135

December 1997

R RS
In this issue

3 Year 2000 — extracting the real-time
clock setting

12 A simple search utility
35 The command exit

43 Year 2000 aid: list YEAR2K
qualifying records

50 Simulating include files in REXX

62 Organize your disks and claim free
space

66 Useful Assembler macros — part 3
72 MVS news

© Xephon plc 1997

MVS Update

Published by

Xephon

27-35 London Road

Newbury

Berkshire RG14 1JL

England

Telephone: 01635 33598

From USA: 01144 1635 33598
E-mail: xephon@compuserve.com

North American office
Xephon/QNA

1301 West Highway 407, Suite 201-405
Lewisville, TX 75067

USA

Telephone: 940 455 7050

Australian office
Xephon/RSM

GPO Box 6258

Halifax Street

Adelaide, SA 5000
Australia

Telephone: 088 223 1391

Contributions

If you have anything original to say about
MVS, or any interesting experience to
recount, why not spend an hour or two putting
it on paper? The article need not be very long
— two or three paragraphs could be sufficient.
Not only will you be actively helping the free
exchange of information, which benefits all
MVS users, but you will also gain pro-
fessional recognition for your expertise, and
the expertise of your colleagues, as well as
some material reward in the form of a
publication fee — we pay at the rate of £170
($250) per 1000 words for all original
material published in MVS Update. 1f you
would like to know a bit more before starting
on an article, write to us at one of the above
addresses, and we'll send you full details,
without any obligation on your part.

Editor

Dr Jaime Kaminski

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, EXECs, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MVS Update,
comprising twelve monthly issues, costs

* £310.00 in the UK; $465.00 in the USA and

Canada; £316.00 in Europe; £322.00 in
Australasia and Japan; and £320.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 1992 issue, are available separately
to subscribers for £27.00 ($39.00) each
including postage.

MVS Update on-line
Code from MVS Update can be downloaded
from our Web site at http://www.xephon.

com; you will need the user-id shown on your
address label.

© Xephon plc 1997. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.
Printed in England.

Year 2000 — extracting the real-time clock setting

INTRODUCTION

In common with many sites, we have logically partitioned our
mainframe. Recently one of these partitions was elected to be the
official year 2000 test machine. It was decided by the project team to
keep the MVS date to a permanent setting (19 January 2000), by re-
issuing the MVS SET DATE command daily. This was accomplished
by using a JES2 timed command to kick off a started task running
batch TSO (IKJEFTO01), which would then invoke a REXX routine to
issue the MVS SET DATE command via TSO CONSOLE, and then
re-set the JES2 timer for the following day (ie in 24 hours’ time).

This worked well. However, keeping the MVS date to a fixed setting
has brought its own problems. One of them, which has caused several
outages of the partition, is the maintenance of the JES2 queues. On the
production partitions we keep only two days’ worth of test job output
on the queues. Because we do not have a dedicated SYSOUT archive
package, such as SAR, we make use of the JES2 $P Q command,
which allows you to specify a number of hours and days. Any output
that was created prior to this is purged.

The problem with the year 2000 partition was that all the output had
the same date! Therefore, it was impossible to decide which output
was old and which was not. It was then agreed that the simplest
method would be to clear the queues completely every Sunday night
using $OQ,ALL (release all held output), and $PQ,ALL (delete). We
could have simply IPLed the machine and performed a JES2 cold
start, but we preferred a method we could automate.

Now to the problem. We had a method for issuing a command daily
(JES2 timer plus batch TSO). However, because the MVS date was
fixed, we had no way of knowing what day of the week it was! If there
was a way to get at the real date, then calculating the weekday was
relatively simple. However, all date and time functions under REXX
extract the date from MVS. The only way I knew to get at the
machine’s real-time clock was from Assembler using the STCK
operation (STore ClocK).

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 3

Because I needed this information in a REXX routine, I decided to
write the SYSDATE() REXX function. This Assembler routine is
invoked from a REXX EXEC in the same manner as you would use
the built-in DATE() and TIME() functions. However SYSDATE()
extracts the machine’s real-time clock value, not the MVS date. The
function may be called with two possible arguments:

e The first is with NO ARGUMENTS, ie:
dat = SYSDATE()

This will return a string into dat with the format
YYYYMMDDHHMMSSHT where:

* YYYY is the year
* MM is the month
* DD is the day

« HH s hours

¢+ MM is minutes

» SSisseconds

e HT is hundredths and thousandths of a second.

* The second form is:
day = SYSDATE('W")

This will return the current day of the week (ie Monday, Tuesday,
Wednesday, etc) in the same manner as the REXX DATE('W')
function, except that this will be the real weekday.

By using the ‘W’ argument form of SYSDATE, we were able to set up
the timed routine to issue only the JES2 queue purge commands on a
Sunday. As we expanded the daily timer routines to issue shutdowns
for the test CICS regions as well, the first form of SYSDATE became
useful for logging purposes.

The source for SYSDATE appears below. The program was developed
under MVS5.2 and assembled using High-Level Assembler (ASMA90)
Release 1.1.

4 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

SOURCE CODE

//jobname JOB 'your job card'

//STEPA EXEC ASMACL,PARM.C='RENT',PARM.L="RENT,REUS"
//C.SYSIN DD *

SYSDATE TITLE "REXX FUNCTION TO EXTRACT DATE/TIME FROM RTC'

dhkkkkkhkhkkkhkkkhkhkkkhkhhkhkhkkhkhkhkhkhkhkhkhkhkkhkhkhkhhkhkhkhkhkkkhkhhkhkrhkhkhhkkhkrkhkhkhkrhkhkhhkkrk

*k ok
*kk
*kk
*kk
*kk
ok k

* %k k

THIS IS A PROGRAM THAT WILL EXECUTE AS A REXX

FUNCTION AND WILL RETURN THE DATE/TIME STAMP FROM

THE MACHINES REAL TIME CLOCK (RTC) INSTEAD OF THE MVS
DATE/TIME (AS WITH THE STANDARD TSO/REXX DATE() AND TIME()
FUNCTIONS.

WHEN INVOKED WITH NO PARAMETERS, IE:- ok
SDAT = SYSDATE()

THE FUNCTION WILL RETURN A STRING OF THE FORM

YYYYMMDDHHMMSSHT
WHERE: -
YYYY IS THE CURRENT YEAR
MM IS THE CURRENT MONTH
DD IS THE CURRENT DAY
HH IS THE CURRENT HOUR (24-HOUR FORMAT)
MM IS THE CURRENT MINUTE

SS IS THE CURRENT SECOND
H IS THE CURRENT HUNDRETH OF A SECOND
T IS THE CURRENT THOUSANDTH OF A SECOND

OPTIONALLY, SYSDATE CAN BE INVOKED WITH A SINGLE ARGUMENT

IF "W', WHICH WILL RETURN THE CURRENT DAY OF THE WEEK

IN THE FORM "MONDAY', 'TUESDAY', ETC. FOR THE CURRENT SYSTEM
DATE. THIS IS EQUIVALENT TO DATE('W")

EG WDAY = SYSDATE('W') *x

*kk
*kk

*k ok
*kk

ek e ok ok e ok ok ek ok ok ok ok e ok ok ok ok ok e ok ok ke ok ok ok ko ok ok ok ok e ok ok e ke ok ok o ok ok ke ok ok ok ke ke ok ok ok ok ok ok
SYSDATE CSECT

SYSDATE AMODE 31
SYSDATE RMODE ANY

BAKR R14,8 *STACK EVERYTHING

LR R12,R15 *R12 --> BASE REGISTER

USING SYSDATE,R12 *ESTABLISH ADDRESSABILITY

LR R10,RP *R1@ --> ACENVIRONMENT BLOCK)

USING ENVBLOCK,R18 *MAP ENVIRONMENT BLOCK

LR R11,R1 *R11 --> A(PARAM LIST (EFPL))

USING EFPL,RI1 *MAP EFPL

STORAGE OBTAIN, X
LENGTH=DYNLEN, X
ADDR=(R1), X
LOC=ANY

© 1997. Reproduction prohibited. Please inform Xephon of any infringement.

LR R2,RI * POINT AT WORKAREA

L R3,=A(DYNLEN) * SET ITS LENGTH

LA R4,D * SET DUMMY FROM ADDRESS

LA R5,0 * SET DUMMY LENGTH

MVCL R2,R4 * BLANK OUT THE AREA

LR RI3,RI *R13 -->A(DYNAMIC AREA)

USING DYNAM,RI13 *ESTABLISH ADDRESSABILITY

L R9, ENVBLOCK_IRXEXTE *R9 --> A(EXTERNAL EP TABLE)

USING IRXEXTE,R9 *MAP 1T
hhkhkkkkhkhkhkhkhkkhkhkhkhhkhkhkhkhkhhkhkhkhkhhkhkhhhhkhkhkhhkhhhhkhkhkhkhkhkhkhkhhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkk
ok CHECK THE PARAMETER LIST FOR VALID ARGUMENTS *xk
Hokk AND STORE VALUES IN WORKING STORAGE ork

Kk kkkhkhkkkkkhkhkhkkkkhkhkhkhhkkhkhkhkhkhkkhkhkhkhkhhkkhhkhkhhkhhhhhkhkhkhkhkhkhkhhhkkkhkhkhkhhhkhhkhkk
*

hhkkkhkhkhkkkhkhkhkhkhkkkhkhkhkhkhhkkhkhkhkhkhkhhkkhkhkhkhkhkhkhhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhhkhkhkhhkhkhhkkkkkk

ok FIRST CHECK FOR FUNCTION CODE ok
hhkhkhkkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhhkhkhkhkhkhkhhkhkhkhkhkhkhkhhhhkhkhkhkhkhkhhhkhhkhkhkhkhhkhkhkhkkkkhhkhkhhkk
L R8,EFPLARG *R8 --> A(ARGUMENT TABLE)
USING ARGTABLE_ENTRY,R8 *MAP ENTRY
CLC ARGTABLE_ARGSTRING_PTR(8),=2F'-1' *END OF ARGS?
BNE TESTARG * --> NO - CHECK ARG
MVI ARGFLAG,X'00" * --> YES - SET FLAG
B GETDATE * --> AND GO GET ..
TESTARG DS @M
L R2,ARGTABLE_ARGSTRING_PTR ~ *R2 --> A(ARGUMENT)
CLI B(R2),X'E6’ * UPPERCASE 'W' ?

BE GOODARGL * YES - CARRY ON

CLI B(R2),X'A6" * LOWERCASE 'W' ?

BE GOODARGI * YES - CARRY ON

B ARG1ERR * INVALID FUNCTION
GOODARGL DS @H

MVI ARGFLAG,X'@1' * SET ARGUMENT FLAG

B GETDATE * GO GET ...
%k ke ok ke Kk ok ok sk ke ke ok sk ok ok ke ke ok ok ok ke sk ok ok ok ok sk ok ke ok sk ok sk ok ok ke ok ke ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ok ok ok ok ke ok ok
* IF FUNCTION ERROR -
* ISSUE ERROR MESSAGE WITH IRXSAY
* AND SE RETURN CODE AS 4@ TO FLAG INVALID FUNCTION CALL.

hhkhkkhkhkhkhkhhkkhkhkhkhhkhkhhkhkhkhkhhkkhkhkhkhkhkkkhkhkhkhhkkkkhkhkhkhkkkkhkhhhkkkhkhkhhkhkkhkkkhkhhkhkhkkk

TITLE 'ERROR MESSAGES'
*
ARGIERR DS PH
LA R1,=C'IRX@PP01 PARAMETER 1 NOT W OR BLANK®'
LA R@,35
B ERROR

*
Khkhkhkhkhkhkhkhk kA hkhhkhkkhkhkhkkhkhkhkhkhkhkhkhkkhkhkhkkhkkkhkkhkkkx
Rk SET FUNCTION RESULT rk
hhkkkhkkhkhkhkhkhkhhkhkhkhkhkhkhkhkhhkhhkhkhkhkhkhkhhkhkhkhhkhhhkkdkhkhkhkhkhkkkhkhkhkhkhkkkhkhkhkhkhkkhkkhkhkhhkk
*

ERROR DS H
BAS R14,@SAY * SAY ERROR MESSAGE

6 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

LA R15,40 * SET RC=48 TO INDICATE
* INVALID FUNCTION CALL
B RETURN * AND RETURN TO CALLER

*

GETDATE DS PH

dhkhkkhkkkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhkkkhkhhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhhhkhkhkhhkhhkhkhhkhhhhkkhkhhhhk

Ak NOW GET AND FORMAT TIME dkk
e e e e ok ok ok e ok ok ek ok ok e ok ok ok o ke ok ok ok ok ok ok ke ok ok e ok ok ok ke ok ok ok ok ok ok e ok ok ok ok ok e ok ok ok ok ok e keok
STCK DWORK

STCKCONV STCKVAL=DWORK,CONVVAL=OUTAREA,TIMETYPE=DEC,
DATETYPE=YYYYMMDD,MF=(E,CONVL)

MVC PWORK,PTIME *MOVE TIME TO WORK AREA

MVC PWORKL,=X'0C020000" *MOVE IN PACK CHARACTER

MVO PWORK(9),PWORK *AND OVERLAY TIME

MVC CTIME,=X'F0212020202020202020202020202020202020292020"

ED CTIME,PWORK *FORMAT TIME

MVC PWORK,PDATE *MOVE DATE TO WORK AREA

MVC PWORKL,=X'0C000000" *MOVE IN PACK CHARACTER

MVO PWORK(9),PWORK *AND OVERLAY DATE

MVC CDATE,=X'F2120"

ED CDATE,PWORK *FORMAT DATE

MVC OUTTIM(8),CDATE+2 *STORE DATE IN MESSAGE

MVC OUTTIM+8(8),CTIME+2 *STORE TIME IN MESSAGE
*

CLI ARGFLAG,X'@1° * ARGUMENT SPECIFIED?

BE GETDAY * GO GET WEEKDAY
* ELSE
Khkhkkhkkhkhkhkkkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkkhkhkhkhkkkhkhkkhkkhkhkkhkkhkkk
Hox RETURN FULL DATE o
dhkkkhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkkhkhkhhkhkhkhkhkhkhkkhhkhkkhkhkhhkhkkhkkhkhkhkkhkhkhkkhkhkhkkkhkkhkhkkhkkhkhkhkkkk

L R6,EFPLEVAL *R6 A(-> EVAL BLOCK)

L R6,B(R6) *R6 A(EVAL BLOCK)

USING EVALBLOCK,R6 *MAP EVALBLOCK

L R15,=F'16"

ST R15,EVALBLOCK_EVLEN *PASS LENGTH OF RESULT

MVC EVALBLOCK_EVDATA(16),0UTTIM *PASS RESULT VALUE

¥R RI5,R15 *SET RC-0

B RETURN
Khkhkhkhkkhkkhkhkhkkhkkhkhkhkhkhkkhkhkhkkhkkhkhkhkkhkhkhkhkhkhkhhkhkkhkhkhkhkhkhkhkhkhkhkkhkkhkkhkkhkkhkkhkhkhkhkhkkhkhkkk
ok CALCULATE AND RETURN DAY OF WEEK FROM CURRENT DATE ek

dhkhkhkkkkhkhkdkhkhkkhkhkdhkkhkhkhkdkhkhkhkhkhkkhkhkhkhdhkhkkhkhhkhkkhkhkhkhkhkhkhkkhkhkhkhkhhkkhkhkhkkhkhkhkkhkhkhkkkk

GETDAY DS OH

kK ko ok ke ok ok ok ok ok ok ok ok ok ko ok

* CALCULATE DAY OF WEEK FOR DATE

PROGRAM USES A FORMULA KNOWN AS ZELLER'S CONGRUENCE

ASSUMING M = MONTH, D = DAY, C = CENTRY NUMBER, Y= YEAR

AND THAT 1 = MAR, 2 = APR ... ETC AND THAT

JAN AND FEB ARE CLASSED AS MONTHS 11 AND 12 OF THE PREVIOUS YEAR
THEN THE FORMULA IS:

* ok ok ko

F = (26"M-2)/16 + D+ Y +Y/4 +C/4 -2 *C

© 1997. Reproduction prohibited. Please inform Xephon of any infringement.

ALL DIVISIONS ARE INTEGER (IE REMAINDERS ARE IGNORED)
THEN:

W = F(MOD 7) WILL DENOTE WEEKDAY (@-SUN, 1-MON)
IF W IS NEGATIVE, ADDING 7 WILL GIVE THE CORRECT NUMBER
DATE FORMAT = YYYYMMDD

EXTRACT EACH PARM FROM STORAGE, PACK AND CONVERT TO BINARY FOR
CALCULATION

* % ok ok ok Ok O Ok O F

STM R14,R12,SAVEAREA *SAVE ALL REGISTERS

LA R3,0UTTIM *ADDRESS DATE
* DAY

PACK TEMP(8),6(2,R3) *PACK DAY

CVB R5,TEMP *CONVERT TO BINARY IN R5

ST R5, DAY *AND SAVE (R5 NOW FREE AGAIN)
* MONTH

PACK TEMP(8),4(2,R3) *PACK MONTH

CVB R5,TEMP *CONVERT TO BINARY IN R5
* YEAR

PACK TEMP(8),08(4,R3) *PACK YEAR

CVB R7,TEMP *CONVERT TO BINARY IN R7

SPACE 2

* NOW DROP 2 FROM MONTH, AND IF NEGATIVE (<@) ADD 12 TO
* ADJUST

S R5,=F'2" *MONTH-2

BP SPLIT *IF >@ GOTO NEXT BIT

A R5,=F'12" *ELSE <@ SO ADD 12 TO ADJUST
BCTR R7,0 *AND DROP 1 FROM YEAR

SPACE 2

* NOW SPLIT YEAR INTO CENTURY AND YEAR BY DIVISION/100
* (CENTURY WILL BE QUOTIENT AND YEAR WILL BE REMAINDER)
SPLIT DS OH

SR R6,R6 *CLEAR FOR DIVISION
D R6,=F'100" *DIVIDE (R6=YEAR, R7=CENT)
SPACE 2

* AND NOW :

*

F = ((26*M-2)/18) + D + Y + Y/4 + C/4 - 2*C
USING REG 8 AS ACCUMULATOR

*

SPACE 2
* ((26*M-2)/10) IGNORING REMAINDER ...
M R4,=F'26" * 26*M
S R5,=F'2" * 26*M-2
D R4,=F'10" * (26*M-2)/10
LR R8,R5 * PLACE IN ACCUMULATOR
SPACE 2
* + D+ Y - 2%C
A R8,DAY * GET DAY BACK FROM STORE (+D)
AR R8,R6 * Y
SR R8,R7

8 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

SR R8,R7 * - 2%C

SPACE 2

*+ Y/4 + C/4
LR R11,R6 * GET Y
SR R10,R10 * BLANK FOR DIVIDE
D R10,=F'4"' *Y/4
AR R8,R11 * ADD TO ACCUM
SR R6,R6 * BLANK FOR DIVIDE
D R6,=F'4" * C/4
AR R8,R7 * AND ADD TO ACCUM
SPACE 2

* NOW DIVIDE F(MOD7) TO GIVE WEEKDAY NUMBER
SRDL R8,32 * PREPARE FOR DIVIDE (SIGN UNKNOWN)
D R8,=F'7" * F(MOD 7)
C R8,=F'0"* * <P? (IE NEGATIVE)
BNL *+8 * IF NOT, SKIP NEXT STATEMENT
A R8,=F'7" * IF NEGATIVE, ADJUST
SPACE 2

* R8 WILL HOLD OFFSET TO TABLE
MH R8,=AL2(9) * X9 FOR TABLE OFFSET
LA R1,DAYTAB(R8) * LOAD ADDRESS OF DAY
MVC OUTDAY(9),8(R1) * MOVE DAY

* NOW ENSURE DAY IN MIXED CASE BY 'OR'ING WITH BLANKS TO FORCE
* TO UPPER CASE, THEN AN EXCLUSIVE OR.

0c OUTDAY ,MASK * FORCE UPPERCASE

XC OUTDAY,MASK1 * AND NOW MIXED CASE

LM R14,R12,SAVEAREA * RELOAD ALL REGISTERS
ek ke ke ok ok ko ok ok ok ok ok ok ek ok ok ok ok ok ok ok ok ok ek ok ok ok ko ok ok ok ko ok ok ek ko ko ok ke
ki RETURN FULL DATE FhKk
ek ok ok ok ok ok ok ok ko ok o ok ok ok ok o ok ok ok ok ko ko R ok ko ok ko ok ok ok ok ok ko

L R6,EFPLEVAL * R6 A(-> EVAL BLOCK)

L R6,0(R6) * R6 A(EVAL BLOCK)

USING EVALBLOCK,R6 * MAP EVALBLOCK

L R15,=F'9"

ST R15,EVALBLOCK_EVLEN * PASS LENGTH OF RESULT

MVC EVALBLOCK_EVDATA(9),0UTDAY * PASS RESULT VALUE

XR R15,R15 * SET RC=0

*
hhkkhkhkhkhkhkkhkkhhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkkhkhkkhkhkhkkhkhkhkkhkkk
ok RETURN TO CALLER ok
ek ek e Fe Tk de Kk ek ek ok ke ok e ok e ok e ok e ok sk sk ke ke ke ok ok ke ok ke ok ke sk ok ok ke ke ok ok ke ok ok sk ke ok ok ok ok ok ok ok ok ok ok ok ok ok ke ke ok ke ok ke ok
*

RETURN DS oH
LR R2,R15 * SAVE R15 AROUND RELEASE
STORAGE RELEASE, * FREE STORAGE BLOCK X
LENGTH=DYNLEN, X
ADDR=(R13)
LR R15,R2 * RESTORE RETURN CODE
PR * RETURN TO CALLER

*

Khkhkhkkkhkhkhkhkhkkhkhkhkkkhkhkhkhkhkkhkhkhkkhkhkhkhkhkhkkkhkhkkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkkkkhkhkhkkkhkkx

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 9

kol REXX ROUTINE INTERFACES rokk

hhkhkhkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkhkhkhkhkkhkkhkhkhkhkhkkhkhkhkhkkkhkhkhkhkhkkkhkhkhkhkhkhkhkhkhkhhkhkkhkhkhhkkkhk
*

TITLE "REXX SAY ROUTINE (IRXSAY)'

hhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhhkkkkhkhkhkhkhkhkhkhkhkhkkhkhkhkkkhkkhkhkhkkhkkhkhkhkkhkkhkhkhkhhkkhkkhhkk

Hokk INTERFACE TO SAY ROUTINE. Hokx
Hox ON ENTRY: Kok
Kok RO - L(BUFFER) o
Hox R1 - A(BUFFER) ok
Hokk R14 - RETURN ADDRESS ok
*kk *k*k
khkkhkhkhkkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhkhkhkhkhhkhkkhkhkhhkhkkhkhkhkhkkhkkhkhkkhkhkkhkhkhkhkkkhkk
@SAY DS oH

ST R14,SAYSAV *SAVE RETURN ADDRESS

ST RL,SAYP2 *PUT A(RECORD) IN FULLWORD

ST R@,SAYP3 *PASS RECORD LENGTH

LA RO,SAYP1 *INIT PLIST POINTERS

ST RB,SAYPLIST

LA RO,SAYP2

ST RO,SAYPLIST+4

LA R8,SAYP3

ST RO,SAYPLIST+8

LA R8,SAYP4

ST RO,SAYPLIST+12

LA RO@,SAYP5

ST RB,SAYPLIST+16

0 SAYPLIST+16,X'80" *FLAG END OF LIST

MVC SAYP1,=CL8'WRITE' *SET FUNCTION

ST R1B,SAYP4 *PASS ACENV BLOCK)

LA RO,FWD *R@-->A(RETURN CODE AREA)

ST R@,SAYP5 *PASS A(RETURN CODE)
* *

LR RO,R1Q *R@--> A(ENV BLOCK)

LA RI,SAYPLIST *R1--> A(PARAMETER LIST)

L R15, IRXSAY *R15--> A(USERID ROUTINE)

BALR R14,R15 *ISSUE SAY

LTR R15,R15 *SAY 0K?

BZ @SAYOK *YES

LA R1,=C'IRXSAY' *R1 INDICATE SAY ROUTINE

EX RO,* *FORCE DIAGNOSTIC ABEND
@SAYOK EQU * *

L R14,SAYSAV *R14--> RETURN ADDRESS

BR RI14 *RETURN TO CALLER

hhkhkkkhkhkhkhkkhkhkhkhkkkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkkhkkhkhkkkkhkhkhkhkkkhkhkhk

kol WORKING STORAGE ETC. *kk

e ok e ok ok e ok o e ok ok ok ek ok ok ko ok ok ok ok ko ek ok ok ok ok ke ok ok ko ok ok ok ko ok ok ko ok ke ok ok ke ok ek ke
TITLE 'WORKING STORAGE / DSECTS'

MASK DC XL9'404040404040404040"

MASK1 DC XL9'004040404040404040"

DAYTAB DS OH

10 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

DC CL9"SUNDAY'

DC CL9 "MONDAY '

DC CL9'TUESDAY"

DC CL9'WEDNESDAY'

DC CL9 ' THURSDAY'

DC CL9'FRIDAY'

DC CL9"SATURDAY"

LTORG
DYNAM DSECT * DYNAMIC WORK AREA STORAGE
DWORK DS aD,D
OUTAREA DS BCL16
PTIME DS PL8
PDATE DS PL8
PWORK DS PL8
PWORK1 DS PL8
TEMP DS PL8 TEMP PACK WORK AREA
SAVEAREA DS 18F REGISTER SAVE AREA
DAY DS F * PACKED DAY NUMBER FOR ZELLER
CTIME DS CL22 TIME (AFTER EDIT)
CDATE DS CL22 DATE (AFTER EDIT)
OUTDAY DS CL9 OUTPUT WEEKDAY (CHARACTER)
QUTTIM DS CL16 OUTPUT TIMESTAMP CHARACTER)
ARGFLAG DS X PRESENCE OF ARGUMENT FLAG
CONVL STCKCONV MF=L

Khkkkkkhkhkhkhkhkkhkhkhkhkkkhkhkhkhhkhhkhkhhhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkkhkhkhhkhkhhkhkhkhkkkhkkk

ok k IRXSAY PARAMETER AREA xAx

Khkkkkkhhkhkhkkhkhkhkhkhhkhkhkhkkhhkhkhkhhhhkhkhkhkhhhhkhkhkhkhkhhkhhhkhhhhhkhkhkhhhkhkhhkhkhkhkhkhhkhkhkkhhkkkkhk

STCKCONV STORAGE AREA
TIME (PACKED, NO SIGN)
DATE (PACKED, NO SIGN)
WORK AREA
WORK AREA

* ok ok Ok F F b

* Ok ok F F

*

SAYSAV DS F
FWD DS F
SAYPLIST DS 5A
SAYP1 DS CL8
SAYP2 DS A

SAY ROUTINE RETURN ADDRESS
FULLWORD WORK AREA

PLIST FOR IRXSAY

IRXSAY - FUNCTION

IRXSAY - A(->BUFFER)

SAYP3 DS A IRXSAY - L(BUFFER)

SAYP4 DS A IRXSAY - A(CENVBLOCK)

SAYPS DS A * IRXSAY - A(4-BYTE AREA FOR RC)
DYNLEN ~ EQU *-DYNAM

*

* ok ok ok ok ok

*hkkkkkkkhkhkhkkkhkhkhkhkhkhkkhkhkhhkkhkhkhkhhkhkhkhkhkhhkhkhkhhkkhkhkhhkhhkhkhkhhhkhkkhkhkhkkhkhkhkhkkhkkhkhkkkhk

ok REQUIRED DSECTS FOR REXX FUNCTIONS Hokk
dhkhkhkhkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhhkhhkhkhkhhkhhkhkhkhkhhkhkhhkhkhhkhhkhhkhhkhhhhkhhkhhkhkhk

IRXEFPL

IRXARGTB

IRXEVALB

TRXENVB

IRXEXTE
dhkkkkkkkhkhkhkkkhkhkhkhhkhkhkhhhkhkhkhkhhhkhkhkhkhhkkhkhkhhhkhkhkhhkkhkhkhhkhhkhkhkkhkhkhhhhkhkhhkhkkkk
ok REGISTER EQUATES Hox

dhkhkkkkkkhkhkhkhkkhkkhkhkhkhkhkhkhkhkhkhkkhkhhhkkhkhkkhhkkhkhkhkhkkhkrhhhkhkrhkhkhkhkhkhhkhhkhhkhhhhkhkhhhkkhkkhk
*

RO EQU @

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 11

R1 EQU 1

R2 EQU 2

R3 EQU 3

R4 EQU 4

R5 EQU 5

R6 EQU 6

R7 EQU 7

R8 EQU 8

R9 EQU 9

R10 EQU 1@
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

END
/*

//L.SYSLMOD DD DSN=your.load.library,DISP=SHR,UNIT=
//L.SYSIN DD *

ENTRY SYSDATE

NAME SYSDATE(R)

/*

/1

P Taylor
Senior Systems Programmer (UK) © Xephon 1997

A simple search utility

Diagnosing problems almost always involves scanning the system log
or some other file that contains messages or data. IBM provides a
useful utility, ISRSRCHC, that can be invoked under ISPF orexecuted
in batch to search for specific pieces of information. This utility
enables you to construct a search consisting of a single string or
multiple strings. If you are searching for multiple strings, the utility
performs an OR search, if one of the search patterns is found in the
current record, the record is output. The ISRSRCHC utility also
allows you to search for the occurrence of multiple strings in a record.
Both of these search types can be performed in a single execution.

We decided to see if we could construct a similar utility as a
programming exercise. The results of our efforts are a routine that we
named IEBIBALL. IEBIBALL can perform both the normal OR type

|2 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

search, where a record will match if it contains one of the search
arguments, and an AND search. [IEBIBALL can also perform both of
these search types in a single execution.

IEBIBALL uses the DSABSERY routine to obtain the dataset names
for all of the datasets, as well as to obtain the record type and logical
record length for the SYSUT1 dataset.

IEBIBALL is a fairly straightforward utility. There are two key
sections of code that you will want to examine. The first section is
where the search argument table is constructed. To build the table of
search arguments, we first check to see if the first input record is the
DELIM=card. IEBIBALL allows you to select the character that you
will use as a delimeter. The DELIM= card must be the first input
record, or the utility will issue an error message and terminate. If the
DELIM= card is present, then the delimeter character is extracted and
placed in the translate table. The remainder of the search arguments
are then read from the SRCHARGS dataset. Each argument is placed
into the search argument table. The length of each argument, as well
asaflag which indicates whether AND processing is required, are also
placed in the table. The size of the argument table can be adjusted by
changing the value of symbol ARG_NUM. The size of the table in the
listing that follows is 100 entries. Once the last search argument has
been read and processed, the address of the last entry is determined
and saved. If the size of the table is exhausted before all of the search
arguments are processed, an error message is issued, and the routine
terminates. We also check the last search argument to see whether the
AND flag is on. This also indicates an error, so we issue a message and
terminate the routine.

The second key section of the program is the actual search of each
input record. The search of each record is accomplished by using two
BXLE loops. The outer BXLE loop is based on the search argument
table. The inner BXLE loop is based on the current input record that
we are searching for. This is how it works. Registers 9, 10, and 11
access the search argument table. Register 9 has the address of the first
entry, register 11 the lastentry, and register 10 has the size of each table
entry. When we read an input record from the SYSUT1 dataset, we
determine wheher the file is fixed or variable. If it was fixed, then the
LRECL has already been determined for us by the DSABSERV

© 1997. Reproduction prohibited. Please inform Xephon of any infringement 13

routine. If it is variable, then the LRECL is extracted from the RDW
at the beginning of the record. We use the length of the record, and the
length of the search argument, to determine the ending address for the
record scan. This ending address is saved. Register 5 is loaded with the
beginning address of the current input record. Register 6 is loaded
with the scan increment, and register 7 is loaded with the ending
address that we have just calculated. Register 5, 6, and 7 comprise the
BXLE loop that scans across the input record 1 byte at a time. We use
anexecutable CLC instruction to perform the compare. If we complete
the scan BXLE loop and drop through, then the current search
argument is not present in the input record. We check to see whether
the AND flag is on for the current argument. If it is not, then we adjust
register 9 to point at the next search argument, and then go through the
process of calculating the ending scan address and perform the scan.
If the AND flag was on when we completed the scan, then we
manually adjust the contents of register 9 to point to the next search
argument. We then check to see if the AND flag is on for this argument.
We keep adjusting register 9 in this manner until we do not find the
AND flag turned on. When the address in register 9 is greater than the
address in register 11, we know that we have searched for all the
arguments in the search argument table, and we go to read in a new
record from the input file. If we get a match from the compare
operation, and the AND flag is turned off for the current search
argument, then we output the current record with the record number
to the REPORT dataset. If the AND flag is on, then we increment
register 9 to point to the next search argument and scan the record
again.

IEBIBALL has been assembled and executed under MVS 4.3 and
5.2.2 with DFSMS/MVS 1.3. The files are all coded for 31-bit
processing. You can adjust this for 24-bit processing, by modifying
the OPEN, CLOSE, and DCB specifications for each of the files. The
SYSUT!1 dataset can be fixed, variable, or undefined record types.
IEBIBALL as coded also supports partitioned datasets in a limited
manner. You can point to individual members of a PDS, but you can’t
simply point to a PDS and process all the members in a single
execution. The program source for DSABSERYV has been included, as
well as the source for the $SESAPRO, $ESAEPI, $SESASTG and

14 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

$CALL macros that were used to develop IEBIBALL. We also
executed a few benchmark runs of IEBIBALL and ISRSRCHC
against the same input file using the same search arguments. We found
that IEBIBALL appears to be more efficient, and on average utilizes
about 50% less CPU to obtain the same results. Of course your own

results may vary.

SAMPLE JCL TO EXECUTE IEBIBALL

//xxxxxxxx JOB your job card info

//STEP@@@1 EXEC PGM=IEBIBALL

//STEPLIB DD DISP=SHR,DSN=your.load.library
//SYSABEND DD SYSOUT=*

//MESSAGES DD SYSOUT=*,DCB=(LRECL=133,RECFM=FBA,BLKSIZE=0)
//REPORT DD SYSOUT=*,DCB=(LRECL=133,RECFM=FBA,BLKSIZE=0)

//SYSUT1 DD DISP=SHR,DSN=file.we.want.search
//SRCHARGS DD *,DCB=(LRECL=8@,BLKSIZE=89)
DELIM=+

*TMS@01+&

,PRIVAT,+

TMS@@9+

//

IEBIBALL PROGRAM SOURCE
TITLE 'IEBIBALL - SCAN UTILITY'

R e e S it s TR
* CSECT : TEBIBALL *
* MODULE : IEBIBALL *
* DESC : TEBIBALL IS A SCAN UTILITY SIMILAR TO IBM SEARCH UTILITY *
* WHICH IS INVOKED FROM ISPF. TIEBIBALL SUPPORTS PHYSICAL *
* SEQUENTIAL, PARTITIONED ORGANIZATION, AS WELL AS FILES *
* CONTAINING LOAD MODULES. TIEBIBALL ALLOWS YOU TO SPECIFY *
* A DELIMITER, AS WELL AS SPECIFY THAT YOU WANT ONE *
* OR MORE ARGUMENTS TOGETHER. CURRENTLY IEBIBALL WILL *
* ACCEPT UP TO 199 SEARCH ARGUMENTS. *
* MACROS : $ESAPRO $ESAEPI $ESASTG OPEN CLOSE DCB DCBD DCBE *
* PUT GET $CALL *
* DSECTS : IHADCBD *
* INPUT ¢ SYSUT1 - SPECIFIES THE FILE WE WANT TO SEARCH *
* SRCHARGS - FILE CONTAINING OUR SEARCH ARGUMENTS *
* QUTPUT : MESSAGES - OUTPUT DATASET CONTAINING MESSAGES *
* REPORT - OUTPUT FILE LISTING THE RECORDS THAT WERE LO- *
* CATED CONTAINING ONE OR MORE OF THE SEARCH *
* ARGUMENTS. *
* PLIST ¢ NONE *
* CALLS : DSABSERV *

© 1997. Reproduction prohibited. Please inform Xephon of any infringement.

* NOTES : 31 BIT ADDRESSING USED FOR ALL FILES. *

R s S R T e e R e

EJECT
TEBIBALL $ESAPRO R12,AM=31,RM=24
R s T S et ST TR P R
* MAKE SURE THAT WE CAN OPEN UP OUR MESSAGES DATASET. IF NOT WE ARE
* DONE VERY QUICKLY. *
e e S S e e

OPEN (UT3, (OUTPUT)) ,MODE=31

USING THADCB,R1 TELL THE ASSEMBLER

LA R1,UT3 GET @(DCB WE JUST OPENED)

™ DCBOFLGS,DCBOFOPN Q. OPEN SUCCESSFULL?

BO MSG_OPEN
i S e S e e S
* SYNAD CONTROL POINT FOR PHYSICAL ERROR ON THE UT3 DATASET. *
L e e T S e s e e
SYN_UT3 DS oH SYNAD EXIT CODE

MvC RET_CODE,CC_16 SET THE RETURN CODE

B EXIT_RTN
MSG_OPEN DS @H

MVI UT3_FLAG,DCBOFOPN INDICATE DATASET ID OPEN
R e S S T e e e e T T R
* LOAD DSABSERV INTO VIRTUAL STORAGE AND SAVE THE ENTRY POINT ADDRESS.*
o e S S e e S e T (R

LOAD EP=DSABSERV,ERRET=LOAD_ERR

B LOAD_OK LOAD SUCCESSSFUL, CONTINUE
R it S S e Sl SRR T
* LOAD OF DSABSERV FAILED. ISSUE MESSAGE AND EXIT THE ROUTINE. *
e e S e e e e e Rt ST,
LOAD_ERR DS @H

MVI O_LINE,C" PUT BLANK IN BYTE ONE

MVC O_LINE+1(L'O_LINE-1),0_LINE BLANK OUT REMAINDER
MVC O_LINECEM_@@1L),EM_@@1 MOVE IN THE MESSAGE
PUT UT3,0_LINE

MVC RET_CODE,CC_16 SET THE RETURN CODE

B EXIT_RTN GO TO COMMON EXIT POINT
LOAD_OK DS OH

ST RO ,@DSAB SAVE ADDRESS FOR LATER USE
R e e e e T]
* OPEN UP THE SEARCH ARGUMENTS FILE. *
R e S e et R TR T,

OPEN (UT4, (INPUT)),MODE=31

LA R1,UT4 GET @(DCB WE JUST OPENED)

™ DCBOFLGS,DCBOFOPN Q. OPEN SUCCESSFULL ?

BO ARG_OPEN A. YES
R e S e R e R e S e TR
* SYNAD CONTROL POINT FOR PHYSICAL ERROR ON THE UT4 DATASET. *
L s R S S S T e S e s e L
SYN_UT4 DS PH

MVI O_LINE,C" PUT BLANK IN BYTE ONE

MVC O_LINE+1(L'O_LINE-1),0_LINE BLANK OUT REMAINDER

16 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

MVC

O_LINE(EM_@@2L),EM_@@2 MOVE IN THE MESSAGE

PUT UT3,0_LINE

MVC RET_CODE,CC_16 SET THE RETURN CODE

B EXIT_RTN GO CLOSE MESSAGES FILE
ARG_OPEN DS @H

MVI UT4_FLAG,DCBOFOPN INDICATE THE DATASET IS OPEN
R e e T e S e i s S e e
* OPEN UP THE REPORT FILE. *
R e s S S e S e e R

OPEN (UT2, (OUTPUT)),MODE=31 ,

LA R1,UT2 GET @(DCB WE JUST OPENED)

TM DCBOFLGS,DCBOFOPN Q. OPEN SUCCESSFULL ?

BO UT2_OPEN A. YES
R et ST e S S R S R
* SYNAD CONTROL POINT FOR PHYSICAL ERROR ON THE UT2 DATASET. *
L s b S e e e s e TR S
SYN.UT2 DS OH

MVI O_LINE,C' ' PUT BLANK IN BYTE ONE

MVC O_LINE+1(L'O_LINE-1),0_LINE BLANK OUT REMAINDER

MVC O_LINECEM_@@3L),EM_0@83 MOVE IN THE MESSAGE

PUT UT3,0_LINE

MVC RET_CODE,CC_16 SET THE RETURN CODE

B EXIT_RTN GO TO COMMON EXIT POINT
e e T e S T S T I S e
* OPEN UP THE FILE THAT WE WANT TO SEARCH THROUGH. *
R it e S T e e S it e 4
UT2_OPEN DS @H

MVI UT2_FLAG,DCBOFOPN INDICATE DATASET IS OPEN

OPEN (UT1,(INPUT)),MODE=31

LA RI1,UT1 GET @(DCB WE JUST OPENED)

TM DCBOFLGS,DCBOFOPN Q. OPEN SUCCESSFULL ?

BO UT1_OPEN A. YES
R e el S e i R R TR S
* SYNAD CONTROL POINT FOR PHYSICAL ERROR ON THE UT1 DATASET. *
R s T T e T s R T S S
SYN_UT1 DS @H

MVI O_LINE,C' PUT BLANK IN BYTE ONE

MVC O_LINE+1(L'O_LINE-1),0_LINE BLANK OUT REMAINDER

MVC O _LINECEM_@@4L),EM_084 MOVE IN THE MESSAGE

PUT UT3,0_LINE

MVC RET_CODE,CC_16 SET THE RETURN CODE

B EXIT_RTN GO TO COMMON EXIT POINT
UT1_OPEN DS @H

MVI UT1_FLAG,DCBOFOPN INDICATE DATASET IS OPEN
T e et T e Tt e T S e e

* CALL THE DSABSERV ROUTINE.

* ROUTINE. EACH QUINTUPLET CONSISTING OF THE FOLLOWING:

* ADDRESS(HALFWORD FOR THE LENGTH OF THE DATASET NAME)

* ADDRESS(8 BYTE ARE WITH THE DDNAME WE ARE INTERESTED IN)
* ADDRESS(44 BYTE AREA FOR THE RETURNED DATASET NAME

*

WILL CONTAIN 44 ASTERISKS IF DSABSERV WAS NOT ABLE

© 1997. Reproduction prohibited. Please inform Xephon of any infringement.

WE WILL PASS A SET OF QUINTUPLETS TO THE*

*

* ok ok

17

* TO OBTAIN THE DATASET NAME.) *
* ADDRESS(LOGICAL RECORD LENGTH,DATASET ORGNIZATION) *
* ADDRESS(RECORD FORMAT, FIXED OR VARIABLE) *
LR s et R e S At el e S S
$CALL @DSAB, (UT1_L,UT1_DDN,UTL DSN,UT1_LREC,UT1_RT, +
UT2_L,UT2_DDN,UT2_DSN,UT2_LREC,UT2_RT, +
UT3_L,UT3_DDN,UT3_DSN,UT3_LREC,UT3_RT, +
UT4_L,UT4_DDN,UT4_DSN,UT4_LREC,UT4_RT), +
VL,BM=BASSM,MF=(E,PLIST)
R e T e it S PP PN SR 4
* QUTPUT INFORMATION ABOUT EACH OF THE FILES THAT WE HAVE OPENED. *
R i e e e S e L 4
MVI O_LINE,C' ' PUT BLANK IN BYTE ONE
MVC O_LINE+1(L'O_LINE-1),0_LINE BLANK OUT REMAINDER
MVC O_LINE(OP_@@1L),0P_@@1 MOVE IN THE MESSAGE
MVC O_LINE+OP_@@1D(L'UT1_DSN),UT1_DSN MOVE IN DSNAME
MVC O_LINE+OP_@@1C(L'UT1_DSO),UT1_DSO MOVE IN DSORG
MVC O_LINE+OP_@@1E(L'UT1_RT),UT1_RT MOVE IN RECORD TYPE
LH R14,UT1_LREC GET LOGICAL RECORD LENGTH
CVD R14,D_WORK CONVERT IT TO DECIMAL
UNPK O_LINE+OP_B@1F(5),D_WORK+5(3) UNPACK 1T
01 O_LINE+OP_@@1F+4,X'F@" FIX THE SIGN
PUT UT3,0_LINE
MVI O_LINE,C' * PUT BLANK IN BYTE ONE
MVC O_LINE+1(L'O_LINE-1),0_LINE BLANK OUT REMAINDER
MVC O_LINE(OP_@@2L),0P_@@2 MOVE IN THE MESSAGE
MVC O_LINE+OP_@@2D(L'UT2_DSN),UT2_DSN MOVE IN DSNAME
MVC O_LINE+OP_@@2C(L'UT2_DS0),UT2_DSO MOVE IN DSORG
MVC O_LINE+OP_PP2E(L'UT2_RT),UT2_RT MOVE IN RECORD TYPE
LH R14,UT2_LREC GET LOGICAL RECORD LENGTH
CVD R14,D_WORK CONVERT IT TO DECIMAL
UNPK O_LINE+OP_B@2F(5),D_WORK+5(3) UNPACK IT
01 O_LINE+OP_@B2F+4,X'F@' FIX THE SIGN
PUT UT3,0_LINE
MVI O_LINE,C' ° PUT BLANK IN BYTE ONE
MVC O_LINE+1(L'O_LINE-1),0_LINE BLANK OUT REMAINDER
MVC O_LINE(OP_@@3L),0P_@@3 MOVE IN THE MESSAGE
MVC O_LINE+OP_@@4D(L'UT3_DSN),UT3_DSN MOVE IN DSNAME
MVC O_LINE+OP_@@3C(L'UT3_DS0),UT3_DSO MOVE IN DSORG
MVC O_LINE+OP_@@3E(L'UT3_RT),UT3_RT MOVE IN RECORD TYPE
LH R14,UT3_LREC GET LOGICAL RECORD LENGTH
CVD R14,D_WORK CONVERT IT TO DECIMAL
UNPK O_LINE+OP_B@3F(5),D_WORK+5(3) UNPACK IT
01 O_LINE+OP_@@3F+4,X'F@' FIX THE SIGN
PUT UT3,0_LINE
MVI O_LINE,C' ° PUT BLANK IN BYTE ONE
MVC O_LINE+1(L'O_LINE-1),0_LINE BLANK OUT REMAINDER
MVC O_LINE(OP_@@4L),0P_@@4 MOVE IN THE MESSAGE
MVC O_LINE+OP_B@4D(L'UT4_DSN),UT4_DSN MOVE IN DSNAME
MVC O_LINE+OP_@@4C(L'UT4_DS0),UT4_DSO MOVE IN DSORG
MVC O_LINE+OP_@@4E(L'UT4_RT),UT4_RT ~ MOVE IN RECORD TYPE
18 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

LH R14,UT4_LREC GET LOGICAL RECORD LENGTH
CvD R14,D_WORK CONVERT IT TO DECIMAL
UNPK O_LINE+OP_@@4F(5),D_WORK+5(3) UNPACK IT
0I O_LINE+OP_@@4F+4,X'F@' FIX THE SIGN
PUT UT3,0_LINE
R i e S e it e e S S

* AT THIS POINT WE READ IN THE FIRST RECORD FROM THE SRCHARGS FILE *
* WHICH IS POINTED TO BY THE UT4 DCB. THE FIRST RECORD MUST CONTAIN *
* THE DELIM= IN CARD COLUMN 1. IF IT DOES NOT, THEN THE ROUTINE WILL *
* ISSUE AN ERROR MESSAGE, AND TERMINATE. *
L i e e e S el T S R

GET UT4

LR R2,R1 GET @(CURRENT RECORD)

CLC DELIM,B(R2) Q. FIRST CARD THE DELIM CARD?

BE GOT_DELM A. YES, WE CAN PROCEED

MVI O_LINE,C' PUT BLANK IN BYTE ONE

MVC O_LINE+1(L'O_LINE-1),0_LINE BLANK OUT REMAINDER

MVC O_LINECEM B@5L),EM_@85 MOVE IN THE MESSAGE

PUT UT3,0_LINE :

MVC RET_CODE,CC_16 SET THE RETURN CODE

B EXIT_RTN GO TO COMMON EXIT POINT
R R e T S S et et T S S S 4
* WE HAVE A DELIMETER. PICK IT UP AND POPULATE IT INTO OUR TRANSLATE *
* TABLE. *
R et e e e e i Sl TR SR
GOT_DELM DS @H

XR R3,R3 CLEAR REG 3

IC R3,L'DELIM(R2) GET THE DELIMETER

LA R4, TRAN_TAB GET @(TRANSLATE TABLE)

STC R3,B(R3,R4) PLACE CHARACTER IN THE TABLE
e i e S e et I S S
* PICK UP THE NEEDED INFORMATION FOR THE BXLE LOOP THAT WILL BE USED *
* TO POPULATE THE SEARCH ARGUMENT TABLE. *
L e e S S e S e T R

LA R3,ARG_L GET @(FIRST ENTRY)

ST R3,ARG_TB SAVE IT FOR BXLE

L R4,ARG_LE GET DISPLACEMENT

LA R3,B(R4,R3) CALC @(LAST ENTRY)

ST R3,ARG_TE SAVE IT FOR BXLE

LA R3,ARG_ENTL GET SIZE OF EACH ENTRY

ST R3,ARG_TI SAVE IT FOR BXLE

LM R7,R9,ARG_TB LOAD REGS FOR BXLE LOOP
R i e e e e e L

* READ THE REMAINDER OF RECORDS FROM THE SRCHARGS FILE. EACH ENTRY *
* IS CHECKED TO DETERMINE IF IT END WITH A VALID DELIMETER. WE CHECK *
* FOR THE DELIMITER BY EXECUTING A TRT INSTRUCTION. IF THE RECORD *
* DOES NOT TERMINATE WITH A VALID DELIMITER, WE ISSUE A MESSAGE TO THE*
*

MESSAGES DATASET, AND PROCESSING CONTINUES. *
R e e it R TR TR R T
LOOP_UT4 DS gH

GET uT4

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 19

LR R3,R1 GET @(RECORD JUST READ)
LH R14,UT4_LREC GET THE RECORD LENGTH
BCTR R14,9 DECREMENT THE LENGTH

EX R14,TRT_I Q. DELIMETER LOCATED.

BC 8,ERR_DLM A. DELIMETER NOT LOCATED
BC 4,CALC_LEN A. FOUND THE DELIMETER

B LOOP_UT4 SHOULD NEVER GET HERE

ERR_DLM DS POH

MVI O_LINE,C" ' PUT BLANK IN BYTE ONE
MVC O_LINE+I1(L'O_LINE-1),0_LINE BLANK OUT REMAINDER

MV
MV

C O_LINECEM_@@7L),EM_@@7 MOVE IN THE MESSAGE
C O_LINE+EM_@@7D(80),0(R3) COPY SEARCH ARGUMENT

PUT UT3,0_LINE

B LOOP_UT4 READ ANOTHER SEARCH ARG
B e e e i s R e R e e e il S
* DETERMINE THE LENGTH OF THE SEARCH ARGUMENT. PLACE THE SEARCH ARG- *
* UMENT INTO THE SEARCH ARGUMENT TABLE. PLACE THE LENGTH OF THE ARGU- *
* MENT INTO THE TABLE. SEE IF THE USER IS LOOKING TO AND THIS ARGU- *
* MENT WITH THE NEXT, AND SET THE AND FLAG ON IN THE TABLE ENTRY. *
e s e T S i e e R
CALC_LEN DS @H

LR RI14,R1 PICK UP WHERE R1 IS --->>

SR R14,R3 CALCULATE ARG LENGTH - 1

BCTR R14,0 DECREMENT IT BY 1

STH R14,8(R7) SAVE THE LENGTH

MVI AND_FLAG-ARG_L(R7),AND_OFF TURN THE AND FLAG ON

EX R14,MVC_I MOVE THE ARGUMENT

LA R3,1(,RD) BUMP THE ADDRESS

CLI B(R3),X'50" Q. USER WANT TO AND WITH NEXT

BNE BXLE_GO A. NO

MVI AND_FLAG-ARG_L(R7),AND_ON TURN THE AND FLAG ON
BXLE_GO DS @H

BXLE R7,R8,LOOP_UT4 GO GET ANOTHER ENTRY

MVI O_LINE,C' PUT BLANK IN BYTE ONE

MVC O_LINE+1(L'O_LINE-1),0_LINE BLANK OUT REMAINDER

MVC O_LINECEM_0@6L),EM_8@6 MOVE IN THE MESSAGE

PUT UT3,0 LINE

MVC RET_CODE,CC_16 SET THE RETURN CODE

B EXIT_RTN GO TO COMMON EXIT POINT
R e e e e S e T T e S e S
* NORMAL EOF ON THE SEARCH ARGUMENTS DATASET BRINGS US HERE. CHECK *
* TO SEE IF THE USER ASKED FOR AN AND ON THE LAST RECORD. THIS IS AN *
* ERROR. IF WE FIND THIS CONDITION, ISSUE A MESSAGE AND EXIT THE *
* PROGRAM, ELSE WE COMPLETE THE NECESSARY SETUP FOR THE BXLE CONTROLS.*
R e s S e e e e S
EOF_UT4 DS OH

SR R7,R8 BUMP DOWN TO LAST ENTRY

CLI AND_FLAG-ARG_L(R7),AND_ON Q. IS THE AND FLAG ON

BNE AND_OFFF A. NO, AND FLAG IS OFF

MVI O_LINE,C" ° PUT BLANK IN BYTE ONE

MVC O LINE+1(L'O_LINE-1),0_LINE BLANK OUT REMAINDER
20 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492,

O_LINE(CEM 9@8L),EM_0908

MOVE IN THE MESSAGE

PUT UT3,0_LINE

B EXIT_RTN EXIT THE PROGRAM
AND_OFFF DS OH

ST R7 ,ARG_TE SAVE AS LAST ENTRY

XC UT4_FLAG,UT4_FLAG CLEAR FLAG BYTE

LA R2,1 PRIME R2

ST R2,R_BXLE+4 SAVE IN SCAN BXLE AREA

ZAP RECORD_R,PACK @ ZERO OUT RECORD NUMBER

ZAP RECORD_M, PACK_@ ZERO OUT RECORD NUMBER

ZAP RECORD _N,PACK_@ ZERO OUT RECORD NUMBER
R T e e e e e S S

* THE SEARCH IS ACCOMPLISHED BY USING A PAIR OF BXLE LOOPS. THE OUTER *
* LOOP IS USED TO PROCESS THE SEARCH ARGUMENT TABLE. R9 POINTS AT THE*
* CURRENT ENTRY. R1@ CONTAINS THE INCREMENT, AND R11l POINTS AT THE *
* LAST SEARCH ARGUMENT IN THE TABLE. THE INNER BXLE LOOP IS USED TO *
* SCAN ACROSS THE CURRENT RECORD. R5 POINTS AT THE CURRENT BYTE LO- *
* CATION IN THE RECORD. R6 CONTAINS THE INCREMENT, IN THIS CASE 1, *
* AND R7 CONTAINS THE END POINT IN THE BUFFER. THE END POINT FOR EACH*
* RECORD IS CALCULATED BY TAKING THE SIZE OF THE RECORD, AND SUB-RAC *
* TRACTING OFF THE LENGTH OF THE CURRENT ARGUMENT. *
e s i s S e e]
LOOP_UTL DS OH

GET UT1

LM R9,R11,ARG_TB GET TABLE INFO

AP RECORD_R,PACK 1 BUMP RECORD READ COUNTER

AP RECORD_N,PACK_1 INCRENT CURRENT RECORD #
PRIME_R2 DS OH

LR R2,Rl GET @(RECORD JUST READ)

CLI UT1_RT,LRECL F Q. FIXED RECORD

BNE VAR UTI A. NO, DO VARIABLE WORK

ST R2,R BXLE SAVE BEGINNING ADDRESS

LH R3,UTL_LREC GET LOGICAL RECORD LENGTH

B COM_UT1 BRANCH TO COMMON CODE
VAR UT1 DS BH

LH R3,B(R2) GET THE CURRENT RECORD LENGTH

SH R3,HALF_4 ACCOUNT FOR THE RDW

LA R2,4(,R2) ACCOUNT FOR THE RDW

ST R2,R_BXLE SAVE BEGINNING ADDRESS
COM_UTL DS BH

SH R3,8(R9) SUBTRACT LENGTH OF ARGUMENT

BCTR R3,0 DECREMENT BY ONE

LA R2,8(R3,R2) CALCULATE ENDING ADDRESS

ST R2,R_BXLE+8 SAVE ENDING ADDRESS

LM R5,R7,R BXLE PRIME FOR SCAN LOOP

LK R2,B(R9) GET LENGTH OF ARGUMENT
R e e e T e I S S
* PERFORM THE COMPARE. WE DO THIS BY EXECUTING A CLC. R2 HAS THE *
* LENGTH OF THE CURRENT SEARCH ARGUMENT. *
R s e e e e T

SCAN_GO DS

© 1997. Reproduction prohibited. Please inform Xephon of any infringement.

21

EX R2,CLC_I Q. PATTERN MATCH

BNE NO_MATCH A. NO,
CLT ~ AND_FLAG-ARG_L(R9),AND_ON Q. AND FLAG ON ??
BE BXLE_BU
B AND_NON GO OUTPUT THE RECORD
NO_MATCH DS OH
BXLE R5,R6,SCAN_GO KEEP SCANNING RECORD
R s e S e e it

* IF WE GET HERE, WE HAVE SCANNED THE ENTIRE RECORD AND DID NOT FIND *
* A MATCH. SEE IF THE AND FLAG WAS ON FOR THE CURRENT ARGUMENT. IF
* IT IS, MANUALLY BUMP R9 UNTIL WE DON'T FIND THE AND FLAG ON.
R e e e e S s S ST RPN S,
MAN_R9 DS OH

CLI AND_FLAG-ARG_L(R9),AND_ON Q. AND FLAG ON

*

BNE BXLE_BU A. NO, GET NEXT SEARCH ARGUMENT

LA R9,8(R1Q,R9) MANUALLY ADJUST R9

B MAN_R9 GO TEST NEXT ARG
BXLE_BU DS @H

BXLE R9,R10,PRIME_R2 START SCAN AGAIN

B LOOP_UT1 GO GET NEXT RECORD
R e e S B S R Rt SRR N S S
* WE HAVE FOUND A SEARCH ARGUMENT. OUTPUT THE CURRENT RECORD. *
R e e e e T RS PR TS
AND_NON DS @H

AP RECORD_M,PACK_1 INCREMENT THE MATCH COUNTER

MVI O_LINE,C' ° PUT BLANK IN BYTE ONE

MVC O_LINE+1(L'O_LINE-1),0_LINE BLANK OUT REMAINDER
MVC O_LINE(OP_@@5L),0P_p@5 MOVE IN THE MESSAGE

LA R5,MAX_5 GET MAX ALLOWABLE
CLI UT1_RT,LRECL_F Q. FIXED RECORD
BNE UTI_VF A. NO, VARIABLE
LH R6,UT1_LREC GET ACTUAL RECORD SIZE
CR R6,R5 COMPARE TO THE MAX ALLOWABLE
BNH REC_MOVR GO MOVE THE RECORD TO BUFFER
LR R6,R5 SET R6 TO THE MAX
B REC_MOVR MOVE THE RECORD
UT1_VF DS OH
LH R6,8(R1) GET LENGTH FROM THE RDW
LA R1,4(,R1) BUMP PAST THE RDW
CR R6,R5 COMPARE TO THE MAX ALLOWABLE
BNH REC_MOVR GO MOVE THE RECORD TO BUFFER
REC_MOVR DS PH
EX R6 ,MVC_RR MOVE THE RECORD TO O_LINE
UNPK O_LINE+1(6),RECORD_N(4) UNPACK RECORD NUMBER
0I O_LINE+6,X'F@’ FIX THE SIGN
PUT UT2,0_LINE
B LOOP_UT1 GET NEXT RECORD
EOF_UT1 DS PH
XC UT1_FLAG,UT1_FLAG CLEAR FLAG BYTE
MVI ~ O_LINE,C" " PUT BLANK IN BYTE ONE

MVC O_LINE+I1(L'O_LINE-1),0_LINE BLANK OUT REMAINDER

22 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

MVC O_LINE(OP_@@6L),0P_@@6 MOVE IN THE MESSAGE
UNPK O_LINE+1(8),RECORD_R(6) UNPACK RECORD NUMBER

01 O_LINE+8,X'F@* FIX THE SIGN
PUT UT3,0_LINE
MVI O_LINE,C" ' PUT BLANK IN BYTE ONE

MVC O_LINE+1(L'O_LINE-1),0_LINE BLANK OUT REMAINDER
MVC O_LINE(OP_@@7L),0P_@@7 MOVE IN THE MESSAGE
UNPK O_LINE+1(6),RECORD_M(4) UNPACK RECORD NUMBER

0T O _LINE+6,X'F8" FIX THE SIGN

PUT UT3,0_LINE

B EXIT_RTN EXIT THE, ROUTINE
R e et s e e e e
* COMMON EXIT POINT. CLOSE FILES AS NEEDED AND EXIT. *
R s S e e e e e i s s
EXIT_RTN DS OH

TM UT1_FLAG,DCBOFOPN Q. DATASET OPEN

BNO UTL_XXX A. NO, CHECK NEXT DATASET

CLOSE (UT1),MODE=31
UT1_XXX DS OH
™ UT2_FLAG,DCBOFOPN Q. DATASET OPEN
BNO UT2_XXX A. NO, CHECK NEXT DATASET
CLOSE (UT2),MODE=31
UT2_XXX DS oH
™ UT3_FLAG,DCBOFOPN Q. DATASET OPEN
BNO UT3_XXX A. NO, CHECK NEXT DATASET
CLOSE (UT3),MODE=31
UT3_XXX DS OH
™ UT4_FLAG,DCBOFOPN Q. DATASET OPEN
BNO UT4_XXX A. NO, ALL DONE
CLOSE (UT4),MODE=31
UT4_XXX DS OH
$ESAEPI RET_CODE
TITLE 'IEBIBALL - LITERALS AND CONSTANTS'

LRECL_F EQU C'F' USED FOR RECORD TYPE TESTING
AND_ON EQU C'Y' USED FOR AND PROCESSING
AND_OFF EQU C'N' USED FOR AND PROCESSING
MVC_RR MVC O_LINE+OP_@@5L(*-*),8(R1) EXECUTABLE MOVE

MVC_I MVC 3(*-*,R7),0(R3) EXECUTABLE MOVE

CLC_I CLC @B(*-*,R5),3(R9) EXECUTABLE COMPARE

TRT_I TRT @(*-*,R3),TRAN_TAB FIND THE DELIMETER

ARG_LE DC ACARG_NUM*ARG_ENTL) DISPLACEMENT TO LAST ENTRY
CC_16 DC F'16" USED TO SET A RETURN CODE
HALF_4 DC H'4"® USED FOR RDW ADJUSTMENT
PACK_@® DC PL4'D’ USED TO PRIME FIELDS
PACK_1 DC PL4"'1" USED TO INCREMENT COUNTERS

DELIM DC CL@6'DELIM="
TITLE 'TEBIBALL - MESSAGES®
NO_MSG DC H'60'
DC CL6@'UNABLE TO OPEN THE MESSAGES FILE - EXECUTION TERMIN+
ATED'
EM_901 DC C'A ERROR HAS OCCURRED TRYING TO LOCATE AND LOAD THE

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 23

EM_0@21L
EM_p092

EM_002L
EM_083

EM_003L
EM_004

EM_0p4L
EM_005

EM_@085L
EM_p06

EM_go6L
EM_g07
EM_@@7D

EM_007L
EM_008

EM_po8L
0P_po1
0P_@@1D

0P_pp1C

0P_@@1E

OP_p@1F

0P_@@1L

*

0P_pB2
0P_882D

0P_pp2C

0P_0@2E

0P_p@2F

0P_o@2L

24

EQU
DC

EQU

EQU

DC

EQU
DC

EQU
EQU
DC

EQU

EQU
DC

DSABSERV ROUTINE.

*-EM_001
C'A ERROR
ARGUMENTS
*-EM_@092
C"A ERROR
DATASET.
*-EM_003
C'A ERROR
DATASET.
*-EM_004

TIEBIBALL TERMINATING®
LET THE ASSEMBLER CALC LENGTH

HAS OCCURRED WHILE TRYING TO OPEN THE SEARCH
DATASET. IEBIBALL TERMINATING'

LET THE ASSEMBLER CALC LENGTH
HAS OCCURRED WHILE TRYING TO OPEN THE REPORT
IEBIBALL TERMINATING'

LET THE ASSEMBLER CALC LENGTH
HAS OCCURRED WHILE TRYING TO OPEN THE SYSUT1
TIEBIBALL TERMINATING®
LET THE ASSEMBLER CALC LENGTH

C'FIRST CARD ENCOUNTERED IN SEARCH ARGUMENTS WAS NOT THE+

DELIM= CARD.

*-EM_@05

C"MORE THAN 108 SEARCH ARGUMENTS ENCOUNTERED.

IEBIBALL TERMINATING'
LET THE ASSEMBLER CALC LENGTH
TEBIBALL +

TERMINATING. "

*-EM_006

LET THE ASSEMBLER CALC LENGTH

C' MISSING DELIMETER. CARD IMAGE='

*-EM_007
cLee*
*-EM_0@7

LET THE ASSEMBLER CALC LENGTH

C' AND OPERATION REQUESTED ON THE LAST SEARCH ARGUMENT. +
TEBIBALL TERMINATING'

*-EM_008
C' SYSUT1
*-0P_p@1
CL44"

LET THE ASSEMBLER CALC LENGTH
DSNAME="

LET ASSEMBLER CALCULATE LENGTH

ALLOCATE SPACE FOR DSNAME

C' DSORG='

*-0P_po1
cLz2'

C' RECFM='

*-0P_p0o1
cLz®

C' LRECL="

*-0P_p01
CL5"
*-0P_pp1

C' REPORT
*-0P_p@2
CL44"

DATASET ORGANIZATION

RECORD TYPE

LOGICAL RECORD LENGTH

LET THE ASSEMBLER CALC LENGTH

DSNAME="

LET ASSEMBLER CALCULATE LENGTH
ALLOCATE SPACE FOR DSNAME

C' DSORG='

*-0P_p02
cL2

C' RECFM='

*-0P_g02
cLz*

C" LRECL="

*-0P_002
CLs"
*-0P_002

DATASET ORGANIZATION

RECORD TYPE

LOGICAL RECORD LENGTH
LET THE ASSEMBLER CALC LENGTH

© 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

*

0P_p23
0P_0@3D

0P_02@3C

0P_P@3E

0P_P@3F

0P_p@3L
*
0P_0p4
0P_004D

0P_004cC

0P_0QAE

0P_004F

0P_0@4L
0P_005
0P_P@5R

0P_p@5L
MAX_5
0P_006
0P_P@6R

0P_006L
oP_p@7
O0P_P@7R

0P_@07L

UT1_DDN
UT2_DDN
UT3_DDN
UT4_DDN

DC
EQU

EQU
EQU
DS
DS
DS
DC
EQU
DS
DS
DS
DC
EQU
TITLE
DC
DC
DC
DC

C" MESSAGES DSNAME='
*-0P_0@3
CL44"

C' DSORG='
*-0P_p@3
cL2'

C' RECFM='
*-0P_p03
cLz'

C' LRECL='
*-0P_p0@3
CL5" !
*-0P_003

C' SRCHARGS DSNAME='
*-0P_p04

CL44"

C' DSORG='
*-0P_p04

cLe

C' RECFM="'
*-0P_004

cLer

C' LRECL='
*-0P_p04

CL5" !
*-0P_004

XL1

XL6

XL1

*-0P_005
L'O_LINE-OP_@@5L
XL1

XL8

XL1

C'RECORDS READ FROM THE
*-0P_006

XL1

XL6

XL1

LET ASSEMBLER CALCULATE LENGTH
ALLOCATE SPACE FOR DSNAME

DATASET ORGANIZATION

RECORD TYPE

LOGICAL RECORD LENGTH
LET THE ASSEMBLER CALC LENGTH

LET ASSEMBLER CALCULATE LENGTH
ALLOCATE SPACE FOR DSNAME

DATASET ORGANIZATION

RECORD TYPE

LOGICAL RECORD LENGTH
LET THE ASSEMBLER CALC LENGTH

SPACE FOR RECORD NUMBER
FILLER

LET THE ASSEMBLER CALC LENGTH
LET THE ASSEMBLER CALCULATE

SPACE FOR RECORD NUMBER
FILLER

SYSUT1 DATASET'

LET THE ASSEMBLER CALC LENGTH

SPACE FOR RECORD NUMBER
FILLER

C"RECORDS FOUND CONTAINING THE SEARCH ARGUMENTS'

*-0P_007

‘TEBIBALL - DCB RELATED
CL8'SYSUTL'

CL8'REPORT"
CL8'MESSAGES"
CL8'SRCHARGS'

* DECLARE THE DCB EXTENSIONS
DCBE_UT1 DCBE RMODE31=BUFF
DCBE_UT2 DCBE RMODE31=BUFF

LET THE ASSEMBLER CALC LENGTH
INFORMATION'

USED BY THE DSABSERV ROUTINE
USED BY THE DSABSERV ROUTINE
USED BY THE DSABSERV ROUTINE
USED BY THE DSABSERV ROUTINE

© 1997. Reproduction prohibited. Please inform Xephon of any infringement.

25

DCBE_UT3 DCBE RMODE31=BUFF
DCBE_UT4 DCBE RMODE31=BUFF
* DECLARE THE DCB INFO FOR THE FILES

uT1 DCB DSORG=PS,MACRF=(GL),DDNAME=SYSUT1,EODAD=EOF_UT1, +
SYNAD=SYN_UT1
uT2 DCB DSORG=PS,MACRF=(PM),DDNAME=REPORT,DEVD=DA, +
DCBE=DCBE_UT2, SYNAD=SYN_UT2
UT3 DCB DSORG=PS,MACRF=(PM),DDNAME=MESSAGES,DEVD=DA, +
DCBE=DCBE_UT3,SYNAD=SYN_UT3
uT4 DCB DSORG=PS,MACRF=(GL),DDNAME=SRCHARGS, EODAD=EOF_UT4, +
DEVD=DA,DCBE=DCBE_UT4,SYNAD=SYN_UT4
$ESASTG
@DSAB DS A ADDRESS OF DSABSERV
RET_CODE DS F RETURN CODE FIELD
D_WORK DS D WORK AREA
PLIST DS (4%5)A USED BY $CALL
UT1_L DS H LENGTH OF THE DSNAME
UT1_DSN DS XL44 SPACE FOR DATASET NAME
UT1_LREC DS XL2 SPACE FOR RECORD SIZE
UT1_DSO DS XL2 SPACE FOR DATASET ORG
UT1_RT DS XL1 SPACE FOR RECORD TYPE
uT2_L DS H LENGTH OF THE DSNAME
UT2_DSN DS XL44 SPACE FOR DATASET NAME
UT2_LREC DS XL2 SPACE FOR RECORD SIZE
UT2_DSO DS XL2 SPACE FOR DATASET ORG
UT2_RT DS XL1 SPACE FOR RECORD TYPE
UT3_L DS H LENGTH OF THE DSNAME
UT3_DSN DS XL44 SPACE FOR DATASET NAME
UT3_LREC DS XL2 SPACE FOR RECORD SIZE
UT3_DSO DS XL2 SPACE FOR DATASET ORG
UT3_RT DS XL1 SPACE FOR RECORD TYPE
UT4_L DS H LENGTH OF THE DSNAME
UT4_DSN DS XL44 SPACE FOR DATASET NAME
UT4_LREC DS XL2 SPACE FOR RECORD SIZE
UT4_DSO DS XL2 SPACE FOR DATASET ORG
UT4_RT DS XL1 SPACE FOR RECORD TYPE
0_LINE DS XL133 OUTPUT LINE BUFFER
UT1_FLAG DS XL1 FLAG INDICATOR FOR DCB
UT2_FLAG DS XL1 FLAG INDICATOR FQOR DCB
UT3_FLAG DS XL1 FLAG INDICATOR FOR DCB
UT4_FLAG DS XL1 FLAG INDICATOR FOR DCB
R_BXLE DS 3A USED BY THE BXLE SCAN LOOP
TRAN_TAB DS 256XL1 USED BY THE TRT OPERATION
RECORD_R DS PL6 NUMBER OF RECORDS READ
RECORD_M DS PL4 NUMBER OF RECORDS FOUND
RECORD_N DS PL4 CURRENT NUMBER
ARG_TB DS A @(FIRST ARG IN THE TABLE)
ARG_TI DS A TABLE INCREMENT
ARG_TE DS A @(LAST ARG IN THE TABLE)
ARG_L DS H LENGTH OF SEARCH ARG - 1
AND_FLAG DS XL1 FLAG FOR AND OPERATION

26 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

ARG_ARG DS XL89 SPACE FOR THE SEARCH ARG

ARG_ENTL EQU *-ARG_L LET ASSEMBLER CALC LENGTH

ARG_NUM EQU 99 MAX NUMBER OF ARGUMENTS
DS (ARG_NUM*ARG_ENTL)XL1 ALLOCATE SPACE

ARG_TBLL EQU *-ARG_TB CALCULATE TABLE SIZE

* PULL IN THE DCB MAPPING MACRO
DCBD DSORG=(QS)
END TEBIBALL

DSABSERV PROGRAM
TITLE 'DSABSERV - ACCESS DATASET JFCB INFORMATION'
L s T e S S I S Lt SRR R

CSECT : DSABSERV

MODULE : DSABSERV

DESC : DSABSERV IS A CALLABLE ROUTINE THAT CAN BE USED TO OBTAIN
THE NAME OF THE DATASET THAT IS ASSOCIATED WITH A DDNAME
IN THE CURRENT STEP. RECORD TYPE, DATASET ORGANIZATION
AND LOGICAL RECORD LENGTH ARE ALSO RETRIEVED. SOME OF
FIELDS MAY NOT BE AVAILABLE IF THE DATASET HAS NOT BEEN
OPENED. THE ROUTINE DOES NOT ESTABLISH A RECOVERY ENVI-
RONMENT, SO IT WILL PERCOLATE IF IT ABENDS.

MACROS : $ESAPRO $ESAEPI $ESASTG GETDSAB SWAREQ

DSECTS : IHADSAB CVT IEFJESCT IEFTIOT1 IEFJFCBN IEFZB585

INPUT : NONE

GUTPUT : NONE

PLIST : R1 POINTS TO A STANDARD PARAMETER LIST
R1+X'@@' ADDRESS OF HALFWORD FOR DATASET NAME LENGTH
R1+X'@4' ADDRESS OF DDNAME
R1+X'@8' ADDRESS OF 44 BYTE AREA TO PLACE THE DATASET

NAME INTO
R1+X'@C' ADDRESS OF A FULLWORD. FIRST HALFWORD CONTAINS
LRECL, SECOND HALFWORD CONTAINS DSORG

R1+X'1@' ADDRESS OF 1 BYTE CONTAINING RECFM
THE PLIST IS VARIABLE IN LENGTH. THE HIGH ORDER BIT IS
TURNED ON IN THE LAST ADDRESS IN THE LIST. THIS ALLOWS
THE ROUTINE TO DETERMINE HOW MANY ARGUMENTS ARE IN THE

#ok ok b R b ok oF ok oF ok ok ok ok ko ok 3k Ok % 3k % 3k X kX
% Ok ok ok ok ok b 2R 3k ok ok Ok Ok ok Ok ok ko 3k Ok Ok

PLIST.
B e D il I I el I St e SR D D
EJECT
DSABSERV $ESAPRO R12,RM=ANY,AM=31
USING ZB585,R9 LET THE ASSEMBLER KNOW
LR R8,R1 PICK UP POINTER FROM CALLER
LTR R8,R8 Q. DID WE GET SOME PARMS
BNZ GOT_PARM A. YES, CALLER PASSED SOMETHING
MVC RET_CODE,RCO16 SET IN A RETURN CODE
B EXITPROG EXIT THE ROUTINE
L e i e e e e e e e el L
* BUILD THE TRANSLATE TABLE. IT IS USED TO DETERMINE THE LENGTH OF *
* THE DATASET NAME. ONLY SIGNIFICANT CHARACTER IS THE SPACE X'4@'. *

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 27

R s S S e B S Tt ST S A s e
GOT_PARM DS BH

MVI TRANTAB+C' ',C" PUT SPACE IN XLATE TABLE
NXT_PARM DS OH

LM R3,R7,B(R8) PICK UP ADDRESSES FROM CALLER
* R3 NOW HAS @(DSNAME LENGTH)
* R4 NOW HAS @(DDNAME)
* R5 NOW HAS @(DSNAME)
* R6 NOW HAS @(RECORD LENGTH,
* DS ORGANIZATION)
* R7 NOW HAS @(RECORD TYPE)

XC EPA_AREA,EPA_AREA INSURE AREA IS CLEARED

LA R9.EPA_AREA GET @(EPA AREA)
R e it St e T et I SIS S
* SET THE DSNAME LENGTH TO THE MAXIMUM POSSIBLE, AND PRIME THE DSNAME *
* FIELD WITH ASTERISKS. IT WILL BE UP TO THE CALLER TO CHECK THE *
* CONTENTS OF THE DSNAME FIELD TO SEE WHAT IT CONTAINS. *
R s s e S i e e S e SR

MVC @(2,R3),HALF44 SET MAX DSNAME LENGTH

MVI G(R5),C'*" DUMMY OUT FIRST BYTE OF THE
* DATASET NAME FIELD

MVC 1(43,R5),B(R5) DUMMY OUT THE REMAINDER OF
* THE DATASET NAME FIELD
R e st e e T S e e e It S
* UTILIZE THE GETDSAB SERVICE TO GET THE ADDRESS OF THE DATA SET *
* ASSOCIATION BLOCK. FROM THE DSAB, WE PICK UP THE POINTER TO THE *
* TIOT ENTRY. FROM THE TIOT ENTRY, WE PICK UP THE SVA FOR THE JFCB. *
* THEN WE USE THE SWAREQ SERVICE TO GET THE ADDRESS OF THE JFCB, AND *
* FROM THERE WE PICK UP THE DATASET NAME. *

R S e e e e e e e it TR I
GETDSAB DDNAME=(R4),DSABPTR=PTRDSAB,RETCODE=DSAB_RET,
RSNCODE=DSAB_RSN,MF=(E,DYN_DSAB)

CLC DSAB_RET,RCO89 Q. DO WE HAVE THE DSAB
BNE NXT_NTRY A. ENCOUNTERED AN ERROR
L R4 ,PTRDSAB GET @(DSAB)
L R4 ,DSABTIOT-DSAB(,R4) GET @(TIOT ENTRY)
LR s T B s S S e e et SRt SR

* FROM THE TIOT ENTRY FOR THE DDNAME IN QUESTION WE PICK UP A TOKEN *
* THAT WILL BE PLACED INTO THE EPA (EXTENDED PARAMETER AREA) THAT WILL*

* BE PASSED TO SWAREQ. *
LR e e e i e S s T R
MVC SWVA(L'TIOEJFCB),TIOEJFCB-TIOENTRY(R4)
LA R4 ,EPA_AREA GET @(EXTENDED PARAMETER AREA)
ST R4,SVA_PTR SET UP PLIST FOR CALL TO SWAREQ
SWAREQ FCODE=RL,EPA=SVA PTR,UNAUTH=YES,MF=(E,DYN_SWA)
C R15,RCA0Q Q. CLEAN FROM SWAREQ
BNE NXT _NTRY A. ENCOUNTERED AN ERROR
L R1,SWBLKPTR GET @(JFCB)
MvC #(2,R6),JFCLRECL-JFCBDSCT(R1) GET THE RECORD LENGTH
MVC 2(2,R6),DST_#H# PRIME WITH UNKNOWN

™ JFCDSRG1-JFCBDSCT(R1),JFCORGPS Q. PHYSICAL SEQUENTIAL

28 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

BNO CHK_PO A. NO, GO SE IF PO

MVC 2(2,R6),DST_PS INDICATE PS FILE TYPE

B CHKRECFM GO DETERMINE RECORD TYPE
CHK_PO DS OH

™ JFCDSRG1-JFCBDSCT(R1),JFCORGPO Q. PARTITIONED ORG.

BNO CHKRECFM A. NO, ?? FILE TYPE

MVC 2(2,R6),DST_PO INDICATE PO FILE TYPE
CHKRECFM DS OH

MVC B(1,R7),U_TYPE# SET TO UNDEFINED

™ JFCRECFM-JFCBDSCT(R1),JFCUND Q. UNDEFINED

BNO CHK_FIX A. NO

MVC @(1,R7),U_TYPE SET TO UNDEFINED

B MVC_DSN GO MOVE DSN

CHK_FIX DS OH
™ JFCRECFM-JFCBDSCT(R1),JFCFIX Q. FIXED RECORD TYPE

BNO CHK_VAR A. NO
MVC @(1,R7),F_TYPE SET TO FIXED
B MVC_DSN GO MOVE DSN

CHK_VAR DS OH
™ JFCRECFM-JFCBDSCT(R1),JFCVAR Q. VARIABLE
BNO MVC_DSN GO MOVE DSN
MVC @(1,R7),V_TYPE SET TO VARIABLE
MVC_DSN DS OH
MVC B(L'JFCBDSNM,R5),JFCBDSNM-JFCBDSCT(R1) MOVE THE DSNAME

* TO THE CALLER'S AREA
TRT @(L'JFCBDSNM,R5),TRANTAB SCAN FOR THE FIRST BLANK
* IN THE DATASET NAME
BC 2,NXT_NTRY NO BLANKS ENCOUNTERED
BC 4,CALC_LEN BLANK FOUND, CALCULATE LENGTH
* SHOULD NEVER FALL THROUGH, BUT
* JUST IN CASE WE DO
MVC RET_CODE,RCO04 SET A RETURN CODE TO INDICATE
B EXITPROG LEAVE THE ROUTINE
* AN ERROR WAS ENCOUNTERED
CALC_LEN DS @H
SR RL,R5 CALCULATE DSNAME LENGTH - 1
STH R1,B(R3) PUT IT IN CALLERS STORAGE
R e Tt e e e S R T ST S 4
* CONTINUE UNTIL WE HAVE PROCESSED THE LAST TRIPLET OF ADDRESSES. *
R i e e S it S
NXT_NTRY DS BH
TM HI_BITL(R8),HIBITON Q. LAST SET OF ARGUMENTS
BO EXITPROG A. YES, ALL DONE
LA R8,PTR_ADJ(,R8) ADJUST REGISTER 2
B NXT_PARM GO PROCESS NEXT SET
EXITPROG DS @H
$ESAEPI RET_CODE GET THE RETURN CODE
PTR SIZE EQU 4 SIZE OF 1 PARAMETER
PTR_NUM EQU 5 NUMBER OF PARMS/ARGUMENT
PTR_ADJ EQU PTR_SIZE*PTR_NUM INCREMENT SIZE
HI_BITL EQU PTR_ADJ-4 LOCATION TO CHECK FOR HIGH BIT

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 29

HIBITON EQU X'8@°' USED FOR ADDRESS TESTING

RCOBO DC F'o' USED FOR RETURN CODE SETTING
RCOB4 DC F'4® USED FOR RETURN CODE SETTING
RCA16 DC F'16' USED FOR RETURN CODE SETTING
HALF44 DC H'44" MAX DATASET NAME LENGTH
DST_PS DC CL2'PS’ PHYSICAL SEQUENTIAL FILE
DST_PO DC cL2'po’ PARTITIONED ORGANIZATION
DST_#H# DC cL2'??’ DON'T KNOW THE FILE TYPE
F_TYPE DC CL1'F' FIXED RECORD TYPE
V_TYPE DC CLi'v: VARIABLE RECORD TYPE
U_TYPE DC cL1'u’ UNDEFINED RECORD TYPE
U_TYPE# DC cLi? UNKNOWN RECORD TYPE

TITLE 'DSABSERV - MAP OUT THE DYNAMIC STORAGE AREA'

$ESASTG
DSAB_RET DS F RETURN CODE FROM GETDSAB
DSAB_RSN DS F REASON CODE FROM GETDSAB
PTRDSAB DS F USED BY THE GETDSAB CALL
RET_CODE DS F RETURN CODE FIELD
SVA_PTR DS F POINTER TO THE EPA
EPA_AREA DS XL16 SPACE FOR THE SWAREQ EPA
TRANTAB DS 256XL1 SET ASIDE SPACE FOR THE
* TRANSLATE TABLE

* SET ASIDE SPACE FOR THE GETDSAB MACRO
GETDSAB MF=(L,DYN_DSAB)
* SET ASIDE SPACE FOR THE SWAREQ MACRO
DYN_SWA SWAREQ MF=L
TITLE 'DSABSERV - MAP QUT THE DSAB CONTROL BLOCK'
IHADSAB
TITLE 'DSABSERV - MAP OUT THE CVT CONTROL BLOCK'
CVT DSECT=YES,LIST=YES
TITLE 'DSABSERV - MAP OUT THE JESCT CONTROL BLOCK'
TIEFJESCT
TITLE 'DSABSERV - MAP OUT IEFZB5@5'
IEFZB5@5
TITLE 'DSABSERV - MAP OUT THE TIOT CONTROL BLOCK'
TI0T DSECT
TIEFTIOT1
TITLE 'DSABSERV - MAP OUT THE JFCB CONTROL BLOCK'
JFCBDSCT DSECT
TEFJFCBN
END DSABSERV TELL ASM WHERE PROGRAM ENDS

$ESAPRO MACRO

MACRO
&LABEL $ESAPRO &AM=31,&RM=ANY,&MODE=P

. e ok ke ok ok ok ok ke ke ok ke ok ok ok ok ok ek ok ok ok ke ke ok ko ke ok ok ok ok ko ok

¥ THIS MACRO WILL PROVIDE ENTRY LINKAGE AND OPTIONALLY
N MULTIPLE BASE REGISTERS. TO USE THIS MACRO, YOU NEED TO
¥ ALSO USE THE $ESASTG MACRO. THE $ESASTG DEFINES THE SYMBOL

30 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

E I S T I

QLENGTH WHICH OCCURS IN THE CODE THAT &ESAPRO GENERATES.
IF YOU DO NOT CODE ANY OPERANDS, THEN REGISTER 12 WILL BE
USED AS THE BASE. IF YOU CODE MULTIPLE SYMBOLS, THEN THEY
WILL BE USED AS THE BASE REGISTERS.

EXAMPLES:

SECTNAME $ESAPRO REG 12 BASE
SECTNAME $ESAPRO 5 REG 5 BASE
SECTNAME $ESAPRO R18,R11 = REGS 1@ AND 11 ARE BASES

dhkhkkkkhkhkkkkhkhkhkhkhkhkhkhkkkhkhhkhkhkhkhkhkhkhhkhkhhkhhkkhkhkhkkkkhhhkkhkhhkkkhkhkhkkhkhkhkhkkhkhkhkhkx

RO
R1
R2
R3
R4
RS
R6
R7
R8
R9
R10
RA
R11
RB
R12
RC
R13
RD
R14
RE
R15
RF

*
FPRO
FPR2
FPR4
FPR6
*
&LABEL
&LABEL
&LABEL

*

LCLA &AA,&AB,&AC

EQU @

EQU 1

EQU 2

EQU 3

EQU 4

EQU 5

EQU 6

EQU 7

EQU 8

EQU 9

EQU 19

EQU 19

EQU 11

EQU 11

EQU 12

EQU 12

EQU 13

EQU 13

EQU 14

EQU 14

EQU 15

EQU 15

EQU @

EQU 2

EQU 4

EQU 6

CSECT

AMODE &AM

RMODE &RM

SYSSTATE ASCENV=&MODE SET THE ENVIRONMENT
B $$$SEYEC-*(R15) BRANCH AROUND EYECATCHER
DC ALLI(($$S$SEYEC-*)-1) EYECATCHER LENGTH
DC CL8'&LABEL" MODULE ID
DC cL3: -

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 31

DC CL8'&SYSDATE" ASSEMBLY DATE

DC cL3" -

DC CL8"&SYSTIME' ASSEMBLY TIME

DC CL3’ ! FILLER
*
$$$$F1SA DC CL4'F1SA’ USED FOR STACK OPERATIONS
$$$$4096 DC F'4096' USED TO ADJUST BASE REGS

*

$$$SEYEC DS OH
*
BAKR R14,0 SAVE GPRS AND ARS ON THE STACK
AIF (N'&SYSLIST EQ @).USER12
LAE &SYSLIST(1),8(R15,8) LOAD OUR BASE REG
USING &LABEL,&SYSLIST(1) LET THE ASSEMBLER KNOW
AGO .GNBASE
.USER12 ANOP
MNOTE *,'NO BASE REG SPECIFIED, REGISTER 12 USED'

LAE R12,0(R15,0) LOAD OUR BASE REG
USING &LABEL,R12 LET THE ASSEMBLER KNOW
AGO .STGOB

.GNBASE ANOP
AIF (N'&SYSLIST LE 1).STGOB
&AA SETA 2
&AC SETA 4096
.GNBASE1 ANOP

*

AIF (&AA GT N'&SYSLIST).STGOB

&AB SETA &AA-1
LR &SYSLIST(&AA),&SYSLIST(&AB) GET INITIAL BASE
A &SYSLIST(&AA),$$$$4096 ADJUST NEXT BASE

USING &LABEL+&AC,&SYSLIST(&AA) LET THE ASSEMBLER KNOW
&AA SETA &AA+1

&AC SETA &AC+4096
AGO .GNBASE1
.STGOB ANOP
*
L R@,QLENGTH GET THE DSECT LENGTH

STORAGE OBTAIN,LENGTH=(R@),LOC=(RES,ANY)

LR R15,R1 GET @(OBTAINED AREA)

L R13,QDSECT GET DISPLACEMENT INTO AREA

LA R13,8(R13,R15) GET @(OBTAINED AREA)

LR R@,R13 SET REG @ = REG 13

L R1,QLENGTH GET THE LENGTH OF THE AREA

XR R15,R15 CLEAR REG 5

MVCL R@,R14 INTIALIZE THE AREA

MVC 4(4,R13),$$$$F1SA INDICATE STACK USAGE

USING DSECT,R13 INFORM ASSEMBLER OF BASE
.MEND ANOP

32 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

EREG R1,R1 RESTORE REGISTER 1
MEND

$ESAEPI MACRO

MACRO
$ESAEPI

.**

%k ok ok Ok ok Ok X Ok X ok X F

THIS MACRO WILL PROVIDE EXIT LINKAGE. IT WILL FREE THE
STORAGE AREA THAT WAS ACQUIRED BY THE $ESAPRO MACRO. YOU

CAN OPTIONALLY PASS IT A RETURN CODE VALUE. THIS VALUE IS
EITHER THE LABEL OF A FULL WORD IN STORAGE, OR IT IS A REG-
ISTER. AS WITH THE $ESAPRO MACRO, YOU NEED TO USE THE $ESASTG
MACRO. THE SYMBOL QLENGTH WHICH OCCURS IN THE CODE THAT IS
GENERATED BY THIS MACRO IS DEFINED BY $ESASTG

EXAMPLES:
$ESAEPI = NO RETURN CODE SPECIFIED
$ESAEPI (R5) = RETURN CODE IS IN REG 5
$ESAEPI RETCODE = RETURN CODE IS IN THE FULLWORD AT

RETCODE

'**

.REGRC

.STGFRE

.SETRC

.MEND

AIF (N'&SYSLIST EQ @).STGFRE

ATF ("&SYSLIST(1)'(1,1) EQ "(").REGRC

L R2,&SYSLIST(1) GET RETURN CODE VALUE
AGO .STGFRE

ANOP

LR R2,&SYSLIST(1,1) GET RETURN CODE VALUE
ANOP

L R@,QLENGTH GET THE DSECT LENGTH
STORAGE RELEASE,LENGTH=(R@),ADDR=(R13)

AIF (N'&SYSLIST NE @).SETRC

XR R15,R15 CLEAR THE RETURN CODE
AGO .MEND

ANOP

LR R15,R2 SET THE RETURN CODE
ANOP

PR RETURN TO CALLER

* FOR ADDRESSABILITY PURPOSES

LTORG
MEND

$ESASTG MACRO

MACRO
$ESASTG

.**

.*
.*

THIS MACRO IS USED IN CONJUNCTION WITH THE $ESAEPI AND $ESAPRO
MACROS. IT PROVIDES A Q TYPE ADDRESS CONSTANT WHICH WILL CON-

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 33

* ok R ok ok ok ok X ok

THE LENGTH OF THE DSECT. A REGISTER SAVE AREA ID PROVIDED AS
WELL.

EXAMPLES:
$ESASTG
XXX DC F = DEFINE ADDITIONAL STORAGE AREA
YYy DC XL255

. KA AR AR K A KA A AR AR AR AR AR ARk h kA Ak Ak hhhkhk kA Ak hkhhhk kA kA kA kA khkkhkhkhkkkkkhkhkrkkkkkkkkkkkx

QDSECT DC Q(DSECT) DEFINE A QCON
QLENGTH CXD LET ASM CALCULATE THE LENGTH
DSECT DSECT

DS 18F SET ASIDE REGISTER SAVE AREA
$CALL MACRO

MEND

MACRO
&NAME $CALL &ENTRY,&0PRNDS,&VLPARA,&BM=BALR,&ID=, &MF=I

. hhkkhkkkhkhkhkhkkhkkhkhkkhkhkhkkhkhkhkhkkkkhkhkhkhkhkhkkkhkhkhkhkhkkkhkhkhkhkkkkkkhkhkkkkkkhkrxrxkkkhhkhkkk

.* MODIFIED VERSION OF THE IBM SUPPLIED CALL MACRO *

ke ke ek e ok ek ok ke ke ke ok ok ke ok ke ok ke ke ke ek ke ek e ke ok ek ok ke ok e ek ke ok ek ok ek ok ke ko ek ok ok ke kok ke ok ko ok ok

&IHBNO
&GNAME
&THBSWA
&THBSWB

&NAME

.CONTC

.CONTA

.CONTB

.CONTD

.CONTE
.CONTF

34

GBLB &IHBSWA,&ITHBSWB
GBLC &IHBNO
LCLC &GNAME
SETC '309°
SETC "IHB'.'&SYSNDX'
SETB ('&VLPARA' EQ 'VL")
SETB ('&ENTRY' EQ '(15)")
AIF ('&VLPARA' NE '' AND '&VLPARA' NE 'VL').ERROR4
AIF ('&MF' EQ 'L' AND '"&ENTRY' NE '').ERROR1
AIF ('&MF' EQ 'L"' AND '&ID' NE '').ERROR2
AIF ('&MF' NE 'L' AND '&ENTRY' EQ '').ERROR3
DS OH ALIGNMENT
AIF ("&MF' EQ 'L").CONTC
AIF (&IHBSWB).CONTCC
AIF ('&0PRNDS' EQ "' AND
('&MF' EQ 'I" OR '&MF' EQ 'L')).CONTB
IHBOPLTX &ENTRY,&0PRNDS,&NAME,MF=&MF
AIF ("&MF' EQ 'L").EXIT
AIF (&IHBSWB).CONTD

L 15,&ENTRY LOAD 15 WITH ENTRY ADR
AIF ("&BM' EQ "BASSM').CONTE

BALR 14,15 BRANCH TO ENTRY POINT
AGO .CONTF

BASSM 14,15 BRANCH TO ENTRY POINT
AIF ('&ID" EQ ''").EXIT

DC X'4700' NOP INSTRUCTION WITH

© 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492,

DC AL2(&ID) ID IN LAST TWO BYTES
CEXIT MEXIT
.CONTCC ANOP
&NAME DS PH
AGO .CONTC
.ERRORL THBERMAC 73,&IHBNO,&ENTRY ENTRY W/ MF=L
MEXIT
.ERROR2 IHBERMAC 74,&IHBNO,&ID ID W/ MF=L
MEXIT
.ERROR3 IHBERMAC 26,&IHBNO ENTRY SYMBOL MISSING
MEXIT
.ERROR4 IHBERMAC 1P14,THIRD INVALID THIRD PARM
MEND

Enterprise Data Technologies (USA) © Xephon 1997

The command exit

Since MVS Version 5, an MVS command exit has been made
available as a standard exit point. By that time many sites had home-
grown versions of programs that would listen in on the subsystem
interface, intercept commands, and respond to MVS. This was a
somewhat complex piece of code to write, and all of this has been
made much easier by making use of the published exit point. The exit
has to be in a LNLKSTed dataset. It also has to be re-entrant and
receives control in supervisor state key 0. It can have any name
complying with standard load module naming conventions and is
defined to MVS via the MPFLSTxx member in the following way:

.CMD USEREXIT(exitname)
Itisdynamically refreshable by relinking the module into the LNKLST-
library followed by:

T MPF=xx
where xx the suffix of the MPFLSTxx member in SYS1.PARMLIB
(or any other SYSx.PARMLIB as from OS/390). This way it is really
easy to add changes to the exit and no pre-loading in common storage

or zapping of pointers in memory is required. The module is also
ESTAE-protected and a catastrophic error in the module will merely

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 35

disable the exit. (Keep in mind that the exit is called in supervisor state
Othough, soitis quite easy to do irrecoverable damage to the operating
system if care is not taken.)

The exit can be used to alter the command. If a command is altered,
both the old command and the new command are displayed on the
console (and on the SYSLOG), but only the altered command is
executed. We will look at a few uses of this facility and also at some
coding hints.

When the module is called, a copy of the command amongst other
things is passed to the routine. This is done for all commands, so a
command to any of the other subsystems can be viewed, altered, or
denied even if it has a prefix character assigned to it. An important
thing to remember is that this command exit could potentially lock
itselfin. That is, if coded incorrectly, the command required to disable
it (T MPF=NO) can also be rejected — making an IPL the only way to
recover from an infinite loop in the module. It is good practice to scan
the text for any T MPF commands right at the start of the logic and,
if found, to immediately return to MVS with a return code of 0. This
way we can be sure that the T MPF command is always processed.

Another good idea is to make the exit merely a text analyser with all
the actual work being done in called subroutines. When we receive a
copy of the command BUFFER, look for our command(s) by comparing
them to a table where we keep all the ones we are interested in. If we
find a match, we set up our own ESTAE and then do a LINK
EP=module for the particular function. This way we end up with
several independent load modules, leading to a clean modular design.
By doing this we can develop new command modules and, if they
abend (as modules tend to do whilst being developed or tested), we
intercept the abend and recover. We then never get our exit disabled
by MVS because the exititself never abends, only one of its subroutines
for which we have set up an ESTAE. We can make use of a bit pattern
or a flag in our command table to indicate that a certain command is
causing an ABEND, and from this we can issue a warning message
should the command be entered again. The following is a suggested
sequence of events in the main routine:

1 Set up addressability to the passed command text (see example
later).

36 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Because this module has to be re-entrant, obtain storage in
subpool 229 for its workareas.

Remove all blanks from the command buffer to standardize the
format.

See if the command buffer contains the text we are looking for by
comparing it with our table of commands.

If it does not, return to MV S with a return code of O (telling MVS
to proceed).

If it does, do the following:
e Set up an ESTAE environment.

« (all the matching command processing subroutine for that
particular command.

» Decide if MVS should further process the command or not.

* Return to MVS with a 0 (proceed) or 4 (ignore). Ignore
would be the case if our logic has already done the necessary
work or if we decide to reject the command for some reason.

Keep in mind that the command exit also gets a copy of all messages
sent through the system. An infinite loop could potentially be created
should we issue a message containing the text we are scanning for in
the command buffer.

We will now look at a few uses of this command exit and then work
through the above four points with examples and some tips. The
following are ideas of what we may want to do in a command exit:

Refreshing a single LLLA — dataset is cumbersome (we have to
update a PARMLIB member or have one ready for it), so most
systems programmers simply enter F LLA,REFRESH. This
places a massive overhead on the system and in some cases can
lead to performance problems for quite some time because VLF
is also involved in the process. A much better idea would be to
have the ability to enter a command of the format:

F LLA,REFRESH=mydsname

Because we have the LLACOPY macro available, this is quite a

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 37

38

simple process once we have identified the dataset name from the
command text. As our routine will be doing the LLACOPY work
itself, we can return to MV'S with a return code of four which will
cause MVS to not process the command any further —thatis, LLA
never gets instructed by MVS to actually do the refresh. (One of
the drawbacks of this exit is that people become used to it: if we
now get it disabled for some reason, MVS will pass the above
command for further processing which of course does not fit in
with the standard format. This is the reason why you should make
sure that once in use, the exit itself never gets disabled through an
abend.)

Inspecting and possibly restricting VARY commands. With the
introduction of 4-digit commands, an incorrectly entered VARY
command can cause quite some overhead on a system. The
command

V 123-456,0NLINE
incorrectly entered as
V. 123-4566,0NLINE

(due to a typo) will hang MVS for quite some time. It may be a
good idea to investigate command ranges and only pass them
through to MVS (by means of a O return code) if they fall within
reasonable ranges.

Inspecting the:
E jobname, SRVCLASS=name

may be a good idea. It is also a good idea to have a RACF-routine
for any of the new commands introduced. This same routine can
be used to verify access to certain restricted commands. First do
a RACF—check and only allow the command to be issued if the
user is within a certain group or has certain RACF privileges.

Any product that manipulates UCBs to facilitate tape sharing
could potentially leave the UCBs in an incorrect state if it abends
or is FORCEd out of the system — requiring a zap in the UCB,
which is a dangerous practice even at the best of times. A new
UCBZAP command can be introduced with a module doing the

© 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

work for us. (This one would definitely require the RACF—check
first because it could be extremely destructive.) Any other high-
risk zaps that systems programmers have to do from time to time
could be put into the command exit. It is far better to code up the
exit accurately and with a cool head than to have to work out
offsets and set up a zap during a time when the system is
experiencing an emergency of sorts.

« RMF has aroutine that can be called to obtain figures on service
consumption, real and auxiliary frame usage, etc. This module is
called ERBSMFI. Using the command exit we can define a new
command, something like D BUSY, which can then have a
module called in which we invoke ERBSMFI and manipulate its
output. In a case of a total hang (no TSO user or monitor gets
dispatched), we may be able to find the cause by entering a D
BUSY command from the console. The routine should be written
in such a way that it look for high consumers of CPU etc. (The
way to process ERBSMFI is to call it, save the returned values,
wait a few milliseconds, call it again and then make decisions
based on the differences obtained. For instance, if address space
ABC had used X CPU seconds at the time of the first call and Y
CPU seconds at the time of the second call, then Y - X will show
us how many CPU seconds it has used. One has to take the
number of processors on—line into consideration to be able to
express this as a CPU % — the SDSF source code is a good
example to look at.)

* GRS contention is very common in the early stages of sysplex
implementation. The D GRS,C command (and other versions of
it) goes some way to help resolve contention. There is however
afair bit more information available by doing a GQSCAN macro.
This will for instance show which member of a sysplex has a
RESERVE on a volume. By scanning through this information
and looking at I/O queues chained off UCBs, one can greatly
enhance the systems programmer’s ability to resolve problems
during sysplex hang situations. So it may be a good idea to have
something like D RESERVE to show which sysplex member is
causing the problem.

* Inthe October 1997 issue of MVS Update an example was given

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 39

on how to write a routine to display disk characteristics. This
routine could easily be adopted to support a command such as
DISKTYPE xxxx, displaying more information regarding a disk
unit directly onto the console.

There are more good reasons to have a command exit installed, but by
now you should have an idea of the benefits that can be derived from
it. It also gives a large degree of flexibility once it is in place — if a
certain command suddenly has to be intercepted for one reason or
another it could be a fairly simple task to make an addition to the exit,
provided it was well planned and structured as suggested.

We will now get back to points 1 —4 mentioned earlier and give some
examples of how this can be implemented.

1

40

To set up addressability to the passed buffer, the following can be
used. When we receive control, register 1 contains the address of
the command installation exit routine parameter list mapped by
the macro IEZVX101. Alarge amount of information is contained
in this DSECT and it includes fields such as:

¢ CMDXISYN - the name of the system that issued the
command.

¢ CMDXCNNM - the name of the console that issued the
command.

¢ CMDXTOKN — command issuer TOKEN.

« CMDXCLIP - pointer to the command length and the
command image.

(By making use of the SHOWMEM routine published in the May
1997 issue of MV'S Update, it may be a good idea to display some
of these fields and also the command buffer before making
decisions based on their contents.)

Sample text to get to the command buffer:

L R4,0(R1) .Passed pointer when we receivecontrol
USING CMDX, R4 .Addressability to passed parameter

L R4,CMDXCLIP .Command buffer address

DROP R4

USING CMDXCLIB,R4 .Addressability to the command buffer
LH R5,CMDXCMDL .Length of entered command

© 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

LA R1,CMDXCMDI .Command image text

As mentioned before, it may be a good idea to de-blank the
command buffer before we start. Keep in mind that we can alter
a command by overlaying the command buffer and setting a flag
(the field name is CMDXRFLI1 and the flag is CMDXRCMI) so
it is best to copy the command buffer into our own workarea
before we start manipulating it. We now remove all the blanks by
going through a simple loop (make sure you do not exceed the
length of the passed command because this will lead to an 0C4,
which will disable the exit). Once we have de-blanked the
command, we can enter another loop, comparing it to a table with
our customized commands. If we decide to alter the command we
can then move it back into the original command buffer that was
passed to us.

Some commands will never be passed to MVS, some commands
will always be passed to MVS once we have taken note of them
or altered them, and some may be passed to MVS if we are
satisfied with the syntax (eg the range of a VARY command). By
passing a return code of 0 to MVS the command gets processed
and a return code of 4 instructs MVS to ignore the command
(without giving any error message). Make sure that the successful
processing of a private command resulting in a return code O does
not cause the return code to be passed back to MVS because this
will mean that MVS will then also try to interpret it. It may be a
good idea to keep the return code that should be passed back to
MYVS in the command table. AX'00' could mean that the command
is always passed on, a X'04' that it will never be passed on, and
a X'02' that the program logic will decide whether or not the
command will ever reach MVS. Here is a sample of what a
command table could look like:

CommTble DS OF .Command table

Com0001 DC C'FLLA,REFRESH="' .Deblanked format of command
Leng0001 DC AL2(*-Com001) .Length of command text
EnPt0001 DC AL4(LLAEntpt) .Address of routine to call*
RC0O001 DC H'4' .Never pass command to MVS

*

Com0002 DC C'V"' .Vary command

Leng0002 DC AL2(*-Com0002) .Length of command text
EnPt0002 DC AL4A(VARYENTP) .Address of routine to call
RC0002 DC H'2' .May pass to MVS

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 41

*

Com0003 DC C'DBUSY' .Deblanked format of command

Leng0003 DC AL2(*-Com0003) .Length of command text
EnPT0003 DC AL4(DBSYENTP) .Address of routine to call
RC0003 DC H'4" .Never pass command to MVS

4 Coding an ESTAE routine is a little complex. Keep in mind that
we should actually return to MVS at the end of the routine and not
to a point inside our program. The sequence of flow in the case of
an abend is this: after the abend MVS gets control, it then
branches off to our ESTAE routine which can do a clean-up, set
a flag (eg mark the command as not available in a bit map), and/
or write a message. Our ESTAE routine then returns back to
MVS, telling it by means of the SETRP macro to either percolate
(abend further, which in our case will have the entire command
exit disabled) or branch back to a point in our mainline code. To
be able to address our own storage area in the ESTAE routine we
have to set up what is known as a RUBLIST. This list instructs
MYVS which of our registers to reload before giving control to the
ESTAE routine. The best convention to ensure that we correctly
return control to MVS from inside the ESTAE routine is to make
use of the BAKR/PR instructions at the start and end of the
routine.

Many automation packages offer high-level language interfaces to
commands and messages generated and it is not suggested that the
command exit is introduced to replace any of these. It has as a
drawback that it somewhat exposes the system to any programming
errors it may have. Once stabilized, it is however a handy and very
powerful tool in the hands of a careful systems programmer. It also
puts the control back where it belongs — with the MVS systems
programmer (although the merits of this may be disputed by some).
The command exit gets to look at incoming commands first and is in
a position to override it or alter the syntax before it is seen by any of
the other subsystems.

A A Keyser
Systems Programmer
Houghton Consulting Services Pty Ltd (Australia) © Xephon 1997

42 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492,

Year 2000 aid: list YEAR2K qualifying records

This program, YEAR2KLM, reads the selection file (OUTPUT) from
program YEAR2K (see MVS Update issue 134), reformats it so that
the source record is contiguous, and lists the records. This listing is
useful in the following two ways:

+ as a guide for the manager or lead analyst to determine quickly
whether the qualified records need to be addressed, and, if so, the
priority and resources that should be assigned.

» as a source for such assignments.

To address these different functions, a single option may be specified.
This option is used to determine if the records for each member is to
be listed on separate pages. This option is used when distributing
information to individuals for conducting further study or as
maintenance assignments. This option is selected by specifying the
following PARM= statement:

PARM="SEPARATE"

It is recommended that both of these options be used with at least one
of the copies being used for the initial analysis and for notes on
tracking progress and the other forms for distributing to individual
maintenance analysts for necessary changes. The original file may
also be edited and notes of assignment etc be made prior to such
listings. In this later case, it is recommended that such notes be
restricted to the first 72 bytes of the record, since the remainder of the
record is formatted based on positions 73-80 being non-blank (ie
containing a member name). A sample of a listing, showing manual
notes, is given in Figure 1.

SAMPLE JCL
//SYST0021 JOB ...

//STEP1 EXEC PGM=YEAR2KLM

//SYSABEND DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//PRINTER DD SYSOUT=*

//INPUT DD DSN=SYST@@2.YEAR2K.MATCHES,DISP=SHR
1/

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 43

LISTING OF YEAR2K SELECTIONS JOB=SYST@@A21 DSN=SYST@@2.YEAR2K . MATCHES ~ PAGE

MEMBER RECORD
1...5...10...15...20...25...30...35...40...45...50...55...60@...65...70...75...80

Fxxxxk**NOTE:THE WORD ACRONYM IS A FALSE SELECTION BECAUSE ITS SUFFIX IS "YM'

*kkxkkkk NOTE:

*Hxxx4%% NOTE: ASSIGNED TO PROGBPL FOR REVIEW AND CORRECTION. KHN 11/18/96.

*xkxxkkx NOTE :

AAGI @810 73 000730 ACRONYM, (AC OR KP AT TIME OF WRITING) DEPENDING
AAGIGO18 171 0081710 @2 SLASHED-YEAR PIC 9(2).

AAGIO@18 176 601760 1 WORKDATE-YYMMDD.

AAGIOO10 177 0017790 02 WORKDATE-YY PIC X(2).

AAGIDO10 181 9018189 @1 WORKDATE-MMSLDDSLYY.

AAGIGO10 186 001860 25 WORKDATESL-YY PIC 99.

AAGI@O1® 206 0@206@* "JULGREG" OR "GREGJUL" ROUTINES (CONVERSION OF JULIAN
AAGIO@1@ 207 @@2070* DATES TO GREGORIAN, AND VICE VERSA).

AAGIGO1A 209 002099 @1 JULIAN-PARM PIC X(23).
AAGI@Q10 210 002100 @1 FILLER REDEFINES JULIAN-PARM.

AAGIOO1® 211 0@2110 @5 JULTAN-PARM-PACKED PIC 9(5) COMP-3.
AAGIOO1® 212 092120 05 JULTAN-PARM-YYMMDD PIC X(6).
AAGIP@1® 213 002130 @5 JULIAN-PARM-MMDDYY PIC X(6).
AAGIOO1B 214 002140 @5 JULIAN-PARM-MMSLDDSLYY PIC X(8).
AAGIQO18 224 ©@224@* COMPUTE-DATE-AND-TIME ROUTINE.

AAGIO@1® 228 002280 @1 JULIAN-CVRT-DATE PIC 9(7).
AAGIGO1@ 229 902290 @1 FILLER REDEFINES JULIAN-CVRT-DATE.

AAGI@O18 231 902310 @5 CURRDTE-JULIAN PIC 9(5).
AAGIOO18 232 002320 @5 FILLER REDEFINES CURRDTE-JULIAN.
AAGI@R16 233 9@2330 18 CURRDTE-JULIAN-YY PIC 9(2)
AAGIQO10 234 002340 180 CURRDTE-JULIAN-DDD PIC 9(3).
AAGI@O18 235 902350 @1 CURRDTE-JULIAN-PACKED PIC 9(5) COMP-3.
AAGI@@18 237 902378 @1 CURRDTE-MMDDYY.

AAGIDR10 240 002400 @5 CURRDTE-YY PIC 9(2).

AAGIOG@1® 242 002420 ©1 CURRDTESL-MMDDYY.

AAGIRO1R® 247 002470 @5 CURRDTESL-YY PIC 9(2).

AAGIOQ1@ 249 082490 81 CURRDTE-YYMMDD PIC X(6).

AAGIPO10 337 093370 @2 L2 PIC X(75) VALUE 'AT THIS TIME OF THE YEAR.
AAGIPO1® 982 009820 MOVE CURRDTE-YYMMDD TO GLJE-BTHD-BATCH-ENTRY-DATE.
AAGI@@1@ 1227 01227¢* CONVERT JULIAN DATE TO CALENDAR DATE

AAGIBO1@ 1228 012280 MOVE SPACES TO JULIAN-PARM.

1

1...5...10...15...20...25...30...35...40...45...50...55...60...65...70...75..

Fxkkkkkx NOTE: THE WORD ACRONYM IS A FALSE SELECTION BECAUSE ITS SUFFIX IS °'YM®

*xkkkxkkx NOTE :

*xkxxxxkx NOTE: NO CORRECTION NECESSARY.

*kkkkkxk NOTE @

MEMBER RECORD
1...5...10...15...2@0...25...30...35...40...45...50...55...60...65...70...75...80

Figure 1: YEAR2KLM sample report page

.80

44 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

PROGRAM SOURCE
LCLC &MYNAME

*

&MYNAME SETC 'YEAR2KLM' CSECT NAME
RBASE EQU 12 BASE REGISTER FOR CSECT
RBAL EQU 18 BAL REGISTER
*
TITLE '&MYNAME' LISTING TITLE
e e e e ke T ke ke ek Tk ke ke e ke sk ok ke ke e sk sk ok ke ok e ke sk ok sk sk ke gk gk ok ok ke ok ok ok sk sk ok ke ok ok sk ok ok ke ok ok ok ke ok sk ok ok ke ke ke ke ke ke ke ke ke ok
*%% THIS PROGRAM LISTS THE RECORDS SELECTED BY THE YEAR 2000 Hox
**% ANALYSIS PROGRAM (YEARZ2K). ok
e e kK ke Fe ke kK Kk ke ke sk ke sk ke sk ok sk ok sk ke ke ke sk ke ke sk ke ok sk ke ek sk ke sk ok ke ok ke ke ke ok ke sk sk ok ke ok ke ke ok ke ok ke ok ke ke ke kek ke ok
EJECT
ek e e e kK ke kK ke K ke ke ke ke ke ok ke Sk ke sk ke ke ke sk ok ke ok ke ke ok ok ke ke ok ok ke ok sk ke ok ok ok ke ke ke ke ok ok ok ok ke ok ke ke ke ke ke ok ke ok ke ok ke ok ok
ok LINKAGE CONVENTIONS ENTERING PROGRAM ok

dhkkhkkkkkkhkhkkkkhkhkhkhkhkkkkhkhkhkkkkhkhkhkkhkkhkhkkkkhkhkhkhkkhkhkhkhkkkhkhkhkdkkkkhkkhkhkkkkhkhkhkkkkk

&MYNAME CSECT ,

STM R14,R12,12(R13) SAVE REGS TO CALLER S.A.
B (BEGIN-8MYNAME) (R15) BRANCH AROUND EYECATCHER
DC A(L'NAME) LENGTH OF CSECT NAME
NAME DC C'&MYNAME' CSECT NAME
DC C' &SYSDATE &SYSTIME ' ASSEMBLY DATE/TIME STAMP
BEGIN LR RBASE,R15 LOAD BASE REGISTER
USING &MYNAME , RBASE ADDRESSABILITY
PRINT NOGEN
GETMAIN R,LV=WORKDLEN GET SAVE/WORK AREA
ST RI1,8(8,R13) MY S.A. ADDR INTO CALLER S.A.
ST RI3,4(8,R1) CALLER S.A. ADDR INTO MY S.A.
LR RI3,R1 R13 POINTS TO MY S.A.
USING WORKD,R13 ADDRESSABILITY OF SAVE AREA
L R1,4(@,R13) R1 POINTS TO CALLER S.A.
LM R15,R1,16(R1) R15 R AND R1 ARE RESTORED
EJECT
dkkkkkkhkhkkkhkkhkhkhkhkhkkhkhkkhkkkhkhkkhkhkhkkhkhkhkhkkhkkhkhkhkhkhkkhkhkhkhkhhkhkhkkhkhkhhkhkhkhkhhkkhkhkhx
Kok MAINLINE ROUTINE ok
e e e kK ke kK K Tk e Tk Tk ke sk ke sk ke sk ke sk ok sk ke ke ke sk ke ke ke ke ok sk ke sk ok sk ke sk ok ke ok ok ke sk ke sk ke ke ok ke ok ke ke ok ke ok ke ke ke ke ke ke ke ok ok
MAIN EQU * BEGIN MAINLINE ROUTINE
ST R1,RISAVE SAVE INITIAL R1
MVC PARM,=8C' SET TO PARAMETER AREA TO BLANKS
L R1,8(R1) LOAD ADDRESS OF PARAMETER
LH R8,B(R1) SET LENGTH
BCTR R8,0 DECREMENT TO LENGTH - 1
LTR R8,R8 WAS PARAMETER PRESENT?
BM MAINNOP NO
CH R8,=H'7" PARAMETER TOO LONG?
BH MAINNOP YES
EX R8,MOVEPARM MOVE PARAMETER TO SAVE AREA
*
MAINNOP XC COMPCODE,COMPCODE CLEAR COMPLETION CODE

MVC JGMOTBL(13*L'JGMOTBL),JGMOTBLD COPY JULGREG DAYS/MONTH
* BEGIN DCB INITIALIZATION

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 45

MVC PRINTER(PRINTERL),PRINTERD INITIALIZE DCB
MVC INPUT(INPUTL),INPUTD INITIALIZE INPUT DCB
* END DCB INITIALIZATION
* BEGIN DCB OPENS
MVC ~ PROPENL(PROPENLN),OPEND INITIALIZE SET PRINTER OPEN LIST
OPEN (PRINTER, (OUTPUT)),MF=(E,PROPENL) OPEN PRINTER
MvC IPOPENL(IPOPENLN),OPEND SET INPUT OPEN LIST
OPEN (INPUT, (INPUT)),MF=(E,IPOPENL) OPEN INPUT
* END DCB OPENS

TIME
ST R1,JGYYDDD SAVE JULIAN DATE
BAL RBAL,JULGREG CONVERT TO MM/YY/DD

MVC HEADER(L'HEAD),HEAD INITIALIZE HEADER
MVC HEADER+L'HEAD(L'HEADER-L'HEAD),HEADER+L'HEAD-1 CLEAR
MVC PAGENO-4(4),=C'PAGE' SET PAGE NUMBER ID

MVC DDNAME, INPDDN MOVE IEBCOPY JCL FILE NAME

BAL RBAL,GETNAMES GET SELECTION DSN

ZAP PAGES,=P'1’ INITIALIZE PAGE COUNT

MVC HEADDATE,JGMMDDYY MOVE MM/YY/DD TO HEADING

BAL RBAL,HEADPAGE PRINT PAGE HEADER
MAINLOOP GET INPUT,INAREA READ INPUT RECORD

CLI INAREA,C"-"' SEPARATOR LINE

BNE ~ MAINOK NO

CLC =C'SEPARATE',PARM 'SEPARATE' PARM?

BNE ~ MAINNOTS NO

Cp PAGES,=P'1"’ FIRST PAGE?

BNE MAINNOTS NO

BAL RBAL,HEADPAGE EJECT TO NEW PAGE
MAINNOTS MVC LINE+(SCALE-SUBHEAD)(80@),SCALE SET SCALE

B MAINPR GO PRINT LINE
MAINOK ~ CLC INMEM,=8C" ' MEMBER NAME PRESENT?

BNE MAINRFMT YES

MvVC LMEM,=8C"*' SET FLAG

MVC ~ LCOUNT,=C'NOTE:" SET NOTE INDICATOR

B MAINMVC
MAINRFMT MVC LMEM, INMEM SET MEMBER NAME

MVC ~ LCOUNT,INCOUNT SET RECORD NUMBER

MVC L7380,IN7380 MOVE COLUMNS 73-80
MAINMVC MVC LSOURC, INSOURC MOVE COLUMNS 1-72
MAINPR ~ BAL RBAL,PRINT GO PRINT LINE

B MAINLOOP CONTINUE UNTIL E-O-F
MAINEOF DS oH

PUT ~ PRINTER, SUBHEAD PRINT FOOTER

* BEGIN DCB CLOSE
MVC PRCLOSL(PRCLOSLN),CLOSED INITIALIZE CLOSE LIST
CLOSE (PRINTER),MF=(E,PRCLOSL) CLOSE IT

MVC IPCLOSL(IPCLOSLN),CLOSED SET INPUT CLOSE LIST
CLOSE (INPUT),MF=(E,IPCLOSL) CLOSE INPUT

END DCB CLOSE

* ok

46 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

ENDO® LA R15,0 SET COMPLETION CODE 89

ST R15,COMPCODE INTO STORAGE

B ENDING GO TO ENDING
*

EJECT
KhkhkhkhkAkk Ak AkhkA kA hkhk kA hkhkhkhkhkhkhkkhkhkhkhkkhkkhkhkhkkkhkhkhkkhkkhkhkhkkkhkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkkhkik
ok LINKAGE CONVENTIONS EXITING PROGRAM *hk
*hkhkhkkhkhkhkhkhkkhkhkhhkhkhkhkhkhhkhkhkhhkhkhkhhkhhhkkhkkhhkkhkhkhkhkhkhkkhkhkhhkkhkhkhkkhkhkhhkhkkhkkkkhkhkkkkk
ENDING L R14,COMPCODE R14 SAVES COMP CODE

LR RI,RI3 R1 SAVES ADDR OF MY S.A.

L R13,4(0,R1) R13 RESTORED, PTR CALLER S.A.

FREEMAIN R,LV=WORKDLEN,A=(R1) FREE MY SAVE/WORK AREA

LR RI5,R14 R15 SET TO COMP CODE

LM R@,RL2,28(R13) RO-R12 RESTORED

L R14,12(8,R13) R14 RESTORED

MVI 12(R13),X'FF’ SET COMPLETION SIGNAL

BR Rl4 RETURN TO CALLER
* BEGIN STUB DEFINE

EJECT
Khkhkkhkhkhkkhkhkhkhkhkhkhkhkhhkhkhkhkkhkhkhkhkhkhkhkhkkhhkhhkhkhkhkhkhhhkhkhkhkhkhhkhkhkhkhkhkkhkkhkhkhkhkkhkkkkhkhkkhkhkk
**% GET JOB AND PDS DSN NAMES ok
g g gt * kK
*%% THANKS TO MR. MARK HOFFMAN FOR THIS LOGIC *xk

Khkkkhkhkhkhkkhkhkhkkhkhkhhkkhkhkhkhkhkkkhkhkhkhhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkkhkhkhkkkhkhkhkhkkkhkkrrhkrhkk
*

GETNAMES ST RBAL, SAVGNBAL SAVE LINKAGE REGISTER
*
XR R15,R15 ADDRESS OF PSA
USING PSA,R15 ESTABLISH ADDRESSABILITY
L R14,FLCCVT ADDRESS OF CVT
DROP R15 DROP ADDRESSABILITY TO PSA
USING CVTMAP,R14 ESTABLISH ADDRESSABILITY TO CVT
L R15,CVTTCBP ADDRESS OF NEXT TCB POINTER
L R15,4(@,R15) ADDRESS OF CURRENT TCB
DROP R14 DROP ADDRESSABILITY TO CVT
USING TCB,R15 ESTABLISH ADDRESSABILITY CURRENT TCB
L R14,TCBTIO ADDRESS OF TIOT
USING TIOT,R14 ESTABLISH ADDRESSABILITY TO TIOT
MVC HEADJOBN,TIOCNJOB MOVE JOB NAME TO HEADER
MVC HEADJOBN-4(4),=C'J0B=' SET JOBNAME ID
*
DROP R15 DROP ADDRESSABILITY TO TCB
LA R15,TIOELNGH ADDRESS OF FIRST TIOT ENTRY
DROP R14 DROP ADDRESSABILITY (HLASM OBJECTS)
USING TIOENTRY,R15 ESTABLISH ADDRESSABILITY TO TIOT
GNTIOTLP CLI TIOELNGH,X'28" END OF TIOT CHAIN?
BE GNRETURN YES (SHOULDN'T HAPPEN)
CLC TIOEDDNM(8),DDNAME PDS NAME FOUND?
BE GNDSN YES
XR R@, RO CLEAR REGISTER
IC R@, TIOELNGH INSERT ENTRY LENGTH
AR R15,R8 POINT TO NEXT ENTRY

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 47

B GNTIOTLP CONTINUE

GNDSN XR R1,R1 CLEAR REGISTER
ICM R1,7,TIOEJFCB ADDRESS OF JFCB
USING JFCB,R1 ESTABLISH ADDRESSABILITY TO JFCB

MVC HEADDSN,JFCBDSNM MOVE DSNAME TO HEADER
MVC HEADDSN-4(4),=C'DSN=' SET DSN ID IN HEADER

DROP R1,R15 DROP ADDRESSING TO JFCB,TIOT,ENTRY
GNRETURN L RBAL , SAVGNBAL RESTORE LINKAGE REGISTER

BR RBAL RETURN

EJECT
Kkkkkkhkkhkkhkkhkkhkkhkhhkhkhkhkhkhkhkkhkhkhkhkhkhhkhkhkhkhkhkhkhkhhkhkhkhhkhhkkkhhhkkhkkhkhkhkhkkhkkkkkk
**% CONVERT JULIAN DATE TO GREGORGIAN DATE ork

ke e ok ok ok ok ke ke ok ok ok ok ke ok ok ok ok ok ok ok ok ok sk ok ke ok ok ok ok ok ok ok ok ke sk ok ok ok ke sk ok ok ok ok ok ok ok ok ke ok
*

JULGREG ST RBAL, SAVJGBAL SAVE LINKAGE REGISTER
ZAP JGDAYS,JGYYDDD+2(2) SAVE DAYS FROM BEGINNING OF YEAR
ZAP JGMONTHS,=P'1"’ INITIALIZE MONTH
LA R15, JANUARY LOAD ADDRESS OF DAYS/MONTH TABLE
LA 2,L"JANUARY ... WIDTH OF TABLE
LA 1,DECEMBER ... END OF TABLE
LAP FEBRUARY ,=P'28" SET NON LEAP YEAR DAYS
CLC =X"208@',JGYYDDD YEAR 2@XX?
BE JGYR2000 YES
JG2@THCN TM JGYYDDD+1,1 LEAP YEAR?
BO JGLOOP NO
™ JGYYDDD+1,X'12°*
BM JGLOOP NO
JGYR2000 AP FEBRUARY ,=P'1" ADJUST
JGLOOP CP JGDAYS,@(L'JANUARY,R15) CURRENT MONTH?
BNH JGFOUND YES
AP JGMONTHS ,=P"1" INCREMENT MONTH
SP JGDAYS,@(L'JANUARY,R15) DECREMENT DAYS PER CURRENT MONTH
BXLE R15,R@,JGLOOP CONTINUE

JGFOUND UNPK JGMMDDYY(2),JGMONTHS UNPACK MONTH
UNPK JGMMDDYY+3(2),JGDAYS UNPACK DAY
UNPK JGMMDDYY+6(3),JGYYDDD+1(2) UNPACK YEAR

MVI JGMMDDYY+2,C'/" SEPARATE MONTH AND DAY
MVI JGMMDDYY+5,C'/" SEPARATE DAY AND YEAR
0 JGMMDDYY+1,C'@" FORCE MONTH NUMERIC
0T JGMMDDYY+4,C'@" FORCE DAY NUMERIC
0l JGMMDDYY+7,C'@" FORCE YEAR NUMERIC
JGRETURN L RBAL, SAVJGBAL LOAD LINKAGE REGISTER
BR RBAL RETURN
* END STUB DEFINE
EJECT
ek ke ok ek ek ek ke sk ke ke sk ok ke ok ke sk ok ok ok ke ok ke ok ok ok ke ke ke ok ok ke ke ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ek ke ke ke ko ke ke ok ke ok ke ok
Rk PRINT ROUTINE Hokk

hkhkkkkkhkhkhkhkkhkhkhkhkhhkhkkkhkhkhkhkhkkhkhkkhkhkhkhkhkkhkkhkhkhkhkhkkkhkhkhkhhkhkkhkkhkhhkhkhkkhkkhhhhkhkkkkk
*

PRINT PUT PRINTER, LINE PRINT LINE
MVI LINE,C* ' SET SEED

48 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492,

MVC LINE+1(L'LINE),LINE CLEAR LINE

DOUBLESP BCTR R9,RBAL RETURN IF PAGE NOT FULL

PUT PRINTER,SUBHEAD PRINT FOOTER
HEADPAGE MVC ~ PAGENO,=X'4@202128' SET EDIT PATTERN

ED PAGENO,PAGES FORMAT PAGE NUMBER

AP PAGES,=P'1’ INCREMENT PAGE COUNT

PUT PRINTER,HEADER PRINT PAGE HEADING

PUT PRINTER, SUBHEAD PRINT SUBHEADING

LA R9,52 SET LINES/PAGE

MVI LINE,C'0" SET TO DOUBLE SPACE AFTER HEADER

BR RBAL RETURN

EJECT
e %k e ok ok sk ok ke ok ok ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ke ok ke ok ko ko ke ko ko k ok
*rk FIXED DATA AREA *rk
s e 3k e 3k ke ke kT ok e ok ok ok ok ok ke sk ke sk ok ok ok ke ok ok ok ok ok ke ok ok ok ke ok ok ok ok ok ok ok ok ok sk ke sk ke ke ke ke ke ke ke kb ok ke ok ki ke ke k ok ok ok ok ok
HEAD DC C'ILISTING OF YEAR2K SELECTIONS

SUBHEAD DC CL133'@’
ORG ~ SUBHEAD+1
DC CL8'MEMBER'
DC CL7"RECORD'

SCALE DC C'1...5...10...15...2@...25...30...35...40"
DC C'...45...50...55...60...65...70...75...80"
ORG

OPEND OPEN (,) ,MF=L

CLOSED CLOSE (),MF=L

* BEGIN DCB CONSTANTS

PRINTERD DCB ~ DDNAME=PRINTER,DEVD=DA,DSORG=PS,LRECL=133, -

BLKSIZE=133,MACRF=(PM),RECFM=FBA

INPUTD DCB DDNAME=INPUT,DSORG=PS,MACRF=GM, EODAD=MAINEOF

INPDDN EQU INPUTD+DCBDDNAM-DCBRELAD

* END DCB CONSTANTS

JGMOTBLD DC pL2'9,31,28,31,30,31,30,31,31,30,31,30,31"

* END CONSTANTS

MOVEPARM MVC PARM(*-*),2(R1)

LTORG

EJECT
ek ek e ek e ok ok e ok ok ko ok ok ok ok ok ok ok e ok ok ek ok ok ok ok ok ok ok ok ok ok ok ek ok ok ke ok ok ok ko ke ok ok ok ok ok ke ok ek ok ek
ket DSECT FOR MY SAVE AREA AND VARIABLES. *okk

dkkkkkkkhkkhkkkkhkhkhkhkdkkhkkhkhkhkkkkhkhkhhkkkhhkhhhkhkhkhkhkhkhkhkhkhkhkdhkkhkhkhhkhkkhkkkhkhkkkkkkhkhk

WORKD DSECT

MYSAVE DS 18F MY REGISTER SAVE AREA
COMPCODE DS F PROGRAM COMPLETION CODE
RETCDE DS F I|TERNAL RETURN CODE
RISAVE DS F INITIAL VALUE IN R1

PAGES DS PL2
DOUBLE DS D
DDNAME DS CL8

PARM DS CL8

* BEGIN STUB LINK SAVE

SAVGNBAL DS A SAVE RETURN REGISTER FOR GETNAMES
SAVJGBAL DS A SAVE RETURN REGISTER FOR JULGREG

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 49

* END STUB LINK SAVE
* BEGIN OPEN/CLOSE LIST

DS
PROPENL
PROPENLN EQU
PRCLOSL
PRCLOSLN EQU
IPOPENL
IPOPENLN EQU
IPCLOSL
IPCLOSLN EQU

OPEN

CLOSE

OPEN

CLOSE

2D
(,),MF=L
*-PROPENL
(), MF=L
*-PRCLOSL
(,),MF=L
*-IPOPENL
() ,MF=L
*-IPCLOSL

* END OPEN/CLOSE LIST
* BEGIN DCB DSECTS

PRINTER DCB

PRINTERL EQU
INPUT DCB
INPUTL EQU

DDNAME=PRINTER,DEVD=DA,DSORG=PS, LRECL=133,
BLKSIZE=133,MACRF=(PM),RECFM=FBA

*-PRINTER

DDNAME=INPUT,DSORG=PS,MACRF=GM, EODAD=MAINEOF
*-INPUT

* END DCB DSECTS

JGMOTBL DS
JANUARY DS
*

FEBRUARY DS
DECEMBER DS
JGDAYS DS
JGMONTHS DS
JGMMDDYY DC

JGYYDDD DS
* END DSECT
HEADER DS
ORG
HEADJOBN DS
HEADDSN DS
HEADDATE DS
ORG
PAGENO DS
ORG
INAREA DS
ORG
INSOURC DS
INMEM DS
IN7388 DS
INCOUNT DS
ORG
LINE DS
ORG
LMEM DS
LCOUNT DS
LSOURC DS
L7380 DS
ORG
DS

50 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

PL2'0"
P'31°
M AMJ J A S 0N
p'28,31,30,31,30,31,31,30,31,30"
Pr31’
PL2
PL2
C"MM/DD/YY"'
F

INSERT

CL133
HEADER+L'HEAD+10
cLs,c' DSN='
CL44,5C

CL8
HEADER+L"HEADER-5
CL4

CL93
INAREA
CL72
CL8
CL8
CL5

CL133
LINE+1
cLs,C
CL5,C
CL72
CL8

]

WORKDLEN EQU *-WORKD

THAPSA MAP OF PSA DSECT=PSA
IKJTCB MAP OF TCB DSECT=TCB
TIOT DSECT
TIEFTIOT1 MAP OF TIOT
CcvT DSECT=YES MAP OF CVT DSECT=CVTMAP
JFCB DSECT MAP OF JFCB
JFCBPREF DS CL16 PREFIX
IEFJFCBN LIST=NO JFCB PROPER
DCBD DSORG=PO,DEVD=DA A.T.
EJECT
Keith H Nicaise
Technical Services Manager
Touro Infirmary (USA) © Xephon 1997

Simulating Include files in REXX

THE PROBLEMS

The purpose of this article is to explain a process I have developed for
simulating include files in REXX EXECs. One of the accepted ways
to prevent repetition of code in any language is to use include files for
the common code. In this way the code is part of the program and is
included in it at compile time. In REXX there is no such feature.

The accepted procedure is to use external REXX EXECs and to
invoke them as subroutines or functions. The drawback to this
solution is that only values passed as parameters on the call are
available to the called subroutine (or function). If it was defined
internally within the REXX EXEC then all the caller’s values would
be accessible unless a PROCEDURE command included in the
subroutine.

A number of problems are encountered with parameter passing and
returning when calling external REXX EXECs. The main ones are:

» Itisnot possible to pass a list of variables based on stems. In this
case it would be necessary to pass each value as a separate
parameter.

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 51

The number of parameters that can be passed is limited to 30 (or
15 — depending on the REXX PTF level). Although this seems to
be a reasonable number there are a number of cases where this is
not sufficient.

It is possible to pass more than one value in a single parameter
(separated by blanks, for example), however this does not work
if blanks are to be included in the parameter value itself.

Any change in the parameters required by the called REXX
requires changes to each EXEC that invokes it.

Itis only possible to return one value from the called EXEC. This
value is returned as the parameter of the return statement and is
available in the variable RESULT (when the EXEC is called as a
subroutine) or as the function return value (when called as a
function).

POSSIBLE SOLUTIONS

A number of options are available to solve these problems. However,
none of these options covers all possibilities.

52

Pass and return the values via the stack. This is done by using
PUSH and PULL commands. It is advisable to use the
NEWSTACK command before filling the stack and the
DELSTACK after reading it so as to hide the contents of other
stacks from the EXEC.

This solution works quite well although it is a bit messy in the
code. It will not work if the external EXEC is invoked as a TSO
or ISPF command. In this case the lines queued by the invoked
EXEC will be interpreted by the operating system as commands.
To prevent this it is necessary to add a NEWSTACK command
after filling the stack before returning to the caller and then a
DELSTACK in the caller before reading the values from the
stack. For example:
Test:

"NEWSTACK'

queue varl

queue var2

call testcall
pull result_value_l

© 1997. Xephon UK telephone 01635 33848, fux 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

pull result value 2
'DELSTACK"

Testcall:
pull varl
pull var2

queue result_value_l
queue result_value_ 2

The main disadvantage of this method is that the order of the
caller and called must be maintained.

* Similar to the previous but, so as to solve the problem of the order
of values, queue actual commands to set values and the
INTERPRET them afterreading them from the stack. Forexample,
to pass the values of variables A and B to the called EXEC:

Caller:

queue
queue

"a =" a
"b="0b>
Called:
do queued()
pull line

interpret line
end

The called EXEC would return values to the caller in the same
way. This solution has the added advantage that passing of stem
based values is easier.

» Pass the values using ISPF commands VPUT and VGET. This
solution is similar to the previous one except that the values are
stored in ISPF controlled variables. The main disadvantage of
this solution is the limited length of names of variables in ISPF
(8 characters). Furthermore, the passing of stem—based variables
is almost impossible via this method.

Pass and return the values as a single value separated by blanks (as
givenabove). Onreturn a PARSE command would be used to separate
the result into its variables. This will solve the problem of the name
lengths and is much clearer in the code. However, if values contain
blanks, this would not work. It would be possible to use a different
character but the same problem would arise if that character exists in
one of the values. For example:

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 53

Caller:

A =1
B =2
c= 3
call testcall AB C
parse var result result_var_1 result_var_2 result_var_3

Called:
arg a b ¢

return resl res2 res3

We were left looking for a solution that would have the same effect as
an include statement in PL/I etc. In this way the code would be
included in the main EXEC and all the variables would be accessible.
The solution we found was to use the INTERPRET command, so as
to execute commands inline within the EXEC. This interpret command
allows the construction of commands in REXX variables and execution
of these commands as if they were part of the code. In this way it is
possible to build dynamic commands within the EXEC.

The solution was to construct the required code externally to the main
EXECs. These external EXECs are then read in at the start of the ISPF
application and constructed in a single variable, which contains all the
commands that were in the original EXECs.

Whenever it is necessary to execute the commands, an INTERPRET
command on the variable is performed. In this way all the variables are
fully accessible. Furthermore, any changes made to the EXEC are
automatically reflected in the caller and no change is needed so as to
pass the extra parameters. The only stipulation is that these external
EXECs can only use values that are available in all the EXECs.

The constructed command variables are stored as ISPF variables and
can be retrieved by any EXEC that requires to execute them. The best
way to perform this, we found, was to construct one more ISPF
variable that contains all the VGET commands for all the command
variables. In this way, if a new EXEC is added, then no change is
needed. This is especially important since the INTERPRETed
commands can themselves include INTERPRET commands.

54 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

PARSEMEM

/**/

/* This REXX EXEC is used for a creating a 1ine of commands that can */

/* be used by another REXX EXEC in an INTERPRET command. */
/* */
/* The EXECwill read the lines of the specified file and return them */
/* as a single variable with a semi-colon between the Tines. */
/* The calling EXEC can then execute the commands using the INTERPRET */
/* command. */
/* */
/* The EXEC is useful where it is necessary to execute the same */
/* commands in a number of EXEC but it is not possible to put them in */
/* in a called EXEC. For example, when the function must changed a */
/* number of variables. */
/* */
/* In this way, any change will be reflected in all the EXECs. */
/* */
/* The EXEC receives the following parameters: */
/* */
/* 1. A 1ist of libraries to search for the member. */
/* 2. Name of the member to fetch. */
/* */

/**/

arg libraries , member

address TSO
/**/
/* Search the 1ibraries looking for the member. If it is not found */
/* then exit with no string. */
/**/

do i = 1 to words(libraries)

filename = "'"word(libraries,i)"("member"”)"'"
if sysdsn(filename) = '0OK' then
lTeave

end
if i > words(libraries) then

return "'
/**/
/* Read in all the Tines of the exec. */

/**/

"ALLOC F(EXEC) DS("filename") REUSE SHR"

'EXECIO * DISKR EXEC (STEM LINES. FINIS'

"FREE F(EXEC)"
/**/
/* Now Toop over all the lines concatenating them into one string. */
/* Insert a semi-colon between the commands. */
/* If the last character of the line is a comma then the next Tine is

*/

/* a continuation. In this case the trailing comma is removed and the */
/* lines are concatenated. */

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 55

/**/
all_lines =
do I =1 to lines.®
Tine = strip(lines.i)
if right(line,1) = ',"' then
do
line = Teft(line,Tength(line)-1)
all_lines = all_lines||line
end
else
all_lines = all_lines||line';"
end

/**/

/* Now return the result to the caller so that it can be used in an */
/* INTERPRET command. */

/**/

return all_lines

Below is an EXEC that builds all the ISPF variables for the commands.
Each one contains the code from one EXEC:

/**/

/* */
/* This EXEC is used to set up the internal macros for the CSP41 */
/* EXECs. It is invoked at the entry to CSP41. */
/* */

/************************************‘k******‘k**************************/

search libraries = CSP4s1ib()
parse var search_libraries sysexecl sysexec2
if sysexec2 = '' then sysexec2 = sysexecl

CSP4CHKP = cparsmem(search_libraries , 'CSP4CHKP")

CSPACHMS = cparsmem(search_libraries , 'CSP4CHMS')

CSP4DETL = cparsmem(search_libraries , 'CSPADETL')

CSP4EFIL = cparsmem(search_libraries , 'CSP4EFIL")

CSP4QUAL = cparsmem(search_libraries , 'CSP4QUAL")

CSP4SLST = cparsmem(search _libraries , 'CSP4SLST')

CSP4VGET = cparsmem(search_libraries , 'CSP4VGET")

CSP4VPUT = cparsmem(search_libraries , 'CSP4VPUT')

address ISPEXEC ,

"VPUT (CSP4CHKP,CSPACHMS,CSP4DETL,CSP4EFIL" ,
"CSP4QUAL,CSP4SLST,CSP4VGET,CSP4VPUT) SHARED"

CSP4MGET = 'address ISPEXEC' ,

'"VGET (CSP4CHKP,CSP4CHMS,CSP4DETL,CSP4EFIL, " s
'CSP4QUAL,CSP4SLST,CSP4VGET,CSP4VPUT) SHARED™'

address ISPEXEC 'VPUT (CSP4MGET,SYSEXEC1,SYSEXEC2) SHARED'

exit

56 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492,

It is also possible to use the function directly by using the interpret
command on the result of the call to the external function PARSEMEM.
For example:

Interpret parsemem('LIB1 LIB2', '"MEMBER')

Below is an example of an EXEC that will be interpreted:

/**/
/* This EXEC is used by the EXECsto set the qualifiers for the temp */
/* files. */
/**/
parse value time() with hh':" mm ":' ss .

scndqual = "T'||hh||mm]||ss

qual = mdr||p||"."||scndqual

Following is an example the use of the EXECsin another EXEC:

/* REXX */

/* ___ */
/* C.S.P. rel. 4.1 - UTILITIES */
/* */
/* This program generate a job that move a member from one msl */
/* to another. The program can get as input an asterisk (*) as */
/* a wildcard character to represent one or more characters in */
/* the member name. */
/* To move 2 or more members, put the names in a file and use the */
/* file options. */
/* */
/* Libraries : Panels - SYS.ALL.ISRPLIB */
/* Skels - SYS.ALL.ISPSLIB */
/* Msgs - SYS.ALL.ISPMLIB */
/* Macros - SYS.CSP.EXEC */
/* ___ */
address ISPEXEC

/* ___ */
/* Get the command for GETting all the commands from the ISPF */
/* variables. Execute it to get all the commands. */
/* */
/* Next exec the VGET EXEC commands so as to get all the variables */
/* needed for the EXEC from the application profile pool. */
/* ___ */

'VGET CSP4MGET'
interpret CSPAMGET
interpret CSP4VGET
function = 'COPYMEM'

/* ___ */
/* Display panel */
/* ___ */

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 57

"DISPLAY PANEL(CSP4M2M)"
Ret = Rc

do while Ret -= 8
call process_first_screen
"DISPLAY PANEL(CSP4M2M)"
Ret = rc
end
exit
process_first_screen:
Csrfield = "'
Error = FALSE

/* ... */
/* Checking the data in the screen */
/% */
/* Checking if the files exist ... */
/* ... */

if Sysdsn("'"FROMMSL"'") -= "0K" then
do

"SETMSG MSG(CSP41@G)"

Csrfield = "FROMMSL"

return
end

if Sysdsn("'"TOMSL"'") -= "OK" then
do

"SETMSG MSG(CSP41@G)"

Csrfield = "TOMSL"

return
end
/* __ */
/* Generate qualifiers for temporary files. Use pre-built command */
/* ... */
p=
interpret CSP4QUAL
/* --- */
/* Edit file if needed */
/* --- *x/
interpret CSP4EFIL
/* --- */
/* Moving the csp commands to the temp dsn. */
/* ... */

address ISPEXEC "TBCREATE CSP4M2M NAMES(LINE) NOWRITE"
address TSO "NEWSTACK"
do i =1 to memb.@
Line = "LIST MEMBER(" || STRIP(MEMB.I) || ") "
"TBADD CSP4M2M"
Line = "PRINT(Y) OUTFILE(TEMP) MSL(FROMMSL) REFTYPE(*);"
"TBADD CSP4M2M"

58 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492,

if Lsta = "Y' then
do

Line = "LISTA INFILE(TEMP) PRINT(Y) OUTFILE(TEMP1);"

"TBADD CSP4M2M"

Line = "MSL M(TOMSL) ROMSL(FROMMSL);"

"TBADD CSP4M2M"

Line = "COPYLIST INFILE(TEMP1) PRINT(Y) REPLACE(Y);"

"TBADD CSP4M2M"
end
else
do

Line = "MSL M(TOMSL) ROMSL(FROMMSL);"

"TBADD CSP4M2M"

Line = "COPYLIST INFILE(TEMP1) PRINT(Y) REPLACE(Y);"

"TBADD CSP4M2M"
end

"FTOPEN TEMP"

"VGET (ZTEMPF)"

call csp4jobc mem.1 , 'CMEM'
"FTINCL CSP4M2M"

"FTCLOSE™

"TBCLOSE CSP4M2M"

"TBERASE CSP4M2M"

/* Checking if automatic submition or editing the job is

/* wanted.

if Edit = 'Y' then
"EDIT DATASETC('™||ZTEMPF||"')"
else
address TSQ "SUBMIT '"||ZTEMPF||""'"
interpret CSP4VPUT
return

The interpreted commands CSPAQUAL,CSP4VGET, and CSP4VPUT
are used in all the EXECsin the system. In this way if, for example, we
wish to change the structure of the temporary files prefix, then it is
sufficient to make the change in CSPAQUAL and there is no need to

make changes to every EXEC.

© 1997. Reproduction prohibited. Please inform Xephon of any infringement.

*/
*/

*/
*/
*/

NOTES ABOUT THE INTERPRET COMMAND
The following points should be noted when building the EXECs:

» Interpret commands can be nested. So it is possible to include in
the EXEC:s built calls to other EXECs via interpret commands.

+ All loops must be complete within the command string. It is not
possible to include only the first part of the loop in the interpreted
string and to have part of the loop outside of it.

* Anysignal command will cause immediate exit from the interpret
command. Labels are permitted within the string but are ignored.

» Itisnot possible to jump into the middle of an interpret command
string.

* Any subroutine or function calls in the interpreted string will not
search for the label within the string. Labels will be searched for
only in the EXEC itself. However, after the subroutine/function
completes, control is returned to the interpret command at the
point where the call occurred.

Thislast point allows the possibility to build generic functions thatcan
invoke specific subroutines to perform certain tasks. In this way, an
EXEC that supplies a general structure for a series of actions can be
defined. Within this interpreted EXEC it is possible to include call
commands to perform specific tasks required by the EXECs that
include the interpret command. The interpret command will invoke
the local subroutines whilst maintaining the general structure of the
EXEC. The local subroutines will perform the EXEC-specific
commands and then return control to the interpret command.

An example of this would be a generic structure for building jobs via
ISPF screens. The structure of the main loop could be maintained in
one interpreted EXEC with calls to subroutines that perform the
DISPLAY commands for the panels and the FTINCL commands for
the skeleton construction.

Take the above code as an example. All the code from the start of the
skeleton building to the end is standard in all EXECs. The only section
that is different is the includes. All that needs to be done is to take that
section and create another interpreted EXEC. In place of the FTINCL
command a call command would be inserted. This would call a
subroutine included in the main EXEC and would be different in each
EXEC.

60 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

OVERHEADS
There are a number of overheads inherent in this method. These are:

¢ The call to PARSEMEM to set-up each EXEC into the variables
at the start and the VPUT commands to save them. This step can
be particularly heavy especially if there are many EXECs.

* The VGET commands to get the variables with the commands
within them.

+ Commands included in an interpret command execute slower
than commands in the actual code. This is because the command
hastobe parsed every time whereas the standard EXEC commands
are parsed only once.

* The EXEC cannot include any SIGL or internal calls. This
increases the complexity of the EXEC.

These overheads must be weighed against the gains in productivity in
future updates. The load time can be reduced by loading only those
EXECs thatare actually used. They can be loaded at first-use time and,
in this way, only those EXECs used will be loaded.

One way of doing this is to set up the variable that is to contain the
EXEC so as to self load the EXEC. For example:

CSP4QUAL = "CSP4QUAL=PARSEMEM('LIB1 LIB2','CSP4QUAL");",
"VPUT CSP4QUAL; INTERPRET CSP4QUAL"

This would then be saved as the value of CSPAQUAL. When it is
INTERPRETed the first time it will simply parse the same named
EXEC and replace the stored string with the created one. It then
INTERPRETS the new string. In future calls to the EXEC the newly
created string will be used.

Jonathan Blitz
Senior Systems Programmer
AnyKey Computer Sytems Ltd (Israel) © Xephon 1997

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 61

Organize your disks and claim free space

Do you ever need to move files from one volume to another in a fast
and clean way? Do you ever wonder why user X likes to allocate one
cylinder to create a ten-line file, instead of allocating one track? If you
do, you may find something of interest below.

IBM supplies a utility program with MVS known as ADRDSSU. In
its standard form, it is not very user-friendly. However, thanks to Mike
Cowlishaw, we can easily overcome that handicap and make it work
for our benefit by designing REXX programs around it. This is what
I have done with the following two programs.

The first program, MOVEFILE, is designed around the COPY option
of ADRDSSU, and allows you to move a file or a group of files
between volumes. Simply invoke the MOVEFILE EXEC, passing as
argument the name of the file you want to move. The EXEC will ask
you the original volume of the file and the destination volume. With
those three arguments, the EXEC creates and submits a job that will
perform the operation. Since the file is going to be freshly allocated,
ADRDSSU allows you to specify how you want it to be allocated — in
blocks, tracks, or cylinders. Personally, I prefer tracks, and so, as a
side-effect of the move operation, those cylinder mammoths to which
I was referring previously will be reduced to more decent proportions.

If you develop the MOVE concept, you can use it to downsize the
allocated space, and then put the file back in its original volume. That
is what the second program, REALLOC, does. REALLOC is simply
adouble MOVE, where the destination volume functions as a temporary
volume. REALLOC generates a two-step job— the first moves the file
to another volume of your choice, and the second puts it back in the
original place.

USAGE NOTES

Both MOVEFILE and REALLOC are especially useful to deal with
a group of files. They can be VSAM, SEQs, or PDS. To specify a group
of files, use the ADRDSSU filtering rules (see DFSMSdss Storage
Administration Reference). As a reminder of those rules, here are
some examples:

62 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

IBM.* Means any file with only two qualifiers, the first being
IBM.

IBM.** Means any file with any number of qualifiers, the first
being IBM.

IBM* ** Means any file with any number of qualifiers, the first
beginning with IBM.

If a file that is to be processed is allocated by another task, it will not
be processed. The same is true for an empty PDS. If such is the case,
areturn code of 8 or4 will appear. You may ignore it, since all the other
files are correctly processed.

VSAM files will not be space-reduced, so REALLOC is useless for
them. If you use REALLOC for a group of files, be sure that the
temporary volume you specify does not contain any file that fits into
your generic specification, otherwise they will be moved in the jobs
second step. As an example, if you REALLOC IBM.* files in volume
A, using volume B as temporary volume, and volume B also contains
IBM.* files, they will all end up in volume A.

MOVEFILE

/* REXX MVS ***/
/* */
/* MoveFile - Moves a file or group of files */
/* from one volume to another */
/* */
/***/
jobfile = userid()||".movefile" /* job file */
xx = msg(off) /* check if jobfile */
"free da('"jobfile"")" /* already exists */
okay = sysdsn(jobfile) /* if not, create it*/

if okay—="0K" then do

"free da('"jobfile"')"

"alloc da('"jobfile"") dd(ddtemp),
new reuse blksize(32008) Trecl(8@),
recfm(f,b) dsorg(ps) space(l 1) tracks"”

if rc &= @ then do
say "Error" rc
signal saida

allocating "jobfile

end
end
else do /* If jobfile exists,*/
"alloc da('"jobfile"') dd(ddtemp) shr" /* retrieve previous */
if rc = @ then do /* volume to use */
say "Error” rc " allocating "jobfile /* as default */

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 63

signal saida

end
execio 5 diskr ddtemp
do 5
pull Tinha
end

parse var linha . "DSCINCLUDE(™ dsnll "))"
execio 1 diskr ddtemp

parse pull linha . "(" volll ™)" .

execio 1 diskr ddtemp "(finis"

parse pull Tinha . "(" vol22 ")" .

end
arg dsnl . /* get arg (filename)*/
if dsnl —-= "" then do /* get its volume */

dsnll = dsnl
xXx = 1istdsi(dsnl)
volll = sysvolume

end

say"MoveFile: Input File? (ENTER for" dsnll
pull dsnl .

if dsnl = "" then dsnl = dsnll

say" Input Volume? (ENTER for"™ volll
pull voll .

if voll = "" then voll = volll

say" Output Volume? (ENTER for" vol22
pull vol2 .

if vol2 = "" then vol2 = vol22

dropbuf

dsnl = strip(dsnl,,""'™)

queue "//"userid()"@ JOB MSGCLASS=X,MSGLEVEL=(1,1)"
queue "//STEP1 EXEC PGM=ADRDSSU,REGION=2M"

queue "//SYSPRINT DD SYSOUT=*"

queue "//SYSIN DD *"

queue " COPY DS(INCLUDE("dsn1™)) -"

queue " INDYNAM ("vo11"™) -
queue " OUTDYNAM ("vo12™) -"
queue " CATALOG ="
queue " DELETE ="
queue " FORCE ="
queue " TGTALLOC (TRK) -
queue " PROCESS (SYS1)"

queue "/*"

queue ""

"execio * diskw ddtemp (finis"
"submit ‘'"jobfile"'"

saida:

"free da('"jobfile"')"

"free dd(ddtemp)"

exit

REALLOC

/* REXX MVS ***/

64 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

/* Realloc - Reallocates a file in tracks */
/***/

jobfile = userid()||".realloc" /* job file */
xx = msg(off) /* check if jobfile */
"free da('"jobfile""')" /* already exists */
okay = sysdsn(jobfile) /* if not, create it*/

if okay—-="0K" then do

"free da('"jobfile""')"

"alloc da('"jobfile"') dd(ddtemp),
new reuse blksize(3208) 1recl1(80),
recfm(f,b) dsorg(ps) space(l 1) tracks"

if rc = @ then do
say "Error” rc " allocating "jobfile
signal saida

end
end
else do /* If jobfile exists,*/
"alloc da('"jobfile™"') dd(ddtemp) shr" /* retrieve previous */
if rc ~— @ then do /* volume to use */
say "Error™ rc " allocating "jobfile /* as default */
signal saida
end
execio 5 diskr ddtemp
do 5
pull Tinha
end

parse var linha . "DS(INCLUDE(" dsnll ™))"
execio 1 diskr ddtemp

parse pull linha . "(" volll ")" .

execio 1 diskr ddtemp "(finis"

parse pull Tinha . "(" vol22 ")" .

end

arg dsnl . /* get arg (filename)*/

if dsnl -= "" then do /* get its volume */
dsnll = dsnl

xx = 1istdsi(dsnl)
volll = sysvolume

end

say"Realloc: Input File? (ENTER for" dsnll
pull dsnl .

if dsnl = "" then dsnl = dsnll

say" Input Volume? (ENTER for"™ volll
pull voll .

if voll = "" then voll = volll

say" Temporary Volume? (ENTER for" vol22
pull vol2 .

if vol2 = "" then vol2 = vol22

dropbuf

dsnl = strip(dsnl,,""'")

queue "//"userid()"@ JOB MSGCLASS=X,MSGLEVEL=(1,1)"
queue "//STEP1 EXEC PGM=ADRDSSU,REGION=2M"

queue "//SYSPRINT DD SYSOUT=*"

© 1997. Reproduction prohibited. Please inform Xephon of any infringement.

queue "//SYSIN DD **
queue " COPY DS(INCLUDE("dsnl™)) -"

queue " INDYNAM ("voll"™) -
queue " OUTDYNAM ("vol12™) ="
queue " CATALOG ="
queue " DELETE ="
queue " FORCE ="
queue " TGTALLOC (TRK) ="
queue " PROCESS (SYS1)"

queue "/*"

queue "//STEP2 EXEC PGM=ADRDSSU,REGION=2M"
queue "//SYSPRINT DD SYSOUT=*"

queue "//SYSIN DD *"

queue " COPY DS(INCLUDE("dsnl")) -"

queue " INDYNAM ("vol2") -"
queue " OUTDYNAM ("vol11™) -
queue " CATALOG ="
queue " DELETE ="
queue " FORCE ="
queue " TGTALLOC (TRK) -"
queue " PROCESS (SYS1)"

queue "/*"

queue ""

"execio * diskw ddtemp (finis"
"submit '"jobfile"'"

saida:

"free da('"jobfile"')"

"free dd(ddtemp)"

exit

Luis Paulo Figueiredo Sousa Ribeiro
Systems programmer
Edinfor (Portugal) © Xephon 1997

Useful Assembler macros — part 3

We complete our look at the Assembler macros BSM31, BALRXA, and
CALLXA. Also included are AUTHON and AUTHOFF which will
dynamically turn on/off authorization through the traditional
authorization SVC.

BSM31 MACRO

* SET ADDRESSING MODE TO 31 BIT IF RUNNING UNDER XA/ESA
* NEUTRAL UNDER MVS/378

66 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

USES WORK REGISTER, DEFAULT TO R15
WORKREGISTER CAN BE OVERWRITTEN BY BSM (RX)
WORK REG POINTS TO NEXT INSTR AND CONTAINS ADDR MODE
CODE FOR SUPPORT OF NON-XA (MVS/37@8) WILL ONLY BE GENERATED IF
GLOBAL VARIABLE FROM INITR &MVS37@8S=SUP IS SPECIFIED OR &SPLEVEL=1;
IF MACRO INITR IS NOT USED AND &SPLEVEL > 1, IT IS STILL POSSIBLE
TO FORCE GENERATION OF MVS/370 VIA THE PARAMETER MVS37@=SUP.
CODE FOR SUPPORT OF XA/ESA WILL ONLY BE GENERATED IF &SPLEVEL > 1.
MACRO
&NAME BSM31 ®,&MVS37@0=NOTSUP
GBLC &MVS378S COMES FROM INITR IF THIS MACRO IS USED
GBLC &SYSSPLV MACRO LEVEL
SPLEVEL TEST SET SYSSPLV
LCLC &NONXA
&NONXA SETC '"B31'.'&SYSNDX'
AIF ("&MVS37@S' NE "').INTSUPP
&MVS37@S SETC '&MVS37@' . SET ONLY FROM PARAMETER IF INITR IS NOT USED
INTSUPP ANOP
ATF ('&MVS370S' EQ 'NOTSUP').SUPP
AIF ('&MVS370S' EQ 'SUP').SUPP
MNOTE 8, "MVS370 MUST BE INDICATED AS NOTSUP OR SUP’

* % ok X X %k X %

MEXIT
SUPP ANOP

AIF ('&SYSSPLV' GT "1').XASUPP XA-MACRO LEVEL
&MVS37@S SETC 'SUP’ FORCE MVS37@ SUPPORT

XASUPP ANOP
AIF ('®' EQ "').RNULL
AIF ('®'(1,1) EQ '(").AREG

AGO .RNULL
AREG ANOP
®R SETC '®(1)'
AGO .REG
RNULL ANOP
®R SETC '15°
REG ANOP ’

&NAME DS PH .
AIF ('&MVS37@S' EQ "NOTSUP').XA
AIF ('&SYSSPLV' LT "2').NONXA BYPASS IF NOT XA/ESA MACLEVEL
TESTXA (®R)

LTR ®R,®R . TEST FOR MODE
BP &NONXA . MVS/370

XA ANOP
LA ®R, &NONXA . POINT TO AMODE 31 CODE
0 ®R,&NONXA-4 TURN ON AMODE 31 BIT
BSM @,®R . BRANCH TO AMODE 31 CODE
CNOP 02,4 ALIGN
DC X'80000000" AMODE 31 BIT

&NONXA DS OH .

NONXA ANOP
BALR ®R,8 LET WORK REG POINT TO NEXT
MEXIT
MEND

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 67

BALRXA MACRO

GENERATES BASSM RX,RY IF RUNNING UNDER XA/ESA, CALL AS BALRXA R14,R15
GENERATES BALR RX,RY IF RUNNING UNDER MVS/378, CALL AS BALRXA R14,R15
ENSURES THAT A SUBROUTINE IN AN XA/ESA ENVIRONMENT IS CALLED IN RIGHT
ADDRESSING MODE; THE REQUIREMENT IS THAT R15 CONTAINS CORRECT
ADDRESSING MODE IN HIGH ORDER BIT; THE ADDRESSING MODE OF A SUB-
ROUTINE IS RETURNED TO THE USER FROM THE LOAD MACRO.

CODE FOR SUPPORT OF NON-XA (MVS/37@) WILL ONLY BE GENERATED IF

GLOBAL VARIABLE FROM INITR &MVS37@S=SUP IS SPECIFIED OR &SPLEVEL=1;
IF MACRO INITR IS NOT USED AND &SPLEVEL > 1, IT IS STILL POSSIBLE

TO FORCE GENERATION OF MVS/37@ VIA THE PARAMETER MVS37@=SUP.

CODE FOR SUPPORT OF XA/ESA WILL ONLY BE GENERATED IF &SPLEVEL > 1.

IF SUBROUTINE RETURNS IN DIFFERENT ADDRESSING MODE THAN IT WAS
CALLED, THEN ADDRESSING MODE IS CORRECTED BACK.

MACRO

BALRXA &RREG, &BREG,&MVS37@=NOTSUP

GBLC &MVS370S COMES FROM INITR IF THIS MACRO IS USED

GBLC &SYSSPLV MACRO LEVEL

SPLEVEL TEST SET SYSSPLV

LCLC &XA24,8XA31

LCLC &NEXTOP

SETC "BL1"'.'&SYSNDX'

SETC "BL2'.'&SYSNDX'

SETC 'BL3'.'&SYSNDX'

AIF ("&MVS37@S' NE '').INTSUPP

&MVS37@S SETC '&MVS37@' . SET ONLY FROM PARAMETER IF INITR IS NOT USED
INTSUPP ANOP

AIF ('&MVS3708S' EQ
AIF ('&MVS3708S' EQ
MNOTE 8, 'MVS37@ MUST

* Ok o ok ok ok ok ok % F

&NAME

&XA24
&XA31
&NEXTOP

'NOTSUP").SUPP
'SUP').SUPP
BE INDICATED AS NOTSUP OR SUP'

MEXIT
SUPP ANOP
AIF ("&SYSSPLV" GT "1').XASUPP XA-MACRO LEVEL
&MVS37@S SETC 'SUP’ FORCE MVS37@ SUPPORT
XASUPP ANOP
AIF ('&SYSSPLV" LT "2").NONXA BYPASS IF NOT XA/ESA MACLEVEL
TESTXA (&RREG) .
LTR &RREG,&RREG . TEST FOR XA
BM &XA31 . USE BASSM FOR XA/ESA 31-BIT
BZ &XA24 . USE BASSM FOR XA/ESA 24 BIT
AIF ('&MVS370S' EQ 'NOTSUP').XA
NONXA ANOP
BALR &RREG,&BREG . LINK
AIF ("&SYSSPLV' LT '2').BYPNON2 BYPASS IF NOT XA/ESA MACLVL
B &NEXTOP NEXT INLINE INSTRUCTION
AGO XA
BYPNON2 ANOP
MEXIT
XA ANOP
&XA24 DS OH
BASSM &RREG,&BREG . LINK
BSM24 (&RREG) ENSURE STILL IN 24 BIT MODE
68 © 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

B &NEXTOP NEXT INLINE INSTRUCTION
&XA31 DS OH
BASSM &RREG,&BREG . LINK
BSM31 (&RREG) . ENSURE STILL IN 31 BIT MODE
&NEXTOP DS OH
BALR &RREG,@ . LET RET-REG CONTAIN SAME VALUE AS IF REAL BALR
MEND

CALLXA MACRO

* WORKS AS CALL MACRO AT THE SAME TIME AS ENSURING CORRECT ADDR-MODE
* GENERATES BASSM 14,15 IF RUNNING UNDER XA/ESA.
* GENERATES BALR 14,15 IF RUNNING UNDER MVS/370.
* ENSURES THAT A SUBROUTINE IN AN XA/ESA ENVIRONMENT IS CALLED IN RIGHT
* ADDRESSING MODE; THE REQUIREMENT IS THAT R15 CONTAINS CORRECT
* ADDRESSING MODE IN HIGH ORDER BIT; THE ADDRESSING MODE OF A SUB-
* ROUTINE IS RETURNED TO THE USER FROM THE LOAD MACRO.
* CODE FOR SUPPORT OF NON-XA (MVS/37@) WILL ONLY BE GENERATED IF
* GLOBAL VARIABLE FROM INITR &MVS37@S=SUP IS SPECIFIED OR &SPLEVEL=1;
* IF MACRO INITR IS NOT USED AND &SPLEVEL > 1, IT IS STILL POSSIBLE
* TO FORCE GENERATION OF MVS/37@ VIA THE PARAMETER MVS37@=SUP.
* CODE FOR SUPPORT OF XA/ESA WILL ONLY BE GENERATED IF &SPLEVEL > 1.
* IF SUBROUTINE RETURNS IN DIFFERENT ADDRESSING MODE THAN IT WAS
* CALLED, THEN ADDRESSING MODE IS CORRECTED BACK.
MACRO
&NAME CALLXA &ENTRY,&0PRNDS,&VLPARA, &ID=,&MF=1I,&MVS370=NOTSUP
GBLB &IHBSWA,&IHBSWB
GBLC &IHBNO
LCLC &GNAME

GBLC &MVS378S COMES FROM INITR IF THIS MACRO IS USED
GBLC &SYSSPLV MACRO LEVEL
SPLEVEL TEST SET SYSSPLV

LCLC &XA24,8XA31
LCLC &NEXTOP
&XA24 SETC "CX1'.'&SYSNDX"'
&XA31 SETC 'CX2".'&SYSNDX'
&NEXTOP SETC 'CX3'.'&SYSNDX'
AIF ('&MVS37@S' NE '').INTSUPP
&MVS37@S SETC '&MVS37@' . SET ONLY FROM PARAMETER IF INITR IS NOT USED
INTSUPP ANOP
AIF ('&MVS370S" EQ 'NOTSUP').SUPP
AIF ('&MVS370S' EQ 'SUP').SUPP
MNOTE 8,'MVS37@ MUST BE INDICATED AS NOTSUP OR SUP'

MEXIT
SUPP ANOP

AIF ("&SYSSPLV" GT '1").XASUPP XA-MACRO LEVEL
&MVS37@S SETC 'SUP' FORCE MVS378 SUPPORT

XASUPP ANOP

&IHBNO SETC '3@9'

&GNAME ~ SETC "IHB'.'&SYSNDX'
&THBSWA SETB ('&VLPARA' EQ 'VL'")

© 1997. Reproduction prohibited. Please inform Xephon of any infringement. 69

&THBSWB SETB ('&ENTRY' EQ '(15)")

AIF ('&VLPARA' NE '' AND '&VLPARA' NE 'VL').ERROR4

AIF ("&MF' EQ 'L"' AND '&ENTRY' NE '').ERROR1

AIF ('&MF' EQ 'L' AND '&ID' NE '').ERROR2

AIF ('&MF' NE 'L' AND '&ENTRY' EQ '').ERROR3

AIF ('&MF' EQ 'L").CONTC

AIF (&IHBSWB).CONTCC

CNOP 9,4
&NAME B *+8 BRANCH AROUND VCON
&GNAME.B DC V(&ENTRY) ENTRY POINT ADDRESS
CONTC ~ AIF ('&0OPRNDS' EQ "' AND X

('&MF' EQ "I" OR '&MF' EQ 'L')).CONTB

CONTA TIHBOPLTX &ENTRY,&O0PRNDS, &NAME ,MF=&MF

CONTB

CONTD

NONXA

XA
&XA24

&XA31

&NEXTOP
BYPNON2

EXITX
EXITI
CONTCC
&NAME
ERROR1
ERROR2

ERROR3

70

AIF ("&MF' EQ '"L").EXITI

AIF (&IHBSWB).CONTD

L 15, &GNAME. B LOAD 15 WITH ENTRY ADR
ANOP

AIF ('&SYSSPLV' LT '2').NONXA BYPASS IF NOT XA/ESA MACLEVEL
TESTXA (14) .

LTR 14,14 . TEST FOR XA

BM &XA31 . USE BASSM FOR XA/ESA 31-BIT
BZ &XA24 . USE BASSM FOR XA/ESA 24 BIT
AIF ('&MVS37@S' EQ "NOTSUP').XA
ANOP

BALR 14,15 . LINK

AIF ("&SYSSPLV' LT '2').BYPNON2 BYPASS IF NOT XA/ESA MACLVL
B &NEXTOP NEXT INLINE INSTRUCTION
ANOP

DS OH

BASSM 14,15 . LINK

BSM24 (14) . ENSURE STILL IN 24 BIT MODE

B &NEXTOP NEXT INLINE INSTRUCTION

DS oH

BASSM 14,15 . LINK

BSM31 (14) . ENSURE STILL IN 31 BIT MODE
DS OH
ANOP

AIF ('&ID' EQ '').EXITX

DC X'4700" NOP INSTRUCTION WITH
DC AL2(&ID) ID IN LAST TWO BYTES
DS o
ANOP

BALR 14,0 . LET RET-REG CONTAIN SAME VALUE AS IF REAL BALR
MEXIT
ANOP

DS OH

AGO .CONTC

IHBERMAC 73,&IHBNO,&ENTRY ENTRY W/ MF=L

MEXIT

IHBERMAC 74,&IHBNO,&ID ID W/ MF=L

MEXIT

IHBERMAC 26,&IHBNO ENTRY SYMBOL MISSING

© 1997. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492,

MEXIT
IHBERMAC 1014,THIRD
MEND

ERROR4

AUTHON MACRO

INVALID THIRD PARM

* AUTHON TURNS ON AUTHORIZATION IF NOT ALREADY ON
* PARAMETER BRANCH=YES CALL TESTAUTH WITH BRANCH-ENTRY; DEFAULT NO

MACRO
&NAME AUTHON &BRANCH=NO
&APFON SETC 'AO1'.'&SYSNDX'
&NAME DS oH

LR R@,R15

SAVE R15

AIF ("&BRANCH' EQ 'YES').BRANCH

TESTAUTH FCTN=1
BRANCH ANOP

TEST FOR APF

AIF ('&BRANCH' NE 'YES').NBRANCH

TESTAUTH FCTN=1,BRANCH=YES
NBRANCH ANOP
LTR ~ R15,R15

LR R15,R®
BZ &APFON
LA RE,1
SVC 235

&APFON DS OH .
MEND

AUTHOFF MACRO

TEST FOR APF

TEST FOR APF ON
RESTORE R15
APF ALREADY ON
REQUEST AUTH
REQUEST AUTH

* AUTHOFF TURNS OFF AUTHORIZATION IF NOT ALREADY OFF
* PARAMETER BRANCH=YES CALL TESTAUTH WITH BRANCH-ENTRY; DEFAULT NO

MACRO
&NAME AUTHOFF &BRANCH=NO
&APFOFF SETC "AF1'.'&SYSNDX'
&NAME DS OH

LR RO,R15

SAVE R15

AIF ('&BRANCH' EQ 'YES').BRANCH

TESTAUTH FCTN=1
BRANCH ANOP

TEST FOR APF

AIF ('&BRANCH' NE 'YES').NBRANCH

TESTAUTH FCTN=1,BRANCH=YES
NBRANCH ANOP

TEST FOR APF

TEST FOR APF ON
RESTORE R15

APF ALREADY OFF
TURN OFF AUTH
TURN OFF AUTH

LTR R15,R15
LR R15,RO
BNZ &APFOFF
SR RO,RO
SVC 235

&APFOFF DS @H .
MEND

Nils Plum

Systems Programmer (Denmark)

© Xephon 1997

© 1997. Reproduction prohibited. Please inform Xephon of any infringement.

71

MVS news

MacKinney Systems has announced JES
Queue Client for Printers. The utility is a
VTAM-based print management system
which prints any report from the JES output
queue to network attached printers defined to
VTAM. Printer types supported are SNA,
non-SNA, and SCS. Reports in the JES
output queue are automatically selected
based on their DESTID and printed to the
printer defined for that destination. Both
machine code and ASA control characters
are supported.

For further information contact:
MacKinney Systems, 2740 S Glenstone,
Suite 103, Springfield, Missouri, 65804-
3737, USA.

Tel: (417) 882 8012

Fax: (417) 882 7569.

* %k

Advent Software Corporation has
announced Sys/Stat for MVS Release 2.2.0.
The utility provides OS/390 conversion
support and an enhanced user interface. New
features include the HSM Query and
Command facility (HSM/QCEF), which aids
management of DESMShsm resources in the
TSO/ISPF and batch environments. Users
can search DFHSM databases to retrieve
migrated and back-up dataset statistics, and
review HSM volume control information.
For further information contact:

Advent Software Corporation, 340 W
Butterfield Road, Suite 4B, Elmhurst, IL
60126, USA.

Tel: (630) 297 5449

Fax: (630) 941 7980.

IBM has announced a replacement for its
IMSPARS and IMSASAP IMS tuning
products for MVS, adding a range of new
capabilities and features. IMS Performance
Analyser, available now, will provide the
reporting tools of the older products and have
an ISPF CUA user interface for report
requests. It will also provide for revised and
enhanced reports, as well as brand new
reports, and will support IMS Versions 4, 5,
and 6 from a single LOADLIB. There will be
an option for using GDDM for selected
graphical reports, and an ability to save
selected report data for PC tools.

Contact your local IBM marketing
representative for further information.

* & &

Boole & Babbage have announced enhanced
capabilities for Command MQ. Command
MQ now supports end-to-end availability
management for Microsoft Message
Queuing Server (MSMQ). The utility which
supports MVS provides a centralized
console for managing IBM’s MQSeries and
MSMQ and overseeing the primary areas of
their operations in distributed environments.

For further information contact:

Boole & Babbage, 3131 Zanker Road,

San Jose, CA 95134 - 1933, USA.

Tel: (408) 526 3000

Fax: (408) 526 3053 or

Boole & Babbage (UK) Ltd, Burnham
House, Clivemont Road, Maidenhead, SL6
7BU, UK.

Tel: (01628) 771909

Fax: (01628) 770458.

xephon

