Lend Me Your EAR:
The ART of
MVS/ESA™ Programming

Joel M. Sarch SHARE 72\ |
amcdahl Corporation Sessions 0324, 0325,
Installation Code AMD 0326

1 March 1989 MVS SCP Project

Lend Me Your EAR: The ART of MVS/ESA™ Programming

Dual Address Space Facility

All rights reserved Trade Marks
(DAS)
The following are trademarks of the
International Business Machine + Set of 370-XA instructions
Copyright © 1989 Amdahi Corporation. Corporation: + Directcommunication between
All rights reserved. address spaces
« ESA/I7TO™ — Direct access to data in two
Permission is granted 10 SHARE, Inc., to . MVS/ESA™ address spaces simultaneously
reproduce and publish this . MVS/XA™ — Data movement directly from one
presentation paper in the SHARE address space to another
Procesdings. * MVS/SP™ — Direct execution of code resident
+ Hiperspace™ in the private area of another A/S
« IBM™ + Switch to supervisor state or system
+ International Business Machines :?t:lot:);n:ﬁ?ri:r‘n s:mn‘::;’r:n“t’ space
Corporation™ 9 P
+ Authorization or debarment of access
to another address space
UNIX™ js a trademark of American
Telephone and Telegraph (AT&T)
1 3 5
Disclaimer Prologue Advanceq_Address Space
Facility (AASF)
The ideas, concepts, and information
contained within this presentation Let's begin by examining: Extends DAS
are offered, in the tradition of " . .
SHARE, Inc., for the enlightenment - Dual Address Space Facility +Direct communication with up to 16
and edification of the audience, and . Advanced Address Space Facility distinct address spaces simultaneously
as a source of ideas and inspiration) . *Data-only address spaces
for further investigation and + Cross-Memory Services Facllity £ hani
development. « Multiple Address Space Facilit *Enhanced mechanism for executing
P p Y external code:
Neither the speaker nor Amdahl . Outline of the Presentation
Corporation is responsible for any — stack for saving status, registers
errors or misrepresentations made — tighter security
herein. -Generally enhanced authorization
Every attempt has been made to mechanism with more options
verify the accuracy of the . .
information contained in this *A few new instructions
presentation. However, it Is the
responsibility of anyone using this
information to verify its accuracy
and currentness for himherself.

2 4 6

Copyright © 1989 by Amdahl Corporation. Presented by Joel Sarch, March 1, 1989

o

Lend Me Your EAR:

Cross-Memory Services
(XMS) Facility

The ART of MVS/ESA™ Programming

What's it all good for?

The Solution

* MVS control structures and macros
« Invokes DAS instructions

* Manages cross-memory environment

Noteg:

Most functions accomplished with
XMS macros

-— initiatization
- authorization
— termination

Some DAS instructions must be used
directly — e.g., actual data movement
or subroutine linkage

+ Isolate data in separate spaces
— for greater security
— to avoid using common storage

+ Share "common" data among selected
address spaces

« Construct host language Interface
with subsystem running In a different
address space

« Ofter subsystem services or sensitive
functionality through an intermediate
security filter

+ Provide an alternative to SVC as
Interface to common services

Multiple Address Space
(MAS) Facility

YOU DON'T HAVE TO KNOW THAT
MUCH ABOUT XMS, MAS, DAS OR
AASF TO BEGIN TO USE THEM

Identify which Instructions you need to
know how to use

Identify the MVS macros you need to
know how to use

Let the MVS macros worry about the
remaining DAS or AASF instructions

START SIMPLY
Worry about details only as needed

The Problem

11

Extends Cross-Memory Services Facility:

*MVS/ESA control structures and
macros

*Invokes AASF instructions
*Manages cross-memory environment

*Provides address space and data
space services

+ Hdtchas hordudye wilid

fv!o.eely,

Outline of Presentation
(3 sessions)

«Difficulty

—of XMS

—of architecture (i.e., instructions)
*No comprehensive "how to" guide

+Few application development tips

+Littie or no comparison of alternative
techniques

10

Pot pourri of spaces

Creating and using data spaces
Replacing an SVC with a PC-cp
Cross-Memory Authorization
Accessing data in another space
Sharing data spaces

Moaving data across address spaces
Offering global services {PC-ss)

Offering services to restrictricted
address spaces

Beeting up security: more options

(if time permits:) Choosing: address
space, data space, or hiperspace?

12

Copyright © 1989 by Amdahl Corporation. Presented by Joel Sarch, March 1, 1989

Lend Me Your EAR: The ART of MVS/ESA™ Programming

Address Space

Data Space

Hiperspace

2Gb

E-Private

2Gb

2Gb

13

15

17

Address Space
(continued)

Data Space
(continued)

Hiperspace
(continued)

« Traditional MVS address space
« Instructions + data

. ted b N area on
ellhor side of 16-megabyta line

+ Can address up to 16 address spaces
simultaneously

» Directly addressable
« Byte addressable
+ Backed by real storage

14

Copyright © 1989 by Amdahl Corporation. Presented by Joel Sarch, March 1, 1989

Non-traditional object
— No ASCB, ASVT
— Managed slightly differently

Contains only data, no executable
instructions

Either 2 gigabytes or 2Gb-4K usable
length

No common or system areas, hence,
no fragmentation

Can address up to 14 data spaces
simultansously

Directly addressable
Byte addressable

Backed by real storage

16

Non-traditional object

- No ASCB, ASVT

— Managed differently

Contains only data, no executable
instructions

Either 2 gigabytes or 2Gb-4K usable
length

No common or system areas, hence,
no fragmentation

Can address any number of spaces
simuitaneously

Not directly addressable — must be
moved to address space

Block addressable

Backed by paging storage, only

- expanded storage

~— auxiliary storage

18

Data Space Services

Lend Me Your EAR: The ART of MVS/ESA™ Programming

Private Space Facility

Access Registers

DSPSERV CREATE —
creates a data space

DSPSERV DELETE —

destroys a data space
DSPSERV RELEASE —

releases space in a data space for reuse
DSPSERYV DEFINE —

defines/undefines data space area for
o

Notes: Can create data space from DREF
(disabled reference) storage.

Cannot use access methods (including
VSAM) for data space /0. May use DIV,
however.

19

+ Disables Fetch-Protection-Override
+ Disables Low-Address Protection

« Prevents use of common TLB entries
not from a different space

it w not active, cannnot use 0-4K of a
data space (because of Low-Address
Protection)

DSPSERV CREATE retums an ORIGIN
depending on whether the hardware can
support the use of addresses 0-4K (i.e.,
whether PSF is active)

Creating a Data Space

21
3&“@«1 e Sgue %L;\Nf

+ 16 access registers associated with 16
general registers used as base
registers in operand accesses, only

GRO el DRIMARY
GR1 o™ AR1
GR2 <m——uud» AR2

. . .
. . -
. . .

GR15 sroummmaad. AR15

Note: The contents of ARO are not
examined

STOKENSs

23

label 1 DSPSERV | CREATE, STOKEN-=addross
\BLOCKS:z s/ze-aperand
{CALLERKEY

JFPROT=NO
JORIGIN=origin-address

NOTES:

size-operand may be:
(maximum,initial)
(addr-of-max, addr-of-min)
] (use installation default)

origin-address specities a fullword into
which the lowest usable location in the
data space is placed (0 or 4K)

Address Space Varieties

20

° 8 bytes (64 bits)

* Not reused within IPL

+ Every space has an STOKEN
— address space
— data space
— hiperspace

+ MVS/ESA macros tend to use
STOKENS, rather than ASIDs, to
identify address spaces

« DSPSERV CREATE returns an
STOKEN for the data space

22

Three address space varieties:
e Primary

— Same address space from which
instructions normaily are fetched

— Associated with Primary Address
Space Number (PASN, a.k.a.
PASID))

- Secondary
— Also addressable by DAS

— Associated with Secondary
Address Space Number (SASN,
ak.a. SASID)

« Home

— Dispatched address
is in PSAAOLD)

— May execute instructions from A/S

pace (ASCB

24

Copyright © 1989 by Amdahl Corporation. Presented by Joel Sarch, March 1, 1989

Lend Me Your EAR: The ART of MVS/ESA™ Programming

Address Space
Control Modes

Base Register vs.
index Register

Access Lists:
PASN-AL vs DU-AL

« Primary space mode
— instructions fetched trom primary
— Data fetched from primary

+ Secondary space mode
— Instructions fetched from primary
— Data tetched from secondary

+ Home space mode
- Instructions fetched fromhome
— Data fetched from home

+ AR mode
— Instructions fetched from primary

— Data fetched from space
determined by access register
translation (ART)

L 4012 L 4012
e et
1ndex Base
Register Register
ARO
{implied) AR12

PASN-AL:
« Available to any program running in
this primary address space

+ i you switch to another address
space (via Program Call — not yet
discussed), you change PASN-AL

« Shouid contain A/S-related entries
DU-AL:

« Available to this dispatchable unit
(TCB or SAB)

« If you switch to another address
space (via Program Call), the DU-AL
goses with you

214 PRSI[5Hs)

25

27

29

Access Register Translation

Access Lists

From STOKEN to ALET

(ART)
For1<ns<1s:
GHn ARn
I address] [ALET]

Access 1.
Register
Translation

Effective
Addreas::
Calculation

: RPynamic,
ddress
“Yranslatios

I Real Address In Targel Space l

-To access a space through an AR,
need an access list entry token (ALET)

«An ALET represents an entry in an
access list (ALE)

«Every program has two access lists it
can use:

— Primary address space access list
(PASN-AL)

— Dispatchable unit access list
(DU-AL)

Use the ALESERVE service to:
*Put an Access List Entry (ALE) into
—PASN-AL or
— DU-AL

-Return an Access List Entry Token
(ALET)

Use the Load Access Register Multiple
{L.AM) instruction to ioad the ALET into
an access register

Load ORIGIN into corresponding general
register

26

28

30

Copyright © 1989 by Amdahl Corporation. Presented by Joel Sarch, March 1, 1989

Lend Me Your EAR:

ALESERV

The ART of MVS/ESA™ Programming

Special ALETs

» Builds Access List Entry {ALE)

+ Generates Access List Entry Token
(ALET)

Sharing Data Spaces

label | ALESERV |ADD,STOKEN= sddross
ALET=addreas

AL {orkuNT |

Notes:
* STOKEN is required input
* ALET I8 retumed as output

* AL=WORKUNIT adds ALE to the
DU-AL

AL=PASN adds ALE to the PASN-AL

31

X'00000000' Primary
(hardware)

X'00000001° Secondary
{hardwars)

X'00000002° Home

{Software and LAE
instruction)

Set Address Space
Control (SAC)

33

+ Passing ALETs
— Passed like parameters

— Must make sense to receiver. For
example:

° Can't pass ALET for ALE on
DU-AL to another TCB

° Can't pass ALET for ALE on
PASN-AL to program In another
address space

© Can't pass ALET for private ALE
across a PC interface that
changes the EAX

Useful AR Instructions

35

Changes PSW bits 16-17:

Sharing Data Spaces
(continued)

Operangd Mode

A @ﬁ(_« L f//

ﬁ),(00' o Primary
X256' o / Secondary
X512 J0 AR
?’768' /4 Home

32

-Copy Access (CPYA)
~— copies one AR to another
*Extract Access (EAR)
— copies an AR to a GR
*Set Access (SAR)
— copies aGR to an AR
+Load Access Multiple (LAM)
— loads a range of ARs from storage
+Store Access Multiple (STAM)
— stores a range of ARs
*Load Address Extended
— loads a GR with an address
— loads corresponding AR with ALET

or zero, depending on ASC mode
and base register

34

SCOPE=SINGLE on DSPSERV CREATE

prevents ALET for a data space from
being passed beyond the creating A/S

+ OnPASN-AL

— restricted to programs running in
owner's A/S

e OnDU-AL

— restricted to TCBs and SRBs with
owner's home address space

» SCOPE=SINGLE is the default

SCOPE=ALL on DSPSERV CREATE:
« Available to programs in any A/S

+ Owning A/S must be non-swappable
while sharing the data space

36

Copyright © 1989 by Amdahl Corporation. Presented by Joel Sarch, March 1, 1989

Lend Me Your EAR: The ART of MVS/ESA™ Programming

Replacing SVC with PC-cp

Why convert SVC to PC-cp

Generating PC-number

pp an instaliation-instalied SVC
routine:

« exists solely to issue privileged
instructions or change key

« executes entirely within one address
space
« doesn't need system locks

« doesn't need to receive control
disabled for interruptions

Why not convert this SYC into a PC-cp?

» Avoid an SVC interruption

» Bypass SVC table processing, lock
management
- Bypass SVC exit processing

» Restrict to callers r ing in
certain protection keys

+ Restrict access to callers who know
the right PC number

« Quickest way into supervisor state or
system key

+ Control when the routine is available:
— PC is dynamic
— Routine can be repiaced without

re-1PL

— Maximum duration: one IPL
— Security hooks

7

Replacing SVC with PC-cp

(continued) |

39

+ PC number is 20 bits long — bits
12-31 of PC instruction effective
address

« High-order 12 bits (12-23) are the
linkage index (LX)

— Used to locate the Entry Table

« Low-order B bits (24-31) are the enlry
Index (EX)

—Used to locate Enfry-Table Entry
(ETE) within the Entry Table

[o00000000000 JLLLLLLLLLLLL] EEEEEEEE] |

Creating a PC-cp Routine

Drawbacks of SVCs:

« Only 256 SVCs

+ |BM owns all SVCs below 200
« ESRs are baelow 200

+ Vendor products frequently require
SVCs

« Installations usually have local SVCs

« SVCs receive control supervisor state
key 0 — no flexibility

« Generate a PC-number
— Linkage index
~ Entry-table entry

+ Communicate routine characteristics
to the operating system:

— Routine name or entry point
— Authorization key mask

— Execution key mask

— State {problem or supervisor)

° Communicate PC-number to potential
caliers

° Design and write the routine
° Code PC instructions in calling routine

38

40

Q 12 24 31
4
PC Routine Lookup
PC Number

I Kikkkickkkikkk l nnnAnnnn l

kthf AED 4
entry €N n-th ETE
entry
Entry
Table
Linkage
Table
42

Copyright © 1989 by Amdahl Corporation. Presented by Joel Sarch, March 1, 1989

Reserving a Linkage Index

Lend Me Your EAR: The ART of MVS/ESA™ Programming

ETDEF TYPE=ENTRY

To get a linkage index assigned, use the
LXRES macro

Entry Table Creation

LA O,LXUST

heme LXRES LXLIST=(0),SYSTEM=YES

LXUST DC Fv Number of LXs

DS F First (only) LX

« For global resource, request system LX

* System linkage index ETs automatically
connected to all address spaces

43

PROGRAM= program name
ROUTINE= routine address

STATE= PROBLEM or
SUPERVISOR

SSWITCH= YES (PC-ss)
NO (PC-cp)

ASCMODE= PRIMARY or AR

To create an Entry Table, use the ETCRE
macro

LA 2,ENTYTABL
name ETCRE ENTRIESz(2)

.

Entry Table Definition

EAX= Extended Authorization
Index
{cgmmugm
45

ETDEF TYPE=ENTRY

TKUST DS OF Token List

TKCNT DC F1 Token Count

TKVAL DS F Token Value

ETBL Ds 0D Entry Table
47

{ ; L Sl iy FeayO-
Nod he s Sepel yisef e Sl p U

To define an Entry Table (ET), use the
ETDEF macro

TYPE=INITIAL builds a header
TYPE=ENTRY describes a PC routine

TYPE=FINAL signals end of Entry
Table

Connecting the Entry Table

(continued)
EK= PSW key upon entry
PKM= OR or REPLACE
AKM= list of acceptable caller
keys
EKM= list of execution key

RAMODE= 31 or 24

SASN= OLD or NEW

To associate the Entry Table with the
Linkage Index, use the ETCON macro

LA 0,TKLIST Token List
LA 2,LXLST
name ETCON LXLIST=(2),TKLIST=(0)

46

TKLIST DS OF Token List
TKCNT DC Ft Token Count
TKVAL DS F Token Value
LXLIST DC F1 Number of LXs
DS F First (only) LX
48

Copyright © 1989 by Amdahl Corporation. Presented by Joel Sarch, March 1, 1989

Locating the PC Routine

Lend Me Your EAR: The ART of MVS/ESA™ Programming

Building a PC Number
{continued)

> Build a PC number table
— maps service number to PC
number
— macro addressing service number
can retrieve assicuated PC number
« Package all Cross-Memory parameters
together in CSA (e.g., an XMEM vector
table
+ Use some commonly-addressable
anchor — for example:
— The Subsystem Interface
~ CVTUSER
- A data set
This is frequently one of the most ditficult
issues in designing Cross-Memory
Services application

PC-cp Routine
{continued)

49

[ooortioo] [60°00 60 EE]

lOO OLLLEE I

REMINDER: EX=8 corresponds to the
ninth entry in the table

Building a PC Number

+ Loaded under job step task of A/S that
created ET

« PC-cp routine may request system
services, since it is not in Cross-
memory mode (More on this later!)

- Registers 0, 1, and 15 used to pass
parameters

« Exit using PR
+ Must not use Checkpoint/Restart

« if using system services, supply
register save area in GR13

PC-cp Routine

53

The LXRES macro returns the LX value in

the form:
00 OL LL 00

The EX cormresponds to the entry humber
Inthe ET. {Numbering begins with 0}.

The EX occupies only the low-order byte:

00 00 00 EE

Stacking PC

50

Should be re-enterable

No base register — must issue BALR
or BASR instruction

Receive control in ETE-specified key

May change to any key in (extended)
PSW Key Mask

Receive control in
-— gupervisor state
— problem state

State, Key and key masks specified in
ETDEF macro

52

Two types of PC instructions:
» Stacking)
« Non-stacking &' id Q(L"vm

We shall only discuss the stacking PC

In stacking PC, the following are saved
automatically:

« General purpose registers (GRs)

+ Access Registers (ARs)

+ PSW Key Mask (PKM)

- Extended Authorization index (EAX)
» PASN and SASN

+ PC number

Copyright © 1989 by Amdahl Corporation. Presented by Joel Sarch, March 1, 1989

Program Return (PR)

Lend Me Your EAR: The ART of MVS/ESA™ Programming

Cross-Memory Authorization

*Restores:
— GRs 2-14
— ARs 2-14

*Returns control to next sequential
instruction after the PC

Supervisor State
Key 0-7

55

+Authorized Program Facility
+Authority Table Authorization
+PSW Key Mask Authorization
Private Space Authorization

The following macros require caller in
either supervisor state or key 0-7,
enabled and unlocked:

+« AXRES
+ AXSET
+ ATSETY
+ LXRES
+ ETCRE
»+ ETCON

APF-authorized program can use
MODESET to enter supervisor state or
system key

Useful Stack Instructions

57

59

Authorized Program Facility
(APF)

Extract Stacked Registers (EREG)

— Returns range of GRs

= Returns corresponding ARs
Extract Stacked State {ESTA)

— Returns non-register stack info

— Returns 8-byte moditiable area
Modity Stacked State (MSTA)

— Stores B-bytes Into modifiable area
Branch and Stack (BAKR)

— Creates a branching stack entry

~— Saves GRs, ARs, PSW, et al.
— Unstacked by PR

Authority Table Authorizata'

56

A program is APF Authorized if
* running In supervisor state or
*+ running with system key (0-7)or
« the following hold simultaneously:

— linked into authorized library
— linkedited with PARM='AC=1* or
SETCODE AC(1)

APF-authorized user is somewhat like a
UNIX superuser

An APF-authorized program can get
into supervisor state or change key by
issuing the MODESET macro

AXRES Reserve an Authorization
Index for use by the A/S

AXSET Set the address space's
active AX to a specitic
reserved AX

ATSET Set the address space's
Authority Table (AT)

Notes:

+ Every address space has an Authority
Table

» nth governs access by address
spaces having active AX=n

58

60

Copyright © 1989 by Amdahl Corporation. Presented by Joel Sarch, March 1, 1989

Lend Me Your EAR:

The ART of MVS/ESA™ Programming

Authority Table Authorization]

w ing AT Authorizati —
(continued) resting thorization PSW Key Mask Authorization

1. Invoke AXRES to reserve an AX.

2. invoke AXSET to set address space to
the reserved AX.

3. Schedule SHB to run in other address
space.

4. SRB invokes ATSET to set the AT
entry in the other address space.

Simian scheme:

A uthorization key mask

5. SAB posts originating routine.
| Note: Must be APF-Authorized |

P rogram status word key mask

E xecution key mask
61 63 65
Authority Table Entry Global AXs PSW Key Mask
String of 16 bits, numbered 0-15. Every
AX=,‘£ All cross-memory authorization work unit (TCB or SRB) has a PKM.
v {PSIPS v permitted it the n-th bit s 1, then:
nth | n+i-th + Storags may be set to key n by the
Entry | Entry AX=p) All cross-memory autharization SPKA instruction
denied . + PCinstruction may call a routine
“P" = Authorization bit for PT Instruction available to callers with key n
ngn P " authorization
$" = Authorization bit for SSAR Note: Can issue AXSET AX=1 or 0; do

« Certain instructions may access
storage having protect key n

{e.g., MVCP, MVCS)

instruction not have to reserve AXs 0 and 1.

Must be APF-Authorized to issue AXSET

PKM for key 0, 2, 8, and 13
1010 0000 1000 0001

62 64 66

Copyright © 1989 by Amdahl Corporation. Presented by Joel Sarch, March 1, 1989

Lend Me Your EAR:

AKM and EKM

Answers

The ART of MVS/ESA™ Programming

ESA Cross-Memory
Data Movement

Authorization Key Magi:
* String of 16 bits, numbered 0-15
» Every PC routine has an AKM

« n-th bit = 1 means callers with key n
PKM-authorization may PC to this
routine

Execution Key Magk:

« String of 16 bits, numbered 0-15

» Every PC routine has an EKM

» EKM used to form called routine's
PKM:

~— i PKM=OR on ETDEF, then old
PKM and EKM are OR'ed to form
new PKM

— it PKM=REPLACE on ETDEF, then
EKM becomes the new PKM

67

Task PKMis 0000 1100 1000 0000
PC AKM is 1000 1000 0000 0000
ANDing: 0000 1000 0000 0000

Since the AND is non-zero, caller is
authorized

Task PKMis 0000 1100 1000 0000
PCEKM is 1111 0006 0006 0000
ORing: 1111 1100 1000 0000

With PKM=OR, the new PKM will
authorize 0-5 and 8, supervisor state

With PKM=REPLACE, the new PKM will
authorize 0-3, supervisor state

Quiz

69

MVC or MVCL directly

— source operand in one A/S
~ target operand in other A/S
Need to have ong of following:
— ALET of other A/S

— Authorization o other space as
secondary address space

With the ALET, require authorization
to other space if it is private

Cross-Memory Data
Movement — Pre-ESA

§UQQOSO:

*Problem task executing in key 8
*PKM authorizes keys 4, 5, and 8

*Supervisor-state PC routine defined
*AKM specifies keys 0 and 4
*EKM specities keys 0-3

Task invokes the PC routine

Questionsg:

1. Will the PC routine gain control?

2. it so, with what PKM will the PC
routine execute
a)when PKM=OR for the PC routine?
b)when PKM=REPLACE for the PC

routine?

3. In which state will the PC routine

execute? Why?

Cross-Memory Access
With ALET

68

» Move to Primary (MVCP) or Move to
Secondary (MVCS)

— 256 bytes at a time
— check authority each time
* Move Long (MVCL) to CSA
PC-ss to other A/S
Move Long from CSA
— two moves
— required allocating CSA butfer
~— required code in both spaces

¢ Need authorization to other space

70

For a public space:

Load the base register with address in
target A/S

Load the ALET into corresponding AR
SAC to AR-mode

Process as with data spaces

Privats spaces wiil be discussed later

72

Copyright © 1989 by Amdahl Corporation. Presented by Joel Sarch, March 1, 1989

Lend Me Your EAR:

Cross-Memory Access
Without ALET

The ART of MVS/ESA™ Programming

Creating an Address Space

Creating an Address Space

if AT-authorized to target A/S:
« Must know target address space ASID
» SSAR to target address space

» Load base register with address in
target A/S

« Load comresponding AR with ALET
X'00000001°

« SAC to AR-mode
« Process as with data spaces

Note: Authority Table authorization to
target space is required for SSAR

73

name ASCRE ASNAME='space-name’
STPARM= parm-addr

JNIT= routine name or
routine address

,ODA= output data
address

LAXLIST= AX-list-addr
J,TKLIST= token-list addr
LLXLIST= L X-list addr

LASPARM= parm-stri
addr (accesse

by ASEXT)

These are only some of the operands

{continued)
ut t d. = operand}):
STOKEN
A(ASCB)

EAERIMWT ECB

EAEASWT ECB

Wresting the ALET

75

Creating an Address Space
(continued)

1. Schedule SRB to other address space
and WAIT.

2. SRB routine to obtains STOKEN of
other (home) address space using
ALESERV EXTRACTH.

3. SRB posts originating routine.

4. Add the ALE to either the DU-AL or the
PASN-AL using ALESERV ADD. Must
specity CHKEAX=NO

5. Load the base address and ALET into a
GR/AR pair.

Creating an Address Space
{continued)

74

AXLIST=

+ Used to pass AXs (32 maximum)

+ Each AX in list will become AX
operand of ATSET from new A/S
(PT=YES,SSAR=YES)

- Enables creating A/S to access new
AS

TKLIST=
« Used to pass ET tokens (32 max.)
» Will become TKLIST operand of
ETCON from new A/S

LXUST=
» Used to pass LXs (32 maximum)
< Will become LXLIST operand of
ETCON from new A/S

TKLIST and LXLIST enable new A/S to
access creating A/S

76

» ASCRE returns STOKEN

< lIssue ALESERV ADD to add an ALE
and get an ALET

— Must be EAX-authorized — or

— Can specify CHKEAX=NO if
supervisor state or key 0-7

+ Can be addressed like data space
+ initialization routine used to:
— Load routines
— LXRES, ETDEF, ETCRE, ETCON
« AJS can be addressed through PC-ss

78

Copyright © 1989 by Amdahl Corporation. Presented by Joel Sarch, March 1, 1989

Creating an Address Space
(continued)

Initi ion Routing:
* Specitied in INIT= operand of ASCRE
+ Can be used to

— load service routines
— build entry tables

+ Can cc icate with creating A/S
using two ECBs

— EAERIMWT
— EAEASWT
* Return codes:
0 — Continue A/S Initialization
4 — Terminate

Lend Me Your EAR: The ART of MVS/ESA™ Programming

[Extended Authorization Index

(EAX)

Instituting Private Access

Extended Authorization index is a value
in a control register

Set by PC

EAX=eax-value specified in ETDEF
when creating PC routines

Previous value restored by PR

Must be EAX-authorized to A/S to
invoke ALESERV ADD to:

— create ALE for A/S
— return an ALET

Creating an Address Space
(continued)

81

To make one's own space private-access:
* Issue AXRES (optional)
+ Locate ALE

— ART described in Principles of
Opaseration Manual

— Use ALET and pointers to DU-AL or
PASN-AL to locate the ALE

* Set private-access bit in the ALE
+ Setthe ALEAX to desired value

Other A/S with AX equal to this ALEAX
may access this A/S

+ Use ATSET to set S-bit in desired
ATEs

Any other A/S’s with AX matching ATE
with S-bit set may access this A/S

EAX Authorization

83

Cross-Memory Mode

Creator

nitializaiion HOUIIHQ

nvoke

Wait on EAERIMWT

Optionally pass more
parameters

Post EAEASWT

JPost EAERIMWT with

Load PC Routines
Build ETs

Go/NoGo status
Wait on EAEASWT

Optionally continue
processing

Return to system

A program is E AX-authorized to a space
if any of the following obtains:

+ The space has public access
—the ALE is marked public-access
~—all data spaces are public-access
+ The EAX is the same as the ALEAX
> The space's AT grants authorization
—the EAX indexes into the AT
—the S-bit in the ATE is 1
— similar to AX

80

82

» Home, primary, and secondary spaces
are not all the same space

of
+ Executing in secondary-space mode

Copyright © 1989 by Amdahl Corporation. Presented by Joel Sarch, March 1, 1989

Lend Me Your EAR:

The ART of MVS/ESA™ Programming

Swappability

Cross-Memory Mode
Restrictions

Differences Between
PC-cp and PC-ss Routines

The following are non-swappabtle:

+ Home space

« Sp marked non ppable in the
Program Properties Table (PPT)
« Sp made non bi

SYSEVENT THANSWAP or SYSEVENT
DONTSWAP

+ Spaces whose local lock is heid
(locally or as CML)

The foliowing must be non--swappabie:
« Target of PC, PT, PR
+ Source and Target of MVCP, MVCS

« May not issue SVC (except ABEND)

- May not use system services
documented as specifically available in
Cross-Memory Mode

- Only one job step may create ETs with
space-switching ETEs

< Subsequent job steps cannot use
AXRES, LXRES, or ETCRE

« PC routines may not use Checkpoint/
Restart

« PC-ss routines execute in other
address spaces

» PC-ss routines may not use some
system gervices

- Space switching complicates error
recovery

» Space switching PC and PR may
generate space-switching event
interruptions

» More likely to reside in private area

85

87

AR-Mode Restrictions

Similarities Between
PC-cp and PC-ss Routines

69

Review: Service to All
Address Spaces

« Mustissue SYSSTATE ASCENV=AR
tor proper AR-mode expansions

« Mustissue SYSSTATE ASCENV=P for
proper primary-mode expansions

+ Must use corresponding X-macro:

. UsoETORAGamcm to obtain
storége in A/S”

+ No base register coverage — must
issue BALR or BASR on entry

« Receive control in key designated in
ETE

» Supervisor/Problem state as
designated in ETE

« Usually re-enterable
« Exit via Program Return (PR)

86

88

« Issue LXRES with SYSTEM=YES

invoke ETDEF and ETCRE to
construct Entry Table

— ET entries define PC routines
- Current primary or space-switching

» ETCON to own address space

connects the ET to every space in the
system

90

Copyright © 1989 by Amdahl Corporation. Presented by Joel Sarch, March 1, 1989

Address-Space Specific
Service Authorization

Lend Me Your EAR: The ART of MVS/ESA™ Programming

Hiperspaces

+ lssue LXRES with SYSTEM=NO

+ Invoke ETDEF and ETCRE to
construct Entry Table

— ET entries define PC routines
— Current primary or
space-switching
* Schedule SRB to specitic other A/S

- SRB routine Issues ETCON to
connect the ET to the home (i.e.,
other) address space

Hiperspace Services

o1

Hiperspaces are:
» 4K-2G long
« block-manipulable

= not directly addressable — must
be moved to main storage

+ backed by expanded storage
and/or auxiliary storage

+ data-only spaces
— no system areas
~- cannot execute instructions

Providing Services Across
Two Address Spaces

93

« DSPSERV CREATE
+ DSPSERV DELETE

« DSPSERV RELEASE
» DSPSERV DEFINE

+ HSPSERV — to move blocks
between hiperspace and main
storage

Hiperspaces
(continued)

95

Application Address

Using Hiperspaces

Addresa Space Space
Reserve an AX
(AXRES)

Setthe AX for the A/S
to the ressrved value
{AXSET)

Define and create an
Entry Table (ETDEF,

ETCRE)

Schedule SRB to run in

application A/S Set AT entry (ATSET)
corresponding to

Walit on ECB specitied AX

Reserve an LX (LXRES)
Connect spacitied ET
to resarved LX
(ETCON)

XMPOST the ECB

Resume Procesaing

92

Two types of Hiperspace:

> Scroll (a.k.a. standard

— backed by expanded and
auxiliary storage

— authorized and non-authorized
~ no loss of data if ES fills up
— large permanent objects

» Cache (a.k.a. expanded storage
only)
~— Backed only by ES
— authorized callers, only
— data discarded as ES fills up
— temporary objects

94

1. Create using DSPSERV, providing
* name
* size in 4K blocks
+ area for space token (STOKEN)
+ area for ORIGIN (0 or 4K)
+ hiperspace type
2. Use STORAGE service to allocate a
main storage window of desired size
3. Use HSPSERYV to move data between
hiperspacs and main storage
window, providing
* STOKEN
- address range
— source origin
- target origin
— number of blocks

a6

Copyright © 1989 by Amdahl Corporation. Presented by Joel Sarch, March 1, 1989

Lend Me Your EAR: The ART of MVS/ESA™ Programming

Hiperspace Applications

Data Space vs Hiperspace - 1|

Scrolf type
« Similar to data space applications
¢ Isolate data

— only window is addressable

« Suitable for large amounts of data
to avoid using real storage, paging
storage

« Avoid using AASF or access
register mode

Cache-type
« Expanded Storage Only

- Used to create software analogue of
a cache)

+ Pages discarded — LRU algorithm

97

Data Space Backina

[1

25

ES vS

Summary: What We Covered

- Address spaces, data spaces and
hiperspaces

- Creating
— Accessing
-— Sharing
+ Replacing an SVC with a PC-cp
+ Cross-Memory Authorization
» Moving data across spaces
- Oftering services
— global
-— restricted to specific address spaces

« Choosing: address space, data space,
or hiperspace?

Address Space vs.
Data Space

Data Space vs Hiperspace - 2

Address space;

+Avoids ART

«Can intermix instructions and data

« Can require EAX authority for access

«Creation requires supervisor state or
key 0-7

«Adding an ALE requires EAX-authority
Data space:

+Provides VSCR

+Avoids space fragmentation

“Provides data isolation

+Finer granularity of data sharing

«Can create and access without being
authorized

98

- Data space and hiperspace pages both
move through main storage

« Scroll-type hiperspace can limit
number of main storage pages

« Data space can avoid using expanded
storage when main storage is available

101

Summary: What We Omitted

100

« Control Registers

« ALDs and ALEs

+» PCAUTH

« HASID, PASID, SASID, and ASID Rain
+ PASTEs and DUCTs

o AFT, AST, and other such tables

« EPAR, ESAR, LASP, IAC, and other
such instructions (Look them up in the
Principles of Operation manual)

> Cleaning up — AXFRE, LXFRE, ETDIS,
ETDES

« Debugging (Don't make any misteaks!)
« Recovery (Don't ABEND or crash)

+ How to handshake between address
gpaces (application design)

102

Copyright © 1989 by Amdahl Corporation. Presented by Joel Sarch, March 1, 1989

l Lend Me Your EAR: The ART of MVS/ESA™ Programming I

Bibliography
$A22-7200 ESA/370 Principles of
Operations
GA28-1854 MVS/ESA SPL:
Application Devsiopment

Guide — Extended
Addressability

GA28-1852 MVS/ESA SPL:
Application Development
Guide

GA28-1857 MVS/ESA SPL:
Application Development
Macro Reference

GC28-1843 MVS/ESA Cailable
Services for High Level
Languages

103

Copyright © 1989 by Amdahl Corporation. Presented by Joel Sarch, March 1, 1989

