212

July 2003

In this Issue

3 A new CEMT program in COBOL
to start and stop CICS

6 Exclusive control conflicts and
VSAM deadlocks — hints and tips

16 QMF goes on-the-fly to Adobe
Acrobat Reader, MS Word, MS
Excdl, ... —part 2

23 CICSPlex/System Manager Report
Writer

53 CICS guestions and answers
54 CICS news

© Xephon plc 2003

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

CICS Update

Published by

Xephon

27-35 London Road

Newbury

Berkshire RG14 1JL

England

Telephone: 01635 38342

From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon

PO Box 350100
Westminster, CO 80035-0100
USA

Telephone: 303 410 9344

Subscriptionsand back-issues

A year's subscription to CICS Update,
comprising twelve monthly issues, costs
£175.00in the UK; $270.00 in the USA and
Canada; £181.00 in Europe; £187.00 in
Australasia and Japan; and £185.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
December 1999 issue, are available
separately to subscribersfor £16.00 ($24.00)
each including postage.

CICS Updateon-line

Code from CICS Update, and complete
issues in Acrobat PDF format, can be
downloaded from our Web site at http://
www.xephon.com/cics; you will need to
supply aword from the printed issue.

Editor
Trevor Eddolls

Disclaimer

Readers are cautioned that, although the
informationinthisjournal ispresentedingood
faith, neither Xephon nor theorgani zationsor
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of al advice, information,
code, JCL, and other contents of this journal
before making any use of it.

Contributions

When Xephon is given copyright, articles
published in CICSUpdate are paid for at the
rate of £170 ($260) per 1000 wordsand £100
($160) per 100 lines of code for thefirst 200
linesof original material. Theremaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

© Xephonplc2003. All rightsreserved. Noneof thetextinthispublicationmay bereproduced,
stored in aretrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers arefreeto copy any code reproduced inthis
publicationfor useintheir owninstallations, but may not sell such codeor incorporateitinany
commercial product. No part of thispublication may beusedfor any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permitsare
available from Xephon in theform of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving acost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.
Printed in England.

A new CEMT program in COBOL to start and stop
CICS

CICS is more than 30 years old, but it now supports applications
written in C++ and Java, and it allows a single application image
to be spread over several computer systems. To achieve such
youthful longevity, CICS has undergone many transformations.
IBM mainframe products get three levels of version number
within a distinct named product. CICS is on its third distinct
product name, and its fifth high-level version number. It has been
maintained attwo different IBM facilities since firstbeing marketed.

An OLTP manages transactions that exhibit the following four
ACID properties, as explained in Gray & Reuter’s book (1993):
Atomicity, Consistency, Isolation, and Durability. Although CICS
did not have functions like journalling to support all of these
properties at first, it did have them very early in its life. Like any
OLTP, CICS has to interact with telecommunications networks,
database managers, different programming languages, and the
features and constraints of operating systems. Another way to
look at CICS is that it allows a large number of users to share a
relatively small number of resources with data integrity. The first
versions of CICS were developed in a former IBM facility near
Chicago. In 1973, IBM moved CICS development to Hursley, a
village near Winchester, UK, where it has remained ever since.

Today, no on-line system could survive without some way to
access the World Wide Web. IBM introduced the CICS Web
Interface product in 1996. Since then, there have been various
solutions and enhancements to CICS to allow applications to
interactwith Web browsers. The latest version, CICS Transaction
ServerforOS/390 Version 2.2, allows legacy application programs
to interact with Web browsers as if they were 3270 terminals, and
it allows new programs to present a modern interface on Web
browsers. To help customers give legacy applications a new look
on the World Wide Web, the CICS team created the Front End
Programming Interface (FEPI) in CICS/ESA Version 3.3in 1992,

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 3

FEPI allows a CICS transaction to emulate a 3270 terminal. The
idea is to write a new FEPI transaction to sit between a legacy
CICS application and a Web server. That way, the legacy
application, which was written for 3270 terminals, can continue
to run unchanged.

| wrote a simple COBOL program to start and to stop CICS.

HOW TO INSTALL XCEM CEMT
Submit the following job to compile the source program:

//SRSTXCEM JOB SRS10@44 ,SYSTEMES,CLASS=G,MSGCLASS=T,NOTIFY=&SYSUID

// EXEC DFHC3LCL,
/7* INDTG=ESS,

//* DEBUG=0UI,

// SP=",SP",

// OUTC=T
//L1BR_SYSIN DD *

-OPT LIST

-DLM SRSTXCEM

-ADD SRSTXCEM,SEQ=/81,6,1,1/
IDENTIFICATION DIVISION.
PROGRAM-ID. SRSTXCEM.

* *
* *
stop CICS
* *
AEAEAAXAAAAAXAAAAAXAAAXAAXAAAXAAXAAXAAXAAAXAAXAAAXAAXAXAAXAAXAAAXAAXAAXAXA XA XA XXX X*k*
AEAAAXAAAXAXAAAXAAXAAXAAXAAAXAAXAAXKXX FAAAAXAAAXAAXAAAXAAXAAXAAXAAA XXX AAX*xk

* *~q
cics stop command

AAEEAAAAAAAAAAA A AAAA A AAAAAAAAAAAAAXAAAAXAAAAAAAAAAAAAAAAA LA AAA A AR AXK

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

77 W-DEBUT PIC X(8) VALUE "SRSTXCEM".
77 W-RETOUR-LIB PIC X(9) VALUE "EIBRESP->".
77 W-RETOUR PIC S9(8) COMP VALUE +@.
77 W-EIBFN-LIB PIC X(9) VALUE " EIBFN ->".
77 W-EIBFN PIC X(2) VALUE SPACES.
@1 W-ANO-CN.

@5 W-APPLID PIC X(8).

@5 FILLER PIC X.

@5 FILLER PIC X(50) VALUE "UTILIZATION OF XCEM FOR
- " NON AUTHORIZED USERS (".

@5 W-USERID PIC X(8).

@5 FILLER PIC X(7) VALUE ") TERM(".

4 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

@5 W-TERM PIC X(4).

@5 FILLER PIC X VALUE ")".
@1 W-PARAM.
@5 W-TRANS PIC X(4).
@5 FILLER PIC X(76) VALUE SPACES.

*

PROCEDURE DIVISION.

*

*1- ANALYSE COMMAND
*
10— INIT.
IF EIBTRMID(1:2) NOT = "CN"
MOVE EIBTRMID TO W-TERM
EXEC CICS ASSIGN APPLID(W-APPLID)
END-EXEC
EXEC CICS ASSIGN USERID(W-USERID)
END-EXEC
EXEC CICS WRITE OPERATOR
TEXT(W-ANO-CN)
CRITICAL
END-EXEC
EXEC CICS RETURN
END-EXEC
END-IF
EXEC CICS RECEIVE INTO(W-PARAM)
RESP(W-RETOUR)
END-EXEC
MOVE "CEMT® TO W-TRANS
EXEC CICS XCTL PROGRAM("DFHEMTP™)
INPUTMSG (W-PARAM)
INPUTMSGLEN(LENGTH OF W-PARAM)
END-EXEC.

-END
/>

XCEM CEMT will run on any CICS from Version 4.1 upwards.

Copy the member XCEM to a loadlib in the DFHRPL list of your
desired CICS region.

Enter the following commands, into either CEDA or the batch

program DFHCSDUP:

DEFINE TRANSACTION(XCEM) GROUP(XCEM) DESCRIPTION(XCEM CEMT)

PROGRAM(XCEM) TASKDATALOC(ANY) PRIORITY(255)
DEFINE PROGRAM(XCEM) GROUP(XCEM) DESCRIPTION(XCEM CEMT)
LANGUAGE (ASSEMBLER) DATALOCAT ION(ANY)

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement.

The transaction name can be changed, but should start with ‘C’
to allow it to run at Maxtasks.

Use CEDA to install the group XCEM.
Enter the transaction XCEM and enjoy!

Claude Dunand
Systems Programmer (France) © Xephon 2003

Exclusive control conflicts and VSAM deadlocks —
hints and tips

INTRODUCTION

There are a number of very useful CICS trace entries, produced
during CICS file control processing, that can be used to provide
a great deal of helpful information, provided that you know what
to look for within the (potentially) vast amount of trace data that
can be generated by CICS.

This article describes how useful diagnostic information may be
gleaned fromthe problem documentation provided with adeadlock
situation (or deadly embrace) within CICSfile control. In particular,
the CICS trace table provides a considerable amount of useful
information, that can be analysed for clues as to the nature and
cause of the deadlock. This article also discusses exclusive
control conflicts within CICS and gives advice on them.

BACKGROUND TO CICS TRACING

CICS trace data is primarily used for application and system
debugging. It records a series of events (in chronological order),
showing the state of various system resources and activities. It
also reveals the multitasking of user and system tasks within the
CICS system, being dispatched and running quasi-reentrantly

6 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

under the main CICS TCB (the QR TCB). Other TCB task activity
(running truly in parallel to the QR TCB) is also recorded.

CICS trace may be written to the internal CICS trace table, which
IS a wraparound area of storage above the 16MB line within the
CICS address space. This can then be examined, from both
CICS transaction and system dumps, to reveal the sequence of
events that preceded the cause of the dump (typically an abend
of some kind). The size of this internal CICS trace table is
controlled by the TRTABSZ system initialization parameter, and
by the Internal Trace Table Size option onthe CETR transaction’s
main panel.

In addition to the internal CICS trace table, trace entries can be
sent to the CICS auxiliary trace destination, which comprises
either one ortwo CICS-managed BSAM datasets. These provide
a far larger repository for holding trace information than the
internal CICS trace table, and can therefore be used to record a
longer time period of CICS system activity. The I/O operations
required to implement auxiliary tracing means this option has a
greater impact on CICS system performance than when just
using internal CICS tracing.

CICS provides a batch utility program to format the auxiliary trace
data. The name of the program is CICS-release specific — its
suffixisthe CICSrelease number. Therefore, in CICS Transaction
Server 1.3 (containing the CICS component CICS/ESA 5.3.0) it
is DFHTUS30. In CICS Transaction Server 2.2 (containing the
CICS component CICS/ESA 620) it is DFHTU620. The batch
utility program has a range of options that may be used to
selectivelyfilter specific trace entries when formatting the auxiliary
trace data, such as filtering by task number, transaction identifier,
trace entry number, etc.

The most commonly used options when using the batch utility
program are to control the amount of information to be returned
inthe formattedtrace. The options are ABBREYV (for abbreviated),
SHORT, and FULL. Abbreviated trace shows the minimum data
for every trace entry. It is useful for revealing the flow of events
through CICS and the commands issued by applications. Short

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 7

trace is similar to abbreviated trace, but provides additional data
such as the time of each trace entry. Finally, specifying full trace
gives up to seven data items associated with the trace points.
These include parameter lists, names of resources, control
blocks, and response and reason codes. Full trace is very useful
when a particular series of events has already been investigated,
and a problem then needs to be analysed at atrace entry by trace
entry level, showing what parameters (and their values) were
being utilized at the time.

CICSHLE CONTROL AND EXCLUSIVE CONTROL CONFLICTS

CICS Transaction Server for z/OS V2.2 has enhanced its
support for commands against VSAM files. CICS file control
processing can now release the exclusive control of VSAM
Control Intervals (ClIs) after having performed an EXEC CICS
READ UPDATE request. In turn, this can avoid the potential for
VSAM exclusive control conflicts occurring inthe interval between
the EXEC CICS READ UPDATE and its subsequent EXEC CICS
REWRITE command. This behaviour is the default for EXEC
CICS READ UPDATE / EXEC CICS REWRITE commands in
CICS TS 2.2.

For further details on this CICS improvement, please refer to my
earlier article entitled CICS file control enhancements, which
appeared in Issue 204 of CICS Update (November 2002).

This file control enhancement helps avoid the potential for
exclusive control conflicts against the ClI in use for the EXEC
CICS READ UPDATE and EXEC CICS REWRITE commands.
It does not avoid the possibility of such conflicts for other types
of API request, however. For example, EXEC CICS WRITE
requests can still receive an exclusive control conflict when they
attempt to acquire ownership of the ClI that is to hold the record
being added to the file. As such, exclusive control conflicts will
still be seen while CICS is processing application requests
against VSAM files. These exclusive control conflicts still result
in CICS issuing unsolicited exception trace entries (trace point
AP 04BA) for diagnostic purposes. These trace points can be

8 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

useful when investigating persistent exclusive control conflict
situations. One example where they can be seen is during a
deadlock between two or more tasks within the CICS system,
where each task has a resource that the other wants. Such a
deadlock situation can be analysed and understood by analysis
of the CICS trace entries recorded by the tasks in question. An
example of such a deadlock analysis for a CICS TS 1.3 region
is given below.

PROBLEM DETERMINATION DEADLOCK EXAMPLE

The following set-up was used for this example. Two user tasks
(FCO1 and FCO02) executed two programs (ANDYPGM1 and
ANDYPMG?2). These two programs issued EXEC CICS READ
UPDATE commands againsttwo VSAMKSDS files (PRODANDY
and TESTANDY). Both were defined as non-RLS files.

The FCO01 and FCO02 transactions were both initiated at similar
times, and so their activity overlapped within the system. The first
evidence of a problem was when FC02 abended with an AFCF
abend code. The following messages were issued by CICS:

DFHDUZ2@31 A transaction dump was taken for dumpcode:
AFCF, Dumpid: 1/00@2.

DFHAC2236 Transaction FC@2 abend AFCF in program ANDYPGM2 term V11D.

The CICS Messages and Codes manual (or CMAC transaction)
explanation for an AFCF abend is as follows: a deadlock has
been detected between two or more tasks issuing file control
requests. It also states that when transactions update several
files within the same unit of work, all transactions should update
these files in the same order. This is a good clue that the file
access pattern for the two programs is probably not being carried
out in the same order.

The associated transaction dump for task FC02 contained trace
entries pertaining to this task, and its activity prior to the AFCF
abend. The mostinteresting trace entryisthe unsolicited exception
trace point AP 04B8. If this is examined using FULL trace, so that
its associated data items are returned, then useful information

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 9

regarding the deadlock can be determined. In particular, data
item 3 contains details of the task that caused FC02 to be
abended AFCF. In this case, the details were:

AP @4B8 FCVS *EXC* - DEADLOCK_DETECTED

TASK-@0@42 KE_NUM-2@34 TCB-QR =0?1398=
TASKNUM : 20@41C
TRANSID : FCo1
FCTNAME : PRODANDY

Data item 4 of the trace entry shows the VSAM Work Area
(VSWA) for the conflicting task. This contains the VSAM Request
Parameter List (RPL) imbedded at offset 8 into the VSWA, and
may be used to determine further information about this task’s
request to VSAM. Data item 6 shows the File Request Thread
Element (FRTE) for the abending task’s request. These
DFHVSWA and DFHFRTE control blocks are described in the
CICS Data Areas manual and may be examined for additional
information, such as the FRT_FUNCTION byte, which defines
the type of request.

This exception trace entry has confirmed that the AFCF abend
was caused by a deadlock situation with transaction FCO01, task
00041. It also confirms that the abended transaction (FC02) was
running as task 00042 within the system. (It is possible that no
transaction dump is obtained for an abend. It is also a possibility
that CICS trace is set off at the time of the abend. In these
circumstances, the AP 04B8 exception trace may be the only
useful piece of diagnostic information to accompany the abended
task. As can be seen, however, with just this one exception trace
entry, useful information pertaining to the deadlock can be
identified.)

Assuming trace was active in the system, the events leading up
to the AFCF abend can be examined. Since deadlock events
typically relate to several tasks coexisting within a CICS system,
itmay be the case that a system dumpis requested to accompany
arecurrence of such an abend. This could be achieved by setting
an entry in the dump table, by the command:

10 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

CEMT S TRD(AFCF) SYS

By taking a system dump, task storage and trace entries for all
the tasks in the system at the time of the abend may be
examined.

Now that the two tasks involved in this abend have been
identified, the trace may be examined for just these particular
task numbers (so avoiding a great many unrelated task entries).
In the case of a system dump, the appropriate VERBX command
to achieve this for the example AFCF abend being investigated
would be:

VERBX DFHPD53@ "TR=1,TRS=<TASKID=(@29d41 ,00042)>"

and in the case of an auxiliary trace being formatted by the batch
utility DFHTU530, the command would be:

ABBREV , TASK 1D=(00041 , 00042)

Using such commands, the appropriate trace entries can be
returned, and are shown below (note that these have been edited
for ease of reference):

@0241 QR PG @991 PGPG ENTRY INITIAL_LINK ANDYPGM1 =003104=
@0241 QR AP @QE1 EIP ENTRY READ =003110=
02341 QR AP @A4E@ FCFR ENTRY READ_UPDATE_INTO PRODANDY =0@@3111=
02341 QR AP @4E1 FCFR EXIT READ_UPDATE_INTO/0OK =00@3341=
@0241 QR AP @QE1 EIP EXIT READ OK =00?342=
@0242 QR PG @991 PGPG ENTRY INITIAL_LINK ANDYPGM2 =0003411=
@0242 QR AP @QE1 EIP ENTRY READ =@0@B417=
00342 QR AP @AE@ FCFR ENTRY READ_UPDATE_INTO TESTANDY =00P3418=
00242 QR AP @4E1 FCFR EXIT READ_UPDATE_INTO/0OK =0@@3529=
0242 QR AP @PE1 EIP EXIT READ OK =00?530=
@0241 QR AP @QE1 EIP ENTRY READ =001162=
00341 QR AP @AE@ FCFR ENTRY READ_UPDATE_INTO TESTANDY =001163=
@0241 QR AP @4B7 FCVS *EXC* VSAM EXCEPTION VSAM RPL =@@1168=
02341 QR AP @4BA FCVS *EXC* WAIT_FOR_EXCLUSIVE_CONTROL =0@1171=
@0241 QR DS @@@4 DSSR ENTRY WAIT_OLDC FCXCWAIT,TESTANDY =@@1172=
@0242 QR AP @QE1 EIP ENTRY READ =@@1389=
00342 QR AP @AE@ FCFR ENTRY READ_UPDATE_INTO PRODANDY =001390=
@0242 QR AP @4B7 FCVS *EXC* VSAM EXCEPTION VSAM RPL =@@1395=
00242 QR AP @4B8 FCVS *EXC* DEADLOCK_DETECTED =0@1398=
00342 QR AP @4E1 FCFR EXIT READ_UPDATE_INTO =@@1399=
@0242 QR AP 200@ PCPG ENTRY ABEND =0@1400=

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 11

P0342 QR DU @121 DUDU ENTRY TRANSACTION_DUMP AFCF =0@31408=

20?41 QR DS @@@5 DSSR EXIT WAIT_OLDC/OK =0@2541=
20241 QR AP @4E1 FCFR EXIT READ_UPDATE_INTO/0OK =0@2544=
20941 QR AP @@ZE1 EIP EXIT READ OK =0@2545=

It can be seen that task 00041 issued an EXEC CICS READ
UPDATE command against file PRODANDY (see trace entry
=000110=). This completed normally (the EIP EXIT trace entry
=000342= has the qualifier OK). The task then lost control, and
task 00042 was dispatched by CICS. Thisissued an EXEC CICS
READ UPDATE command against file TESTANDY (trace entry
=000417=). Again, this completed normally. Since this is not a
CICS TS 2.2 region, CICS does not release ownership of the CI
upon completion of the READ UPDATE command. Therefore,
both tasks 00041 and 00042 retain ownership of the Cl containing
the particular records they have read for update purposes.

Task 00041 is next to be redispatched. It now issues another
EXEC CICS READ UPDATE command, but this time against file
TESTANDY (trace entry =001162=). This does not complete
normally, however. VSAM returns an exception condition of
Exclusive Control Conflict, since the ClI containing the record to
be updated by task 00041 is currently owned by the RPL for task
00042. CICS documents this fact by issuing two unsolicited
exception trace entries — AP 04B7 and AP 04BA (trace entries
=001168= and =001171=). The EXEC CICS READ UPDATE
request cannot complete because of this, hence there is no
corresponding EIP EXIT trace pointissued at this stage. Instead,
task 00041 is made to wait for the ClI to become available. This
results in a CICS dispatcher wait, for resource type FCXCWAIT
(Exclusive Control Conflict wait) at trace entry =001172=.

Task 00042 is redispatched once more. This too issues another
EXEC CICS READ UPDATE command, this time for file
PRODANDY. Again, VSAM returns an exception condition of
Exclusive Control Conflict, and CICS issues exception trace AP
04B7 (=001395=). However, if CICS were to suspend task 00042
in the same manner as task 00041, the resulting deadlock could
not be satisfied since both tasks would be suspended, waiting for
the other to release the appropriate CI for them to continue.

12 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Therefore, CICS checks whether a deadlock situation would
occur if it were to suspend task 00042. Given that it would, CICS
documents this (by the exception trace AP 04B8 examined
earlier) then takes steps to avoid the deadlock by abending the
task with an AFCF abend. The abend code is shown on the call
to CICS Dump Domain to request the associated transaction
dump for the AFCF abend (trace entry =001408=).

As part of abend processing, CICS will ensure that all resources
owned by task 00042 are released (and, if recoverable, their
state restored to its previously committed value). This means
that an Endreq is issued to release ownership of the Cl within file
TESTANDY. Once this has occurred, CICS is able to redispatch
task 00041, since the Cl is now available for use by other tasks.
Task 00041 is able to acquire the CI, and its EXEC CICS READ
UPDATE of file TESTANDY is able to complete successfully —
the EIP EXIT trace entry for this shows OK at trace entry
=002545=.

OBSERVATIONS

This particular example of adeadlock resulted from bad application
implementation, since the same resources were being updated
by concurrent tasks in different orders. Such an approach can
lead to the possibility of a deadlock occurring.

In the worked example given above, there were two tasks that
together conspired to produce the deadlock. However, in a more
complex case, it may be that there are more than two participant
tasks. The basic problem determination approach as outlined
above can still be applied. In particular, the exception trace
entries can be used to determine which tasks are waiting for
Exclusive Control Conflicts to be resolved, and which tasks are
causing AFCF abends because of CICS avoiding deadlock
situations from taking place. Since CICS trace may be set off at
the time of the abend, the exception trace entry data may be vital
in determining the cause of the failure. Both the AP 04B8 and AP
O4BA exception trace points contain the useful diagnostic
information as their data item 3; with just this information, the

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 13

task and its RPL address that has caused this conflict may be
seen.

As mentioned above, the CICS TS 2.2 default behaviour means
that CICS TS 2.2 will release ownership of a VSAM CI upon
completion of an EXEC CICS READ UPDATE command, and
reacquire Cl ownership at the time of the corresponding EXEC
CICS REWRITE. This means that Exclusive Control Conflicts
are less likely to occur for such an environment at that release of
CICS.

Had the files been defined to use RLS (VSAM Record Level
Sharing services), the concept of Exclusive Control Conflicts
would not apply. CICS does provide alternative diagnostic
information to give details on potential deadlocking situations
and lock delays with RLS files, however. An AFCV abend is
issued if a request made against a file opened in RLS mode was
unable to acquire a record lock. It waited for the lock, but the wait
time exceeded the maximum wait time applicable to that request.
An abend AFCW is issued if a file control request against a file
opened in RLS mode is one deemed to lead to a deadlock
situation if allowed to proceed. The transaction is abended in
order to break the deadlock chain.

An abend AFCV is associated with messages DFHFC0164 and
DFHFCO0165, giving further details about the nature of the
request timing out waiting for an RLS lock. Similarly, an abend
AFCW is associated with messages DFHFC0166 and
DFHFCO0167, which describe the deadlocked environment that
was detected prior to the abend.

A ‘LIVELOCK’ SITUATION

CICS TS 1.3 APAR PQ68163 (PTF UQ72904) and CICS TS 2.2
APAR PQ68847 (PTF UQ72640) recently modified CICS file
control processing to avoid a problem in the area of exclusive
control conflict management. In certain circumstances, multiple
tasks within a CICS system may repeatedly fail with exclusive
control conflicts ifa VSAM Control Area (CA) splitis required. For
example, if a number of tasks attempt to add records into a
VSAM KSDS file with record keys that reside within the same CA,

14 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

then it may not be possible to complete a CA split if one is
required. This situation was observed when adding records to a
file with alarge number of alternate indexes, and with timestamps
comprising part of the record keys. The similar keys can result
in a CA split, but this may fail because of exclusive control
conflicts from the other tasks performing similar requests against
the same CI(s). The repeated redispatch of the various tasks
performing the EXEC CICS WRITE commands to the file
resulted in a ‘moving deadlock’ (or ‘livelock’) within the CICS
system, with task throughput being impeded and CICS being
unable to process new work satisfactorily.

To avoid this situation, CICS has been modified to avoid posting
other waiting tasks when a task fails with an exclusive control
conflict. Instead, they will remain suspended until the RPL is able
to complete without an Exclusive Control Conflict. Only then will
the chain of tasks waiting for exclusive control be posted and
allowed to retry their request once more. This avoids the problem
situation described above.

FURTHER READING

For CICS/ESA4.1.0,the product'strace entries were documented
in the CICS Diagnosis Handbook. For CICS Transaction Server
Release 1.1 and Release 1.2, they were documented in the
CICS User’s Handbook. For CICS Transaction Server Release
1.3 and Release 2.2, the number of trace entries (and their
associated data entries) has grown sufficiently to warrant a
complete manual entitled CICS Trace Entries.

SUMMARY AND CONCLUSIONS

| hope that this article has given some useful guidance on
approaching a deadlock situation within CICS File Control
processing, in particular by focusing upon the useful information
contained within the associated CICS trace entries.

Andy Wright (andy_wright@uk.ibm.com)
CICSChange Team
IBM (UK) © IBM 2003

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 15

QMF goes on-the-fly to Adobe Acrobat Reader, MS
Word, MS Excel, ... — part 2

This month we conclude the article looking at connecting CICS
and QMF on a mainframe to Acrobat Reader, MS Word, or MS
Excel.

* COMPUTE LENGTH FOR LAST COLUMN
MOVE NB-COLS TO I
SUBTRACT COL-START(I1) FROM LONGUEUR
GIVING COL-LENGTH(I)
END- IF
* IF DASHED LINE HAS BEEN FOUND AND REPORT LINE IS NOT BLANK ...
IF COL-START(1) > ZEROES AND
TEMP = @ AND
TEMP2 NOT EQUAL SPACES THEN
MOVE LOW-VALUES TO TEMP1
MOVE """ TO TEMP1(1:1)
* CONCATENATE COLUMNS WITH ™,
PERFORM VARYING 1 FROM 1 BY 1
UNTIL I > NB-COLS
IF 1 < NB-COLS THEN
STRING TEMP1 DELIMITED BY LOW-VALUES
TEMP2(COL-START(1) :COL-LENGTH(1))
DELIMITED BY * -
" DELIMITED BY SIZE
INTO TEMP1
END-STRING
ELSE
* CONCATENATE COLUMNS WITH ' FOR LAST FIELD
TEMP2(COL-START(1) :COL-LENGTH(1))

DELIMITED BY * "
""" DELIMITED BY SIZE
INTO TEMP1
END-STRING
END-1F

END-PERFORM
* CONCATENATE LINE IN COMMAREA
STRING DFHCOMMAREA DELIMITED BY LOW-VALUES

TEMP1 DELIMITED BY LOW-VALUES
X"15* DELIMITED BY SIZE
INTO DFHCOMMAREA
END-STRING
END-1F
END-IF

END-PERFORM.

16 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

* CLEAN COMMAREA
INSPECT DFHCOMMAREA REPLACING ALL LOW-VALUES BY SPACES.

*

BUILD THE HTML DOCUMENT USING QMF REPORT

@1-BUILD-QMFHTML .
* BUILD HTML DOCUMENT
MOVE LOW-VALUES TO TEMP1.
PERFORM UNTIL EIBRESP > @ OR EIBRESP2 > @
MOVE 133 TO LONGUEUR
MOVE SPACES TO TEMP2
READ THE QMF REPORT FROM TS QUEUE
EXEC CICS READQ QUEUE(USERID-EXPORT)
INTO(TEMP2)
LENGTH(LONGUEUR)
NOHANDLE

*

END-EXEC
CONCATENATE RECORD IN WORKING WITH X"15" (LINE FEED) AT THE END
IF EIBRESP = ZEROES AND EIBRESP2 = ZEROES THEN
STRING TEMP1 DELIMITED BY LOW-VALUES

*

TEMP2 DELIMITED BY - "
X*15" DELIMITED BY SIZE
INTO TEMP1

END-STRING

END-IF
END-PERFORM.
* CLEAN WORKING AND WRITE IT TO COMMAREA
INSPECT TEMP1 REPLACING ALL LOW-VALUES BY SPACES.
MOVE TEMP1 TO DFHCOMMAREA.
* PUT HTML DOCUMENT INTO COMMAREA
MOVE TEMP1 TO COMMAREA.

GENERATING DYNAMIC PDF DOCUMENTS

If you are not a C/C++ expert, you may think that using PDFlib
will be difficult. This is not the case. In fact, what we should do to
build a PDF document is:

1 Openthedocument(evenifthe documentis builtin memory).
Set some properties (creator, date, ...).

Begin a page.

Choose the font.

Write the text.

o b~ WO N

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 17

Repeat step 5 if necessary.
End the page.
Repeat steps 3 to 6 if needed.

© 00 N O

Close the document.
Look at the following program:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#pragma filetag("'1BM-530")
#include "PDFlibdl._h"

/* __ */
/* Program : QMFPDF */
/* Date I 0972002 */
/* Author : Delaunoy P. */
/* */
/* Functions : */
J/* ======== */
/* 1) Read the QMF report in the TSQ queue */
/* 2) Load the PDFLIB routines */
/* 3) Build the PDF document */
/* 4) Begin a new page if a char "1" is found in column 1 (ASA) */
/* 5) Close the document and put it In commarea */
/* 6) Unload the PDFLIB routines */
/* __ */

/* COMMAREA declaration */
struct com_struct {

unsigned char PDF_fichier[32507];
} *commarea ;

main(void)

{
PDF *p;
Int font;

PDFlib_api *PDFlib = PDF_boot_dllI();
Char *PDF_buf;
Int page_nbr;
Char userid[8];
Short int longueur;
Signed long int PDF_longueur;
Signed long int resp;
Signed long int resp2;
Char gmf_row[256];
char asa="1";
/* get addressability to the EIB */
EXEC CICS ADDRESS EIB(dfheiptr);
/* access common area sent from caller */

18 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

EXEC CICS ADDRESS COMMAREA(commarea);
/* get the userid */

EXEC CICS ASSIGN USERID(userid) NOHANDLE;
/* check PDFLIB routines */

it (PDFlib == NULL)

{
fprintf(stderr, "Error: couldn®"t load PDFlib DLL.\n");
return @;
}
p = PDFlib->PDF_new();
/* ________________________________ */
/* 1 Open the document */
/* ________________________________ */
if (PDFlib->PDF_open_file(p, ") == -1)
{
fprintf(stderr, "Error: cannot open PDF file.\n");
exit(2);
}
/* __ */
/* 2 set document properties */
/* __ */

PDFIib->PDF_set_info(p, "Creator'™, "CICS™);
PDFIib->PDF_set_info(p, "Author™, "QMF 3.3");
PDFIib->PDF_set_info(p, "Title", "QMF Report™);
Resp=0;
Resp2=0;
Page nbr=1;
/* read printed report iIn temporary storage queue */
whille (resp == @ && resp2 == @) {
memcpy (&qmf_row," '*,255);
longueur=133;
EXEC CICS READQ TS QUEUE(userid)
INTO(gmF_row)
LENGTH(longueur)
RESP(resp)
RESP2(resp2)
NOHANDLE
/* new page requested ? */
it (memcmp(&gmf_row,&asa,l) == @) {

/* ____________________ */
/* 7 End a page */
/* ____________________ */

if (page _nbr > 1) PDFlib->PDF_end _page(p);
page_nbr += 1;

/* ________________________ */
/* 3 Begin a page */
/* ______________________ */
PDFlib->PDF_begin_page(p, a4_width, a4_height);
/* __________________________ */

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 19

/* 4 Choose the font */

font = PDFlib->PDF_findfont(p, '"'Helvetica-Bold", "host', 9);
PDF1ib->PDF_setfont(p, font, 10);

/* ______________________ */
/*5 Write the text */
/* ______________________ */

PDFlib->PDF_set_text_pos(p, 199, 509);
PDF1ib->PDF_show(p, (const char *)gmf_row);

}
else {
PDFIib->PDF_continue_text(p, (const char *)gmf_row);
}
}

/* ________________________________ */
/*9 Close the document */
/* ________________________________ */

PDFIib->PDF_end_page(p); /* close page */
PDFlib->PDF_close(p); /* close PDF document */
/* Get PDF document from memory */
PDF_longueur=0;
PDF_buf=(char *)PDFlib->PDF_get buffer(p,&PDF_longueur);
/* copy PDF document in commarea */
memcpy(commarea,PDF_buf, (size_t)PDF_longueur);
/* delete the PDF object */
PDFlib->PDF _delete(p);
/* unload the library */
PDF_shutdown_dl 1 (PDFIib);
/*end */
return @;

}

Code pagetrandation problems

PDFlib generates PDF documentsdirectly in binary. The problems
is that HTTP request handler performs, by default, an EBCDIC
to ASCIlI code page translation, because all the data on a
mainframe is in EBCDIC. But with a PDF document generated
by PDFlib, you must tell the Web server not to perform this
translation, since the document is binary.

Please read the Novation Enterprise Server V4.6 documentation
or the CICS Web support guides for more details.

GENERATING A DYNAMIC WORD DOCUMENT
As far as | know, there is no way to generate a .doc file

20 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

dynamically because the data in this file is mainly binary. The
solution is to use an RTF file, which is a text file, as you can see:

{\rtfi\ansi\ansicpgl252\deffd\defttab72g0{\fonttb I{\fd\fswiss MS Sans
Serif;}H{\fl\froman\fcharset2 Symbol;}{\f2\froman Times New Roman;}}
{\colortbI\red?d\greend\blued;}

\deflang2@6@\horzdoc{*\fchars }{*\Ichars }\pard\plain\f2\fs2g

Put your QMF report here. \par }

To put your QMF report in an MS Word document, you just have
to:

e Encode the document above in the COMMAREA.

» Execute your QMF report and print it in a temporary storage
queue.

« Read the temporary storage queue and insert it in the
COMMAREA.

This solution is quite simple but has the disadvantage of mixing
the presentation of the data within a program. So, if you want to
modify the document, you have to recompile the program.
Another solution is to use a template manager which merges a
template file with the QMF report. The template file is created
with MS Word and is a standard document with some special
tags. The template manager uses those tags to substitute them
with the QMF report. For more details, see template manager in
the Novation documentation.

GENERATING A DYNAMIC EXCEL DOCUMENT

Like .doc files, as far as | know, there is no way to generate
dynamically XLS documents. The solution is to use CSV files.
CSV stands for comma separated value. To create the CSV files,
you put commas between each field of the QMF report to delimit
them. Unfortunately for people who don't live in the USA or UK,
the decimal separator is the comma. So, if the number 3,1415
appears in a CSV file, it will be split into two fields (3 and 1415).
That's why it's highly recommended to surround the fields with
guotes, like "3,1415".

To surround the fields with quotes and commas, you must know

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 21

what are the fields’ starting positions and lengths. One solution
could be to export the form (not the report!) in temporary storage
and to analyse it. This could be quite tedious. | prefer to search
in the separator line, just below the column headings, the spaces
between the dashes. The length of each field is given by the
difference between the current position and the previous space
position.

CHARTSAND IMAGES

PDFlib has a full set of graphics and image routines to create
charts and pictures in a PDF document. You can even create
animated images. See the PDFlib reference guide.

THE 32KB BARRIER

The CICS maximum DFHCOMMAREA length is 32,767 bytes
and the generated document must still comply with this rule. But
CICS Web Support and Novation Enterprise Server can run in
pointer mode —instead of passinga COMMAREA, you may pass
a pointer to it using the template manager. For more details, see
the CICS Internet Guide or the Novation documentation.

CONCLUSIONS

Although this way to access DB2 data might not be the most
efficient one, it enables you to build MS Word, MS Excel, and
Adobe Acrobat reader files from existing reports, without any
coding modification. It's even possible, if you have the proper
algorithm, to create from QMF reports:

e XML files
e TXT files
e ZIP files

« JPEG, BMP files
e Other.

22 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

This technique is not limited to QMF reports. You can also create
dynamic MS Word documents with VSAM data. But always keep
in mind that HTML, PDF, RTF, XLS, etc file standards don't
support binary, packed, and non-displayable data.

Pierre Delaunoy
Director
Ministére de la Communauté Francaise (Belgium) © Xephon 2003

CICSPlex/System Manager Report Writer

After working with CPSM it became very apparent that there was
a wealth of information in the CPSM maintained dataspaces. All
this is apparent from the CPSM Resource Tables and readily
available using the CPSM API. The CPSM EUI (End User
Interface) ISPF Dialog only goes so far in providing access to this
information. Itis useful, butin my opinion has many shortcomings.
| found myself wanting quick access to some of the information
that may or may not be included in the tabular dialog screens.
This was compounded by the fact that there was no printing
ability. Almost all the information is buried in the detail screens,
but the purpose of having all this real-time information is defeated
if you can’t access it quickly and by your own rules. The new Web
User Interface (WUI) deals with some of these issues, but View
and Viewset changes are required to provide new views. In some
shops this can be a change control nightmare and | was looking
for a ‘quick and dirty’ way to get an answetr.

| started playing with the CPSM REXX APl and was very pleased
with the flexibility in accessing the data. The API is reminiscent
of SQL. You connect to CPSM, formulate a query against a
CPSM object, establish your filter criteria, determine your sort
seguence, execute your query, obtain the result set, and fetch
through the results processing each returned record as needed,
then disconnect from CPSM. Although there isn't an SQL
SELECT statementand a WHERE clause, the concepts are very

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 23

similar. The only major functionality that is missing is a ‘join’
between two or more tables. This must be handled within your
program if needed.

All CPSM objects are defined in the CPSM Resource Table
Reference manual. Each object is described as a table of data
columns. Each column can be displayed and used as a selection
criterion or as a sorting key. As with any application programming
task, the hardest partis deciding what it is you really want to see.
After that, itis simply a case of picking and choosing the columns
from the appropriate table. There are object tables for just about
every CICS resource you can think of (CICS regions, terminals,
connections, programs, transactions, journals, Temp Storage
gueues, etc).

After getting my feet wet with a few small REXX EXECs, | found
there were common activities | was performing in all programs.
Thisledto the creation of several REXX functions to do things like
Connect, Get, Order, Get_Meta Data, etc. | later found that most
of my programs were to inquire on things in a single Resource
Table even though the CPSM REXX APl is fully capable of using
the full CEMT SPI to issue performs and sets. | also realized that
most of my programs were basically clones with a few minor
changes based on the Resource Table columns.

This started me working on a generic CPSM Report Writer, which
would allow me and others to access any CPSM Resource Table
and create areport against a single table. My design criteria were
to allow a single REXX EXEC to be run in batch with parameters
and DD statements used to influence the processing. The
required Context, Scope, Object, and optional CMAS name
would be provided as execute card parameters. All other features
would be influenced by the usage of special DDnames in the
JCL. The idea was that very simple JCL could be run for very
basic requests. As the requests become more complicated, the
additional features could be ‘turned on’ by adding the necessary
DDs and creating the input datasets containing the appropriate
input.

| was also trying to avoid any need to modify the CPSMRW REXX

24 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

EXEC. The only things in the EXEC that you might want to tailor
are:

 The default page_size, currently set to 55 lines.

« The default CMAS name, which currently resolves to
C&SYSCLONE.XCMAS in the EXEC.

To change the default page_size, justfind ‘page _size =55’ in the
CPSMRW REXX EXEC and change it to the desired value. As
you will see later, page_size is modifiable within each report
heading.

The default CMAS name can be set in the REXX EXEC or in the
RWPROC. If you have a good naming convention for your
CMASs in a Sysplex, the CPSMCMAS subroutine (find
‘cpsmcmas:’ in the EXEC) can be changed to incorporate the
logic necessary to identify the correct CMAS based on the LPAR
the CPSMRW job is running on. A simple REXX SELECT clause
can handle this.

select
when mvsvar("sysname*®)
when mvsvar("sysname*®)
otherwise cmas = "ERROR"
end

As you will see later, the RWPROC does provide the &CMAS
symbolic that can be set in every CPSMRW job.

"SYS1® then cmas = "CMAS1*
"SYS2® then cmas = "CMAS2*

The program’s ‘advanced’ features are:

« User-definable list of Resource Table variables for the print
line on the report (report view).

» Multiple user definable report views.

« User-definable heading and/or preprocessing logic.
» User-definable filters for selective reporting.

« User-definable multi-level sort sequence.

CPSMRW was developed and tested with CICS/TS 1.3 and
CPSM 1.4 under OS/390 V2R10.

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 25

PROC JCL

| created a PROC to execute the CPSMRW REXX EXEC called
RWPROC. The PROC allows for easy customization without
bothering the casual user with the details.

//CPSMRW PROC CONTEXT=PRODCPLX, CPSM CONTEXT
//***
//* PROC: CPSMRW *
//* *
//* PURPOSE: EXECUTE THE CPSM REXX API TO RUN BASIC REPORTS *
//* *
//* SYMBOLICS: *
//* *
//* CONTEXT - THE CPSM CONTEXT *
//* SCOPE - THE CPSM SCOPE *
//* OBJECT - THE CPSM OBJECT *
//* CMAS - THE TARGET CMAS TO CONNECT TO *
//* CPSMLOAD- THE CPSM LOADLIB *
//* OBJLIB - THE PDS THAT HOLDS THE OBJECT VIEW MEMBERS *
//* EXECLIB - THE PDS THAT HOLDS THE REXX EXECS *
//* REPORT - SYSOUT CLASS FOR OPERATOR OUTPUT *
//* DEBUG - SYSOUT CLASS FOR DEBUGGING OUTPUT *
//* *
//* NOTES: *
/7* CHANGE LOG *
//***
// SCOPE=PROD, CPSM SCOPE

// OBJECT=CICSRGN, CPSM OBJECT

// CMAS=, LOCAL CMAS

// CPSMLOAD="CPSM.PROD.CTS13@.SEYUAUTH", CPSM LOADLIB

// EXECLI1B="RZENUK.CPSMRW", REXX EXEC PDS

// OBJLIB="RZENUK_.CPSMRW", CPSM OBJECT PDS
// REPORT="T", REPORT OUTPUT

// DEBUG="*" DIAGNOSTIC MESSAGES
//***
//* BATCH TSO STEP TO EXECUTE THE CPSMRW REXX EXEC *

//***

//CPSMRW EXEC PGM=IKJEFTZ1,

// PARM="CPSMRW &CONTEXT &SCOPE &OBJECT &CMAS*
//STEPLIB DD DSN=&CPSMLOAD ,DISP=SHR

//SYSEXEC DD DSN=&EXECLIB,DISP=SHR

//SYSTSPRT DD SYSOUT=&REPORT

//SYSTSIN DD DUMMY

//***

//* PDS TO HOLD CPSMRW MEMBERS FOR VIEWS *

//***

//0BJECT DD DSN=&0OBJL1B,DISP=SHR
//DI1AGMSGS DD SYSOUT=&DEBUG

26 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

PROC tailoringinstructions

If all items are placed in the same PDS, change the EXECLIB
and OBJLIB to point to this PDS. Set CPSMLOAD to your CPSM
LOADLIB. Set CONTEXT and SCOPE to valid defaults. The
CPSMRW EXEC will reason out a CMAS name, but this may not
be what you want, so you may want to set a default for CMAS
also.

All the code examples included can be placed in members in a
single PDS.

EXECUTE JCL
To execute the PROC use the following JCL.:

//MYCPSM JOB (@92@@), "R ZENUK® ,MSGCLASS=T ,REGION=@M,CLASS=0

//***

//* BASIC EXAMPLE OF RUNNING CPSMRW *

//***

/*JOBPARM SYSAFF=*

//***

//* PROCLIB WHERE CPSMRW PROC LIVES *

//***

// JCLLIB ORDER=(MY.CPSMRW)

//***

//* EXECUTE CPSMRW *

//***

//CPSMRW EXEC RWPROC

Using the PROC from above, tailored ‘as is’, this will run a query
against the CPSM CICSRGN object using Context PROD and
Scope PROD.

Another example:

//MYCPSM JOB (@92@@), "R ZENUK® ,MSGCLASS=T ,REGION=@M,CLASS=0

//***

//* BASIC EXAMPLE OF RUNNING CPSMRW WITH SYMBOLIC OVERRIDES *

//***

/*JOBPARM SYSAFF=*

//***

//* PROCLIB WHERE CPSMRW PROC LIVES *

//***

// JCLLIB ORDER=(MY.CPSMRW)

//***

//* EXECUTE CPSMRW *

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 27

//***

//CPSMRW EXEC RWPROC,SCOPE=0TORS,OBJECT=CONNECT

Using the PROC from above, this will list all connections defined
to the scope of OTORS (a sample Scope that contains only
TORS).

Another example:

//MYCPSM JOB (@9@0),"R ZENUK" ,MSGCLASS=T,REGION=@M,CLASS=0

//***
//* BASIC EXAMPLE OF RUNNING CPSMRW WITH SYMBOLIC OVERRIDES *
//* ADDING A FILTER AND SORT ORDER *

//***

/*JOBPARM SYSAFF=*

//***

//* PROCLIB WHERE CPSMRW PROC LIVES *

//***

// JCLLIB ORDER=(MY.CPSMRW)

//***

//* EXECUTE CPSMRW *

//***

//CICSRGN EXEC RWPROC,OBJECT=PROGRAM

//***

//* FILTER DD TO ADD FILTER CRITERIA *

//***

//FILTER DD DSN=MY .CPSM(PFILTER) ,DISP=SHR

//***

//* ORDER DD TO ADD SORT CRITERIA *

//***

//0RDER DD DSN=MY .CPSM(PORDER) ,DISP=SHR

Using the PROC from above, this will list all selected programs
using the filter criteria in member PFILTER and sort the results
using the sort sequence specified in member PORDER.

And finally, here is an example with multiple comment reminders
for all the features:

//MYCPSM JOB (©299@@),"R ZENUK® ,MSGCLASS=T ,REGION=@M,CLASS=0

//***

//* BASIC EXAMPLE OF RUNNING CPSMRW WITH COMMENTED REMINDERS *

//***

/*JOBPARM SYSAFF=*

//***

//* PROCLIB WHERE CPSMRW PROC LIVES *
//***
// JCLLIB ORDER=(MY.CPSMRW)

//***

28 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

//* EXECUTE CPSMRW *

//***

//CICSRGN EXEC RWPROC

//***

//* ADD AN OVERRIDE DD TO USE DIFFERENT PRINT LINE VARIABLES *

//***

//*CICSRGN DD DSN=MY .CPSM(CICSRGN1) ,DISP=SHR

//***

//* USE THE "NODETAIL® OVERRIDE WHEN ONLY TOTALS ARE NEEDED *

//***

//*CICSRGN DD DSN=MY .CPSM(NODETAIL) ,DISP=SHR

//***

//* UNCOMMENT THE FILTER DD TO ADD FILTER CRITERIA *

//***

//*FILTER DD DSN=MY .CPSM(PFILTER) ,DISP=SHR

//***

//* UNCOMMENT THE HEADING DD TO ADD A HEADING *

//***

//*HEADING DD DSN=MY .CPSM(HEADING) ,DISP=SHR

//***

//* UNCOMMENT THE ORDER DD TO ADD SORT CRITERIA *

//***

//*0RDER DD DSN=MY .CPSM(PORDER) ,DISP=SHR

//***

//* UNCOMMENT THE GROUP DD TO ADD GROUP CRITERIA *

//***

//*GROUP DD DSN=MY .CPSM(PGROUP) ,DISP=SHR

CPSMRW PROGRAM DOCUMENTATION

CPSMRW s writtenin REXX and usesthe CPSM EYUAPI REXX
Function package. The REXX EXEC is completely self-contained
and does not require any other modules to execute. It uses
several internal subroutines, but has no external dependencies.

CPSMRW has four required parameters:
 Context—valid CPSM Context. Defaultvalueis PRODCPLX.
 Scope — valid CPSM Scope. Default value is PRODCPLX.

* Object — valid CPSM Object Name. Default value is
CICSRGN.

« CMAS - valid CMAS on the local system. Default value is
CnnXCMAS (where nn=&SYSCLONE).

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 29

CPSMRW has several DD statements used to influence its
operation:

« DIAGMSGS (required) — CPSMRW utility messages like
parameter values, input DD contents, etc.

e OBJECT (required) — the default location for the ‘View’
member for the CPSM Object print line (usually REXX SAY
statements).

 FILTER (optional) — CPSM Filter criteria.
« ORDER (optional) — CPSM Order criteria.
* GROUP (optional) — CPSM Group criteria.

« HEADING (optional) — column headings and/or start-up
logic (usually REXX SAY statements).

e object (optional) — DD used to override the contents of the
OBJECT DD - the name will be the same as the CPSM
Object identified in the Object parameter.

USAGE RULESAND GUIDELINESFOR EACH DD

DIAGM SGS

The DIAGMSGS DD is usedto record all program messages and
any inputs that may be useful for diagnosing problems. Always
look here when diagnosing a problem and make sure the
SYSOUT for DIAGMSGS is actually displaying the values you
believe you are using. This helps identify simple JCL errors when
member names or datasets are misspelled or mistakenly
changed.

OBJECT

The OBJECT DD must point to a PDS that contains a member
with the same name as the CPSM object identified in the PARM.
This member is the default print line for reports against the
selected CPSM object. This may be thought of as the default
‘view'.

30 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Contents of OBJECT DD members will be valid REXX statements
that will be interpreted when needed. This ‘exit’ gets control at the
end of the Fetch/Parse loop and was primarily envisioned for
producing a print line. The minimum required is SAY statements
for the CPSM Resource Table variables desired in the output.
During CPSMRW FETCH and TPARSE processing all Resource
Table variables are retrieved and prefixed with the characters
‘obj_’. Therefore, all Resource Table variable names in REXX
SAY statements must be prefixed with ‘obj_".

Example of a valid MAS member to produce a simple MAS
report:

say obj cicsname obj pricmas obj cmasname obj_cicsstate obj_ desc

If a print line must span two lines, you must build a single print
line variable. Normal REXX continuation will not work because
the contents of the OBJECT member are interpreted one line at
a time using the REXX INTERPRET statement. Here is an
example of creating a ‘longer’ print line:

obj linel = obj cicsname obj pricmas obj_ cmasname
obj line2 = obj_cicsstate obj_desc
say obj linel obj_line2

Another example shows some additional processing of variables
to format them in a more ‘report-friendly’ manner. It is also
acceptable to include valid REXX comments in the OBJECT
members:

/**/

/* Print line for CICSRGN CPSM Object */
/**/
tasks right(strip(obj_ currtasks),3)

status left(strip(obj_cicsstatus),19)

obj_linel = obj_jobname obj applid status tasks obj eyu cicsrel

obj _line2 = obj_startup obj strttime obj_mvssysid

say obj linel obj_line2

If no print line is desired, just the default total number of objects
matching the criteria, you can provide an OBJECT member with
a comment or NOP statement:

/* no print line */
nop

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 31

The OBJECT PDS is not limited to the traditional 80 byte LRECL,;
any size up to 32KB will work.

FILTER

The optional FILTER DD, if used, will point to a syntactically valid
FILTER CRITERIA. The EXEC will add the required trailing
period (fullstop) ‘.". The syntax must be a REXX assignment
statement and the variable ‘filter’ must be set to a valid CPSM
FILTER. Filters can contains multiple AND, OR, and parenthetical
expressions. See the CPSM Application Programming Guide for
examples of valid FILTER CRITERIA.

Example of a FILTER:

filter = "TRANID-=C* AND RUNSTATUS=SUSPENDED"

The same rules apply regarding continuations, additional REXX
code, and LRECL as described above with the OBJECT DD.
This ‘exit’ gets control before the Fetch/Parse loop.

ORDER

The optional ORDER DD, if used, will point to a syntactically valid
ORDER CRITERIA. The EXEC will add the required trailing
period (full stop) ‘.. The syntax must be a REXX assignment
statement and the variable ‘sort’ must be set to a valid CPSM
ORDER. Orders can be ascending or descending. See the
CPSM Application Programming Guide for examples of valid
ORDER CRITERIA.

Example of an ORDER:

sort = "PROGRAM,USECOUNT/D*®

The same rules apply regarding continuations, additional REXX
code, and LRECL as described above with the OBJECT DD.
This ‘exit’ gets control before the Fetch/Parse loop.

GROUP

The optional GROUP DD, if used, will cause a GROUP BY to
occur based on the contents of the GROUP DD. The EXEC wiill

32 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

add the required trailing period (fullstop) “.". The syntax must be
a REXXassignment statement. The variable ‘group’ must specify
a valid resource table attribute for the grouping. The variable
‘sumopt’ is used to apply summary techniques to the result set
(AVG, DIF, LIKE, MAX, MIN, SUM). The summary value will be
placed in the table attribute identified. If GROUP is used and
SUMOPT is not used, default summary processing will occur
based on the CPSM Resource Table specifications.

Example of a GROUP:

group = "TRANID"
sumopt = "SUM(USECOUNT)*

The same rules apply regarding continuations, additional REXX
code, and LRECL as described above with the OBJECT DD.
This ‘exit’ gets control before the Fetch/Parse loop.

HEADING

The optional HEADING DD, if used, will contain syntactically
valid REXX statements to produce a heading and/or any ‘pre’
processing desired before the detail print lines.

Example of a HEADING:

say "1Page:" page_num
say
say " CICS Name MVS ID Tasks APPLID"

It is also possible to set the page_size variable to change the
number of lines per page. The program default is 55 lines and is
driven only if a HEADING DD exists in the JCL. This causes the
contents of the HEADING DD to be re-driven after ‘page_size’
lines. Carriage control is the user’s responsibility. The best
technique for this is placing a ‘1’ in the first position of your REXX
SAY statement for the heading line and leaving the first position
blank in the print detail lines from the OBJECT or object DD. The
page_num variable is also maintained and can optionally be use
in your heading. If you use carriage control, don’t forget to leave
a blank in column 1 for the detail lines in the ‘view’ member. The
SYSTSPRT DD will also need to interpret the ANSI Carriage

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 33

Control in column 1. This can be accomplished by coding your
SYSTSPRT DD as follows:

//SYSTSPRT DD SYSOUT=*,RECFM=VBA,LRECL=125,BLKSIZE=129

The same rules apply regarding continuations, additional REXX
code, and LRECL as described above with the OBJECT DD.
This ‘exit’ gets control before the Fetch/Parse loop.

obj ect

The optional object DD, if used, will point to an alternative
member containing SAY statements. This allows you to maintain
a PDS with multiple report formats for the same object. The
name of the DD will be the same as the CPSM object to be
printed. This is an override for the OBJECT DD to allow multiple
members in the same PDS to contain print lines for the same
CPSM object.

The syntax is the same as the OBJECT DD. This can also be
used with a ‘nop’ member to eliminate details lines and simply
print totals.

Examples of an object DD:

//CICSRGN DD DSN=your .view.pds(CICSRGN2) ,DISP=SHR
//CICSRGN DD DSN=your .view.pds(NODETAIL) ,DISP=SHR

Member NODETAIL can contain a single line with ‘nop’ or a
comment

The same rules apply regarding continuations, additional REXX
code, and LRECL as described above with the OBJECT DD.
This ‘exit’ gets control before the Fetch/Parse loop.

RECOMMENDATIONS

Here are some helpful guidelines to follow when developing new
CPSMRW reports (or any reports for any report writer for that
matter):

» Always start with a working model if you have one.

34 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Avoid ‘eating the elephant’ — cut it up into small bite-size
pieces then eat it slowly.

When working through any report writer project, use a small
working set of data, don’t try to process millions of rows for
every interim run. Not only does this waste resources, but
also makes each of your runs very long and will extend your
project time. In CPSM terms, limit your SCOPE.

Ensure that your subset of data provides the conditions you
are trying to report on. Also, try to make sure your subset
contains a wide array of conditions so your small subset
exercises your report.

When developing from scratch, start simple by first displaying
the target object and desired columns. This approach allows
you to debug one problem at a time.

After seeingtheroughreport, arrange and space the columns
as needed and add a heading as well as page breaks.

After seeing your desired object displayed with the columns
in the desired sequence, add your filter(s).

After seeing your desired subset, add your sort criteria.
If needed, add any required grouping criteria.

Have fun, amaze your friends, and go home with a sense of
accomplishment!

SAMPLE REPORTS
REPORT OUTPUT from SYSTSPRT

62 CICSRGN objects found

CICSName APPLID Status Tasks Rel SYSID
PICSP1AA XIP1AA ACTIVE 12 E530 TS11
PICSP1AB XIP1AB ACTIVE 12 E530 TS11
PICSP1AC XIP1AC ACTIVE 12 E530 TS11
PICSP1AD XIP1AD ACTIVE 12 E530 TS11

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement.

PICSP1AE XIP1AE ACTIVE 12 E53@ TS11
PICSP1AF XIP1AF ACTIVE 12 E53@ TS11

UTILITY MESSAGES FROM DIAGMSGS

CPSM modules executed from CICS.PROD.CTS130.SEYUAUTH
CPSMRW executed from RZENUK.CPSMRW

Parms: PRODCPLX OTORS CICSRGN

Connected to CO1XCMAS on TSO1l 29 May 2002 23:29:52
Unconnected from CO1XCMAS on TS01 29 May 2002 23:29:53

OBJECT PRINT LINE USED FROM CICSRGN DD MY.CPSMRW

/**/

/* Print line for CICSRGN CPSM Object */

/**/

tasks = right(strip(obj_currtasks),3)
status = left(strip(obj_cicsstatus),10)
say obj jobname obj applid status tasks obj eyu cicsrel obj mvssysid

HEADING USED FROM HEADING DD RZENUK.CPSMRW

/**/

/* sample heading line for a CICSRGN view */
/**/
page_size = 50
say "CICSName APPLID Status Tasks Rel SYSID*®

CPSMRW

/***/
/* REXX */
/***/
/* Purpose: Produce a batch report from CPSM */
/* ___ */
/* Syntax: CPSMRW context scope object */
/* ___ */
/* Parms: context - CPSM Context (defaults to PROD) */
/* scope - CPSM Scope (defaults to PROD) */
/* object - CPSM Object (defaults to CICSRGN) */
/* cmas - CPSM CMAS (if default not desired) */
/* ___ */
/* Sample JCL */
/* */
/* //CPSMRW EXEC PGM=IKJEFT@1,DYNAMNBR=99, */
/* // PARM="CPSMRW context scope object cmas” */
/* //STEPLIB DD DSN=cpsm.seyuauth,DISP=SHR */

36 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

/* //SYSEXEC DD DSN=exec.pds,DISP=SHR */

/* //SYSTSPRT DD SYSOUT=* */
/* //DIAGMSGS DD SYSOUT=* */
/* //SYSTSIN DD DUMMY */
/* //0BJECT DD DSN=your .view.pds,DISP=SHR */

/* //FILTER DD DSN=your .filter.pds(member),DISP=SHR (optional) */
/* //0RDER DD DSN=your .order .pds(member) ,DISP=SHR (optional) */
/* //GROUP DD DSN=your .group.pds(member),DISP=SHR (optional) */
/* //HEADING DD DSN=your.heading.pds(member),DISP=SHR (optional) */
/* //object DD DSN=your .view.pds(member) ,DISP=SHR (optional) */
/* */
/* 1T FRC is set to 9999 (FRC = 9999), all FETCH processing will be */
/* bypassed. This is useful for benchmarking CPSM GET processing */

/* against various CPSM objects. */
/***l
/* Change Log */
JFFFFFxKIAAR QREFRESH BEGIN START 2002739711 2(:26:53 *xxdddkkkkkidkxy

/* Standard startup activities */

/***l
call time “r-

parse arg parms
signal on syntax name trap
signal on failure name trap
signal on novalue name trap
probe = "NONE*®
modtrace = "NO*
modspace = **©
call stdentry "DIAGMSGS*
module = “"MAINLINE*
push trace() time("L") module “From:* @ “Parms:" parms
if wordpos(module,probe) <> @ then trace *
call modtrace "START" @
[FFFFFFxEIEL QREFRESH END START 2002/09/11 2@:26:53 ***FxxExkkkkxky
/* Set default page_size */

/***/

r*; else trace

n

page_size = 55
page_num = 1

/***l

/* Accept input parms */

/***/

arg parms
/***/

/* Parse parms */

/***l

parse var parms context scope object cmas .

if context = "" then context = "PROD"
if scope = " then scope = "PROD*®

if object = *° then object = "CICSRGN*®
if cmas = " then cmas = cpsmcmas()

/***l

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 37

/* Determine if an override DD was provided, if so use it */

/***/

if listdsi(object "FILE™) = @ then

do
objdd = object
end
else

/***/
/* No override, use the default OBJECT DD */
/***/

do

objdd = "OBJECT"
call ddcheck objdd

/***/

/* Confirm the OBJECT member is present */
/***/

objmem = strip(sysdsname, "B",""")"("object")
if sysdsn(objmem) <> *"0K" then
call rcexit 12 "Required OBJECT member® objmem "is missing”®

/***/

/* Allocate the object member */

/***/

call tsotrap "ALLOC F(OBJECT) DA("'objmem') SHR REUSE"

end
/***/
/* Load the OBJECT member into a stem */

/***/

call tsotrap "EXECIO * DISKR™ objdd ""(STEM OBJLINE. FINIS"

/***/

/* Check to see if FILTER CRITERIA was provided */
/***/
filter = **
if listdsi("FILTER" "FILE'™) = @ then
do

call tsotrap "EXECIO * DISKR FILTER (STEM FILTLINE. FINIS"
do =1 to filtline.d
interpret filtline.f

end
filter_dsn = sysdsnhame
end
/***/
/* Call CPSMINIT to setup a valid CPSM environment */

/***/

cpsm_thread = cpsminit(cmas)

/***/

/* Call CPSMOLEN to get the length of the object */

/***/

object_len = cpsmolen(cpsm_thread object)

/***/

/* Call CPSMGET to get the result set, address and count */

38 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

/***l

obj result = cpsmget(cpsm_thread context scope object filter)
parse var obj result obj result obj count

call msg obj count object "objects found® filter

if tsoenv = "BACK" then say

/***/

/* Check to see if GROUP BY CRITERIA was provided */

/***l

group =
sumopt =
if listdsi(""GROUP"™ "FILE"™) = @ then

do

call tsotrap "EXECIO * DISKR GROUP (STEM GRPLINE. FINIS"

do g=1 to grpline.@

interpret grpline.g
end
group_dsn = sysdsnhame

/***/

/* Call CPSMGRP to group the result set, address and count */

/***l

obj result = cpsmgrp(cpsm_thread group obj result sumopt)
parse var obj_result obj result obj count

call msg obj_count object "objects grouped by" group sumopt
if tsoenv = "BACK" then say

end
/***l
/* Check to see if a HEADING was provided */

/***/

heading_dsn =
if listdsi(""HEADING™ "FILE"™) = @ then
do
heading_dsn = sysdshame
call tsotrap "EXECIO * DISKR HEADING (STEM HEADLINE. FINIS"
do h=1 to headline.g
interpret headline.h

end
say
end
/***/
/* Check to see 1T SORT CRITERIA was provided */
/***/
sort = *°"
if listdsi(""ORDER" "FILE™) = @ then
do

call tsotrap "EXECIO * DISKR ORDER (STEM ORDLINE. FINIS"
do o=1 to ordline.@
interpret ordline.o
end
order_dsn = sysdshame

/***l

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 39

/* Suffix the SORT CRITERIA with a period ".*° */
/***/
sort = sort"."
sortlen = length(sort)

/***/

/* Sort the results */
/***/
SRC = eyuapi (""ORDER BY(SORT)",

“"LENGTH("'sortlen™)",

"RESULT(OBJ_RESULT)",

"THREAD(CPSM_THREAD)",

"RESPONSE (RESPONSE)",

""REASON(REASON)")

/***/

/* Error and message processing */
/***/
call rcexit SRC "ORDER failed for®" object
call cpsmerr 2@ "MAINLINE ORDER" reason object response
call saydd msgdd @ "ORDER BY" sort "completed*®

end
/***/
/* Loop through the results table */

/***/

do 1=1 to obj_ count

/***/

/* Check for a page break and increment page_num */
/***/
it heading_dsn <> *° & (i // page_size) = @ then
do
page_num = page_num + 1
say
do h=1 to headline.g@
interpret headline.h

end

say

end
/***/
/* Fetch the results */

/***/
if group = *" then
do
FRC = eyuapi (""FETCH INTO(ROW)",
"LENGTH(OBJECT_LEN)",
"RESULT(OBJ_RESULT)",
""THREAD(CPSM_THREAD)",
""RESPONSE (RESPONSE)",
"REASON(REASON)'")
end
else
do

40 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

FRC = eyuapi(""FETCH INTO(ROW)",
"LENGTH(OBJECT _LEN)",
"RESULT(OBJ_RESULT)",
"THREAD(CPSM_THREAD)",

""RESPONSE (RESPONSE) ",
""REASON(REASON)'")
/* ""COUNT(SUM_COUNT) BOTH DETAIL", */

end

/***l

/* Error processing */
/***/
call rcexit FRC "FETCH failed for" object
ifT response <> 1027 then
call cpsmerr 21 "MAINLINE FETCH" reason object response

/***l

/* TPARSE the results table */
/***/
TRC = eyuapi (""TPARSE",

"OBJECT("'object'™)",

"PREFIX(0OBJ)",

"THREAD(CPSM_THREAD)",

"STATUS(RESPONSE)"',

"VAR(ROW.1)")

/***/

/* Error processing */

/***/

call rcexit TRC "TPARSE failed for" object response

/***/
/* Format the "print” line */
/***/
do j=1 to objline.?d
interpret objline.j

end
/***/
/* 1T the "print® line sets FRC = 9999 then leave the loop */

/***/

if FRC = 9999 then
do
call saydd msgdd @ "FETCH, TPARSE and print processing bypassed*®
leave
end
end

/***l

/* Terminate the connection */

/***l

EXITRC = cpsmterm(cmas)

/***/

/* Print line details */

/***l

call saydd msgdd 1 "OBJECT print line used from®™ objdd "DD" sysdsname

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 41

call tsotrap "EXECIO * DISKW" msgdd "(STEM OBJLINE."

/***/

/* Filter details */
/***/
if filter <> *" then
do
call saydd msgdd 1 "Filter criteria used from FILTER DD" filter_dsn
call tsotrap "EXECIO * DISKW" msgdd "(STEM FILTLINE."

end
/***/
/* Group details */

/***/
if group <> "*" then
do
call saydd msgdd 1 "Group criteria used from GROUP DD" group_dsn
call tsotrap "EXECIO * DISKW" msgdd *"(STEM GRPLINE."

end
/***/
/* Heading Details */

/***/

if heading_dsn <> " then
do
call saydd msgdd 1 “Heading used from HEADING DD* heading_dsn
call tsotrap "EXECIO * DISKW" msgdd *"(STEM HEADLINE."

end
/***/
/* Sort details */

/***/

if sort <> "" then
do
call saydd msgdd 1 "Sort criteria used from ORDER DD" order_dsn
call tsotrap "EXECIO * DISKW" msgdd ""(STEM ORDLINE."

end
/***/
/* Shutdown */

/***/

/* End of unique program code */
/***/
shutdown: nop
if cpsm_thread <> @ & TRC = 9999 then
EXITRC = cpsmterm(cmas)

[FFFFFIxAIRE QREFRESH BEGIN STOP 2002/@8/03 @8:42:33 FxxFddkkkkkkdkxy
/* Shutdown message and terminate */
/***/

call stdexit time("e")
[FFFFFIxAARE QREFRESH END STOP 2002/38/03 @8:42:33 FxFFddkkkkkdkkxy
[FFFFFIxAARE QREFRESH BEGIN SUBBOX — 2@0@02/08/15 12:46:24 *****dxkikxiky
/* Internal Subroutines provided in CPSMRW */
/* */
/* RCEXIT - Exit on non-zero return codes */

42 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

/* TRAP - Issue a common trap error message using rcexit */
/* ERRMSG - Build common error message with failing line number */
/* STDENTRY - Standard Entry logic */
/* STDEXIT - Standard Exit logic */
/* MSG - Determine whether to SAY or ISPEXEC SETMSG the message */
/* DDCHECK - Determine if a required DD is allocated */
/* DDLIST - Returns number of DD"s and populates DDLIST variable */
/* DDDSNS - Returns number of DSNs in a DD and populates DDDSNS */
/* TSOTRAP - Capture the output from a TSO command in a stem */
/* SAYDD - Print messages to the requested DD */
/* JOBINFO - Get job related data from control blocks */
/* PTR - Pointer to a storage location */
/* STG - Return the data from a storage location */
/* MODTRACE - Module Trace */
/* CPSMCMAS - Get CMAS name */
/* CPSMERR - Format a CPSM error message for RCEXIT */
/* CPSMINIT - Initialize a CPSM session */
/* CPSMOLEN - Get a CPSM Objects Length */
/* CPSMGET - Get a CPSM Result Set */
/* CPSMGRP - Group a CPSM Results Set */
/* CPSMTERM - Terminate a CPSM session */

JFFFFFFxFAxHR QREFRESH END SUBBOX 2002738715 12:46:24 Fx*Fxxdkrkixky
JFFFFFFxFAxHR QREFRESH BEGIN RCEXIT 2002/38/15 15:28:39 *xFFxkdkkkhxky

/* RCEXIT - Exit on non-zero return codes */
/* EXITRC - Return code to exit with (if non zero) */
/* ZEDLMSG - Message text for it with for non zero EXITRC"s */

/***l

rcexit: parse arg EXITRC zedlmsg
iT EXITRC <> @ then

do

trace "o"
/***/
/* If execution environment is ISPF then VPUT ZISPFRC >/

/***/

if execenv = "TSO" | execenv = "ISPF" then
do
if ispfenv = "YES" then
do
zispfrc = EXITRC

/***/

/* Does not call ISPWRAP to avoid obscuring error message modules */
/***/
address ISPEXEC "VPUT (ZISPFRC)"
end
end

/***/

/* 1T a message i1s provided, wrap it in date, time and EXITRC */
/***/

if zedlmsg <> "" then
do

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 43

zedImsg = time("L") execname zedlmsg "RC="EXITRC
call msg zedlmsg

end
/***/
/* Write the contents of the Parentage Stack */

/***/

stacktitle = "Parentage Stack Trace ("queued()" entries):"

/***/

/* Write to MSGDD if background */
/***/
if tsoenv = "BACK" then
do
call saydd msgdd 1 zedlmsg
call saydd msgdd 1 stacktitle

end
else
/***/
/* Write to the ISPF Log if foreground */
/***/
do

zerrlm = zedlmsg

address ISPEXEC "LOG MSG(ISRZ@@3)"
zerrIm = center(”® “stacktitle® *,78,"-7)
address ISPEXEC "LOG MSG(ISRZ@@3)"

end
/***/
/* Unload the Parentage Stack */

/***/

do queued()
pull stackinfo
if tsoenv = "BACK" then
call saydd msgdd @ stackinfo
else
do
zerrIm = stackinfo
address ISPEXEC "LOG MSG(ISRzZ@@3)"

end
end
/***/
/* Put a terminator in the ISPF Log for the Parentage Stack */

/***/

if tsoenv = "FORE" then
do
zerrIm = center(" "stacktitle® ",78,"-%)
address ISPEXEC "LOG MSG(ISRZ@@3)"

end
/***/
/* Signal SHUTDOWN. SHUTDOWN label MUST exist in the program */

/***/

signal shutdown

44 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

end

else
return
JFFFFFFxFAxHR QREFRESH END RCEXIT 20@2/@38/15 15:28:39 *****ixxkkxiiy
JFFFFFFxFAxHR QREFRESH BEGIN TRAP 2002/38/07 11:48:14 F*>*FFxxddxkixxy
/* TRAP - Issue a common trap error message using rcexit */
/* PARM - N/A */

/***/
trap: traptype = condition("C")
if traptype = "SYNTAX® then
msg = errortext(RC)
else
msg = condition("D")
trapline = strip(sourceline(sigl))
msg = traptype "TRAP:" msg®, Line:" sigl """trapline®""
call rcexit 666 msg
[FFFFFxRIAAR QREFRESH END TRAP 2002/38/D7 11:48:14 ***didkkkkkidkxy
[FFFFFIxIIAAR QREFRESH BEGIN ERRMSG 2002/08/10 16:53:04 *x**ddkkkkidxy
/* ERRMSG - Build common error message with failing line number */
/* ERRLINE - The failing line number passed by caller from SIGL */
/* TEXT - Error message text passed by caller */
/***/
errmsg: nop
parse arg errline text
return "Error on statement® errline”," text
[FFFFFFxAIEL QREFRESH END ERRMSG 2002/38/1@ 16:53:04 Fx**Fxkkkkkkxxy
[FFFFFFIxAxAR OREFRESH BEGIN STDENTRY 2@0@2/@9/11 @1:48:55 *****kxkxkkxix/
/* STDENTRY - Standard Entry logic */
/* MSGDD - Optional MSGDD used only in background */
/***/
stdentry: module = "STDENTRY"
if wordpos(module,probe) <> @ then trace "r"; else trace "n-
parse arg sparms
push trace() time("L") module “"From:® sigl "Parms:® sparms
arg msgdd
parse upper source . . exechame . execdsn . . execenv .

/***/

/* Startup values */
/***/

EXITRC = @

MAXRC = @

ispfenv = "NO*

popup = *NO*

lockpop = "NO*

keepstack = "NO*

/***/

/* Determine environment */
/***/

if substr(execenv,1,3) <> "TSO" & execenv <> "ISPF" then
tsoenv = "“NONE*

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 45

else

do
tsoenv = sysvar("SYSENV*®)
"1SPQRY"
if RC = @ then ispfenv = "YES~
end
/***/
/* MODTRACE must occur after the setting of ISPFENV */

/***/

call modtrace "START" sigl

/***/

/* Startup message */
/***/
Ipar = mvsvar("SYSNAME®)
startmsg = execname "started” date() time() "on
if tsoenv = "BACK" then
do
jobname = mvsvar("SYMDEF*, "JOBNAME™")
jobinfo = jobinfo()
parse var jobinfo jobtype jobnum
say jobname center(® “"startmsg® ",61,"-") jobtype jobnum
say

/***/

/* 1T MSGDD is provided, write the STARTMSG and SYSEXEC DSN to MSGDD */
/***/
if msgdd <> "*" then
do
call saydd msgdd 1 startmsg
x = listdsi("SYSEXEC" “FILE")
call saydd msgdd @ execname "loaded from®™ sysdsname

/***/

/* If there are PARMS, write them to the MSGDD */

/***/

Ipar

if parms <> " then
call saydd msgdd @ “"Parms:" parms

/***/

/* ITf there is a STEPLIB, write the STEPLIB DSN MSGDD */
/***/
if listdsi("STEPLIB" "FILE") = @ then
do
steplibs = dddsns("STEPLIB®)
call saydd msgdd @ "STEPLIB executables loaded”,
"from®" word(dddsns,1)
if dddsns("STEPLIB®") > 1 then
do
do stl=2 to steplibs
call saydd msgdd @ copies(® -,31),
word(dddsns, stl)
end
end

46 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

end
end
end

pull tracelvl . module . sigl . sparms

call modtrace "STOP" sigl

interpret “trace” tracelvl

return
[rFFFFFxHAxR QREFRESH END STDENTRY 2@02/@9/11 @1:48:55 ***xkkkkkkkiky
[FFFFFxxIAAL QREFRESH BEGIN STDEXIT 2002/@9/11 @1:Q@@:51 *x**kxkrkikxy

/* STDEXIT - Standard Exit logic */
/* ENDTIME - Elapsed time */
/* Note: Caller must set KEEPSTACK i1f the stack is valid */

/***l

stdexit: module = "STDEXIT®
if wordpos(module,probe) <> @ then trace "r"; else trace "n-
parse arg sparms
push trace() time("L") module “"From:® sigl "Parms:® sparms
call modtrace "START® sigl
arg endtime
endmsg = execname "ended® date() time() format(endtime,,l)

/***l

/* if MAXRC is greater then EXITRC then set EXITRC to MAXRC */
/***/
if MAXRC > EXITRC then EXITRC = MAXRC
endmsg = endmsg "on" lIpar "RC="EXITRC
if tsoenv = "BACK" then
do
say
say jobname center(® “endmsg® ",61,"-") jobtype jobnum
if msgdd <> *" then
do
call saydd msgdd 1 execname “ran in" endtime "seconds”
call saydd msgdd @ endmsg

end
end
/***/
/* Remove STDEXIT and MAINLINE Parentage Stack entries, if there */
/***l
if queued() > @ then pull . . module . sigl . sparms
ifT queued() > @ then pull . . module . sigl . sparms

call modtrace °"STOP" sigl

/***/

/* if the Parentage Stack is not empty, display its contents */
/***/
if queued() > @ & keepstack = "NO" then

do

say "Leftover Parentage Stack Entries:”

say

do queued()

pull stackundo

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 47

say stackundo

end
EXITRC = 1
end
/***/
/* Exit */
/***/
exit(EXITRC)
[FFFFFIIAAAS QREFRESH END STDEXIT 20@02/@9/11 @1:@@:51 F*xxxkikxrkiiky
[FFFFFFIAIRE QREFRESH BEGIN MSG 20@02/@9/11 @1:35:53 Fx*Fxrdkkkhxxy
/* MSG - Determine whether to SAY or ISPEXEC SETMSG the message */
/* ZEDLMSG - The long message variable */

/***/

msg: module = "MSG*®
parse arg zedlmsg
if wordpos(module,probe) <> @ then trace "r"; else trace "n-
parse arg sparms
push trace() time("L") module "From:" sigl "Parms:" sparms
call modtrace "START" sigl

/***/

/* 1T this is background or OMVS use SAY */
/***/
if tsoenv = "BACK" | execenv = "OMVS®™ then
say zedlmsg
else

/***/

/* 1T this is foreground and ISPF is available, use SETMSG */
/***/
do
if ispfenv = "YES®" then

/***/

/* Does not call ISPWRAP to avoid obscuring error message modules */
/***/
address ISPEXEC "SETMSG MSG(ISRZ@@@)"
else
say zedlmsg
end
pull tracelvl . module . sigl . sparms
call modtrace "STOP®" sigl
interpret “trace” tracelvl

return
[FFFFFIIxAIRE QREFRESH END MSG 20@02/@9/11 @1:35:53 ****xkdkrkixxy
[FFFFFFIxAxAX QREFRESH BEGIN DDCHECK 20@2/@9/11 @1:@8:3@ *****xkxkkxix/
/* DDCHECK - Determine if a required DD is allocated */
/* DD - DDNAME to confirm */

/***/

ddcheck: module = "DDCHECK*®
it wordpos(module,probe) <> @ then trace "r"; else trace "n-"
parse arg sparms
push trace() time("L") module "From:*" sigl "Parms:" sparms

48 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

call modtrace "START" sigl
arg dd

dderrmsg = "OK*

LRC = listdsi(dd "FILE™)

/***/

/* Allow sysreason=3 to verify SYSOUT DD statements */
/***l
if LRC <> @ & strip(sysreason,"L",d) <> 3 then
do
dderrmsg = errmsg(sigl "Required DD" dd "is missing®)
call rcexit LRC dderrmsg sysmsglvi2
end
pull tracelvl . module . sigl . sparms
call modtrace "STOP" sigl
interpret "trace" tracelvl
return
[FrFFFFIxRxAAR QREFRESH END DDCHECK 20@02/@9/11 @1:@8:3@ *****kkkkkikxy
[FFFFFIxRIAAR QREFRESH BEGIN DDLIST 2002/12/15 @4:54:32 ****ddkkkkidkxy
/* DDLIST - Returns number of DD"s and populates DDLIST variable */
/* N/A - None */
/***l
ddlist: module = "DDLIST"
if wordpos(module,probe) <> @ then trace "r"; else trace "n-
parse arg sparms
push trace() time("L") module "From:*® sigl "Parms:" sparms
call modtrace "START" sigl

/***/

/* Trap the output from the LISTA STATUS command */
/***/
call outtrap “lines.”
address TSO "LISTALC STATUS"
call outtrap "off"
ddnum = @

/***/

/* Parse out the DDNAMEs and concatenate into a list =/
/***/
ddlist = **

do ddI=1 to lines.®
if words(lines.ddl) = 2 then
do
parse upper var lines.ddl ddname .
ddlist = ddlist ddname
ddnum = ddnum + 1
end
else
do
iterate
end
end

/***l

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 49

/* Return the number of DD"s */
/***/
pull tracelvl . module . sigl . sparms
call modtrace "STOP" sigl
interpret “trace” tracelvl
return ddnum
[FFFFFRFIxAxAX QREFRESH END DDLIST 2002/12/15 @4:54:32 ***F*xkkkxkkxky
[QREFRESH BEGIN DDDSNS 20@2/09/11 @@:37:36 *****sxxsikikx/

/* DDDSNS - Returns number of DSNs in a DD and populates DDDSNS */
/* ___ */
/* TARGDD - DD to return DSNs for */

/***/

dddsns: module = "DDDSNS*
if wordpos(module,probe) <> @ then trace "r*; else trace "n-
parse arg sparms
push trace() time("L") module “From:* sigl "Parms:® sparms
call modtrace "START" sigl
arg targdd
if targdd = "" then call rcexit 77 "DD missing for DDDSNS*®

/***/

/* Trap the output from the LISTA STATUS command */
/***/
X = outtrap(~lines.")
address TSO "LISTALC STATUS™
dsnnum = @
ddname = "$DDNAMES$"

/***/

/* Parse out the DDNAMEs, locate the target DD and concatentate DSNs */
/***/
do ddd=1 to lines.g
select
when words(lines.ddd) = 1 & targdd = ddname &,
lines.ddd <> "KEEP" then
dddsns = dddsns strip(lines.ddd)
when words(lines.ddd) = 1 & strip(lines.ddd),
<> "KEEP" then
dddsn.ddd = strip(lines.ddd)
when words(lines.ddd) = 2 then
do
parse upper var lines.ddd ddname
if targdd = ddname then
do
fdsn = ddd - 1
dddsns = lines.fdsn
end
end
otherwise iterate
end
end

/***/

50 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

/* Get the last DD */
/***/
ddnum = ddlist(Q)
lastdd = word(ddlist,ddnum)

/***/

/* Remove the last DSN from the list if not the last DD or SYSEXEC */

/***l

if targdd <> "SYSEXEC" & targdd <> lastdd then

do
dsnnum = words(dddsns) - 1
dddsns = subword(dddsns,1,dsnnum)
end
/***/
/* Return the number of DSNs in the DD */

/***/

pull tracelvl . module . sigl . sparms

call modtrace °"STOP" sigl

interpret “trace® tracelvl

return dsnnum
[FFFFFxxxAAE QREFRESH END DDDSNS 2@0@02/@9/11 @@:37:36 *****ikkrxkiky
[FFFFFxxIAAE QREFRESH BEGIN TSOTRAP 20@2/12/15 @5:18:45 ****kdkkkxkiky

/* TSOTRAP - Capture the output from a TSO command in a stem */
/* ___ */
/* VALIDRC - Optional valid RC, defaults to zero */
/* TSOPARM - Valid TSO command */

/***/

tsotrap: module = "TSOTRAP*®
if wordpos(module,probe) <> @ then trace "r~; else trace "n-
parse arg sparms
push trace() time("L") module “"From:" sigl "Parms:® sparms
call modtrace "START" sigl
parse arg tsoparm

/***l

/* ITf the optional valid_rc parm is present use it, if not assume @ */
/***/
parse var tsoparm valid_rc tso_cmd
if datatype(valid_rc,"W") = @ then
do
valid rc = @
tso_cmd = tsoparm
end
call outtrap "tsoout.”
tsoline = sigl
address TSO tso_cmd
CRC = RC
call outtrap "off"

/***/

/* ITf RC = @ then return =/

/***/

if CRC <= valid_rc then

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 51

do
pull tracelvl . module . sigl . sparms
call modtrace "STOP®" sigl
interpret “trace” tracelvl
return CRC
end
else
do
trapmsg = center(®" TSO Command Error Trap *,78,"-%)

terrmsg = errmsg(sigl "TSO Command:*®)
/***/

/* IT RC <> @ then format output depending on environment */
/***l
if tsoenv = "BACK" | execenv = "OMVS®" then

do

say trapmsg

do c=1 to tsoout.?

say tsoout.c

end

say trapmsg

call rcexit CRC terrmsg tso_cmd

end
else

/***/
/* 1T this is foreground and ISPF is available, use the ISPF LOG */
/***/

do

if ispfenv = "YES®" then
do

zedlmsg = trapmsg

/***/

/* Does not call ISPWRAP to avoid obscuring error message modules */
/***/
address ISPEXEC "LOG MSG(ISRzZ@@d)"
do c=1 to tsoout.g
zedImsg = tsoout.c
address ISPEXEC "LOG MSG(ISRZ@@@)"
end
zedlmsg = trapmsg
address ISPEXEC "LOG MSG(ISRZ@@d)"
call rcexit CRC terrmsg tso_cmd,
" see the ISPF Log (Option 7.5) for details”
end
else
do
say trapmsg
do c=1 to tsoout.g
say tsoout.c
end
say trapmsg

52 © 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

call rcexit CRC terrmsg tso_cmd
end
end
end

JFFFFFFxFAxR QREFRESH END TSOTRAP 20@2/12/15 @5:18:45 ****xxdkkkixxy

Editor’s note: this article will conclude in next month’s issue.

Robert Zenuk
Systems Programmer (USA) © Xephon 2003

CICS guestions and answers

Q

We are somewhat confused! We are designing a system
that would make use of daisy-chained DPL. Some here
believe that we need to make the CICS connections APPC
if we want to do this. Is this true? We need to understand our
options before we commit to our design.

It all depends on whether you want to dynamically route the
DPL or not. To help explain let's use three CICS regions —
CICSA, CICSB, and CICSC. If you want to use dynamic
routing then the link between the prior CICS regions needs
to be APPC. So the link between CICSA and CICSB needs
to be APPC, the link between CICSB and CICSC could be
XM. The routing exit will not be driven if the DPL request
arrived over a non-APPC connection. Static links are fine
and can be routed no matter what the connection types.

If you have any CICS-related questions, please send theminand
we will do our best to find answers. Alternatively, e-mail them
directly to cicsg@xephon.net.

© Xephon 2003

© 2003. Reproduction prohibited. Pleaseinform X ephon of any infringement. 53

CICS news

Phoenix Software International has
announced CONDOR, it's online library
management and program development
system.

The product functions as a stand-alone
VTAM application and/or under CICS and
other TP monitors.

Itssystem maintenanceutilitiesallow usersto
access all areas of their system without
disrupting production.

For further information contact:

Phoenix Software International, 5200 West
Century Blvd, Suite 800, Los Angeles, CA
90045, USA.

Tel: (310) 338 0400.

URL: http://www.phoenixsoftware.com/
Condor/condor.htm.

* % *

BMC has announced Mainview
AUutoOPERATOR for OS/390, which helps
increaseavail ability through automationand
rules-based operations, and support IMS,
CICS, WebSphere MQ, and TapeSHARE.
Included with AutoOPERATOR for OS/390
Version6.3.01isnew Total Object Manager
(TOM), enabling IT administrators to use
object management as an umbrella for the
management and automation of I T resources
that support certain business functions.

It lets users control IT assets across the
sysplex better and createsthe foundation for
managing divergent objects with complex
inter-dependencies, such as Unix System
Services (USS) processes, MQ queues, and
SAPapplications.

For further information contact:

BMC Software, 2101 City West Blvd,
Houston, TX 77042, USA.

Tel: (713) 918 8800.

URL: http://www.bmc.com/products/
proddocview/0,2832,19052 19429
28229 8571,00.html.

* % %

IBM has announced DB2 Query
Management Facility Version 8, which
exploits new capabilitiesof DB2V8 and has
new data visualization, solution building,
Web-enablement, and solution sharing
capabilities.

DB2 QMF Enterprise Edition includesDB2
QMF for TSO/CICS, DB2 QMF High
Performance Option (HPO), DB2 QMF for
Windows, and DB2 QMF for WebSphere.

DB2QMFClassicEditionsupportsend users
functioning entirely from traditional
mainframe terminals and emulators
(including IBM Host On Demand) to access
DB2UDB databases. Thisedition consi stsof
DB2 QMF for TSO/CICS.

New in DB2 QMF for TSO/CICS s support
for names up to 128 charactersin length for
Auth ID, Current SQLID, and table names.
Table column names can be up to 30
characters long. Support is based on
whatever length the database allows.
Support includeslarger dataentry fieldsand
thedisplay of namesin QMF dialog screens.

For further information contact your local
IBM representative.
URL: http://www.ibm.com/gmf.

xephon

	A new CEMT program in COBOL to start and stop CICS
	Exclusive control conflicts and VSAM deadlocks - hints and tips
	QMF goes on-the-fly to Adobe Acrobat Reader, MS Word, MS Excel, … - part 2
	CICSPlex/System Manager Report Writer
	CICS questions and answers
	CICS news

