

© Xephon plc 2002

August 2002

82

In this issue

AIX
�
�
�
�
��

3 Back-up servers in the DMZ
8 Script to control the printing of PS

files based on the number of pages
12 The case statement
22 Performance monitoring using

NMON
28 Understanding the uniq command
44 AIX news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1999 issue, are available
separately to subscribers for £16.00 ($24.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon plc 2002. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.

Printed in England.

Editors
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

 3© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Back-up servers in the DMZ

Taking the mksysb backup images is important. The main problem is when
the servers to be backed up (mksysb) are in what is referred to by IBM as
a De-Militarized Zone (DMZ), which means it is an area outside the
firewall. In this case, the Network File System (NFS) – a client/server
application that lets a computer user view and optionally store and update
files on a remote computer as though they were on the user’s own computer
– was not permitted by the firewall. So, we needed another way for the
NIM-server to get the mksysb back-up image file from the NIM-client.

For this I wrote two scripts. The first one, mksysb.sh, works on the NIM-
client (starts once a week from crontab) and creates the mksysb back-up
image file. And the second one, ftp_nim.sh, works on the NIM-server
(starts once a week from crontab after the mksysb back-up image file is
created) and gets the mksysb file from the NIM-client via FTP. In both
scripts, if it completes successfully, it deletes the old files. It then mails the
log file to the administrator so he or she can see whether mksysb and FTP
have successfully completed. An Outlook mail example is shown at the end
of the article.

For the NIM-client, /mksysb is the directory for mksysb images and log
files.

For the NIM-server, /export/images/<server_hostname> is the directory
where the mksysb images are held.

MKSYSB.SH

���������	

�
���
�
���
��
����������

�
�	�
������
�
���
������
�
�����
��
��
�� �
!�
�	�
���"��

�

���!
�	�
������!��
�������

�
"
��
� ��#

���$� ����%&	!���
��&

 !��� �%������������$'(���$� ����)$&�
��
*+,+-$+.+�+�&� !�

������$�� �%������������$'(���$� ����)$&�
��
*+,+-$+.+�+�&

�
/�
��
������

���������������
&��&
&��&
&�"&
&�0&
'(������$�� �)
1
' !��� �
�12�

4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

�
3	������
��
�	�
������
��
��
�� �
��
��������� �
���
���

�
�
' !��� �
4
����
56
����
3!�� ����
/�������� �5
1
���"���
�12�

��
7
'8
��9
�
:

�	��

�����

11
' !��� �
�12�

��	!
5-;/./6
��
��
�
�����
��
/<33=//><??.
���
���
�!�

'(���$� ����)5
11
' !��� �
�12�

�
3	
�����
!@���

��
��!��
�!
������#��
��
�!�
����

����������	!@�
������#��
��

'(������$�� �)
' !��� �
11
' !��� �
�12�

�
��������� �

�� ���
�	�
! ���
"����!�
�
�����

��
 !��� ��

�
A! ���
�	
�
B
�
��C

�����

11
' !��� �
�12�

��	!
5D� �����
! ���
"����!�
��
��

��
 !��� �#5
11
' !��� �
�12�

�������������
�������
��
��
5����$'(���$� ����)$E5
������
*B
11

' !��� �
�12�

�������������
�������
��
��
5����$'(���$� ����)$E5
������
*B
��F��

��
()
GH
11
' !��� �
�12�

�����

11
' !��� �
�12�

�F��
�

� ��

��	!
5-;/./6
��
��
�
�����
��
IJ�
/<33=//><??.
���
���
�!�

'(���$� ����)5
11
' !��� �
�12�

�F��
�

��

FTP_NIM.SH

���������	

�
���
�
���
��
����������

�
�	�
������
����
������
��
��
�� �

��
���
 !��� �
��!�

�

IK-�� �����
���!
��F�!�����
���
������!��
"�

����

�
>�����!�
�	
�
�
���
���
�!�
�	�
��"��
IK-�� ����

������!�
���$���
(

�
L
��
� ��

 !�
 $���%��F�!�����
����'(���$� ����)

��
��%5IJ�
J;5

�
M������
�	�
��
��
��
!�����

��
���!�
!�����
�!
 !��� �

 !��� �%'(!�
 $���)�����$���$&�
��
*+,+-$+.+�+�&� !�

�
=��!�
����
���
���
�!
������
�!���

�������%5KI>J#

>K?=/
N=3=KL=D
�!�
'(���$� ����)
���5

�������%5=NNJN#
3
��!�
�	
���
�!
'(!�
 $���)
���
>K?=/
IJ�
N=3=KL=D

�!�
'(���$� ����)
���5

�������%5=NNJN#
3
��!�
����

'(���$� ����)
���
>K?=/
IJ�
N=3=KL=D
�!�

'(���$� ����)
���5

������B%5=NNJN#
�
����
�� �
�!��
�!�
�F����
���
>K?=/
IJ�
N=3=KL=D
�!�

 5© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

'(���$� ����)
���5

������O%5=NNJN#
?!���
�
� ���
�	���
����

��
�
��@!��
���
>K?=/
IJ�

N=3=KL=D
�!�
'(���$� ����)
���5

������P%5=NNJN#
<���!@�
�
� ���
���
>K?=/
IJ�
N=3=KL=D
�!�

'(���$� ����)
���5

�
3	���
��
@�

��
��
�	�
���	�
������!��
��
IK-�/��"��

��
'(!�
 $���)
1
' !��� �
�12�

��
7
'A�@�C
�%
'(!�
 $���)
:

�	��

��	!
5'�������5
1
' !��� �
�12�

����$�
�

������

��

�
3	���
@	��	��
�	�
IK-�� ����
��
����
� �

����
�9�B
'(���$� ����)
1
���"���
�12�

��
7
5'85
�%
5�5
:

�	��

��	!
5'�������5
11
' !��� �
�12�

����$�
�

������

��

�
/�
��
>�Q
R!�

�����

11
' !��� �
�12�

��	!
5'A�
��C5
11
' !��� �
�12�

�����
11
' !��� �
�12�

�����
11
' !��� �
�12�

��	!
S/��N�KIM
>�Q
�����
S
11
' !��� �
�12�

�����
11
' !��� �
�12�

���
�"
��
'(���$� ����)
TT
�
11
' !��� �
�12�

����
'����
'�
��@!��

��!���

���

��
'(�
����$���)

 �
������������$E

����
����$E

���

�

�����
11
' !��� �
�12�

��	!
5>KIK/,=D#
'A�
��C5
11
' !��� �
�12�

�����
11
' !��� �
�12�

�
3	������
�	�
!�����
!�
���

��
�����������
@	��	��
��
��
���������

�
!�
�!��
3	������
@	��	��
�	�
����
�!� �
 !�
���

�
�
' !��� �
4
����
5?!���
�
� ��5

1
���"���
�12�

��
7
'8
��9
�
:

6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

�	��

��	!
5'������O5
11
' !��� �
�12�

����$�
�

������

��

�
3	������
@	��	��
�
����
������!��

��
�� �
�F�����
A������������$EC

�
�
' !��� �
4
����
5�
�&�
����5

1
���"���
�12�

��
7
'8
��9
�
:

�	��

��	!
5'������B5
11
' !��� �
�12�

����$�
�

������

��

�
3	������
@	��	��
�� �
��
�����"��

77
&�
�
' !��� �
4
����
��
5�����
�����"��
��5&
��9
�
::

��
7
'8
��9
�
:

�	��

�
K�
��������� �
�� �����
�	�
! �
"����!�
!�
��
��

��
���
 !�
�� ��

�����

11
' !��� �
�12�

��	!
5/<33=//><?
�!
�� �����
! ���
"����!�
��
��

��
 !��� �#5
11

' !��� �
�12�

�������������
'(!�
 $���)
��
��
5����$'(���$� ����)$E5
������
*B
11

' !��� �
�12�

�������������
'(!�
 $���)
��
��
5����$'(���$� ����)$E5
������
*B
�

�F��
��
()
GH
11
' !��� �
�12�

�����

11
' !��� �
�12�

�����

11
' !��� �
�12�

��	!
S'�������U
11
' !��� �
�12�

�
3	������
������
!�
�	�
�����"��
 !��� �
@	��	��
�	�
��
��
�� �
��

�
��������� �
���
����

�����

11
' !��� �
�12�

�
�
'(!�
 $���)�����$'(���$� ����)$E� !�
4
����
5/<33=//><??.5
11

' !��� �
�12�

��
��%5J;5

����$�
�

������

��

�
��
�!�
��������
��
	����
��"�
����!@�
�
� ���

��	!
5'������P5
11

' !��� �
�12�

����$�
�

������

)

�
>�����!�
�	
�
�����
 !��� �
�!
J�� !!�
�
�

������!�
����$�
�
(

 7© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

����������
� F
��
5'(���$� ����)
�
IK-
�
���
��
��#
'��
��5
��
IK-�

/��"��V�!!�

��
��
��
�V������ ��!����
T
' !��� �
1
���"���
�12�

)

�
L
��
� ��#

�
D-W
� ����
	!���
���#

��X$� �����%5����BY��
��������
��������
��������
����ZB��
�����O��5

�
����$���%�������

����%������

�
��@!��%OPOPZ

�
-�KI
��

�!�
���$� ����
��
'��X$� �����

�!

���$���

�!��

���

OUTLOOK MAIL EXAMPLE SENT BY FTP_NIM.SH

-!�
���
�P
��#OO#OB
3=/�
����

/��N�KIM
>�Q
�����

3!�������
�!
����BY���

���
����BY��
>�Q
���"��
AL����!�
O��
/��
I!"
�Y
��#�P#�P
3/�
����C

��
���

BB�
Q
��@!��
��9�����
�!�
�������

�B�
<���
������
 !����
���

K����
���"�
�!��
!���

���
����
���
�!
K�

�P�
3[D
�!��
��
��������� �

���
QJN�
�!��
��
��������� �

�P�
J������
�
�

�!������!�
�!�
������������$E�

������������$����BY��$����$�����O��

������������$����BY��$����$�����O��� !�

��Z
��
�����
�!�� ����

���
QJN�
�!��
��
��������� �

�P�
J������
�
�

�!������!�
�!�
����$����BY��$����$�����O��
ABB�Y�����

�����C�

��Z
��
�����
�!�� ����

BB�Y�����
�����
�����"��
��
�OPP
���!���
A�BO�O
;�������C

 !�
 #
����$����BY��$����$�����O��
���!��#
����$����BY��$����$�����O��

���
QJN�
�!��
��
��������� �

�P�
J������
�
�

�!������!�
�!�
����$����BY��$����$�����O��� !�

A��ZPO�O
�����C�

��Z
��
�����
�!�� ����

��ZPO�O
�����
�����"��
��
��O�\
���!���
A�YZ�Y
;�������C

8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 !�
 #
����$����BY��$����$�����O��� !�
���!��#

����$����BY��$����$�����O��� !�

���
M!!�����

>KIK/,=D#
-!�
���
�P
�B#�P#O�
3=/�
����

/<33=//><?
�!
�� �����
! ���
"����!�
��
��

��
 !��� �#

��F�!�����
��������BY�������$����BY��$����$�����O�P

��F�!�����
��������BY�������$����BY��$����$�����O�P� !�

KI>J#

>K?=/
N=3=KL=D
�!�
����BY��
���

-;/./6
��
��
�
����
��
/<33=//><??.
���
���
�!�
����BY��

Adnan Akbas
System Administartor
Turkcell (Germany) © Xephon 2002

Script to control the printing of PS files based on
the number of pages

One problem faced by our site regarding printing on AIX was how to
control print requests based on the number of pages of ps/prn files. lpstat
gives the sizes of files in blocks, which is not a good measure for controlling
printing because, for example, files containing graphics usually have huge
block sizes, but they actually print on a few pages. Below is typical output
from the lpstat command, which shows a ps file having 13 blocks:

]����

D�"

/�
���

R!�
>� ��

<���

QQ
+

6 ��

3�
N��

�����

���

������

���������

����

����

����

��
���

F�F��9

VF��!
N=�D.

/=IDKIM

O\B
�^������

�!!�

�B

�

�

To overcome this problem, we extracted the information about the number
of pages by using the %%Page parameter (which indicates a new page),
from the ps file as shown:

����
�@
++Q
��
'�����$��
��
4
�
�
��
1
�����
���
��

�!$!�$�
���%&
@�
&(�����
'B)&
�����
���
��&

We have incorporated this feature into our customized print script. Our
management-defined policy on printing permits users to print up to 15
pages. The following is the code for our print script, which implements this

 9© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

policy:

�EE

���������	

�
3���!��X��
�����
������
�����������
��������
!�
������
�� ��

�
!"��
�P
�
���

�����$��!�%�

�
�����
 !!�
������
��!�
�
�

�����$��
��%5
5

QN�$/���%5DJ[I5

@	� �
77
'�����$��!�
%
�
::H
�!

�
 !!�
����
�!��

� �
�

�
�
TT
QNKI�$-=I<

�
����
�
����

�K0
Q�������
<���
K�����
��

�

�1
Q����
D�� �F
Q!��/�����

'?JMI�-=

&�
��
&*+

+�
+�
+.&&

�

�1
=F��

QNKI�$-=I<

��	!
&=����
�!��
�	!���8
&

���!���

��
�
�����$��� �

���
�
����!���

�
��
'�����$��� �
��

�
C

� �
�

��	!
5
5

��	!
5
5

��	!
5=����
�� �
�
��
�!
�����
#
5

��
�
�����$��
��

��
77
'�����$��
��
�%
55
::

�	��

 �
�

4
����
'�����$��
��

��
77
'8
�%
�
::

�	��

� �
�

��	!
5
5

��	!
5
5

��	!
5
5

��	!
.!�
	
"�
�������

�
��"
 ��
�� ��
��
����

��	!
5
5

��	!
5
5

��	!
5
5

��
�
�����8&Q����
=I�=N
�!
������
�!
�	�
�
��
����
����&

� ��

10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Q3I�N%5+G�Q/���!��5

�3I�N%&	�
�
��
'�����$��
��
4
���
������&

��
77
'(�3I�N)
�%
'(Q3I�N)
::

�	��

� �
�

��	!
5
5

��	!
5
5

��	!
�	�
�� �
��
�!�

Q!��/�����
�� �
����

��	!
5
5

��	!
5
5

��	!
<��
�	��
�����
9����
�!�
��������
Q!��/�����
�� ��
!� �
����

��	!
5
5

��	!
5
5

��
�
�����8&Q����
=I�=N
�!
������
�!
�	�
�
��
����
����&

� ��

�
�	��
�!���!�
!�
�	�
������
�	����
�	�
������
!�
�
���
��

�

��
!�

���
�� �

��

����
�@
++Q
��
'�����$��
��
4
�
�
��
1
�����
���
��

�!$!�$�
���%&
@�
&(�����
'B)&
�����
���
��&

��
7
'�!$!�$�
���
���
�P
:

�	��

��	!
5G�
G�
�	�
������
!�
�
���
��
'�����$��
��
��
'�!$!�$�
���
G�5

��	!
5K�

��!��
���
@��	
!��
Q�������
Q! ����
�!�������

����
5

��	!
5�	
�
�P
�
���
@�
�!�
��
���������
�!�
���������5

��	!
5
5

��	!
5
5

��	!
5
5

�F��

��

QNKI�=N$/���</%&9�	�
�QF�F��9
4
�
�
��
4

@�
&(�����
'B)&&

��
77
'(QNKI�=N$/���</)
�%
'(QN�$/���)
::

�	��

���������9���
�QF�F��9
�6
�
�D'?JMI�-=
'�����$��
��

� �
�

��	!
5
5

��	!
5
5

��	!
>� �
9�����
�!�
��������
����

��	!
5
5

��	!
5
5

��
�
�����8&Q����
=I�=N
�!
������
�!
�	�
�
��
����
����&

��

��

��

� ��

 11© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

� �
�

��	!
5
5

��	!
5
5

��	!
.!�
	
"�
�������

�
��
�� �
�
��
����

��	!
5
5

��	!
5
5

��
�
�����8&Q����
=I�=N
�!
������
�!
�	�
�
��
����
����&

��

HH

�
C

�
=F��
�	�
Q����
Q�!��
�

�����$��!�%�

� �
�

HH

E
C

� �
�

��	!
5
5

��	!
5
5

��	!
.!�
	
"�
�������

�
��"
 ��
�	!���
����

��	!
5
5

��	!
5
5

��	!
=����
���	��
�
!�
�

��	!
5
5

��	!
5
5

��
�
�����8&Q����
=I�=N
�!
������
�!
�	�
�
��
����
����&

HH

��
�

�!��

A sample of the output from the program is shown below. A prn file,
Chap3.prn, 1.6MB in size (block size as shown by lpstat was 1642), was
sent for printing using this script. The print program extracted the number
of pages from the ps file as 61. Hence, this file was rejected from being
printed.

=����
�� �
�
��
�!
�����
#

�	
�B����

��@������

�
�!!�

������

�Z\�BPZ
���
��
�P#PP
�	
�B����

�	�
������
!�
�
���
��
�	
�B����
��
Z�

K�

��!��
���
@��	
!��
Q�������
Q! ����
�!�������
�!��
�	
�
�P
�
���

@�
�!�
��
���������
�!�
���������

We hope that this script is useful for sites that intend to control printing of
ps/prn files based on the number of pages.

Abul Bashar and Syed Tariq Maghrabi
Systems Analysts
KFUPM (Saudi Arabia) © Xephon 2002

12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The case statement

FORMAT OF CASE STATEMENT

The case command/statement is an example of a conditional construct
which makes it possible to execute a command or sequence of commands
in a shell script if a particular condition is true. It provides shell scripts with
branching mechanisms and is used to select one command sequence from
several alternatives.

You must associate a string pattern with each list of commands to be
executed, and also specify the word that is to be compared with the patterns.
The shell will compare the word against each of the patterns, and execute
the command sequence that is associated with the matching pattern.

The general format of the case statement is as follows:

�
��
�������

�
�����$�C

������	�
��
�
�

HH

�
�����$�C

�����	�
��
�
�

HH

�

�

�
�����$�C

�����	�
��
�
	

HH

��
�

The word case introduces the command, and esac (case spelt backwards)
identifies the end of the command. The words case and esac are called
keywords. They are not in themselves commands, but are parts of a
command. Generally speaking, for the shell to recognize a keyword, it must
be the first word on the line, or it must be the first word after a command
terminator, such as a semicolon or an ampersand. The keyword in is an
exception to this rule.

The word that follows the keyword case may be any sequence of characters
that the shell can recognize as a single word. You can use the value of a shell
variable, such as $1, or the output of a command such as $(date).

 13© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Each of the command lists, command_list_1 through to command_list_n,
may be either a single command, a pipeline, or any sequence of commands
and/or pipelines.

Each list of commands except the last must be terminated with two
semicolons. In practice, programmers usually terminate each command
list, including the last, with the two semicolons.

To execute a case command, the shell compares a word with each of the
patterns until it finds a matching pattern. The shell then runs the commands
in the associated command list. If two patterns happen to match a word,
only the commands associated with the first will be run. If none of the
patterns match, none of the commands within the case structure will be run.

You do not need to format case commands exactly as shown. However, it
is good practice to indent each command list, since it makes it easier for
someone who is reading your shell script to locate each pattern/command
list pair.

PATTERN MATCHING

In the case command, you form the patterns pattern_1 through to pattern_n
in a similar way to forming filename generation patterns, and quite complex
constructions can be used to provide unique matches. The pattern matching,
however, is purely string against string, and if you want to compare digits
and the contents of the word include leading zeros, then you must either get
rid of these using typeset, or include the leading zeros in the pattern.

There are a few differences, however, between patterns used in a case
statement and those used in filename generation. For example, you do not
need to explicitly match a leading dot or a \, and the pattern * will match
all strings including those that begin with either a dot or a slash.

You may recall that:

• * matches any string of characters, including the empty string. This
pattern is usually used as a catch-all for any remaining patterns that do
not match the preceding patterns.

• ? matches any single character.

14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• [. . .] matches any one of the enclosed characters. If you separate a pair
of characters with a hyphen, any character that is lexically between the
two is matched.

• [! . . .] matches any character except the enclosed characters. For
example, [!0-9]* matches any string that does not begin with a digit.

If you separate several patterns with pipe characters (|), the associated
commands will be executed if the word matches any of the patterns listed.
For example, a pattern such as an*|ca* will match any word that begins
with the letters an or any word that begins with the letters ca.

EXAMPLE 1 – THE SEARCH SCRIPT

The following example illustrates how the case command may be used in
a shell script. The script is named search, and, depending on what you
request, the script will either search for a file, or search for a word within
a file:

'
"�
��
��	

���������	

�
/�����
�
��#
��
��	

�
<�
��#
��
��	

���

�
L����!�
,���!��

�
L����!�

D
��

N��
���

�
���

J�����

L����!�

���

�
���������
����
!�
��
��	
�	�
����
@
���

�����
&���
�!�
��
��	���&

�����
&
#
>!�

�� ��������!��H
!�&

�����
&�#
>!�

������
@��	��

�� �&

�����
&=����
�!��
�	!���#
G�&

��
�

��@��

�
��
'
��@��
��

4�C
�
��
��	
�!�

�� �

�����
&G�[��	
�� �

��
�!�
 !!����
�!�8#
G�&

��
�
�� �

����
�
��
��
5'�� �5
������
�1���"���

HH

�46C
�
��
��	
�!�

������
@��	��

�� �

 15© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

�����
&G�[��	
�� �
��
��
��8#
G�&

��
�
�� �

�����
&[
�
��
�	�
������8#
G�&

��
�
������

����
5'������5
5'�� �5

HH

��
�

�����
M!!�����

The case structure is used to determine what type of search will be
performed. You are asked to enter the letter a if you wish to search for a file/
directory, or the letter b if you are looking for a string pattern within a
particular file. We use a|A and b|B as the search patterns since we don’t
mind if the answer is in lower or upper case.

The read command gets your response and puts it in a shell variable named
answer. Note that the word part of the case command is $answer, not
answer.

If you choose to search for a file, the find command will be run. In this script,
we have specified the directory to start the search at /, so that the entire file
system will be searched.

The standard error of find has been redirected to /dev/null since find prints
a message to standard error each time it encounters a directory that you do
not have permission to search; by redirecting standard error, the annoying
error messages are no longer displayed.

Notice that we have enclosed $string in double quote marks on the grep
command line. This is to ensure that the value of a variable will be treated
as a single argument. Single quotes will not suffice since the $ will lose its
normal metacharacter meaning and grep would then search for the
characters $string, rather than for the characters contained within the
string variable.

There is a flaw in search. It assumes that the user understands from the
format of the prompting what response is expected. If you enter anything
other than a or b, your answer will not match either of the patterns. None
of the commands within the case statement will be run, and you will not be
informed that your request was invalid.

This can be remedied by using a default pattern that will be matched when
none of the other patterns are matched. The pattern * will match any word,

16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

and it must be the last pattern that is listed. Any patterns that follow it will
never be matched since the shell executes only the commands associated
with the first matching pattern.

To remove this defect, enter the following three lines after the current last
semicolon pair:

EC

�����
5��
��	#
&'
��@��&
��
�!�

"
 ��
�	!���5

HH

You can try out this version of search. Note that when you look for a file
that produces a large number of matches, for example, if you search for
font, the list will scroll off the screen before you have had time to view
it. You will see shortly one of the ways in which this can be overcome by
redirecting the output of find to a temporary file, testing for the existence
of entries in the file, and then piping the contents of the file to the pg or more
command; or you can simply pipe the output of search to either of these
commands.

THE GETOPTS COMMAND

So far we have used relatively simple command line arguments to our
scripts. These have usually been straightforward text strings, which have
been assigned to $1, $2, etc. Many Unix commands, however, are much
more complex than this and have command line arguments which themselves
have further multiple options (arguments).

As a simple example consider the command:

�	��"
�

� !��$��X�%���O
�
����

Here the -a argument has the option block_size=1024, and the -l argument
takes the option rmt0. The -a argument in particular can take a number of
different tape attribute options, whereas the -l simply expects the name of
a tape drive and doesn’t particularly care what this is called. Depending on
how an executable has been written, spaces may or may not be permissible
between an argument and its options.

To write a script that recognizes where an argument ends and its option
starts when there are no spaces between the two requires particularly
cumbersome coding. In addition, many commands allow arguments to be
combined, tar -xvf being an example, and if we wished to do this in a script

 17© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

with the commands we have learned so far, it would be nigh on impossible,
or at the very least exceedingly frustrating, to do so.

Fortunately the shell provides a particularly useful command, getopts, for
dealing with multiple complex command line arguments, and it is invariably
used with a case structure. It cannot on its own manage combined
arguments, as in the -xvf above, and if you write a script where this is
required, you will need nested case statements to further test the value of
the options to any argument.

getopts is by no means perfect as you will discover, but it does allow you
to minimize code when processing command line arguments. When used
in conjunction with looping and other conditional constructs you should be
able to manage the most complex of command lines.

GETOPTS SYNTAX

getopts assumes that command line arguments begin with either a + (plus
sign) or a - (minus sign) followed by a single character. Any characters
following the argument that do not begin with either a + or a -, and it is
irrelevant whether they are separated from the argument by spaces or
otherwise, are considered to be an option to the argument itself, although
you will see later that there are exceptions to this rule under certain error
conditions.

There are two arguments to getopts itself. The first is an option string that
can contain letters and colons, and the second is a variable name which is
assigned the value of the argument itself (without the + or -) every time that
getopts is executed.

Consider the following example:

���!���
5"#�#5
!��

Every time a script containing this line is executed, getopts will check
whether there are arguments of -v or -p (we could use the plus sign if we
wanted to, but let us assume from now onwards that we are always using
the minus sign). The colon following the v or p tells us that each of these
arguments expects an option. If, for example, there was no option to -v, then
our line would look like:

���!���
5"�#5
!��

18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Unfortunately, getopts can check only a single command line argument at
a time, so if you wish to check multiple arguments, you must enclose the
command in something like a while loop (this is covered in a future article),
or you must run getopts as many times as you expect there to be arguments.

If you enter an invalid argument to your script, for example you use -x
instead of -v, then the getopts error message, A specified flag is not valid
for this command, will be displayed. When this occurs, the variable opt is
set to the value ?. However, if your option string starts with a colon, for
example, :v:p:, then no getopts error messages will be displayed. Under
these circumstances you must provide your own error message to cover
such an eventuality.

If an argument has an option, then this value is stored in the variable
OPTARG, which you can then use in a following case statement. Also,
each time getopts is invoked it places the index of the next argument to be
processed in the variable OPTIND. Whenever your script is run, OPTIND
is initialized to 1.

EXAMPLE 2 – THE LVMAN SCRIPT

As we said earlier, getopts is most often used in conjunction with a case
statement, so let’s now consider a simple example of a script running
getopts and discuss what happens when you run the script with different
arguments. Let us use a script called lvman, which is a modified vgsizes,
and which now contains the following section to check command line
arguments:

���!���
#"#�#
!��

�
��
'!��
��

"C

LM%'JQ��NM

�$���$"�$��
��
'LM

HH

�C

?L%'JQ��NM

�$���$�"$��
��
'QL

HH

EC

�$���$��
��

�F��

HH

��
�

 19© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

This particular version assumes that we run our script either as lvman
-v vg_name or as lvman -p pv_name. If we were to use +v instead of -v
then we would have to explicitly use +v) for our pattern to be matched.

If we run our script with lvman -v rootvg, say, OPTARG will be set to
rootvg, the variable VG will then be set to the same value, and then the
function f_get_vg_space rootvg will be called. There is a similar logic
when the script is run with the -p option. You could, if you wished, call the
functions using, for example, f_get_vg_space $OPTARG.

Should we enter an invalid argument, opt would take the value ?, and our
catch-all test at the end would call the function to display a usage message.
We could have used \?) as our pattern to be matched, but as you will see from
the table below, this produces different messages depending on how you
run the script.

���!���1

���!���
"#�#
!��

���!���
#"#�#
!��

�
��
��
�X
1

EC

�$���$��
��

G8C

�$���$��
��

EC

�$���$��
��

G8C

�$���$��
��

 "�
�

!�

 "�
�
FF

���!���
���!�

<�
��
����
��

���!���
���!�

<�
��
����
��

<�
��
����
��

<�
��
����
��

 "�
�
�"

!�
 "�
�
��
<�
��
����
��

<�
��
����
��

<�
��
����
��

I!

����
���

 "�
�
�"
��

I!
����
���

I!
����
���

I!
����
���

I!

����
���

 "�
�
�F ���!���
���!� ���!���
���!� <�
��
����
�� <�
��
����
��

The commands in the first column are assumed to have been run without
options to their arguments, or apart from lvman xx, without any arguments.
The second and third columns show the output when either a * or \? are used
as the matching patterns when getopts is called without the leading colon
in the options string. In the third and fourth columns we are using the
leading colon when getopts is called.

Generally speaking, the getopts error messages produced in addition to a
usage message are unnecessary, and so the leading colon is preferable in
the option string to remove these messages. You can also see that the *
matching pattern will produce the greatest number of usage messages and
this is the preferred pattern to use.

20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

If you were to run the command lvman -v -p, then no matter which pattern
you use, no error or usage messages will be generated. When this happens
OPTARG is set to the value -p and your code should include an additional
test to spot this error; we shall see in a future article how this can be done.

In addition to the getopts section, a number of modifications have been
made to the original vgsizes script to give it a more modular construction
using functions, and the current version of lvman will look as follows:

���������	

�
/�����
�
��#
 "�
�

�
<�
��#
 "�
�
(7�"
LM�
��:
4
7��
QL�
��:)

���

�
L����!�
,���!��

�
L����!�

D
��

N��
���

�
���

J�����

L����!�

���

���

�
>�����!�#
�$���$��
��

�
D���
��
��
��
����
���

���

�$���$��
��AC

(

�����
5<�
��#
'A�
���
��
'�C
(7�"
LM�
��:
4
7��
QL�
��:)5

�����
5[���#5

�����
5G��"
LM�
��
���������

���� �
"! ���
��!��5

�����
5G���
QL�
��
���������

���� �
�	����

"! ���5

�����
5I!��#
<��
���	��
�	�
�"
JN
��
!���!�5

)

���

�
>�����!�#
�$���$"�$��
��

�
���������#
'�
�
"! ���
��!��
�
��

�
M���
�	�
�!�

��
����
��
��
!�
�	�
"! ���
��!��

���

�$���$"�$��
��AC

(

LM%'�

�

�
M��
�!�

��
��

��
����
��
��

�

�J��?%'A �"�
'LM
4
����
5�J��?
QQ�5
4
���
���
��
5A5
4

��
&
&
&G�&
4
���
���C

>N==%'A �"�
'LM
4
����
5>N==
QQ�5
4
���
���
��
5A5
4

 21© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

��
&
&
&G�&
4
���
���C

�"

'(LM)$?LI<-%'A �"�
�
'LM
4�
�
*B
4@�
�
4��
��
5
5C

�

�
Q����
!�����

�

������
5+����
+��P�
+��P�G�5
5L! ���
M�!��5
G

5�!�

/�X�5
5>���
/�
��5

������
5+����
+��P�
+��P�
G�5
'LM
5'�J��?
-65
G

5'>N==
-65

�"

�����
I�����
!�
?L�
��
'LM
%
&'&'(LM)$?LI<-

)

���

�
>�����!�#
�$���$�"$��
��

�
���������#
'�
�
�	����

"! ���
�
��

�
M���
�	�
�!�

��
����
��
��
!�

�	����

"! ���

��

�$���$�"$��
��AC

(

QL%'�

�

�
M��
�!�

��
��

��
����
��
��

�

�J��?%'A ��"
'QL
4
����
5�J��?
QQ�5
4
���
���
��
5A5
4

��
&
&
&G�&
4
���
���C

>N==%'A ��"
'QL
4
����
5>N==
QQ�5
4
���
���
��
5A5
4

��
&
&
&G�&
4
���
���C

�"

'(QL)$?LI<-%'A ��"
�
'QL
4�
�
*B
4@�
�
4��
��
5
5C

�

�
Q����
!�����

�

������
5+����
+��P�
+��P�G�5
5Q	����

L! ���5
G

5�!�

/�X�5
5>���
/�
��5

������
5+����
+��P�
+��P�
G�5
'QL
5'�J��?
-65
G

5'>N==
-65

�"

�����
I�����
!�
?L�
!�
'QL
%
&'&'(QL)$?LI<-

)

���

�
-
��
�����!�

���

���!���
#"#�#
!��

�
��
'!��
��

"C

LM%'JQ��NM

�$���$"�$��
��
'LM

HH

�C

QL%'JQ��NM

22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

�$���$�"$��
��
'QL

HH

EC

�$���$��
��

�F��

HH

��
�

You will note that the f_dsp_usage function contains the construction
$(basename $0). If the full pathname of the script was /usr/local/bin/lvman
and we executed the script using this full pathname, then the basename
command would extract only the characters after the last /; under most
circumstances we would not want the full pathname to be displayed in the
usage statement.

The script also no longer uses the source file, vgs, and the FREE and
TOTAL values are now extracted directly from the output of the lsvg and
lspv commands. This slows down the execution of the script slightly, but
instead ensures that we will always have accurate data for our volume
groups and physical volumes and we will not have to recreate the vgs file
prior to running the script.

Tonto Kowalski
Guru (UAE) © Xephon 2002

Performance monitoring using NMON

NMON is system performance monitoring tool written and maintained by
Nigel Griffith (nag@uk.ibm.com) . The separate binary executable of the
tool is available for the following versions of AIX:

• nmon_aix415 – AIX 4.1.5

• nmon_aix420 – AIX 4.2.0

• nmon_aix432 – AIX 4.3.2

• nmon – AIX 4.3.3

• nmon – AIX 5.1 32 bit kernel

• nmon64 – AIX 5.1 64 bit kernel.

 23© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

The current version of the tool is 6f and it is obtainable by direct download
from http://www-1.ibm.com/servers/esdd/articles/analyze_aix/
agree_down.html.

You should note that IBM does not provide official support for the tool.
However, the tool is updated about every six months or when a major
release of AIX is announced.

INSTALLATION PROCESS AND REQUIREMENTS

The tool is a stand-alone binary file. After downloading the binary file from
the abovementioned URL, you execute the command:

�
�
F"�
��!���
�

and execute the binary file suitable for your OS system version. The default
interval to update the statistics displayed by the tool is two seconds, causing
very little additional load on the system.

In order to enable usage of the tool by regular users you should enable read
access to the /dev/kmen device by executing the command:

�	�!�
��!*�
���"�����

In order to enable the monitoring of disk statistics, the following command
should be executed by a root user:

�	��"
_
����
_

�!��
�%����

PROGRAM FEATURES

The program’s user interface is based on textual and graphical screens
displayed inside a terminal or terminal emulation window. For the best
performance you should use a dtterm window with the largest possible
size – this will allow large amounts of information, highlighted with colour,
to be displayed.

Nmon enables a system administrator to monitor and display the following
performance-related data:

• Global CPU utilization as well as utilization of separate CPUs.

• Memory usage.

24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Kernel and run queue statistics.

• Disk I/O rates, transfers, and read/write ratios.

• Disk activity map.

• VM parameters.

• Amount of free space in filesystems.

• Disk adapters statistics.

• Network I/O rates, transfers, and read/write ratios.

• Paging space utilization and paging statistics.

• CPU and AIX OS details.

• Top processes.

• Usage and utilization of IBM HTTP Web cache.

• Settings and usage of asynchronous I/O processes.

• Consolidated multipathing activity for disks using EMC, Autopath, or
SDD.

• Verbose mode – monitoring of vital system statistics against arbitrarily
defined limits in order to detect potential performance bottlenecks.

INTERACTIVE OPERATION OF THE PROGRAM

Selection of statistics to be displayed can be done by specifying single letter
common line arguments or by typing the same letter inside the program’s
display window. Subsequent typing of the same letter toggles the display
of the data on and off.

For brief help information type nmon -?, for full details type nmon –h.

SAMPLE NMON OUTPUT

;����
K�����

/�
�������

A

���
���!��C

N��]����%

����
�@
�K�
%

��P
����

%

�\�P

�
���
%
O�OZ�Z

��@���	
%
BO�Y�P
����
 %
P�OPO���
�
@�	
%

�\��

�
��	
%

���

�!��

%

BO�P
��
�

%

O�\��Z
���� �%

���O�\

!���	
%

POY��

�F��

%

O��P
@����

%

BOY��O
��
��	
%
OPO�YOP�Y

N*[%

O�B-6

 25© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

���

%

���
���

%

�Z��
@�����	%
�BB��Z��P

��
����
K�J
��
�

@����

F����

��
����
����

�D��\

���

P���\
�6��

P���

[����>
�����
/3/K
K�J
3!���! ��

����\���

���

�����\
�6��

B���Y

>3
/3/K
K�J
3!���! ��
Q�!�!�!
D

B���\���

���

������
�6��

�P��Y

>3
/3/K
K�J
3!���! ��
Q�!�!�!
D

�J��?/

���

OP���Z
�6��

Z���\

�J��?%

OP���Z

I��@!��
K�J

K�>
I
��
N��"

��
��
�6��

�
����

�
��!��

����X�

!����X�

���
PB���
�\��\

������

��B\��

�P��O

�O��Z�Z��

���

��O

���O

BP��

Z��P

���Z

�\Z�P

 !�

��O

��O

��P

��P

�P��Z

�P��Z

L���!��
-!��

3!��

N��!����

/�
��

I!@

[
��

D
����

J;
�1
3Q<

+����

���P+

1\�+

1Y�+

[
�����
�1
Q
����
/�
��

+����

\\�P+

L-TN�-

T��+

[
�����
�1
Q
��
>
� ��

�
� ��
��Y\�\

1����

1�����

J;
�1
�!�
D���

	����O
+����

���+

1O�+

1Z�+

OPERATION OF PROGRAM IN DATA CAPTURING MODE

The program is able to record collected performance data in CSV (Comma
Separated Values) format, which can be loaded into a spreadsheet program
for further analysis and graphing. Use the following nmon flags to specify
this mode of operation:

• -f – spreadsheet output format (with the following defaults: -s300 –
c288). The output filename is <hostname>_YYYMMDD_
HHMM.nmon.

• -F <filename> – specify output file name.

• -l <number> – specify the number of disks per sheet (default – 150,
maximum – 250).

• -r <name> – specify the name of the spreadsheet file (default –
hostname).

• -t – include top processes in the output.

• -s <seconds> – specify interval between measurements.

• -c <number> – specify number of snapshots.

• -x – specify capacity planning mode (-fdt –s900 –c96 means take

26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

measurements every 15 minutes for 1 day).

Note that the generated file has to be sorted before loading to the
spreadsheet. The sample AIX command is:

�!��
_�
	!���
��$�����P��$�B�����!�
_!
	!���
�����"

NMON_ANALYZER USAGE

NMON_Analyser has been designed by Stephen Atkins
(steve_atkins@uk.ibm.com) to analyse data captured by nmon in the CSV
files. A separate spreadsheet is available for Lotus 1-2-3 and Microsoft
Excel. A single file containing both, as well as a detailed user’s guide, can
be downloaded from http://www-1.ibm.com/servers/esdd/articles/
nmon_analyser/agree_down.html.

After loading the supplied analyser template into the spreadsheet program,
the user should specify a number of options set as values for the following
spreadsheet cells found in Analyzer and NLS sheets.

After completion of this step, the user can press a button that will start a
dialog allowing him to load the captured data file and begin the analysis.
The next step is to save the generated spreadsheet that contains a number
of useful graphs and tables.

The following is a list of reports produced by the tool:

• Calculation of weighted averages for hot-spot analysis.

• Distribution of CPU utilization by processor over the collection
interval – useful in identifying single-threaded processes.

• Additional sections for vpaths showing device busy, read transfer size,
and write transfer size by time of day.

• Total system data rate by time of day, adjusted to exclude double-
counting of EMC hdiskpower devices – useful in identifying I/O
subsystem and SAN bottlenecks.

• Separate sheets for EMC hdiskpower devices.

• Analysis of memory utilization to show the split between computational
and non-computational pages.

 27© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

• Total data rates for each network adapter by time of day.

• Summary data for the TOP section showing average CPU and
memory utilization for most active processes.

SAMPLE NMON_ANALYZE OUTPUT

Figure 1 shows CPU utilization distribution during the collection period.

Figure 2 shows a distribution of usage of memory between file and
computational (executable program) pages.

Alex Polak
System Engineer
APS (Israel) © Xephon 2002

��������	��
���

�

��

��

��

��

���

�
�
��
�

�
�
��
�

�
�
��
�

�
	
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�

��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�

��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
�������

�
��� ��
� �����

Figure 1: CPU utilization

�
�������
��
���

�

��

��

��

��

���

�
�
��
�

�
�
��
�

�
	
��
�

�
	
��
�

�
�
��
�

�
�
�

�

�
�
��
�

�

��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
�

�

�

��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
��
�

�
�
�

�

�
�
�������

�����

�����

Figure 2: Memory usage

28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Understanding the uniq command

UNIQ COMMAND BASICS

The uniq command is a very useful AIX tool that displays or deletes
repeated lines in a file. Although making files smaller by deleting duplicate
entries is the command’s primary purpose, the value of the uniq command
becomes apparent when used in your diagnostic work.

The uniq command can help you isolate lines or sections from logs, lists,
tables, or other text data sources. It can count duplicated lines and can show
lines that have no duplicates for your diagnostic purposes.

Before the uniq command can be run, it is important to sort the input file
using the sort command. The uniq command processes adjacent duplicate
lines but cannot locate duplicates found if unique lines have been encountered
between the duplicates.

The basic syntax of the uniq command is shown below:

���9
�
��
���� �
!���� �

where:

• flags is an optional flag or flags used to enhance the uniq operation.

• infile is the file or files on which the uniq operation is to perform.

• outfile is an optional file to which the output is to be written. If no
outfile is specified, uniq will write to the display.

ELIMINATING DUPLICATES USING THE UNIQ COMMAND

Use the uniq command to display a file with any duplicated lines reduced
to a single occurrence only.

Suppose you had a file with 300 lines in it. Each line contains the userid of
a person who has responded to a live forum, in the chronological order they
responded, with the text of their response removed.

For example, let’s say that the first several lines of forum_log contain:

 29© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

�����!��

��
��B�

�����

��
��B�

�
����@

�����

�����!��

�!"��

�!"��

��
��B�

You want to display a list of the userids of all the respondents without regard
to the number of times their entries appear.

First you must sort the list so the uniq command can see all duplications
as adjacent entries. If you were to enter:

�!��
�!���$!�
1
�!���$�!��

the file forum_sort would contain:

�����

�����

�
����@

�����!��

�����!��

�!"��

�!"��

��
��B�

��
��B�

��
��B�

If you were then to enter:

���9
�!���$�!��
�!���$���9

the file forum_uniq would contain:

�����

�
����@

�����!��

�!"��

��
��B�

The uniq command ran through the sorted list and removed all but one of
any entries found adjacent to a duplicate. This would show you the userids
of the participants in the forum. Note that you must specify the > redirection
symbol on the sort command but not on the uniq command.

30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

FLAGS FOR THE UNIQ COMMAND

The following flags extend the usefulness of the uniq command:

• -u – displays only unique lines. This flag will disregard any lines if
there are duplicated lines elsewhere in the file.

• -d – displays only non-unique (duplicated) lines. This flag will
disregard (not display) any lines that have no duplicates in the file. One
line will be displayed for each entry found to have one or more
duplications.

• -c – counts the number of duplicates found. In front of each displayed
line is a numeric count of how many times that line appears, even if
it is only once (a unique line).

• -f Fields – fields to skip while checking for duplicates. The uniq
command will begin inspecting lines following the blank delimited
field specified.

• -s Chars – characters to skip while checking for duplicates. The uniq
command will begin inspecting lines following the count of characters
specified.

The following sections provide further clarification and examples of the
usage of flags for the uniq command.

SHOWING NO DUPLICATES (-U FLAG)

Use the -u flag with the uniq command to display only the unique lines
without regard to duplicated lines. This tells the uniq command to ignore
any lines if there are duplicates in the file.

Suppose you had a file containing 1000 entries, and you know that most
are duplicated; you know that there are just a few lines without duplicates,
and those are the ones you want to see. Use the -u flag for that purpose.

Or suppose you expect all lines to have one or more duplicates. You can use
the -u flag to verify your theory. In this case, any output produced using the
-u flag would indicate an error condition. In your diagnostic work, you can
find that using the uniq command to validate your theories is invaluable.

 31© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

You can even use the -u flag to compare two files, as illustrated in the
following two examples, one showing lines containing no duplicates and
the other verifying that all lines have a duplicate.

Example 1 (show lines containing no duplicates):

You have two lists, one with 500 lines, and one with 501 lines. The latter
list is the same as the first with one extra line. One is a log from a working
machine and the other is a log from a failing machine. You want to know
the contents of that extra line, but do not know where in the file it resides.

If you were to concatenate the two lists together, then sort the results and
pass them to the uniq command with the -u flag, the result would be the
single line that was unique between the two files.

Simplifying the example, suppose the working_log contains:

5Q�!����
	
�
�����5

5/���
J��
	
�
�����5

5/���
J��
	
�
�!�� ����5

5/���
�@!
	
�
�����5

5/���
�@!
	
�
�!�� ����5

5Q�!����
	
�
�����5

and the failing_log contains:

5Q�!����
	
�
�����5

5/���
J��
	
�
�����5

5/���
J��
	
�
�!�� ����5

5/���
�@!
	
�
�����5

5N��!"���
��!����
	
�
����
�����
���5

5/���
�@!
	
�
�!�� ����5

5Q�!����
	
�
�����5

If you were to enter:

�
�
@!�����$!�
�
� ���$!�
4
�!��
4
���9
��

the result would be:

5N��!"���
��!����
	
�
����
�����
���5

To help clarify the example, let’s look at the sorted intermediate file:

5Q�!����
	
�
�����5

5Q�!����
	
�
�����5

5Q�!����
	
�
�����5

5Q�!����
	
�
�����5

32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

5N��!"���
��!����
	
�
����
�����
���5

5/���
J��
	
�
�����5

5/���
J��
	
�
�����5

5/���
J��
	
�
�!�� ����5

5/���
J��
	
�
�!�� ����5

5/���
�@!
	
�
�����5

5/���
�@!
	
�
�����5

5/���
�@!
	
�
�!�� ����5

5/���
�@!
	
�
�!�� ����5

Note that “Recovery process has been initiated” is the only line not
containing a duplicate in the list, and, therefore, that is the line that would
be displayed as the output.

Example 2 (verify that all lines have a duplicate):

You have two lists you believe to be identical in content, although the order
of the entries is not necessarily the same between the two files. One is an
alphabetic list of messages from a messages manual. The other is a test log
supposedly displaying all the messages, not in alphabetic order, but in order
of occurrence. You want to know if they contain the same data.

If you were to use the uniq command with the -u flag on the combined,
sorted contents, the result would yield any lines unique to either file, or the
return of your cursor if the files are the same.

Simplifying the example, suppose ordered_list contains:

5�6����
>� �
�
��
�!�
�!���5

5�6�Z��
>� �
�
��
�!!
 !��5

5=>����
D
�

����
���!�����5

5=>��\�
D
�

�!�
�!���5

5KRP��

>�� �
�
��!�
��
�
��5

5KRZ��

>�� �
 ����	
�F������5

5JQPPPP
I������
�
�

�F������5

5JQZZZZ
I������
���!��
��!�
�������5

and test_log contains:

5JQZZZZ
I������
���!��
��!�
�������5

5=>��\�
D
�

�!�
�!���5

5KRP��

>�� �
�
��!�
��
�
��5

5=>����
D
�

����
���!�����5

5�6����
>� �
�
��
�!�
�!���5

5KRZ��

>�� �
 ����	
�F������5

5JQPPPP
I������
�
�

�F������5

5�6�Z��
>� �
�
��
�!!
 !��5

 33© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

If you were to enter:

�
�
!������$ ���
����$!�
4
�!��
4
���9
��

the result would be the return of your cursor. Although the contents are in
a different order, they contain the same lines, thus there are no unique lines
between the two.

To help clarify the example, let’s look at the sorted intermediate file:

5�6����
>� �
�
��
�!�
�!���5

5�6����
>� �
�
��
�!�
�!���5

5�6�Z��
>� �
�
��
�!!
 !��5

5�6�Z��
>� �
�
��
�!!
 !��5

5=>����
D
�

����
���!�����5

5=>����
D
�

����
���!�����5

5=>��\�
D
�

�!�
�!���5

5=>��\�
D
�

�!�
�!���5

5KRP��

>�� �
�
��!�
��
�
��5

5KRP��

>�� �
�
��!�
��
�
��5

5KRZ��

>�� �
 ����	
�F������5

5KRZ��

>�� �
 ����	
�F������5

5JQPPPP
I������
�
�

�F������5

5JQPPPP
I������
�
�

�F������5

5JQZZZZ
I������
���!��
��!�
�������5

5JQZZZZ
I������
���!��
��!�
�������5

Note that each line contains at least one duplicate, therefore there are no
lines unique to the sorted intermediate file. This would confirm your theory
that the two lists are identical in content.

SHOWING DUPLICATES ONLY (-D FLAG)

Use the -d flag with the uniq command to display only duplicated lines
without regard to unique lines (lines with no duplicates). This tells the uniq
command to ignore any lines that are not repeated somewhere in the file.

Suppose you had a file that contained 800 entries, most of them unique. You
know there are only a dozen or so lines that are duplicated, and it is those
lines you want to inspect. The -d flag will help you.

Or suppose you expect that all the lines are unique, and you want to verify
the fact. Using the -d flag will help confirm your theory. In this case, any
output produced using the -d flag would indicate an error condition.

34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

You can even use the -d flag to compare two files, as illustrated in the
following two examples, one showing duplicates and the other verifying
that no lines have a duplicate.

Example 1 (show duplicated lines):

You have two lists, one with 120 lines, and one with 35 lines. The lists have
only one line in common, but you don’t know which line. The first is a list
of graduates of a certain school. The latter is a list of department members
of a work group. You need to find the work group member who graduated
from that school.

If you were to concatenate the two lists together, then sort the results and
pass them to the uniq command with the -d flag, the result would be the
single line that was shared by the two files.

Simplifying the example, suppose graduates_list contains:

������!��
;�����	

6
�����
[� �
�

3	
� ���
6�
�����

D!"���
���

=�@
����
= �X
���	

>�
�� ���
N
��! �	

M�!"���
-
����

,� ���
���
=�@
��

and dept_members contains:

� ���
���
6��^
���

6� �!���
-
����

3
�����
-� �����

D!"���
���

=��!��!��
R
���

>��X���
 ��
3���	�

If you were to enter:

�
�
��
��
���$ ���
����$�������
4
�!��
4
���9
��

the result would be:

D!"���
���

To help clarify the example, let’s look at the sorted intermediate file:

� ���
���
6��^
���

������!��
;�����	

 35© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

6
�����
[� �
�

6� �!���
-
����

3	
� ���
6�
�����

3
�����
-� �����

D!"���
���

D!"���
���

=��!��!��
R
���

=�@
����
= �X
���	

>��X���
 ��
3���	�

>�
�� ���
N
��! �	

M�!"���
-
����

,� ���
���
=�@
��

Note that the only duplicated line is “Dover, Ann”, therefore it is that line
which would represent the only line in common between both files.

Example 2 (verify that no lines have a duplicate):

You have two lists you believe share no common lines, but you need to
make sure. One is a list of words in a standard dictionary and the other is
a list of words in a supplementary dictionary. There is no need for duplicate
entries between the two.

If you were to use the uniq command with the -d flag on the combined,
sorted contents, the result would yield any lines shared between the files.

Simplifying the example, suppose standard_dict contains:

�� ��
��!�

�
��	

�!��� �

�
�

����

�!��
�

and suppl_dict contains:

�!��X
��!�

�
��$��!����

�
�
 ���

����� ���

������X�

� ���$���	!�

If you were to enter:

�
�
��
��
��$����
���� $����
4
�!��
4
���9
��

the result would be the return of your cursor. There are no common lines

36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

to display.

To help clarify the example, let’s look at the sorted intermediate file:

�!��X
��!�

�� ��
��!�

�
��$��!����

�
��	

�
�
 ���

�!��� �

�
�

����� ���

����

������X�

� ���$���	!�

�!��
�

Note that there are no duplicated lines, so a request to show only duplicated
lines would yield no results. This would confirm your theory that the two
lists share no entries.

SHOWING COUNTS OF DUPLICATED LINES (-C FLAG)

Use the -c flag with the uniq command to display a count of the duplicated
lines. This could be useful if you needed to know the numbers of times
certain error messages appeared in a log, for example.

Example 1:

You have a log of 500 incoming internal telephone calls and you need to
determine from which extensions you were dialled most frequently.

Simplifying the example, suppose incoming_phonelog contains:

FPPPP

D!"���
���

FPPPP

D!"���
���

FP���

=��!��!��
R
���

FP���

6� �!���
-
����

FPY�Y

3
�����
-� �����

FP���

>��X���
 ��
3���	�

FPZ�Y

� ���
���
6��^
���

FP���

6� �!���
-
����

FPPPP

D!"���
���

FP���

6� �!���
-
����

FPPPP

D!"���
���

FP���

=��!��!��
R
���

FP���

>��X���
 ��
3���	�

 37© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

If you were to enter:

�
�
���!����$�	!�� !�
4
�!��
4
���9
��

the result would be:

�
FP���

=��!��!��
R
���

�
FP���

>��X���
 ��
3���	�

B
FP���

6� �!���
-
����

O
FPPPP

D!"���
���

�
FPZ�Y

� ���
���
6��^
���

�
FPY�Y

3
�����
-� �����

To help clarify the example, let’s look at the sorted intermediate file:

FP���

=��!��!��
R
���

FP���

=��!��!��
R
���

FP���

>��X���
 ��
3���	�

FP���

>��X���
 ��
3���	�

FP���

6� �!���
-
����

FP���

6� �!���
-
����

FP���

6� �!���
-
����

FPPPP

D!"���
���

FPPPP

D!"���
���

FPPPP

D!"���
���

FPPPP

D!"���
���

FPZ�Y

� ���
���
6��^
���

FPY�Y

3
�����
-� �����

Note that the quantities of each extension in the sorted file match the
quantities found in the output of the uniq example. The count would help
you determine the most and least frequent callers.

SKIPPING FIELDS (-F FLAG)

Use the -f flag with the uniq command to ignore the specified number of
fields when checking for duplicates.

Suppose you had a log with hundreds of entries. Each entry starts with a
common string identifying an error condition and the name of a file. The
error text following the leading identifier can be repeated throughout the
log. You want to delete the duplicated error text descriptions without regard
to the name of the file against which the error was reported.

For example, let’s say that the first several lines of error_log contain:

>� �
�#G���9�F��G���
��
���!�#

5>� �
�
��
�!�
�!���5

38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

>� �
�#G���9�F��G������ ���F�
��
���!�#

5D
�

����
���!�����5

>� �
�#G���9�F��G���
��
���!�#

5>�� �
�
��!�
��
�
��5

>� �
�#G���9�F��G��@��
��
���!�#

5>� �
�
��
�!�
�!���5

>� �
�#G���9�F��G��@��
��
���!�#

5>�� �
�
��!�
��
�
��5

>� �
�#G���9�F��G���
��
���!�#

5>�� �
�
��!�
��
�
��5

>� �
�#G���9�F��G������ ���F�
��
���!�#

5I������
���!��
��!�
�������5

>� �
�#G���9�F��G������ ���F�
��
���!�#

5>� �
�
��
�!�
�!���5

>� �
�#G���9�F��G��@��
��
���!�#

5>�� �
�
��!�
��
�
��5

The first step would be to sort the error log after the last colon (:), which is
in the fourth, blank delimited field.

Sorting error_log after field 4 into error_sort with the command:

�!��
*O
���!�$!�
1
���!�$�!��

would yield:

>� �
�#G���9�F��G������ ���F�
��
���!�#

5D
�

����
���!�����5

>� �
�#G���9�F��G��@��
��
���!�#

5>�� �
�
��!�
��
�
��5

>� �
�#G���9�F��G��@��
��
���!�#

5>�� �
�
��!�
��
�
��5

>� �
�#G���9�F��G���
��
���!�#

5>�� �
�
��!�
��
�
��5

>� �
�#G���9�F��G���
��
���!�#

5>�� �
�
��!�
��
�
��5

>� �
�#G���9�F��G��@��
��
���!�#

5>� �
�
��
�!�
�!���5

>� �
�#G���9�F��G������ ���F�
��
���!�#

5>� �
�
��
�!�
�!���5

>� �
�#G���9�F��G���
��
���!�#

5>� �
�
��
�!�
�!���5

>� �
�#G���9�F��G������ ���F�
��
���!�#

5I������
���!��
��!�
�������5

Note that now all data beginning with the first double quote (") is
alphabetically sorted.

Entering:

���9
��
O
���!�$�!��
���!�$���9

would yield:

>� �
�#G���9�F��G������ ���F�
��
���!�#

5D
�

����
���!�����5

>� �
�#G���9�F��G��@��
��
���!�#

5>�� �
�
��!�
��
�
��5

>� �
�#G���9�F��G��@��
��
���!�#

5>� �
�
��
�!�
�!���5

>� �
�#G���9�F��G������ ���F�
��
���!�#

5I������
���!��
��!�
�������5

This would show you one occurrence of each error message without regard
to the number of times it occurred nor the file for which it occurred. Since
the uniq command skipped the first four fields of each entry, the file names
of the results would be meaningless – the critical data are the error messages
only.

 39© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

SKIPPING CHARACTERS (-S FLAG)

Use the -s flag with the uniq command to ignore the specified number of
characters when checking for duplicates. Sometimes the data you want the
uniq command to ignore does not land on a field boundary. In those cases,
you may find that specifying a character boundary can give you the desired
results.

Suppose you had a log that contained many temperature readings, each of
which is preceded by a time and date stamp. For example, let’s say that the
first several lines of temp_log contain:

��#�P#��
�P��Z�����$$$��3

��#�P#��
�P��Z�����$$$��3

�P#�P#��
�P��Z�����$$$�P3

��#�P#��
�Z��Z�����$$$��3

�B#�P#��
�Z��Z�����$$$��3

�O#�P#��
�Z��Z�����$$$�O3

�O#�P#��
����Z�����$$$�P3

�P#�P#��
����Z�����$$$�Z3

Note that each entry has a series of underscores between the date and the
temperature reading. This would prevent you from specifying a field count
to the uniq command. You want to display the unique temperature readings
without regard to the time or date the reading was taken.

Sorting the log after 22 characters into temp_sort using the command:

�!��
��
����
����$!�
1
����$�!��

would yield:

��#�P#��
�P��Z�����$$$��3

��#�P#��
�Z��Z�����$$$��3

��#�P#��
�P��Z�����$$$��3

�B#�P#��
�Z��Z�����$$$��3

�O#�P#��
�Z��Z�����$$$�O3

�O#�P#��
����Z�����$$$�P3

�P#�P#��
�P��Z�����$$$�P3

�P#�P#��
����Z�����$$$�Z3

Note that now all the data following the last underscore is alphabetically
sorted. Entering:

���9
��
��
����$�!��
����$���9

would yield:

40 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

��#�P#��
�P��Z�����$$$��3

��#�P#��
�P��Z�����$$$��3

�O#�P#��
�Z��Z�����$$$�O3

�O#�P#��
����Z�����$$$�P3

�P#�P#��
����Z�����$$$�Z3

This would tell you there were five individual temperature readings logged
at various times and dates in the file. Since the uniq command skipped the
first 22 characters of each entry, the time and date stamps of the results
would be meaningless – the critical data is the temperatures only.

SOME EXERCISES

Here are some exercises to test your knowledge of the uniq command.

Exercise 1 – eliminating duplicates

Step 1 – set up an exercise file by entering the following text into a file called
exer1.fil:

�!��

�!��

�
��

�9����� �

�
��

��
��

��
��

�!��

Step 2 – enter:

�
�
�F������
4
�!��
4
���9

and note that the result will be:

��
��

�
��

�!��

�9����� �

You have used the uniq command to eliminate duplicates of the text in the
exercise file.

Exercise 2 – showing no duplicates (-u flag)

Step 1 – take a log file with several hundred entries and create a test file for

 41© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

this exercise. For example, enter:

�
�
"���
���� !�
1
�F������

Step 2 – to ensure each line in the exercise file has at least one duplicate,
enter:

�
�
"���
���� !�
11
�F������

which will append the entire contents of the log back into the exercise file.

Step 3 – enter:

�
�
�F������
4
�!��
4
���9
��

and note that the result is the return of your cursor. This is because there
were no lines in the exercise file that did not have a duplicate somewhere
in the file.

Step 4 – now edit the exercise file and insert a few lines that are unique to
the entries in the file, and unique to each other, such as your name or the city
in which you work.

Step 5 – enter:

�
�
�F������
4
�!��
4
���9
��

and note that the results are only those lines you added.

Note: if you had chosen to CHANGE some lines rather than to add unique
lines, the results would be the new lines you had changed, plus the
corresponding unchanged lines because now they are unique!

Exercise 3 – showing duplicates only (-d flag)

Step 1 – take a log file with several hundred entries that you know in
advance are unique, such as a log with timestamps over a range of dates,
and create a test file for this exercise. For example, enter:

�
�
������
��� !�
1
�F��B���

Step 2 – enter:

�
�
�F��B���
4
�!��
4
���9
��

and note that the result is the return of your cursor. This is because there
were no lines in the exercise file that were duplicated anywhere in the file.

42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Step 3 – now edit the exercise file and duplicate a few of the lines.

Step 4 – enter:

�
�
�F��B���
4
�!��
4
���9
��

and note that the results are only a single occurrence each of those lines you
duplicated.

Exercise 4 – showing counts of duplicated lines (-c flag)

Step 1 – create an exercise file as follows. Start with three small files, each
with several lines of unique data. Concatenate the first file into the exercise
file once, the second file into the exercise file twice, and the third file into
the exercise file three times. For example:

�
�
�� �!��
1
�F��O���

�
�
�� ��@!
11
�F��O���

�
�
�� ��@!
11
�F��O���

�
�
�� ��	���
11
�F��O���

�
�
�� ��	���
11
�F��O���

�
�
�� ��	���
11
�F��O���

The result of your set-up will be an exercise file with a few unique lines and
several duplicate lines with two or more occurrences each.

Step 2 – enter:

�
�
�F��O���
4
�!��
4
���9
��

and note that the result is a table with a linecount of occurrences of each line
found in the file.

Step 3 – enter:

�
�
�F��O���
4
�!��
4
���9
��
4
�!��
��

and note that the result is similar to Step 2, only now the results are sorted
in order of occurrences, greatest to least. Appending sort -r to your
command can be useful if your intent is to display a table with the most
meaningful data at the top or bottom.

Exercise 5 – skipping fields (-f flag)

Step 1 – set up an exercise file by entering the following text into a file called
exer5.fil:

 43© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

?���
J��
��F�#
5<����
�	�
���9
�!��
��
	� ��
�!��
��
��!����
@!���5

?���
�@!
��F�#
5.!�
�
�
�!��
��
�@!
�� ��
@��	
�	�
���9
�!��
���5

?���
�	���
��F�#
5K�
��
���� �
�!
���
�	�
���9
�!��
���5

?���
>!��
��F�#
5<����
�	�
���9
�!��
��
	� ��
�!��
��
��!����
@!���5

?���
>�"�
��F�#
5K�
��
���� �
�!
���
�	�
���9
�!��
���5

?���
/�F
��F�#
5.!�
�
�
�!��
��
�@!
�� ��
@��	
�	�
���9
�!��
���5

Step 2 – enter:

�
�
�F��P���
4
�!��
*B
4
���9
��
B

and note that the result will be:

?���
>�"�
��F�#
5K�
��
���� �
�!
���
�	�
���9
�!��
���5

?���
>!��
��F�#
5<����
�	�
���9
�!��
��
	� ��
�!��
��
��!����
@!���5

?���
/�F
��F�#
5.!�
�
�
�!��
��
�@!
�� ��
@��	
�	�
���9
�!��
���5

You have used the -f flag to eliminate duplicates of the text following the
first three fields of each line in the file. Remember that the data preceding
the colon (:) is meaningless in the output.

Exercise 6 – skipping characters (-s flag)

Step 1 – set up an exercise file by entering the following text into a file called
exer6.fil. Ensure no leading blanks precede any entries:

?���
�
D
�
%��������B

?���
�
D
�
%
��
��
��

?���
B
D
�
%F�XF�XF�X

?���
O
D
�
%
��
��
��

?���
P
D
�
%YYYYYYYYY

?���
Z
D
�
%��������B

Step 2 – enter:

�
�
�F��Z���
4
�!��
��
����
4
���9
��
��

and note that the result will be:

?���
�
D
�
%��������B

?���
P
D
�
%YYYYYYYYY

?���
�
D
�
%
��
��
��

?���
B
D
�
%F�XF�XF�X

You have used the -s flag to eliminate duplicates of the text following the
first 12 characters of each line in the file. Remember that the data preceding
the equal sign (=) is meaningless in the output.

David Chakmakian
Programmer (USA) © Xephon 2002

AIX news

IBM has introduced a host of new high-
performance features in its AIX operating
system that are designed to supercharge
compute-intensive applications. The
company also announced that it will become
the first major Unix vendor to offer a
‘productized’ version of the Globus Toolkit,
the industry’s de facto standard open source
Grid management software.

The new features are said to improve the
speed of bandwidth-intensive workloads,
such as BI applications that search massive
corporate data warehouses, as well as HPC
applications, such as simulation.

The new features include large data transfer,
enabling bigger chunks of information to be
accessed more efficiently in the computer’s
memory. AIX offers support for the
traditional 4KB page size and for the new
16MB ‘large page’ size and localization,
where processors running a particular
workload have optimized access to system
memory components, further increasing
performance.

IBM has also announced plans to introduce
an AIX toolbox for Grid applications, based
on the open source protocols from Globus,
the recognized leaders in Grid management
software. The toolbox, which IBM is offering
free of charge, is middleware that allows
users to share supercomputing power, data,
and applications as easily as information is
shared over the Web.

For further information contact your local
IBM representative.
URL: http://www-1.ibm.com/servers/aix/
news/supercharge.html.

* * *

IBM has launched Infoprint Manager for
AIX Version 4 Release 1, which is designed
to help manage and monitor printers, provide
intelligent document routing and scheduling,
and help balance printer workloads.

Enhancements in Infoprint Manager for AIX
include enhanced calibration support for
colour printers and the ability to hold a
processing job and move it to a different
printer. It now provides count of actual
number of pages printed, not just a projected
count, and supplies actual counts of pages
drawn from the input trays.

It now reports the number of copies
requested and provides job completion date
and time, and there’s improved job
completion notification for SAP 3.1h.

The security function provides greater
granularity for non-DCE environments,
having the ability to define the kinds of
messages each user should get, and
supporting colour e-mail output.

There’s the ability to specify a separate
overlay for each document in a job ticket in
Infoprint Submit, the ability to print SAP
output with AFP resources, such as overlays,
images, and barcodes, support for PCL 6, and
wireless notification of job status.

For further information contact your local
IBM representative.
URL: http://www.printers.ibm.com/
R5PSC.NSF/Web/ipmnewaix41.

* * *

� xephon

	Back-up servers in the DMZ
	Script to control the printing of PS files based on the number of pages
	The case statement
	Performance monitoring using NMON
	Understanding the uniq command
	AIX news

