

© Xephon plc 2002

September 2002

83

In this issue

AIX
�
�
�
�
��

3 Grep this
15 Command return values
24 Communications Server failures

under AIX 4.3.3
25 awk
42 Understanding the cp, mv, and rm

commands
48 AIX news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

AIX Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to AIX Update,
comprising twelve monthly issues, costs
£180.00 in the UK; $275.00 in the USA and
Canada; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
November 1999 issue, are available
separately to subscribers for £16.00 ($24.00)
each including postage.

AIX Update on-line
Code from AIX Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; you will need to supply a word from
the printed issue.

© Xephon plc 2002. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.

Printed in England.

Editors
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions
When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

 3© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Grep this

The grep utility allows one or more files to be searched for strings of
words. Its syntax is somewhat similar to the regular expression syntax
of the vi, ex, ed, and sed editors. It comes in three basic flavours – grep,
fgrep, and egrep. The article mainly discusses grep and egrep, with a
final note on fgrep at the end because it is the simplest of all three.

The name grep is derived from an editor command:

������

which meant “globally search for a regular expression and print what
you find”. That action is essentially what grep does, so the name
seemed appropriate. Regular expressions are at the core of grep and are
covered after a brief description of some of the command options.

The simplest grep command is:

��������������		��
��������	

An example of this appears in Listing 1 to search all files in the current
directory for the string “hello”.

Listing 1:

���������	�

The output of this command might be something like Listing 2.

Listing 2 – output of grep:

�����������	�

�	�������	������������������������	�������������	����������������

���	�����������	�����	�������������������	������	��������

�

The search by grep is case-sensitive. In order to change the search to
include “hello”, “Hello”, or “HELLO” use the -y or -i option. Earlier
versions of grep used -y. Later versions use -i, and -y is considered
obsolete, although some versions of grep support both. In Listing 3,
more “hellos” show up because the search is case-independent.

Listing 3 – output from a case-insensitive grep search:

��������������	�

 4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

�	�������	������������������������	�������������	����������������

�	���������	���������������	 �!"#$$% �"#$$% �"#$$%�!

���	�����������	�����	�������������������	������	��������

����	�������������&!"���	 ��	�����'�!()

�

The output from grep varies depending on whether you are searching
one file or several files. If only one file is named on the command line,
the output does not include the file name as in Listing 4.

Listing 4 – output of a one file grep:

��������������	�����	��

���������&!"���	 ��	�����'�!()

�

This one file rule applies whether you use a wildcard in your file list or
not. If hello.c were the only file in the current directory, using a wildcard
to locate the file would still produce an unnamed file output.

As a side note, the reason for this is that the wildcard on the grep
command line is actually expanded by the shell, not by the grep
command.

The shell pre-expands the * by locating all files in the current directory,
making a list of the files, and replacing the * with the list of files. If there
is only one file in the directory, then the command is executed as:

���������	�����	��

In Listing 5, the user is searching for any C files containing “hello”.
Where there is only one file with a .c extension in the current directory
the output is identical to the previous example.

Listing 5:

��������������	�
��

���������&!"���	 ��	�����'�!()

�

There is a clever work-around for this limitation. By always adding the
/dev/null device file to the list of files to search you ensure that multiple
files are searched. Because grep accepts a list of files, the command in
Listing 6 searches all files with a .c extension, and the file named /dev/
null. Even if there is only one file with a .c extension in the current
directory, the output prints the file name, because it is actually searching
for files.

 5© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Listing 6 – using /dev/null as a file:

��������������	�
������*�����

����	������������&!"���	 ��	�����'�!()

�

If you are familiar with /dev/null, you are probably most familiar with
it as a sort of character trash can – somewhere to send unwanted output.
In Listing 7, errors that would normally be output to standard error
(usually the terminal screen) are redirected to /dev/null, which effectively
throws them away.

Listing 7 – throwing output away in the /dev/null waste basket:

�������������'
���������+,���*�����

But the /dev/null device can also be used as an input file equivalent to
an empty file. This use is seen less often, but is perfectly valid.

The -l option can be used to extract a list of files containing the string.
Only the file name is printed, and it is printed only once even though the
string may appear in multiple lines. In Listing 8, story.txt appears only
once even though it contains more than one occurrence of “hello”.

Listing 8 – using the -l option:

���������������	�

����	���

���	���

�	�����

�

The -l option suppresses most of the other output options from grep.

The -n option will print a line number as well as the text as in Listing
9.

Listing 9 – using -n to print line numbers:

���������������	�

����	���+-�����������&!"���	 ��	�����'�!()

���	���.//���������	�����	�������������������	������	��������

�	�����.0.���	������������������������	�������������	���������

������

�	�����+1-�����	���������������	 �!"#$$% �"#$$% �"#$$%�!

�

The -v option outputs the complement of the search – all lines not
containing the requested search pattern.

 6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Listing 10 – output of lines not containing the search text:

���������*�����	����	��

2	���������������	�����	���������������	�

������������

�

The -c option prints only a count of lines matched. It has an interesting
and useful side-effect in that it lists all of the files that it searches, not
just the successful hits. Listing 11 provides a sample output.

Listing 11 – using -c to print a count of hits:

���������������	�

������0

����	���.�

���	���.

���	+���0

�	�����+

�

Some versions of grep come with -r as an option to allow grep to
recursively search through subdirectories. The default behaviour is to
search only one directory and the -r option, as provided in GNU grep
for example, is the exception rather than the rule.

You have now seen some of the input and output options, but the real
power of grep is in the search pattern, which uses regular expressions.

Grep can match simple strings such as the “hello” example, but it can
also use a variety of wildcards and special symbols (meta characters) to
create a regular expression to search for more complex strings.

Let’s start with some of the simpler regular expression characters. A ^
(caret) character means start of the line and a $ (dollar) character means
end of the line. You could use these to specify matching a word only at
the beginning or end of a line.

The wildcards used by grep frequently clash with the special characters
that the shell uses, so the usual practice is to enclose complex search
strings in single quotes. Listings 12 and 13 would match any case
version of hello at the start of a line and at the end of a line respectively.

Listing 12 – matching at the start of a line:

�����������34����	3�

Listing 13 – matching at the end of a line:

 7© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

����������3����	�3�

The . (dot or period) character will match any single character. Listing
14 will match any character followed by ello. It would match aello,
bello, cello, on down to zello, as well as odd combinations such as 1ello,
2ello, and ?ello. Any combination of one initial character followed by
ello is valid. The dot only matches printable characters and does not
match the beginning or end of line, therefore ello at the start of a line
would not be matched.

Listing 14 – matching any character:

�������3����	3�

Optional characters can be enclosed in square brackets ([]) causing
any of the enclosed characters to be matched. The grep command in
Listing 15 would match hello, cello, or bello, but would not match aello.

Listing 15 – matching optional characters:

�������35���6���	3�

Optional characters can also be specified as a range by using two
characters separated by a hyphen. Listing 16 would match bay, cay, or
day.

Listing 16 – matching a range of optional characters:

�������35���6��3�

A list of optional characters, or range of characters, can be preceded by
a caret (^) to invert the sense of the match. Listing 17 would match any
character followed by ay except the combinations bay, cay, and day.

Listing 17 – inverting optional characters:

�������354���6��3�

Note that an option list or range represents a match of a single character.

Any single character match (including a single character matched by an
option/range specification) can be repeated by using the repeat character,
* (asterisk). An asterisk following a single character means zero or more
occurrences of the preceding single character match. Listing 18 requests
any line containing hello followed by dolly, where the words are
separated by zero or more spaces. Note that the asterisk follows the
space after hello and therefore applies to the space character.

 8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Listing 18 – matching zero or more spaces:

�������3����	�
�	���3�

This search would match any of the combinations shown in Listing 19
without regard to the number of spaces between the words.

Listing 19:

����	�	���

����	��	���

����	��������������������	���

The asterisk can be applied to an option list or range of characters.
Listing 20 matches c and t with any number of vowels (or no vowels)
in between.

Listing 20 – using repeat on an option list:

�������3�5���	�6
3��	���	�����

��

�	�

�		

�	

�	�

��

�

�

At this point we have to start exploring egrep because grep and egrep
depart from one another. Egrep stands for extended grep. The POSIX
1003.2 standard defined a set of regular expression characters called
modern, extended, or full regular expressions. The earlier regular
expressions used by grep are usually called older or basic regular
expressions. There is some overlap between the two types of regular
expressions and recent versions of grep can be made to behave like
egrep by using a -E option that forces grep to use extended regular
expressions.

The egrep utility uses extended regular expressions. One of the useful
extended regular expressions is the plus (+) character as a single
character repeater. This works like the asterisk (*) but means one or
more rather than zero or more. Using egrep in the example in listing 20
with plus (+) instead of the asterisk, the search would be changed to skip
finding ct because it does not contain one or more vowels. Since this is
probably what was intended in the first place, it is more useful.

 9© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Listing 21 – using + from the extended regular expressions:

��������3�5���	�673��	���	�����

��

�	�

�		

�	

�	�

��

�

If you use grep to achieve the same results, the search pattern becomes
clumsier. Listing 22 asks for c, followed by any vowel, followed by zero
or more occurrences of any vowel, followed by t.

Listing 22 – matching one or more using grep:

�������3�5���	�65���	�6
3��	���	�����

��

�	�

�		

�	

�	�

��

�

The egrep utility also adds a question mark (?) as yet another version
of multiple occurrence matching. The ? means zero or one occurrence.

Using egrep with extended regular expressions:

• * = zero or more occurrences of the preceding character pattern.

• + = one or more occurrences of the preceding character pattern.

• ? = zero or one occurrence of the preceding character pattern.

The next useful character in extended regular expressions is the vertical
bar (|). This creates an ‘or’ condition between two possible search
patterns. In Listing 23, egrep searches for c, followed by one or more
vowels followed by t. It also searches for p followed by one or more
vowels followed by l as an option. Since the search string does not
specify that the word must actually end after the closing t or l, Listing
23 has matched paula and paella as well as words that just end in l.

Listing 23 – searching using an ‘or’:

��������3�5���	�678�5���	�67�3��	���	�����

��

 10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

�	�

�		

�	

��

��

��

���

������

����

�����

����

����

�		�

�

You can fudge this multiple optional pattern with grep by using a
feature that all three of the grep utilities have. They can match multiple
search patterns that have been entered by using newlines in between the
patterns. This feature can be used with egrep and fgrep as well, but I
am introducing it here just to show you the difficulty of imitating egrep
with grep when it would be simpler to use egrep.

In Listing 24 the user enters the first part of the command on one line,
and then presses Enter while the single quotes are still open. The shell
prompts for additional input and continues to accept lines until the
closing quote appears. Each individual line represents a separate search
string to grep. This trick is useful with any version of grep.

Listing 24:

�������3�5���	�65���	�6

,��5���	�65���	�6
�3��	���	�����

��

�	�

�		

�	

��

��

��

���

������

����

�����

����

����

�		�

�

In egrep, simple parentheses can be used to group sections of a search

 11© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

pattern together. This is usually used to cause branches within a search
pattern. The example in Listing 25 illustrates this better than an
explanation. The search pattern will match any of the words shown in
the result list. The parentheses group ‘[Ss]ome’ and ‘[Aa]ny’ as
optional strings followed by ‘one’.

Listing 25 – using parentheses in egrep:

��������3&59�6	��85:�6��(��3��	���	�����

�	��	��

9	��	��

���	��

:��	��

�

A single character can be modified by a count bound. A count bound
can specify a minimum or maximum number of characters (or both).
Egrep uses curly braces ({}) to specify a bound, grep uses back-
slashed curly braces (\{\}). A bound consists of one or two comma-
separated numbers. The first number specifies the minimum number
and the second number specifies the maximum number of preceding
characters. The examples in listing 26 will clarify the usage.

Listing 26 – some example bounds:

egrep grep Meaning

[a-z]{2,4} [a-z]\{2,4\} Two to four lower-case characters.

[a-z]{4} [a-z]\{4\} Exactly four lower-case characters.

[0-9]{4,} [0-9]\{4,\} Four or more digits.

[A-Za-z]{,4} [A-Za-z]\{,4\} Zero to four upper- or lower-case
characters.

The last useful character is the escape character or backslash (\). This
character removes the special meaning of a character and turns it back
into a standard character. Some simple examples are illustrated below.
Note that the backslash has a special meaning, so when you want to
search for a backslash itself, it must be escaped (\\). Listing 27 illustrates
the different behaviour of special characters when preceded by a
backslash.

Listing 27 – using the backslash:

 12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• . – any character.

• \. – a period.

• $ – end of line.

• \$ – dollar sign.

• * – zero or more occurrences of the preceding expression.

• * –an asterisk.

• \ – nothing; it is an escape character.

• \\ – a backslash.

• | – create an ‘or’ branch between two expressions.

• \| – a vertical bar.

The definition of the escape character states that if you escape a
character that does not need to be escaped, then the escape is ignored
and the character is treated as if you had entered the character on its
own. If you place ‘\a’ in a search pattern, it is the same as ‘a’ because
it did not need to be escaped in the first place.

It is hard to remember all the characters that have a special meaning in
grep and egrep. It would be wonderful if you could follow a simple
rule-of-thumb such as: when in doubt about whether a character has a
special meaning or not, use the backslash in front of it. Unfortunately
regular expressions are not quite that regular. You have already seen that
curly braces when escaped in grep acquire a special meaning. The same
is true for parentheses and angle brackets. The following characters or
combinations of characters have special meanings in grep or egrep:

In egrep, | ^ $. * + ? () [{ } \.

In grep, ^ $. * \(\) [\{ \} \.

Because regular expressions are used by vi, ex, sed, and ed, it is worth
mentioning that these editors use the following special characters or
combinations: ^ $. * \(\) [\ \< \>.

As you can see, regular expressions aren’t as regular as they should be,
and you need to be aware of which version of regular expressions you
are using before you begin throwing the backslash around

 13© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

indiscriminately.

The last collection of grep or egrep search pattern options is really a
simple shorthand for describing a class of characters.

Listing 28 – shorthand for types of character:

• [:alpha:] – any alphabetic character.

• [:lower:] – any lowercase character.

• [:upper:] – any uppercase character.

• [:digit:] – any digit.

• [:alnum:] – any alphanumeric character (alphabetic or digit).

• [:space:] – any white space character (space, tab, vertical tab).

• [:graph:] – any printable character, except space.

• [:print:] – any printable character, including the space.

• [:punct:] – any punctuation, a printable character that is not white
space or alphanumeric.

• [:cntrl:] – any non-printable character.

You may use these inside a range option. Note that the class name
includes the left and right brackets, so these must be doubled inside a
range as in Listing 29, which searches for any string of 10 digits or
uppercase letters. Note the apparently doubled brackets. This is in fact
an option of [:digit:][:upper:] inside the square brackets for a range.
This could also be written as [0-9A-Z].

Listing 29 – using shorthand types:

��������355������65�������66;.<=3��	�����������

.+>/??/>+.

�

Listing 30 offers some sample search patterns. Pattern 1 searches for
phone numbers by looking for an open parenthesis, followed by three
digits, followed by a closing parenthesis, followed by three digits, a
hyphen, and four digits.

Pattern 2 searches for zip codes either with or without the following
hyphen and four digit extension. It searches for five digits followed by

 14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

zero or one hyphen followed by between zero and four digits.

Pattern 3 searches for lines containing PO Box number style addresses.
It does a case-independent search for p followed by zero or one period,
followed by zero or more spaces, followed by o, zero, or one period, and
one or more spaces, and finally followed by box or drop. This should
match most of the styles of data entry for a PO Box including P. O. Box,
PO BOX, P.O. Box, P O Box, P. O. Drop, and so on.

Pattern 4 matches just the word cat by searching for it where it is
preceded by a beginning of line or one or more spaces and followed by
one or more spaces, or an end of line. This search will not match
concatenate.

Listing 30 – some sample search patterns:

. ������3'&5<�@6;>='(5<�@6;>='�5<�@6;/=3��	�����������

+ ������35<�@6;?='�A5<�@6;< /=3��	�����������

> ���������3�'�A�
	'��7&�	�8��	�(3��	�������������

/ ������B&48�7(��&�78�(C��	������

So far I haven’t mentioned fgrep and you are probably wondering how
it fits in with grep and egrep. Fgrep is grep (or egrep) without special
characters. To search for a simple string without wildcards, use fgrep.
The fgrep version of grep is optimized to search for strings as they
appear on the command line, and does not treat any characters as
special.

You could use fgrep in all of the examples that searched for the plain
string ‘hello’, and it would be more efficient. You can also use fgrep to
search for strings that contain special characters used in their usual
sense. For example if you wanted to search for hello at the end of a
sentence (hello followed by a period), you would want to search for
‘hello.’.

The dot or period is a special character in grep or egrep, and it would
be simpler to use fgrep. Fgrep will treat a period as a period and not as
a special character.

Listing 31:

��������3����	�3�

There are two important final notes about searching for multiple strings.
Multiple search patterns can be placed on a single command line by

 15© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

using the -e option before each search pattern. Listing 32 will search for
cat or dog.

Listing 32 – using the -e option:

�����������3��3����3�	�3�

Possibly one of the most powerful features of the grep family is the
ability to create a file containing a list of search patterns and then name
the file on a grep command line with the -f option. Listing 33 is a file
named searchfor.txt containing a list of search patterns to search for the
singular or plural of various animals. The question mark at the end of
each animal name applies to the preceding s and means zero or one
occurrences of s.

Listing 33 – putting search patterns in a file:

�	��A

���A

�����A

������A

To use this file to search another list of files, name it on the command
line with the -f option as shown in Listing 34 instead of a search pattern.
The egrep utility will search for all the possible strings listed in
searchfor.txt.

Listing 34:

������������������	����

Mo Budlong
Middleware and Data Translation Specialist
King Computer Services (USA) © Xephon 2002

Command return values

All commands, whether they be shell scripts or system commands, have
an exit status, called a return value, when they finish running. The return
value is available as the value of the shell variable $?.

When a command is run from the command line, the return value is that
of the last command that was executed in the foreground. If we execute

 16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

a pipeline, then the value of $? is the exit status of the last command run
in the pipeline.

Scripts, by their nature, contain many commands, all of which themselves
have a return value and each of these can be tested within the script to
determine whether certain conditions have been met. The script itself
also has an exit status, which can be the return value of the last
command executed within the script, or, as we shall see, a value which
we can generate ourselves.

SYSTEM COMMAND RETURN VALUES

When we speak of system commands, we are referring to the group of
commands described as executable (RISC System/6000) or object
modules (determined by running the file command against them).
There are also a number of shell scripts which are part of the AIX
operating system, and these are also included in this section.

System commands almost always return a value of 0 when they are
successfully executed. A noted exception is the false command, which
returns a value 1; false and its sister true are used almost exclusively
in shell scripts to ensure that a loop continues executing.

Most commands at least return the value 1 when they are unsuccessfully
executed, but some have multiple non-zero exit statuses; these usually
indicate error conditions over and above the mere failure to execute
properly, such as you have specified an inaccessible file or given an
invalid option to the command. There are few rules regarding command
return values and you should refer to the on-line documentation for each
command to be certain of what to expect.

You should be aware that the above convention in shell programming
is the reverse of that used in C programming. In shell programming a
value of 0 means true, or successful, and a non-zero value means false,
or unsuccessful.

As a simple example, the following illustrates that the cp command
returns 0 when it successfully copies a file:

�������������������	��

��������A

0

If, instead, we had asked cp to copy a file that does not exist, then cp

 17© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

would return a value of 1:

��������

�������:������	�������	�������������������	����	�����

��������A

.

The return values of cp make no distinction between a syntax error and
some other error condition, like the one above where we tried to copy
a file which did not exist. You can test this by running:

����������

D���������5�����6�5��8�E6�5��6���������

�����

��������A

�

Even though none of the files are likely to exist, the syntax check takes
precedence and returns a value 1 because of the error condition.

As a further example, the grep command returns 0 if it finds any
matches, 1 if it does not find any matches, and 2 if there are syntax errors
or inaccessible files. You can verify this with the following examples:

��������������������

will produce output similar to:

�����������

���������������

�����!��������3�������3�����	���*�������	���!

and the exit status will be:

��������A

0

In the next example, grep returns 1, since it does not find the string
“Johann Sebastian Bach” in the file search:

�������!F	�����9��������G���!�������

��������A

.

Finally, since the file nofile does not exist (we hope), grep returns the
value 2:

��������	H�	����	����

���������3�	�����	����

��������A

�

 18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The grep command return values are by no means perfect since grep
does not make a distinction between syntax errors (2) and trying to find
a match in a non-existent file (also 2). Ideally, commands should return
different values for all possible error and operating conditions, which
would make life easier for shell programmers, but this is rarely the case.

RETURNING VALUES IN AND FROM SHELL SCRIPTS

Within scripts, two commands are used to provide return values:

• The exit command is used to define the exit status of the script itself
when it finishes executing, either normally or abnormally because
of some error condition.

• The return command is used within functions to return a particular
value to the main part of a script, which is then tested to determine
the next piece of code to be executed.

One major difference between exit and return is that, when return is
used within a function, it merely exits the function and returns control
to the part of the script from where the function was called, whereas exit
will terminate the script execution, no matter how deeply it is nested
within a function.

Since the variable $? is always reset after each command, in scripts you
must save its value if you want to use it later in the script. For example,
if you copy a file and want to check the exit status of the cp command
later, you must save the exit status after you run cp, and before you run
another command. You could, for example, use:

9I:IJ�A

THE EXIT COMMAND

There are several ways that a shell script can be terminated. A shell
script will continue running until one of the following happens:

• The end-of-file is reached. This usually occurs when the last
command in the file has been executed.

• The process is killed by a signal. This can happen when, for
example, you press Ctrl C while the script is running, although
signals can be trapped so as to ensure that scripts are not terminated

 19© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

before they have completed a normal execution.

• An explicit exit command is executed.

You can use the exit command within a shell script to cause the script
to terminate before the last command is reached. You may, for example,
want the script to terminate if a particular condition is true and continue
otherwise.

Type the following shell script, and then execute it, first using a
filename you know to exist, and then one which does not exist:

��*���������

KL��������

�����!#��������������'�!

���������

����������;����=�	���+,���*�����

9I:IJ�A

K�������������������������������

������9I:I���

5L06(

��������	����������

���

))

����

���������	�����������������

If the copy is unsuccessful, the script prints an error message and
terminates, otherwise it continues. This script serves no value other
than to show the use of exit statuses and the exit command.

RETURNING PARTICULAR VALUES WITH EXIT

You can also use the exit command to make a shell script return a
particular value. This is useful when a number of different conditions
can occur and you want to test which one has before proceeding. The
general form of the command is:

����5
�����6

The number is optional. When used in a script, the script terminates
with an exit status of number. If a number is not specified, the exit status
which the script returns is the exit status of the last command that was
run in the script.

 20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The exit number can be any value you wish. The normal range is 0 - 255,
so that exit 0 is the same as exit 256, and if number is greater than 256,
then this is subtracted from number to give the exit status. For example,
exit 456 will produce an exit status of 200 (456 - 256).

Consider the following example:

��*�������

�����#����3!���!�	��!�	!�'�3

�����������

���������������

���(

����������.�))

�	(

����������+�))

(

����������>�))

����

This shell script will return different exit values, depending on the
response entered.

Although this particular example has no useful purpose, the principle
can be used in any script to return specific values so that when myexit,
or any script like it, is used within another script, its exit status can be
tested and the second script can then be made to execute different sets
of commands, depending on the value returned.

You should get into the habit of using exit number type commands in
your scripts, particularly when the script can terminate because of a
variety of different error conditions. There is not a great deal of use,
though, in having a single exit command on the last line of your script
since, if you do not specify number, the script will exit with the exit
status of the last command run. If you are certain that the script has
successfully executed at that stage you should always use exit 0 to avoid
confusion.

FUNCTION RETURN VALUES

Function return values are an exceedingly useful way of checking out
what happens when a batch of code is executed from within a script.
Like the exit command, the syntax is return [number], and the same

 21© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

rules apply if number is greater than 255. If you do not use the optional
number, then the return value will always be the exit status of the last
command run in the function.

Let us use an updated version of the lvman command to illustrate the
use of return and exit.

KL��������

K�9������������*���

K�D�������*����;5�*�MN����685���OM����6=

KKK

K�M����	��"��	��

KKK

K���

K�P����	����H���H�����

K�Q����������������������

K���

�H���H�����&(

;

���������!D�������&����������0(�;5�*�MN����6�8�5���OM����6=!

���������!R�����!

���������!'�*�MN������������������������*	�������	��!

���������!'���OM���������������������������������*	����!

���������!S	���D�������������*�%E����	��	�!

=

��

K�P����	����H���H*����

K�:����������.���*	�������	���	�����������*	����

K�����������*	�������	���	�����������*	�������������*����

��

�H���H*����&(

;

����Q#MJ�.

����������#���Q#M�,���*������+,T.

����K

����K�������������0��	��*�������*���

����K�	��+??��	���	��*�������*���

����K

����������A���

����0(

������������0�))

����
(

������������.�))

��������

�

K���

K�P����	����H��H*�H�����

K�:����������.���*	�������	�������

K�N������	������������������	�����*	�������	��

K���

�H��H*�H�����&(

 22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

;

����MNJ�.

����K

����K�N��	�����������������������

����K

����I%I:$J�&��*���MN�8������!I%I:$�OO�!�8������+����!&!�8

��������3�3�3'3�8������.(

����PE##J�&��*���MN�8������!PE##�OO�!�8������+����!&!�8

��������3�3�3'3�8������.(

�����*����;MN=H$MSDUJ�&��*������MN�8�����7>�8�������8������!�!(

����K

����K�O����	���

����K

����������!V�+0��V�.?��V�.?�'�!�!M	�����N�	��!�!I	���9�W�!�'

!P����9����!

����������!V�+0��V�.?��V�.?��'�!��MN�!�I%I:$�UG!�'

!�PE##�UG!

�����*��������S������	��$M������MN�J�3�3�;MN=H$MSDU

=

K���

K�P����	����H��H�*H�����

K�:����������.������������*	���������

K�N������	������������������	�������������*	����

K���

�H��H�*H�����&(

;

����OMJ�.

����K

����K�N��	�����������������������

����K

����I%I:$J�&���*��OM�8������!I%I:$�OO�!�8������+����!&!�8

��������3�3�3'3�8������.(

����PE##J�&���*��OM�8������!PE##�OO�!�8������+����!&!�8

��������3�3�3'3�8������.(

�����*����;OM=H$MSDUJ�&���*�����OM�8�����7>�8�������8������!�!(

����K

����K�O����	���

����K

����������!V�+0��V�.?��V�.?�'�!�!O��������M	����!�!I	���9�W�!�'

!P����9����!

����������!V�+0��V�.?��V�.?��'�!��OM�!�I%I:$�UG!�'

!�PE##�UG!

�����*��������S������	��$M��	���OM�J�3�3�;OM=H$MSDU

=

KK

K�U��������	�

KK

��	����*����	�

������	����

 23© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

*(

����MNJ�%OI:EN

������������������

����������A���

������

�������H��H*�H�������MN

��������

����.(

������������MN�����	���*�����*	�������	��

����������.

������))

��������

����))

�(

����OMJ�%OI:EN

������������������

����������A���

������

�������H��H�*H�������OM

��������

����.(

������������OM�����	���*��������������*	����

����������+

������))

��������

����))

(

�����H���H�����

�������	�

����))

����

You will note that there is a new function, called f_chk_valid, which
checks that the volume group or physical disk is a valid device; it does
this by running the lsattr command against the device name, which is
passed in as $1 to the function. lsattr produces output, either in the form
of device information or as an error message, so we have discarded this
output since we are only interested in the return value of the command,
which is either 0 for a valid device or 255 for an invalid one.

This function does not perform all the checks that we would like. For
example, if we enter lvman -v hdisk0, we will get unwanted errors
since, although hdisk0 is a valid device, and lsattr will thus produce
return value 0, it is not a valid volume group. In a future article you will
see how this can be overcome using the if statement.

The main section now contains nested case statements where the

 24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

f_chk_valid function is called to determine the validity, or otherwise,
of the volume group or physical volume name entered on the command
line. If the function returns a value 0, then the device name is valid and
the appropriate function is then called to display the space usage. If the
function returns a value 1, an error message is generated and the script
exits.

Each error condition generated, including the incorrect usage message,
has been given a different exit number, which could, if desired, be
checked by any other script which calls lvman. If no error conditions
are detected, the script will execute normally with exit value 0.

Tonto Kowalski
Guru (UAE) © Xephon 2002

Communications Server failures under AIX 4.3.3

We have recently come across a situation where both Versions 5 and 6
of the Communications Server for AIX failed to start under AIX 4.3.3.
The failure occurs under very specific instances. With Version 5 of the
Communication Server it happens only if the bos.rte.libc fileset is at the
4.3.3.17 or later level, and the sna.rte fileset is below the 5.0.4.2 level,
or below the 6.0.0.1 level for Version 6 of the Communication Server.
If you think you may have this issue at your shop check the /var/sna/
sna.err file; it may contain the following errors:

• Version 5: Unable to start the TN Server executable snatnsrvr_mt

• Version 6: error reading configuration: define_tn3270_ssl_ldap.

Since the time of writing, a fix for this problem has been made available
for Communications Server Version 5 (APAR IY12351) and Version 6
(APAR IY12677).

Systems Programmer (UK) © Xephon 2002

 25© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

awk

INTRODUCTION

awk is an input-driven Unix utility that can be used mainly for reporting
purposes (eg reporting input data file validation errors). That is, nothing
happens unless there are lines of input on which awk can act.

This input can come from a file or another command. When you invoke
the awk program, it reads the script that you supply, checking the syntax
of your instructions. Then awk attempts to execute the instructions for
each line of input. There is a later version of this utility called nawk
(new awk), which offers more flow controls, functions, and a
system () function.

PROGRAMMING WITH AWK

Input to awk

Input to an awk script can be provided in the following ways:

• From the command line.

• From a file.

• From the output of another command.

Example of command line input

Command entered:

�����3;������. ��+=3

awk will be expecting you to type a line on the command line. Every
time you type in a line, awk will try to print two fields which are
delimited by one or more spaces, separated by comma, from the line.
The program will terminate only if you press the appropriate key to
terminate the program.

Example of input from file:

 26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

����������� ��.

:�������X����

Command entered:

����3;������. ��+=3���.

awk will read the only line in the file as input and print out Arif Zaman
and terminate.

Example of input from output of another command:

���	��!:�����X����!�8������3;������. �+=3

awk will accept the output from echo as its input and print out Arif
Zaman.

INPUT SPECIFICATION

Record

A record in awk is defined as the input line, which comprises one or
more words – known to awk as fields – each of which is delimited by
blank spaces, tabs, or any other specified field separator.

Example:

:�����X����

Record separator

A record separator is one or more characters that are appended to the end
of an input line.

By default awk looks for a newline character as a record separator, but
this can be changed by redefining the system variable, RS.

Example (using default record separator):

:�����X����

Y@�I���:*����

O�����

U��������

":?��?GR

Note: the newline character is used here as a record separator.

 27© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Example (using redefined record separator):

:�����X����8Y@�I���:*����8O�����8U��������8":?��?GR

Note: the pipe symbol, |, is used here as a record separator.

Referencing record

Within a script, the current record can be referenced using $0.

Field

awk interprets a record as comprising one or more fields, which are
separated by spaces, tabs, or any other field separator. This default can
be changed by redefining the system variable, FS.

Field separator

A field separator is one or more characters that are appended to the end
of a field in a record. By default, awk looks for one or more white
spaces.

Example (using default field separator):

:���������X����

Note: the white space characters are used here as a field separator.

Example (using redefined field separator):

:���8X����

Note: the pipe symbol, |, is used here as a field separator.

Field operator

The specific field in a record can be referenced by $<numeric no>,
where $ is known as a field operator and numeric no is the field in
question.

Referencing field

awk allows you to reference fields in actions using the field operator $.
This operator is followed by a variable that identifies the position of a

 28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

field by number. $1 refers to first field, $2 to the second field, and so on.

Example (using default field separator):

������$���

:�����X�����������YYY�???�....

awk '{print $2, $1, $3 }' will output Zaman Arif 666-555-1111

The commas that separate each argument in the print statement cause
a blank space to be output between the values.

Example (using a specified field separator):

Input line:

:����X���� Y@�I���:*���� �O����� �U�������� ":?�?GR

awk command:

����ZP! !�3;���������.

������������������������������+

������������������������������>

������������������������������/

������������������������������?�=3

Output:

:�����X����

Y@�I����:*����

O�����

U��������

":?�?GR

Formatted output

Only a limited amount of formatting can be achieved with the print
command. awk offers an alternative to the print statement, printf,
which is borrowed from the C programming language.

Example:

Printing a record, right-justified by 20 characters:

���	��!:�����X����!�8�������3;������&!V+0�'�! �0�(=3

Output:

���������:�����X����

 29© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Printing a record, left-justified by 20 characters:

���	��!:�����X����!�8�������3;������&!V�+0�'�! �0�(=3

Output:

:�����X����

Printing fields, left-justified by 10 characters:

���	��!:�����X����!�8�������3;������&!V�.0��V�.0�'�! �. �+�(=3

Output:

:���������X����

Printing fields, right-justified by 10 characters:

���	��!:�����X����!�8�������3;������&!V.0��V.0�'�! �. �+�(=3

Output:

������:�������X����

Printing fields, left-justified by 10 characters with additional formatting:

���	��!:�����X������0+011Y1-@1?!�8�������3;������&!P�����S���JJ,V�

.0�$����S���JJ,�V�.0�I���S	JJ,V�.0�'�! �. �+ �>�(=3

Output:

P����S���JJ,:���������$���S���JJ,X��������I���S	JJ,0+01Y1-@1?

Printing integer fields:

���	��!:�����X��������/0!�8�������3;������&!P�����S���JJ,V�.0�$��

S���JJ,�V�.0�:��JJ,V�'�! �. �+ �>�(=3

Output:

P����S���JJ,:���������$���S���JJ,X��������:��JJ,/0

Printing number fields:

���	��!+�?0!�8�������3;������&!O�����J�[V.0�+��! �.�(=3

Output:

O�����J�������[+�?0

Note: the newline character, \n, must be provided exclusively to the
printf statement.

 30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

SYSTEM VARIABLES

There are a number of system or built-in variables defined in awk. awk
has two types of system variable. The first type defines values whose
default can be changed, and the second type stores values that can only
be referenced.

FS (Field Separator)

FS is more precisely an input field separator. This is used to scan the
input line and therefore is modifiable. By default, it is a space or a tab.

Example:

• FS = \t defines FS to be one tab.

• FS = \t+ defines FS to be one or more tab.

• FS = [‘:\t] defines FS to any combination of ‘ , : or a tab.

OFS (Output Field Separator)

OFS is equivalent to FS, but is used to define a field separator for output
and is a space by default.

This can be changed.

NF

awk defines NF as the number of fields for the current input record. This
variable cannot be redefined.

NR

awk defines NR as the number of the current input record. This variable
cannot be changed.

RS

awk defines RS as the record separator. The default value is a newline
which can be changed.

ORS

ORS is the equivalent to RS, but used to define a record separator for

 31© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

an output record. The default is also a newline.

FILENAME

The variable FILENAME contains the name of the current input file.
This variable cannot be changed.

Comments in script

All comments must start with # (hash) as in other shell scripts.

Script file extension

awk recognizes a file with an .awk extension to be an awk script. If the
script file has a different file extension, it must be invoked with the -f
option (eg –f script.awksource)

Program construct

An awk script has three sections, as shown below.

The code in the initialization section will be executed only once.

The code in the main body will be executed as many times as there are
input records.

The code in the end section will be executed only once.

�S�I�:$�X:I�%S��9#�I�%S

K

K��I����������W��	������	�����������������������������	���G#N�S

K���	������������������������	����	���

K

PDS�I�%S���Q#P�S�I�%S

K

K��Q��������������������	�������

K������������������	������

K

U:�S���G%Q2

K

K��������	����	�����������������	������

K���	������������������������	�����	������������	�������	����

K

#SQ���9#�I�%S

K

 32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

K�I�����������	�����������������������������	���#SQ

K��	������������������������	����	���

K

Example recctr.awk (print out the total no of input records):

G#N�S��;

���������I%I:$HS%HE#�%EQ9J0���K���������W��������	����

���������������=

K

�����	������	�H������&(��;

�����&!E��	�����������Q�����'�!(

�����&!JJJJJJJJJJJJJJ'�!(

=

K

K

;

�����I%I:$HS%HE#�%EQ9�J�I%I:$HS%HE#�%EQ9�7�.���K��������������

�	������	������������������	��������

=

K

K�����������	���������

K

SE�JJ�.��;����	�H������&(�=

;

�����������SE ��0���K��������	����������	�������������	�����	

=

#SQ��;

�������������O�����I%I:$HS%HE#�%EQ9���K��������	�������	��

�����������=

Notes:

1 The key words BEGIN and END and opening curly brace must be
placed on the same line and there must also be an ending curly
brace.

2 All the commands in the main body can be put within one or more
pairs of curly braces.

VARIABLE ASSIGNMENTS

Variables are assigned without declarations.

 33© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

Example (number assignment):

\���J��.

2����J��+

$%%O��J��.

������J�\��7���2

�������J��\�
��2

Example (string assignment):

SD$$�J�!!

Example (concatenating variables):

�������J��!:���!

�������J��!X����!

S������J�������!���!������

PROGRAM FLOW CONTROL

Conditional statements

The syntax of a conditional statement is:

�������������&���������	�(

������������������������	�.

��������������

����������������������	�+

or:

���������&����������	��(��;

�����������	�.

�����������	�+

������=

or:

����&����������	��(������;

�����������	�.

�����������	�+

������=

����������&����������	��(��;

��	�.

�������������	�+

����������=

�����

������������������	�.

 34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Notes:

1 The else clause is optional.

2 If the expression evaluates as true (non-zero), action(s) are
performed.

3 The variables are referenced using the variable name only and not
using the field operator, $.

If the variable i has been assigned a value of 1, awk will interpret $i as
field one and the statement ‘print $i’ will try and print the value of field
1 within current record. In order to print the value of variable i , use
print i.

For example:

����&�(

����������������

If x is zero (or undefined), the print statement will not be executed.

Example:

����&���*���,J���Y?��(

������������J��!O���!

����

������������J�!P���!

LOOPING

While loop

The syntax is:

�����������������������&��	����	��(

������������������������	�

Example:

��J�.

������&����]J��/��=

������;

�����������������

������������77

 35© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

�������=

Note: the body of the loop may or may not be executed, depending on
the initial value of i.

Do loop

For example:

��J��

�	��;

������������������

=��������&����]J�/�(

Note: the body of the loop will be executed at least once.

For loop

The syntax is:

�����������	���&���H�	����)���H�	����)���������H�	�����(

���	�

Example:

Print out all the fields in current record in reverse order:

�	��&���J�SP�)�����,J�.)���^��(

����������.

OTHER STATEMENTS

break

The break statement breaks out of a loop such that no more iterations
of the loop are performed.

Consider the following construct:

P	���&����J��.)�����]��SP)��77���(

�������������&��������.��JJ������(

����������������������;

�������������������������������������. ����

������������������������������������

������������������������=

 36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

A loop is set up to examine each field of the current input record. We’re
interested in printing out the first field value and therefore, as soon as
$i matches field1, the loop is terminated by a break statement.

continue

Consider the following construct:

P	���&����J��.)����]��SP)��77���(

�������������&������JJ��>���(

���������������������	�����

����������������� ����

A loop is set up to examine each field of the current input record and
print them out. However, we’re not interested in printing out the third
field and therefore, as soon as i is equal to 3, the continue statement is
executed to return the control to the top of the loop.

Consider the following construct:

;

���K������������������������	�������	����������������

���K��	�����������	�����������

���K

���E#�%EQJE#�%EQ���0��!'�!

���������K���������������	��

��=

#SQ��;

���������������K���	�����������������������	���

���������������E#�%EQ

�����������=

���

The exit statement exits the main input loop and passes control to the
END rule, if there is one. If the END rule is not defined, or the exit
statement is used in the END rule, then the script terminates.

The exit statement can take an expression as an argument. The value of
this expression will be returned as the exit status of awk. If the exit status
is not supplied the exit status is 0.

ARRAYS

An array is a variable that can be used to store a set of values.

 37© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

The syntax is :

:����5��������6J*����

For example:

G#N�S��;

���S����506�J�!:�����X����!

���S���5+6��J�!"�����O���!

����������������K

�����������������������S���506

�����������������������S���5.6

��������������=

Using system variable NR as a subscript

NR keeps the running total of number of input records that are being
read. Therefore, we can use this as a subscript to store the corresponding
record in the array.

For example:

K

K���	�����	���������	����

K

;

�����E#�%EQ5SE6�J��0���K�����������	������	����	�����	������	�SE

��	������������

=

Reading elements of an array variable

There is a special looping syntax for reading all the elements of an array:

P	���&������������E#�%EQ��(

�������������E#�%EQ5���6

where rec is any variable and RECORD is the array in question.

ARRAY SYSTEM VARIABLES IN NAWK

Nawk provides system variables that are arrays.

ARGV

ARGV is an array of command-line arguments, excluding the script

 38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

itself, and any options specified with the invocation of awk. The
number of elements in this array is available in ARGC.

The index of the first element of the array is 0 and the last is
ARGC – 1.

ARGV contains arguments that will be passed on to the script.

For example:

G#N�S�;

���������������������	��&�����J�0�)������]��:EN��)�����77�(

����������������������������������:ENM5���6

���������������=

ENVIRON

ENVIRON is an array of environment variables. Each element in the
array is the value in the current environment and the index is the name
of the environment variable.

Example (reading all environment variables):

G#N�S�;

�������������������	����&���*������#SM�E%S��(

�������������������������������������#SM�E%S5��*6

��������������=

Example (reading specific environment variables):

G#N�S�;

����������������#SM�E%S5�!Q�9O$:2!�6

��������������=

Note: the index to an array element is the name of the variable. This is
known as an associative array, which is explained below.

Example (changing environment variable):

������#SM�E%S5�!I#EU!6����JJ,�M.00

Change this to Vt200:

#SM�E%S5�!I#EU!�6�J�!M+00!

Note:this change won’t affect the user’s actual environment; once awk
terminates, the TERM variable will have the value Vt100.

 39© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

ASSOCIATIVE ARRAYS

In awk, all arrays are associative arrays. What makes an associative
array unique is that its index can be a string or a number.

For example:

���	�5�!G:!6�J�!G�������:������!

���	�5�!GG!�6�J�!G�����������G����!

Execution of statement using relational operators

The relational operators are:

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

~ Matches

!~ Does not match.

The syntax is:

�	������	����������;�����	���=

Example – if a record has five fields, then print that record:

SP�JJ�?��;����������0��=

Example – if field5 matches regular expression /NA/ , then print Not
Applicable for this field:

�?��_���S:���;�������&!S	�:���������!(�=

Example – if NR is 1, then print the report header by making a function
call:

SE�JJ�.��;�����	�H������&(��=

 40 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Execution of statement using Boolean operators

The Boolean operators are:

|| Logical OR

&& Logical AND

The syntax is:

Example – if NR is 5 and NF is 2 then print the field:

SE�JJ��?��TT��SP�JJ��+��;���������+��=

Example – if field1 is null or field2 is null then print error missing:

�.��JJ��!!���88���+��JJ�!!��;�������&!U����	����P��������������!(��=

AWK BUILT-IN FUNCTIONS

Integer functions

The int() function truncates a numeric value by removing digits to the
right of the decimal point.

Example:

�������.00�> JJ�,��>>�>>>

���������&�.00���>(�JJ,�>>

The int () function simply truncates; it does not round up or down.

String functions:

• Index (s,t) – returns position of substring t in string s or zero if not
present.

• Length (s) – returns length of string s.

• Split (s, a, sep) – parses string s into elements of array a using Field
separator sep; returns number of elements. If sep is not supplied,
FS is used.

• Sprintf(“fmt”,expr) – it uses the same format specification as
printf(), but the format specification is applied on a string.

• Substr(s,p,n) – returns substring of string s at beginning position

 41© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

p up to a maximum length of n. If n is not supplied, the rest of the
string form p is used.

Nawk functions:

• Gsub(r,s,t) – globally substitute s for each match of the regular
expression r in the string t. Returns the number of substitutions. If
t is not supplied, it defaults to $0 (current record).

• Match(s,r) – returns either the position in s where the regular
expression r begins, or 0 if no occurrences are found. It sets the
value for RSTART and RLENGTH.

• Sub(r,s,t) – substitutes s for the first match of the regular
expression in the string t. It returns 1 if successful, 0 otherwise. If
t is not supplied it defaults to $0.

Example of index ():

�	���J��������&!������! �!����!�(

The value of pos is 4:

*��.J!9�	�����!

�	��J��������&*��. !���!(

The value of pos is 7.

�	���J�������&!G���	���! �!��!�(

The value of pos is 0.

Example of length():

����������J�������&�0(

The value of curreclen will be set to the length of the current record.

�����+�����J��������&��+(

The value of field2len will be set to the length of field two from the
current record.

Editor’s note: this article will be concluded next month.

Arif Zaman
ETL Developer (UK) © Xephon 2002

 42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Understanding the cp, mv, and rm commands

cp, mv, AND rm COMMAND BASICS

The cp, mv, and rm commands are some of the most basic commands
used by AIX users and administrators. You have probably used these
commands (which can copy, move, rename, and remove files) as a
regular part of your activities. The intention of this article is to describe
some of the flags used with these commands to ensure that you are
getting as much as possible from them.

The cp command can copy files and directory structures. mv can move
files and directory structures. You can also use the mv command to
rename a file, which, in essence, is telling the command processor,
“Move this file to the same directory, only call it this”. The rm
command can remove files and directory structures.

The basic syntax of the cp, mv, and rm commands is shown below:

���������������	����������������

�*�������������	����������������

�����������������

where:

• flags is an optional flag or flags used to enhance the operation.

• sourcepath is the path of the files to be copied, moved, or renamed.

• targetpath is the destination of the files to be copied, moved, or
renamed.

• path is the path of the files to be removed.

FLAGS FOR THE cp, mv, AND rm COMMANDS

Now let’s look at the flags for the commands.

cp command flags:

• -f – forces a copy despite mode restrictions that would prohibit the
operation. For example, if the target file exists already and you have

 43© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

no write access to it, the default behaviour of the cp command
would be to issue an error message. However, cp will force the
overwrite of the file if the -f flag is used.

• -h – copies a symbolic link. The default behaviour of the cp
command is to copy the contents of a linked file if a symbolic link
is encountered. Using the -h flag causes the cp command to
actually copy the LINK rather than the linked file. This would be
useful if you want multiple pointers to the same file.

• -i – prompts before overwriting a file. If a file to be copied exists
already in the target directory, specifying the -i flag will get you a
prompt before the file is overwritten.

This could be useful to detect the unexpected existence of files for
diagnostic purposes. For example, let’s say you had a directory
with 300 files in it. You also have a dozen files you want to add.
Your goal is to determine whether any of the twelve files are already
in the directory. If you were to specify the -i flag on the cp
command, each of any files existing already in the directory would
be indicated by a prompt. If no prompt appears, then none of the
files pre-existed in the directory.

• -R – recursive copy. The -R (uppercase R) flag allows the cp
command to copy entire directory structures to the target location.

mv command flags:

• -f – forces a move or rename despite mode restrictions that would
prohibit the operation. Similar to the cp command.

• -i – prompts before overwriting file. If a file to be moved or
renamed exists already in the target directory, specifying the -i flag
will get you a prompt before the file is overwritten.

rm command flags:

• -e – displays a message naming each file after it has been removed
from the directory. This could be useful if the rm command is
writing to a log so you can track successful file removal for
diagnostic purposes.

• -f – forces removal despite mode restrictions that would prohibit

 44 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

the operation. The -f flag suppresses the prompt asking whether
you want to remove a read-only file. This would be useful if you
were issuing rm commands from automated scripts.

• -i – prompts before removing each specified file. This is useful
when using wildcard characters in the file specification, specially
when attempting to remove a specific subset of files from a
directory containing many files. For example, suppose you had
hundreds of files generally named as follows:

:G�+<<<<�I\I

:G�+<<.<�I\I

:G�+<<+<�I\I

:G�+<<><�I\I

:G�+<</<�I\I

:G�+<<?<�I\I

:G�+<<Y<�I\I

���

:G�@<<@<�I\I

If you were to enter a command such as rm *200*.TXT, you may
find yourself inadvertently removing a file such as ABC42000.TXT
which you may have wanted to keep. However, the command rm
-i *200*.TXT would resolve the wildcard characters and prompt
you before removing each file, thus allowing you to selectively
verify each of the subset of files found matching the specification.

• -R – recursive removal. The -R (uppercase R) flag allows the rm
command to remove entire directory structures and all their
contents. Be careful with this command! Unlike other operating
systems that require confirmation before deleting complete directory
structures, AIX will allow you to do so and give you nothing more
than your cursor back after it has completed.

SOME EXERCISES

Here are some exercises to test your knowledge of the commands.

Exercise set-up

1 From a directory to which you have write access, enter the
following commands:

 45© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

������������H�*H������&	�����������������	����	����������������(

������������H�*H������&�����	���������	��(

������������������&	��������������	������������	���������*������(

2 Create a test file called exer1 by copying an existing small file or
by entering the command ls -l > exer1.

3 Populate the exercise directory structure by entering the following
cp commands:

�������.�����+

�������.�������������>

�������.�������������/

�������.�������������?

This will give you five copies of your test file to start the steps of
the exercise.

Exercise

Set up back-up and recovery:

• Step 1 – enter cd .. to put you in the parent directory of cp_mv_rm.

Enter cp -R cp_mv_rm exersave. This will copy the exercise
directory structure into a new directory called exersave in case you
need to start over.

• Step 2 – in the event you need to recover the exercise directory
structure, cd to the parent of the exercise structure and enter rm -
fR cp_mv_rm to force deletion of the contents of the directory and
the directory itself. Then enter cp -R exersave cp_mv_rm to
recreate the original directory structure and start the exercise over.
(Note: the steps build upon each other so be sure to start from Step
3 or you may not have the necessary files in place to continue.)

cp -f flag:

• Step 3 – cd back into cp_mv_rm to continue the exercise. Enter
chmod 444 exer2 to set the file to read-only. Enter ls -l to verify the
write mode if you desire.

• Step 4 – enter cp exer1 exer2 and note the file access permissions
error displayed.

 46 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Step 5 – enter cp -f exer1 exer2 and note the return of your cursor.
ls -l will verify that the file copy has been forced by the -f flag and
that exer2 now has the same write permissions as exer1. You have
used the -f flag to force a copy over read-only restrictions.

cp -h flag:

• Step 6 – enter ln -s exer1 exer6 to create a symbolic link to exer1.
Use ls -l to verify that exer6 is just a pointer to exer1.

• Step 7 – enter cp exer6 exer7 and use ls -l to see that exer7 is the
same size as exer1. It should be, because the cp command has
copied the contents of the linked file (exer1) rather than the link.

• Step 8 – enter cp -h exer6 exer8 and use ls -l to see that now you
have two links to exer1, namely exer6 and exer8. You have used the
-h flag to copy a symbolic link.

cp -i flag:

• Step 9 – enter cp -i exer1 recurse/exer3 and note the overwrite
prompt displayed. Enter y at the prompt to overwrite the exercise
file. ls -l recurse will verify that it has been overwritten because the
timestamp will be later than when you originally created the file.
You have used the -i flag to prompt before overlaying a file being
copied.

mv -f flag:

• Step 10 – enter chmod 444 exer7 to set the file to read only. Enter
mv exer2 exer7 to attempt to rename a file to a name that already
exists. Note that the overwrite prompt appears. Enter n at the
prompt to return your cursor.

• Step 11 – enter mv -f exer2 exer7. ls -l will verify that the mv
command has renamed exer2 to exer7. You have used the -f flag to
force a rename over read-only restrictions.

mv -i flag:

• Step 12 – enter mv exer7 exer3 to rename the file.

• Step 13 – enter mv -i exer3 recurse and note that the overwrite

 47© 2002. Reproduction prohibited. Please inform Xephon of any infringement.

prompt appears. Enter y at the prompt to overwrite the file. Use ls
-l to verify the overwrite. You have used the -i flag to prompt before
overlaying a file being moved.

rm -f flag:

• Step 14 – enter chmod 444 recurse/exer3 to set the file to read-
only.

• Step 15 – enter rm recurse/exer3 and answer n at the overwrite
prompt.

• Step 16 – enter rm -f recurse/exer3. Enter ls -l recurse and note
that you have used the -f flag to force removal of a file with read-
only access.

rm -i flag:

• Step 17 – enter pwd to ensure you are in the cp_mv_rm directory.
Enter rm -i exer* and note you get a prompt for each file in the
directory. Answer n for each file. You have used the -i flag to
prompt before the removal of files.

rm -e and -R flags:

• Step 18 – enter cd .. to put you in the parent directory of cp_mv_rm.
Enter pwd to verify.

• Step 19 – this step will remove all the files you have created in this
exercise! Enter rm -eR cp_mv_rm and note that, as each file and
directory is removed, a message to that effect is displayed. You
have used the -e flag to indicate each object removed and the -R flag
to remove an entire directory structure. ls -l will show that the only
data left is exersave.

• Step 20 – if you are certain you are satisfied with your progress in
this exercise, you may remove the exersave directory structure by
entering the command rm -R exersave.

David Chakmakian
Software Engineer (USA) © Xephon 2002

AIX news

IBM has announced new versions of its C,
C++, and FORTRAN languages for AIX.
IBM C for AIX V6.0 supports the latest C99
standard, 32-bit and 64-bit application
development, partial GNU C portability
support, generation of highly optimized code
for all RS/6000 processors, and new
compiler options and pragmas.

It also includes the IBM Distributed
Debugger, to provide visual debugging of
programs running locally, remotely, or in a
client/server environment.

Meanwhile, VisualAge C++ Professional for
AIX V6.0 gets improved portability through
support in C++ for the OpenMP
specification, support for 32-bit and 64-bit
application development, and enhanced
template handling for faster compilations and
the generation of smaller objects.

There’s inclusion of the C for AIX compiler
at the latest C99 standard, support in C++ for
the latest approved clarifications of the ISO
1998 C++ Standard, partial GNU C/C++
portability support, generation of highly
optimized code for all RS/6000 processors,
new compiler options and pragmas, and the
Distributed Debugger.

Finally, XL FORTRAN (XLF) for AIX V8.1
features full functionality of V7.1.1, support
for the OpenMP FORTRAN API V2.0, and
support for select features of FORTRAN
2000, including allocatable components,
IEEE Floating Point Exception Handling,
and pointer with INTENT attribute.

There’s also support for the full FORTRAN
95 standard and SMP programming, support
for all RS/6000 processors, new performance

enhancements, and enhanced porting
features.

For further information contact your local
IBM representative.
URL: http://www.ibm.com/software/ad.

* * *

IBM has announced Version 4.5 of its
HACMP high-availability software with
better usability and performance, easier
configuration, and additional hardware
support for Cluster 1600, pSeries, and
RS/6000 users.

The software is designed to detect system
failures and handle failover to a recovery
node gracefully, providing continuous
application availability.

New functions include reduced failover time,
streamlined configuration process,
automated configuration discovery,
improved security for cluster administration,
persistent IP address support, and enhanced
WAN and X.25 support.

Among the enhanced scalability features,
there’s easier configuration with AIX
Enhanced Concurrent Mode, a new
application availability analysis tool, tighter
integration with GPFS V1.5 Cluster file
system, monitoring and recovery from loss of
volume group quorum, support for multiple
applications on each network adapter, and
64-bit-capable APIs.

For further information contact your local
IBM representative.
URL: http://www-1.ibm.com/servers/aix/
news.

� xephon

	Grep this
	Command return values
	Communications Server failures under AIX 4.3.3
	awk
	Understanding the cp, mv, and rm commands
	AIX news

