponent
Examples of approximate floating-point representations
Three floating-point data lengths
Four floating-point registers
All sixteen floating-point registers, showing register pairings
Integer-based representation of 73 in FPI(10,4)
[llustrating floating-point division corrective right shift
Exponent range of representable and computable values
Hexadecimal floating-point number representations
Quadword aligned constants and data L.
Hexadecimal floating-point constants with rounding suffixes
Examples of hexadecimal floating-point instructions
Example of LTXR instruction
Examples of extended-precision hexadecimal RR instructions
Short hexadecimal floating-point multiplication
Floating-point registers used for hexadecimal floating-point multiplication
Calculating a table of short hexadecimal floating-point products
Calculating a table of long hexadecimal floating-point products
Floating-point registers used for hexadecimal floating-point multiplication

XXii Assembler Language Programming for IBM System z™ Servers Version 2.00

381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
413.
414.
415.
416.
417.
418.
419.
420.
421.
422.
423.
424.
425.
426.
427.
428.
429.
430.
431.
432.
433.
434.
435.
436.
437.
438.
439.
440.
441.
442.

Example of hexadecimal floating-point divide instructions 604
Example of hexadecimal floating-point divide instructions 604
Example of a hexadecimal floating-point halve instruction 605
Hexadecimal halve instruction causing underflow 605
Example of hexadecimal floating-point addition 606
Evaluating a hexadecimal floating-point expression 607
Evaluating a hexadecimal floating-point inner product 608
Evaluating a polynomial with hexadecimal floating-point arithmetic 608
Evaluating a quadratic polynomial 608
Converting a binary integer to hexadecimal floating-point 609
Converting a hexadecimal floating-point number to a binary integer 610
Rounding a long hexadecimal floating-point number to short 617
Rounded inner product of long HFP numbers 617
Manually rounding long to short (1) 618
Manually rounding long to short (2) 618
Manually rounding long to short (3) 618
Converting a 32-bit integer to short hexadecimal floating-point 620
Converting a 64-bit integer to three hexadecimal floating-point values 620
Early conversion of integer to hexadecimal floating-point 621
Format of a machine instruction statement for converting HFP to binary 621
Calculating a HFP remainder 625
Evaluating a hexadecimal floating-point remainder 626
Examples of HFP square root instructions 627
Three binary floating-point data representations 639
Range of the binary floating-point representation 641
A view of the binary floating-point representation 642
Examples of short binary floating-point constants 642
Examples of long and extended binary floating-point constants 643
Rounding indicators for binary floating-point constants 643
Examples of parameterized binary floating-point NaNs 644
Binary floating-point constants with decimal exponents and modifiers 645
Values representable with gradual underflow 647
Floating-Point Control (FPC) register 649
Examples of binary floating-point data movement instructions 656
Example of binary floating-point multiply instructions 657
Examples of binary floating-point multiplication overflow and underflow 658
Examples of binary floating-point multiply instructions 658
Example of binary floating-point denormalized product 658
Example of binary floating-point extended-precision operands 658
Examples of binary floating-point division 659
Examples of binary floating-point division overflow and underflow 660
Examples of binary floating-point addition and subtraction 661
Examples of binary floating-point comparison 663
Examples of binary floating-point compare and signal instructions 663
Examples of binary floating-point rounding instructions 664
Examples of BFP load lengthened instructions 665
Examples of BFP load lengthened instructions with NaNs 665
Examples of binary integer to binary floating-point instructions 666
Examples of converting binary floating-point fractions to integers with rounding . . . 667
Examples of Convert to Fixed instructions 667
Examples of load FP integer instructions 669
Examples of divide to integer instructions 670
Example of iterative divide to integer 670
Iterative execution of a divide to integer instruction 671
Examples of binary floating-point square root instructions 672
Example of binary floating-point multiply and add instructions 673
Hexadecimal and binary floating-point representations 681
Conceptual decimal floating-point representation 682
Three decimal floating-point representations of the same value 683
Decimal floating-point data representation 686
System z decimal floating-point representations 687
DFP constants with exponent modifiers and decimal exponents 692

Figures xxiii

XXiv

443.
444.
445.
446.
447.
448.
449.
450.
451.
452.
453.
454.
455.
456.
457.
458.
459.
460.
461.
462.
463.
464.
465.
466.
467.
468.
469.
470.
471.
472.
473.
474.
475.
476.
4717.
478.
479.
480.
481.
482.
483.
484.
485.
486.
487.
488.
489.
490.
491.
492.
493.
494.
495.
496.
497.
498.
499.
500.
501.
502.
503.
504.

Examples of decimal floating-point Test Data Class instructions 694
[lustration of decimal floating-point rounding candidates 695
[Mlustration of decimal floating-point rounding candidates near zero 695
Floating-Point Control (FPC) register 698
Examples of converting decimal floating-point to fixed binary 708
Examples of converting decimal floating-point to binary integer 709
Converting signed packed decimal to decimal floating-point 710
Converting decimal floating-point to signed packed decimal 710
Converting decimal floating-point to signed packed decimal 710
Converting unsigned packed decimal to decimal floating-point 711
Converting decimal floating-point to unsigned packed decimal 711
Effect of the mask operand on Convert from Zoned results 713
Examples of converting decimal floating-point to zoned 714
DFP arithmetic with short operands 717
Floating-Point Control Register showing Decimal Rounding Mode bits 718
Example of extracting DFP biased exponent 719
Example of inserting a biased DFP exponent 720
Examples of DFP Extract Significance instructions 720
Converting an extended decimal floating-point value to packed decimal 722
Calculate price plus tax 724
Correctly rounding a cost to two decimal digits 724
Example of a reround instruction 725
Example of rerounding arbitrary amounts L 725
Examples of assembled DFP constants using rounding for reround 726
Example of DFP binary-significand format 730
Sketch of short binary-significand format 730
BCD-to-DPD encodings 734
DPD-to-BCD translation 735
Degraded precision in adding hexadecimal floating-point pseudo-zeros 748
Trivial example of a subroutine (1) 757
Trivial example of a subroutine (2) 757
Subroutine linkage using a BAS instruction L. 758
Subroutine linkage using a BASR instruction 759
Subroutine linkage using an address constant L. 759
Simple shift subroutine (1) 760
Simple shift subroutine (2) 760
Simple shift subroutine with named arguments (3) 760
Simple shift subroutine (4) using argument addresses 761
Simple shift subroutine (5) with argument addresses in memory 761
Subroutine call with inline arguments 761
Subroutine returning past inline argument 762
Subroutine call with inline argument addresses 762
Subroutine with argument address list 763
Subroutine saves and restores registers 764
General argument-passing scheme L. 766
Subroutine call using an argument address list, 766
Subroutine called with an argument address list 766
Constructing an argument address list 767
Two variable-length argument lists L. 767
Calling a subroutine with a variable-length argument list 767
Subroutine called with a variable-length argument list 767
Sketch of a variable-length argument list, 768
Sample 64-bit argument list addresses L 768
Standard save area layout 771
Sample subroutine calling sequence 771
Save area chaining instructions 772
Chained save areas 772
Reloading registers and returning to a caller 772
Format-4 save area layout 774
Example of using a Format-4 save area 774
Format-5 save area layout 775
Saving registers using a Format-5 save area 776

Assembler Language Programming for IBM System z™ Servers Version 2.00

505.
506.
507.
508.
509.
510.
511.
512.
513.
514.
515.
516.
517.
518.
519.
520.
521.
522.
523.
524.
525.
526.
527.
528.
529.
530.
531.
532.
533.
534.
535.
536.
537.
538.
539.
540.
541.
542.
543.
544.
545.
546.
547.
548.
549.
550.
551.
552.
553.
554.
555.
556.
557.
558.
559.
560.
561.
562.
563.
564.
565.
566.

Return from a routine using a Format-5 save area 776
Example of an entry point identifier oL 777
Example of two calling point identifiers 778
Setting a return flag 778
Setting a return code in register 15o 779
Testing a return code returned in register 15 L. 780
Using a return code as a branch index, . 780
Using a return code as a branch index with relative branch instructions 780
Checking for valid return code values 780
Setting a reason code in register O 781
Using RETURN macros to set return flags and return codes 781
Returning to an error branch without a returncode 781
Call with error branch instructions 782
Convention for passing main-program parameters 782
Example of calling with assisted linkage 784
Example of a routine to implement assisted linkage 784
Assisted linkage routine with counters 784
Example of a lowest level subroutine 786
Establish three base registers (1) 791
Establish three base registers (2) 791
Establish three base registers (3) 791
Establish three base registers (4) 792
Establish three base registers (5) 792
Establish three base registers with risks (6) 792
Establish three base registers (7) 793
Establish three base registers (8) 793
Establish three base registers (9) 793
Calling a subroutine not needing local addressability 798
Calling a subroutine not locally addressable 799
Subroutine with local addressability 799
Replacing based branch instructions with relative-immediates 800
Replacing a based EXecute instruction with EXRL 800
Replacing references to constants with immediate operands 800
Replacing short unsigned displacements with long signed displacements 800
A program fragment needing reorganization L 801
A program fragment after reorganization L 801
Reorganizing a program to minimize base registers 801
Incorrect implied reference to a different control section 804
Correct implied reference to a different control section 804
USING Table with two entries 805
Main program and subroutine in one assembly 805
Main program, subroutine, and common section in one assembly 806
Resuming control sections 806
Main program and subroutine in one assembly, multiple CSects 807
Statements with Location Counter discontinuities 808
Technique for rounding the length of a CSECT 809
Rearrangement of source groups by LOCTR 811
Simple example of LOCTR (1) 811
Simple example of LOCTR (2) 812
Simple example of LOCTR (3) 812
A program fragment using LOCTR for reorganization 812
Organizing a program to minimize addressability problems 813
Organizing a program to minimize addressability problems 813
Simple example of LOCTR (4) 814
Example of unexpected LOCTR behavior (1) 814
Example of unexpected LOCTR behavior (2) 815
Calling ShftRt as an external routine 819
ShftRt subroutine as a separate assembly L. 819
External references using relative branch instructions 820
Using WXTRN to test whether a routine was linked 820
Calling ShftRt as an external routine 821
ShftRt subroutine in a different CSect 822

Figures XXV

567.
568.
569.
570.
571.
572.
573.
574.
575.
576.
577.
578.
579.
580.
581.
582.
583.
584.
585.
586.
587.
588.
589.
590.
591.
592.
593.
594.
595.
596.
597.
598.
599.
600.
601.
602.
603.
604.
605.
606.
607.
608.
609.
610.
611.
612.
613.
614.
615.
616.
617.
618.
619.
620.
621.
622.
623.
624.
625.
626.
627.
628.

Main program with ENTRY for data
Subroutine using EXTRN to reference data
Subroutine using EXTRN and adcons to reference data
Subroutine with entries for two similar functions
Subroutine with two similar functions and some common code
Sample assembly with external symbols 0L
External symbol dictionary from sample assembly
Program assembled with different SECTALGN options
Example of ESD listings with different SECTALGN options
Assigning RMODE and AMODE to a section name
ESD showing RMODE and AMODE of section names
Example of two source modules to be linked
Sketch of object module from source module 1,
Sketch of object module from source module 2
Composite ESD after reading first object module
Composite ESD after loading second object module
Composite ESD after assigning memory addresses
Memory layout of loaded program
Sample DXD declarations
External dummy section declaration
Referencing external dummy items with Q-cons
External dummy items in ESD listing
Separate DXD declaration L
Example of a completed External Dummy Section
Retrieving an External Dummy Section item
PL/I technique for loading Pseudo Registers
ESDID Translation Table entry for an incoming symbol
A typical load-time CESD entry
Composite ESD after assigning load module addresses
Sketch of a load module
A load module after loading
Sketch of program object structure
Sample program assembled with the GOFF option
ESD from program assembled with the GOFF option
Assigning AMODE to an entry symbol 0L
ESD showing AMODE assigned to entry and external symbols
Sample program defining two Sections and three Classes
Assignment of instructions and data into elements L.
Assembly listing for sample program
External symbol dictionary for sample program
Example of declaring parts in a GOFF Class
ESD for parts in a GOFF Class
Sketch of virtual memory
Sample program defining two Sections and three Classes
Sketch of classes in virtual memory
System z PSW showing addressing-mode bits,
Important addressing mode bits for BASSM
BASSM setting of first-operand register for 24-, 31-, and 64-bit addressing modes

Sketch of residence and addressing modes
Example showing why LLGT/LLGTR are necessary
Example showing why LLGTR is important
Example of a dummy control section L.
Example using a dummy control section
USING Table with two entries, one for a dummy section
Object code from references to a dummy control section
Example using a dummy control section
A poor method for describing two instances of arecord
A better record description with a DSECT
Ordinary USING statement syntax
Copying a field from Old record to New
Incorrect addressing with ordinary USING
Correct but awkward addressing with ordinary USING

Assembler Language Programming for IBM System z™ Servers Version 2.00

629.
630.
631.
632.
633.
634.
635.
636.
637.
638.
639.
640.
641.
642.
643.
644.
645.
646.
647.
648.
649.
650.
651.
652.
653.
654.
655.
656.
657.
658.
659.
660.
661.
662.
663.
664.
665.
666.
667.
668.
669.
670.
671.
672.
673.
674.
675.
676.
677.
678.
679.
680.
681.
682.
683.
684.
685.
686.
687.
688.
689.
690.

Manual coding of base and displacement for a large DSECT
Labeled USING statement syntax v
Qualified symbol syntax
Examples of qualifier definitions
Copying a field with Labeled USINGs
DROP statement for Labeled USING
Concurrently active Ordinary and Labeled USINGs
Dummy control section for record address L.
Improved definition of a record description
Mapping a substructure with a second DSECT
Dependent USING statement syntax
Anchoring an internal DSECT with a Dependent USING
Outer DSECT with two nested DSECTs
Assembler listing of multiple Dependent USINGs and DSECTs
Three independent data structures with one base register
Defining DSECTs for three independent data structures
Defining a mapping of three independent but contiguous data structures
Example of a message-skeleton CSECT
Example of mapping a CSECT as though it is a DSECT
Labeled Dependent USING statement syntax
Nesting two identical structures within a third
Addressing two nested DSECTs with Labeled Dependent USINGs
Data in nested DSECTs addressed with Labeled Dependent USINGs
Multiply-Nested Data Structures
Doubly Nested DSECT definitions
Addressing doubly nested DSECT definitions
Using the Labeled Dependent USINGs to move data
Addressing two DCBs with ordinary USINGs
Addressing instructions and DCBs with one register
Define a personnel-file record
Employee-record Person DSECT
Employee-record Date DSECT
Employee-record Address DSECT,
Employee-record Phone DSECT
DSECT nesting in an employee record
Anchoring various DSECTs within Employee record
Manipulating fields within an Employee record
Addressing DSECTs within Employee record with ordinary USINGs
Comparing dates of birth in Employee record
Comparing date fields in different parts of an Employee record
Copying addresses with an Employee Record
Example of a one-dimensional array of halfwords
Sum of array elements with known subscript bounds
Sum of array elements with unknown subscript bounds
Typical arrangement of elements of a matrix
Storing an array in column order
Storing an array in row order
Retrieving a specified element of an array
Retrieving a specified element of an array efficiently
Searching for a matching table entry
Searching for a table entry mapped by a DSECT
USING Table with two entries, one for a DSECT
Creating a table of addresses
Creating a better table of addresses
Creating a table of addresses at assembly time
Example of a binary search
A stack growing toward higher addresses L.
A stack implemented as an array
Pushing a data item onto a stack
Adding top two elements of a stack
A stack growing toward lower addresses
Add top two elements of astacko

Figures

691.
692.
693.
694.
695.
696.
697.
698.
699.
700.
701.
702.
703.
704.
705.
706.
707.
708.
709.
710.
711.
712.
713.
714.
715.
716.
717.
718.
719.
720.
721.
722.
723.
724.
725.
726.
727.
728.
729.
730.
731.
732.
733.
734.
735.
736.
737.
738.
739.
740.
741.
742.
743.
744.
745.
746.
747.
748.
749.
750.
751.
752.

Sketch of a linked list
Inserting an element into a linked list
Example of inserting an element into a linked list
DSECT describing a list element
Mapping multiple list elements with Labeled USINGs
Deleting an element from a linked list
Example of deleting an element from a linked list
Example of deleting an element from a linked list
Defining a free storage list as an array
Initializing a free storage list as an array
Example of a list anchor
DSECT mapping a list anchor
Defining an anchor for a working list L.
Moving a list element from the FSL to the working list
A two-dimensional array to implement a linked list
Initializing a two-dimensional array implementing a linked list
Structure of a queue element
A queue with several elements
DSECT structure of a typical queue element
An element to be inserted into a queue
A queue after insertion of a new element
Instructions to insert a new queue element
Insert a new list element with ordinary USINGs
Ordinary-USING Code to Insert a New List Element
Labeled USING example: inserting a new queue element
Node of a binary tree
DSECT structure of a typical tree element
Three nodes of a binary tree
A growing binary tree with seven nodes
Entering a new node in a binary tree
Retrieving data from a binary tree L
Example of a binary tree of 7 elements L.
Example of searching a hash table
Example of searching a hash table
Sample macro invocation, Standard form
Generated statements from an OPEN macro
Sample macro invocation using List form
Generated statements from a List form OPEN macro
Sample macro invocation using Execute form
Generated statements from an Execute form OPEN macro
Sample macro invocation using empty List form
Generated instructions from empty List form,
Sample macro invocation using Execute form
Generated statements from an Execute form OPEN macro
Another macro invocation using Execute form and same List form
An R-Type macro invocation generating an argument in a register
Generated statements from R-Type macro
A macro invocation with arguments in registers
Generated statements from a Standard-form macro with arguments in registers

A Standard macro invocation specifying MODE=31
Generated statements from a Standard-for macro with MODE=31
Example of a mixed-case positional macro argument
Example of mixed-case keyword macro arguments
Example of mixed-case keyword macro arguments
Sample ABEND macro
Generated statements from an ABEND macro
Sample R=type GETMAIN request
Expansion of a sample R-type GETMAIN request
Expansion of a sample VRU-type GETMAIN request
Example of an R-type FREEMAIN macro
Sample STORAGE OBTAIN request
Example of a STORAGE OBTAIN macro expansion

Xxviii Assembler Language Programming for IBM System z™ Servers Version 2.00

753. Sample STORAGE RELEASE request 961
754. Example of a STORAGE RELEASE macro expansion 961
755. A Data Set with records you wanttoread 962
756. You submitted a job with a program to read the records 963
757. Your program, loaded into memory before execution 963
758. Your program after executing the OPEN macro 964
759. Your program after executing the GET macro 965
760. Your program after executing the CLOSE macro 965
761. Example of typical DCB parameters 968
762. Unblocked and blocked F-type record and block formats 968
763. Unblocked and blocked V-type record and block formats 969
764. U-type block formats 969
765. Completion of a DCB during OPEN processing 969
766. DCBD operands 970
767. DCBD operands 970
768. Using IHADCB to map two different DCBs simultaneously 970
769. A complete sample program 972
770. Instruction cycle with interruptions 973
771. Establishing a program interruption exit 973
772. Expansion of an ESPIE macro establishing a program interruption exit 974
773. Terminating a program interruption exit L. 974
774. Expansion of an ESPIE macro terminating a program interruption exit 974
775. ESA/390-mode old PSW in EPIE 975
776. Sketch of interruption handling control flow 977
777. A simple ESTAE macro. 979
778. Skeleton form of a reenterable program 985
779. 1I/0O macros in a reenterable program 986
780. Assembly listing for a simple reenterable program 986
781. Example of a reenterable, recursive routine 990
782. Assembly listing of the reenterable recursive routine 991
Tables

1. Binary, decimal, and hexadecimal 18

2. Multiples of powers of sixteen (part 1 of 2) 20

3. Multiples of powers of sixteen (part 2 0of 2) 21
4. Examples of two's complement representation 29

5. Examples of sign extension 31

6. RR-type instruction format 52

7. RX-type and RS-type instruction format 52

8. Sl-type instruction format 52

9. SS-type instruction format 53
10. Instruction Length Code and instruction types 54
11. General instruction classifications 55
12. Punched-card image of a RETURN statement 78
13. Assembler Language EBCDIC character representation 87
14. Differences between Assembler Language and high-level language symbols 94
15. Expressions with absolute and relocatable terms 99
16. Typical RR-type instructions 106
17. RR-type instruction 107
18. Typical RX-type instructions 108
19. RX-type instruction 108
20. Operands of RX-type instructions 109
21. Typical RS- and SI-type instructions 111
22. Typical RS-type instruction 111
23. Operands of RS-type instructions 112
24. Typical SI-type instruction 112
25. Operands of SI-type instructions 112

Figures XXix

26. Typical SS-type instructions 113

27. Typical type SS-1 instruction with one length field 113
28. Operands of type SS-1 single-length instructions 113
29. Typical type SS-2 instruction with two length fields 114
30. Operands of type SS-2 two-length instructions 114
31. Examples of truncated and padded constants 152
32. Truncation/padding rules for some DC operands 153
33. Truncation and padding rules for some DC operands with extended types 158
34. Load/Store instructions for 32-bit general registers 179
35. Format of an RX-type instruction, 179
36. Multiple load/store instructions for 32-bit general registers 180
37. RS-type instruction format L 180
38. Halfword load/store instructions for 32-bit general registers 182
39. Character insert/store instructions for 32-bit general registers 184
40. Insert/Store characters under mask instructions for 32-bit general registers 185
41. RS-type instruction format for ICM and STCM 186
42. CC settings after ICM instruction 187
43. Register/register instructions for 32-bit general registers 187
44. Action of five RR-type general register instructions 188
45. Condition Code settings 188
46. Register/storage instructions for 64-bit general registers 189
47. RXY-type instruction format 190
48. RSY-type instruction format. 190
49. RRE-type instruction format 192
50. Register/register instructions for 64-bit general registers 192
51. Action of five RR-type 64-bit general register instructions 192
52. Load and Test instructions 194
53. Register/register instructions for 64-bit general registers 194
54. Action of 32-bit-to-64-bit general register instructions 194
55. Other general register load instructions L. 196
56. Summary of instructions discussed in this section 200
57. BCR Instruction e 205
58. BCinstructiono 205
59. Mask bits and corresponding CC values 205
60. CNOP operands 208
61. Extended branch mnemonics and their branch mask values 210
62. Frequently used add and subtract instructions 216
63. CC settings for arithmetic add and subtract instructions 217
64. Arithmetic compare instructions 222
65. CC settings after arithmetic comparisons, 222
66. Logical arithmetic instructions 224
67. CC settings for logical add and subtract instructions 224
68. CC indications for logical addition and subtraction 225
69. CC settings after logical addition 228
70. CC settings after logical subtraction, 228
71. Logical arithmetic instructions with carry/borrow 228
72. Instructions for mixed-length operands 230
73. Arithmetic compare instructions 232
74. CC settings after logical comparisons 232
75. IPM and SPM instructions 234
76. Program Mask bits 235
77. Summary of instructions discussed in this section 236
78. General register shift instructions 242
79. RS-type shift instruction 243
80. RSY-type instruction format 243
81. CC settings for arithmetic shift instructions 252
82. Summary of shift instructions discussed in this section 260
83. Binary integer multiply instructions 264
84. Double-length arithmetic multiply instructions 265
85. Single-length arithmetic multiply instructions 268
86. Logical multiply instructions 270
87. Binary divide instructions 274

XXX Assembler Language Programming for IBM System z™ Servers Version 2.00

88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.

Arithmetic divide instructions 275
Binary divide instructions 279
Summary of multiply instructions discussed in this section 283
Summary of divide instructions discussed in this section 283
Logical operations involving general registers 288
CC settings by logical instructions 289
Summary of the logical operations AND, OR, XOR 297
Logical-operation instructions discussed in this section 297
Format of RXY- and RSY-type instructions 302
Format of R-I instructions with 16-bit immediate operands 305
Format of R-I instructions with 32-bit immediate operands 305
PSW addressing-mode bits 309
Load Address instructions 309
Load Address instructions described in this section 314
RI-type instruction 317
RIL-type instruction 317
Insert-Immediate instructions 318
Load and insert instructions with immediate operands 319
Arithmetic-immediate add and subtract instructions 321
Arithmetic-immediate compare instructions L. 322
Arithmetic-immediate multiply instructions 322
AND-immediate instructions 323
OR-immediate instructions 324
XOR-immediate instructions 324
Load and insert instructions with immediate operands 326
Arithmetic instructions with immediate operands 326
Logical instructions with immediate operands 326
Format of the BRC instruction 329
Format of the BRCL instruction 329
Extended branch relative on condition mnemonics and their branch mask values . .. 330
Branch on count instructions 334
Extended mnemonics for branch relative on count instructions 334
Branch on index instructions 341
RS-type BXH and BXLE instructions, . 341
RSY-type BXHG and BXLEG instructions 341
RSI-type BRXH and BRXLE instructions 341
RIE-type BRXHG and BRXLG instructions 341
Extended mnemonics for branch relative on index instructions 343
Branch relative on condition instructions 349
Branch instructions for loop control L 349
SI-type instruction format 352
SIY-type instruction format 352
SI-type instruction actions 353
Move Immediate instructions 353
Logical Storage-Immediate instructions 353
CC settings by SI-type logical instructions 354
Compare Immediate instructions 354
CC settings after CLI instruction 355
Storage-Immediate instructions 356
CC settings after TM instruction 356
Storage-Immediate instructions 363
Basic character-handling instructions 365
Format of single-length SS-type instructions 365
Instruction types and operand formats L 367
SS-type instructions with explicit length o000 367
SS-type instructions with implied length 368
Determining the Length Specification Byte 370
MVCOS instruction 374
SSF instruction format used for the MVCOS instruction 374
Condition Code settings for TRT and TRTR instructions 384
Execute instructions 389
Modifiable portions of typical EX target instructions 394

Tables XXXI

150. Operands of single-length SS-type instructions 396

151. Basic instructions for data in storage 397
152. Basic character-handling instructions using padding characters 404
153. CC settings after MVCL 405
154. CC settings after CLCL 407
155. Format of MVCLE and CLCLE instructions 410
156. CC settings after MVCLE 412
157. CC settings after CLCLE 414
158. Character-handling instructions for terminated strings 415
159. Format of RRE-type instructions 415
160. CC settings for SRST instruction 416
161. CC settings for MVST instruction 417
162. CC settings for CLST instruction 419
163. CC settings for TRE instruction, 421
164. Compare Until Substring Equal instruction 423
165. Condition Code settings by CUSE, 424
166. Results of examples using the CUSE instruction 424
167. Extended instructions for character data 425
168. Punched paper tape encodings with values 00-OF 429
169. Punched paper tape encodings with values 10-1F 429
170. Old six-bit BCD character representation 430
171. Sample EBCDIC characters with varying code points among code pages 431
172. 7-bit ASCII character representation, 433
173. Japanese DBCS assignments 435
174. DBCS encoding 435
175. Sample Unicode assignments 439
176. Unicode string instructions 441
177. CC settings for SRSTU instruction 441
178. CC settings after MVCLU 442
179. CC settings after CLCLU 443
180. RRE-type instruction 443
181. RRF-format instruction with an optional operand 444
182. Unicode translate instructions 444
183. Arguments and translate tables for TRxx instructions 445
184. Registers used by TRxx instructions 445
185. Condition Code settings for TRxx instructions 445
186. Unicode format conversion instructions 448
187. CC settings after Unicode format conversion instructions 448
188. Translate and Test Extended instructions 450
189. Function-code table sizes for TRTE, TRTRE 450
190. Condition code settings for TRTE, TRTRE 451
191. Byte-reversing load and store instructions L. 453
192. Extended instructions for Unicode data 456
193. Unicode-based translate instructions L 456
194. Unicode format conversion instructions 456
195. Summary of byte-reversing instructions 456
196. Basic packed and zoned decimal instructions L. 460
197. Examples of zoned decimal data 462
198. Punched-card image of two numbers, +12345 and —67890 463
199. Examples of packed decimal data 466
200. Format of two-length SS-type instructions 469
201. Operands of two-length SS-type instructions 470
202. Format of PKA and PKU instructions 478
203. Format of UNPKA and UNPKU instructions 479
204. CC settings after UNPKA, UNPKU instructions 480
205. Instructions for moving numeric and zone digits 483
206. Instructions for packing and unpacking data 483
207. CC settings for decimal addition and subtraction 486
208. CC setting after decimal comparison 488
209. Packed decimal arithmetic instructions, 497
210. Operand formats for TP instruction 498
211. Format of the TP instruction 498

XXXii Assembler Language Programming for IBM System z™ Servers Version 2.00

212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.

CC settings for the TP instruction 498
CC settings by the ZAP, AP, and SP instructions 499
CC setting by the CP instruction 504
Format of the SRP instruction 511
Summary of decimal instruction behavior L. 530
Instructions used for converting and formatting packed decimal 532
Format of the ED and EDMK instructions 536
CC settings after ED, EDMK 544
ED and EDMK treatment of pattern characters 547
Basic floating-point instructions 568
Instructions copying data between FPRs 568
Floating-point Load Zero instructions 569
Instructions moving data between FPRs and GPRs 570
Copy Sign instruction 570
Basic Load/Store instructions for floating-point operands 571
Instructions moving operands between GPRs and FPRs 571
Hexadecimal floating-point data representations 587
Unnormalized and normalized short hexadecimal floating-point numbers 588
Short hexadecimal floating-point numbers 588
Long hexadecimal floating-point numbers 589
Extended hexadecimal floating-point numbers 589
Assembled hexadecimal floating-point constants 591
Hex floating-point constants with decimal exponents 591
Length-modified hexadecimal floating-point constants 592
Hexadecimal floating-point constants with modifiers 594
Hexadecimal floating-point rounding modes with subtype H 595
Symbolic hexadecimal floating-point constants 596
“Difficult” hexadecimal floating-point conversion values 596
Data-moving hexadecimal floating-point instructions 597
Hexadecimal floating-point Multiply instructions 599
Summary of hexadecimal floating-point multiplication results 601
Hexadecimal floating-point Divide instructions 603
Hexadecimal floating-point Halve instructions 604
Hexadecimal floating-point Add/Subtract instructions 606
Hexadecimal floating-point Compare instructions 615
CC settings for hexadecimal floating-point comparison 616
Hexadecimal floating-point Round instructions 616
Hexadecimal floating-point Load Lengthened instructions 619
Hexadecimal floating-point FPR/GPR conversion instructions 620
Format of HFP to fixed binary instructions 621
Rounding modifiers for HFP-to-binary conversion 621
CC settings for HFP-to-binary conversion 622
Instructions moving/converting binary and hexadecimal floating-point operands . . . 622
Hexadecimal floating-point instructions generating floating-point integers 625
Hexadecimal floating-point Square Root instructions 627
Hexadecimal floating-point Multiply and add/subtract instructions 627
Format of RRF-type HFP multiply and add/subtract instructions 628
Format of RXF-type multiply and add/subtract instructions 628
Hexadecimal floating-point Move/Test instructions 631
Hexadecimal floating-point Multiply instructions 631
Hexadecimal floating-point Divide instructions 631
Hexadecimal floating-point Add, Subtract, and Compare instructions 631
Hexadecimal floating-point Round instructions 632
Hexadecimal floating-point Lengthening instructions 632
Convert hexadecimal floating-point to binary instructions 632
Convert binary to hexadecimal floating-point instructions 632
Form hexadecimal floating-point integer instructions 632
Hexadecimal floating-point Square Root instructions 632
Hexadecimal floating-point Multiply-Add/Subtract instructions 633
Binary floating-point data representations L. 638
Examples of short-precision binary floating-point normal values 640
Examples of short-precision binary floating-point denormalized values 640

Tables XXXiii

XXX1V

274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.

Examples of short-precision binary floating-point special values 641
Nominal-value operands for binary floating-point special values 644
Assembled binary floating-point special-value constants 644
Minimum bit lengths for binary floating-point constants 645
Binary floating-point DXC values 650
Binary floating-point FPC register control instructions 651
Invalid operation binary floating-point exception 652
Divide by zero binary floating-point exception 652
Exponent overflow binary floating-point exception 652
Exponent underflow binary floating-point exception 652
Inexact result binary floating-point exception 652
BFP overflow/underflow scale factors 653
Binary floating-point Test Data Class instructions 654
Test Data Class second-operand bits, . 654
Test Data Class second-operand test-bit/tested-value correspondence 654
Binary floating-point RR-type data movement instructions 655
CC settings for BFP data movement instructions 656
Binary floating-point Multiply instructions 657
Binary floating-point Divide instructions 659
Binary floating-point Add and Subtract instructions 661
CC settings after BFP add/subtract instructions 661
Binary floating-point Compare instructions, 662
CC settings for BFP comparisons 662
Binary floating-point Compare and Signal instructions 663
Binary floating-point Round instructions 664
Binary floating-point Lengthening instructions 665
Binary integer to binary floating-point conversion instructions 666
Binary floating-point to integer conversion instructions 666
Format of BFP Convert To Fixed instructions 666
Rounding modifier for BFP convert to fixed instructions 667
CC settings after convert to binary instructions 667
Load floating-point integer instructions 668
Rounding mode modifiers for BFP load integer instructions 669
Binary floating-point Divide to Integer instructions 669
Format of BFP Divide to Integer instructions 669
CC settings after divide to integer instructions 670
Binary floating-point Square Root instructions 671
Binary floating-point Multiply and Add/Subtract instructions 672
Summary of binary floating-point instructions with uniform operand lengths 673
Binary floating-point Multiply instructions 674
Binary floating-point Round instructions 674
Binary floating-point Lengthening instructions 674
Convert binary floating-point to binary integer instructions 675
Convert binary integer to binary floating-point instructions 675
Summary of binary floating-point operations and exceptions 675
Decimal floating-point data representations 684
Declet encoding for BCD digits 685
Converting decimal floating-point declets to BCD digits 686
First five bits of special-values Combination Field 687
First 5 bits of finite-value Combination Field 688
Properties of decimal floating-point representations 689
Assembled decimal floating-point special-value constants 690
Examples of decimal floating-point short precision zeros 691
Assembler rounding-mode suffixes for DFP constants 691
Decimal floating-point Test Data Class instructions 693
DFP Test Data Class second-operand bits 694
Test Data Class test-bit vs. tested-class correspondence 694
Example of DFP rounding modes 696
Preferred quanta for some decimal floating-point operations 698
Decimal floating-point additional DXC value 699
Decimal floating-point quantum exception 699
Decimal floating-point scale factors for exponent spills 699

Assembler Language Programming for IBM System z™ Servers Version 2.00

336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
346.
347.
348.
349.
350.
351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.
375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.

Copy Sign instruction
Instructions moving data between FPRs and GPRs
Instructions copying data between FPRs L.
Decimal floating-point basic arithmetic instructions
Format of DFP arithmetic instructions
Format of DFP arithmetic instructions with rounding mask
Instruction-specific rounding mask values L.
CC settings for Add/Subtract instructions
CC settings for Compare instructions
Decimal floating-point Compare instructions
Decimal floating-point Compare and Signal instructions
Decimal floating-point Compare Biased Exponent instructions
CC settings for Compare Biased Exponent instructions
Decimal floating-point convert to/from fixed binary instructions
Format of Convert to Fixed Binary instructions
Format of Convert to Fixed Binary instructions
CC settings for Convert to Fixed instructions
Decimal floating-point convert to/from signed packed decimal instructions
Format of Convert to Signed Packed instructions
Decimal floating-point convert to/from unsigned packed decimal instructions
Instructions converting between decimal floating-point and zoned decimal
Format of DFP/zoned decimal conversion instructions
Condition Code settings for Convert to Zoned
Decimal floating-point Load and Test instructions
CC setting after DFP Load and Test instructions
Instructions copying/complementing data between FPRs
Decimal floating-point Load Floating-point Integer instructions
Format of Load FP Integer instructions
Decimal floating-point Load Lengthened instructions
Load Lengthened special operand control mask
Decimal floating-point rounding/lengthening instructions
Decimal floating-point Set Rounding Mode instruction
Decimal floating-point Insert/Extract Biased Exponent instructions
Extracted Biased Exponent for DFP special values
DFP Insert Biased Exponent results
Decimal floating-point Extract Significance instructions
Decimal floating-point Shift Significand instructions
Format of DFP shift instructions
Decimal floating-point Quantize instructions
Format of decimal floating-point Quantize instructions
Decimal floating-point Reround instructions
Decimal floating-point Test Data Group instructions
Test Data Group second-operand bits
DFP Test Data Class and Test Data Group instructions
DFP Arithmetic and related instructions
DFP length and type conversion instructions
DFP rounding and lengthening instructions
DFP data-loading instructions
Instructions copying between FPRs and GPRs
Instruction setting decimal rounding mode
Non-canonical declets
Summary of System z floating-point representations
Adding 0.1 in hexadecimal, binary, and decimal floating-point
Exception behavior for hexadecimal floating-point
Exception behavior for binary and decimal floating-point
Length modifiers of floating-point constants
Assembler rounding-mode suffixes for floating-point constants
Internal precision required for faithful In-Out conversion
Decimal precision required for faithful Out-In conversion
Perform Floating-Point Operation instruction
Laws of real and realistic arithmetic
Examples of hexadecimal floating-point pseudo-zeros

Tables

XXXV

398. Examples of other floating-point representations 750

399. Equivalent decimal and floating-point precisions 751
400. Branch and Save instructions oo Lo 758
401. Standard (Format-0) Save Area 770
402. Standard Format-4 save area 773
403. Standard Format-5 save area oo 775
404. AMODE values 827
405. RMODE values e 828
406. Default AMODE and RMODE values 828
407. Valid combinations of AMODE and RMODE values 828
408. Differences in linking COMMONSs and External dummy items 841
409. ESD symbol search types 841
410. Matching existing CESD SD symbol to incoming symbols 843
411. Matching existing CESD LD symbol to incoming symbols 843
412. Matching existing CESD CM symbol to incoming symbols 843
413. Matching existing CESD ER symbol to incoming symbols 844
414. Matching existing CESD ER symbol to incoming symbols 844
415. Comparing load modules and program objects 855
416. Instructions to change addressing mode 858
417. CC settings for TAM instruction 858
418. PSW addressing-mode bits 858
419. BASSM actions SUMMArY00 v 860
420. Operation of BSM instruction 860
421. BSM actions SUMMATY oot 861
422. Instruction pairs for call/return with possible AMODE change 862
423. Calling among addressing modes within an assembly 863
424. LLGT and LLGTR instructions 863
425. Symbol table entries for DSECT symbols 873
426. Summary of USING Statements 905
427. Summary of DROP Statement Behaviors 905
428. Example of a non-homogeneous array L 914
429. Array addressing with a table of addresses L 917
430. Example of an address table's contents 918
431. Supervisor and Program Call instructions 950
432, SVCInStruction 950
433. PC instruction format 951
433. Program Call instruction 951
434. GETMAIN request options 958
435. FREEMAIN request options it 960
436. Comparing QSAM and BSAM 966
437. Partial contents of Extended Program Interruption Element (EPIE) 975
438. Hexadecimal, decimal, and binary o 995
439. Hexadecimal Addition Table 996
440. Hexadecimal Multiplication Table 996
441. Integer powers of 2 L 997
442, Integer powers of 2 L 998
443. Multiples of powers of sixteen (part 1 of 2) L. 1000
444. Multiples of powers of sixteen (part 2 of 2) L. 1000
445. Powers of 10 expressed in hexadecimal 1001
446. Assembler Language EBCDIC character representation 1012
447. 7-bit ASCII character representation 1013
448. High Level Assembler DC-Statement Constant Types 1014
449. ASCII Character Representation 1077
450. Examples of different types of integer division 1129
451. Comparing five binary floating-point operands 1225

XXXVi Assembler Language Programming for IBM System z™ Servers Version 2.00

Tables XXXVii

XXXViii Assembler Language Programming for IBM System z™ Servers Version 2.00

Foreword

Outline and
We

FFFFFFFFFFFF WW W
FFFFFFFFFFFF WW W
FF W W
FF W W
FF W W
FFFFFFFF W W
FFFFFFFF W WW W
FF WA WWWH W
FF WW WW WW W
FF -
FF WWW WWW
FF W W

Overview

will survey many aspects of Assembler Language programming on System z processors.

Chapters I-IV cover basic material needed for almost all programs.

Chapter I introduces some notation we'll use, and discusses the important topics of binary and
hexadecimal number representations and arithmetic, and conversion among number represen-
tations.

Chapter II introduces the “Central Processing Unit” or CPU. We'll survey central memory,
the registers you'll use in your programs, and the Program Status Word (PSW). Then we'll

look at some basic types of instructions and their operation codes, and see how they refer to
data in memory.

Chapter III describes basic properties of the Assembler Language, including symbols, self-
defining terms, and expression evaluation. Then we will see how to write Assembler Language
statements and their components. Last, we discuss the key concept of addressability and the
important USING statement.

Chapter IV describes methods for defining often-used data types, and techniques for organizing
data items in your programs.

The six sections of Chapter V discuss basic instructions, emphasizing those that operate on
data in the general registers, and the important “conditional branch” instructions.

Chapter VI considers addressing techniques, loops and other iterative processes, and
“immediate” instructions containing useful operands.

Chapter VII discusses bit and character data and techniques for handling them.

Chapter VIII examines the packed and zoned decimal data representations, instructions for
packed decimal arithmetic, and for conversion between those representations and EBCDIC
characters.

Chapter IX describes general concepts of floating-point arithmetic and the three floating-point
representations supported by System z: hexadecimal, binary, and decimal, and instructions for
manipulating data in and among each of the representations. It concludes with a summary of
important differences between floating-point and mathematicians' “real” arithmetics.

Chapter X discusses large programs and modularization techniques such as subroutines and
common linkage conventions, how to combine separately assembled (or compiled) routines
into a single executable program, and how to change addressing modes.

Chapter XI describes the powerful “Dummy Control Section” and the enhanced USING
statements, and shows how to apply them to several basic data structures.

Foreword 1

e Chapter XII introduces common techniques for accessing operating system services, basics of
exception handling, and uses of reenterability and recursion.

e Appendix A contains reference and conversion tables.

e Appendix B describes a set of useful macro instructions that handle simple input, output, con-
version, and display operations.

Programming Environments

Every programming language must eventually deal with the environments under which the pro-
grams will be run. While we will see many examples of program segments, we will defer complete
programs until later sections.

I assume your programs will execute on one of z/OS™, z/VM™, or z/VSE™. I have purposely
omitted discussion of z/Linux™, because Assembler Language is little used in that environment.

If you like, browse the solutions to the Programming Problems: these are complete programs

that have been executed successfully, and produce what I believe are correct answers. The simple
conventions used here for communicating with the Operating System's Supervisor are described in
“Appendix B: Simple I/O Macros” on page 1015; these may be augmented or replaced as desired.

The conventions and procedures needed to execute an Assembler Language program in your
computing environment should be locally available to you.

Levels of Difficulty (*)

This material varies in depth and detail. Where a detailed portion can be skipped with no loss of
continuity, the heading is tagged with a parenthesized asterisk (*), as in the heading just above.

Exercises and Programming Problems

Exercises and programming problems appear throughout. Some are integral to the material, while
others explore interesting sidelines. Exercises and programming problems are rated in order of
estimated difficulty from 1 to 5; the most useful or illustrative exercises are tagged with a plus (+),
and are strongly recommended.

In all cases, the exercises and programming problems are important.

Some Personal Observations

1. Some exercises ask you to find what is wrong with a statement or instruction sequence.
While it may be poor style (or manners) to show coding errors, I feel justified in doing so on
two grounds: pedagogical value and self-defense.

e First, it helps to see wrong or poor ways to do something, as well as correct or better
ways.

e Second, some programs may be written by people who learned from examples containing
errors — and their programs will be processing my bills, checking my tax returns, and cal-
culating my bank balance. I want your programs — and theirs —to be as safe, correct,
and reliable as possible.

I trust you will understand. I am of course willing to have you point out my errors. If you
find any, please let me know so I can correct them.

2. This is not intended to be a cookbook. I have tried to give not just occasional recipes for
doing some basic tasks, but a view of some underlying processor structures and the language
closest to the processor, Assembler Language. You may have already been introduced to
programming a computer using a “higher-level” language, and are probably familiar with
concepts such as loops and conditional branching. Because the internal structures of com-
puters have many similarities, I sometimes try to point out not only what a particular

2 Assembler Language Programming for IBM System z™ Servers Version 2.00

instruction does, but also why it does it that way. Learning to program other processors will
then be a comfortable extension of the concepts and techniques you learned here.

3. This book is too large! to be used as a text for a programming class of normal length. I

expect that most instructors will use those portions most useful for their selection of topics;

other portions may have information that can be sampled as desired.

I assume you are interested mainly in writing “application-level” programs for z/Architecture

processors, not specialized or privileged operating system components. This text therefore

deals with nonprivileged instructions, which in any event are the great majority of

instructions in all programs.

4. T confess that levels of detail may vary depending on my level of interest in a particular topic.

5. The Exercise and Programming Problem solutions should be considered as samples, and are
not in any way intended to be the “correct” solutions.? If yours are shorter, simpler, or just
plain nicer, so much the better. But if your solutions seem to be two or three times longer
than these, you may want to study them for suggestions of workable approaches to solving a

programming problem.

6. Some of this material is based on lecture notes I created for Assembler Language classes

when I was at the Stanford Linear Accelerator Center in Menlo Park, California.

Yes, this book is too long. As my Chinese-restaurant fortune cookie said: “You have a love for words, and should

write a book.”

I urge you not to look at them before you're tried your own solutions (or if you're completely stuck at some point).

It's OK to learn from someone else's programs, but best it you do it only after you're tried your own.

Foreword

3

ITITIIIIII
ITITIIIIII
II
II
II
II
II
II
II
II
ITITIIIIII
ITITIIIIII

NN NN
NNN NN
NNNN NN
NN NN NN
NN NN NN
NN NN NN
NN NN NN
NN NN NN
NN NNNN
NN NNN
NN NN
NN NN

A digital computer can be considered from various viewpoints; here are five possible views, each
treating the computer's inner workings in successively less detail.

e To an engineer concerned with designing its logical circuits, a computer might be thought of as
a collection of devices for controlling and ordering the flow of electrical signals.

e At another level, a person concerned with methods used to make these logical circuits perform
operations such as addition and division might treat a computer as a collection of registers,
switches, and control mechanisms that perform a series of steps leading (say) to the computa-
tion of a quotient.

e At the next level one might consider a computer's basic operations to be single arithmetic
operations, a simple data movement, or a test of a single piece of data.

e Another viewpoint (typical of “higher-level languages”) considers the basic operations to be
moving blocks of data, evaluating and assigning mathematical expressions, and controlling
counting and testing operations.

e At yet another level, as in certain applications such as traffic simulation, data reduction, and
network analysis, the computer processes information in a form closely approximating the
problem under consideration, and produces output directly applicable to that problem.

Each of these views is of course not especially distinct from its neighbors. We will be primarily
concerned with the middle level, considering the basic operations or instructions that we want the
computer to perform, such as single arithmetic or logical operations, simple data transmission
operations, etc. We will also consider the computer from “neighboring” viewpoints: sometimes it
is useful to know some details of the internal sequencing of operations such as multiplication and
branching; at other times it will be convenient to consider groups of instructions such as macro
instructions that perform operations in a larger context.

The level that is our primary concern is usually known as “Assembler Language programming” or
“assembler coding”.? The assembler we'll describe is the IBM High Level Assembler for z/OS &
z/VM & z/VSE, known as “HLASM”. It also can be used on IBM Linux for System z.

Getting the desired machine language instructions and data into the computer in executable form
requires the aid of a number of programs: the most important for us is the assembler. Other
important programs are the linker* and the operating system Supervisor. Each will be considered
in the appropriate context.

Some people call it “BAL” — meaning “Basic Assembler Language” — but the language is not basic (nor is it

BASIC) except in the sense that it can be fundamental to understanding the System z processor's operations.

The term “linker” here stands for several important programs that combine and load programs for execution. Their

names vary among operating systems (Binder or Linkage Editor and Program Loader on z/OS, Loader and Link
Editor on z/VM, Linkage Editor on z/VSE, etc.)

Assembler Language Programming for IBM System z™ Servers Version 2.00

To give hardware designers greater freedom to implement instructions in the best way, without
your having to be aware of each implementation's techniques, IBM describes an “architecture”.
A processor's architecture defines the actions of instructions, I/O, storage, etc. to describe a
known set of behaviors, while giving processor designers flexibility in implementing those behav-
iors.

It will help to have available a copy of the z/Architecture Principles of Operation manual. It is
easily obtained, and is the reference for basic System z architecture. You should consult it regu-
larly when we discuss individual instructions.

—— Remember!

The Assembler Language itself is quite simple. The syntax is sparse, there
are few “reserved words”, and almost no structuring rules. The main
challenge in learning Assembler Language is learning about the processor
for which you're writing programs.

Von Neumann Architecture

The IBM System z processor is one of a large class of computers known as “Von Neumann
Architecture”, named after John Von Neumann, a mathematician at the Institute for Advanced
Study (IAS) in Princeton, NJ, USA. He and colleagues designed a processor in which programs
and data shared the same memory. A machine was built to that design in the early 1950s, and the
overall design (sometimes called “Institute machines”) was widely adapted in the U.S., Europe,
Japan, and Australia.’

Why Program in Assembler Language (and Why Not)?

Before going any further, ask why you're considering writing programs in Assembler Language.
These are some reasons for programming in Assembler Language:

1. You have to.

Maybe you're taking a course like “Assembler Language Programming”, or you've been
made responsible for an existing Assembler Language application.

2. You want to.

It's useful to know, or maybe you're just curious about what is really going on inside the
processor when you write high-level language programs. The architecture represented by
System/360 and its modern descendants has pervaded the computing industry since the
mid-1960's, and will continue to do so for many years. Because you may encounter some
modern incarnation of the System/360 family, it helps to be familiar with its architecture.

3. It's educational.

Programming in Assembler Language is the best way to learn how the processor works.
Even if you program in high-level languages, there will be times when understanding the
processor's properties will help you understand why certain choices and tradeoffs are made in
programming in those languages.

4. It's fundamental.

A key to writing efficient software is understanding the underlying hardware; no language
other than Assembler Language provides such insights. Even if you don't write much Assem-
bler Language code, writing good high-level language programs often depends on knowing
how to write good Assembler Language programs.

Debugging a problem in high-level language applications may require knowing some machine
language. (You might say that a language needing this kind of debugging isn't very “high-
level”, but it is necessary at times.)

5 Why do I care? My first computer was the ILLIAC I, built to the IAS design.

Foreword 5

Assembler Language is also a natural vehicle for recovering lost source code (yes, it
happens!). Object or binary programs can easily be disassembled into Assembler Language
source programs.

5. It can be more efficient.

Efficiency depends on many things. Because you can specify almost the exact instruction
sequences you want, you can do many things to improve program efficiency. If you know
which parts of a program consume the most time, recoding those parts in Assembler Lan-
guage can often lead to savings.

However, pursuing efficiency has limits. Programmers have been known to struggle happily
over a program modification that will save a few seconds of processor execution time over
the program's lifetime.®

There is another objection to using Assembler Language to attain efficiency: some modern
compilers can produce quite efficient code for certain applications.” However, even clever
coding and powerful compilers can't help a badly implemented algorithm. Also, you may
have difficulty learning the costs of various high-level language statements.

6. It's independent.

Error recovery (and avoidance) can be simpler in Assembler Language than with high-level
languages.

You need not rely on the presence of any run-time environment other than the operating
system environment in which your program will execute. You can access many services that
may not be available to high-level languages.

7. It's more flexible.

There are some processor instructions and facilities for which higher-level languages provide
limited or no support. And even when these facilities are supported, their expression in such
languages may be inefficient, restricted, or difficult to use. Assembler Language may be the
simplest, or even the only, way to access those facilities.

Unlike many high-level languages, Assembler Language imposes no assumptions about how
you should (or must) structure your programs. Someone else's program structures or con-
cepts of proper programming technique aren't forced on you by the language, and you have
more freedom to choose solutions you like.

8. It's more powerful.

In addition to Assembler Language's efficiency and flexibility, you also have available to you
the entire repertoire of the processor's instruction set. New instructions on your CPU are
usable immediately; you don't need to wait for high-level language compilers to “catch up”
to the latest architecture. (Some instructions, though, may require special privileges such as
executing in supervisor state.)

9. It's more fun.

You can do things your own way. You can define the meanings of each and every piece of
your program, and not have to be satisfied with assurances that “the compiler (or the system)
takes care of that for you”.

10. It's controllable.

Unlike “higher-level” languages, the assembler creates machine language instructions and data
in exactly the form and order you specify. It doesn't try to organize (or re-organize) anything
for you; there are no “helpful” intermediaries between you and the processor. In a nutshell,
“What you write is what you get”.

And possibly wasting many more seconds of processor time re-assembling and re-linking the program than will be
ever saved during its execution! (Yes, I've done that...)

Compilers do have occasional errors; finding problems with the generated code is easier if you know Assembler
Language.

Assembler Language Programming for IBM System z™ Servers Version 2.00

11.

12.

13.

It's stable.

You needn't worry about re-translating and re-testing programs with new releases of com-
pilers or run-time libraries; the object code won't change each time you re-assemble.

It's parameterizable.

Because assembler languages have been with us for almost as long as computers, a lot has
been learned about minimizing the pain of modification: we will see that the Assembler Lan-
guage is very rich in possibilities for parameterization. That is, you can revise a value in just
one place in your program, and the assembler automatically adjusts the portions of your
program that depend on that value.

It's extensible.

This is one of the best reasons for programming in Assembler Language: you can define
macro instructions that have whatever meaning you want them to have. You can design and
create an entire programming language of your own, and then build other languages on top
of that, for as many levels as you like or need. Macro-instructions also provide some
“insulation” between your program and the habits of the Operating System under whose
control it will run.

Macro instructions are definitely a highly satisfying aspect of Assembler Language program-
ming. Unfortunately, we don't have room here to describe conditional assembly and macros.

Conversely, there are also reasons for not programming in Assembler Language.

1.

The language can be verbose.

Economy of expression is not a characteristic of most Assembler Languages except (and this
is an important exception) for the availability of macro instructions. Usually, you must write
more lines of code to do a simple task than if you had chosen a higher-level language.

This is due mainly to the richness of the z/Architecture processor's instruction set, because
the Assembler Language itself is quite simple.

The language is very flexible.

It can be too flexible for some users. There are many acceptable ways to use Assembler
Language to solve a given problem, and almost all problems can be solved with a small and
manageable set of instructions.

The language is idiosyncratic.

To a large extent, the occasional lapses of regularity and coherence in the syntax and seman-
tics of the Assembler Language are due to irregularities in the System z instruction set and
architecture: instructions that do similar things may have different syntaxes. Thus, the
Assembler Language contains occasional “special cases” and “exceptions to the rules”. (This
is of course not unique to Assembler Language!)

The language's flexibility means it's easier to make errors.

While this reason is implicit in the previous three, it also is part of the price you pay for
being able to specify everything yourself; you have more chances to make mistakes. We will
see that there are good ways to avoid some of the pitfalls that this extra freedom provides.

Programs can be harder to debug.

In some cases, programmers may not write programs so they can detect processing errors, or
terminate gracefully. Because programs can be written with great freedom, they might not be
organized so that errors do a minimum amount of damage. Similarly, some programmers are
often reluctant to insert the extra instructions necessary to leave an easily-followed diagnostic
trail for the person (you?) trying to discover why your program did something unexpected.

Programs may seem hard to maintain.

Maintenance costs are much more strongly influenced by the structure and clarity of the code
than by the language used to write it. Extensive research has shown little difference in mainte-
nance costs between Assembler Language and high-level languages.

Foreword 7

7. Lack of a run-time library.

Assembler Language programs can be written as a component of a high-level language appli-
cation. But “stand-alone” Assembler Language applications may not have access to the run-
time libraries provided with most high-level languages. By using careful modular design
techniques, this lack can be overcome with a set of routines or macro instructions that
provide functions shareable among many applications.

Assembler Language programs can access run-time libraries, so long as they adhere to appro-
priate programming conventions; this can often reduce programming effort.

. Lack of portability.

Unlike programs written in some high-level languages, assembler language code is intended
for execution only on the processors for which it is created. (And, high-level language pro-
grams are not always easily moved to other processor architectures!)

If none of the reasons for programming in Assembler Language has much appeal to you —you
don't have to program in Assembler Language, you don't need its efficiency, flexibility, power, or
extensibility, and your sources of amusement (or employment) lie elsewhere —then don't. Use
whatever tool will do the job with the least time, effort, and nuisance, and get on to whatever task
comes next.

Assembler Language Misconceptions

These are some common misconceptions about Assembler Language:

Assembler Language is dead.

For many small-environment or short-lived applications, fast implementation is more impor-
tant than long life, small size or high performance. But many substantial organizations have
made major investments in Assembler Language applications that must be fast, compact, and
can process high volumes of data efficiently; such applications need regular enhancement.

It's hard.

The language itself is trivially simple. Understanding programs in any programming language is
more a matter of clear coding and good style and organization. Any programming task can be
made easy or difficult. (We'll offer occasional bits of advice on ways to simplify your program-
ming challenges.)

Assembler Language programs are faster than compiled programs.

That depends more on your choice of algorithms, the high-level language, and its compiler.
You can write slow programs in any language.

Assembler Language programs are hard to read.
Only if you write them that way! But you do need to understand the System z instructions.
It's hard to manage all those base registers.

Not at all: careful program organization and appropriate instruction choice easily make it a
non-problem.

Assembler Language is hard to maintain, especially if you don't have the needed skills.

Extensive research shows little difference in maintenance costs among programming languages,
and lack of skills is a problem for any programming language.

Many applications written in Assembler Language can be replaced with “out-of-the-box”
functionality.

It's rare that a purchased software package does exactly what your organization needs; you
must pay in time and money for negotiating, training, and adaptations that you could com-
plete “at home” more promptly and cheaply.

You don't need to worry about efficiency, because a faster CPU will be along in a year.

8 Assembler Language Programming for IBM System z™ Servers Version 2.00

Rarely true, because growing businesses continually need to process more data and their pro-
grams must provide new capabilities. Once you fall behind, it's difficult to rewrite inefficient
applications.

e Converting an Assembler Language application to a high-level language will make it easier to
hire skilled programmers.

There are some critical factors here: research has shown that
1. Changing language has many hidden costs and should be avoided.
2. High-level languages do not improve reliability or maintainability.

3. Problem-domain expertise is often more important than programming-language expertise.
It it much easier to train people who understand your business and business processes in
the language you need, rather than hiring people who have the necessary language skill.

Some further considerations include:

- Transition and testing require system stability, which implies possible lost business oppor-
tunity.

- Converting and validating test cases can be a major effort in itself.
- High stress levels for “bilingual” staff.
e You can't do “Structured Programming” in Assembler Language.

- By using a set of Structured Programming macros such as those available with the High
Level Assembler, programs can be as fully structured as any high-level language program.

- Because you have full control over the separation of code and data into individual modules,
you can have greater flexibility in determining the structure of an application than a typical
high-level language may provide.

—— Remember!

What's good about Assembler Language?
Almost everything you do works OK.

What's bad about Assembler Language?
Almost everything you do works OK.

Exercises
0.1.1.(1)+ Why are you interested in Assembler Language?

0.1.2.(0) What is the difficulty level of this exercise?

Foreword 9

10 Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter I: Getting Started

ITITIIIIII
ITITIIIIII

ITITIIIIII
ITITIIIIII

In this chapter, we will look at factors involved in Assembler Language programming, and then
investigate the binary number representation and its arithmetic.

Section 1 looks at some notation, terminology, and conventions we'll use.

Section 2 describes basic topics about the number representations used in System z processors:
binary and hexadecimal numbers, arithmetic and logical representations, 2's complement arith-
metic, and discusses alternative number representations.

Chapter I: Getting Started 11

1. Some Basic ltems

1111111111
1111111111

In this section we introduce some basic terms and notations that we'll use later, and then investi-
gate the important properties of the binary number representation.

1.1. Notation and Terminology

Some diagrams and figures need to show the lengths and positions of parts of the figure. In
Figure 1 we want to show some object's structure, and to indicate the amount of space
required for each of its components. To do this, we place a number above the field to indicate
its length. In cases where we also indicate the numbering and positions of the digits in that
component, we use numbers below the field, at its right and left ends. Two four-digit fields in
an eight-digit area would be as shown in Figure 1:

4 4 <«— Field widths

Fieldl | Field2

0 34 7 <«— Start and end positions of fields

Figure 1. Example of numbering and notation

By convention, numbering starts with digit zero on the left. We call the leftmost digit, digits,
or portion of a field the high-order part of the field; the rightmost digit, digits, or portion of the
field the low-order part. Thus, position O in this figure is the high-order digit, and position 7 is
the low-order digit.

Standard mathematical symbols such as subscripts and superscripts, and the capital Sigma used
to denote summation are hard to produce, so we sometimes use a slightly different notation.
For subscripted quantities like By (“B-sub-k”) we will sometimes use “B;”, but also either
“Bk” or the programming-language convention “B(k)”. For quantities like “element i,j of
ARRAY” or “ARRAY-sub-i,j” (often written “ARRAY;.”) we write “ARRAY(i,j)”. There
are very few places where the juxtaposition of two letters like “XY” means multiplying X and
Y, but these will be obvious from the context where they appear. In some cases we use super-
scripts for quantities like 105 and Bk, but we also use the common notation of paired asterisks
to denote exponentiation, as in 10**5 and B**k.

12 Assembler Language Programming for IBM System z™ Servers Version 2.00

e For the operations of addition, subtraction, multiplication, and division, we use the operators
+, —, *, and / respectively. (In some descriptions, we use “x” for multiplication and “+” for
division.) We use vertical bars or the functional notation ABS() to denote absolute values: |x|
and ABS(x) mean the magnitude of the quantity x.

e To denote the contents of something called “x”, we use c(x) or C(x). Sometimes the object
whose contents we're interested in will be an identifiable object such as a register, so that we
might speak of the contents of Register 1 as c(R1). At other times we may speak of the con-
tents of something whose actual form or location is not precisely known, such as an area of
memory that has been given the name AREA; in this case we still use the notation c(AREA).

e Some words have similar but different meanings. For example, the word “operand” is used in
several different senses in most of the literature describing System z and its Assembler Lan-
guage.

1. In the description of instructions in the z/Architecture Principles of Operation, an operand
is the object being operated on, or is involved in the instruction. For example, in

LM Ry,R3,S,

the contents of general register designated by R; is the first operand, and the contents of
storage addressed by S, is the second operand. Note that operand numbers may not corre-
spond to their sequential position!

2. In an Assembler Language statement, an operand is defined by its position in the operand
field. For example, in

LM 2,12,SAVE

the first operand is 2, the second operand is 12, and the third operand is the symbol SAVE.
Note the difference in operand numbering compared to the z/Architecture Principles of
Operation description!

3. During execution, an operand is the subject of an operation: an operand is something
being acted on or operated on by an instruction as it is executed in the processor. For
example, in

LM 2,12,SAVE

one operand is the contents of general register 2, and another operand is the contents of
memory named by the symbol SAVE.

We'll try to clarify these differences; the intended sense will be usually clear from the context in
which the word appears.

e Sometimes we need to indicate positions where a blank or space character should appear.

TP

Rather than use a blank “ ” character, we sometimes use a “‘®” character. For example,
Johne(Q.ePublic
has a blank on each side of the middle initial.
e Sometimes we refer to the “euro” character. Because this document formatter doesn't have
that exact character, we use € as the best available approximation.

Exercises

1.1.1.(1) What is the total width of the fields illustrated in Figure 1 on page 12?

1.2. Instruction Elements

We will often refer to parts of a machine instruction. In the z/Architecture Principles of
Operation, you will see notations like

Rl’RZ or D2(X2,Bz) or Ml or 12 or Ll

where the subscripted letters specify numeric values appearing in the fields of a machine instruc-
tion. They are simply a way to indicate numbers that you or the assembler must provide. In
particular:

e A notation like “R;” is simply a number that usually denotes any register, not “register
number 17.

Chapter I: Getting Started 13

e “GR R;” means the general register denoted by the number used in place of Rj.

e “GR1” means general register 1.

We'll clarify these and other details as we proceed.

1.2.1. Register Names

We refer regularly to registers, using small numbers like 0, 12, etc. Some people like to use
“names” like RO and R12 for them. They can be helpful, but can also be very misleading, because
“R0O” isn't really a register name; it's only a name for a number. (Some exercises will help you
understand why it can be misleading.) I don't want you to develop a habit of thinking that names
like “R0O” always mean “register 0”. I prefer to use just numbers like “0” or “12” to designate
register names.® That said, we will sometimes refer to a specific register using terms like RO and
R12, meaning specifically general registers 0 and 12.

Unlike some other processors and their assemblers, there are no reserved register names or
symbols in the System z Assembler Language.

Exercises

1.2.1.(1) If Ry has value 9, what register is referenced by GR R;?

Terms and Definitions

algorithm
A finite sequence of well-defined steps for solving a problem. After al Khwarizmi, a nick-
name of the 9th century Persian astronomer and mathematician Abu Jafar Muhammad ibn
Musa, who authored many books on arithmetic and algebra. He worked in Baghdad and his
nickname alludes to his place of origin, Khwarizm (Khiva), in present-day Uzbekistan and
Turkmenistan.

architecture
A description of “the attributes of a system as seen by the programmer, i.e., the conceptual
structure and functional behavior, as distinct from the organization of the data flow and con-
trols, and the physical implementation.”®

assembler
A program that translates programs written in Assembler Language to machine language
instructions and data.

Assembler Language
A lower-level language allowing programmers maximum freedom in specifying processor
instructions, providing powerful “macro instruction” facilities supporting encapsulation and
economy of expression.

blank
A nonempty, finite-width invisible character; a space. In contexts where explicit blank spaces

g

appear, we sometimes use the “e” character.

HLASM
IBM's High Level Assembler for z/OS and z/VM and z/VSE. The assembler we describe
here.

8 One reason for using symbolic register names was that all early assemblers' “Symbol Cross Reference” (a list of all
symbols used in your program) showed the places where the names were used — and searching the cross-reference
might be the only way to know which instructions might have referenced specific registers. The IBM High Level
Assembler for z/OS & z/VM & z/VSE provides a “Register Cross Reference” showing where the general registers
were used, whether or not they were named. So, it's no longer necessary to “name” registers.

9 G.M. Amdahl, G.A. Blaauw, and F.P. Brooks, Jr. Architecture of the IBM System/360, IBM Journal of Research
and Development Vol. 8 No. 2, 1964, reprinted in IBM Journal of Research and Development Vol. 44 No. 1/2,
January/March 2000.

14 Assembler Language Programming for IBM System z™ Servers Version 2.00

operator
A character specifying a mathematical operation: + for addition, — for subtraction, * or X for
multiplication, and / or + for division.

space
A nonempty, finite-width invisible character; a blank character. In contexts where explicit

[T %1

blank spaces appear, we sometimes use the “e” character.

Chapter I: Getting Started 15

2. Binary and Hexadecimal Numbers

2222222222
222222222222
22 22

22
22
22
22
22
22

22
222222222222
222222222222

In this section we examine number representations and methods for converting numbers in those
representations to and from decimal. Then we examine arithmetic using numbers in the binary
representation.

System z, like most other digital computers, uses binary—base two—numbers for most internal
arithmetic. A binary digit takes only values 0 and 1; because it is relatively simple to build a
mechanical or electrical device representing a binary digit, the binary representation is quite
natural. For example, a 1 digit may be represented by the presence of a current through a circuit
component or by the presence of a positive voltage at some point. Facility with binary numbers is
fundamental to understanding the basic operations of System z, so it is important to understand
the binary number representation.

For now, all numbers are assumed to be integers. This means that the “decimal point” (the
“radix point” or “binary point”) lies at the right end of the number. We will discuss nonintegral
(fractional) numbers in Sections 29 and 31.

We are familiar with numbers using radixes other than 10. Times (and angles) measure minutes
and seconds using radix 60; hours are counted using radix 24; and before The United Kingdom
changed to a decimal monetary system: radix 20 for shillings and radix 12 for pence. Binary is
easier.

2.1. Positional Notation and Binary Numbers

16 Assemble

In base ten, writing a number such as “1705” means the quantity
1000 + 700 + 00 + 5,

which can also be written as
1x1000 + 7x100 + 0x10 + 5x1,

or as

1x103 + 7x102 + 0x101 + 5x100,

That is, each digit position as we move to the left is weighted by one more power of the base, ten.

r Language Programming for IBM System z™ Servers Version 2.00

Similarly, when in binary notation we write “11010” we mean
10000 + 1000 + 000 + 10 + O,

1x24 + 1x23 + 0x22 + 1x21 + 0x20,

1x16 + 1x8 + Ox4 + 1x2 + Ox1

which is not the same as what is meant by the decimal number 11010, where powers of ten are
understood. In fact, the binary number 11010 is the representation (in the number system with
base two) of the decimal number 26: the sum in this example is 16+8+2.

To clarify which base is intended we use a notation like the Assembler's: if base 10 is intended,
the digits are written normally; if base 2 is intended, the binary digits are preceded by a “B” and
an apostrophe, and are followed by an apostrophe. For example:

26 = B'11010', 1 = B'1', 10 = B'1010', 8 = B'1000', 999 = B'1111100111".

Positional notation can be used for any base (or radix). For example, if humans had only one
hand we might use base 5 for numbering, so that 1413 in base 5 would have decimal value 233 (in
our ten-finger decimal world):

14135 = 1x53 + 4x52 + 1x51 + 3x50

125 + 100 + 5 + 3
2330

Exercises

2.1.1.(1)+ Determine the decimal value of the following binary numbers: (a) B'000010110', (b)
B'000101100', (¢) B'10101010', (d) B'1111111".

2.1.2.(1)+ Suppose a binary number is represented by a single 1-bit followed by a string of n
zero bits (100...00). What is its value?

2.1.3.(2) Suppose a binary number is represented by a string of n one bits (111...11). What is
its value?

2.2. Hexadecimal Numbers

As values become larger, the number of binary digits required becomes larger also (over three
times as many bits as decimal digits), so we use a more compact notation for binary numbers. If
we consider groups of four binary digits at a time, the possible decimal values that can be repres-
ented run from zero to fifteen. If we then represent each of these groups by the “digits” 0, 1, 2, 3,
4,5,6,7,8,9, A, B, C, D, E, F, we can establish the correspondences shown in Table 1 on

page 18. (The letters A through F are a natural choice for “digits”, but we could actually have
chosen any other six symbols to represent the “digits” to which we assign the values 10, 11, ...,
15.19)

We use the same positional notation for base 16 number representation as for decimal and binary
numbers. Thus, we can write the base 16 number A97E 4 as

Ax163 + 9x162 + 7x16! + Ex160,
or

10x163 + 9x162 + 7x161 + 14x160 = 10x4096 + 9x256 + 7x16 + 14 = 43390.

10 In fact, some early computers such as the ILLIAC I used the characters K, S, N, J, F, and L because those letters
had the required binary 4-bit hole combinations on 5-hole punched paper teletype tape. (Remembering those six
letters was helped by the phrase “Kind Souls Never Josh Fat Ladies”.)

Chapter I: Getting Started 17

Why use something as unfamiliar as a base-sixteen representation for numbers that are binary in
nature? Base 16 is compact and convenient for expressing long strings of binary digits, and a
natural representation for System z. Other groupings are possible; another form is “octal”, or
base eight, in which the binary digits are grouped by threes.!

Table 1. Binary, decimal, and
hexadecimal
Binary Decimal Hex
Digits Value Digit
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

The base sixteen digits in the third column are called hexadecimal' or hex digits, and we use them
in most situations when we need to refer to binary numbers. As with binary numbers, a notation
similar to the Assembler's will denote hexadecimal quantities: the hexadecimal digits are preceded
by an “X” and an apostrophe, and are followed by an apostrophe. For example:

26 = B'11010' = X'1A', X'26' = B'100110" = 38,
1=8'1'"=X'1l", 10 = B'1010" = X'A",
B'1000' = 8 = X'8", 100 = X'64' = B'1100100"'.

Converting numbers between binary and hexadecimal representations is easy:

e To convert a hexadecimal number to binary, substitute for each hexadecimal digit the four
binary digits it represents.

e To convert a binary number to hexadecimal, group the binary digits four at a time starting
from the right (adding extra zeros at the left end if needed), and substitute the corresponding
hexadecimal digit.

For example:

X'D5B' = B'1101 0101 1011’ (hexadecimal to binary),

B'11 1110 1000' = X'3E8' (binary to hexadecimal).

In the second example we could add two extra binary zero digits at the left or “high-order” end of
the number without affecting its value; similarly, we can omit high-order zero digits, and write

X'11' = B'10001' (rather than B'00010001').

Processors whose word lengths were “natural” multiples of 3 included the IBM 70x and 709x processors with 36-bit
words, and several Control Data Corporation (CDC) processors with 48-bit words. Most processors now have word
lengths that are a multiple of 8 bits.

The correct term for base 16 is “sexadecimal” (or even “hexadecadic”), but you can understand that abbreviating the
term “sexadecimal” would not be appropriate for dignified corporations.

18 Assembler Language Programming for IBM System z™ Servers Version 2.00

Don't omit zeros on the right! That is, B'00111100' = X'F'.

Converting between decimal and hexadecimal representations is more cumbersome; it is simplest
to use Tables 2 and 3 starting on page 20 below, and the tables in “Appendix A: Conversion and
Reference Tables” on page 995. The following section discusses general methods for converting

integers from one base to another; if you are satisfied to use the tables, the next section may be
skipped.

We use these abbreviations regularly: bit means “binary digit”, and hex is an abbreviation for
“hexadecimal”.

Exercises
2.2.1.(1) Convert the following hexadecimal numbers to binary: (a) X'A', (b) X'2B', (c) X'3E8".

2.2.2.(1) Make a table similar to Table 1 on page 18 showing binary, decimal, and octal (base
8) values.

2.2.3.(2) In grouping bits to form hex digits, why can't we start at the left? That is, why do we
begin grouping at the radix point?

2.2.4.(2)+ Create addition and multiplication tables for single hexadecimal digits.

2.2.5.(1) Convert the following octal numbers to hexadecimal:

1. 21474
277777
3. 1750
4. 60341303
5. 4631

2.2.6.(3) You may have noticed that the characters in many cartoons and comics have only four
fingers. To help them with “cartoon arithmetic”, create base-8 (octal) addition and multipli-
cation tables.

2.3. Converting Integers from One Base to Another (*)

In our familiar notation, a string of digits like 73294 in some base A means
TxA% + 3xA3 + 2xA2 + 9xAl + 4xA0,

Using symbols, the digit string
d, ... d3 dy dy dy

is the representation in some base A of a number X:
X = dxAn + .., + d3xA3 + dyxAZ + dyxAl + dxAO.

The subscripts on the digits d match the power of the base A. If A has value 10, then the digit
string 73294 is the familiar decimal number seventy-three thousand, two hundred ninety four.

Suppose we want to convert X from its representation in base A to its representation in a new
base B, with digits e, €4, e,, etc.:

X = e XBm + ... + e3xB3 + e,xB2 + e xBl + e xBO.
We know the old and new bases A and B, and the digits d, of the old representation. To find the
digits e, of the new representation, we use the following scheme;

1. Divide X (in base A notation and arithmetic) by the new base B; save the quotient. The
remainder is the low-order digit ey. This can be seen from the definition of the quotient and
remainder:

Chapter I: Getting Started 19

>
n

B x Quotient + Remainder
B x [e,)Bm-1) + ... + exB2 + e)xBl + e xBO] + e.

where the term in square brackets is the quotient.
For example, taking A to be 10 and B to be 16, we convert 73294 to hex:
X = 73294 = 16 x Quotient + Remainder = 16 x 4580 + 14,
soey = 14 = X'E".
2. Now, divide the saved quotient by B; save the new quotient, and the new remainder is e;.

In our example, dividing 4580 by 16 gives quotient 286 and remainder 4, the value of the
next digit, e;.

3. Continue this process until a zero quotient is obtained. The successive remainders are the
desired digits e, €4, ..., €,,; they were obtained in order of increasing significance, from right
to left.

Continuing to divide by 16 in our example, we obtain remainders 14, 1, and 1; these are the
digits e,, e3, and e, respectively. The result of this sample conversion shows that 73294 (base
10) has value 11E4E (base 16).

Our most frequent conversions are between decimal and binary or hexadecimal; use Tables 2 and
3, or the conversion tables in Appendix A.

1. If the number is small enough, find it in the conversion tables.

2. For larger numbers,

a. To convert from hex to decimal, find each digit's decimal value in the tables in Tables 2
and 3, and evaluate the sum.

b. To convert from decimal to hex, find the largest power of 16 in the tables that is less
than or equal to your number, subtract that number, and note the corresponding hex
digit. Repeat, writing the hex digits from left to right. The following example shows how
to do this for the decimal value 1000:

1000
-768 hex digit 3
232
-224 hex digit E
8
-8 hex digit 8
0
so that 1000 (decimal) is X'3E8".
Table 2. Multiples of powers of sixteen (part 1 of 2)
Hex Digit x 160 x 161 x 162 x 163 x 164
1 1 16 256 4,096 65,536
2 2 32 512 8,192 131,072
3 3 48 768 12,288 196,608
4 4 64 1,024 16,384 262,144
5 5 80 1,280 20,480 327,680
6 6 96 1,536 24,576 393,216
7 7 112 1,792 28,672 458,752
8 8 128 2,048 32,768 524,288
9 9 144 2,304 36,864 589,824
A 10 160 2,560 40,960 655,360
B 11 176 2,816 45,056 720,896
C 12 192 3,072 49,152 786,432
D 13 208 3,328 53,248 851,968
E 14 224 3,584 57,344 917,504
F 15 240 3,840 61,440 983,040

20 Assembler Language Programming for IBM System z™ Servers Version 2.00

Table 3. Multiples of powers of sixteen (part 2 of 2)
Hex Digit X 165 x 166 x 167
1 1,048,576 16,777,216 268,435,456
2 2,097,152 33,554,432 536,870,912
3 3,145,728 50,331,648 805,306,368
4 4,194,304 67,108,864 1,073,741,824
5 5,242,880 83,886,080 1,342,177,280
6 6,291,456 100,663,296 1,610,612,736
7 7,340,032 117,440,512 1,879,048,192
8 8,388,608 134,217,728 2,147,483,648
9 9,437,184 150,994,944 2,415,919,104
A 10,485,760 167,772,160 2,684,354,560
B 11,534,336 184,549,376 2,952,790,016
C 12,582,912 201,326,592 3,221,225,472
D 13,631,488 218,103,808 3,489,660,928
E 14,680,064 234,881,024 3,758,096,384
F 15,728,640 251,658,240 4,026,531,840

The binary powers 210, 220, and 230 are often abbreviated by the letters “K”, “M”, and “G”.
Thus, it is common to refer to the decimal number 4,096 = 212 as “4K”. Similarly, 3x220 might
be referred to as “3M”. Thus, for example, an area of memory (which we'll discuss in Section
3.1) containing 8,192 storage locations might be said to contain “8K bytes” or “8 K-bytes”.!3

Exercises
2.3.1.(2)+ Convert these numbers from the given base to the new bases.

26293 (base 10) to bases 2, 4, 8, and 16.
X'2FACED' (base 16) to bases 10 and 2.
X'BABEFO0OD' (base 16) to bases 10 and 8.
X'COFFEE' (base 16) to bases 10 and 2.

bl

2.3.2.(2) Convert the following to decimal.

1. X'7FFFFFFF'
2. Xx'C1czcs3!
3. X'4040405C' (This digit pattern will reappear in other forms!)
2.3.3.(3) Make a table of the hexadecimal values of the squares of the integers from 1 to 32.

2.3.4.(2)+ Convert the following hexadecimal numbers to decimal.

X'257'
X'7FFA'
X'8008'
X'E000'
X'FFFA'
X'E1010'

kW=

2.3.5.(3) Suppose we must convert a number from its representation in base A to its represen-
tation in base B. In which base will it be most convenient to do the arithmetic involved in the
conversion? How does the result depend on the base used for the conversion?

2.3.6.(2) Convert these octal (base 8) numbers to base 10: (a) 5061, (b) 257, (c) 192. Work
carefully!

13 More properly, the abbreviations K, M, and G refer to the closest powers of 10: one thousand = 1K = 103, one
million = 1M = 106, etc. To avoid this confusion, you can use the more precise terms “Ki”, “Mi”, and “Gi” to
refer to the binary powers. But few computer people bother.

Chapter I: Getting Started 21

2.3.7.(2) What decimal values are represented by the binary numbers 9K, 5M, and 2G?

2.4. Examples of General Conversions (*)

We will use the division methods described in the previous section to illustrate conversions from
one base to another.

1. Convert 19 (base 10) to base 2.

9 4 2 1 0

2)19 2)9 2)4 2)2 2)1

18 8 4 2 0
1=eO 1=e1 0=62 O=E3 1=E4

Hence, 19 = B'10011".

2. Convert 1000 (base 10) to base 16. (The conversion arithmetic is done in base 10.)

62 _3 0

16)1000 16)62 16)3

992 48 0
8=eO 14 (X'E')=e1 3=62

Hence 1000 = X'3E8"'.
3. Convert 627 (base 10) to base 9.

_69 7 0

9)627 9)69 9)7

621 63 0
6=eO 6=e1 7=62

so that 627 (base 10) = 766 (base 9).

4. Convert 766 (base 9) to base 7. First, we convert to base 10, and then do the arithmetic in
decimal:

766 (base 9) = 7x81 + 6x9 + 6 = 567 + 54 + 6 = 627 (base 10)

_89 12 _1 0

7)627 7)89 7)12 1

623 84 /. 0
4=eO 5=e1 5=62 1=E3

so that 766 (base 9) = 1554 (base 7).

— If you are mathematically inclined:

Just for fun, now do the conversion in base 9:

108 13 1 0

7)766 7)108 7)13 7)1

762 103 7 0
4=eO 5=el 5=e2 1=E3

Thus 766 (base 9) = 1554 (base 7) again. This shows that you can
do base conversion using any (other) base for the arithmetic.

5. Convert 1413 (base 5) to base 10. This is simplest if we expand the positional notation:

1413 (base 5) = 1x125 + 4Xx25 + 1x5 + 3 = 233,

22 Assembler Language Programming for IBM System z™ Servers Version 2.00

— If you are still (or very) mathematically inclined:

Alternatively, since 10 (base 10) = 20 (base 5), we can do the con-
version in base 5 arithmetic:

43 _2 0
20)1413 20)43 20)2
130 40 0
113 3=el 2=E2
110
3=e0

Again, we find 1413 (base 5) = 233 (base 10).

6. Convert X'3E8' to base 10. In this case it is simpler to evaluate the positional notation:
X'3E8' = 3x162 + 14x161 + 8x160,
and then evaluate this sum in decimal. Thus we find

X'3E8' = 3x256 + 14x16 + 8 = 768 + 224 + 8 = 1000.

This type of conversion can be simpler if you use the table of multiples of powers of 16 in Tables
2 and 3, or the conversion tables in Appendix A.

Exercises

2.4.1.(2) Perform the indicated conversions. For number bases greater than 10, assume that the
“digits” corresponding to 10, 11, 12, etc., are represented by the letters A, B, C, etc., respec-
tively.

1. Convert 31659 (base 10) to bases 8, 4, and 2.
2. Convert 6917 (base 10) to bases 5, 13, and 16.
3. Convert X'EF2A' (base 16) to bases 10 and 13.

2.4.2.(2)+ Make a table of the hexadecimal representations of the first ten powers of ten, from
100 to 109. (Suggestion: use hexadecimal arithmetic, and multiply each term by X'A' to obtain
the next.)

2.4.3.(3) Make a table like those in Tables 2 and 3, except that the nine multiples of the powers
of ten from O to 9 should be expressed in hexadecimal notation.

2.4.4.(3) Convert B'1111101000' to base 10 using binary arithmetic (that is, divide by B'1010").

2.4.5.(3) Convert 73294 (base 10) to bases 11, 12, 13, 14, and 15. Can you make any use of the
result of converting to base N to help in converting to base N+1?

2.4.6.(3) Make a base seven multiplication table. Use it to perform the following conversions
directly, without first converting to base ten: (1) 526 (base 7) to base 16, (2) 10110 (base 7) to
base 8, (3) 61436 (base 7) to base 8, (4) 666 (base 7) to base 10.

2.4.7.(2) Convert 629 (base 11) to bases 10 and 12.

2.4.8.(3) In converting from some base A to base 10, it is usually most convenient to expand
the positional notation as illustrated in Examples 5 and 6 of Section 2.4. We can also expand
the positional form by rewriting it in “nested” form:

X = (((...(dxA)+...+d3)xA+d,) xA+d |) xA+d).

That is, the leftmost digit is multiplied by A, the next digit is added to it and the result is multi-
plied by A, and so forth until the rightmost digit has been added. Using this technique, perform
the following conversions.

1. 2F3 (base 25) to base 10.
2. 61436 (base 8) to base 10.

Chapter I: Getting Started 23

3. X'DEFACE' (base 16) to base 10.
4. 999 (base 10) to base 16.

2.4.9.(2) In applying the “nested multiplication” technique of the previous exercise to conver-
sions from base A to base B, what base should be used for the conversion arithmetic?

2.4.10.(3) Using the base seven multiplication table you made in Exercise 2.4.6, perform the
following conversions in base 7 arithmetic: (1) 526 (base 10) to base 16, (2) 10110 (base 2) to
base 5, (3) 61436 (base 8) to base 10, (4) 666 (base 10) to base 7.

2.4.11.(3) Write the decimal value 8 in bases 8, 7, 6, 5, 4, 3, 2, and 1.

2.4.12.(3) If you have two numbers in bases A and B, what is a necessary relationship between
A and B that will allow you to use the same “digit grouping” technique you used to convert
between binary and hexadecimal?

2.4.13.(3) Show the value of 16, in bases 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, and 3.

2.4.14.(4) Using base 7 arithmetic, calculate the sum and product of 4355 and 64,. First,
convert those two numbers to base 10 and then add and multiply the results in base 10; then
use those results to test that you have evaluated the base 7 sum and product correctly.

2.4.15.(2) Convert the following decimal values to base 3: 2, 6, 10, 12, 16, 28, 41, 99, 104.

2.5. Number Representations

Now that we know how to convert numbers between binary and hexadecimal, we will see how
they are used in System z for address calculations, indexing, and integer arithmetic. Up to now,
we have examined the binary number representation only for nonnegative numbers; representing
negative numbers requires further consideration.

There are three fixed-point (integer) number representations in common use: the radix-
complement, the sign-magnitude, and the diminished radix-complement representations. In prac-
tice, the widely-used radix-complement representation is called the two's complement
representation, and the diminished radix-complement representation is called the ones’ complement
representation.!* Two of these representations are used in System z: the two's complement form is
used for addressing and integer arithmetic, and the sign-magnitude form is used for floating-point
and packed decimal numbers. A variation of the radix-complement form is used internally for
packed decimal arithmetic, which we'll see in Chapter VIII.

With so many representations, you might wonder why the System z designers settled on two's
complement. The reason follows from the processor's “architecture”: since virtually all computers
use the two's complement representation for address arithmetic, and because in System z the
general registers are used for both arithmetic and addressing, it is natural that ordinary integer
arithmetic has the same form.

We will illustrate the following discussion using 32-bit numbers, corresponding (as we shall see) to
the length of a word in memory and half the length of a general register."”

14 Why is it called “two's complement”? The name of the ones' complement representation seems obvious: just comple-
ment each bit by subtracting it from 1 (or, change O to 1 and 1 to 0); but we don't get the two's complement by
subtracting each bit from 2! We'll explain this oddity shortly.

15 z/Architecture provides 64-bit general registers, but for now our examples will use the 32-bit length.

24 Assembler Language Programming for IBM System z™ Servers Version 2.00

2.6. Logical (Unsigned) Representation

To begin, we examine what is represented by the rightmost 32 bits of any nonnegative integer.

This is represented
by:

0 X'00000000'
1 X'00000001"'
130 X'00000082'
2241 X'OOFFFFFF'
231-1 X'7FFFFFFF'
231 X'80000000'
232-1 X'FFFFFFFF'
232+ 1 X'100000001"

Thus, if a number is less than 232, its value can be held correctly in the 32 available bits. If it is
greater than or equal to 232, some significant bits are lost off the left end. (That is, the number's
value is represented modulo 232.) Some instructions perform unsigned addition and subtraction
with numbers that satisfy the inequalities

0 < x < 23241,

Such arithmetic is called logical or unsigned arithmetic; we call this the logical or unsigned repre-
sentation of binary numbers. If the 32 bits of a logical binary integer are denoted bs,bs,...,by,bg
(this temporary scheme is the reverse of the field-numbering convention introduced in Figure 1
on page 12), then the value X represented by the binary digits by;bs...b1bg is

X = b31>Q31 + b30>@30 + ...t b2>Q2 + b1>Q1 + b0>QO
in the logical representation. This is the most common numeric interpretation of a string of bits.
The representation of a nonnegative 32-bit number less than 231 is the same in the sign-
magnitude, ones' complement, and two's complement representations (and is also the same as its
logical representation), no matter which of the three forms is chosen to represent negative
numbers. Since the two's complement representation is used for most integer arithmetic in

System z, we will investigate its properties in detail. Arithmetic using binary numbers in this
representation will be covered shortly.

Exercises

2.6.1.(2)+ Give the decimal value of the following hexadecimal numbers in the logical represen-

tation:
1. X'DEADBEEF'
2. X'FFFFFFFF'
3. X'DECODED1'

2.7. Two's Complement (Signed) Representation (*)

This section describes the mathematical justification for the two's complement representation.
You can skip to Section 2.8 where a simple “recipe” for calculating the two's complement of a
number is shown on page 27.

Most programs must deal with both positive and negative numbers. A single bit (usually, the left-
most) is used to represent the number's sign. A 0 bit represents a “+” sign, and a 1 bit represents
a “=" sign.

First, the two's complement representation of a 32-bit nonnegative binary integer Y satisfying the
inequalities
0 <Y <231-1 (numbers within that range with a “+” sign bit)

is the same as the logical representation. 231—1 is the largest integer that can be represented using
31 bits; the remaining (32nd) digit at the left end is zero, the sign digit.

Chapter I: Getting Started 25

Now, consider negative numbers. The two's complement representation of a negative integer Y
satisfying the inequalities

231 <Y <1 (numbers within that range with a “-” sign bit)

is simply 232+Y. The bit pattern representing this value can be found this way. The leftmost bit
is set to 1 to indicate that the number is negative, and the remaining 31 bits are set to the binary
representation of the nonnegative integer (231+Y). The result therefore satisfies the inequalities

0 < 231+Y < 2311,

The reasons for representing negative numbers this way are not obvious, but we will see that it
leads to very simple rules for performing arithmetic on signed binary numbers.

In effect, we have done the following: if Y is positive, we find its value by adding the individual
terms (b;x2i); because the leftmost (sign) bit is zero, it does not contribute to the sum. If Y is
negative, the sum of the rightmost 31 bits is (2314+Y), and the leftmost bit is 1. Now, if we assign
value —231 to the sign bit, we can combine these to obtain

Y = (—231)Xb31 + b30>@30 + ...t b2>Q2 + b1>Q1 + b0>QO,

where the digits b through b, are the representation of 231+Y, not the representation of Y],
the absolute value of Y. This formula is almost the same as that used for the logical represen-
tation, except that the leftmost bit has negative “weight”. (There are good reasons to assign —231
to the sign bit.)

Finally, we will see how the representations of positive and negative numbers work together. The
relationship between the logical and two's complement representations is seen by examining the
above sum for the logical representation of X:

Xlogical = b31>@31 + b30><230 + ...t b2>Q2 + b1>Ql + b0>QO.

If bs; is zero, the logical and two's complement representations yield the same value, and

Yarith = Xiosicalr INOW, suppose we are given the 32-bit two's complement representation of a
negative number Y ,rith. and we want to know the value those 32 bits would represent if we con-
sider them as the logical representation of a number X, 4;.,- Since bit by, is 1, indicating a nega-
tive number, and we represent the remaining 31 bits of Y, 5, by (Y +231), we find that

Xlogical = 231 + (Yarith + 231) = (Yarith + 232) (mOdU]O 232)'
This is interesting: because we can only represent numbers less than 232 in the 32-bit logical repre-

sentation, Y, +232 for nonnegative Y must have the same bit pattern as Xjygicq), since the extra
(232) bit is lost. Thus, for

0 < Xjogical < 232-1 and =231 < Y, < 2311,
we have the following key relation between the logical and two's complement representations:
= (Y + 232) (modulo 232).

That is, the bit pattern corresponding to the two's complement representation of any positive or neg-
ative number —231 < Y <+231—1 is the rightmost 32 bits of the sum 2324+Y (modulo 232).

Xlogical arit

—— Why it is called “two's” complement?

This equation is the original source of the term “two's complement”. In
the earliest computers it was customary to treat binary numbers as frac-
tions: the representation was the same as just described, except that the
“binary point” or “radix point” was assumed to lie just to the right of the
sign bit rather than at the right-hand end of the number, so that values
were in the range —1 < value < +1. The equation giving the relation-
ship between logical and arithmetic representations was then written

X =Y + 2 (modulo 2),

so that the representation of a negative number was obtained by finding

1,99

its complement with respect to 2: its “two's” complement.

26 Assembler Language Programming for IBM System z™ Servers Version 2.00

Calculating the two's complement representation of a negative number is very cumbersome if we
follow the above steps for any negative number Y: we would first have to calculate the binary
representation of the positive quantity 231+Y . But calculating (231—-1+Y)+1 instead is very
simple, because the representation of 231—1 is exactly 31 one-bits. Now, because Y is negative,

2311 + Y = (231-1) — |Y].

Thus 1YI, the magnitude of Y, is subtracted from a string of 31 one-bits. But wherever |Y| has a
one bit, the resulting difference bit will be zero, and vice versa. Thus, there is no need to subtract!
Just change each of the 31 bits of IY| to its opposite (namely the result of subtracting it from 1),
and we have the value of 231—1—1YI. This result is called the “ones’ complement” of 1YI. Finally,
we add 1 to the rightmost bit position to get 231+Y, set the leftmost bit (the sign bit) to 1, and
we are done.

If Y, i, Wwas nonnegative, complementing all 32 bits automatically sets a 1-bit in the sign; and if
Y, itn Was negative, complementing all 32 bits sets the sign to zero. So, we don't have to do
anything special with the sign bit!

This simple method lets us find the binary representation (in the two's complement represen-
tation) of a negative number, as we will see in the next section.

Exercises
2.7.1.(3) Convert X'ABODE' to base 15, using hexadecimal arithmetic throughout.
2.7.2.(3) We saw that the radix-complement representation of a number Y in radix r with n
digits is
rn+Y (modulo rn)

Suppose r=10 and n=4. Show the ten's-complement representation of the following values,
and indicate which are and are not validly representable.
(1) +729, (2) =729, (3) -1, (4) +9999, (5) —5000, (6) +5000, (7) —9999.

2.7.3.(2) What is the decimal value of the 12-bit binary number 100000000001 in a signed two's
complement representation?

2.7.4.(3) Based on your results of Exercise 2.7.3, give an expression for the value of the n-bit
binary number 10000...000001 in a signed two's complement representation.

2.7.5.(3)+ Knowing the logical representation of the three numbers in Exercise 2.6.1, convert
them to their signed decimal representation.

2.8. Computing Two's Complements

A simple scheme for computing two's complements is based on the observation that the represen-
tation of a negative number Y is simply 232—|Y]I.

—— Two's-Complementation Recipe

Given a binary number Y, to find the two's complement representation
of —-Y:
1. Take the ones' complement of all bits of Y: change O digits to 1,
and 1 digits to 0.

2. Add 1 in the low-order (rightmost) position, and ignore carries out
of the leftmost position.

These two examples do the arithmetic with eight binary digits rather than thirty-two.

1. Find the two's complement representation of —2.

Chapter I: Getting Started 27

(1) representation of +2: 0000 0010
(2) form ones' complement: 1111 1101
(3) add one: + 1

1111 1110

2. Find the two's complement representation of —75.

(1) representation of +75: 0100 1011
(2) form ones' complement: 1011 0100
(3) add one: + 1

1011 0101

This recipe also works in the opposite direction.
3. Find the two's complement representation of B'11111110"' (-2).

(1) form ones' complement: 0000 0001
(2) add one: + 1
0000 0010

This is the binary representation of +2; thus the two's complement of the two's complement of a
number is the original number. So, our recipe for computing complements does not depend on
the sign of the original operand.

Two unusual cases arise during complementation when all the bits except the sign bit are zero:
the complemented result is the same as the original operand.

4. Find the two's complement representation of B'00000000'.

(1) form ones' complement: 1111 1111
(2) add one: + 1
(carry one off left end) 0000 0000

The result is zero, and the carry of a 1 bit out the left-hand end is lost. Thus the negative of zero
is still zero. This is mathematically satisfying: there is no negative zero.'®

5. Find the 8-bit two's complement representation of B'10000000'.

(1) form ones' complement: 0111 1111
(2) add one: + 1
1000 0000

In this case, the complement of the number is also the same as the original number. This partic-
ular number, a negative sign bit with all other bits zero, is called the “maximum negative
number”. It is well defined, and behaves normally in all arithmetic operations except that is has
no representable negation.

The maximum negative number has no corresponding positive value available for the represent-
able negative value. We say that we have generated an overflow condition—the result is too large
to fit into the number of bits allotted for it. Overflow will be treated in more detail in the fol-
lowing sections on two's complement arithmetic.

Some examples of numbers in the 32-bit arithmetic representation are shown in Table 4 on
page 29.

16 Some older computers used the ones' complement representation for binary integers, so negative zeros were possible.
System z packed decimal and floating-point numbers (discussed in Chapters VIII and IX) support negative zeros.

28 Assembler Language Programming for IBM System z™ Servers Version 2.00

32-bit Two's

Decimal Value Complement
Representation

0 X'00000000'

1 X'00000001"

256 X'00000100'

5000 X'00001388'

+2147483647 (+231-1) X'7FFFFFFF!

—2147483648 (—-231) X'80000000'

—2147483647 (—231+1) X'80000001"

-5000 X'FFFFEC78'

—-256 X'FFFFFFO0'

-2 X'FFFFFFFE'

=1 X'FFFFFFFF!

Table 4. Examples of two's complement representation

The number of values with positive sign is the same as the number of values with negative sign,

since every bit may be chosen arbitrarily. Because zero has a positive sign bit, it is sometimes

treated as a positive number, even though (mathematically) it has no sign. If we exclude zero as a

positive number, then there is one fewer member of the set of positive values than of the set of

negative values, since there is no representation for +231. With 32 bits, we can represent 232

values: between —1 and —231 there are 231 values; 0 is a single value; between +1 and +231—1

there are 231—1 values. The total number of possible signed values is therefore 231+ 1 +(231-1),

or 232,

Unfortunately, the terminology used to describe this process can be confusing. We are actually
describing the mathematical operation of negation that turns a value into its negative. For other

number representations, the operation that forms the negative of a number will be different,
because there are many ways to represent a negative number. However, sometimes
complementation is used to describe the operation of negation! For example, we often talk about

the binary representation of some number, and then say that in negating that quantity we have

formed its two's complement.

Exercises

2.8.1.(1) Why does the simple two-step prescription for computing complements given above

not depend on the sign of the number being complemented?

2.8.2.(2)+ Give the decimal values represented by each of the following 16-bit numbers,
assuming that the binary values are in two's complement representation:

1. X'0257'
2. X'7FFA!
3. X'8008'
4. X'E000'
5. X'FFFA'

(See Exercise 2.3.4. also.)

2.8.3.(2) It is sometimes said that the complement of a number X is the same as —X. State this
more precisely.

2.8.4.(2) Four 16-bit areas of a program are named A, B, C, and D. Their contents are

c(A)
c(B)
c(C)
c(D)

X'7D40"
X'D000'
X'15A2'
X'800A'

If they are the signed 16-bit two's complement binary representations of four decimal numbers,
determine their decimal values.

Chapter I: Getting Started

29

2.8.5.(2) Given the quantities Z =0, A=1,B =9, C =62, D =101, E = 255, F = 256,
give the nine-bit (eight bits plus sign) representations of the positive and negative values of each
quantity in the two's complement representation.

2.8.6.(3) Give the 32-bit two's complement representation (in either hexadecimal or binary) of
both the positive and negative values of the following decimal integers: (1) 10, (2) 729, (3)
1000000, (4) 1000000000, (5) 2147483648, (6) 65535, (7) 2147483647.

2.8.7.(3) Sometimes two's complementation is described by these steps:

e Subtract 1
e Complement all bits

Does this differ from the two's complementation recipe given on page 27?7 Create examples that
show how this form does or does not differ from that recipe.

2.8.8.(1) Give the 16-bit two's complement binary representation of each decimal number in

hexadecimal.
1. +13055
2. —9582

2.8.9.(2)+ Show the 32-bit hexadecimal value of the two's complement binary representation of
each of the following decimal values.

1. +5

2. =97

3. +65795
4. —16777158
5. +16777219
6. —78606

2.8.10.(1)+ Assuming a 16-bit two's complement representation, give the signed decimal values
of these hexadecimal values.

X'BOOF"
X'FFF1'
X' OFFF"
X'F001"

sl

2.9. Sign Extension

In the representation of nonnegative numbers, an arbitrary number of zero bits may be attached
to the left end of a number without affecting its value. For example, the 8-bit and 16-bit repres-
entations of +9 are

B'0000 1001' and B'0000 0000 0000 1001'

respectively. Similarly for negative numbers, we can add any number of 1 bits at the left without
affecting the value. For example, the 8-bit and 16-bit two's complement representations of —9 are

B'1111 0111' and B'1111 1111 1111 0111'

respectively. Thus, for numbers that can be represented correctly in a given number of bits, the
correct representation using a larger number of bits is found by duplicating the sign bit toward the
left as many places as desired. This is called sign extension, and is illustrated in the following:

30 Assembler Language Programming for IBM System z™ Servers Version 2.00

Length Representation of +1 Representation of —1

8 bits X'01" X'FF"
16 bits X'0001" X'FFFF'

32 bits X'00000001" X'FFFFFFFF'

64 bits X'0000000000000001" X'FFFFFFFFFFFFFFFF'

Table 5. Examples of sign extension

We will discuss sign extension again when we examine instructions that perform shifting, and
instructions that perform arithmetic on operands of different lengths.

Exercises

2.9.1.(2) Provide the 32-bit sign extensions in binary and hexadecimal notation of the five items
in Exercise 2.8.2.

2.10. Binary Addition

Though number-representation details may vary slightly from one processor to another, the
methods for performing binary arithmetic remain nearly the same for all processors. Thus the fol-
lowing is slightly more general than if only System z is discussed. The rules for adding binary

digits are:
0 0 1 1
0 o 0 +l
0 1 1 10 (carry)

Adding numbers in the logical representation is simplest, because all the bits are numeric digits
and do not represent signs. The only unusual condition is whether or not a carry occurs out of
the leftmost digit position, which would indicate whether the resulting sum is or is not correctly
representable by the number of bits available.

In the two's complement representation, addition is performed in the same way, but the result is
interpreted somewhat differently.

1. All bits of each operand are added, including sign bits, and carries out the left end of the sum
are lost. (This is the same as for adding numbers in the logical representation.)

2. If the result cannot be correctly represented using the number of digits available, a fixed-point
overflow condition occurs. The actions taken when an overflow condition occurs will vary;
sometimes it can be ignored.

Using signed 4-bit binary values, we know that valid values must lie in the range
—8 < value £ +7. we first add B'0010' (+2) to itself, and then we add B'0100' (+4) to itself.

0010 0100
+0010 +0100
0100 (no overflow) 1000 (overflow)

In the first case, 2+2=4, which lies in the representable range for our 4-bit numbers. But in the
second case, 4+4 = —8, because +8 is not representable. That is, the sum has overflowed.

A fixed-point overflow condition is possible only when adding operands of like sign: adding
numbers with opposite signs always produces a representable result (or, as is often said, the result
is in range). When an overflow occurs, the sign of the result is always the opposite of the sign of
the two operands. The actual method used to detect overflow is simpler, since sign-change
detection would require remembering the signs of both operands for comparison against the sign
of the sum. Here is how it's done:

—— Overflow Detection Recipe

If the carries into and out of the sign bit position disagree, arithmetic
overflow has occurred.

Chapter I: Getting Started 31

There are two kinds of binary addition: arithmetic and logical. They produce identical bit pat-
terns, as we will see in Section 2.14. Overflow is detected only for arithmetic addition, while
logical addition is concerned only with a possible carry out of the high-order bit position.

Exercises

2.10.1.(2)+ Consider adding the 8-bit binary number X'F5' to itself. There is no carry from
X'5'+X'5'=X"'A"', but there is a carry from X'F'+X'F'=X'1E'. Since the carry out of the low-
order digit position is different from the carry out of the high-order digit position, has overflow
occurred?

2.11. Binary Subtraction

Subtraction is performed by adding the two's complement of the number to be subtracted, the
second operand. That is, A—B is calculated as A+(—B), where (—B) is the two's complement of
B. A few examples using 8-bit binary two's complement arithmetic will help illustrate addition
and subtraction.

While this prescription is essentially correct, there is a minor but important complication we'll
examine after illustrating the basic scheme. (In Examples 6 and 7, note that the carries into and
out of the high-order bit are different.)

Example 1.

5-3: 0000 0101
-0000 0011
becomes
0000 0101
+1111 1101
(carry lost) 0000 0010 = 2

Example 2.

3-5: 0000 0011
=0000 0101
becomes
0000 0011
+1111 1011
(no carry) 1111 1110 = -2

Example 3.

25-(-17): 0001 1001
-1110 1111
becomes
0001 1001
+0001 0001
(no carry) 0010 1010 = 42

Example 4.

(-17)-25: 1110 1111
=0001 1001
becomes
1110 1111
+1110 0111
(carry lost) 1101 0110 = -42

32 Assembler Language Programming for IBM System z™ Servers Version 2.00

Example 5.

becomes

Example 6.

becomes

Example 7.

becomes

Example 8.

becomes

Example 9.

becomes

-17-(-25):

(carry lost)

67-(-93):

(no carry)

(-93)-67:

(carry Tost)

-128-(-93):

(no carry)

3-3:

(carry lost)

1110

1110

0000

0100

0100

1010

1010

1010

0110

1000

1111
0111

-1110

1111
1001

+0001

1000

0011
0011

-1010

0011
1101

+0101

0000

0011
0011

-0100

0011
1101

+1011

0000

0000
0011

-1010

1000

0000
1101

+0101

1101

0000

1101

0011

-0000

0000

0011

0011
1101

+1111

0000

0000

-96 (overflow)

96 (overflow)

-35

0

The above examples illustrate addition and subtraction and give the expected results. However,
there is one case where the method as given above fails to detect correctly the presence or absence
of overflow, and this occurs when the maximum negative number is being subtracted from some-
thing. (This is the minor complication mentioned previously.)

Example 10.

becomes

Example 11.

becomes

1-(-128):

(no carry)

-1-(-128):

(carry Tost)

0000

0001

-1000

0000

0000

0001

+1000

1000

1111

0000
0001

1111

-1000

1111

0000

1111

+1000

0111

0000
1111

-127 (no overflow found?)

+127 (overflow indicated?)

Chapter I: Getting Started 33

In each of these two last cases, the result seems to be arithmetically correct, but our original over-
flow indication is incorrect. This is because taking the two's complement of the maximum nega-
tive number before adding it has already generated an overflow condition. To see how the
processor can still use our overflow detection scheme as originally described (the carries into and
out of the leftmost bit differ), it is worth examining the actual addition process in slightly more
detail. The next section may be omitted if you are uninterested in such details, but be sure to
learn the “Binary Subtraction Recipe” on page 35.

Exercises

2.11.1.(2) Give the 32-bit integer representation in hexadecimal or binary of the result of the
following operations, where the operands are given as decimal numbers.

1. 10-(-10)

2. 729-65535

3. 2147483647+2

4. 1000000000+ (—2147483647)
5. 0—(+0)

6. (—10)+10

Do the arithmetic in the two's complement representation, indicating for each case (1) the pres-
ence or absence of overflow, and (2) the presence or absence of a carry out of the leftmost digit
position.

2.11.2.(2) Assume that the values defined in Exercise 2.8.4 are used to compute three 16-bit
numbers X, Y, and Z. Using 16-bit binary arithmetic, determine the final (hex) contents of the
16-bit fields named X, Y, and Z, and whether or not an overflow condition has occurred.

c(X) = c(A) - c(C)
c(Y) = c(B) + c(D)
c(Z) = c(A) + c(D)

2.11.3.(3) Suppose you want to subtract 1 from a binary number. A suggested technique uses
these two steps: (1) change all the rightmost zeros to ones, and (2) change the previous right-
most one to zero. Create examples to show that this technique is or is not correct.

2.11.4.(4) Assume that the method in Exercise 2.11.3 is correct. How can you detect overflow
conditions?

2.11.5.(2) Evaluate each of the following 32-bit sums and differences, and in each case deter-
mine (a) whether an arithmetic overflow occurs, and (b) whether there is a carry out of the
leftmost bit.

X'7D26F071'+X'B40E99A4'
X'7D26F071'-X'B40E99A4"
X'FFFFF39A'+X'FFFE4B06'
X'FFFFF39A'-X'FFFE4B06'
X'80000003"'+X'0000007C"
X'80000003"'+X'8000007C"

R NS

2.12. How Additions and Subtractions Are Actually Performed (*)

Remember that the two's complement of a number (the two's complement representation of the
negation of a number) is found by inverting each bit of the number and then adding a one in the
low-order position. Digital circuits that invert bits are called NOT circuits. Similarly, adding a 1
bit to the low-order digit position is also easy, because each digit position of an adder circuit must
add the corresponding bits of the two input operands A and B, and the carry bit from the next
lower-order bit position, as illustrated in figure 2. as illustrated in Figure 2 on page 35.

34 Assembler Language Programming for IBM System z™ Servers Version 2.00

Bit n of

Operand A
Carry bit Adder |<«—| Carry bit
to Adder |<—Position|<——from Adder
Position n+l n <+— [Position n-1
T
|
Bit n of | Bit n of
sum A+B |<—! Operand B

Figure 2. One stage of a binary adder

In the lowest-order position of the adder there will be no carry from a lower-order bit position.
However, if an identical adder circuit is used, it still has a carry input that can be used to insert
the 1 bit to be added to the low-order position during a complementation or subtraction opera-
tion! Thus subtraction is simply a matter of passing the second operand through a bit inverter
(forming the ones' complement), and then activating the low-order carry input to the adder to add
the required one-bit.

— Binary Subtraction Recipe

Subtraction is performed by adding the ones' complement of the second
operand and a low-order one-bit to the first operand, in a single opera-
tion. The subtraction in Example 10 is evaluated this way:

1-(-128): 0000 0001 first operand
-1000 0000 second operand
becomes
0000 0001 first operand
0111 1111 ones' complement of second operand
+ 1 complementation bit
(0)1000 0001 (overflow!)

An overflow is indicated because carries into (1) and out of the high-order bit (0) are different.

Exercises

2.12.1.(2) For each of the quantities defined in Exercise 2.8.5 on page 30, compute the fol-
lowing nine-bit values, indicating for each case whether or not there is a carry out of the high-
order digit position, and whether or not an overflow has occurred. (Some of the values may not
be representable; state which.) (1) A+C; (2) D-E; (3) Z+(-F); (4) (-E)-C; (5) (-B)+A; (6)
C-Z; (7) A+(-A).

2.12.2.(3) In the ones' complement representation, subtraction is sometimes described this way:

e Take the ones' complement of the subtrahend (the number to be subtracted), and add the
operands. Cross off the high-order digit and add 1 to the sum.

e [f the subtrahend is greater than the minuend (the number from which the subtrahend is
subtracted), take the ones' complement of the subtrahend, add the operands, then comple-
ment the result and put a minus sign in the high-order position.

Construct some examples showing how this process works, for operands of both signs and of
various magnitudes.

Chapter I: Getting Started 35

2.13. A Circular View of Binary Arithmetic (*)

We'll use a four-bit binary representation to illustrate some concepts we have been discussing.
The “circular” diagram in Figure 3 contains all 16 possible four-bit numbers.

o 0100
0101 o o 0011
0110 o o 0010
0111 o o 0001
x overflow point
0000
1000
carry point x
1001 o o 1111
1010 o e 1110
1011 o e 1101
e 1100

Figure 3. “Circular” representation of two's complement representation

First, suppose the numbers are considered to be the logical representation of the integers from 0
to 15. Counting up from 0000 by one takes us around the circle counter-clockwise from 0000 to
1111 and then back to 0000, as we would expect for numbers modulo 24. Adding and subtracting
two numbers can be thought of as adding and subtracting the angles (measured counter-clockwise
from 0000) represented by the numbers. Thus,

0100 + 0110 = 1010, and 1100 + 0111 = 0011.

A carry condition occurs in addition if we go past the “carry point” in the counter-clockwise
direction; similarly, a “borrow” condition occurs in subtraction if we go past the “carry point” in
the clockwise direction.

For the two's complement representation, the negative of a number is the one vertically opposite
it across the horizontal axis. Thus, the negative of 0011 is 1101, and the negative of 0001 is 1111.
We also see that the numbers 0000 and 1000 are their own negatives, just as we found in exam-
ples 4 and 5 of Section 2.8 above.

Now, consider the numbers to be the signed 4-bit two's complement representation of the integers
from —8 to +7. In the figure, the numbers with a zero sign bit are represented by open circles (0),
and the numbers with a sign bit = 1 are represented by the solid black dots (e). As before, we
can visualize adding and subtracting numbers by adding or subtracting the corresponding angles
represented by the numbers. Now, however, we can detect overflow conditions as well: if in
adding or subtracting we move in either direction past the “overflow point” between 1000 and
0111, an overflow condition occurs. Thus if we add

0110 + 0011 = 1001

we generate an overflow by passing the overflow point in a counter-clockwise direction. Similarly,
in the subtraction

1010 - 0110 = 0100

we generate an overflow by passing the overflow point in a clockwise direction.

36 Assembler Language Programming for IBM System z™ Servers Version 2.00

Experiment with this diagram; it reveals many properties of two's complement arithmetic.
Exercises

2.13.1.(3)+ In many early editions of the System/360 Principles of Operation, the Subtract oper-
ation was described as follows: “Subtraction is performed by adding the two's complement of
the second operand to the first operand. All 32 bits of both operands participate. If the carries
out of the sign-bit position and the high-order numeric bit position agree, the difference is satis-
factory; if they disagree, an overflow occurs.”

This differs from the subtraction rule given in Section 2.13. Construct one or more examples
that will show that these two descriptions are not precisely equivalent.

2.14. Logical (Unsigned) and Arithmetic (Signed) Results (*)

We can show that the correct algebraic result is obtained by simply adding all the bits of the
operands in the two's complement representation as though they were logical operands. For
32-bit operands, the logical representation X corresponding to an arithmetic signed integer X satis-
fies the relation

X =232 + x (modulo 232),
then the sum of two logical operands X and Y is

(X +Y) =232+ 232 + (x +y) (modulo 232)
232 + (x +y) (modulo 232)
=x+y

Thus the arithmetic and logical sums give the same binary result; the leftmost bits and the high-
order two carry bits are just interpreted differently in the two representations.

— Logical vs. arithmetic

Logical and arithmetic sums and differences of binary integers produce
identical bit patterns.

We can make a further observation about adding and subtracting numbers in the logical represen-
tation. From the examples in Section 2.11, we see that in subtraction, if the second operand is
logically smaller than or equal to the first (see examples 1, 4, 5, 7, 9, and 11) then there will be a
carry out of the leftmost bit position. Conversely, we see (in examples 2, 3, 6, 8, and 10) that if
the first operand is logically smaller than the second operand subtracted from it, there is no carry
out of the left end. In these latter cases we have in some sense generated a “negative” logical
answer, since the result is not correctly represented to the given number of bits. We'll see exam-
ples of these cases when we examine instructions that perform logical arithmetic.

Exercises

2.14.1.(2) Assuming an eleven-bit word, give the logical and two's complement representations
of the following quantities: (1) 200, (2) 1023, (3) —1000, (4) 2047, (5) -1, (6) —1024, (7)
—1023, (8) 1024, (9) —0. If a quantity is not representable, indicate that it is not.

2.14.2.(2)+ Consider the four five-bit binary numbers

A=11111, B=00010, C=10000, D=01111.

For each pair of values (like A+A, A+B, etc.) determine (a) their sum, (b) whether or not a
carry occurs, and (c) for arithmetic addition, whether or not an overflow occurs. Display the
results in a short table. (Because addition is commutative: — X+Y = Y+X — you will need to
evaluate only ten sums.)

2.14.3.(3)+ Using the same values for A,B,C,D in Exercise 2.14.2, determine the result, the carry
condition, and the arithmetic overflow condition for pair-wise subtraction (like A-B, B-A, etc.)

Chapter I: Getting Started 37

of these values. Display your results in a short table; this time your table will need all 16
entries, because subtraction is non-commutative: X-—-Y # Y—X.

2.14.4.(2)+ Can an overflow be caused by subtracting two numbers of opposite signs?

2.15. Examples of Representations (*)

It may help to see the differences among the sign-magnitude, radix complement (two's comple-
ment), and diminished radix-complement (ones' complement) representations.!” All 5-bit binary
numbers with positive and negative values would be represented as shown in the following table.

Binary Logical Sign- Ones'’ Two's
Digits Representation Magnitude Complement Complement
00000 0 +0 +0 0
00001 1 +1 +1 +1
00010 2 +2 +2 +2
00011 3 +3 +3 +3
00100 4 +4 +4 +4
00101 5 +5 +5 +5
00110 6 +6 +6 +6
00111 7 +7 +7 +7
01000 8 +8 +8 +8
01001 9 +9 +9 +9
01010 10 +10 +10 +10
01011 11 +11 +11 +11
01100 12 +12 +12 +12
01101 13 +13 +13 +13
01110 14 +14 +14 +14
01111 15 +15 +15 +15
10000 16 -0 -15 -16
10001 17 -1 -14 -15
10010 18 -2 -13 -14
10011 19 -3 -12 -13
10100 20 -4 -11 -12
10101 21 -5 -10 -11
10110 22 -6 -9 -10
10111 23 =7 -8 -9
11000 24 -8 =7 -8
11001 25 -9 -6 =7
11010 26 -10 -5 -6
11011 27 -11 -4 -5
11100 28 -12 -3 -4
11101 29 -13 -2 -3
11110 30 -14 -1 -2
11111 31 -15 -0 -1

In the sign-magnitude and ones' (diminished radix) complement representations, there are two
distinct representations for zero. In the two's (radix complement) representation, there is no rep-
resentation for +16 corresponding to the valid representation for —16.

The sign bit in the sign-magnitude representation is attached to the (unsigned) magnitude of the
value. However, the “sign bit” in the two's complement representation is not just an indicator: it
is numerically significant.

Representing signed numbers in a computer always involves tradeoffs: how should “peculiar”
cases like these be handled?

17 More formally, the representation in radix r of an n-bit negative number X is r2—X in the two's complement repre-
sentation, and (rN—1)—X in the ones' complement representation.

38 Assembler Language Programming for IBM System z™ Servers Version 2.00

Exercises

2.15.1.(2) Suppose your computer uses the ten's complement representation for integers. (This
representation was very widely used in mechanical desk calculators, and in many early com-
puters.) Write the following values in ten's-complement notation: (1) +28, (2) —49, (3) +527,
(4) =333, (5) —1234, (6) +2469.

2.15.2.(3) Using the representations you calculated in Exercise 2.15.1, evaluate the following
using ten's complement arithmetic: (a) +28+(—49), (b) +527+(—333), (c) —1234+2469.

2.15.3.(3) Write the values in Exercise 2.15.1 in the diminished radix-complement (nines' com-
plement) representation.

Terms and Definitions

arithmetic representation

A signed number representation.
bit

A binary digit, taking values 0 and 1.
diminished radix-complement representation

A signed representation where negative numbers are represented by subtracting each digit
from (the radix minus 1).

hex
See hexadecimal.

hexadecimal
A base-16 representation. Its digits are 0, 1, 2, 3,4,5,6,7,8,9, A,B,C,D, E, F.

logical representation
An unsigned number representation.

ones' complement representation
A signed binary representation where negative numbers are represented by changing each 0
bit to a 1 bit and vice versa.

overflow
The sum, difference, product, or quotient of two numbers is too large to be correctly repres-
ented in the number of digits provided.

radix-complement representation
A signed representation where the numerically significant high-order digit contains sign infor-
mation.

sign-magnitude representation
The familiar signed representation of numbers with prefixed + or — signs.

two's complement representation
A signed binary representation where the high-order bit contains sign information, and has
weight —2n-1,

Chapter I: Getting Started 39

40 Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter Il: System z

ITITIIIIII
ITITIIIIII
II
II
II
II
II
II
II
II
ITITIIIIII
ITITIIIIII

This chapter's three sections introduce the main features of System z processors:

ITITIIIIII
ITITIIIIII
II
II
II
II
II
II
II
II
ITITIIIIII
ITITIIIIII

Section 3 describes basic structures: memory organization and addressing, general purpose reg-

isters, the Program Status Word (PSW), and other topics.

Section 4 discusses the instruction cycle, basic machine instruction types and lengths,

exceptions and interruptions and their effects on the instruction cycle.

Section 5 covers address calculation, the “addressing halfword”, Effective Addresses, indexing,

addressing problems, and virtual memory.

Chapter II: System z 41

3. Conceptual Structure of System z

3333333333
333333333333
33 33

33

33

3333

3333

33

33

33 33
333333333333
3333333333

We can describe the structure of most computers in terms of four functional units: memory, arith-
metic, control, and input-output. A real computer may not identify components this way, but it

helps us to think of them as distinct units.

] Control Control
Arithmetic|« — - - — — — Control |« — — — — — — Input—output
Unit | Unit Unit
I
A A A
Data Data Data
\ 4 \ 4 \ 4
Memory

Figure 4. Conceptual structure of a typical computer

The solid lines in Figure 4 represent data paths among the various units, and the dashed lines
indicate the flow of control signals. As indicated, the same memory holds instructions for the
control unit and the data used by the arithmetic and input-output units. This gives modern digital
processors their flexibility and power: they can treat instructions as data or data as instructions.

System z makes no special distinction between the arithmetic and control units, and the combina-

tion is often called the “Central Processing Unit”, or “CPU”.

42 Assembler Language Programming for IBM System z™ Servers

Version 2.00

Control

|
Central Processing D —| Input-output
Unit | Unit
|
A A
Data Data
\ 4 \ 4
Memory

Figure 5. Conceptual structure of System z

“Memory” is sometimes called “central storage” or similar terms. It refers to that part of the
processor holding the directly accessible instructions and data to be manipulated by those
instructions.

As Figure 5 indicates, input and output — once initiated by the CPU —is performed between
external devices and memory, and does not pass through the CPU. The Input-output Unit com-
municates the status of its operations to the CPU, indicating error conditions or completion of
the operation.

3.1. Memory Organization

Digital computers deal with data consisting of binary digits, easily and rapidly accessed from
“central memory”. The basic data item is an eight-bit group called a byte.'® The bits in a byte are
numbered from O to 7, beginning on the left with the numerically most significant digit. (The
importance of designating the “left” side of a byte will be clearer when we consider groups of
bytes.) In Figure 6, the leftmost bit is a 1-bit, and the rightmost bit is a 0-bit.

<8 bits—>

11010010

0 7
Figure 6. A byte containing 8 binary digits

Bytes in memory are arranged so that each byte may be referenced as easily as any other. The
bytes are individually numbered beginning at zero; the number associated with each byte is called
its memory address. Memory may be thought of as a linear string of bits; the bits are grouped
into bytes arranged in order of increasing addresses. Only bytes have addresses; bits within a byte
don't have their own addresses.

.. 701 702 703 704 705 706 707 ..

byte | byte | byte | byte | byte | byte | byte

Figure 7. A portion of memory, with addresses shown above each byte

The bits in a byte are accessed (or “read”) by the CPU without being changed. Reading the con-
tents of a byte does not affect the contents; the memory provides the CPU with a copy of the

18 Because the eight bits in a byte are often described using two hex digits, some people like to call a “half byte” hex
digit a cute name like “nibble” or even “nybble”. We won't.

Chapter II: System z 43

contents of a byte. Storing (or “writing”) a new bit pattern into a byte replaces the previous con-
tents.

Many machine instructions referring to memory actually refer to a group of consecutive bytes. In
such situations the group is normally addressed by referring to its lefrmost member, the byte with
the lowest address in the group.' Also, some instructions require the address of a group of bytes
(the address of the leftmost byte) to also be a multiple of the length of the group, in which case
we say that the group is aligned.” The possible lengths for such groups of bytes are 2, 4, 8, or 16;
we sometimes refer to them as halfwords, words (or fullwords), doublewords, and quadwords
respectively.

8DF 8E0O 8E1 8E2 8E3 8E4 8E5 8E6 8E7 8E8 8E9 8EA 8EB 8EC 8ED 8EE 8EF 8F0

halfword | halfword | halfword | halfword | halfword | halfword | halfword | halfword

<+—vord—— | ¢«——word————> | «—word——> | «——word———>
<————doubleword > | < doub1leword >
- quadword >

Figure 8. A portion of memory

When some operation manipulates a group of bytes, we call that group an “operand”: something
that is “operated on”. The group always consists of data from consecutively-addressed bytes in
memory.

Some operations treat the operand as a string of bits whose meaning for that operation is inde-
pendent of the fact that they are arranged into 8-bit bytes in memory. For example, suppose a
halfword operand (a group of two bytes whose address is divisible by 2) is specified for an opera-
tion, and the address of the 16-bit operand is X'8EA'. Then the 16 bits in the bytes at X'8EA' and
X'8EB' will be treated as a single 16-bit halfword, and we ignore the fact that they are stored in
memory as two distinct eight-bit bytes. Thus, bit 0 of the halfword operand — its leftmost bit —
corresponds to bit O of the byte at X'8EA', and bit 15 of the halfword operand — its rightmost bit
— corresponds to bit 7 of the byte at X'8EB'.?!

Bytes in memory contain only bit patterns. Whether the bit pattern is interpreted as an instruc-
tion, or as one of many types of data, depends only on the context of its use; at one time it may
be data, and at another, an instruction. Whatever the interpretation, however, a byte is simply a
group of eight bits.

We now see why we use hexadecimal (base 16) notation for expressing binary numbers instead of
octal (base 8) notation. It is simplest to arrange bits in groups of the same size, and the presence
of eight bits in a byte makes four-bit groups natural. A half-byte contains 4 bits, exactly the
number of bits needed to represent one hex digit. If octal notation is used, a byte would contain
two three-bit octal digits and two extra bits.

Exercises

3.1.1.(2)+ An area of memory reserved for data begins at address X'2EC9' and ends with address
X'30A6' (including the start and end bytes!). How many bytes are there in the area, and how
many halfwords, words, and doublewords can be stored in the area?

3.1.2.(1) The memory of System z can be thought of as a continuous string of bits. Does each
individual bit in memory have an address? Explain.

20

21

This is true with few exceptions, which we will note as they appear. For now, remember “leftmost” as the rule.

In early System/360 processors, many memory operands had to be aligned on byte boundaries whose addresses were
a multiple of the operand's length. While this is no longer required for most (but not all) instructions, proper align-
ment is always a good programming practice.

z/Architecture processors use what is called “big-endian” addressing; we'll examine “endianness” in detail in Chapter
VII, Section 26.7.

44 Assembler Language Programming for IBM System z™ Servers Version 2.00

3.1.3.(2) Suppose we are interested in the string of contiguous bits starting with bit 5 of
memory address X'1A023' and ending with bit 1 of the byte at memory address X'1A03B'
(including the start and end bits). Determine the number of bits in the string.

3.1.4.(1) State which of the following addresses refer to halfwords, words, and doublewords:
(1) X'123456"'; (2) X'234567'; (3) X'345678"'; (4) X'000BBC"'.

3.1.5.(1) Determine the number of bits that can be stored in a memory area of the following
sizes: (1) X'20000' bytes, (2) X'8000' bytes, (3) X'200000"' bytes.

3.1.6.(1) Express the contents of the byte in Figure 6 on page 43 in octal notation and in
hexadecimal notation.

3.1.7.(1)+ If you examine the rightmost hex digit of a memory address, what can you tell about
the alignment of the address?

3.2. Central Processing Unit

The CPU performs the operations specified by your program. An important element of the CPU
is a set of registers, a special and very fast form of memory kept very close to the instruction and
data processing functions of the CPU.

e The general registers are used for arithmetic and logical operations, and to hold addresses of
data and instructions;??

e the Floating-Point Registers are used for floating-point arithmetic and data;

e the Program Status Word is used by the CPU to control the progress of your program as it is
executed.

3.3. General Registers

There are sixteen general registers, numbered from zero to fifteen. Each is 64 bits (or 16 hex
digits or 8 bytes) long. They are represented schematically in Figures 9 and 10.

< 64 bits >
<«— 32 bits > < 32 bits —
0 31 32 63

Figure 9. A single 64-bit general register

When we discuss instructions that do 32- and 64-bit arithmetic, we'll understand why this picture
shows two 32-bit parts of a 64-bit general register.

22 Because the general registers are used for so many activities, they are sometimes called “General Purpose Registers”.

Chapter II: System z 45

General Register 0 General Register 1
General Register 2 General Register 3
General Register 4 General Register 5
General Register 6 General Register 7
General Register 8 General Register 9
General Register 10 General Register 11
General Register 12 General Register 13
General Register 14 General Register 15

Figure 10. All sixteen general registers

This figure arranges the registers in pairs, the left register being even-numbered and the right being
the next higher odd-numbered register. Some operations require using a pair of registers, and in
such cases it is always an even-odd-numbered pair.

We will often refer to the general registers using a short notation: we sometimes write “GRn”
(meaning the rightmost 32 bits of a 64-bit register) or “GGn” (meaning all 64 bits) or simply
“Rn” to refer to general register n when the register length is clear from context. Thus, in
Figure 10, we might use R1 to mean register 1, R14 to mean register 14, and so on.

—— Be Careful!

“R1” (without a subscript) is not the same as the notation “R;” (with a
subscript). This difference will be important when we discuss machine
instructions.

Exercises

3.3.1.(1) Suppose a shifting operation requires the use of a pair of general registers. Is it possible
to perform the shifting operation using both GR7 and GR8? Using GR15 and GRO0? Using
GR6 and GR7?

3.3.2.(1) How many bytes can be placed in a pair of general registers?

3.4. Floating-Point Registers

On the earliest System/360 models only four floating-point registers were available, and then only
as an option. Sixteen are always present in System z processors, as we will see in Section 32.7.
Each is 64 bits (16 hex digits, 8 bytes, or 1 doubleword) long. We will look into this more deeply
when we discuss floating-point instructions and data in Chapter IX.

46 Assembler Language Programming for IBM System z™ Servers Version 2.00

A

64 bits

\ 4

FO

F2

F4

F6

Figure 11. Four Floating-Point Registers

Sometimes the floating-point registers contain operands 32 bits long. In this case they use only
the left half of the register, and the rightmost 32 bits are ignored. In other situations, a floating-
point instruction using 128-bit operands will use a pair of floating-point registers.

We won't mention the floating-point registers until we discuss instructions for floating-point arith-
metic. We sometimes use the abbreviations “FPRn” or “FRn” or “Fn” to refer to floating-point
registers.

In some cases we use “register” to describe a general register or a floating-point register (or some
other type of register); which is meant will be clear from context.

Exercises

3.4.1.(1) How many short (32-bit) floating-point numbers can be held in a floating-point reg-
ister?

3.4.2.(3) Can you think of any reasons why the designers of System/360 and System z included
a separate set of registers for floating-point arithmetic? That is, why should it not be possible to
use the general registers for binary integer arithmetic, addresses, and floating-point arithmetic?

3.5. Program Status Word (PSW)

Usually, the Program Status Word (PSW) is of no immediate concern, and you need not worry
about its contents. It is another internal register that contains various fields indicating the status of
the program being executed. As the System/360 and System z processors have evolved, the PSW
has taken several forms.

For our purposes, we need to know about only a few parts of a PSW: the Instruction Address
(IA), the Condition Code (CC), the Instruction Length Code (ILC), and the Program Mask
(PM). Of these, the TA is most important now; we'll see more about the others later.

Figure 12 illustrates these four parts of a PSW (and the “System Flags”). The IA is always in the
rightmost position; the positions of the other three aren't significant. (In fact, PSWs since about
1975 no longer have a field for the ILC.)

- - T i
System I ¢l |Pro— | Instruction
Flags L c| |gram | Address
C |Mask | (IA)
___ | o

Figure 12. Sketch of a Program Status Word
The PSW for the currently executing program resides in the CPU, not in memory.

The CC is set (given a value) by some instructions — for example, to indicate that the result of an
addition operation is a negative number. Other instructions may have no effect on the CC; in

Chapter II: System z 47

such cases we say that it is not set, or that its value is unchanged. Still other instructions can test
the value of the CC and make decisions based on the result.

Among the system flag bits in the PSW is the “P” bit, which determines whether or not the CPU
will allow certain instructions to be executed. If the “P” bit is 1, the CPU is in Problem State and
will not execute privileged instructions, such as those specifying Input-Output operations. If you
try to execute a privileged instruction while the CPU is in Problem State, a program interruption
will occur instead. When the “P” bit is 0, the CPU is in Supervisor State, and it allows any
instruction to be executed. This is how supervisory programs retain control over activities critical
to the smooth operation of a complex programming system.

3.6. Other Registers

In all System z processors, the CPU contains many additional registers including Access Registers
and Control Registers. The Access Registers are used for special types of addressing. The
Control Registers are not normally available to application programs: they are not used for arith-
metic or for addressing by a program because they control various execution functions.

We'll say more about these and other registers as needed.

3.7. Input-Output (1/0)

Data transmission between main memory and external devices is managed by channels. Channels
transmit bytes of data from an external device to memory, or from memory to an external device,
while allowing the CPU to continue with the execution of a processing program. We will use

some simple forms of I/O later, especially for Programming Problems at the end of each chapter.

3.8. Features, Facilities, and Assists

The System z family of processors has grown from its original System/360 capabilities.”> The
added capabilities are sometimes called “features”, “facilities”, or “assists”. For example, the
“long-displacement” facility is a recent addition. We assume that your CPU has all the facilities
needed to execute our instructions and program examples.

3.9. Microprograms and Millicode (*)

For the earliest System/360 models, internal operations were controlled by “microprograms” that
were kept in a special type of read-only memory. The internal circuits were then “programmed”
by a combination of hardware and micro-instructions to act like a System/360 processor!

Modern processors, in contrast, use a combination of hardware, microcode, and “millicode”
instructions to execute the instructions you write, and to perform other CPU “housekeeping”
functions. Millicode instructions are kept in a reserved area of main memory. They are very
similar to your instructions, but can do things that your “normal” instructions can't do.?* The set
of millicode instructions is sometimes referred to as “firmware”.

Terms and Definitions

byte
A group of 8 bits; the basic addressable unit of memory.

23 This is quite an understatement.

24 If you're interested in learning more about millicode, see the article by Lisa Heller and Mark Farrell in the /IBM
Journal of Research and Development, Vol. 48 No. 3/4, May/July 2004.

48 Assembler Language Programming for IBM System z™ Servers Version 2.00

CC
Condition Code, a 2-bit field in the PSW used to indicate the status or result of executing
certain instructions.

CPU
Central Processing Unit

FPR
Floating-Point Register

GR
General Register

ILC
See Instruction Length Code.

Instruction Length Code
A 2-bit field in low storage indicating the length in halfwords of an instruction that caused a
particular type of interruption.

millicode
Internal instructions used by the CPU to perform operations too complex to be done cost-
effectively in hardware.

problem state
A state in which the CPU disallows the execution of certain privileged instructions.

PSW
Program Status Word, containing information about the current state of a program.

supervisor state
A state in which the CPU allows the execution of all instructions.

Chapter II: System z 49

4. Instruction Execution

44

444

4444

44 44

44 44

44 44
44444444444
444444444444

44

44

44

44

4.1. Basic

50 Assemble

In this section we see how instructions are executed by the CPU, and then look at examples of
the formats used for five representative classes of instructions.

As we saw in Figure 5 on page 43, instructions executed by the computer reside in memory
along with the data to be processed. Instructions in System z can be 2, 4, or 6 bytes long.
Instructions are always aligned so that the leftmost byte is on a halfword boundary: that is, the
address of an instruction must always be divisible by two. This alignment does not depend on the
length of the instruction; it doesn't matter, for instance, that a 4-byte instruction begins halfway
between two word boundaries. It is more precise to say that instructions are 1, 2, or 3 halfwords
long.

Unlike some types of data, there is no requirement that an instruction start at an address that is a
multiple of its length; only that it start on a halfword boundary.

Instruction Cycle

The process of executing instructions may be visualized in Figure 13.

—| FETCH ——>| DECODE ——>| EXECUTE

Figure 13. Basic instruction cycle

In the “fetch” portion of the cycle, the CPU locates the instruction beginning at the halfword in
memory whose address is contained in the rightmost part of the PSW (the Instruction Address, or
IA), and places it into an internal register where it is decoded. Though this internal register is not
accessible to programs, we will refer to it as the Instruction Register, or IR. The CPU determines
the length of the instruction by examining its first two bits, as we will see shortly.

To complete the fetch portion of the cycle, the CPU adds the length in bytes of the instruction

now in the Instruction Register to the IA in the PSW, so that the TA will contain the address of
the next instruction to be fetched when the current instruction completes its execution. This

r Language Programming for IBM System z™ Servers Version 2.00

means that instructions must be packed tightly in memory; there are no leftover bytes or gaps
between instructions executed in sequence.

To decode the instruction, the CPU examines the bit pattern in the IR to see what action is
intended. Since (1) the bytes were brought from memory and (2) the memory contains both data
and instructions, the bytes brought to the IR may actually represent data and not instructions.
The CPU has no way of knowing this; it simply goes to the memory address in the IA portion of
the PSW and fetches those bytes into the IR to be interpreted as an instruction. If this is what
you intended, good; otherwise, strange things can happen.

Not all of the possible bit patterns in the IR might represent “valid” instructions (i.e., actions the
CPU can execute, or will allow to execute). The decoding mechanism can sometimes detect con-
fused situations (such as data being interpreted as instructions) before too much damage has been
done, and cause remedial actions to be initiated.

Assuming that the bytes in the IR contain a valid instruction, further actions may be necessary
before the decoding is completed, such as calculating addresses of the operands to be manipulated
during the execute portion of the cycle.

During the execution phase, the actual operation is performed. It could cause the contents of one
general register to replace the contents of another, or it may involve many intermediate steps of
complicated logic or arithmetic. If no errors are detected during the execution phase (such as
attempting to divide a number by zero), the CPU resumes the instruction cycle by returning to
the fetch portion of the cycle.

We sometimes refer to the entire cycle of fetching, decoding, and executing an instruction simply
as “executing” that instruction.

— Instructions

The IA portion of the PSW addresses the next instruction to be fetched.
If you didn't intend the fetched bytes to be an instruction, it's a mistake
you must correct.

Exercises

4.1.1.(2) How could you build a CPU without a separate Instruction Address (such as in the
z/Architecture PSW)?

4.2. Basic Instruction Types

The instructions provided by the original System/360 processors had five formats:

register-and-register (RR)
register-and-indexed-storage (RX)
register-and-storage (RS)
storage-and-immediate (SI)
storage-and-storage (SS)

NhwND =

Modern System z processors support over 30 instruction formats that we'll introduce as needed.
These five formats are enough for now, because newer instruction formats are variations on these
basic forms.

The letters RR, RX, RS, SI, and SS are abbreviations that indicate the type, or class, of an
instruction. Individual instructions belonging to each class will be treated in later chapters.

Figure 14 on page 52 gives a useful way to visualize the behavior of these classes:
e RR-type instructions operate on data within registers;

e RX- and RS-type instructions operate on data between registers and memory;

Chapter II: System z 51

e SS-type instructions operate on data in two memory locations; and

e SIl-type instructions operate on data in memory using an operand in an instruction.

Registers

[[1

RR

RX,
Instruction RS

SI SS

\4 < > \
| |

Memory

Figure 14. Instruction formats and data interactions

The first byte of an instruction always contains an operation code (often abbreviated “opcode”),
specifying the operation to be performed. The second byte usually contains data about the
location, type, or length of the data to be operated on. This second byte has several forms: it is
called the “register specification” byte (for RR, RX, and RS instructions), the “immediate data”
byte (for SI instructions), or the “length specification” byte (for SS instructions).” The interpreta-
tion of this second byte therefore depends on the class to which the instruction belongs.

e RR-type instructions are always one halfword long.

. register
operation .
specifica-
code .
tion

Table 6. RR-type instruction
format

e RX- and RS-type instructions are always two halfwords long.

operation register
P specifica- addressing halfword
code tion

Table 7. RX-type and RS-type instruction format

The RX- and RS-type instruction formats differ only in the interpretation of the bits in the
“Register Specification” byte.

e Sl-type instructions are always two halfwords long.

operation imme-

code diate data addressing halfword

Table 8. SI-type instruction format

Instead of a register specification, the second byte of an SI-type instruction contains an 8-bit
data item used in executing the instruction.

25 In some newer instructions, the second byte may contain another part of the opcode; and in some instructions, part
of the opcode may be in the sixth byte! The CPU knows, so you needn't worry.

52 Assembler Language Programming for IBM System z™ Servers Version 2.00

e SS-type instructions are always three halfwords long.

operation length
pco de specifica- addressing halfword addressing halfword
tion

Table 9. SS-type instruction format

For most instructions except RR-type instructions, an addressing halfword is used by the CPU to
compute the address of an operand; this important process is described in “5.1. The Addressing
Halfword”, on page 62, and again in Section 20. These classifications are not exhaustive; many
newer instructions are variations on these basic forms.

Exercises
4.2.1.(1) Must a 4-byte RX-type instruction begin on a word boundary?
4.2.2.(1) What is the length of the shortest instruction in System z?

4.2.3.(2) How is it possible for instructions of different lengths to be packed tightly into
memory with no wasted bytes?

4.2.4.(1)+ May an instruction begin on a word boundary? On a doubleword boundary?

4.2.5.(2)+ Figure 14 on page 52 implies that both instructions and data reside in the same
memory. How can you tell if a given string of bytes represents instructions or data?

4.3. Instruction Lengths

The first two bits of the operation code tell the CPU how many bytes to fetch from memory.
Since at least two bytes per instruction must always be fetched, the CPU can check the two
leading bits to tell how many more bytes (if any) are required. The bit patterns are shown in
Figure 15; “xxxxxx” represents the remaining six bits of the eight-bit operation code.

00xxxxxx 2-byte instructions such as RR-type
01xxxxxx 4-byte instructions such as RX-type
10xxxxxx 4-byte instructions such as RS- and SI-type
11xxxxxx 6-byte instructions such as SS-type

Figure 15. Opcode bit patterns for typical instruction types

If the first two bits of the opcode are 00 the instruction is one halfword long; if the bits are 01 or
10 it is two halfwords long; and if the bits are 11 it is three halfwords long.

Before decoding the instruction, the CPU places the number of pairs of bytes in the instruction
(the number of halfwords: 1, 2, or 3) into an internal two-bit PSW field called the Instruction
Length Code (ILC). It is important to remember that the two bits of the ILC are not the same as
the first two bits of the opcode. Table 10 on page 54" shows the relationship between the first 2
bits of the opcode and the ILC:

* Courtesy of Michael Stack.

Chapter II: System z 53

Hjc !LC Instruction Qpcode Instruction length
(decimal) (binary) types bits 0-1
0 B'00' Not available
1 B'O1' RR B'00" One halfword
2 B'10' RX B'01' Two halfwords
2 B'10' RS, SI B'10' Two halfwords
3 B'Il' SS B'Il' Three halfwords

Table 10. Instruction Length Code and instruction types

If an error is detected during decoding or executing the instruction, the PSW at the time of the
error is saved, and the programmer can examine the ILC and the IA of the saved PSW to deter-
mine what instruction caused the error. If the ILC was not saved it would not be possible to
determine the exact location of the offending instruction, since the location of the next instruction
to be executed is already in the IA portion of the saved PSW, and the length of the bad instruc-
tion could have been 2, 4, or 6 bytes.

Exercises

4.3.1.(1) Is it possible for a six-byte instruction to be mistaken by the CPU for a four-byte
instruction? Explain.

4.3.2.(2)+ A program segment consists of the following six operations (only the opcodes are
given): X'05', X'58', X'89', X'5A', X'D2', X'50'. Determine the length in bytes of the program
segment.

4.3.3.(2) For each of the instructions in the previous exercise, determine the value of the
Instruction Length Code after each has been fetched.

4.3.4.(2) By examining Figure 15 on page 53, deduce a simple formula that can be used to
determine, for any System z instruction, what number should be added to the Instruction
Address in the PSW to give the address of the following instruction.

4.3.5.(2)+ Make (and study) a short table of four rows, with the following column headings:
(1) value of first two bits of opcode, (2) instruction type, (3) instruction length, (4) ILC after
instruction fetch is complete, and (5) number of addressing halfwords.

4.3.6.(2)+ The following twelve halfwords taken from memory are known to be a sequence of
instructions. (The spaces have been inserted for readability; the bytes in memory are contig-
uous.)

90EC DOOC 0580 50D0 89EA D703 89EE 89EE 18CD 41D0 89E6 1B11

Determine (1) how many instructions there are, (2) their lengths, and (3) their types.

4.3.7.(3)+ Suppose you know the PSW and ILC after an execution error has occurred. How do
you determine the address of the instruction that caused the error?

4.3.8.(2) What would happen if gaps are left between instructions?

4.4. Some Operation Codes (*)

Table 11 on page 55 summarizes the characteristics of some basic instructions, as they depend on
the first four bits of the operation code. As described above, the first two bits determine the type
and length of the instruction. The second pair of bits determines (to some degree) the operand
length or the general functions performed by the instructions. (These groupings are only approxi-
mate, but they may help you to appreciate how opcodes are designed.)

A closer examination of a complete table of operation codes reveals a great deal of symmetry in
the opcodes used for similar functions. For example, the four original System/360 instructions

54 Assembler Language Programming for IBM System z™ Servers Version 2.00

that perform the “Logical AND” operation all have operation codes where the second hex digit is
4 and the first hex digits differ by multiples of 4 (X'14', X'54', X'94', and X'D4").

First pair Second pair of bits
of bits 00 01 10 11
. Word logical, Long Short
(lg(l;) BragﬁltlékglinStatus fixed-point hexadecimal hexadecimal
& binary floating-point floating-point
01 Branching, Word logical, Long Short
(RX) halfword fixed- fixed-point hexadecimal hexadecimal
point binary floating-point floating-point
Branching . .
10 A > Fixed-point, .
(RS, SI) shlftlpg, status logical, 1/0 Logical
switching
11 . .
(SS) Logical Packed decimal

Table 11. General instruction classifications

Since we will refer to instructions almost entirely using mnemonics — short abbreviations for their
full names — these details are only of minor interest.

Exercises

4.4.1.(2) Examine the operation codes given in Exercise 4.3.2, and determine their general
instruction classifications from Table 11.

4.5. Interruptions (*)

The instruction cycle shown in Section 4.1 on page 50 describes the basic mechanism of instruc-
tion sequencing. However, a more workable view requires understanding interruptions, sometimes
called interrupts. We'll discuss them briefly here, and in more detail when we describe possible
exceptions caused by instructions.

When an interruption occurs, the CPU stores the PSW that currently controls its operation in a
predefined area of memory, and immediately replaces it with a new one from a different prede-
fined area of memory. Many things can cause this PSW switching: a program may contain an
instruction that causes an interruption to occur, or some external event such as a completed I/O
operation could cause an interruption. The basic mechanism used for handling interruptions is
illustrated in Figure 16.

—>| FETCH ——>| DECODE ——| EXECUTE

v

no

A

Any Interrupts?

yes

no

»
!

4 yes v

Any other |«——Load New PSW|<«—|Note interruption cause,
interrupts? from Memory save 01d PSW, status info

Figure 16. Instruction cycle with interruptions

Chapter II: System z 55

The usual cycle of fetching, decoding, and executing will continue undisturbed so long as no inter-
ruption occurs.? When an interruption condition is present, the CPU first examines bits in the
PSW (or in the Program Mask or in other special registers) to see whether the interruption should
be accepted. If these bits are zero, the interruption condition is said to be masked or disabled,
and the CPU takes a default action before proceeding to the next instruction.

If the interruption is not masked (or is enabled), the CPU places information about the cause of
the condition into a reserved “Interruption Code” area near the low-address end of memory. The
CPU then stores the current (old) PSW and loads a new PSW. Instruction fetching then
resumes, with the next instruction being fetched from the memory address specified by the A
portion of the newly-loaded PSW. This will almost always be in the Supervisor.

Normally, the new PSW will disable further interruptions until the Supervisor can save informa-
tion about the status of the program being interrupted. After this status information (such as
register contents and the old PSW) has been saved, the CPU can be enabled for further inter-
ruptions. After the interruptions have been handled, the saved status information is restored and
the interrupted program can be resumed.

These are the six classes of interruptions, with examples of possible causes:

Restart (operator action)

External (timer, clock comparator)

Machine Check? (equipment malfunction)

Input-Output (an I/O device has signaled a condition)

Program (exception condition during program execution)
Supervisor Call (program requests an Operating System service)

QR BD =

Corresponding to each class is an area of memory where an old PSW is stored, and an area from
which a new PSW is loaded by the CPU. Thus there are six areas in memory into which old
PSWs are stored, and another six areas from which new PSWs are retrieved. These areas are at
fixed positions in the low-address end of memory; a programmer has no control over where they
are placed.

We sometimes distinguish two different classes of interruption. The first is caused by events whose
occurrence cannot be predicted, or for which a program cannot test in advance: these are some-
times called involuntary or asynchronous interrupts. The first four classes of interruption are invol-
untary. Except for the restart interruption, all the involuntary interruptions can be masked.

The program and supervisor call interruptions are voluntary or synchronous. They are mutually
exclusive, and cannot both occur at the same time. Program interruptions are caused by many
conditions, as you will discover. A supervisor call interruption occurs only as a result of exe-
cuting a Supervisor Call (SVC) instruction.

The program and supervisor call interrupts are “voluntary” because the program can (if it wishes)
know what instruction will be executed next, and what interruption-causing actions that instruc-
tion could take.

4.6. Exceptions and Program Interruptions (*)

Programs can create many types of exception condition. Some of them may not be serious, and
your program can tell the CPU to take some default action (like setting the Condition Code, or
generating a specified default result). Other exception conditions require interrupting the instruc-
tion cycle.

We will be most concerned with program interruptions. They may be caused by error conditions
detected during any of the three portions of the instruction cycle. For example, if the IA specifies

26

27

Figure 16 doesn't account for the possibility that an interruption can occur during the fetch or decode phases. In
almost all cases, this distinction is unimportant.

This interruption shouldn't be masked off because the CPU must save diagnostic information before the situation gets

56 Assembler Language Programming for IBM System z™ Servers Version 2.00

that an instruction should be fetched from an odd memory address, no fetch occurs and an inter-
ruption is generated instead. During the decode phase, the CPU may discover that the operation
code is invalid. Similarly, an error condition such as attempting to divide a number by zero may
occur during the execution phase.

— Exceptions and Interruptions

Exception: An unusual condition possibly requiring attention; your
program may be able to request the CPU take a default
action and continue execution, or cause an interruption.

Interruption: An exception condition requiring alteration of the
normal sequence of program execution by passing
control to the Operating System.

For most program interruption conditions, the Operating System provides a brief indication of the
cause of the interruption. Additional diagnostic information may also be given, such as the old
PSW and the contents of the general and floating-point registers, and the contents of various areas
of memory. You can then use this information to try to deduce the cause of the interruption.

The most common types of program interruptions are shown below with their associated Inter-
ruption Codes. This list is not complete, but may help you find the causes of typical interruptions
generated by your programs.

IC=1 Invalid Operation Code. The decoding phase has found an operation code that cannot
be executed. This could be due to (1) allowing data to be fetched as instructions, or (2)
the program's destroying part of itself.

IC=2 Privileged Operation. The program is trying to execute an instruction not allowed in
problem state.

IC=3 Execute exception. An execute instruction is attempting to execute another execute
instruction.

IC=4 Access, Protection. The program has attempted to refer to some area of memory to
which access is not allowed. There can be other causes, but this is the most common.

IC=5 Addressing. The program has attempted to address a nonexistent memory address.

IC=6 Specification Error. This can be caused by many conditions, but a common cause is
referring to an odd-numbered register when an even-numbered register is required. An
odd TA in the PSW indicates an attempt to access an instruction not starting on a
halfword boundary.

IC=7 Data Exception. This is caused by invalid packed decimal data, or by binary or decimal
floating-point conditions described in Chapter IX.

IC=8 Fixed-Point Overflow. This is caused when a fixed-point binary result is too large.

IC=9 Fixed-Point Divide Exception. A binary divide instruction has found that a quotient
would be too big to fit in a register, or a divisor is zero.

IC=A Decimal Overflow. A packed decimal result is too large to fit in the result field.

IC=B Decimal Divide. A packed decimal quotient is too large to fit in the result field, or a
divisor is zero.

IC=C Hexadecimal floating-point exponent overflow. A hexadecimal floating-point result is
too large.

IC=D Hexadecimal floating-point exponent underflow. A hexadecimal floating-point result is
too small.

IC=E Hexadecimal floating-point lost significance. A hexadecimal floating-point result has lost
all its significant digits.

IC=F Hexadecimal floating-point divide exception. A hexadecimal floating-point operation is
attempting to divide by zero.

Four of the fifteen possible program interruption conditions are often regarded as harmless: fixed-
point and decimal overflow exceptions, and hexadecimal floating-point exponent underflow and

Chapter II: System z 57

lost-significance exceptions. By setting an appropriate mask bit in the Program Mask to zero (see
Figure 12 on page 47), you can use the SPM instruction (described on page 234) to request that
the CPU take a predefined default action and continue execution without causing an interruption.
Other default actions can be requested for many floating-point operations, by setting mask bits in
the Floating-Point Control Register (more about this in Chapter IX).

Thus, exception conditions can sometimes cause an interruption, and sometimes take a default
action if the interruption is masked. For example, a fixed-point overflow if enabled will cause an
interruption with interruption code 8; but if masked off, the CPU will set the Condition Code to
3 before fetching the next instruction.

The CPU may seem overly cautious about detecting error conditions: the number of ways to gen-
erate interrupts sometimes seems larger than the number of ways to write a correct program!
However, these error-detection mechanisms help catch program errors: an interruption condition
will usually be generated before your program has gone too far, and you will have an indication
that something is wrong before the cause is obscured.

Consider the problem of finding program errors on a CPU in which all bit patterns represent
valid data or operation codes, and where none but the most unusual error conditions were caught.
The processor could offer little help, and you would have to write programs with many internal
checks and tests. In addition to the extra effort needed to write correct programs, the time used
for checking would cause the program to run more slowly. Program interruptions should be seen
as helpful clues from the CPU, and not as an indication that something is wrong with the
processor.

Exercises

4.6.1.(2)+ Suppose the contents of the following 8-byte System/360 PSW?2 (sketched in
Figure 12 on page 47) was displayed as the result of a program interruption. What error con-
dition is immediately evident? (The “xxxxxxxx” digits are unimportant for this exercise.)

XXXXXxxX 4017E26F

4.6.2.(3) Suppose the 8-byte Program New PSW area of memory had been initialized with the
following “New PSW”: (The “xxxxxxxx” digits are unimportant for this exercise.)

XXxxxxxx 0000A237

What do you suppose would happen if any program interruption occurs?

4.6.3.(1) What caused the following Interruption Codes?

1. 0001
2. 0009
3. 000C

4.7. Machine Language and Assembler Language

Sometimes people refer to Assembler Language programming as “machine language” or
“processor language” programming. In the earliest days of digital computers, there were almost
no programming tools like assemblers and compilers, so the instructions and data for programs
had to be created in the form of binary (or decimal or hexadecimal) digits that were loaded
directly into memory for execution, without any intermediate translation.

Thus, we consider “machine language” to be the processor's internal bit patterns representing
instructions and data types. Because it's difficult to know (and work with) these bit patterns, we
use assemblers and compilers to convert a program from forms manageable by humans into the
forms needed by the processor.

28 The modern z/Architecture PSW is quite different!

58 Assembler Language Programming for IBM System z™ Servers Version 2.00

Even though Assembler Language is considered a lower-level language, we rarely program digital
computers in “machine language”, so it is no longer accurate to say we program in machine lan-
guage.?

4.8. Processor Evolution

Since the early days of System/360, many updates, changes, enhancements, and improvements
have been made to the original architecture. These have included 31-bit and 64-bit addressing
(which we'll see in Section 20), 64-bit registers, and a vast variety of new instructions. Many of
the instructions we'll see didn't exist in System/360. Each generation of processors has introduced
small and large enhancements; while we'll start with basic instructions that have been used for
many years, we'll also see many new forms that can simplify programming chores that were more
difficult or expensive when only the older instructions were available.

IBM has tried very hard to ensure that existing applications continue to execute correctly on each
new generation of processors. This concern with “backward compatibility” has made it easy for
users to increase the capacity and performance of their systems without having to rewrite and
retest large applications in which they have invested considerable time and effort.

Backward compatibility doesn't apply as uniformly to specialized programs that use system-
specific features, but most such features are typically managed by the operating system.

Terms and Definitions

decode
The CPU action of analyzing the contents of the IR to determine the validity and type of
instruction.

exception condition
A condition indicating an unusual result. Some exceptions can deliver a default result if an
interruption has been masked off by appropriate settings, while others always cause an inter-
ruption.

execute
The CPU's action of performing the operation requested by the instruction in the IR.

fetch
The CPU action of bringing halfwords from memory into the Instruction Register to be
interpreted as an instruction.

IC
Interruption Code, a value indicating the cause of an interruption.

ILC
See Instruction Length Code.

Instruction Length Code
A 2-bit field in low storage indicating the length in halfwords of an instruction that caused a
particular type of interruption.

interruption
A process taking control away from the currently executing instruction stream, saving infor-
mation about the interrupted program, and giving control to the Operating System Super-
visor.

IR
Instruction Register, a conceptual internal register in the CPU into which fetched instructions
are placed.

29 But some hardy souls still make corrective “patches” to programs in machine language, or enter machine language
instructions into memory using various testing and debugging techniques.

Chapter II: System z 59

machine language
The internal representations of instructions and data processed by a computer.

operation code
The portion of an instruction specifying the actions to be performed by the CPU when it
executes the instruction. Often called “opcode”.

PM
Program Mask, a 4-bit field in the PSW used to control whether or not certain types of
exception conditions should cause an interruption, or take a predefined default action.

60 Assembler Language Programming for IBM System z™ Servers Version 2.00

5. Memory Addressing

55555555555
555555555555
55
55
555555555

5555555555

555
55
55
555
55555555555
555555555

We now describe how the CPU calculates addresses of data and instructions in memory when it
decodes the instructions of your program.

The addressing technique used in System z differs from that found in many earlier computers,
where the actual memory address (or addresses) of the operand (or operands) was part of the
instruction.

opcode operand address

Figure 17. Typical instruction format for old computers
When memory sizes were limited, this was a reasonable and efficient choice.®

Because the original System/360 architecture allowed addressing up to 224 bytes of memory, the
older technique of placing actual operand addresses into the instructions would have required at
least a 24-bit field for each such address. Since few processors had as many as 224 bytes of
memory, and because few programs needed as many as 224 bytes of memory to execute, many of
the bits in the 24-bit address field would be wasted by such a direct-addressing technique, and
instructions would be longer than needed.

In System z, the scheme used for addressing memory operands is much more flexible than using
actual operand addresses, and more economical in using the bits allotted to each instruction; but
more complex in the way it determines operand addresses.

The System z family of processors supports three modes of addressing. This section describes a
fundamental type of base-displacement address generation with 24-bit addresses. Section 20 in
Chapter VI describes 31-bit and 64-bit addressing, as well as two other types of address gener-

ation.

30

Another reason is that memory was very expensive! A really big machine might have had as many as 128 kilobytes of
memory; modern processors can have billions of times more.

Chapter II: System z 61

5.1. The Addressing Halfword

To refer to data or instructions in memory, a program will almost always use one of the general
registers, because the CPU uses information in a part of many instructions called an “addressing
halfword”. An addressing halfword always occupies a halfword in memory.

|4 bits—>|< 12 bits >
base digit displacement
0 34 15

Figure 18. Structure of an addressing halfword

The first 4 bits of the addressing halfword contain a hex digit called the base register specification
digit, or base digit.’! The base digit specifies a general register called the base register. The 12-bit
field in the rest of the addressing halfword contains an unsigned nonnegative number called the
displacement that takes values from O to 4095.

To generate the address of an operand, the CPU does the following:

Step 1: The 12-bit displacement is put at the right-hand end of an internal register called the
Effective Address Register (abbreviated “EAR”), and the leftmost bits of the EAR
are cleared to zeros.

Step 2a: If the base register specification digit is not zero, then the contents of the specified
general register (the base register) are added to the contents of the EAR, and carries
out the left end are ignored.

Step 2b: If the base register specification digit is zero, nothing is added to the EAR (so that
general register zero will never be used by the CPU as a base register). That is, a
zero base digit means “no register”.

The result in the EAR is called the Effective Address. It may be used as the address of an
operand in memory, and for many other purposes (such as a shift count). These steps are
sketched in Figure 19.

<«— (eneral Registers —»
- == < Addressing Halfword —

b displacement
T
|
|
v

General Register b »| Adder

A

|
!

EAR Effective Address

Figure 19. Sketch of Effective Address calculation

This method of generating addresses is called base-displacement addressing. In 24-bit addressing
mode (which we're assuming for now), only the rightmost 24 bits of the Effective Address are
used.

31 The base register specification digit was sometimes called the “base register address”, but this is misleading because
the base registers aren't “addressable” like bytes in memory.

62 Assembler Language Programming for IBM System z™ Servers Version 2.00

—— Remember

An addressing halfword is not an address. It can be used to form an
Effective Address.

Exercises

5.1.1.(2) The use of the term “halfword” in describing an addressing halfword implies that it
(the addressing halfword) lies on a halfword boundary. Is this true under all circumstances?

5.1.2.(1) How many values may be assumed by the base register specification digit? How many
registers may be used by the CPU as base registers?

5.2. Examples of Effective Addresses

In the following examples, additions are done in both binary and hexadecimal arithmetic.

1. Suppose the addressing halfword of an instruction is 1011 001011010101 in binary (X'B2D5"')
and suppose general register 11 contains

1100 0111 0011 1110 1001 0000 1010 1111

in binary (or C73E90AF in hex). Then, assuming we are generating 24-bit addresses, the
Effective Address of the instruction is

0000 0000 0000 0010 1101 0101 0002D5 (displacement)
+0011 1110 1001 0000 1010 1111 3E9O0AF (base)
0011 1110 1001 0011 1000 0100 3E9384 (Effective Address)

2. Suppose the addressing halfword of the same instruction is X'0468'. Then the Effective
Address is X'000468', since general register zero is never used as a base register.

3. Suppose the addressing halfword of the same instruction is X'B000', and the contents of R11
are as before. Then the Effective Address is X'3E90AF'; a zero displacement is valid.

Exercises

5.2.1.(2)+ Assume general registers 0, 1, and 2 contain these values:

c(GRO) = X'12001038'
c(GR1) = X'0902A020"
c(GR2) = X'001AAEA4'

Calculate the 24-bit Effective Address for these addressing halfwords: (1) X'206C', (2) X'1EEC',
(3) X'0OFBO".

5.2.2.(2)+ Assuming the same register contents as in Exercise 5.2.1, calculate the 24-bit Effec-
tive Address for these addressing halfwords: (1) X'1FEF', (2) X'OFC8"', (3) X'2EA4".

5.3. Indexing

After the displacement has been added to the base (if any), the CPU again checks the type of the
instruction. If the instruction is type RX, an indexing cycle is needed. The second byte of an
RX-type instruction (the “register specification” in Table 7 on page 52) contains two four-bit
fields: the second is called the index register specification digit or index register digit or index
digit, as shown in Figure 20 on page 64.

Chapter II: System z 63

8 bits 4 bits 4 bits

16 bits

opcode operand |index
register|register
01XxXXXXX digit digit

addressing halfword

0 78 11 12 15 16 31

Figure 20. RX-type instruction, showing index register specification digit

Step 3: If the instruction is type RX, and the 4-bit index register specification digit is not
zero, then the contents of the general register specified by the index register specifi-
cation digit are added to the contents of the EAR (again ignoring carries out the left
end). A zero index digit means “no register”, not general register zero.

The resulting quantity in the EAR is still called the Effective Address (sometimes called the
Indexed Effective Address). These steps are sketched in Figure 21.

<— (General Registers —»

< Addressing Halfword —>

x| b displacement

A

|
|
!

General Register b »| Adder
|
v

‘—

General Register x »| Adder
|
|
v

EAR Effective Address

Figure 21. Sketch of Effective Address calculation with indexing

Modern CPUs add the base and index register contents with a three-input adder, so there is actu-
ally only one calculation. The index register specification digit is sometimes called the index digit;
similarly, the specified register is the index register, and the quantity in it is the index.

Indexing is a powerful way to process structures of data items like arrays with uniform and regular
spacing, as we will see in Section 40. The addressing halfword provides the address of a fixed
position, and the index selects a particular item.

Exercises

5.3.1.(1) Draw a picture showing the locations of the base register specification digit, the base
register, and the base address. Then do the same for the corresponding index quantities.

5.3.2.(1) How does the CPU determine that an indexing cycle is needed during address compu-

tation?

5.3.3.(2) For each instruction type, determine the maximum number of general registers that
might be accessed by the CPU in calculating Effective Addresses.

5.3.4.(2) Under what circumstances will the CPU not calculate an Effective Address?

64 Assembler Language Programming for IBM System z™ Servers Version 2.00

5.4. Examples of Indexing

Continuing the examples of calculating Effective Addresss that we saw in Section 5.2:

4. Suppose an RX-type instruction is X'430A7468' and that GR7 contains X'12345678' and
GR10 contains X'FEDCBA98'. (The base register specification digit X'7' means that GR7 is
used as the source of the base address.) Again assuming we are generating 24-bit addresses, the
Effective Address is

0000 0000 0000 0100 0110 1000 000468 (displacement)
+0011 0100 0101 0110 0111 1000 345678 (base, from GR7)
0011 0100 0101 1010 1110 0000 345AEQ

+1101 1100 1011 1010 1001 1000 DCBA98 (index, from GR10)
0001 0001 0001 0101 0111 1000 111578 (Effective Address)

5. Suppose an RX-type instruction is X'43007468' and that the contents of GR7 are again
X'12345678'. Then the Effective Address is

0000 0000 0000 0100 0110 1000 000468 (displacement)
+0011 0100 0101 0110 0111 1000 345678 (base)
0011 0100 0101 1010 1110 0000 345AE0 (Effective Address)

(No indexing cycle is needed, since the index register specification digit is zero.)

6. Suppose an RX-type instruction is X'43070468' and that GR7 still contains X'12345678'. Then
the Effective Address is

0000 0000 0000 0100 0110 1000 000468 (displacement)
+0000 0000 0000 0000 0000 0000 000000 (base)

0000 0000 0000 0100 0110 1000 000468
+0011 0100 0101 0110 0111 1000 345678 (index)

0011 0100 0101 1010 1110 0000 345AEQ (Effective Address)

In this example the values of the base and index register specification digits were interchanged
from those in example 5, so that the indexing cycle was required to compute the same Effec-
tive Address.

In situations where only one register is used to calculate an Effective Address (as above, where the
base digit was 0 and the index digit was 7), be careful not to call that register the base register,
even though it usually behaves like a base register in an RX-type instruction.®

Exercises
5.4.1.(1) Under what circumstances may GRO be used as a base register? As an index register?

5.4.2.(3)+ Assume the hexadecimal contents of the general registers are as shown:

C(GRO) = 12001028 C(GR4) = 8888000E
C(GR1) = 8902A020 C(GR5) = 12345678
C(GR2) = 4F1AAEA4 C(GR6) = OFDE3B72
C(GR3) = FFFFFFF8 C(GR7) = 92837465

and GR8 through GR15 contain zeros. Now, compute the 24-bit Effective Address of each of
the following instructions, paying careful attention to instruction type: (1) X'9803206C"', (2)
X'50F10EEC', (3) X'41133333", (4) X'7A341DA4", (5) X'91220166"', (6) X'8F120FB0".

5.4.3.(3)+ Assume that the contents of the general registers are as shown below for GRO
through GR7, and that GRS8 through GR15 contain zeros.

32 In the “Access Register” addressing mode, index and base registers participate differently in calculating Effective

Addresses: only base registers are used to select an Access Register.

Chapter II: System z 65

C(GRO) = 00000044 C(GR4) = 41800000
C(GR1) = 000902AE C(GR5) = 00010000
C(GR2) = A20710FC C(GR6) = OOFFFFO00
C(GR3) = FFFFFFFF C(GR7) = FF000000

Now, compute the 24-bit Effective Address of each of the following instructions: (1)
X'41726100", (2) X'920710FC"', (3) X'7A333002", (4) X'5806016C"', (5) X'43B00044", (6)
X'90EC126A', (7) X'86052E4D".

5.4.4.(3) Suppose the contents of the general registers are as shown in Exercise 5.5.2 below. For
each of the following instructions, determine the Effective Address, paying careful attention to
instruction type: (1) X'58040404"', (2) X'91628DBC"', (3) X'44FF7D5C".

5.5. Addressing Problems (*)

The Effective Address in the EAR has many uses, most often to address operands in memory; it
is also used for other purposes such as shifting and branching.

Certain instructions operating on groups of bytes require the address of the leftmost (lowest-
addressed) byte of the operand group be exactly divisible by the length of the operand. If this
condition is not satisfied, a program interruption for a specification exception occurs. In early
processors, operand alignment was required for almost all instructions, but the requirement was
relaxed soon after.® Few instructions in modern processors require strict operand alignment.

When you use base-displacement addressing with 12-bit displacements, the only part of the
memory that can be referenced without using a base register is the area with addresses O to

4095 = X'FFF', so you will almost always use a base register to refer to operands in memory.
(We'll see in Chapter VI, Section 20 that instructions with signed 20-bit displacements make this
4K-byte limitation much less severe.)

You can't put your program into those first 4096 bytes* because that area of memory (and more)
is reserved by the CPU and the Operating System. This means that if you want to access a byte
in memory at address XX (where XX is greater than 4095), there must be a base register available
—one of registers 1 to 15. If a base register contains a base address, and XX lies between that
base address and the base address+4095, then we say that XX is addressable. If there is no such
number in a register, then the byte at XX is not addressable by your program.

When we place a number in a register to address a 4096-byte region of memory, that register
provides addressability for the region. However, if the number itself must be brought from
another portion of memory that is not currently addressable, we are back where we started,
needing another number to provide addressability for the first number.

Fortunately, there are simple solutions to the problems of establishing addressability. The BASR
instruction is often used (as we will see soon), and the Assembler's address constants also allow us
to refer to other areas of our program. Modern processors provide new ways to minimize these
addressing problems: long displacements and relative addressing. We will turn to them in Section
20 after we have investigated the most often-used instructions.

Exercises

5.5.1.(3)+ Suppose the general registers contain the values shown in Exercise 5.2.1. Which of
the following locations in memory (given in hexadecimal) are addressable through the use of
the base-displacement addressing technique? For each location that is addressable, derive an
addressing halfword that can be used to address it. (1) X'02ABCD', (2) X'000A4D"', (3) X'001139"',
(4) X'88888E', (5) X'02A010".

33

34

Because many programs had to manage unaligned data items, extra instructions were needed to isolate and align the
required item. The processor designers were asked (urgently!) to remove the restriction wherever possible. The relax-
ation of the alignment requirement was called the “Byte-Oriented Operand Feature”; it soon was known as the

Unless you're writing your own operating system!

66 Assembler Language Programming for IBM System z™ Servers Version 2.00

5.5.2.(3)+ Suppose the contents of the general registers are as follows:

C(GRO) = 00010A20 C(GR8) = 8031B244
C(GR1) = 423198B7C C(GR9) = 00000010
C(GR2) = 91FOF002 C(GR10) = 723B94C1
C(GR3) = 1002340A C(GR11) = E931AB7F
C(GR4) = OOFFOOFF C(GR12) = 00000E38
C(GR5) = D907C401 C(GR13) = 6B005000
C(GR6) = 12345678 C(GR14) = 80000000
C(GR7) = 992B42A3 C(GR15) = FFFFFFFF

For each of the following memory addresses, determine first whether or not that memory
location is addressable by a program using those registers. If it is addressable, determine an
addressing halfword (base-displacement halfword) that can be used to address the location. (1)
X'010A20', (2) X'FFFFFF', (3) X'6A0054', (4) X'31AB7E', (5) X'001234"', (6) X'07D3C4", (7)
X'00A004', (8) X'31BB65", (9) X'9ABCDE', (10) X'07C401".

5.5.3.(3) In Exercise 5.5.2, which locations are addressable through the base-displacement
addressing technique with indexing allowed? Derive an addressing halfword and the accompa-
nying index digit that (in an RX-type instruction) would make the locations addressable.

5.5.4.(3)+ Suppose the contents of the general registers are as shown in Exercise 5.1.2 on page
63 (note that registers 8 through 15 contain zeros). For each of the following memory
addresses, determine an addressing halfword that can be used to address that memory position.
If no such addressing halfword exists, say so. (1) X'000EEB', (2) X'001040', (3) X'072000".
How many solutions are there for address (1)?

5.5.5.(4)+ In Exercise 5.5.1, which locations in memory are addressable through the base-
displacement addressing technique with indexing allowed? Derive an addressing halfword and
the accompanying index digit that (in an RX-type instruction) would make the locations
addressable. (Remember that Exercise 5.5.1 refers to Exercise 5.2.1.)

5.5.6.(1) Suppose a program can be put entirely within the first 4096 bytes of memory. Will it
use GRO as a base register?

5.5.7.(2) Assume that the contents of the general registers are as shown in Exercise 5.5.2. For
each of the following SS-type instructions, compute both Effective Addresses (there are two
addressing halfwords in an SS instruction, as shown in Table 9 on page 53).

(1) X'D2078F1D57C4", (2) X'DCFFDCFF7000', (3) X'F26337390050', (4) X'D58DFE4FCO16".

5.6. Address Translation and Virtual Memory (*)

All models of System z support address translation, called Dynamic Address Translation (or
“DAT”). Address translation is invisible to application programs. It provides greater Operating
System flexibility in assigning programs to main memory, a heavily used resource. Address trans-
lation takes your program's “virtual” addresses and maps them invisibly into the “real addresses”
needed for references to “real” memory.

Without DAT, a reference to a byte at X'123456"' addresses that byte in the physical or “real”
memory of the processor. When DAT is active, your reference to a byte (at your virtual Effective
Address X'123456") is translated into a “real” address (such as X'27D94FA') having no obvious
relation to your address; you can't determine the relation of your virtual addresses to the real
addresses to which they are mapped. The Operating System, working with the DAT facilities,
makes it possible for your program to operate as though it is addressing “real” memory; but only
the Operating System works with real addresses. This is why your addresses are called “virtual” —
they aren't real.

Address translation is simple in concept but complex in implementation. To illustrate, the virtual

(effective) address supplied by your program is divided into sections; for 31-bit addresses, they are
a segment index, a page index, and a byte index, as illustrated in Figure 22 on page 68.

Chapter II: System z 67

11 8 12

segment page byte
index index index

Figure 22. 31-bit Virtual Address

To use these indexes for calculating real addresses, the Operating System first constructs (in a pro-
tected area of real memory) two sets of tables, page tables and a segment table, and it places the
address of the segment table (for example, taken from Control Register 1) into an internal field.
Your virtual address is translated into a real address roughly as follows:

Step 1: The segment table address is retrieved and the segment index is added to it. The result
is the address of one of the entries in a list of segment tables.

Step 2: The specified segment table entry (which contains the address of one of the entries in
a list of page tables) is retrieved, and the page table index is added to it. The result is
the address of an entry in the specified page table.

Step 3: The specified entry in the page table is retrieved, and attached to the left (high-order)
end of the byte index. The result is the real address of a byte in main memory.

We will not show examples of translation, since it is invisible to your program.

This description covers only very basic aspects of translation, and does not cover 64-bit virtual
addresses. There are many other details of the process, and (because translation is very heavily
used) the processor has a lot of additional hardware to optimize the process.

Exercises

5.6.1.(3) Some processors use a technique called indirect addressing. If a bit in the instruction
(called the indirect-addressing bit) is nonzero, the CPU uses the Effective Address not to access
an operand, but to access a second instruction. The Effective Address of this new instruction
then becomes the operand address that points to the desired operand. (On some processors, if
the instruction at the “indirect address” had its indirect-addressing bit set, then the entire
process repeats until an instruction is found without the indirect-addressing bit set.) Can you
think of reasons why indirect addressing is not provided by System z?

5.6.2.(0) Another aspect of early addressing techniques (whereby instructions contained actual
operand addresses) was that the address portions of instructions often had to be modified. Find
a programming “old-timer”: ask for an explanation of address modification techniques on
processors such as the IBM 7090, and why the method used on System z is so clearly superior.

5.7. Summary

As noted earlier, Effective Addresses are used for many purposes; the most common is to refer to
an operand in memory. Almost always, the operand is referred to by its lowest-addressed byte;
and if the operand is a binary integer, that byte contains the most significant (high-order) byte of
the integer. So, references to “low-order” and ‘“high-order” may need to distinguish clearly
between memory addresses, bit ordering, and numeric significance.

Terms and Definitions

address translation (“Dynamic Address Translation”, DAT)
The procedure used by the CPU to convert virtual addresses into real addresses.

addressability
A base register and a displacement provide an Effective Address allowing valid reference to a
byte in memory.

68 Assembler Language Programming for IBM System z™ Servers Version 2.00

addressing halfword
A halfword containing a base register specification digit in the first 4 bits, and an unsigned
displacement in the remaining 12 bits. A key element of System z addressing.

base address
The execution-time contents of a base register.

base register
A general register used at execution time to form an Effective Address.

base register specification digit
The first 4 bits of an addressing halfword.

displacement
An unsigned 12-bit integer field in an addressing halfword used in generating Effective
Addresses.®

EAR (Effective Address Register)
A (conceptual) internal register used to hold Effective Addresses.

Effective Address
The address calculated from an addressing halfword, possibly with indexing.

index
The contents of an index register.

index register specification digit
4 bits of an RX-type instruction specifying a register with a value to be added to the Effective
Address calculated from an addressing halfword.

indexing
Computation of an Effective Address by adding a displacement to the contents of a base reg-
ister and an index register.

real address
The “true” address of a memory location.

virtual address
The address of a memory location that may physically reside at a different real address.

35

We will see in Section 20 that System z provides another form of base-displacement addressing with a signed 20-bit
displacement.

Chapter II: System z 69

70 Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter lll: Assembler Language Programs

ITITIIIIII
ITITIIIIII
II
II
II
II
II
II
II
II
ITITIIIIII
ITITIIIIII

ITITIIIIII
ITITIIIIII
II
II
II
II
II
II
II
II
ITITIIIIII
ITITIIIIII

ITITIIIIII
ITITIIIIII
IT
IT
IT
IT
IT
IT
IT
IT
ITITIIIIII
ITITIIIIII

We have seen how the CPU executes instructions and evaluates addresses; now we'll see how we
write Assembler Language programs.

Section 6 describes typical steps involved in preparing, assembling, linking, and executing pro-

grams written in Assembler Language.

Sections 7 and 8 examine the components from which machine, assembler, and macro instruc-

tion statements are formed.

Section 9 describes five major machine-instruction types and how we write their operands in

machine instruction statements.

Section 10 introduces the key concept of addressability in Assembler Language programs, a

necessary step for any program executed on System z.

Chapter III: Assembler Language Programs 71

6. Assembler Language

6666666666
666666666666
66 66
66
66
66666666666
666666666666
66 66
66 66
66 66
666666666666

6666666666

The Assembler is the program most used in creating specific instruction sequences for execution
by the processor.

First, we describe how to write programs and see the steps leading to their execution. The con-
ventions and rules for using the Assembler are called “Assembler Language”, even though there is
little resemblance to what most people mean by “language”.

6.1. Processing Your Program

72 Assemble

First, we consider the steps involved in running an Assembler Language program:

1. assembly
2. linking
3. loading and execution

6.1.1. Assembly

Assembly is represented schematically in Figure 23. The Supervisor places the Assembler in
memory to begin assembling your source program.

System z
Your Your
Source »| Assembler »| Object
Program > | Module
Libraries of Macro— L»| Your
Instructions and Program
other statements Listing

Figure 23. Simple view of Assembler processing

r Language Programming for IBM System z™ Servers Version 2.00

The Assembler reads the statements of your Assembler Language program, processes them — pos-
sibly with the help of some data in libraries of macro-instructions and other statements — converts
your Assembler Language program to machine language, and produces an object module con-
taining object code. Usually you will want a program listing showing your source program and
the generated object code, with additional information about the Assembler's processing and indi-
cations of errors it may have detected.

The Assembler converts the program from a form convenient for you (statements) to a form con-
venient for the processor (binary data and instructions), its machine language.

6.1.2. Linking

The Linker* combines your object module with any others needed for execution. The linking
step is sketched in Figure 24; the Linker is placed in memory and begins execution.

System z
]

Your | Your
Object ———F—| Linker »| Load
Modules | > | Module

|
Libraries Ls| Your
of Object or Linker
Load Modules Listing

Figure 24. Simple view of program linking

The output of the Linker is a load module.’” The load module is written to a storage device, and a
listing of information summarizing the linking process is created.

The Linker also accepts load modules as input, allowing you to update or modify existing load
modules without having to reassemble all its components.

6.1.3. Loading and Execution

At execution time, the load module produced in the linking step is “loaded” into memory. An
essential feature of this process is relocation, which we'll investigate in Chapter X, Section 38.

The portion of the Supervisor that loads and relocates load modules is called the Program Loader.
Like the Linker, it is a program that treats other programs as data.

After your program has been loaded into memory, the Supervisor transfers control to it by setting
the Instruction Address in the PSW to the address of the instruction where you want execution to
begin. Your program then does whatever processing you told it to do*® and when it is finished it
returns control to the Supervisor.

36

37

38

We'll use “Linker” to mean any program (such as the Binder and Linkage Editor) that combines object module files
into executable files like load modules.

The output of a Linker has many many different names and forms, depending on the operating system and the
system Linker. For example, on System z the output of the z/OS binder can be a “load module” or a “program
object”; the output of the z/VSE Linker is a “phase”, and the output of the z/VM CMS loader is a “module”. We'll
use “load module” to mean a data set or file ready to be loaded directly into memory for execution.

Which may not always be what you intended!

Chapter III: Assembler Language Programs 73

System z
Load »| Program
Module Loader
Loads, and
then passes
control to
y your program
Your Your Your
Program »|Relocated »| Program
Data Program Qutput

Figure 25. Simple view of program loading and execution

The last two linking and program-loading steps can be combined by using a Loader instead of the
Linker and Program Fetch routines. The Linker or Loader reads and relocates your object
modules directly into memory, and combines them with any necessary additional object and load
modules from the “Libraries of Object or Load Modules”.

An Assembler Language program is “processed” twice: once by the Assembler at assembly time,
and once by the CPU when it is executed at execution time (or run time). The difference between
these two times is important: the Assembler produces object modules with machine language
instructions and data to be placed into memory later; your data is processed only when your
program is finally loaded and your instructions are executed.

Exercises

6.1.1.(1) Draw a diagram combining Figures 23 through 25, to show the relationships between
the inputs and outputs of processing your programs at each step.

6.2. Preparing Assembler Language Statements

74

You prepare Assembler Language programs in the form of statements. There are four types:
comment statements, machine instruction statements, assembler instruction statements, and macro-
instruction statements. All four can be used in creating programs.

1.

Comment statements provide explanatory material in the program so it will be easier for you
and others to read and understand. They are displayed in the program listing, but are not
translated into instructions or data and do not appear in the object module.

Machine instruction statements are converted by the Assembler into machine language
instructions for the CPU to execute when your program is loaded into memory for execution.

Assembler instruction statements provide information to the Assembler. They can be as
simple as statements generating data or specifying a title for the top of each page of the
listing, or can be more complicated, such as statements telling the Assembler that certain reg-
isters may be used as base registers. Some Assembler instruction statements cause the
Assembler to generate machine language data; others do not.

Macro instructions provide a compact assembly-time notation for groups of statements. They
are a convenient way to specify sequences of other statements (all four types are allowed) in
which parts of the generated statements can be changed to suit your needs. Macro
instructions are a very powerful and useful feature of the Assembler Language.

Assembler Language Programming for IBM System z™ Servers Version 2.00

The Assembler processes input records exactly 80 bytes long. Your records may not extend all
the way to 80 characters, but there must still be enough blank or other characters to extend its
length to 80. These 80-character records are often called “card-image” records.?

Statements occupy positions 1 through 71 of a line. Such positions are called “columns”.
Column 72 has a special meaning: if it is not blank, the next line is considered to be a continua-
tion of the line with the nonblank character in column 72, in such a way that the character in
column 16 of the second line is treated as following immediately after the character in column 71
of the preceding continued line.** This is illustrated in Figure 26. These conventions — column 72
for the continuation indicator and column 16 where the statement continues — are almost always
used for machine instruction and assembler instruction statements.

Columns 73-80 may be used for any purposes (usually, for sequencing data).

r— first character of a record last character of a record —
1 10 20 30 40 50 60 70 80
: i

| L— continue column (16) end column (71) —!|

L— start column (1) nonblank character if continued ———

Figure 26. Assembler Language statement columns

Columns 1 through 15 of a continuation line must be blank. (A common error is to write char-
acters in column 72 accidentally, so that the following line is treated as a continuation line, and
processed in an unexpected way.)

Columns 73 through 80 are ignored by the Assembler. Since all 80 columns of the input record
appear on the listing, the last 8 columns are often used for identification or sequencing informa-
tion.*!

A comment statement is identified by an asterisk (*) in column 1. Any information may appear in
columns 2 through 71. Figure 27 on page 76 has examples of comment statements:

39

40

41

The choice of 80 characters goes back to the nearly universal use of “IBM cards”. For many years before and after
the introduction of System/360, programs and data were prepared on 80-column punched cards. So, we still say
“column” rather than something like “position”.

You can change these columns with the ICTL Assembler instruction statement. It allows other columns to be used
for the start, end, and continuation columns of a statement. The numbers given are the ones the Assembler uses if it
is not told otherwise. ICTL is almost never used, anyway; if you use ICTL to change those columns, other readers of
your program may be confused.

Even though IBM cards have 80 columns, early computers like the IBM 704 and 709 couldn't read the last 8
columns! Those processors had 36-bit words, so their card readers read alternate groups of 36 bits from the 12 rows
on a card into 24 words. This 72-column custom persists.

Chapter III: Assembler Language Programs 75

* This is a comment statement. It is not continued.

* This comment statement is correctly continued: its continuation X <column 72
on this next line starts in column 16.

*

This comment statement is also continued, but is an error: X
this continuation Tine has nonblank characters before column 16.

Figure 27. Comment statement examples

Figure 27 contains some entirely blank lines. They are often used to improve readability; the
Assembler copies them to the program listing, and they have no effect on your program.

Comment statements may be continued onto following lines, as shown in the figure above. This
is generally not a good practice; most programmers avoid column 72 in comment statements.

A common method for adding “blocks” of comments to a program is illustrated in Figure 28.

kkkkkkkkkkkkkkkhkhkkkkhkhkhkhkhhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhhkhhkhhkhhhhkhkkhkhkhkhkhkhkhkhkhkhkhkkkkkkk

This is a block of comments documenting the behavior of this
program. Since we have not written any programs yet, this block
only illustrates how you can include large amounts of descriptive
text to your program to help readers and maintainers understand
what the program does -- at least, what you intended it to do.

* X X X X X X

kkkkkkkkkkkkkkhkhkhkkkkhkhkhkhhkhkhhkhkhkhkhkhkhkhkhkhkhhhkhkhkhhhkhkhhhkhkkhkhkhkhkhkhkkhkkhkhkkkkkkk

Figure 28. Block comments

Exercises

6.2.1.(1) For the Assembler you use, determine what rules apply to the columns of continued
statements after the first continuation.

6.3. Statement Fields

The machine instruction, Assembler instruction, and macro-instruction statements each have four
parts called fields: the name, operation, operand, and comment or remarks fields.*> An entry in the
operation field must always be present, and for certain statements an entry in some of the other
fields may or must be omitted.

If there is a name field entry in the statement, it must begin with a nonblank character in column
1. It is terminated by the first blank column after column 1. If no name field entry is desired,
column 1 must be left blank.

42 It's better to call this the “remarks” field, to avoid confusion with comment statements.

76 Assembler Language Programming for IBM System z™ Servers Version 2.00

After the name field and separated from it by one or more blanks is the operation field entry; it
ends with the first blank after the start of the operation field. The operation field entry is some-
times called the “mnemonic” or “operation” or “operation mnemonic”.®

After the operation field entry and separated from it by one or more blanks is the operand field
entry, which, like the name and operation field entries, terminates with the first blank column
detected after the start of the operand field entry, except for one special case (quoted strings)
described in the next section.

The rest of the input line is treated as remarks by the Assembler and is ignored. It does not influ-
ence the processing of the statement unless this field extends into column 72, indicating a contin-
uation on the next line. Except for the name field, there is no restriction on the columns where
the other three fields must start; they simply end with a blank column.

This allows free-field statements: you can arrange the information on the input lines of your
program as you like, but the fields must appear in the proper order. These rules are summarized
in Figure 29, where “L» means “one or more blanks”.

column 1 end by column 71

v

Name—Field—Entry 1 Operation L Operands 1 Remarks

usually required usually always
optional required optional

Figure 29. Statement fields for machine, assembler, and macro-instruction statements

Even though any number of blanks can be used to separate the fields of a statement, it is cus-
tomary to improve program readability by making all operation, operand, and remarks fields
entries start in the same columns. For example, if your name-field entries are eight or fewer char-
acters long, place your operation field entries in column 10; similarly, if the operation field entries
are eight or fewer characters long, start your operand field entries in column 19. Later examples
of program fragments will show how this can be done.

A good programming practice is to use the remarks field to tell the reader what the statement is
supposed to do, and why. (Program comments and remarks sometimes say the program “does”
one thing, while it actually does something different when the CPU executes it!)

—— Good Programming Practice

Your program's comments and remarks should help the reader (who may
be you!) understand what each statement and group of statements is
doing, and why.

The term “operand” can be confusing. Section 3.1 on page 43 stated that an operand is something
in a register or in memory that is “operated on” during the execution portion of the instruction
cycle. “Operand” is also used here to describe the components that make up the operand field
entry of a statement! It helps to remember that the first meaning applies to the execution step of
a job, while the second meaning applies only during the assembly step.

Figure 30 on page 78 illustrates a machine instruction statement in which entries appear in all four
fields.

43 Be careful not to call it the “opcode”! That term is properly used for the bits of an instruction that tell the CPU what
to do. Sometimes people use “opcode” to mean both the operation field entry of an instruction — the mnemonic —
and the machine instruction bits, so listen carefully. Which is meant will usually be clear.

Chapter III: Assembler Language Programs 77

LOAD LR 7,3 Copy c(GR3) to GR7

Figure 30. A machine instruction statement

The operand field entry has two entries, “7” and “3”, separated by a comma. If the instruction is
executed in a program, it would cause the contents of general register 7 to be replaced by a copy
of the contents of general register 3.4

The assembler instruction statement in Figure 31 omits the name and comment field entries, and
causes the Assembler to put a “title” heading on each page of the program listing.

TITLE 'PROGRAM NO. 1'

Figure 31. An assembler instruction statement

Figure 32 shows an example of a macro-instruction statement in which only an operation field
entry appears.

RETURN

Figure 32. The macro-instruction statement RETURN

If the RETURN statement above had been prepared in the days of punched cards, the card®
might look like this:

RETURN

00000000000' I 000
11111111111111111 1121121212121 1111111111 111111111 1111111111111 111111111111111111111
22
33333333333] 33
444444444444' 4444444444040448044444044004844844444044804448044440448444444444444444444444
5555555555' 555' 555
66
77
888888888888888888888888883888
999999999' 999' 9991BM5081
Table 12. Punched-card image of a RETURN statement

The Assembler supports mixed-case characters, so you need not write symbols, operation field
entries, and most operand field entries using upper-case letters. (However, the Assembler treats
lower-case and upper-case letters as equivalent when they appear in symbols and operation field
entries; unlike some high-level languages, the Assembler is not case-sensitive except for characters
within quoted strings.) Thus, you could write Figure 32 as

44

45

The remarks in this statement are quite useless, because readers can see what the instruction does. Remarks should
explain reasons for doing something, like “Copy record count to GR7 for multiplication”.

The characters “IBM5081” in the bottom right corner of the “card” were called the “electro number”, the number of
the plate used for printing the cards. Number 5081 was used for cards with no other information than the row
numbers, zero through nine. The empty two rows at the top were called the “twelve” row and the “eleven” row. (This
card was also known as the “IBM Model 5081 Data Storage Device”.)

78 Assembler Language Programming for IBM System z™ Servers Version 2.00

Return

with the same results.

—— Mixed Case Names: Be Careful!

The Assembler accepts mixed-case names, but processes them internally
as through they are all in upper case. Thus, a symbol like AbCdEfgh is
considered to be the same as the symbol ABCDEFGH.

6.3.1. What's in a Name Field? (*)

Many items can appear in the name field of an instruction statement, such as:

the name of a machine instruction

the name of a data area

a symbol to be given a value without naming any part of the program
a Labeled USING qualifier (described in Chapter XI, Section 39.4)

in the Conditional Assembler Language, a variable or sequence symbol
characters to be copied to the sequence field of the object module

.. and some statement require the name field to be empty!

Some people call the name field entry a “label” when it is the name of a machine instruction, but
in other contexts this can be very misleading. It's too easy to start thinking of all name-field
symbols as “labels” when they're actually used for other purposes.

Exercises
6.3.1.(1) Suppose a program contains the machine instruction statement shown in Figure 30 on
page 78. During what part of the job processing will the statement be read by the Assembler?
During what part of the job processing will the assembled hexadecimal instruction be fetched
by the CPU?

6.3.2.(1) In what column should the remarks field of a machine instruction statement begin?

6.3.3.(1) In what columns may the operation field entry of a machine instruction statement
begin?

6.3.4.(1) Which field in an assembler instruction statement is required?

6.3.5.(2)+ What types of statement may be written without an operation field? Without an
operand field? Without a remarks field?

6.3.6.(2)+ Suppose the machine instruction statement in Figure 30 on page 78 had been
written so that column 1 was blank, and the characters “LOAD” began in column 2. How
would the fields of the statement be interpreted?

6.3.7.(2) What types of Assembler Language statements may be written without an operation
field? Without a comment field?

6.4. Writing Programs

While these basic rules are nearly complete, you will be able to write executable programs after we
cover a few necessary details.

A program is a sequence of Assembler Language statements. The input to the Assembler should
consist of

Chapter III: Assembler Language Programs 79

1. a START statement,
2. the statements of your program, and
3. an END statement.

The START statement is written
progname START origin

The name-field symbol progname is the name of the program. It will usually have eight or fewer
letters. The origin operand is called the initial location or assumed origin of the program; its
value is used by the Assembler. For now, we will use zero for this initial location. Thus, the first
statement of a program should be something like

TEST START 0 First statement of program TEST

where TEST is the name of your program.

The last statement of the program must be an END statement telling the Assembler to stop
reading records. It is written

END progname Last statement of program

where the progname operand of the END statement should (for now) be the same as the progname
in the name field of the START statement. For our example, we would write

END TEST Begin execution at 'TEST'

The progname in the operand field of the END statement specifies the name of the instruction
where execution should start when the program is loaded into memory. The operand field entry
on the END statement may be omitted, but specifying it is a good programming practice, so we'll
write our sample programs this way.

The Assembler allows no symbol as the name-field entry in an END statement. Assembler Lan-
guage programs, unlike programs in many high-level languages, must not try to terminate exe-
cution by allowing control to reach the END statement. Doing so usually results in some form
of disaster, since the END assembler instruction statement only tells the Assembler to stop
reading records, and is not translated into executable instructions.

The START and END statements, when read by the Assembler, determine the beginning and end
of the statements to be assembled. The START statement may be preceded by a few types of
statements (such as TITLE and comment statements), but for now, assume it is the first state-
ment to be read. The END statement may not be followed by any other statement: it must be
last.

Some programmers like to start their programs with a CSECT (“Control SECTion”) statement
rather than START. It has the same effect, except that no operand field entry is allowed, so you
can't set the initial location or assumed origin value. We'll discuss control sections and the
CSECT instruction thoroughly in Chapter X, Section 38.

6.5. A Sample Program

Figure 33 on page 81 is a little program that prints my name. This set of records is typical of
those required on many System z systems. All statements begin in column 1 and end before
column 72. (The “Line n” comments are used only for this example; you don't need them for
your programs.)

80 Assembler Language Programming for IBM System z™ Servers Version 2.00

v

< 80 characters

//JIRETEST JOB (A925,2236067977),"'J.EHRMAN' Line 1
// EXEC ASMACLG Line 2
//C.SYSIN DD * Line 3
Test Start 0 First line of program Line 4
Print NoGen Line 5
* Sample Program Line 6
BASR 15,0 Establish a base register Line 7
Using *,15 Inform the Assembler Line 8
PRINTOUT MyName,* Print name and stop Line 9
MyName DC C'John R. Ehrman' Define constant with name Line 10
END Test Last statement Line 11
/* Line 12

Figure 33. A complete Assembler Language program

The first 3 lines and the last are control statements for the Supervisor; they are not part of your
program, and are not read by the Assembler. They tell the operating system to run the Assem-
bler, Linker, and Program Loader, and how to pass your program's statements to the Assembler.
The information on these lines follows the rules of a Job Control Language for an operating
system. Line 1 (the JOB statement) marks the beginning of a job: a unit of work for the com-
puter separate from all other units. Additional information on the JOB statement provides
accounting data such as an account number and a user name.

Line 2 (the EXEC statement) requests that the following program be assembled, linked, and exe-
cuted; Line 3 indicates that records for the Assembler follow immediately. The last line (the “/*”
or “end-of-file” statement) tells the Operating System that no more records are given to the
Assembler.

The Assembler Language program is contained in the remaining lines:

e Line 4 is the assembler instruction statement defining the name of your program as Test and
starts a Control Section to contain the machine language data and instructions of your
program when it is executed by the CPU.

e Line 5 is an assembler instruction statement; it causes the Assembler not to print statements
generated by the PRINTOUT macro-instruction in Line 9. (More about PRINTOUT and other useful
macro-instructions in Section 6.6 on page 82.)

Line 6 is a comment statement.

Line 7 is a machine instruction statement.

Line 8 is an assembler instruction statement. (Lines 7 and 8 are important: we'll discuss them
in Section 10.)

e Line 9 is a macro-instruction statement that causes some data to be printed, and then returns
control to the Supervisor.

e Line 10 is an assembler instruction statement. The Assembler converts the characters enclosed
in the apostrophes into an internal form representing the characters.

e Line 11 is an assembler instruction statement. It tells the Assembler that no further statements
will be processed for this program. The operand field entry Test tells the Linker where you
want your program to begin execution.

Exercises

6.5.1.(1)+ Determine what control statements are required at your installation for the following
sequences of steps (if they are available): (1) assembling a program, (2) assembling and linking a
program, (3) assembling, linking, and executing a program, (4) assembling, loading, and exe-
cuting a program, and (5) linking and executing an object module created in a previous
assembly.

6.5.2.(1) At execution time, if control reaches the END statement, will that be the end of the
program?

6.5.3.(1) Examine the Assembler Language program in Figure 33. Which statements have
entries in the name field? In the operation field? In the operand field? In the comment field?

Chapter III: Assembler Language Programs 81

6.6. Basic Macro Instructions

For our sample programs, we need only very simple methods of reading 80-character “card-
image” records, printing strings of characters, displaying useful information, and displaying or
“dumping” areas of memory in hexadecimal format.

Your operating system may provide similar facilities already, but you should check to see how or
whether they differ from these. We will use these six macro-instructions, and show how they're
used in some programming examples.

PRINTOUT Print formatted information about data and registers
READCARD Read 80-byte card-image records
PRINTLIN Print lines of characters

DUMPOUT Dump memory in hexadecimal format

CONVERTI Convert decimal characters to a 32- or 64-bit binary integer
CONVERTO Convert a 32- or 64-bit binary number to decimal characters

The macro instructions and their operands are described in “Appendix B: Simple I/O Macros” on
page 1015.

6.7. Summary

The Assembler provides many facilities to simplify programming tasks.

1.

N AW

It automatically resolves addresses into the base-displacement and other forms used by
System z. The Assembler determines the needed base and displacement so that correct Effec-
tive Addresses will be calculated at execution time.

Rather than remembering that operation code X'43' copies a byte from memory into the
right end of a general register, a mnemonic operation code gives a simple indication of what
the operation code does. (The term “operation code” is often abbreviated “opcode”.) The
opcode X'43' has mnemonic “IC”, which stands for “Insert Character”.

Symbols let you name areas of memory and other objects in your program.

Diagnostic messages warn you about possible errors and oversights.

The Assembler converts data from convenient external representations into internal forms.
It creates relocatable object code to be combined with other programs by the linker.

Using macro-instructions, you can define your own instruction names to supplement existing
instructions, and your own macro instructions can make use of previously defined sequences
of statements, including other macros!

It provides lots of other helpful information such as cross-references of symbols, registers, and
macros.

Terms and Definitions

Assembler

A program that converts Assembler Language statements into machine language, in the form
of an object module.

assembly time

The time when the Assembler is processing your program's statements, as distinct from the
time when the machine language instructions created from your Assembler Language
program are executed by the processor.

82 Assembler Language Programming for IBM System z™ Servers Version 2.00

code
An informal term for groups of Assembler Language statements.

execution time
The time when your program has been put in memory by the Program Loader and given
control. This may happen long after assembly time.

Job Control Language
The statements needed to tell your Operating System how to process your program through
the assembly, linking, and execution phases. “JCL” for short.

Linker
A program that converts and combines object modules and load modules into an executable
“load module” format ready for quick loading into memory by the Program Loader. The
term “Linker” can describe several programs:

Binder
The z/OS program that can generate load modules (and a newer form, program objects)
as well as place the linked program directly into memory.

Linkage Editor
The predecessor to the z/OS Binder; its functions are included in the Binder. A Linkage
Editor is used on z/VSE.

Loader
This can have several meanings:

e On z/VM systems, a program that can link object modules directly into memory for
execution, or generate a relocatable “MODULE”.

e On older OS/360 systems, a program that links object and load modules into
memory for execution; now called the “Batch Loader”.

load module
Our generic name for the output of a Linker; a mixture of machine language instructions and
data ready to be loaded directly into memory for execution.

macro instruction
A powerful means to encapsulate groups of statements under a single name, and then gen-
erate them (with possible programmer-determined modifications) by using the macro-
instruction name as an operation field entry.

mnemonic
A convenient shorthand for the name of an instruction. For example, the “Branch and Save”
instruction has mnemonic “BAS”.

object code
The machine language contents of an object module.

object module
The machine language information created by the Assembler, used as input to the Linker.

operand

(1) Something operated on by an instruction. (2) A field in a machine instruction statement.
origin

A starting value assigned by you (or by the Assembler) needed to calculate offsets and dis-

placements in your program. Because most programs are relocated, it's rarely necessary to
specify an origin.

Program Loader
The component of the Operating System that brings load modules into memory, makes final
relocations, and transfers control to your program.

relocation
A procedure used by the Linker and the Program Loader to ensure that addresses in your
loaded program are correct and usable.

statement
The contents of the records read and processed by the Assembler. There are four types:
comment statements, machine instruction statements, assembler instruction statements, and
macro-instruction statements.

Chapter III: Assembler Language Programs 83

statement field
One of the four fields of an Assembler Language statement (other than a comment state-
ment). They are the name, operation, operand, and the remarks fields. Which fields are
required and/or optional depends on the specific statement.

Programming Problems

Problem 6.1.(2)+ Write, assemble, link, and execute a short program (like the one in Figure 33
on page 81) that will print your name. Look through the printed output from the job, and
determine which parts were printed by the Assembler, the Linker, and the executed program. (If
your name contains apostrophes (like 0'Brien), you must type a pair of them wherever you
want to print one, as in 0' 'BRIEN.) Observe what is produced by the Assembler for each type
of statement.

Problem 6.2.(2)+ Using your solution to Problem 6.1 as a template, write and execute a
program that will generate a noncontroversial, culturally-sensitive, nonpolitical message such as

Message = C'Hello, World!'

84 Assembler Language Programming for IBM System z™ Servers Version 2.00

7. Self-Defining Terms and Symbols

177777777777
7177777777777
77 77
77
77
77
77
77
77
77
77
77

We now investigate two important features of the Assembler Language, self-defining terms and
symbols. Each has a numeric value. In a self-defining term, the value is constant and inherent in
the term, so you can think of them as different ways to write numbers. Self-defining terms are not
data! They are just numbers that can be written in any of several convenient forms; they all result
in 32-bit integer values. Symbols have values assigned by you and by the Assembler.

7.1. Self-Defining Terms

There are four* basic types of self-defining term: decimal, hexadecimal, binary, and character. The
value of each is treated by the Assembler as a 32-bit two's complement number.

e A decimal self-defining term is an unsigned string of decimal digits. 12345, 98, and 007 are
examples of decimal self-defining terms. The size of a decimal self-defining term is determined
by the fact that 32 bits are allotted by the Assembler to hold its value during assembly.
Because it is unsigned, a decimal self-defining term must lie in the range from 0 to +231—1
(2147483647). Thus, +2147483647 and —2147483647 are not valid decimal self-defining terms
because they are signed, even though their values can be correctly represented in 32 bits.

e A hexadecimal self-defining term is written as the letter “X”, an apostrophe, a string of
hexadecimal digits, and a second apostrophe. X'123456"', X' FACED', and X'001B7"' are examples
of hexadecimal self-defining terms. The value of a hexadecimal self-defining term must lie in
the range from 0 to +232—1, or, between X'00000000' and X'FFFFFFFF'. If fewer than eight
digits are specified, the Assembler assumes that the omitted digits are high-order zeros. If the
high-order digit of an eight-digit hexadecimal self-defining term lies between X'8' and X'F', the
value of the term is negative.

Because hexadecimal terms represent just a string of bits, their value can be greater than
231—1, unlike decimal terms.

e A binary self-defining term is written as the letter “B”, an apostrophe, a string of binary digits,
and a second apostrophe. B'110010', B'0001', and B'1111111100001100' are examples of
binary self-defining terms. Because 32 bits are allotted for the value of a self-defining term, at
most 31 binary digits may follow the first 1-bit. (For example,

46 A fifth type of self-defining term, the Graphic type, requires invoking the Assembler with the DBCS option. Its use is
beyond the scope of this section, but we'll meet it again in Chapter VI, Section 26.4.

Chapter III: Assembler Language Programs 85

B'00000000000000001000000000000000000000000" has 41 digits, but only 24 significant digits
follow the first 1.) If fewer than 32 digits are specified, the Assembler assumes that the
omitted digits are high-order zeros.

The value of a binary self-defining term must lie in the range from O to 232—1. The value of a
binary self-defining term is negative if the leftmost significant bit of the 32-bit digit string con-
tains a 1-bit.

We will see in Chapter 4 that embedded blanks can be used in decimal, binary, and hexadecimal
constants to improve readability. However, embedded blanks cannot be used in self-defining
terms of those three types.

A character self-defining term is written as the letter “C”, an apostrophe, a string of up to four
characters (except for two special cases to be described momentarily), and a second apos-
trophe. Thus, C'A', C'...', and C'AeB' are valid character self-defining terms. (Remember
that we are using “e” to represent a blank.) This last example, in which a blank appears, is
the one exception to the rule mentioned in the previous section that stated that the operand
field is terminated by the first blank column after it starts: if the blank is part of a character
string enclosed in apostrophes, as in a character self-defining term, it doesn't terminate the field
but is part of the operand. A blank terminating the operand field must appear outside of a
character string enclosed in apostrophes.

The two special cases concern the apostrophe (') and the ampersand (&). Since apostrophes
are used to delimit the character string, we need a way to get an apostrophe into the generated
character string. (The ampersand has special uses in macro-instructions.) We represent a
single apostrophe or ampersand in a character string by a pair of apostrophes or ampersands.
A character self-defining term containing a single apostrophe or a single ampersand is written
C''"'"" or C'&"'. This can lead to cryptic but valid forms like C''"'"'"'"'"'" (for the three charac-
ters ''', giving a term with value X'007D7D7D'), and and C'&&''&&"' (for the three characters
&'&, giving a term with value X'00507D50'). A pair of apostrophes is entered as two characters,
and should not be confused with the quotation mark (”), which is a single character.*’

Character self-defining terms use the EBCDIC character representation described next.

Exercises

7.1.1.(2)+ Which of the following are valid self-defining terms? If you think a term is invalid,
explain why; otherwise, give the hexadecimal value of the term.

(1) 00000012345

(2) B'10101010101010101"

(3) X'0000B4DAD'

(4) X'B4DAD0000'

(5) +65535

(6) B'000000000001111000011110000111101"
(7) B'101011010001111000011110000111101"

7.1.2.(1) The maximum value of a decimal self-defining term is 231—1, while the maximum
value a binary or hexadecimal self-defining term is 232—1. Why are they different?

47

Unfortunately, people sometimes call the apostrophe or single quote a “quotation mark” or “single quotation mark”.
Calling a quotation mark a “double quote” or “”” doesn't help either, because it might be understood to mean a pair
of apostrophes.

86 Assembler Language Programming for IBM System z™ Servers Version 2.00

7.2. EBCDIC Character Representation

The value assigned to a binary, decimal, or hexadecimal self-defining term is clear, as they are
familiar bit patterns. But what value should we give to a character self-defining term? This
depends on the internal representation or code defined for characters. We could decide that the
value of C'A' should be the same as X'0A', or X'41', or X'74"', or X'Al', or even X'C1'.

In System z the conventional character code is called the “Extended Binary Coded Decimal Inter-
change Code”, or EBCDIC for short.*® Each character is represented internally by an eight-bit
number —two hexadecimal digits — as indicated in Table 13. The internal bit patterns that repre-
sent external characters are a matter of choice; any mutually agreeable set is about as good as any
other. The Extended BCD code, or EBCDIC, is the code defined by the designers of System/360
for communicating with character-sensitive components of the computer such as the CPU,
printers, graphic display devices, etc. We will see other important character encodings in Chapter
IV, Section 12.8, and again in Chapter VII, Section 26.

This table shows the EBCDIC representation used by the Assembler, “Code Page 037”. (There
are many other EBCDIC code pages used around the world.)

Table 13. Assembler Language EBCDIC character representation
Char Hex Char Hex Char Hex Char Hex
Blank 40 e 85 y A8 S E2
. 4B f 86 z A9 T E3
(4D g 87 A C1 U E4
+ AE h 88 B C2 v E5
& 50 i 89 C C3 W E6
$ 5B J 91 D Ca X E7
* 5C k 92 E C5 Y E8
) 5D 1 93 F C6 z E9
60 m 94 G c7 0 FO
/ 61 n 95 H C8 1 F1
s 6B 0 96 I c9 2 F2
_ 6D p 97 J D1 3 F3
7B q 98 K D2 4 F4
@ 7C r 99 L D3 5 F5
! 7D s A2 M D4 6 F6
= 7E t A3 N D5 7 F7
a 81 u A4 0 D6 8 F8
b 82 v A5 P D7 9 F9
c 83 W A6 Q D8
d 84 X A7 R D9

In Table 13 we see that the value associated with the character self-defining term C'/' is the same
as that of the hexadecimal self-defining term X'61', the binary self-defining term B'1100001', and
the decimal self-defining term 97. Similarly, the character self-defining term C'''' has the same
value as the hexadecimal self-defining term X'7D', and C'&&' has the same value as X'50'. Which
type of term you choose is largely a matter of context; in some places, certain types will be more
natural than others.

48 QOccasionally it is even called BCD. That term is normally used to denote an older six-bit character code or even a
4-bit encoding of decimal digits; the eight-bit Extended BCD code is used to represent characters on System z.

Chapter III: Assembler Language Programs 87

The value of a character self-defining term is determined by right-adjusting the EBCDIC codes of
the characters in a 32-bit field, and filling with zero bits at the left end if needed. Thus, the value
of C'A' is X'000000C1', and the value of C'ABC' is X'00C1C2C3"'.#°

The characters shown in Table 13 on page 87 are the portion of the EBCDIC character set used
in the Assembler Language (except in character self-defining terms and character constants, where
all 256 possible characters are allowed). The codes for other characters are defined in the
z/Architecture Principles of Operation. It is worth remembering that the EBCDIC code for a
blank space is X'40".

Exercises

7.2.1.(2)+ Which of the following are valid self-defining terms? If you think a term is invalid,
explain why; otherwise, give the hexadecimal value of the term.

(1) Cc'#es$’

(2) CI LI

(3) C'eAeB' (one leading blank)
(4) C'RUD'

(5) C'12!

(6) C'eeel2' (three leading blanks)

7.2.2.(2)+ Give (in hexadecimal) the value of each of the following character self-defining terms:
() c'a&',) C'z5', 3 c''',@c'ec'', (5 Ccro', (o) C'sbt'.

7.2.3.(3) Another widely used character representation is the United States of America Standard
Code for Information Interchange, or ASCII. Determine the ASCII representation of the char-
acters in Table 13 on page 87.

7.2.4.(2)+ Give (in hexadecimal) the value of each of the following self-defining terms:
(Hcrrrrrttt(2) 1000, (3) B'01000Y, (4) CrR&''R&Y, (5) C'L, ', (6) C'A=B'.

7.2.5.(3)+ For each of the following values, display all four self-defining terms that may be used
to represent it. (1) 64, (2) 245, (3) C'&&"', (4) X'405C", (5) X'F9F9FIF9',
(6) B'110001011101100111010001".

7.2.6.(1) What EBCDIC character would be represented by the bit pattern in the byte illus-
trated in Figure 6 on page 43?

7.2.7.(1) Show the hexadecimal value of each of the following self-defining terms:

(1) B'110010110000010111010110"
(2) C'A&&B'

(3) 54721

(4) X'BO0OBOO'

7.2.8.(1) Consider the 16 bits 1101000111000101:

1. Write them as four hexadecimal digits.

2. Assuming the bits represent an unsigned (logical) binary number, give its value.

3. Assuming the bits represent a signed binary number in the two's complement represen-
tation, give its value.

4. Write them as two EBCDIC characters.

7.2.9.(1) Give the hexadecimal value of these self-defining terms:

49 In some cases, you might want to use a different character set in character terms. It is possible that the Assembler
might assume that your characters are represented in EBCDIC, and generate the wrong value. If you specify the
TRANSLATE and COMPAT(TRANSDT) options, Assembler will use your chosen representation for character
terms. (See the High Level Assembler Programmer's Guide for details.)

88 Assembler Language Programming for IBM System z™ Servers Version 2.00

1. B'110010111000010111011001"
2. C'R&&Z'
3. 51401

7.2.10.(2)+ Give the value in hexadecimal of these self-defining terms:

(1) B'01110101100010"
(2) CIII+I
(3) 10010

7.3. Symbols and Attributes

Many programming problems can be greatly simplified by using symbols. If this were not so, we
might try to dispense with Assemblers and be content with producing programs consisting of
strings of hexadecimal digits; thus we would write the hex digits X'580064EC' instead of a machine
instruction statement containing symbols.

Symbols are more interesting than self-defining terms: they let you assign meaningful names to
parts of your program. You can give the name PLUS1 to an area containing the constant +1, and
the name READ to an instruction that reads data.

Three types of symbols are used in the Assembler Language: ordinary symbols, variable symbols,
and sequence symbols. The last two are used only in macro-instructions and in conditional
assembly, so we won't say more about them here.

There are two types of ordinary symbols: internal and external. External symbols are used during
linking to communicate with other programs (and are part of the object module, as we'll see in
Chapter X, Section 38), while internal symbols are used only during the assembly, and do not
appear in the object module.>

For now, we assume that all symbols are internal symbols. A word of caution: if you have done
some programming in a high-level language, you may be inclined to think of symbols as variables.
They aren't; the differences are described in Section 7.7 on page 94.

A symbol is a string of letters or digits, the first of which must be a letter. The characters “$”,
“_7,“#”, and “@” are considered to be letters in the Assembler Language.’' These special charac-
ters are not allowed in symbols:

() + - =/ = . , ' & blank
Early Assemblers restricted symbols to at most eight characters, which is why the “customary”
operation field of a statement begins in column 10. HLASM allows mixed-case symbols up to 63

characters long, but there is no difference between upper and lower case letters. Thus, NAME, Name,
and name all refer to the same symbol.

The following are all valid symbols.

A Agent086 A1B2D3C4 _The _End

#235 00@H ApoPTexy The_Utter _Final_Bitter_End
James KQED Prurient EtCetera

$746295 Wonka ZYZYGY99 Close_Files

50

51

Internal symbols are added to the object module if you specify the Assembler's TEST option, but that option is little
used now. The ADATA option is preferable, because it generates a SYSADATA “side file” containing much more
useful information that can be used by other programs like debuggers.

If there's any chance your program might be sent (or read or printed) outside the United States, avoid the “national”
characters #, @, and §. They may look different in other countries, or may even have different EBCDIC representa-
tions. Other characters usable in Assembler Language symbols — those in Table 13 on page 87 —always have the
same EBCDIC representations.

Chapter III: Assembler Language Programs 89

Note that the first character of the symbol 00@H must be the letter “0” and not the digit zero “0”.
(A good reason to avoid using symbols starting with the letter O!)

The following are not valid symbols, for the reasons given.

$7462.95 (decimal point not allowed)
Bond/007 (special character / not allowed)
Set Go (no blanks allowed)

Ten*Five (contains the special character *)
C'Wonka' (no apostrophes allowed)

2Faced (doesn't begin with a letter)

An_Absurdly Long Symbol With No Use Other Than To Illustrate Excessive Symbol Length (!)

Several numeric quantities called attributes are associated with a symbol. Symbols have six
primary attributes: value, relocation, length, type, scale, and integer.5? Of these, the value and
length attributes are most important; the rest will be described as needed. The length attribute is
especially useful, and we'll see how it's defined when we examine constant definitions in Section
11.

e The Assembler assigns numeric values to the attributes of a symbol when it encounters the
symbol as the name field entry in a statement. We say that a symbol has been defined when
numeric values have been given to its value, relocation, and length attributes. These three attri-
butes, like all other numeric attribute values, are always nonnegative.

e This terminology is clumsy: rather than the “numeric value of the value attribute” of a
symbol, we simply say the “value of the symbol”. Similarly, the “numeric value of the relo-
cation attribute” of a symbol is its “relocatability”. We say that a symbol whose relocation
attribute is nonzero is relocatable, and a symbol whose relocation attribute has a zero value is
not relocatable, or that it is absolute.>

e We call the “numeric value of the length attribute” of a symbol its “length attribute”. It
depends on the type of statement named by the symbol. Occasionally someone refers to the
“length” of a symbol when its length attribute is meant; but the length of a symbol might be
misunderstood to mean the number of characters in the symbol itself, which is rarely inter-
esting. The length attribute is different, and is very useful.

For example, while the symbol A is one character long, it could have length attribute 133!
Symbols are used mainly as names of places in the program. For example, in Figure 30 on

page 78, the symbol LOAD is the name of the instruction. Similarly, in the machine instruction
statement

GETCONST L 0,4(2,7)

the symbol GETCONST is the name of an area of the program containing a machine instruction. In
the Assembler instruction statement

TEN DC F'10'

the symbol TEN is the name of a word area of the program where the Assembler will place a
binary integer constant with decimal value 10.

In the macro-instruction statement

EXIT RETURN (14,12),T

the symbol EXIT names the area of the program containing the set of instructions generated by
the RETURN macro-instruction.

52

53

Conditional assembly supports additional attributes: Assembler, Count, Number, Defined, Opcode, and Program.
The Assembler, Opcode, and Type attributes have nonnumeric values.

A useful definition of the relocation attribute is that a symbol that names a place in a program is relocatable; details
are given in Section 7.6 on page 93. A convenient image is to think of the relocation attribute of a symbol as its
color: the Assembler assigns the same color to all symbols having the same relocation attribute, and no color to
absolute symbols.

90 Assembler Language Programming for IBM System z™ Servers Version 2.00

No symbol can be given a value in a comment statement.

Remember: the attributes of the symbols, and the symbols themselves, exist only at assembly
time. They help in producing the object program; internal symbols and their attributes are dis-
carded when the assembly is complete.’*

Exercises

7.3.1.(2)+ Which of the following are valid symbols? If you think a symbol is invalid, explain
why.

(1) SuperBoY

(2) Captain Major
(3) KillerWhale
(4) Send400$Soon
(5) #@$!

(6) 4Hundred$Sent
(7) ?

(8) (Eight)

(9) @9AM

7.3.2.(2) Some Assemblers (for processors other than System z) allow you to define a symbol
as a string of alphanumeric characters at least one of which must be a letter (it needn't be the
first character). Can you think of any reasons why the designers of the Assembler Language
decided not to allow this form of symbol?

7.4. Program Relocatability

Understanding the value and relocation attributes of a symbol is usually not very important. You
can write lots of Assembler Language programs without ever having to know how and why the
Assembler uses these attributes. When things go wrong (and because things will go wrong), it is
worth understanding some basic features of value and relocation.

The most important part of the Assembler's task of converting a program from Assembler Lan-
guage statements to machine language code is determining the relative positions of all parts of
your program. To do this, the Assembler constructs an accurate model of the program as it will
eventually reside in memory when it is executed.

This model is necessarily incomplete, for two reasons:

1. The Assembler normally has no way to know where the program will eventually be placed in
memory by the Program Loader.

2. There is no way for the Assembler to know the relationship of the program it is assembling
to other programs that will be combined with it in the load module produced by the Linker.

Methods for handling the second reason will be treated when we discuss external linkages and
subroutines in Chapter X, Sections 37 and 38.

Because the Assembler cannot determine in advance what memory addresses will eventually hold
the program, it must produce a machine language program that will work correctly no matter
where it is placed at execution time. That is, the program must be relocatable. Thus, in building
its model of the final form of the program, the Assembler only needs to determine the relative
positions of the parts of the program it is assembling.

The Assembler doesn't know where the program will eventually be placed in memory, so it does
the next best thing:

54 This information can be saved in a SYSADATA “side file” when you specify the Assembler's ADATA option.

Chapter III: Assembler Language Programs 91

1. It assumes that the program starts at some arbitrary (or programmer-specified) origin, and
generates instructions and data based on that assumption.

2. It includes enough information about its assumptions in the object module, so the Linker
and the Program Loader can tell (a) what starting location was assumed, and (b) what parts
of the program will contain or depend on actual memory addresses at the time the program is
executed.

3. By computing the difference between the program's assembly-time starting location assumed
by the Assembler, and its true starting address assigned at execution time by the Supervisor,
the Program Loader can supply (“relocate”) the necessary true addresses used at execution
time.

In practice, very few parts of a program depend on knowing actual addresses; these will almost
always involve the use of address constants; we'll introduce them in Section 12.2 on page 147.
Many programs can be written to contain no address-dependent information.

7.5. The Location Counter

To help clarify the differences between assembly and execution times, we will make a careful and
important distinction between locations and addresses.

e Locations refer to positions in the Assembler's model of the program at assembly time.

e Addresses refer to the positions in memory, at execution time, where the various parts of the
program reside.

— Locations and Addresses

Locations are used at assembly time; addresses are used at execution time.

The relationship between locations and addresses is close; they differ at most by a single constant
value, the difference between the Assembler's assumed assembly-time starting location and the
Supervisor's assigned execution-time starting address. This difference is handled by the Program
Loader when it relocates the program just before execution, so we don't have to worry about this
at assembly time. %

To assign locations to the various parts of your program as it is assembled, the Assembler main-
tains an internal counter called the Location Counter, or LC. The initial value of the LC is the
“initial location” or “assumed origin” specified on the START statement (see Section 6.4 on page
79); or, if no initial location is specified, the Assembler assigns an initial LC value of zero.

As the Assembler reads your program, it determines how many bytes will be required in the
program for the instruction or data generated for each statement. It adds this number to the LC,
and then reads and processes the next statement. In this way, the Assembler determines the
location and length of each part of the program.

It is important to understand the difference between the Assembler's Location Counter and the
CPU's Instruction Address. The LC is a counter used by the Assembler at assembly time to
determine positions within a program; it goes away when the Assembler is removed from memory
at the completion of an assembly. The IA is a part of the CPU's PSW, and contains the address
of the next instruction to be fetched at execution time; it is always in use whenever any program is
being executed.

55 The Assembler puts the assumed origin into the object module to help the Linker adjust addresses correctly.

92 Assembler Language Programming for IBM System z™ Servers Version 2.00

Exercises

7.5.1.(3)+ In the following program segment, determine (1) the value attributes of all symbols,
and (2) the LC value at the time each statement is read by the Assembler. The length of the
generated instructions and data are given in the comment field of each statement.

EX7_5_1 START X'5000' 0 bytes generated
BASR 6,0 2 bytes generated
BEGIN L 2,N 4 bytes generated
A 2,0NE 4 bytes generated
ST 2,N 4 bytes generated
DUMMY DS XL22 22 bytes generated
N DC F'8' 4 bytes generated
ONE DC F'1' 4 bytes generated

We will revisit this program fragment in Section 10.

7.6. Assigning Values to Symbols

Instructions and data are given names by writing symbols as the name field entry of the state-
ment. When the Assembler encounters such a symbol, it enters it into a Symbol Table containing
the program's symbols and their attributes.

1. The value attribute (or simply, the value) of the symbol is determined from the contents of
the LC at the time the statement was processed, before adding the length of the generated
instruction or data.

2. The relocation attribute will be nonzero, to indicate that the symbol is relocatable. (We will
see shortly how to define absolute symbols that are not relocatable.)

3. The length (in bytes) of the generated instruction or data is assigned as the value of the length
attribute (in most cases).

There are, of course, occasional minor exceptions to these general rules.

There is a simple test to determine whether an internal symbol is relocatable: add a constant to
the initial value of the LC, and re-assemble the program. If the value of the symbol increases by
exactly the same amount, then the symbol is relocatable. If the value doesn't change at all, the
symbol is absolute.

The names of instructions and data areas in a program are relocatable; these are the most frequent
uses of symbols. The numeric value of the relocation attribute of a symbol is assigned by the
Assembler, and can be determined from the Assembler's External Symbol Dictionary, another part
of the object module.

To illustrate how values are assigned to symbols, suppose that when the statement named
GETCONST (on page 90) is read by the Assembler, the value of the LC is X'0007B6'. Then the
symbol GETCONST would appear in the Symbol Table with value X'0007B6'; it would be relocat-
able; and because the statement specifies an RX-type instruction, the length attribute will be 4.
Before reading the next statement, the Assembler increments the LC by the length of the instruc-
tion, so that its value will then be X'0007BA".

Similarly, if the sample statement named TEN (on page 90) was encountered when the LC value
was X'012D88', then the value of the symbol TEN would be X'012D88"'; it would be marked as
relocatable; and its length attribute would be 4. The LC value after incrementing would be
X'012D8C".

To define an absolute symbol, we use the “EQU” assembler instruction statement:

symbol EQU self-defining term

This statement causes the value of the self-defining term to be assigned as the value attribute of
the symbol. (More about the EQU assembler instruction is in Section 13.3.) Thus, the statement

Chapter III: Assembler Language Programs 93

ABS425 EQU 425

defines the symbol ABS425 by assigning a value of 425 (X'000001A9'), a relocation attribute of
zero, and (for want of anything better) a length attribute of one. The symbol ABS425 is simply the
name of a number!

Absolute symbols give you great freedom and flexibility in writing your programs. We will find
many ways to use absolute symbols whose values do not change if the initial LC value is changed.

Exercises
7.6.1.(1) Why can a symbol not be given a value in a comment statement?

7.6.2.(1) The symbol TEN on page 89 will be assigned a length attribute of 4 by the Assembler.
What is the length of the symbol?

7.7. Symbols and Variables

In Assembler Language, we make some important distinctions in terminology. In high-level lan-
guages such as FORTRAN, COBOL, PL/I, and C, symbols are normally used to name variables:
you can assign new values to them as the program executes. Thus, you might write

BAD = GOOD + 7*(LOG(BETTER)/SQRT(BEST)) ; /* Assign new value to BAD */

and understand it to mean “evaluate the quotient of the results of the LOG and SQRT functions,
multiply that by 7, add the result to the current value of the variable GOOD, and assign the result as
the new value of the variable BAD.” Assembler Language doesn't work this way! The value of a
symbol is not the value of a variable of the same name.

—— Assembler symbols

Assembler Language symbols are not variables. There are no “variables”
in the Assembler Language we're describing!%¢

Some of the differences in the meanings of symbols in high-level languages and Assembler Lan-
guage are shown in Table 14.

Assembler Language High-Level Languages

Used only at assembly time Can be thought of as existing at execution
time

Names of places in a program Contain execution-time values

Contents of memory has a “value” Variable has a “value”

The name has a “location” value used by the The name is thought of as naming the value of

Assembler to lay out and organize the program a variable

Table 14. Differences between Assembler Language and high-level language symbols

We will have more to say about this in Section 13.8 on page 173.

56 The conditional assembly language does have variable symbols, but that topic is beyond what we're discussing now.

94 Assembler Language Programming for IBM System z™ Servers Version 2.00

Terms and Definitions

defined symbol
A symbol is defined when the Assembler assigns values to its value, relocation, and length
attributes.

EBCDIC
Extended Binary Code Decimal Interchange Code. Used to assign numeric values to charac-
ters. There are many EBCDIC encodings; they assign different values to some characters, but
all the alphabetic, numeric, and other characters used in the Assembler Language listed in

Table 13 on page 87 are invariant across EBCDIC encodings, except for the characters “$”,
‘6@”, and “#77.

Location Counter (LC)
A counter used by the Assembler at assembly time to build its model of the relative positions
of all components of an assembled program.

relocatable
A property of a program allowing it to execute correctly no matter where it is placed in
memory by the Program Loader.

relocation
Actions performed by the Linker and Program Loader to ensure that a program in memory
will execute correctly no matter where it is loaded. This may require assigning true execution-
time addresses to parts of a program.

self-defining term
One of binary, character, decimal, and hexadecimal. Its value is inherent in the term, and
does not depend on the values of other items in the program.

symbol
A name known at assembly time, to which various values are assigned. The values may be
absolute or relocatable (or even complexly relocatable, as we'll see in Section 8.3).

symbol attribute
Useful information about the properties of a symbol. Attributes include value, relocation,
length, type, scale, and integer. (Only the first three attributes are important for our current
needs.)

Chapter III: Assembler Language Programs 95

8. Terms, Operators, Expressions, and Operands

8888888888
888888888888
88 88
88 88

88 88

88888888
88888888

88 88
88 88
88 88
888888888888

8888888888

In this section we will see how to specify components of the operand field entry of various
instruction statements.

The operand field entry of a typical machine instruction statement is a sequence of operands sepa-
rated by commas. For example, a typical instruction statement might look like this:

symbol operation operandl,operand?,... optional remarks

where the name field symbol is often optional, and the operand field may specify zero to many
operands.

The operands are formed from expressions that are in turn formed by combining terms and opera-
tors.

8.1. Terms and Operators

The basic elements of an expression are ferms. They can be any of the following items:

a self-defining term

a symbol

a Location Counter reference
a literal

a Symbol Attribute reference
- Length

- Integer

- Scale

We will discuss Integer and Scale attributes later; while they aren't used frequently, they can be
very helpful in certain situations.

96 Assembler Language Programming for IBM System z™ Servers Version 2.00

—— Terms

Length, integer, and scale attribute references to a symbol are always
absolute terms; a symbol can be either absolute or relocatable; literals
and Location Counter references are always relocatable. A self-defining
term is always absolute.

We have seen how to write symbols and self-defining terms. Literals are special symbols that
provide a convenient way to write constants, and we will discuss them in Section 12.6.

A Location Counter reference is written as a single asterisk; it has the attributes of the Assem-
bler's Location Counter, and a length attribute that depends on the type of statement where it is
used. The value of * as a Location Counter reference therefore changes during an assembly as the
LC value changes.

A symbol length attribute reference is written as a letter L followed by an apostrophe followed by
a symbol (or an asterisk, for a Location Counter reference).

L'SYMBOL or L'*

is an absolute term whose value is the length attribute of the term following the apostrophe.

The operators used for combining terms are +, —, *, and /, indicating addition, subtraction, mul-
tiplication, and division respectively. A term has no sign; however, + and — may be used as
unary or prefix operators, as in +5. In Assembler Language, the asterisk is therefore used in two
ways: to denote a Location Counter Reference and as the multiplication operator. The Assem-
bler can distinguish these two uses.

8.2. Expressions

An expression is an arithmetic combination of terms and operators. In the absence of unary plus
or minus signs or parentheses, an expression must begin and end with a term, and there must be
an operator between each pair of terms. To illustrate, two expressions are

GETCONST+X'4A! and X+L'X
The following expression uses all four types of self-defining term:
X'12'+C'.'-B'0001010001"'+7

Parentheses may be used, as in ordinary mathematical use (and as in familiar procedural lan-
guages) to indicate groupings. In evaluating expressions, an expression in parentheses is treated as
a term. Thus

(A+2)*(X'4780'-J4J)

is an expression that is the product of two subexpressions, each of which has two terms and one
operator.

Syntactically, an expression may not contain two multiplication or division operators in suc-
cession, or an addition or subtraction operator followed by a multiplication or division operator.
For example:

*+2 valid because * is a Location Counter reference

-A, +A are valid uses of unary + and -

A++B, A--B, A+-B, A-+B are valid (second + and second - are unary operators)
A/+B, A/-B, A*+B, A*-B are valid (+ and - are unary operators)

A+/B, A-/B, A+*B, A-*B are invalid

A**B, A*/B, A/*B, A//B are invalid

Some syntactically valid expressions might not be evaluatable if either or both terms is relocatable
(to be described shortly).

Chapter III: Assembler Language Programs 97

An easy way to determine the validity of expressions with sucessive operators is to parenthesize
each operator with its immediately following term, so that A++B becomes A+(+B); because the
unary + in (+B) is equivalent to B, A++B is evaluated as A+B. (See Exercise 8.2.3.)

Exercises
8.2.1.(2) What would you expect to be the result of A--B, A+-B, and A-+B?
8.2.2.(1) What is the value of the expression X'12'+C'.'-B'0001010001'+7?

8.2.3.(2)+ Determine the syntactic validity of each of the following expressions; and if the
expression is valid, show its simplified form.

A+-+-B
A*--B
A-*-B
A---B
—-A-++B

o o0 T

8.3. Evaluating Assembly-Time Expressions (*)

The rules for evaluating expressions are familiar, with one or two minor exceptions, so it's no
surprise that the Assembler evaluates 2+3 as 5.

Remember: we are describing the Assembler's evaluation of assembly-time expressions involving
the values of assembly-time symbols and other terms. This is entirely different from most high-
level languages, where an expression like A+B in a statement is evaluated at execution time, using
the values of the execution-time variables A and B.

The details of the rules can be rather complicated, so don't try to grasp everything on a first
reading. The examples on page 100 will help to illustrate the rules.

1. Each rerm (along with any preceding unary operator) is evaluated to word precision, 32 bits.
The relocation attribute of each term is noted, so that the relocation attribute of the entire
expression can be evaluated also, as described in rule 10 below.

2. Inner parenthesized subexpressions are evaluated first, using 32-bit two's complement arith-
metic. The resulting value is used in computing the rest of the expression. Thus in

(X'100'+2* (ABS425-420)) +1

where ABS425 has value 425 (as defined on page 93), the subexpression (ABS425-420) would be
evaluated first. The value of the whole expression is X'0000010B', and is absolute.

3. Multiplications and divisions are done before additions and subtractions. Thus the value of
the expression just given would be evaluated as (X'100'+(2*(5)))+1 and not as
((X'100'+2)*(5))+1. Multiplication and division operators may not be combined, as in /*
and */.

4. Relocatable terms or subexpressions may not occur in multiplication or division operations.

5. Operations are performed in left-to-right order within a group of operations of the same pri-
ority. Thus 5%2/4 means the same as (5*%2)/4, not 5*%(2/4); similarly, 5/2*4 means the same as
(5/2)*4, not 5/(2*4).

6. Multiplications yield a 64-bit result, of which the rightmost 32 bits are kept, and the high-
order (leftmost) 32 bits are discarded. Significant bits can be lost if the product is too large.

7. Division always yields an integer result; the Assembler always discards remainders when eval-
uating expressions. Thus 5%2/4 has value 2, and 5%(2/4) has value zero. Division by zero is
permitted, and the result is simply set to zero.

98 Assembler Language Programming for IBM System z™ Servers Version 2.00

8. Negative quantities are carried in two's complement representation.

9. When the expression has been completely evaluated, the result is in 32-bit two's complement
form.

10. The relocation attribute of the result is found as follows; assume that the symbol A is relocat-
able:

e [f there is an even number of relocatable terms appearing in the expression and they are
paired (that is, they have the same relocation attribute appearing with opposite signs) so
that a change in the relative origin assigned to the program has no effect on the value of
the expression, then the expression is absolute. For example, A-A+2 is an absolute
expression with value 2.

e [f there is one remaining unpaired term not directly preceded by a minus sign, then the
expression is simply relocatable, and it has the relocation attribute of the unpaired term.
For example, A+2 is a simply relocatable expression.

e [f there is more than one remaining unpaired relocatable term, or if the remaining term is
preceded by a minus sign, the expression is complexly relocatable. Intentional use of
complexly relocatable symbols is extremely rare. For example, 2-A is a complexly relocat-
able expression. (Some later examples will show how complex relocatability can happen,
so don't worry if this seems obscure.)

In general, you can determine the relocatability of an expression roughly as follows: first, compute
the value of the expression. Second, add some constant to the initial value of the LC, which will
cause the values of relocatable symbols to change. Third, recompute the value of the expression
using the new values of the symbols. If the new value of the expression is identical to the old
value, the expression is absolute; if the values differ by the amount added to the LC, the
expression is simply relocatable; otherwise it is complexly relocatable.

To summarize the rules for combining terms, let A and R represent respectively an absolute and a
simply relocatable expression. The rules for combining terms are summarized in Table 15.

An expression of this form is

A+A, A-A, A*A, A/A absolute

R+A, R-A, A+R simply relocatable

R+R, A-R complexly relocatable

R*A, A*R, R/A, A/R, R*R, R/R forbidden

R-R absolute or complexly relocatable

Table 15. Expressions with absolute and relocatable terms

R—R is absolute only if both expressions have the same relocation attribute. Because this will
almost always be true, we assume (until further notice) that expressions of the form R—R are
absolute. We'll give a precise definition of the relocation attribute in Chapter X when we discuss
external symbols.

Machine instruction statement operands may never be complexly relocatable.

Exercises

8.3.1.(2)+ Suppose R stands for an arbitrary relocatable expression, and A stands for an arbitrary
absolute expression. State which of the following expressions are and are not valid in machine
instruction statement operands.

(1) R#R (2) A+R (3) R+A (4) A+A (5) R-R (6) A-R (7) R-A (8) A-A

(9) R*R (10) A*R (11) R*A (12) A*A (13) R/R (14) A/R (15) R/A (16) A/A

8.3.2.(2) Rule 7 on page 98 states that the Assembler always discards remainders in evaluating
expressions. Does this mean that a program cannot compute a remainder? Explain.

8.3.3.(2)+ The last row of Table 15 says that R-R can be complexly relocatable. How can the
difference of two simply relocatable symbols be complexly relocatable?

Chapter III: Assembler Language Programs 99

8.4. Examples

For these examples, we assume that

ABS425 is an absolute symbol of value 425 (or X'000001A9"),

the value of the Location Counter is X'00011D46',

REL1L is a relocatable symbol of value X'00010A20',

REL2 is a relocatable symbol of value X'00012345' having length attribute 6, and
The Location Counter, REL1, and REL2 have the same relocation attribute.

5%2/4 = 10/4, an absolute expression of value X'00000002'.
16%16*¥16*16*16*16 is an absolute expression of value X'01000000".

6-ABS425 has value X'FFFFFE5SD', and is absolute.
(REL2-REL1)/(ABS425-B'011111"') is an absolute expression of value X'00000010".
REL2+C'-"+*+L'REL2-* is a relocatable expression of value X'000123AB".

2*REL2-REL1 is an invalid expression, because a relocatable term (REL2) occurs in a multiply
operation. (If the Assembler was able to evaluate the expression, it would be simply relocat-
able, and have value X'00013C6A".)

7. Even REL1*1 and REL1*0 (as well as REL1/1 and REL1/0) are invalid expressions, even though
their values are perfectly well defined.

8. (1+(1+(1+(1+(1+(1+(1+(142)*2)*2)*2)*2)*2)*2)*2)+1 is an absolute expression, and has
value X'200'.

9. *+6 is a relocatable expression of value X'00011D4C".

10. (REL2-*)*L'REL2 is an absolute expression of value X'000023FA'. Note the two distinct uses of
the asterisk!

S

The example of a machine instruction statement in Figure 30 on page 78 could have been written
LOAD LR C'45'-(7*X'2A36')+ABS425*B'11111'-235,18/(Q-Q)+3

though the gain in clarity is not obvious. More reasonable usage is illustrated in the following

statements.

* EXAMPLE 8 4 1
R7 EQU 7

R3 EQU 3

LOAD LR R7,R3

There is a difference between

1. the notational convenience of the symbol R7 defined in the first EQU statement above and
intended to mean general register 7,

2. the definition of an absolute symbol R7 to have the value 7, and

3. the use of the symbol as an operand in the operand field entry of a machine instruction state-
ment where the use of register 7 is intended.

Example 8_4_1 is equivalent to the two below. (The second is considered poor style, for obvious

reasons.)

* EXAMPLE 8 4 2 * EXAMPLE 8 4 3
ZORCH EQU 3 R7 EQU 3

ZILCH EQU 7 R3 EQU 7

LOAD LR ZILCH,ZORCH LOAD LR R3,R7

Expressions can also be used to good advantage in EQU statements. For example, suppose we
need to define a symbol NWords whose value gives the number of words in a table, and we also
need a symbol NBits whose value is the number of bits in the same table. We could define the
symbols in the following way.

100 Assembler Language Programming for IBM System z™ Servers Version 2.00

* Example 8 4 4 EQU with expressions

NWords EQU 75 Table has 75 word entries
BitsWd EQU 32 Number of bits per word
NBits EQU NWords*BitsWd Number of bits in the table

Exercises

8.4.1.(2) What are the values of the symbols NWords, BitsWd, and NBits in Example 8_4_4
above?

8.4.2.(3)+ The following short program segment contains instructions (whose purpose is of no
interest for this exercise) whose operand fields contain various expressions. For each expression,
determine (1) whether the expression is absolute or relocatable, and (2) the value of the
expression. The column headed “LOC” gives the hexadecimal value of the Location Counter
for each instruction.

LOC Statement
466 A L 4,B+X'1C!
46A BALR R6,0
46C B ST 4,C-A+X-2*(R6/2)
470 C SLL 5,2*C'-'-C'A'+2

USING B-2,R6-2

R6 EQU 9

474 X DS F Define Symbol X

8.4.3.(3)+ Assume that the Location Counter, and symbols REL1, REL2, and ABS425 have the
value and relocation attributes defined in the examples on page 100. Determine the value and
relocation attributes of the following expressions.

(1) REL1+C'2'/2

(2) REL1-REL2+ABS425

(3) C'45'-(7*X'2A36"')+ABS425*B'11111"'-235
(4) (8/(REL2-REL1)/X'107C')+3

(5) ABS425/((REL2-REL1)/X'C701'+3)

(6) *+ABSA25* (*-REL1-4900)

8.4.4.(2) Assuming that the symbols REL1, REL2, and ABS425 have the attributes defined on page
100, determine the validity of each of the following expressions. Explain why you think any
expression is invalid.

(1) -2+ABS425

(2) ((REL1))*2-2*((REL1))

(3) REL1+C'7592'*B'10110'+ABS425
(4) B'10221'+REL2

(5) ABS425*74239661-2

(6) +Xx'1875"

(7) -*+REL2

(8) *%]

8.4.5.(3) Assume that the symbols A and B are simply relocatable with the same relocation
attribute, and that they have values X'00172B9E' and X'00173AA6"' respectively. Determine the
value and relocation attributes of the following expressions.

(1) B-A

(2) A+C'."

(3) (A+X'00FFF')-(B-B'1101011100001")
(4) (B-A)/10

(5) B+C'B'/(B+B'101'-B)

8.4.6.(3)+ The symbols SAM and JOE are simply relocatable with the same relocation attribute,
and have values X'00174D0A' and X'0016FB63' respectively. The symbol BOB is absolute and has

Chapter III: Assembler Language Programs 101

value X'000003E8'. First, determine the validity of each of the following expressions. Then
determine the value and relocation of each of the valid expressions.

(1) 2*BOB+2*SAM-2*JOE

(2) BOB+(SAM+BOB) - (JOE+BOB)

(3) 2*(SAM-JOE)/5

(4) SAM-(B'10000'*(X'0010'*(BOB-C'H')))
(5) (2*SAM-2*JOE)/5

(6) 2*(JOE-SAM)/(SAM-JOE)

8.4.7.(4) Can you think of any reasons why the designers of the Assembler Language did not
allow relocatable terms to appear in multiplications or divisions? Assuming that the final value
of the term must be either relocatable or absolute, what modifications would be needed to
allow such expressions, as in example 6 on page 100?

8.4.8.(1) The symbols A and B are relocatable, and have values X'00172B9E' and X'00173AA6"
respectively. Determine the value and relocation of these expressions:

8.5. Machine Instruction Statement Operand Formats

The operand field entry of a machine instruction statement consists of a sequence of operands
separated by commas, and terminated by a blank not enclosed in apostrophes. For example, the
operand field entry of the LR machine instruction statement in Examples 8_4_1 through 8§_4_3
contains two operands, expressions of value 7 and 3 respectively.
An operand of a machine instruction statement has only one of three possible formats:

expr expr; (expry) expr; (expry,exprs)

where “expr” is an abbreviation for “expression”, and the subscripts indicate only that each expr
can be different from the others. To repeat: operands of machine instruction statements have one of
these three formats.

The third operand format has two interesting features. First, the comma between the second and
third expressions does not terminate the operand; it merely separates the expressions within the
parentheses. Second, the first of the expressions within the parentheses, expr,, may sometimes be
omitted, so that

expr; (,exprs)

is a valid form of the third operand format. The Assembler will assume that the omitted
expression is absolute and has value zero. The format expr;(expr,,) is never valid.

Examples of the first expr format are
ABLE 2*(SAM-JOE) /5 X'6D' TWO+2 *

Examples of the second expr(expr,) format are
ABLE(4) X'6D' (POINTER) P(*-*) (A-ST) (24ST)

Multiplication is not implied in the last example!

Finally, examples of the third expr;(expry,expr;) format are
0(255,12) 8(,3) X(Y-8,2/2) (A-B) (A-B, (A-B))

Again, no multiplication is implied in any example.

Depending on the machine instruction, one or more operands may be required; for each operand,
one or more of the operand formats may be valid. Also, depending on the type of the instruction,

102 Assembler Language Programming for IBM System z™ Servers Version 2.00

there may be restrictions on the value and relocation attributes of the expressions in an operand.
One of the most important restrictions is that all operands of a machine instruction statement
must either be absolute or simply relocatable; no complexly relocatable expressions are allowed.

For example, a typical RR-type instruction (as in the examples on page 100) has two operands:
each must be of the form

expr

For such RR-type instructions, the Assembler requires that the expressions must be absolute and
have value between 0 and 15.

Exercises

8.5.1.(2)+ For each of the following operands, determine whether it is of the first, second, or
third type. If the operand is invalid, explain why.

(1) A+B(5)

(2) A+(B+(5))

(3) A+C("(C')")

(4) A(C',C")

(5) 7+(X'BAD'/B'01101")

(6) (C'(')(C'),",(c"(,)"))

(7) 0-0(0,0)

(8) 0/0(,0*0)

(9) C”I(A)I*CIA(I(CI)II)I-XICI*CIX)I)

8.6. Details of Expression Evaluation (*)

While the rules for writing specific machine instruction statement operands will be covered in the
later sections as new instruction types are introduced, this view of the rules for valid expressions
(stated in the previous section) can be summarized in these diagrams.”’

1. An operand can take one of three forms:

operand
|

| 1 |
expr expr(expr) expr(expr,expr)

2. An expression can take any of these three items involving a “factor” (this shows how unary
+ and — signs are described):

expr
|

M 1
factor +factor factortfactor

3. A factor can take any of these three forms (this shows how multiplication and division have
higher priority than addition and subtraction):

factor

|
[[

|
primary primary*primary primary/primary

4. A primary is either a term or a parenthesized expression:

primary

term (expr)

5. Finally, a term in an expression is one of the following:

57

These five diagrams are pictorial representations of a notation known as “BNF”, which stands for either “Backus
Normal Form” (after John Backus, the leader of the team that created the first FORTRAN compiler in 1957), or
“Backus-Naur Form” (after John Backus and Peter Naur, who worked on defining the ALGOL language in
1958-1960.)

Chapter III: Assembler Language Programs 103

term

|
[

| T | |
Symbol Self- Location Literal Symbol

Defining Counter Attribute
Term Reference Reference
L' 1 s

We haven't yet described Literals and Symbol Attribute References; they will appear shortly.

The quantities “factor” and “primary” do not appear anywhere in the Assembler Language. They
are used here only to help clarify the precedence of multiplication, division, addition, subtraction,
and parentheses.

Terms and Definitions

absolute symbol
A symbol whose value behaves in expressions like a self-defining term. Its value does not
change if the assumed origin of the program changes.

complex relocatability
A property of a symbol or expression whose relocation attribute is neither absolute or simply
relocatable.

expression
A combination of terms and operators to be evaluated by the Assembler.

expression evaluation
The procedure used by the Assembler to determine the value of an expression.

Length Attribute Reference
A term whose value is the length attribute of a symbol.

operator
One of * (meaning multiplication), / (meaning division), + (meaning addition), or —
(meaning subtraction). (The Assembler does not support **, which is sometimes used to
mean exponentiation.)

simple relocatability
A property of a symbol or expression whose value changes by the same amount as a change
to the program's assumed origin.

Symbol Attribute Reference
A term whose value is that of a symbol's attribute. The three most important types of
Symbol Attribute Reference are length, scale, and integer.

term
A symbol, self-defining term, Location Counter reference, literal, or symbol attribute refer-
ence.

Programming Problems

Problem 8.1.(2) Write and execute some test cases with your Assembler to determine whether it
allows you to specify a Length Attribute reference of any term, not just for symbols and
Location Counter References. Are there any cases that don't work? (Some test cases you might
try are L'2, L'(*-10), L'*, L'ABS425, L'425, L'=F'l', and L'L'*.)

Problem 8.2.(2) What is the length attribute of an expression? Suppose A and B are absolute
symbols with value 5 and 3 respectively, and they both have length attribute 1. Determine the
value of each of the following expressions: (1) L'A*B, (2) A*L'B, (3) L' (A*B). Evaluate them on
your Assembler. This code fragment may help you start:

104 Assembler Language Programming for IBM System z™ Servers Version 2.00

A Equ 5

B Equ 3

C1 Equ L'A*B
C2 Equ A*L'B
C3 Equ L'(A*B)

Try some similar expressions and see what happens.

Chapter III: Assembler Language Programs 105

9. Instructions, Mnemonics, and Operands

9999999999
999999999999
99 99
99 99
99 99
999999999999
999999999999

99
99
99 99
999999999999
9999999999

We will now see how to write some machine instruction statements, with various instruction
formats and examples of actual code sequences. The instructions in Table 16 and their behavior
will be discussed in detail later, so don't worry now about learning the mnemonics, operation
codes, or descriptions.

Mnemonics are short abbreviations for a word or phrase describing the action of each operation
code. A mnemonic may be as simple as “A” meaning “Add”, or “BXLE”, meaning “Branch on
Index Low or Equal”. We will look at several classes of instructions, showing how their operands
are written. Abbreviations and notations used to describe operands such as “R;”, “S,”, “I,”, etc.,
will be explained as we go along.

9.1. Basic RR-Type Instructions

106 Assembler Language Programming for IBM System z™ Servers

Table 16 illustrates some common RR-type instructions, where “Op” and “Mnem” are abbrevi-
ations for “Operation Code” or “Opcode”, and “Mnemonic”.

Op Mnem Instruction Op Mnem Instruction

04 SPM Set Program Mask 05 BALR Branch And Link
06 BCTR Branch On Count 07 BCR Branch On Condition
0D BASR Branch And Save OE MVCL Move Long

OF CLCL Compare Logical Long 10 LPR Load Positive

11 LNR Load Negative 12 LTR Load And Test
13 LCR Load Complement 14 NR AND

15 CLR Compare Logical 16 OR OR

17 XR Exclusive OR 18 LR Load

19 CR Compare 1A AR Add

1B SR Subtract 1C MR Multiply

1D DR Divide 1IE ALR Add Logical

1F SLR Subtract Logical

Table 16. Typical RR-type instructions

Version 2.00

1. Not all of the 64 available bit combinations between X'00' and X'3F' are used as actual oper-
ation codes. For example, IBM has promised not to use X'00' as an operation code.®

2. There are many other RR-type instructions, and several other RR-type instruction formats.
The examples that follow generally apply to all such instructions.

9.2. Writing RR-Type Instructions

For most RR instructions, the operand field entry in a machine instruction statement is written
R1sRy

where the operands “R;” and “R,” designate registers.” (Some instructions require one or both of
the operands to be even numbers, designating even-numbered registers.)

The numeric subscripts “1” and “2” in the quantities “R;” and “R,” distinguish the operand
being referenced. Using the terms “first operand”, “second operand”, etc. consistently will help
you remember what actions are being performed by each instruction.

To explain the notation “R;,R,”, refer to the example of a machine instruction statement in
Figure 30 on page 78, where the operation and operand field entries were “LR” and “7,3”,
respectively. In this case, the “R;” operand is “7” and the “R,” operand is “3”. The quantities
R, and R, must be absolute expressions between 0 and 15. Thus, we could just as well have
written

LOAD LR X'7',B'11'

For these basic RR-type instructions, the values of the operand field expressions are placed by the
Assembler into two adjacent hexadecimal digits, called the “operand register specification digits”
in the second byte of the instruction. This second byte was denoted “register specification” in
Table 6 on page 52. Table 17 shows the positions of the register specification digits.

opcode R, R,

Table 17. RR-type instruc-
tion

For most RR instructions the Ry operand specifies the register that at execution time contains the
“first operand”. Our notation “R;” means a number specifying the Ry digit of an instruction; no
reference to general register register 1 (possibly denoted by GR1) is implied. You can of course
specify “1” as the value of the R; operand!

We can now see the difference between (1) the “operands” of an instruction statement at
assembly time, and (2) the “operands” of a machine instruction at execution time. The operands
(first meaning) in the operand field entry of the instruction “LR 7,3” are the single characters 7
and 3, whereas at execution time the operands (second meaning) of the LR instruction will be the
data found in general registers 7 and 3. Table 16 on page 106 shows that the operation code
corresponding to the mnemonic LR is X'18', so the two-byte instruction generated by the Assem-
bler would be X'1873".

Programming with RR instructions is easy. Suppose we wish to compute the sum of the contents
of general registers 2 and 14, subtract the contents of GR9 from the sum, and leave the result in
GRO. These statements will do the job.

58

59

X'00' has not been assigned as a valid opcode for two reasons. First, unused areas of memory are often set to zero
when programs are initialized; programs that try to execute “instructions” from those areas will stop immediately
with a program interruption for an invalid instruction. (Sometimes, a programmer will purposely insert a X'0000'
halfword in a program to force it to stop at an exact position so the contents of registers and memory can be veri-
fied.) Also, programs like debuggers sometimes use X'00' as “breakpoints” to halt instruction tracing at a specified
place.

Some instructions have only one or even no explicit operands!

Chapter III: Assembler Language Programs 107

0,2 Copy contents of GR2 to GRO
AR 0,14 Add contents of GR14 to GRO
SR 0,9 Subtract contents of GR9 from GRO

The instructions, their actions, and other properties will be described in subsequent sections.

E]

Exercises

9.2.1.(2)+ Which of the following are valid register operands for an RR-type instruction?
(1) 0, (2) B'1101", (3) X'11', (4) 4*(X'F2'=C'0")/5+X"E", (5) 4*(X'F2'—C'0")/3+X'E".

9.2.2.(2) Which of the values in Exercise 9.2.1 are valid operands if the instruction operand
requires an even-numbered register?

9.3. Basic RX-Type Instructions

Table 18 shows examples of some frequently-used RX-type instructions. As in Table 16, not all
of the 64 available digit combinations between X'40' and X'7F' are used as actual operation
codes. Again, you needn't try to remember them here.

Op Mnem Instruction Op Mnem Instruction

40 STH Store Halfword 41 LA Load Address

42 STC Store Character 43 IC Insert Character

44 EX Execute 45 BAL Branch And Link
46 BCT Branch On Count 47 BC Branch On Condition
48 LH Load Halfword 49 CH Compare Halfword
4A AH Add Halfword 4B SH Subtract Halfword
4C MH Multiply Halfword 4D BAS Branch And Save
4E CVD Convert To Decimal 4F CVB Convert To Binary
50 ST Store 54 N AND

55 CL Compare Logical 56 O OR

57 X Exclusive OR 58 L Load

59 C Compare 5A A Add

5B S Subtract 5C M Multiply

5D D Divide SE AL Add Logical

S5F SL Subtract Logical

Table 18. Typical RX-type instructions

9.4. Writing RX-Type Instructions

In this and the following section we will introduce some basic concepts, using RX-type
instructions as examples.

The format of an RX-type instruction was shown in Table 7 on page 52. We now look at the
parts of the instruction in Table 19 and describe Assembler Language techniques for specifying
them.

opcode R, X, B, D,

Table 19. RX-type instruction

108 Assembler Language Programming for IBM System z™ Servers Version 2.00

As noted when we reviewed addressing in Section 5.3 on page 63, three components of an RX
instruction are used in computing an Effective Address: the index register specification digit X,
the base register specification digit B,, and the displacement D,. The operand field entries may be
written in several ways, but they must yield values for the four needed quantities: Ry, X,, B,, and
D,. Usually, values for all of these items need not be explicitly given; the Assembler can make
assumptions about what to provide in cases where values are not explicitly given. When the
Assembler provides values for something, we say that the values were “specified by default” or
“specified implicitly”.

The operand field entry of RX-type instructions has the general form

R;,address-specification

where “address-specification” will be described next. The operand register specification digit R is
formed according to the same rules given above for the R; and R, digits for RR instructions, and
must be an absolute expression with value between 0 and 15.

9.5. Explicit and Implied Addresses

For an explicit address, you supply the base and displacement; for an implied address, the Assem-
bler determines the base and displacement. (Section 10 will show you how it's done.)

— Explicit and Implied Addresses

e Explicit: you specify the base and displacement.
e Implied: the Assembler calculates the base and displacement for you.
How this is done is explained in Section 10.

Suppose we wish to specify explicitly the values assigned to X,, B,, and D,: then, we write the
second operand (the “address-specification”) as

D, (X5,B5)

which is the third of the possible operand formats described in Section 8.5 on page 102. The
instructions in examples 4, 5, and 6 of Section 5.4 on page 65 could be written as shown in
Figure 34, where the assembled form is on the left, and the Assembler Language machine instruc-
tion statement is in the center; the displacements have the same value in each instruction.

430A7468 IC 0,1128(10,7) D,=1128, X,=10, B,=7
43007468 IC 0,1128(0,7) D,=1128, X,=0, B,=7
43070468 IC 0,1128(7,0) D,=1128, X,=7, B,=0

Figure 34. RX Instruction with explicit operands

Compare the machine language form of these three instructions to the fields in Table 19 on
page 108.

The four possible forms of the second operand of an RX instruction are shown below, where we
use “S,” to mean an implied address (which need not necessarily refer to a symbol, as we'll see!).

Explicit Address Implied Address

Not Indexed Dy(,By) Sz

Indexed D»(X5,B9) Sa(X)

Table 20. Operands of RX-type instructions

In the two cases where an explicit address is written, each of the quantities D,, X,, and B, must
be an absolute expression; X, and B, must have value less than 16, and D, must have value less

Chapter III: Assembler Language Programs 109

than or equal to 4095=X'FFF'.% The not-indexed form of an explicit address implies X,=0, as
we saw earlier; both indexed addresses specify an index digit.

In the two cases where an implied address is written, the quantity S, may be either an absolute or
a relocatable expression. This means that we can write instructions such as

L 0,ANSWER Operand forms are R;,S,
L 0,16 Operand forms are Ry,S,
LA 2,25*40 Operand forms are R;,S,

and let the Assembler assign the proper base and displacement; this is the subject of Section 10.
Note that the second operand of the first statement is a symbol (that we assume is relocatable),
while the second operand of the other two statements is an absolute expression.

For the moment, suppose the Assembler has sufficient information so that the instruction
IC 0,BYTE Operand forms are Ry,S,

is translated into the hexadecimal digits 43007468, as in Figure 34 on page 109. Then if the
index register is GR10, the instruction

IC 0,BYTE(10) Operand forms are R;,S,(X,)

is translated into the hexadecimal digits 430A7468. In the last example in Figure 34 on page 109
we could have written the second operand with an indexed implied address of the form S,(X5), as
1128(7), where the S, expression is absolute!

For example, it is common practice to load a small constant into a register using the LA (Load
Address) instruction:

LA 2,10 Put 10 in R2

and the operand 10 is an absolute implied address. This will almost never lead to difficulties; but
to be absolutely safe, you could write instead

LA 2,10(0,0) Put 10 in R2

and the operand now specifies an explicit address.

The only way the Assembler can decide among the four forms of address specification in Table 20
on page 109 is (1) by noting whether a left parenthesis follows the first expression (if not, the
address is implied), and (2) if there is a left parenthesis, by noting whether a comma appears
before the matching right parenthesis (if so, the address is explicit). There is of course no effect of
commas and parentheses in character self-defining terms.

It helps to remember that implied addresses almost always involve relocatable expressions, and
explicit addresses always involve absolute expressions. Sometimes we accidentally use a relocatable
expression where it should have been absolute, or an absolute expression where it should have
been relocatable. The Assembler usually (but not always) diagnoses such errors.

The most common form of address specification is an implied address, where the Assembler com-
putes the proper displacement for us. While we have now seen implied addresses in the context of
RX-type instructions, they are used in many other instruction types.

Exercises

9.5.1.(2) In Table 20 on page 109, use the rules of Section 8.5 to identify the format of each of
the four operands.

9.5.2.(2)+ The following are examples of the second operand of an RX-type instruction (the
address-specification). For each operand, determine (1) whether the address is implied or
explicit, and (2) whether indexing is specified. Assume that the symbols A, B, C are relocatable
with the same relocation attribute, and that the symbol N is absolute.

60 In Section 20 we will introduce instructions with signed 20-bit displacements.

110 Assembler Language Programming for IBM System z™ Servers Version 2.00

B+X'1C'

C-A+B-2(N/2)
2*%C'-"-C'A"+2 (N+N)
B-A((B-A)/2,((B-A)*2))
C'A'+A(C',"-99)
N+N(,N)

SO WN -

9.5.3.(2) Assume that each of the operands in Exercise 8.5.1 on page 103 is used in an RX-type
instruction. Using the rules in Section 9.5, determine whether the addresses are explicit or
implied.

9.6. Typical RS- and SI-Type Instructions

The examples of basic RS-type and SI-type instructions in Table 21 are quite varied in the way
you specify their operand fields.

Op Mnem Type Instruction Op Mnem Type Instruction

90 STM RS Store Multiple 91 ™™ SI Test Under Mask

92 MVI SI Move Immediate 94 NI SI AND Immediate

86 BXH RS Branch On Index High 95 CLI SI Compare Logical Imme-

diate

87 BXLE RS Branch On Index Low or Equal 96 OlI SI OR Immediate

97 XI SI Exclusive OR Immediate 88 SRL RS Shift Right Single Logical

98 LM RS Load Multiple 89 SLL RS Shift Left Single Logical

8A SRA RS Shift Right Single 8B SLA RS Shift Left Single

8C SRDL RS Shift Right Double Logical 8D SLDL RS Shift Left Double Logical

8E SRDA RS Shift Right Double 8F SLDA RS Shift Left Double

BD CLM RS Compare Logical Characters BE STCM RS Store Characters Under
Under Mask Mask

BF ICM RS Insert Characters Under Mask
Table 21. Typical RS- and SI-type instructions

Some instructions (like “Shift Double”) require a register operand to be an even number.

9.7. Writing RS- and SI-Type Instructions

We will show the operand field formats for RS-type and SI-type instructions separately, as they
are quite different.

The RS-type instruction format is similar to RX-type format, except that the X, field is replaced
by an Rj field, so no indexing is performed when Effective Addresses are formed.

opcode R, R; B, D,

Table 22. Typical RS-type instruction
The operand fields of Assembler Language instructions specifying RS-type instructions are shown

in Table 23 on page 112. There are two forms, one with a single “R,” operand and the other
with two, indicated by RS-1 and RS-2 meaning one or two register operands respectively.

Chapter III: Assembler Language Programs 111

Explicit Address Implied Address

RS-1 R1,D,(By) R1.S;

RS-2 R1.R3,D5(By) R1.R3.S;

Table 23. Operands of RS-type instructions

Examples of RS-type instructions with explicit and implied addresses are:

SRA 11,2 Explicit address (RS-1 form)
SLDL 6,N Implied address (RS-1 form)
M 14,12,12(13) Explicit address (RS-2 form)
STM 14,12,SaveArea+l2 Implied address (RS-2 form)
BXLE 4,1,Loop_3 Implied address (RS-2 form)

SI-type instructions are different. The I, operand is contained in the second byte of the instruc-
tion, as in Table 24:

opcode I, B, D,

Table 24. Typical Sl-type instruction

Table 25 gives the operand fields of Assembler Language statements involving SI-type
instructions:

Explicit Address Implied Address

SI D{(B).], Sy.1,

Table 25. Operands of SI-type instructions

Examples of SI-type instructions with explicit and implied addresses are:

MVI 0(6).C'*' Explicit S; address
CLI Buffer,C'0’ Implied S; address
Exercises

9.7.1.(2) The following are operand fields that could be used in RS- and SI-type instructions.
Identify the type of instruction (RS-1, RS-2, or SI) for which they are valid, and the compo-
nents of the instruction to which each expression applies. State which expressions specify
explicit addresses and which specify implied addresses.

(nH 1(2),3
(2) 4,5(6)
3 7,8,9
4) 10,11

(5) 14,15(16)
(6) 100,101

112 Assembler Language Programming for IBM System z™ Servers Version 2.00

9.8. Typical SS-Type Instructions

Table 26 shows some examples of popular SS-type instructions. The column headed “Len”
shows the number of length fields in the instruction.

Op Mnem Len Instruction Op Mnem Len Instruction

D1 MVN 1 Move Numeric FO SRP 2 Shift And Round
D2 MVC 1 Move F1 MVO 2 Move With Offset
D3 MVZ 1 Move Zone F2 PACK 2 Pack

D4 NC 1 AND F3 UNPK 2 Unpack

D5 CLC 1 Compare Logical

D6 oC 1 OR F8 ZAP 2 Zero And Add
D7 XC 1 Exclusive OR F9 CP 2 Compare

DC TR 1 Translate FA AP 2 Add

DD TRT 1 Translate And Test FB SP 2 Subtract

DE ED 1 Edit FC MP 2 Multiply

DF EDMK 1 Edit And Mark FD DP 2 Divide

Table 26. Typical SS-type instructions

ED, EDMK, SRP, and the last six instructions in the right-hand column operate on data stored
in packed decimal format, which is different from the data formats used for the general register
and floating-point instructions. We'll learn about them in Chapter VIII.

9.9. Writing SS-Type Instructions

Most SS-type instructions specify two addresses, and may have one or two length fields depending
on whether you must specify the length of only one operand (type SS-1) or of both operands
(type SS-2). Their formats are shown in Tables 27 and 29.

As with explicit and implied addresses, you can also specify explicit and implied lengths in SS-type
instructions. When we use implied lengths the Assembler determines the values put into the
length fields of the instruction, often by using the length attribute of a symbol. Implied lengths
are very useful, and we'll see many examples.

This is the format of instructions with a single length field.

opcode

L, B,

D,

B,

D,

Table 27. Typical type SS-1 instruction with one length field

Addresses and lengths may be specified explicitly or implicitly, as summarized in the following
tables. First, we examine the single-length instructions.

SS-1 Explicit Addresses Implied Addresses
Explicit Length D1(N1,B1),D»(By) S1(N9),S,
Implied Length D1(,B1),D»(By) S1.S5

Table 28. Operands of type SS-1 single-length instructions

Chapter III: Assembler Language Programs

113

When you write an instruction with an explicit length, you provide a “Length Expression” or
“program length”, denoted “N;”. The Assembler generates object code with an “Encoded
Length” or “machine length” denoted by “L;”. This seems strange: why are they different?

The Assembler generates the value of L; by subtracting 1 from the value of N; (unless Nj is
zero). We'll see why this is done when we discuss SS-type instructions starting in Section 24.
Some examples of SS-type instructions with a single length field are:

MVC 0(80,4),40(9) Explicit length and addresses
CLC Name(24) ,RecName Explicit length, implied addresses
TR OutCh(,15),0(12) Implied length, explicit addresses
XC Count,Count Implied length and addresses

where the symbol OutCh must be absolute. (This form is rarely used.)

SS-type instructions with two length fields have the format shown in Table 29.

opcode L, L, B, D, B, D,

Table 29. Typical type SS-2 instruction with two length fields

Many more combinations of explicit and implied lengths and addresses are available when you
use SS-type instructions with two length fields. Some of the Assembler Language operand field
combinations are shown below.

SS-2 Explicit Addresses Implied Addresses
Explicit Lengths D;(N1,B1),Dy(N,,By) S1(N1),S2(Ny)
Implied Lengths D1(,B1).D2(,By) S1.S;

Table 30. Operands of type SS-2 two-length instructions
You can specify explicit lengths and addresses for either of the two operands; see Exercise 9.9.2.

As noted for SS-1 type instructions, the Encoded or machine lengths L; and L, are one less than
the Length Expressions or program lengths N; and N,. We'll see these again in Chapter VIII.
Some examples of SS-type instructions with two length fields are:

PACK 0(8,4),40(5,9) Explicit lengths and addresses
ZAP Sum(14),01dSum(4) Explicit lengths, implied addresses
AP Total(,15),Num(,12) Implied lengths, explicit addresses
UNPK String,Data Implied lengths and addresses

The symbols Total and Num must be absolute for the third statement to be valid.

This SS-type instruction copies five bytes from a memory area named AREA to an area of memory
named FIELD:

MVC FIELD(5),AREA
Exercises
9.9.1.(2)+ The following operands could be used in SS-type instructions. State the operand for

which they may be valid, for both SS-1-type and SS-2-type instructions, and whether a length is
explicit or implied. (Validity and form may depend in the relocation attribute of the symbols.)

(H 1(2)
(2) 4(5,6)
(3) A(L'B)
(4) Line

114 Assembler Language Programming for IBM System z™ Servers Version 2.00

(5) Line(80)
(6) XX(,5)

9.9.2.(2)+ Make a table to show all possible combinations of explicit and implied addresses,
and implicit and implied lengths, for SS-2 type instructions.

9.10. Summary

When describing the fields of both machine instructions and assembler instruction statements, we
use notations like S,, B;, N, Lo, etc.

e Fields denoted S can be absolute or relocatable expressions, and are most often relocatable.
e Fields denoted B, D, I, L, N, and X must always be absolute expressions.

Terms and Definitions

Encoded Length
The contents of a Length Specification Byte; one less than the value of the Length
Expression (unless the Length Expression is zero, in which case the Encoded Length is also
ZEero).

explicit address
An address in which you specify the base register specification digit and the displacement as
absolute expressions.

explicit length
A length field that you specify explicitly.

implied address
An address where you expect the Assembler to assign a base register specification digit and a
displacement to an addressing halfword.

implied length
A length field completed by the Assembler based on its analysis of the operand.

Length Expression
A value you write in an SS-type instruction specifying the length of the operand(s).

machine length
An Encoded Length.

mnemonic
A character string representing an instruction, intended to be easier to remember than the
operation code of the instruction.

opcode
An abbreviation for operation code. Occasionally used when the term mnemonic is actually
meant.

operation code
The z/Architecture definition of an instruction's bit pattern to be decoded by the CPU to
determine what actions it should take.

program length
A Length Expression.

Chapter III: Assembler Language Programs 115

10. Establishing and Maintaining Addressability

11

111

1111

11

11

11

11

11

11

11
1111111111
1111111111

00000000
0000000000
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00
0000000000
00000000

In Section 5 we saw how the CPU at execution time converts addressing halfwords into Effective
Addresses. Now we will see how the Assembler derives addressing halfwords from the values of
symbolic expressions at assembly time, and answer the question “How do we help the Assembler
create addressing halfwords?”

This important information is provided in the USING assembler instruction statement.

10.1. The BASR Instruction

The RR-type Branch and Save (Register) instruction with mnemonic BASR is frequently used to
generate a base address that provides addressability.®! For now, we consider what happens when
we write

BASR R;,0

where the second operand register specification digit R, is zero. This instruction when executed
replaces the contents of the general register specified by R; by the Instruction Address (IA)
portion of the PSW. This address will necessarily be the address of the instruction following the
BASR, because the IA was incremented by the BASR instruction's length (2 bytes) during the
fetch portion of the instruction cycle.

In this RR-type instruction (unlike many other RR-type instructions), the zero second operand
does not refer to general register zero! Instead, it means that only the described actions will occur
without any “branch”, as the “Branch and Save” name implies. (We'll see in Chapter X that
BASR is often used for branching, usually in subroutine linkages.)

Suppose the following short sequence of statements is part of a program that has been assembled
and placed in memory to be executed. While we are giving the Assembler Language statements in
Figure 35 on page 117, the assembled contents of memory will be hexadecimal machine language
data, as shown in Figure 36 on page 118. Suppose the Program Loader has relocated the
program so that the first instruction (the BASR) was placed at memory address X'5000"'.

61 The BASR instruction should be used in place of BALR in most situations; the main difference is that BALR inserts
the ILC, CC, and Program Mask in the high-order 8 bits of the first operand register when executing in 24-bit
addressing mode. BALR and BASR work the same way in 31-bit and 64-bit addressing modes.

116 Assembler Language Programming for IBM System z™ Servers Version 2.00

Address Name Operation Operand Remarks

* Fragment of a simple program

5000 BASR 6,0 Establish base address

5002 BEGIN L 2,N Load contents of N into GR2

5006 A 2,0NE Add contents of ONE

500A ST 2,N Store contents of GR2 into N
--twenty-two (X'16') additional bytes of instructions, data, etc.--

5024 N DC F'8' Word integer 8

5028 ONE DC F'1' Word integer 1

Figure 35. A simple program segment
For this and the following examples, the instructions following the BASR are intended just to
show how the Assembler creates addressing halfwords. Briefly, their actions are:

e L is the mnemonic for the RX-type (4-byte) machine instruction Load. It copies the contents
of a 4-byte (word) area of memory and puts it into a general register.

e A is the mnemonic for the RX-type (4-byte) machine instruction Add. It adds a copy of the
contents of a 4-byte (word) area of memory to the contents of a general register.

e ST is the mnemonic for the RX-type (4-byte) machine instruction STore. It replaces the con-
tents of a 4-byte (word) area in memory with a copy of the contents of a general register.

e DC (Define Constant) is an Assembler instruction used to create constants. The two DC
statements create word binary integers in memory.

The leftmost column in Figure 35 shows the memory address of each instruction and data item.

For now, we'll ignore what the instructions actually do, and focus on how they are assembled.

Exercises

10.1.1.(2) Use the lengths of the instructions and constants in Figure 35 to calculate their
addresses in memory, and determine if the values in the figure are correct.

10.2. Computing Displacements

Now, suppose the program has begun execution. After the BASR has been executed, register 6
will contain X'00005002'. (Remember: BASR places the address of the next instruction into the
register designated by the Ry operand.) We can now use the address in register 6 as a base
address for the instructions following the BASR, so the base register specification digit in subse-
quent addressing halfwords should be 6.

We can determine the proper displacement in the L instruction at X'5002"' by using two important
values: the known contents of register 6 (X'00005002') and the address of the word area named N.
Using these values, we can now compute a displacement:

X'00005024"' — X'00005002' = X'022'
Then, the assembled machine language instruction (using opcode X'58"' for the mnemonic L) will
be X'58206022'. When this instruction is executed, its Effective Address is

X'022' + X'00005002"' = X'00005024"',
the address of the word named N that we want!
If we continue this way for the rest of the statements, the “assembled” machine language
instructions and data will give the desired results at execution time. That is, after program loading

is complete, we want the memory areas starting at address X'5000' to contain the (hexadecimal)
machine language data shown under “Assembled Contents” in Figure 36 on page 118.

Chapter III: Assembler Language Programs 117

Address Assembled Contents Original Statement

5000 0D60 BASR 6,0
5002 58206022 BEGIN L 2,N
5006 5A206026 A 2,0NE
500A 50206022 ST 2,N
5024 00000008 N DC F'8’
5028 00000001 ONE DC F'1’

Figure 36. Simple program segment with assembled contents

Remember that when the Assembler processes the BASR statement and produces two bytes of
machine language code containing X'0D60', nothing is yet “in” register 6. It is only when this
machine language instruction is finally executed by the processor that the desired base address will
be placed in register 6.

So far, so good: we have constructed a sequence of instructions that will give a desired result if it
is placed in memory at exactly the right place. You might ask “What would happen if the
program is put elsewhere by the Program Loader?” So, let's suppose the same program segment
begins at memory address X'84E8', as in Figure 37.

Address Statement
84E8 BASR 6,0
84EA BEGIN L 2,N
84EE A 2,0NE
84F2 ST 2,N
--- the same 22 bytes of odds and ends ---
850C N DC F'8'
8510 ONE DC F'1l'

Figure 37. Same program segment, at different memory addresses

After executing the BASR, register 6 contains X'000084EA'. To address the contents of the word
named N using register 6 as a base register, the necessary displacement is

X'0000850C" — X'OOO084EA' = X'022'

Similarly, the displacement necessary in the “A” instruction is

X'00008510"' — X'OO0084EA' = X'026'

After completing the three addressing halfwords, the assembled machine language program would
appear in memory as shown in Figure 38.

Address Assembled Contents
84E8 0D60
84EA 58206022
84EE 5A206026
84F2 50206022
850C 00000008
8510 00000001

Figure 38. Same program segment, with assembled contents

The identical machine language program is generated in both Figures 36 and 38. We see that so
long as the same fixed relationship is maintained among the various parts of the program segment
(there are 22 bytes between the ST instruction and the word named N), the program segment
could be placed anywhere in memory and still execute correctly. That is, the program is relocat-
able.

118 Assembler Language Programming for IBM System z™ Servers Version 2.00

Indeed, we could have assumed that the program began at memory address zero (even though an
actual program would not be placed there) because the contents of register 6 after the BASR is
executed would be X'00000002', and the displacements would be calculated exactly as before.

10.3. Explicit Base and Displacement

Knowing what we need for the assembled program (the machine language instructions shown in
Figures 36 and 38), we now write the instruction statements with explicit addresses in their second
operands. Register 6 is the base register, and the displacements are those we just calculated. Then
we can write the program as in Figure 39, using an assumed origin of zero for the LC.
(Remember: we're describing locations at assembly time, not the execution time addresses we saw
in the previous examples.)

Location Name Operation Operand
0000 BASR 6,0
0002 BEGIN L 2,X'022'(0,6)
0006 A 2,X'026' (0,6)
000A ST 2,X'022'(0,6)
--------- 22 bytes --------—--
0024 N DC F'8'
0028 ONE DC F'1'

Figure 39. Program segment with pre-calculated explicit base and displacements

This example has two shortcomings. First, calculating displacements in advance is tedious (espe-
cially in large programs), and certainly error-prone. Second, if the relative positions of the parts
of the program change in any way, we will be forced to recalculate some or all of the displace-
ments.

Thus, our first simplification is to find a way to let the Assembler compute the displacements just
as we did. Now, however, we can make good use of the values assigned by the Assembler to the
symbols BEGIN, N, and ONE. (As noted in Section 7.6 on page 93, the values of the symbols are
the values of the LC when the statement is processed.) Referring to Figure 39, the values
assigned to the three symbols will be the value of the assumed origin plus X'0002', X'0024"', and
X'0028', respectively.

The key to this example is that when the program is executing, the base register (register 6) con-
tains the address of the instruction named BEGIN. We use this observation to rewrite the program
segment, as shown in Figure 40.

Location Name Operation Operand
0000 BASR 6,0
0002 BEGIN L 2,N-BEGIN(0,6) (N-BEGIN = X'022')
0006 A 2,0NE-BEGIN(0,6) (ONE-BEGIN = X'026')
000A ST 2,N-BEGIN(0,6) (N-BEGIN = X'022')
------- the usual 22 bytes -------
0024 N DC F'8'
0028 ONE DC F'1'

Figure 40. Program segment with explicit base and Assembler-calculated displacements

We have eliminated both of the shortcomings of the program segment in Figure 39: the displace-
ments were not calculated in advance, and adding (say) four more bytes of instructions or data
preceding the DC statements would not require the rest of the program to be rewritten. However,
we have created another nuisance, since every instruction containing a reference to a symbol must
now specify two extra items: the symbol BEGIN and the base register (6).

So, we need a way to make the Assembler do the rest of the work for us, after we have told it (1)
which base register to use, and (2) the value that will be in it when the program is executed.

Chapter III: Assembler Language Programs 119

10.4. The USING Assembler Instruction and Implied Addresses

The USING assembler instruction provides exactly the information we need. It is written
USING base_location,base_register

where “base_location” is almost always a relocatable expression. (The base_location is sometimes
called the “base”, but it easy to mistake this for the “base_register”.) The “base_register” operand
is an absolute expression between 0 and 15, specifying the register to be used as a base register.
(Zero is very rarely used.)

Thus, the statement
USING BEGIN,6

tells the Assembler to assume that register 6 may be used as a base register that at execution time
will contain the relocated address of the instruction named by the symbol BEGIN. The Assembler
can then calculate displacements relative to the location of BEGIN, and then use this assumption to
create addressing halfwords with base register specification digit 6 and the calculated displace-
ments.

We now rewrite the sample program segment of Figure 40 on page 119 to include the USING
statement in Figure 41.

BASR 6,0
USING BEGIN, 6
BEGIN L 2,N
A 2,0NE
ST 2,N
N DC F'8'
ONE DC F'1’

Figure 41. Program Segment with USING Instruction

If the initial LC value is zero, the value of the symbol BEGIN will be X'0002', and the values of the
symbols N and ONE will be X'0024' and X'0028' respectively. To complete its derivation of the
addressing halfword of the ST instruction, the Assembler needs only to calculate the difference
between the location of the symbol N and the base_location of BEGIN specified in the USING
instruction:

X'0024' — X'0002' = X'022'
and this is the required displacement.
Similarly, the implied address of the operand ONE of the A instruction has value X'0028'; when
the base_location value is subtracted, we find the displacement is X'026', as before. We say that
the Assembler has resolved the implied addresses of the L, A, and ST instructions into base-
displacement form. Thus, the machine language generated from this set of statements would

appear exactly as in Figures 36 and 38. (Details about how the Assembler computes displace-
ments and assigns base registers is described starting in Section 10.8.)

If the attempted calculation
displacement = (operand value) — (base location value)

yields a negative result or a value greater than 4095, the location referred to by the symbol is still
not addressable with this base register, and some other solution is needed.®

62

Section 20 describes long-displacement and relative-immediate instructions with a larger range of displacement values.

120 Assembler Language Programming for IBM System z™ Servers Version 2.00

It is clear that the Assembler can make use of the information supplied by the USING statement
only for implied addresses. If you provide an explicit base and displacement, the Assembler
simply converts them to their proper binary form.

Two important features of the program segment in Figure 41 on page 120 should be noted.

1. The USING instruction does absolutely nothing about actually placing an address into a reg-
ister; it merely tells the Assembler what to assume will be there when the program is exe-
cuted.

That is, your USING statement is a promise to the Assembler that if it computes displace-
ments for you, everything will work properly when the program is executed. (It is very easy
to mislead the Assembler, as we'll see in Section 10.11 on page 129.)

2. If the BASR instruction had been omitted, the contents of register 6 at execution time is
probably unknown. There is no guarantee that correct Effective Addresses will be computed
when the program is executed.

—— Remember!

A USING statement is your assembly-time promise to the Assembler
that your program will obey that promise at execution time.

10.5. Location Counter Reference

The Assembler provides a convenient way to refer to the current value of the Location Counter,
the Location Counter Reference. The term * in an expression has the current value of the LC,
and is always relocatable.

We can rewrite the first two statements of our sample program as

BASR 6,0
USING *,6

with the same results as before. Remember that after the BASR instruction is assembled, the LC
will have a value corresponding to the location of the next byte to be assembled. Because BASR
will (at execution time) place the address of the following instruction into register 6, we can use a
Location Counter Reference to specify the base_location, and not have to use a symbol (such as
the symbol BEGIN in Figure 41 on page 120). to name the instruction following the BASR
instruction.

A common technique for specifying base registers in a program is to choose a base register, write
the statements

BASR reg,0
USING *,reg

at the beginning of the program, and then carefully avoid modifying that register. For simple pro-
grams, specifying and using base registers is very easy.

It's important to remember that while the value of “*” changes as your program is assembled, the
value used in the first operand of the USING statement does not: it has the value of the LC at
the time the USING is processed by the Assembler.

Exercises

10.5.1.(2)+ A careless programmer inverted the order of his BASR and USING statements as
follows:

USING *,12
BASR 12,0

Why is this wrong? What would you expect to happen?

Chapter III: Assembler Language Programs 121

10.6. Destroying Base Registers

Suppose an error was made in writing the statement with the L instruction, such that it became
BEGIN L 6,N Load contents of N into GR2

The comment in the remarks field is correct; the instruction is wrong, because the first operand
was incorrectly written as 6 instead of 2.

The assembled program would then appear as in Figure 42.

Location Assembled Contents Statement

0000 0D60 BASR 6,0
USING BEGIN,6
0002 58606022 BEGIN L 6,N <MWrong register!
0006 5A206026 A 2,0NE
000A 50206022 ST 2,N
0024 00000008 N DC F'8’
0028 00000001 ONE DC F'1'

Figure 42. Sample program segment with erroneous statement

This program would assemble correctly, since all quantities are properly specified. However, at
execution time, things go wrong quickly.

Suppose again that the program is placed in memory by the Program Loader starting at address
X'5000', so that when the L instruction is executed, register 6 contains X'00005002'. Now, the L
instruction copies a word from memory at the address given by the second operand into the reg-
ister specified by the first operand. However, the first operand in this case specifies register 6,
instead of register 2 as intended. When the Effective Address of the operand named N is calculated
during instruction decoding, register 6 contains the correct base address; but when the execution of
the L instruction is complete, register register 6 will contain X'00000008' and not X'00005002',
because the number at N was placed in register 6.

Now the fun begins. When the next instruction (A) is executed, the Effective Address calculated is
X'026' + X'00000008' = X'0000002E'

and not X'00005028', where the intended operand is found. In this case the Effective Address is
not anywhere within the program, but is somewhere among the predefined fixed fields at the low
end of memory; strange numbers will be added to register 2's initial (and unknown) contents.
Finally, the ST instruction will attempt to store a word at X'0000002A', which should cause a
storage protection exception. At this point, the program would stop.

This does not mean that if we accidentally destroy the contents of a base register, the CPU will be
able to detect the error. (See Exercise 10.6.1.) It is partly a matter of chance how much damage
such a program error can cause when the program is executed; indeed, when the CPU finally (if
ever) detects an error, all evidence pointing to the offending instruction may have been lost,
making error tracing difficult. (Register 6 may have been changed several times!) You must be
very careful to guarantee the integrity of the contents of base registers.

Remember also that the Assembler makes no checks for instructions that might alter the contents
of registers designated as base registers in USING statements.

Exercises
10.6.1.(3)+ In the erroneous program in Figure 42, consider the possibility that the word at N

contained the decimal integer 20450. If the program began in memory at address X'5000', what
would be in that area of memory after the ST instruction is executed?

122 Assembler Language Programming for IBM System z™ Servers Version 2.00

10.7. Calculating Displacements: the Assembly Process, Pass One

Now, we'll examine more closely how the Assembler computes bases and displacements.

You can visualize assembly as making two passes over the program: that is, the Assembler
“reads” the program twice. On the first pass, the Symbol Table is built; on the second pass, data
in the Symbol Table is used to help generate the desired instructions and data.

First, you will remember that values are assigned to symbols by the Assembler as follows:

1. A statement is read and examined to determine its general character. It is also saved in a
temporary place so it can be read again during the second pass over the program.

2. If the statement will generate instructions or data, the Assembler adjusts the Location
Counter (if necessary) to satisfy alignment requirements, so that instructions begin on
halfword boundaries, words begin on word boundaries, etc.

3. If a symbol appears in the name field of the statement, it is entered into the Assembler's
Symbol Table, and (if it is not an EQU statement) is given the value of the Location
Counter. That is, the symbol is defined, as described in Section 7.6 on page 93. (Of course, it
will be an error if the symbol is already in the table with a value; this is called multiple or
duplicate definition.)

4. The rest of the statement is scanned; if any other symbols are encountered, they are entered
into the Symbol Table (if not there already), but numeric values are not assigned to their
attributes. That is, if the symbol is not yet defined, it remains “undefined”.

5. The length of the instruction or data to be generated from the statement is then added to the
Location Counter. No data or instructions are generated at this time, however.

This process is repeated for each statement, until the end of the program is reached. Because the
Assembler has made a complete scan or “pass” over the program's statements, this is called “Pass
One” of the assembly. At this point the Symbol Table contains all the symbols in the program,
whether or not they are defined.

The first assembly pass is sketched in Figure 43 on page 124, but the sketch is incomplete in
many ways. For example, an EQU statement lets you assign a value to a symbol, and that value
is taken from the expression in the operand field. Figure 43, however, only shows values being
assigned to symbols using the Location Counter. It also omits any description of macro-
instruction statements, and how symbols are treated in erroneous statements.

Chapter III: Assembler Language Programs 123

—>{Read statement
and save it

yes
END ? » to Pass 2

yno
yes
< comment?
A
Instruction » symbol in > is it in
statement? |yes |name field?|yes |sym-tbh1?
no no no yes
Undefined v no|does it
< mnemonic: < have a
4 note error v value?
set value yes
< from LC v
A\ 4
enter in note error
table, Y|symbol(s) in I

no valuel<{operand field? fe——

\ NOoy

increment LC by instruction length

Figure 43. Sketch of pass one of an assembly

Exercises

10.7.1.(2) In the following program segment, resolve the implied addresses into base-
displacement form, and fill in the four blank fields.

Loc Object Code Statement

5000 O0DAO BASR 10,0
5002 USING *,10
5002 4100 LA 13,SAVE
5006 4110 LA 1,PARM
500A 4DEO_ BAS 14,SUB
500E 50 ST 0,TBL(15)
512C SAVE DS 18F

5174 PARM DC A(TBL)
5178 TBL DS 10F

51A0 SuB STM 14,12,12(13)

124 Assembler Language Programming for IBM System z™ Servers Version 2.00

10.8. Calculating Displacements: the Assembly Process, Pass Two

The Assembler now begins a second pass over the program by retrieving the statements from their
temporary storage place. The Assembler creates machine language object code, converting
instruction mnemonics to operation codes and using data in the Symbol Table to evaluate all
expressions appearing in the statements.

The overall flow of the second pass of the assembly process is sketched in Figure 44. As noted
following Figure 43 on page 124 describing the first pass of the assembly, this is a very abbrevi-
ated description, so don't attach great significance to the precise sequence of processing actions
implied by the diagram.

> Read, Print |«
4 statement 4

yes

yes
USING ? » enter data in USING Table

\

VLnO
yes
DROP ? » delete entry from USING Table [
YNo

yes
END ? »>|Create object module;
return to Supervisor

no
A\ 4
yes yes
machine > implied > compute
instruction? address? value
#no no ¢ ¢
yes
define a »convert check USING Table for
constant? data a valid displacement
¥No v yOK yhone
< note error v addressability
4 error

T
LI Generate instruction or datafe———-

Figure 44. Sketch of pass two of an assembly

When a USING statement is encountered, the Assembler enters the value and relocation attri-
butes of the first operand expression (the base_location), and the value of the second expression
(the base_register number), into a USING Table.

Figure 45 on page 126 shows an example of a USING Table with one entry. The abbreviations
“basereg” and “RA” denote respectively the base_register specified in the second operand of the
USING statement, and the relocation attribute of the base_location expression from the first

Chapter III: Assembler Language Programs 125

operand of the USING statement. For now, the only importance of the relocation attribute is
that it indicates whether the symbol is relocatable (RA=01) or absolute (RA=00).

basereg| base location | RA

6 00000002 01

Figure 45. USING Table with one entry

When a subsequent instruction operand contains an implied address, the Assembler compares the
value and relocation attribute of that expression to each entry in the USING Table. If a matching
relocation attribute is found, and a valid displacement can be calculated from

displacement = (implied address value) — (base Tocation value)

then the Assembler inserts the computed displacement and the corresponding base_register digit
into the addressing halfword of the instruction. The Assembler has resolved the implied address
into base-displacement form, and the implied address is addressable.

For example, consider the second and third statements in Figure 41 on page 120. If the initial
LC value assigned to the program was zero, the USING Table would contain an entry for register
6, with an associated relocatable base_location value of X'00000002', the value of the symbol
BEGIN illustrated in Figure 45.

When the third statement in Figure 41 on page 120 is processed, the value of the implied address
is the value of the symbol N, or X'00000024'. The computed displacement is

X'00000024' — X'00000002"' = X'022'

as we saw previously, so the completed addressing halfword is X'6022".

Here is a way to summarize the description of operand address resolution: at assembly time, the
Assembler computes a displacement:

displacement = (operand location) — (base location)
while at execution time, the CPU reverses this computation:

(operand address) = displacement + (base address)

—— Assembler-calculated displacements

The Assembler at assembly time does the reverse of what the CPU does at
execution time.

It is important to give correct information in a USING statement because it specifies the intimate
connection between the base_location at assembly time and the base address at execution time.

Remember that the difference between assembly-time locations and execution-time addresses in a
relocatable program is only a single constant value,

Exercises
10.8.1.(2)+ In the blank fields provided in the six instructions below, show the values and

addressing halfwords provided by the Assembler. Assume that the Location Counter values are
as shown in the column headed “LOC”.

126 Assembler Language Programming for IBM System z™ Servers Version 2.00

Loc Object Code Statement

10A20 USING *,11
10A20 5830 L 3.X
10A24 4730 AH - 3,Y
10A28 10__ LPR 4,3
10A2A 9034 STM 3,4,Z
10A2E 4240 STC 4,0
10A32 4770 BC 7,*+24
10A76 W DS X
10A78 Z DS 2F
10A80 Y DC H'-72'
10A84 X DC A(Z-W)

10.9. Multiple USING Table Entries

You can create more than one entry in the USING Table, so it is possible to have more than one
valid resolution of an implied address into base-displacement form. Suppose we add another
USING statement to the program, as in Figure 46:

Location Name Operation Operand Remarks
0000 BASR 6,0
USING *,6 Original USING statement
0002 BEGIN L 2,N
USING *,7 Added USING statement
0006 A 2,0NE
000A ST 2,N
0024 N DC F'8'
0028 ONE DC F'1'

Figure 46. Program segment with second USING statement
For now, we ignore the fact that the contents of register 7 are unknown.

When the second USING is processed, the value of the Location Counter is X'00000006', so the
Assembler makes a second entry in the USING Table, as shown in Figure 47.

basereg| base location | RA

6 00000002 01

7 00000006 01

Figure 47. USING Table with multiple entries

When the next statement

A 2,0NE
is processed, two possible valid resolutions are available for the implied address specified by the
symbol ONE:

e If register 6 is used as a base register, the displacement is
X'00000028"' — X'00000002' = X'026'
and the addressing halfword would be X'6026' (as in Figure 42 on page 122).

Chapter III: Assembler Language Programs 127

e [If register 7 is used as a base register (again, ignoring the fact that its run-time contents are
unknown), the Assembler determines that the displacement is

X'00000028' — X'00000006' = X'022'
and the addressing halfword would be X'7022'. (Similarly, the ST instruction could have an
addressing halfword X'701E'.)

The Assembler must make a choice: which of the two valid resolutions should be selected for the
completed machine language instruction?
The Assembler uses these resolution rules:

1. Find all USING table entries whose relocation attribute matches that of the implied address
to be resolved.

Choose the base register that leads to the smallest displacement.
If more than one base register provides the same smallest displacement, choose the corre-
sponding highest-numbered register.

Thus, the assembled program would appear as shown in Figure 48 below:

Location Assembled Contents

00000 0D60

00002 58206022 Based on register 6
00006 5A207022 Based on register 7
0000A 5020701E Based on register 7
00024 00000008

00028 00000001

Figure 48. Assembled contents when two USINGs are active

At this point, you could (correctly) observe that this program is seriously flawed, because the con-
tents of GR7 at execution time could be “anything”. When the A and ST instructions are exe-
cuted, their operand addresses are likely to cause errors (whether or not they are detected
immediately!).

The important lesson in this example is that the Assembler has no way of knowing that the infor-
mation supplied in the statement
USING *,7

may not be valid. It can only trust that you have provided correct base_location and base_register
data it can use to resolve implied addresses.

10.10. The DROP Assembler Instruction

It is also possible to delete entries from the USING Table. The DROP instruction tells the
Assembler to remove the information corresponding to a given register. Its general form is

DROP register
where the “register” operand specifies the USING Table entry to be deleted.

For example, if the statement
DROP 6

was inserted after the third statement, the L instruction named BEGIN in Figure 47 on page 127,
the initial USING Table entry for register 6 would be deleted, and the USING Table would
appear as in Figure 49 on page 129:

128 Assembler Language Programming for IBM System z™ Servers Version 2.00

basereg| base location | RA

empty

7 00000006 01

Figure 49. USING Table after DROP statement

Another form of the DROP statement is
DROP

with no operand! This will cause all USING Table entries to be deleted. While this might seem
odd, it's useful: if you have reached a part of your program where no valid base registers will be
available at execution time, DROPping all the USINGs will avoid unexpected or unintended
resolution of implied addresses in later parts of your program.

Exercises

10.10.1.(1)+ A frustrated programmer wrote the statements

DEAD EQU 101
DROP DEAD

How would you expect the Assembler to deal with this impertinence?

10.10.2.(3)+ For each statement of the following program segment, show what will appear in
the USING Table following each USING and DROP statement. Then, use that information to
show the assembled machine language object code produced from the program segment.
Assume the program segment begins at location X'4000'.

BASR 9,0
USING *,9

L 4,*+54
BASR 10,0
USING *,10

L 3,*+52
DROP 9

L 2,*+48
DROP 10

L 1,10(0,9)

What would be found in register 1 after the last instruction is executed? How does it depend
on the address where the instructions are loaded into memory?

10.11. Addressability Errors

Addressability errors have many causes. These examples show some of the ways they can arise.

1. An operand value is larger than any USING Table base location value.

BASR 6,0
USING *,6
L 2,*+5000

Suppose the value of the Location Counter after the BASR instruction is X'002468'. This
means that the value of the operand *+5000 is

X'002468' + X'1388' = X'0037EQ'
and that the calculated displacement (for register 6) would be
X'0037E0" — X'002468' = X'1388'

Chapter III: Assembler Language Programs 129

which is too large for a 12-bit displacement field. This means the operand is not addressable
with 16-bit addressing halfwords.

2. An operand value is smaller than any USING Table base_location value. Again assuming
the value of the LC after the BASR instruction is X'002468':

BASR 6,0
USING *,6
L 2,*%-32

In this case the operand value is X'002448', leading to a negative calculated displacement,
X'FFFFFFEQ'. This means the operand is not addressable with 16-bit addressing halfwords.

3. The USING Table is empty. Suppose a second DROP statement is added after the A
instruction in the program shown in Figure 46 on page 127, specifying register 7:

DROP 7

Then, the remaining entry in the USING Table would be deleted, and the USING table
would appear as in Figure 50 below.

basereg| base location | RA

empty

empty

Figure 50. USING Table after second DROP statement
Because there are no entries left in the USING Table, there is no way for the Assembler to

resolve the implied addresses of any following instructions, and an addressability error would
be noted for those statements.

Exercises

10.11.1.(3)+ Suppose these instructions are assembled and then executed in a program:

B BASR 6,0
USING *,6
L 2,B

What (if anything) would you expect to appear in GR2?

10.12. Resolutions With Register Zero (*)

Although USING statements specifying absolute base_locations are rare, they are allowed; abso-
lute implied address expressions follow the same resolution rules as relocatable expressions. In
most cases, there is no entry in the USING Table with an absolute base address, so the Assem-
bler proceeds as though a hidden or implied

USING 0,0 Assembler's implicit USING
is always present. You can think of the USING Table appearing like this:

basereg| base location | RA

0 00000000 00 Assembler's hidden USING-Table entry

- etc. —

130 Assembler Language Programming for IBM System z™ Servers Version 2.00

Thus, an implied address such as
LA 3,1000 Implied address = 1000 = X'3E8'

would be resolved to the addressing halfword X'03E8', with base register zero.

In the example in Figure 34 on page 109, we saw an instruction with an absolute implied S,
operand:

43000468 IC 10,1128
The generated object code shows that the second operand was resolved with base register zero.

Now, suppose you wrote a USING statement with an absolute base address:

USING 400,9 Base Address = 400 = X'190'
LA 3,1000 Implied address = 1000 = X'3E8'

so the USING Table would look like this:

basereg| base location | RA

0 00000000 00
9 00000190 00
- etc. —

The Assembler follows its usual resolution rules, and finds that there are two valid resolutions
with addressing halfwords X'03E8' and X'9258'. Since the latter provides the smallest displace-
ment, the Assembler chooses the resolution with base register 9! Fortunately, the Assembler will
issue a diagnostic message whenever a USING with an absolute operand appears to overlap with
its implicit USING 0,0 statement.

If the original resolution using base register zero is required no matter what other USINGs are
active, the operand should be written explicitly, as

LA 3,1000(0,0) Explicit displacement=1000, base=index=0

Thus, we add one further resolution rule when absolute implied addresses have not been resolved
according to the three previous rules:

4. If no previous resolution has been completed, and the implied operand is absolute and has
value between 0 and 4095, use General Register 0 as the base register and the value of the
implied address expression as the displacement.

This behavior is used often in Assembler Language programs. If any implied address has absolute
nonnegative value, a valid displacement can always be computed only if that value does not
exceed 4095.9

According to the rules for evaluating expressions, attempting to compute a displacement for a
relocatable symbol using an absolute base_location would require that the displacement be reloc-
atable, which is invalid. That is, a valid displacement cannot be calculated from

(absolute) displacement = (relocatable operand) — (absolute base Tocation) (?7?)

Similarly, an absolute implied address cannot be resolved into base-displacement form using a reg-
ister whose base_location is relocatable, since a valid displacement cannot be computed from

(absolute) displacement = (absolute base location) — (relocatable operand) (??7)

63 Section 20 shows how to use a much larger range of displacement values with long-displacement instructions.

Chapter III: Assembler Language Programs 131

It is possible (but not recommended!) to specify USING statements with register zero as the base
register,® but the Assembler will always assign a base address of zero to register zero.

Exercises

10.12.1.(1)+ The Assembler tries to resolve absolute implied addresses into an addressing
halfword containing a zero base digit, and a displacement of the value of the implied address.
Do you think this is desirable? Would you prefer that the Assembler diagnose absolute implied
addresses as an error?

10.13. Summary

In summary, the ordinary USING statement provides two major features:
1. A base_location relative to which the Assembler can calculate displacements.

2. A base_register to be used in addressing halfwords of implied addresses whose displacements
were calculated as being addressable with this register.

The information conveyed in a USING statement is only, and no more than, a promise that you
make to the Assembler. You are asserting that if it uses the base_location and base_register speci-
fied in your USING statement to calculate addressing halfwords at assembly time, then the CPU
will calculate correct Effective Addresses at execution time.

The rules for resolving implied addresses into base-displacement form can be difficult to
remember, and forgetting them can sometimes lead to programming errors that are difficult to
correct.®

—— USING Resolution Rules

1. The Assembler searches the USING Table for entries with a relo-
cation attribute matching that of the implied address (which will
almost always be simply relocatable, but may be absolute).

2. For all matching entries, the Assembler checks to see if a valid dis-
placement can be derived. If so, it will select as a base register the
register that yields the smallest displacement.

3. If more than one register yields the same smallest displacement, the
Assembler will select the highest-numbered register as a base register.

4. If no resolution has been completed, and the implied address is abso-
lute, try a resolution with register zero and base zero.

A minor addition to these rules will apply when we discuss instructions with long 20-bit signed
displacements in Section 20.

The relocatability attribute of any given symbol almost always has a single value; it won't matter
if we ignore “complex relocatability” situations for now, because they don't affect addressability.
However, it is not unusual for programs to use many different relocatability attributes to correctly
describe its symbols.

In Chapter XI we will see powerful extensions to the USING statement — Labeled and Dependent
USINGs —that give you much greater control over USING resolutions.

64 When we discuss Dummy Control Sections in Section 39, we will see that there can be times when specifying a zero
base register is a reasonable practice.

65 Some programmers note that “USING” is part of “confusing”.

132 Assembler Language Programming for IBM System z™ Servers Version 2.00

10.13.1. How the Assembler Helps

The Assembler simplifies many programming tasks:

1. It automatically resolves addresses into the base-displacement and other forms used by
System z. The Assembler determines the needed base and displacement so that correct Effec-
tive Addresses will be computed at execution time.

2. Rather than remembering that operation code X'43' places a byte from memory into the
right end of a general register, a mnemonic operation code IC (“Insert Character”) gives a
simple indication of what the operation code does.

Symbols let you name areas of memory and other objects in your program.

Diagnostic messages help you find possible errors and oversights.

The Assembler converts data from convenient external representations into internal forms.
It creates relocatable object code to be combined with other programs by the linker.

It provides lots of other helpful information such as symbol and register cross-references.

© N e

Using macro-instructions, you can define your own instruction names to supplement existing
instructions, and your macro instructions can make use of previously defined sequences of
statements, including other macros!

9. The High Level Assembler provides an optional summary of all USING Table activity, in
the form of a USING Map. If you specify USING(MAP) as part of the parameter string when
you invoke the High Level Assembler, it will display all USING and DROP activity for the
entire program.

Exercises

10.13.1.(3) Some older assemblers let you redefine symbols in EQU statements. Thus, you
could write

A Equ 6 Define a value for A
- - - Write statements using A's value
A Equ 32 Define a new value for A

- - - Statements using A's new value

How would the assembler's treatment of the Symbol Table be changed? What would happen if
any symbol could be redefined?

Terms and Definitions

addressability
The ability of the Assembler to calculate a displacement and assign a base register to an
implicit addressing expression, using information in the USING Table.

addressability error
The inability of the Assembler to derive an addressing halfword for an implicit operand.

base_location
The first operand of a USING instruction at assembly time.

base_register
The second operand of a USING instruction at assembly time.

DROP assembler instruction
An instruction telling the Assembler to eliminate one or more entries from its USING Table.

Symbol Table
A table used by the Assembler to hold the names, values, and attributes of all symbols in a
program.

USING statement
A promise to the Assembler that addressing halfwords can be derived correctly from the
base_location and base address information provided in the instruction.

Chapter III: Assembler Language Programs 133

USING Table

An internal table used by the Assembler to hold information provided in USING
instructions.

Programming Problems

Problem 10.1.(1) Write and assemble a program segment like the one in Figure 41 on
page 120, with the following additional statements:

1. Following the last DC statement, place an Assembler instruction statement with the mne-
monic END in the operation field.

2. Replace the dotted line that means “twenty-two additional bytes” with an Assembler
instruction statement with DS in the operation field and 22X in the operand field.

3. Preceding the first statement place an Assembler instruction statement with the mnemonic
START in the operation field, and X'5000"' in the operand field.

Assemble the program, and save the Assembler's listing. Then, replace the X'5000' operand in
the START statement with the X'84E8', and re-assemble the program, saving the second listing.
Verify that the assembled machine language program is the same in both listings, and that the
same bases and displacements are calculated by the Assembler for all instructions that require
them. If time and budget permit, do the same for the programs in Figures 39 and 40.

134 Assembler Language Programming for IBM System z™ Servers Version 2.00

Chapter IV: Defining Constants and Storage Areas

ITITIIIIII
ITITIIIIII
II
II
II
II
II
II
II
II
ITITIIIIII
ITITIIIIII

Vv
Vv
Vv
Vv
Vv
)
Vv

)

)
Vv
A
VVVV
Vv

Vv
Vv
Vv
Vv
Vv
Vv
Vv
Vv
Vv
)

The three sections of this chapter treat the DC (Define Constant) and DS (Define Storage) assem-
bler instruction statements, and methods used to define data and storage areas in Assembler Lan-

guage programs.

e Section 11 describes the Assembler's basic data definition instruction, DC.

e Section 12 discusses the most often-used data types, introduces the powerful constant-
referencing mechanism provided by literals, and the LTORG instruction to control their

location in your program.

e Section 13 demonstrates methods for defining and describing data areas in ways that simplify
data manipulation problems, including the very useful DS, EQU, and ORG instructions.

Chapter IV: Defining Constants and Storage Areas

135

11. Defining Constants

11

111

1111

11

11

11

11

11

11

11
1111111111
1111111111

11
111

1111

11
11
11
11
11
11
11

1111111111
1111111111

In the preceding sections we used the DC assembler instruction to create constants in the
p