107

September 2004

In this issue

Writing a daemon process
LPAR back-up over a network
16 Creating a cacheing DNS

27 Teach me DB2 on AlX! — part 2

44 Parsing output of tapeutil
command

48 AIX hews

IO W

© Xephon Inc 2004

Current Support
Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

AIX Update

Published by
Xephon Inc

PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher

Nicole Thomas
E-mail: nicole@xephon.com

Subscriptions and back-issues

A year's subscription to AlX Update,
comprising twelve monthly issues, costs
$275.00 in the USA and Canada; £180.00in
the UK; £186.00 in Europe; £192.00 in
Australasia and Japan; and £190.50
elsawhere. In al cases the price includes
postage. Individual issues, starting with the
November 2000 issue, are available
separately to subscribersfor $24.00 (£16.00)
each including postage.

Al X Update on-line

Codefrom Al X Update, and completeissues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/aix; youwill needto supply awordfrom
the printed issue.

Disclaimer

Readers are cautioned that, although the
informationinthisjournal ispresentedingood
faith, neither X ephon nor the organizationsor
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Contributions

When Xephon is given copyright, articles
published in AIX Update are paid for at the
rate of $160 (£100 outside North America)
per 1000 wordsand $80 (£50) per 100 lines of
codefor thefirst 200linesof original material.
The remaining code is paid for at the rate of
$32 (£20) per 100 lines. To find out more
about contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from
www.xephon.com/nfc.

© XephonInc2004. All rightsreserved. Noneof thetextinthispublication may bereproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publicationfor useintheir owninstallations, but may not sell such codeor incorporateitinany
commercia product. No part of thispublication may beused for any form of advertising, sales
promotion, or publicity without the written permission of the publisher.

Printed in England.

Writing a daemon process

INTRODUCTION

Daemons are processes that live for along time. Often they are
started when the system is bootstrapped and terminated when
the system is shut down. We say they run in the background,
because they don’t have any controlling terminal. Unix systems
have numerous daemons that perform day-to-day activities.

Writing a daemon involves:
* Writing a daemon program.

e Creating a dedicated process in which to run the daemon
program.

WRITING A DAEMON PROGRAM
The rules for writing a daemon program are as follows:

1 Constructaloop that will be executed at regular intervals in
order to do its work.

2 Implement the regular intervals by issuing a sleep system
call.

3 Implement proper signal handling, and designate a signal
for termination.

Do not send any messages to stdout or stderr.
5 Implement an interface to a central error logging system.

FORK () AND EXEC ()

We need to be familiar with the fork () and exec () function calls,
which will be used to create new processes and execute a
desired program in that process.

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 3

fork ()

The only way a new process is created in Unix is by an existing
process calling the fork function. Exceptions to this rule are
three processes — swapper, init, and pagedaemon — which are
created by the kernel as part of bootstrapping.

The new process created by fork is called a child process. This
function is called once but returns twice. A process id of O is
returned to the child process and the process id of the child
process is returned to the parent process. Because it is not
possible for a parent to obtain its child’s process id, the fork ()
returns the child process id to its parent. The reason that the
fork () returns O to the child process is that this can be used to
establish whether or not this is the parent or child process. Itis
safe to return O by fork () to the child process because only the
init process can have this process id and, therefore, when the
child process id calls getpid (), it will receive its proper process
id, and when it calls gettpid, it will receive its proper parent
process id.

Both the child and parent continue executing with the instruction
that follows the call to fork (). The child is a copy of the parent.

The following is a list of the properties of the parent that are
inherited by the child:

. !(?jeal userid, real group id, effective userid, effective group
id.

e Supplementary groupids.

 Process group id.

e Session id.

e Controlling terminal.

» Set-user-1D flag and set-group-ID flag.

e Current working directory.

 Root directory.

4 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

File mode creation mask.

Signal mask and dispositions.

The close-on-exec flag for any open file descriptors.
Environment.

Attached shared memory segments.

Resource limits.

The differences between the parent and child are:

The return values from fork.
The process ids are different.

The two processes have different parent process ids — the
parent process id of the child process is the parent; the
parent process id of the parent does not change.

The child’s values for tms_utime, tms_stime, tms_ cutime,
and tms_ustime are set to 0.

File locks set by the parent are not inherited by the child.
Pending alarms are cleared for the child.

The set of pending signals for the child is set to the empty
set.

exec ()

exec () is used to execute a new program in the child process
that would be created by the fork (). When a process calls exec
(), that processis completely replaced by the new program, and
the new program starts executing as its main function. The
process id does not change across an exec () because a new
process is not created. Exec merely replaces the current
process (its text, data, heap, and stack segments) with a brand
new program from disk.

There are six different exec functions, and differences are
mainly the different methods of passing various arguments.

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 5

DAEMON CHARACTERISTICS
Daemon characteristics are:

1
2

Allthe daemons run with superuser privilege (auserid of 0).

None of the daemons has a controlling terminal, and
terminal name is set to a question mark when process
details are displayed.

The parent of all daemons is the init process.

CODING RULES
The coding rules are:

1

The first thing to do is to call fork and have the parent exit.
This does several things. First, if the daemon was started
as a simple shell command, having the parent terminate
makes the shell think that the command is done. Second,
the child inherits the process group id of the parent, but gets
a new process id —we’re guaranteed that the child is not a
process group leader. This is a prerequisite for the call to
setsid that is done next.

Call setsid to create a new session, which leads to the
following steps:

— the process becomes a session leader of a new
session.

— the process becomes the process group leader of a
new process group.

— the process is tied up with no controlling terminal.

Change the current working directory to the root directory.
The current working directory inherited from the parent
could be on amounted filesystem. Since daemons normally
exist until the system is rebooted, if the daemon stays on
amounted filesystem, that filesystem cannot be unmounted.

Setthe file mode creation mask to 0. The file mode creation

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

mask that’'s inherited could be set to deny certain
permissions. If the daemon process is going to create files,
it may want to set specific permissions. For example, if it
specifically creates files with group-read and group-write
enabled, a file mode creation mask that turns off either of
these permissions would undo its efforts.

Unneeded file descriptors should be closed. This prevents
the daemon process from holding open any descriptors that
it may have inherited from its parent (which could be shell
or some other process). Exactly which descriptors to
close, however, depends on the daemon.

Start executing the daemon program in the child process.

ERROR LOGGING

One problemadaemon hasisto howto handle error messages.
It can’t just write to standard error, since it shouldn’t have a
controlling terminal. We don’t want all the daemons writing to
the console device since this can make administration difficult.
We also don’t want each daemon writing its own error messages
into a separate file. It would be a headache for anyone
administering the system to keep up with which daemon writes
towhich file and to checkthose files on aregular basis. Acentral
daemon error logging facility is required.

Use the following errlog () to log any errors to system log:

include <sys/err_rec.h>

int

errlog (void *ErrorStructure, unsigned int length)

For example:

char
char

err_msg[120];
module_details[] ="LogTrimmer" ;

int buf_len;
struct err_rec ErrorStructure ;
ErrorStructure *ptr ;

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 7

if (error condition)

ptr->error_id
strcpy(ptr->resource_name
strcpy(ptr->detailed_data
errlog (ptr , size(ptr)

= <error_no> ;

b

, module_details) ;
err_msg) ;
)

PROCESS CREATION AND EXECUTION

An example of process creation and the execution of a daemon
program is shown below:

#include <sys/types.h>
#include <sys/stat.h>
#include <fctnl.h>
int CreateDaemonProcess (void)
{
pid_t pid;
/*
* call fork ()
*/
if (pid = fork() <0)
/*
* fork () failed
*/
return (-1) ;
else if (pid != 0)
/*
* this 1is the parent process
*/
exit(@) ;
/*
* c¢child or daemon process continues
*/
setsid () ;
chdir ("/");
umask(@);
/*
* execute daemon program 1in this child process
*/
execle ("/home/admin/bin/LogTrimmer");
return (@);
}
8 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

COMMON USAGE

A common use for a daemon process is as a server process.
In general, a serveris a process that waits for a client to contact
it, requesting some type of service. Thiscommunication between
clientand server process can be one-way or two-way. The area
of interprocess communication is where numerous examples of
two-way communication between a client and a server process
can be found.

Arif Zaman
DBA/Developer (UK) © Xephon 2004

LPAR back-up over a network

We have several IBM pSeries Model 630s and 650s that
replaced several SP/2 frames. The pSeries models don’t have
any tape drives, so we had to look for a way to back up the
system data using mksysb. Because we shut down the SP/2
frames, we had no use for the Control Workstation that was
attached to one of the SP/2 frames, so we decided to use the
CWS machine after uninstalling all the PSSP stuff (we still call
it CWS) and the tape drive attached to it. But then we ran into
another problem. We could not back up all logical partitions
(LPARS) at once, and on one tape. What we now do is back up
all LPARs of one pSeries machine on one day, all LPARs of
another pSeries machine the next day, and so on. Since we set
up all LPARs using NIM we can restore the machine using NIM
in the case of a disaster. A short description of how to use NIM
commands to restore a machine is at the end of this article.

To achieve this we wrote two scripts, both started by an
appropriate crontab entry. One script (later called
net_backup.ksh) does the back-up on every LPAR and is
located on all LPARs; the other script (later called
tape_backup.ksh)writes the mksysb files to tape andis located
on the Control Workstation.

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 9

Machine hostname family-name
pSeries 1: u3laix u3
u32aix u3
u33aix u3
pSeries 2: u4dlaix ud
u42aix ud
u43aix ud
ud4aix ud
pSeries 3: ublaix us
u52aix ub
u53aix us
ub4aix us
Figure 1. The naming convention

We grouped all LPARs of one pSeries into ‘families’. We just
use the hostnames because they fitinto that schema. Because
in our case the hostname is part of the name for the mksysb, it
should be easy to adjust the filenames to fit every individual
environment.

The naming convention for the machines is shown in Figure 1.
This naming convention makes it easier later to back up all
mksysb files. If your hostnames do not follow any conventions
you can name the mksysb files with any name you like, so that
a group of mksysb files are always written to tape at once. Just
adjust the corresponding variables in the scripts. We can also
group one ‘family’ in order to write all the mksysb file for all the
machines in one ‘family’ to tape at once.

LPAR SCRIPT NET_BACKUP.KSH

We created alogical volume big enoughto hold several mksysb
files on the CWS, and mounted the filesystem /Ipar/mksysb.
This filesystem holds the mksysb files of every single LPAR and
the logsin a separate directory. This filesystem is mounted over
NFS on every LPAR. The naming conventions are as follows:

10 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

* mksysb file:
/Tpar/mksysb/<machinenname>.<date>

(eg u3laixot.21112003.)
* logfiles of mksysb:

/Tpar/mksysb/net_backup/<date>.log
* logfiles of tape back-up:
/1par/mksysb/netbackup/tapebackup.log

As already mentioned, the scripts are started via crontab. The
back-ups for all LPARs on one pSeries machine are started on
one day, for all the LPARSs of the next pSeries on the next day,
and so on (as Figure 2 shows). After all back-ups are finished,
the mksysb files for all LPARs on one pSeries are written to
tape. The time schedules represent my environment and must
be adjusted to every individual environment.

The corresponding crontab entry looks like this:

@@ 22 * * 1 /etc/net_backup.ksh

This means that the script runs every Monday at 22:00. As
shown in Figure 2, this applies to all machines with a name
starting u3*. On Tuesday, all machines starting with u4* will do
their mksysb back-up, and so on. And here is the script:

#!/usr/bin/ksh

#

Name: /etc/net_backup.ksh

#

It will mount CWS:/1par/mksysb to /mksysb

logs are written to /mksysb/net_backup/$DATE.Tog
#

Exit Code @ = AT1 Fine

Exit Code 1 = Couldn't mount

Exit Code 2 = Couldn't umount

#

declare variables
BACKDIR=/mksysb

NAME=$ (hostname)

DATE=$(date +%d%m%Y)
LOG=/mksysb/net_backup/$DATE.1og
LOCALLOG=/tmp/$DATE.mksysb.Tog

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 11

[A4)

‘1802 TvE (¥T2) Xe) ‘0695 OvE (T2) auoydspr wsSN uoydeX v00Z ©

‘9SLMJdYl0 ‘peaye ob ‘saop 2L JL #

yeoadq
S3JOM JUNOW J3YJdYM X23yd S,19]

‘SLY3 Jal4e #

#

sydios ay) bunses g a.nbi4

Machine
name

u3laix
u3d2aix
u33aix
CWS

udlaix
ud2aix
u43aix
uddaix
CWS

ublaix
ub2aix
ub3aix
ub4aix
CWS

Script name

/etc/net_backup.ksh
/etc/net_backup.ksh
/etc/net_backup.ksh
/etc/tape_backup.ksh
/etc/net_backup.ksh
/etc/net_backup.ksh
/etc/net_backup.ksh
/etc/net_backup.ksh
/etc/tape_backup.ksh
/etc/net_backup.ksh
/etc/net_backup.ksh
/etc/net_backup.ksh
/etc/net_backup.ksh
/etc/tape_backup.ksh

Day of
back-up

Monday
Monday
Monday
Monday
Tuesday
Tuesday
Tuesday
Tuesday
Tuesday
Wednesday
Wednesday
Wednesday
Wednesday
Wednesday

Time of Crontab
Entry

backup

20:
20:
20:
:30
20:
20:
20:
20:
:30
20
20:
20:
20:
:30

21

21

21

00
15
30

00
15
30
45

0o
15
30
45

00
15
30
30
00
15
30
45
30
00
15
30
45
30

20
20
20
23
20
20
20
20
23
20
20
20
20
23

% ok X o X ok F Sk X X ¥ *

ok b ok 2 ok Sk X X X X X X X

WWwWwwwmPmPNPNDNRFE ==

/etc/net_backup.ksh
/etc/net_backup.ksh
/etc/net_backup.ksh
/etc/tape_backup 3
/etc/net_backup.ksh
/etc/net_backup.ksh
/etc/net_backup.ksh
/etc/net_backup.ksh
/etc/tape_backup 4
/etc/net_backup.ksh
/etc/net_backup.ksh
/etc/net_backup.ksh
/etc/net_backup.ksh
/etc/tape_backup 5

mount $BACKDIR
if [$? -eq 0]
then
We are fine just log that it works
echo "$NAME.$DATE: Mount of $BACKDIR successful." >> $L0G
else
No good. Lets 1log and stop right here
echo "$NAME.f$DATE: Mount of $BACKDIR failed. Error. Exiting." >>
$LOCALLOG
echo "$NAME.S$DATE: No Backup of $NAME created" >> $LOCALLOG
exit 1
fi

Now we got a mount.
The next step is creating our backup
echo "$NAME.$DATE: Starting mksysb at $(/usr/bin/date +%H:%M)" >> $L0G

/usr/bin/mksysb '-e -i' $BACKDIR/$NAME.$DATE $>> LOCALLOG
Here we go. Lets see if backup was successful.
if [$? -eq 0]

then

Yes it was successful. Write a 1og message

echo "$NAME.$DATE: Mksysb successful finished at $(/usr/bin/date
+%H:%M)" >> $L0G

else

echo "$NAME.$DATE: Mksysb finished with errors at $(/usr/bin/date
+%H:%M)." >> $L0G

echo "$NAME.$DATE: See $LOCALLOG on $NAME for further informations."
>> $10G
fi

umount $BACKDIR

if this does not work, we alert the admin, to have a look at it.
otherwise we are finished.
if [$? -eq 0]
then
We are done.
exit @
else
Write a Tog and go to sleep anywhere
This stuff is admin work not neccessary to care about
echo "$NAME.DATE: umount of $BACKDIR unsuccessful. Please have a

look at $NAME" >>
$LOG

exit 2
fi

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 13

Should never get here.
exit 0@

CWS SCRIPT TAPE_BACKUP.KSH

This script mainly does two things. First it does a back-up of all
mksysb files for all LPARs of one pSeries machine. After all
mksysb files are successfully written to tape, it deletes all those
files in order to have enough space for new back-ups. Don’t
forget to change the tapes after every back-up, label the tapes
with the correct names, and store them in a safe place!

The corresponding crontab entry looks like this (see also Figure
2 above):

30 23 * * 1 /etc/tape_backup 3
30 23 * * 2 /etc/tape_backup 4
30 23 * * 3 /etc/tape_backup 5

And here is the script:

#1/usr/bin/ksh

#

At first, define variables before we go along
BACKDIR="/1par/mksysb"

TAPE="/dev/rmt@"

DATE=$(/usr/bin/date +%d%m%Y)

GROUP="u$1?aix"
LOG=$BACKDIR/net_backup/tapebackup.log

echo "$DATE: Starting tape backup at $(/usr/bin/date +%H:%M)" >> $L0G
/usr/bin/tar -cvf$TAPE $BACKDIR/$GROUP*.$DATE >> $L0OG
if [$? -eq @ 1]

then

AT1 went fine. Write log and go to next step

echo "$DATE: $GROUP successfully backed up to tape. Backup ended $(/
usr/bin/date +%H:%ZM)" >> $L0OG

else

something went wrong. Write log and stop before deleting.

echo "$DATE: $GROUP backup failed. Exiting." >> $L0G

exit 1
fi

Backup went fine

Remove the o1d backup files

echo "$DATE: Deleting files of $GROUP from $DATE." >> $LOG

for i in $(1s -al $BACKDIR/$GROUP*.$DATE | awk '{ print $9 }')

14 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

do
echo what we delete and then delete it

echo "$DATE: Deleting $i from filegroup $GROUP" >> $LOG

rm $i >> $LOG
if [$7 -eq 0 1]
then
Deleted successful.
echo "$DATE: Done." >> $LO0G
else
Something went wrong. Log information
echo "$DATE: Deleting $i failed." >> $L0G
fi
done

Eject tape to prevent accidently overwriting it
echo "$DATE: Setting Tape to offline" >> $L0G
/usr/bin/tctl -f $TAPE offline >> $LOG
if [$7 -eq 0 1]

then

Tape is ejected

echo "$DATE: Done. Backup of $GROUP on $DATE finished"

exit @
else
Tape is not ejected

>> $L0G

echo "$DATE: Failed. Eject tape manually from drive!" >> $L0G

exit 2
fi

Should never get here
exit @

RESTORE SCENARIO

If you use NIM to set up all the machines, the restore scenario

could look like the following.

Restore the tape with the proper mksysb files to the CWS, into
the directory /Ipar/mksysb, using the following command:

tar -xvf/dev/rmt@ /Ipar/mksysb

Now all the files for one pSeries are on disk on the CWS. You
must copy the appropriate mksysb file to the NIM master for the
machine to be restored. After that set up NIM to restore the

machine using smit commands:

#smitty nim

© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

—> Perform NIM Administration Tasks
—> Manage Resources
—> Define a Resource

o mksysb

* Resource Name: <name of mksysb>

* Serve for Resource: <local NIM server>

* Location for Resource: <where is the file on the NIM server>

<Enter>

After that, allocate the resources and set the NIM client
machine to bos_inst using the appropriate NIM command and
do a network boot.

Robert Schuster and Robert Frenzel
System Administrators (Germany) © Xephon 2004

Creating a cacheing DNS

Bind, the DNS package, can be downloaded from the Bull Web
site (bind 9.2.1.0). Do not use the bind package shipped with
the 5.2 distribution CDs because it contains an old package
build. Even better is to download the source and build the
package yourself from www.isc.org. Throughout this article |
will use the names bind and named interchangeably because
bind is synonymous with named.

A cacheing DNS does exactly what its name suggests, it
caches your resolved queries. The process is as follows. A
guery is sent to the cacheing server to be resolved. It firsts
looks in its cache to see whether the query has been resolved
before. If it has, it will send the resolved query straight back to
the client. If it does not have it in its cache, it will then go off to
the next DNS (this part of the process is repeated, depending
on whether the requestis answered or not). The query will then
be sent back to cacheing DNS and then sent back to the client.
If the query is resolved, it will then reside in the cache’s DNS.
This cycle is repeated for each look-up.

At some point, a previously-resolved host may have changed

16 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

its IP address; so how can one know whether the local cache
Is up to date? Well, when a client tries to resolve a host that is
not in the cache, the resolved query is sent back with a TTL
(Time To Live) appended to it. This is the amount of time before
the resolved query in the cache can be considered stale or
suspect. Sowhen aclienttries to resolve a host again, the DNS
will check its cache, see whether this host has previously been
resolved, and ifit has it will then check the TTL; if it has expired
or been breached, the cacheing DNS will go off to the Internet
and resolve it again, using the process mentioned earlier. One
can also clear (delete) the DNS cache by restarting named.

WHY CHOOSE A CACHEING DNS?

In a nutshell, you choose a cacheing DNS to save time and
reduce network traffic. If you have a ropey network, and your
hosttimes outalottrying to query your master DNS, then install
a cacheing server. If you are on a dial-up connection to the
Internet, why bother trying to resolve hosts from your ISP’s
DNS all the time? Get the queries cached locally — install a
cacheing DNS. Of course, by having a cacheing DNS, all the
work is done by a main DNS and not your cacheing DNS.

SETTING UP A CACHEING DNS

Most if not all of the required configuration files will be installed
with the bind package; allthatis required s for the administrator
to configure them. Sounds easy? It is. There are only three
main files to configure for a basic cacheing server: named.conf,
localhost.rev, and root.cache.

Assume for this article that our domain is called
somecomany.co.uk

The first task is to decide the order of DNSs we wish to query.
We point at ourselves with the loopback address of 127.0.0.1.
The file which specifies the order of servers to be queried is /
etc/resolv.conf. To build a bit of redundancy into our queries,
you should always specify at least two DNS servers. In the

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 17

example listing below, another DNS server is specified with an
IP address of 192.168.4.50. In this file, one can also specify
the default domain. This is the domain that will be appended to
your queries when you try to resolve a host that does not have
a dot in its name; in our case this would be the domain
somecompany.co.uk, as in the example. Typically these would
be internal hosts to the network. If your company has more than
one internal domain, use the search statement instead of the
domain statementinresolv.conf. For example ifacompany had
two domains, called uk.somecompany.local and
eu.somecompany.local, then one would use:

search uk.somecompany.local eu.somecompany.local

Inthe following example using nslookup, we resolve aninternal
host, webserverl. Because the hostname does not contain
any dots, the domain (somecompany.co.uk) is appended to it.
Please try to use dig to resolve queries; nslookup is being
gradually used less. It is used here for illustration purposes
because of its minimal output.

Default Server: Tlocalhost
Address: 127.0.0.1
> webserverl

Name: webserverl.somecompany.co.uk
Address: 192.168.4.20

In the next example, we resolve a hostname that does contain
dots in its name. The domain (somecompany.co.uk) does not
get appended to it.

Default Server: localhost
Address: 127.0.0.1

> www.skynews.co.uk

Name: www.skynews.co.uk
Address: 63.121.106.133

Example listing for /etc/resolv.conf:

domain somecompany.co.uk
nameserver 127.0.0.1
nameserver 192.168.4.50

A decision that also has to be taken is to decide on whether one

18 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

wants the local hosts resolved first by trying the /etc/hosts file
orusing the DNS. If all queries should first try the /etc/hosts and
then go off to the DNS, edit the /etc/netsvc.conffile and add the
following:

order hosts, dns

Alternatively, if one wishes to first try the DNS then /etc/hosts,
use the following:

order dns, hosts

One can also use the environment variable NSORDER to
specify the look-up order, like so;

export NSORDER=hosts,bind

The decision one makes will be based on whether the AlX box
has a loaded /etc/hosts file. By that | mean many host entries.

The file called named.conf, located in /etc, tells named what
type of server itis to run, what type of options, the zone files to
use, and the location of the named directory. Atypical listing for
/etc/named.conf is shown below. The forward slashes ‘//’ are
commentlines.

// resolv.conf
// location of zone files
options {
directory '/var/named';

s

// root.cache file - hints file
zone "." {

type hint;

file "root.cache"'

s

// loopback file.
Zone "@.0.127.in-addr.arpa"{
Type master;
File "Tocalhost.rev"

s

In the above listing, in the options clause, we are informing
named where to find the zone files — | have specified /var/
named. The next line defines the zone and location of the

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 19

root.cache file (sometimes known as the hints file or named.ca).
When named starts up, it goes off to locate the root servers
that have been defined in root.cache. The "." means the root
domain. The type hint tells named that there are pointersin this
file pointing to the root servers that are defined within the file.
Remember to copy the above zone files to the directory that is
specified in the ‘directory’ options clause. Please note: a
cacheing DNS does not contain any internal zones.

The loopback file localhost.rev (sometimes known as
named.local), tells named that this is the master for its own
loopback address. The zone "0.0.127.in-addr.arpa" is a special
name denoting that this is a loopback assignment. Every DNS
server must have a master, so what better place than the local
loopback address? After all, the point of a cacheing serveris to
cut back on network traffic.

For security and access purposes, itis also a good idea to use
access control lists (acl) — especially if the cacheing DNS is
pointing to a main DNS on the Internet. One will undoubtedly
want only internal clients to access the local cacheing DNS:

acl "internalhosts" { 192.168.2.0/24; 192.168.3.0/24; 192.168.4.0/24};

In the above command the acl list is given a name to reference
the list by. In our example the list is called internalhosts, and
only IP addresses that match this list will be allowed or denied
to successfully query the DNS. The list contains in this example
the (network address part) subnets 192.168.2.0t0192.168.4.0.
It is always a good idea to put the acl statement(s) at the top of
/etc/named.conf, because one cannot reference them before
they are defined. Now within the options clause use:

allow-query {"internalhosts"};

We have now stated that IP addresses matching the list of
internalhosts are allowed to query.

CACHE FOR INTERNAL OR EXTERNAL ROOT SERVERS
The root.cache file located in /var/named, as detailed in /etc/

20 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

named.conf, contains the names and the IP addresses of the
root name servers on the Internet. When named is first started,
this file is read to help named locate a root server. Once
named has located one, its authoritative list of root servers are
downloaded. The root.cache is installed by default when the
named package isinstalled. You can also download the file from
the Web: just do a search on ‘root.cache file’; you will soon pick
one up.

Alternatively, use dig to download the current root servers:

dig @a.root-servers.net . ns > /var/named/root.cache

If the cacheing server is to query your main (master) internal
DNS or your external ISP’s DNS, just put their pointers in this
file instead and leave it at that. So assuming our internal
(master) DNS is called sample_main_dns and it has an IP of
192.168.4.50, we would have the following entry in /var/
named/root.cache for an internal root server:

. 14D IN NS sample_main_dns.
sample_main_dns. 14D A 192.168.4.50

Please note the use of the dot (.) at the beginning of the host
entry. The NS stands for nameserver; the Astands for addresses
(asin|P address). The NS and Arecords are pointers to the root
server. In 14D, the D stands for days, and means that these
entries should be cached for 14 days before they are considered
stale or untrustworthy. However, be aware that the time entries
should be taken as is; in root.cache they are really there only
for historical reasons. It is up to you to make sure the entries
are up to date, so download the root.cache from the Internet at
regular intervals — once a month should suffice. The format in
the listing above must be used, however, whether for a
downloaded Internetroot.cache file, external orinternal use, as
just described.

LOOPBACK, THE LOCAL REVERSE LOOK-UP FILE

The local reverse look-up file is generated by default at
installation time in most cases. The loopback address is

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 21

127.0.0.1. This is used for all loopback addresses, so do not
change it' When named is started, it will query this address as
the named server on your host. Of course, to point other hosts
to this cacheing DNS, you must give it its machine IP address
in the /etc/resolv.conf and not the loopback address — but you
knew that anyway, didn’t you? The next listing shows a pretty
much generic localhost.rev file for the loopback. Notice the first
line, $TTL 1D. Ifanother DNS queries our cacheing server, then
the returned resolved query should be considered stale after
one day. The @ means the current origin, which in the
localhost.rev file means the localhost, though strictly speaking
it is the 0.0.127.in-addr.arpa.

The loopback zone, in the localhost.rev file:

$TTL 1D
@ IN SOA localhost. root.localhost. (
201 ; serial
3H ; refresh
15M ; retry
1W ; expiry
1D) ; Minimum
IN NS localhost.
1 IN PTR localhost.

The SOA (Start Of Authority) defines the settings for the zone.
The root.localhost is the e-mail address for this zone. Most of
the entries are here for historical reasons; they have no
meaningful function. However, the PTR entry is used. It maps
the loopback address to the localhost.

STARTING NAMED

To start named automatically when the AlIX box comes up,
make sure it is uncommented in /etc/rc.tcpip:

start /usr/sbin/named "$src_running"
Alternatively, it can be started using:
startsrc -s named

When configuring or altering named, you should also

22 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

continuously tail the messages file (in a new shell session)
when re-starting named. The file /var/adm/messages is where
all named’s information is sent. For instance:

$ tail -f /var/adm/messages

To test the set-up, use either of the following resolving utilities,
to make sure you are resolving hosts correctly:

nslookup, host or dig

Generally speaking, you can tell if a resolved host is in your
cache, by using nslookup. Ifit comes back with ‘Non-authoritative
answer’, this indicates that the host was resolved, but is not
authoritative or it cannot guarantee the validity of the resolved
guery. You do not get this message if the DNS has to go out to
a root server to get the answer.

That’s it, you are ready to go — the basic DNS cacheing server
is now configured.

BIND AND RNDC

The command line utility rndc, which comes with bind, allows
onetoremotely orlocally administer named. Several commands
are available; be sure to see the man page on this. However,
to use rndc, one must first generate configuration files. The
utility rndc-confgen, which comes bundled with bind, will print
lines to standard output that must/should be added to
named.conf. It also prints lines that it recommends should be
used to create the main rndc configuration file, rndc.conf. The
actual key file, rndc.key, is also created for you. This file is
referenced by rndc.conf and named.conf respectively. Using
these keys, named will accept connections only from a matching
key over an authenticated channel, and this includes from the
localhost. It is not necessary to have this feature, named will
run OK without rndc, although from a security point of view it
makes sound sense.

The following will generate an rndc-key (rndc.key) file for you,
in /etc:

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 23

/usr/local/sbin/rndc-confgen -a

The contents of the created file are shown below:

key "rndc-key" {
algorithm hmac-md5;
secret "BivytJdga3nHJ2GRAGLHAGA==";

}s

The actual key s called, surprisingly, rndc-key, andis a generated
hashed md5.

To let rndc-confgen print lines informing the user of the
recommended lines that should be put in the named.conf and
rndc.conf file, simply run the utility with no options. Several
lines are printed to standard output:

/usr/Tocal/sbin/rndc-confgen
Start of rndc.conf
key "rndc-key" {
algorithm hmac-md5;
secret "BivytJdga3nHJ2GRAGLHAOA==";

}s

options {
default-key "rndc-key";
default-server 127.0.0.1;
default-port 953;

H -

End of rndc.conf

Use with the following in named.conf,

adjusting the allow 1list as needed:
key "rndc-key" {

algorithm hmac-md5;

secret "BivytJdga3nHJ2GRAGLHAOA==";

#

#

#

#

#
#};
#

controls {

inet 127.0.0.1 port 953

allow { 127.0.0.1; } keys { "rndc-key"; };
#};

End of named.conf

Copy the following contents from the output of rndc-confgen:

key "rndc-key" {

algorithm hmac-md5;

secret "Bivytdga3nHJ2GRAGLHAOA==";
s

24 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

options {
default-key "rndc-key";
default-server 127.0.0.1;
default-port 953;

s
And paste the contents into a new file in /etc called rndc.conf.
Copy the following contents from the output of rndc-confgen:

key "rndc-key" {
algorithm hmac-md5;
secret "Bivytdga3nHJ2GRAGLHAOA==";
s

controls {
inet 127.0.0.1 port 953
allow { 127.0.0.1; } keys { "rndc-key"; };

s
And append to the /etc/named.conf file. Be sure to delete the
comment lines (start with hashes). Notice that the port number
used for the rndc channel communication is 953; normal bind
gueries use port 53.

The ‘rndc-key’ is the name referenced throughout the config
files. Now named can be controlled from the localhost via the
rndc command only if both keys match in each file. This is
specified using the allow option ‘allow {127.0.0.1;}'. Please
note, one can still start named from the command line as per
normal, and stop named using the ‘kill command.

If you find you are having trouble with the rndc configuration,
you can copy the above examples from this article onto their
machine — it will work. Using rndc one can, amongst other
tasks, reload the cache, gather statistics, or dump the cache.
For example:

#/usr/local/sbin/rndc status

Bringing together /etc/named.conf using the acl lists and rndc
configuration, from what has been discussed in this article, the
new look /etc/named.conf is shown below:

// resolv.conf
// acl Tist, only Tocal clients can query

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 25

acl "internalhosts" { 192.168.2.0/24; 192.168.3.0/24;

// rndc control 1line for localhost
controls {
inet 127.0.0.1 port 953

192.168.4.0/24%;

allow { 127.0.0.1; } keys { "rndc-key"; };

}s

// the actual key !
key "rndc-key" {
algorithm hmac-md5;
secret "Bivytdga3nHJ2GRAGLHAGA==";

}s

// Tocation of zone files

options {
allow-query {"internalhosts"};
directory '/var/named';

}s

// root.cache file - hints file
zone "." {

type hint;

file "root.cache"'

}s

// Toopback file.
Zone "@.0.127.in-addr.arpa"{
Type master;
File "localhost.rev"

}s

Setting up a cacheing DNS is pretty straightforward, either with
or without rndc support. | recommend clearing down the cache
of a cacheing DNS at least once a week. This task can be run

from cron.

David Tansley
Global Operations
ACE Overseas General (UK)

© Xephon 2004

26 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Teach me DB2 on AIX! — part 2

This month we continue our series of articles looking at DB2
UDB running on AlX and comparing it with DB2 on mainframes.

MORE UTILITIES

Only the following DB2 utilities will be contrasted: load utility,
runstats utility, generate DDL, quiesce utility, and repair utility.

0S/390 (load utility):

The OS/390 load utility loads one or more tablesina TS. It
does not load the entire database as is the case in UDB.
Thetablesto be loaded must exist. Any index defined onthe
table will be builtautomatically as part of the load. Load also
checks Referential Integrity (RI).

The OS/390 load has a new function called cross loader,
which allows the OS/390 load to accept as input the
contents of a cursor instead of a sequential dataset. The
cursor can be reading a remote table. Here is an example
of loading a mainframe table from the cursor input of an AlX
UDB table. The cursor can be built just before the load
statement using the three-part name of the remote UDB
table.

EXEC SQL

DECLARE C1 CURSOR FOR
SELECT *

FROM UDB.UDB@23@.DEPARTMENT
ORDER BY 1 DESC

ENDEXEC

LOAD DATA

REPLACE

INCURSOR C1

INTO TABLE UDB@3@.DEPT

To enable such load capability, the cross loader package
DSNUGSQL has to be bound in DB2 OS/390 and in DB2

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 27

UDB. The TCP/IP connectivity and three-part name has to
be set up in the CDB of DB2 OS/390.

The crossloader functionis supported from UDB to OS/390
and from UDB to UDB, but not from OS/390 to UDB.

Keep in mind the difference between load REPLACE and
load RESUME.

Remember also that the dynamic features LISTDEF and
TEMPLATES can be used effectively with OS/390 load.

Think of the impact of loading tables that have triggers
defined on them. These triggers in turn can induce
sequences...!

Think of the impact of loading tables that have columns
defined as Identity column datatypes...!

Remember that one cannotload Materialized Query Tables
(MQT). These tables are refreshed and not loaded.

The -Display utility(*) will show all the running OS/390
utilities and their status including the load utility. The
equivalent of the Display Utility in UDB is the Load Query
command, which shows the status of the UDB load while it
IS running.

In OS/390 one can terminate any utility including the load
utility by -Term utility(<utility id>), whereas in UDB one
has to reissue the same load statement syntax but replace
the INSERT or REPLACE keywords with the keyword
TERMINATE.

UDB (load utility):

28

The traditional load utility in UDB is the IMPORT utility. But
there is also an ‘official’ LOAD utility in UDB.

The input files for the IMPORT utility as well as for the
LOAD utility are files with the formats ASCII, delimited
ASCII, or IXF.

The target for the IMPORT utility as well as for the LOAD

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

utility can be only one table. Contrast that with OS/390,
which can load several tables that are ina TS.

« The LOAD utility in UDB, as with OS/390, can build any
index defined on the table during loading, but, unlike OS/
390 load, it cannot check Referential Integrity (RI).

e TheIMPORT utilityin UDB, onthe other hand, can build any
Index defined on the table and can also check RI. This is

one important difference between the two UDB utilities
(LOAD and IMPORT).

 Thesame option of REPLACE and RESUME ofthe OS/390
load utility exists in the UDB LOAD utility, but in UDB the
RESUME keyword is replaced with a keyword INSERT.

e The UDB LOAD utility, just like the OS/390 load utility,
expects the target DB2 table to exist.

« The UDB IMPORT utility also expects the target table to
existunlessoneincludesthe CREATE optioninthe IMPORT
command. In that case the IMPORT utility will create the
target table if it does not exist. That is also a difference
between the two UDB load utilities.

Here are some examples:

$DB2 "CONNECT TO nick"
$DB2 IMPORT FROM c:\filename.del OF DEL MESSAGES udb@3@0.msg
INSERT INTO udb@3@.tablename(columnnamel,columnname?,etc);

$DB2 IMPORT FROM c:\filename.ixf OF IXF COMMITCOUNT 1000
MESSAGES udb@3@.msg REPLACE_CREATE INTO udb@3@.tablename;

$DB2 LOAD FROM C:\filename.del OF DEL MESSAGES udb@3@.msg
INSERT INTO udb@3@.tablename;

$DB2 LOAD FROM C:\filename.del OF DEL MESSAGES udb@3@.msg
REPLACE INTO udb@3@.tablename;

* Isthe creation of the DB2 table (if it did not exist) the only
significant difference between UDB LOAD and UDB
IMPORT? The answer is no. The real difference is
performance. The UDB LOAD is abetter performer because
while the IMPORT utility loads one record at a time into the

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 29

DB2 table, the UDB LOAD takes several records from the
input file and builds pages from them and loads several
pages in the DB2 table at a time. This speeds things up.

The IMPORT utility commits only after a successful import,
otherwise it rolls back all the inserted records, ie either
success of the entire load or failure of the entire load. There
IS nothing in between. So, one might ask, what happens if
the IMPORT fails half way? My advice is to do what | do in
0OS/390. Before executing the IMPORT utility take a full
image copy and a quiesce point. If the IMPORT utility fails
then recover using the full image copy or recover to the
taken quiesce point. This is the simplest strategy. | would
personally use the same strategy if UDB LOAD fails too.

How can one display the progress of the load utility in UDB?
The Load Query command in UDB can show the status of
the LOAD.

0S/390 (runstats utility):

30

The main purpose of the runstats utility is to gather statistics
on TSs, tables, columns, and indexes (in contrast to UDB
where it gathers statistics on tables, columns, and indexes).

The runstats utility records the statistical information in the
0OS/390 catalog so that the optimizer can choose an
efficient access path to the data. An efficient access path
reduces response time.

One can interrogate the OS/390 catalog to see whether
runstats has been run or not. A value of -1 in the relevant
column indicates that runstats has not been run.

One runs the runstats utility on TSs and their indexes, not
on tables as in UDB.

One runs the runstats utility frequently on TSs and indexes
that are very volatile, so the catalog always contains up-to-
date information about DB2 objects.

One canruntherunstats utilityin SHERLEVEL REFERENCE
or SHERLEVEL CHANGE.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

UDB (runstats utility):

$DB2

The runstats command in UDB serves the same function
as its counterpart in OS/390.

Its main purpose is to gather statistics on tables, columns,
and indexes (noton TSs asin OS/390) in order to allow the
optimizer to choose an efficient access path, which in turn
reduces response time.

Here is an example:
RUNSTATS ON TABLE udb@3@.tablename AND INDEXES ALL SHRLEVEL CHANGE

The runstats command records the statistical information
inthe UDB SYSSTAT views of the UDB catalog, whereas in
0OS/390 the information was recorded in the SYSIBM
tables.

One can interrogate the SYSSTAT views to see whether
runstats has been run or not. A value of -1 in the relevant
column indicates that runstats has not been run.

Here is an example of the interrogation:
SELECT * FROM SYSSTAT.TABLES;

One runs runstats frequently on tables and indexes that
are very volatile, so the catalog always contains up-to-date
information about DB2 objects.

Onecanrunrunstats inUDBin SHERLEVELREFERENCE
orSHERLEVEL CHANGE.

0OS/390 (generate DDL):

Sometimes the DBA needs to go to the DB2 catalog and
generate DDL for an existing DB2 object or objects for the
purpose of cloning. There are third-party products such as
Bachman, BMCtools, CAtools, and Compuware tools, that
can help the DBA to do DDL generation. There is no IBM
utility as far as | know to generate mass DDL from the DB2
catalog. Some may say the IBM support utility DB2PLI8 is
such atool. | disagree. | personally think the DB2PLI8 is not
suitable for mass DDL generation.

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 31

UDB (generate DDL):

Onthe other hand, UDB has a very nice and effective utility
that can generate DDL for an existing DB2 object or objects
or for the entire UDB database for the purpose of cloning
the database from one region to another. This utility is
called db2look.

Here is a sample of a db2look command to generate DDL
for an existing database:

$db2 "CONNECT TO nickdatabase"
$db2Took -d olddatabase -a -0 -1 -e -Xx
outputddlforolddatabase.dd]l -e -x -1

Once the DDL is generated and stored in
outputddIforolddatabase the DBA edits this output file and
changes the name references of the old database to the
new database name, and then executes the file by issuing
the following command:

$db2 -tvf outputddiforolddatabase.ddl.

One can also use the DESCRIBE command to getthe DDL
for a table or the indexes on the table just like QMF in the
0S/390. Here are two examples:

$DB2 "DESCRIBE TABLE <udb@3@.table name> SHOW DETAIL
$DB2 "DESCRIBE INDEXES FOR TABLE <udb@3@.table name> SHOW DETAIL

0OS/390 (quiesce utility):

Quiesce is used to establish a recovery point (an RBA or
LRSN point) fora TS or TS SET, or indexspace or partition.

This RBA or LRSN point will be recorded in the
SYSIBM.SYSCOPY catalog table.

The LISTDEF of DB2 OS/390 feature can be used neatly
with the quiesce utility.

UDB (quiesce ultility):

32

The equivalent of the quiesce utility of OS/390 in UDB is the
following command:

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

$DB2 QUIESCE TABLESPACES FOR TABLE <udb@3@.table name>

This command will establish a recovery point (not RBA as
in OS/390 but a timestamp). This recovery point is written
tothe HISTORY FILE, compared with SYSIBM.SYSCOPY
of OS/390.

0OS/390 (repair utility):

Repair utility in OS/390 is used to repair data and remove
pending statuses of TSs.

UDB (repair utility):

There is no real equivalent to the repair utility of OS/390.
The nearest equivalentis DB2DART, which can run only in
read mode, unlike the repair of OS/390, where one can
update and zap the data.

EXPLAIN FACILITIES
0S/390:

The ultimate objective of the EXPLAIN functionality with
OS/390 as well as UDB is to see the access path of a
particular SQL statement chosen by the optimizerto access
the data. The DBA then analyses the access decision
made by the optimizer. As aresult of the DBA analysis of the
optimizer decision, the SQL statement may be modified or
an index may be created on some column in the accessed
table to achieve a good access path.

To achieve the above objective, the DBA needs to create
three EXPLAIN tables. The DDL for these three tables for
0OS/390 can be found in SDSNSAMP(dsntesc).

The DBA can influence the optimizer decision by zapping
various catalog tables with favourable statistics.

Sometimes the optimizer’s decision might not be the best
access path despite all the available information. In this
case the DBA needs to suggest to the optimizer a ‘hint’ that
the optimizer can use to come up with a desired access

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 33

path. The hint can be inserted in the PLAN_TABLE, which
is one of the three EXPLAIN tables in OS/390.

 Thereisanalternative methodto interrogating the EXPLAIN
tables manually via SQL. This alternative is to use a
graphical tool called Visual Explain for OS/390. This is a
nice graphical tool that should be installed onthe DBAWS.
It needs some kind of connectivity installed on the WS,
suchas DB2 Connect, to accessthe DB2 OS/390 machine.

« 0S/390hasthree EXPLAIN tables, UDB has seven. These
tables are different from each other in structure and in the
information they contain. Eventhe Visual Explain graphical
tools are different from one platform to another. There is
one Visual Explain product for OS/390 and one for UDB.

e Onecaninvoke EXPLAIN alsoviathe BIND command. This
functionality is the same as in UDB.

UDB:

* The ultimate objective of the EXPLAIN functionality in UDB
is the same as in OS/390, which is to see the access path
of a particular SQL statement chosen by the optimizer to
access the data.

« There are seven EXPLAIN tables that need to be created.
To achieve that objective, the DBA needs to execute the
DDL file supplied by IBM containing the definitions of these
seven tables as follows:

$db2 -tvf $HOME/sqllib/misc/EXPLAIN.DDL

 Oncethe EXPLAIN tables are created, one can invoke the
EXPLAIN function for a specific SQL statement. Here is an
example of how to invoke the EXPLAIN from the command
line interface:

EXPLAIN ALL WITH SNAPSHOT FOR "SELECT * FROM udb@3@.nicktable"

« The DBA can interrogate the UDB optimizer decision
manually via SQL or graphically using the Visual Explain
product.

34 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

« The DBA can influence the optimizer by zapping various
UDB catalog SYSSTAT views with favourable statistics.
However, unlike the OS/390 DB2 DBA, you cannot give a
hint to the optimizer for it to take it into consideration when
calculating its access path. The hint functionality is not
supported in UDB.

e There is another quick procedure to do EXPLAIN in UDB:

connect to your database.
create EXPLAIN tables as above.

just before your query, set a special UDB register to a
value of EXPLAIN:

$db2 "set current explain mode explain”

if the query is a static query then EXPLAIN the query by
running the db2expln utility, which can be found in
SINSTHOME/sqllib/bin.

ifthe queryisadynamic query then EXPLAIN the query
by running the dynexpln utility, which can be found in
SINSTHOME/sqllib/bin.

after doing the EXPLAIN, whether for static or dynamic
SQL statements, run the db2exfmt utility, which goes
to the explain tables and formats the result in an easy-
to-read textual report. The db2exfmt can be found in
SINSTHOME/sqllib/bin.

 So the whole quick procedure becomes:

$connect to SAMPLE
$db2 "set current explain mode explain"

$db2 "select * from org"
$db2exfmt

TRACES AND STATISTICS
0S/390:

« In OS/390 we have statistics or accounting reports for

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 35

performance (for UDB we have snapshot and events
statistics).

To get these performance reports one needs to start DB2
traces either via the ZPARM parameters or manually by
issuing:

-start trace command

The values in the ZPARM can be updated dynamically in
Version 8 without needing to start or stop the DB2 subsystem
(itis the same for UDB snapshot statistics, but not for event
statistics).

Once DB2 traces start, statistics start accumulating until
one stops the trace.

The destination of the trace statistics records is SMF, GTF,
or Monitor.

One can use DB2PM or equivalent third-party products to
produce performance reports from the gathered statistical
records.

UDB:

36

For UDB there are two kinds of statistics that can be
collected: one is called snapshot statistics (this may be
roughly compared with the statistics coming from OS/390),
the other is called events statistics.

— Snapshot statistics:

« Give a snapshot view of the state of the resource
consumption at the instance level or at the
application level from the time the DBA starts the
trace.

e Can be started in two ways:

| by changing the dbm cfg parameters called
switches (there are only six of them. Note that
| said dbm cfg not db cfg). For example:

$db2 "UPDATE DBM CONFIGURATION USING <name of the dbm

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

parameter such as DFT_MON_STMT> ON

il by explicitly updating one or more of the six
snapshot switches using the following update
command as an example:

$db2 "UPDATE MONITOR SWITCHES USING STATEMENT ON

(So do you see the similarity with OS/390 about
starting the statistics via the ZPARM parameters
or manually?)

Dby the way, if the DBA wants to know all the
available monitor switches s/heissuesthe following
command:

$db2 "GET MONITOR SWITCHES"

 in both UDB and OS/390, once the DBA starts
gathering the statistics, the process will continue
until it is stopped.

e alsoin both UDB and OS/390, there is no need to
recycle the DB2 subsystem or the instance for
the statistics parameters to take effect.

e to view gathered snapshot statistics, for example
for ‘locks’, one can issue the following UDB
command:

$ db2 "GET SNAPSHOT FOR LOCKS ON Nickdatabase.
Theresultwillbe shownonthe commandlineresults window.
— Event statistics:

* the event statistics of UDB can be thought of as
sleeping UDB objects for a particular database not
for an instance.

 one has to create these DB2 objects using SQL
DDL statements and, of course, like any other DB2
objects, the DBA has to give it a name.

e once these events objects are created, they are
stored in SYSCAT.EVENTMONITORS and

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 37

$DB2

$DB2

$DB2

$DB2

SYSCAT.EVENTS tables of the UDB database
catalog. These objects stay in the UDB catalog
doing nothing. Whenever the DBA wants to take
event statistics, the DBA needs to interrogate what
kind of event objects he has created a priori in a
particular database. Once the DBA knows what
event objects are stored in the catalog, he can
activate the desired ones.

once activation occurs, the activated event monitor
IS not a sleeping object any more. It becomes
active, collecting information as it was designed to
do.

here is an example of creating an event:

"CREATE EVENT MONITOR <give it a name such
as nickevntmonitor> FOR DEADLOCKS WRITE TO FILE
'/eventmonitors/deadlock/nickevntmonitor'"

here is an example of how to activate an event:
"SET EVENT MONITOR nickmonitor STATE =1"

here is an example of how to deactivate an event:
"SET EVENT MONITOR nickmonitor STATE =@"

here is an example of how to view an event:

"DB2EVMON -PATH '/eventmonitors/deadlock/nickevntmonitor'"

The output of the db2evmon utility will be displayed
on screen by default, but one can direct it to a file
for later analysis.

DB2 GOVERNOR
0S/390:

38

Though the objective of the OS/390 governor and the UDB
governor are the same, ie to monitor the excessive usage
of database resources by applications (SQL statements)
and to take corrective action based on supplied rules; the
ways it is implemented in OS/390 and UDB are different.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 For example in OS/390 the governor places its rules in a
specific table called DSNRLSTxx situated in a specific TS
called DSNRLSxx belonging to a specific database called
DSNRLST. InUDB the governorisjustaprocess (daemon)
that monitors databases according to rules that are stored
not in a table but in a file.

e In OS/390 the governor is called the Resource Limit
Facility (RLF). One can start it through SPUFI with the
command -start RLIMIT, or start it automatically via the
ZPARMS when booting the DB2 subsystem.

 In OS/390 there is only one governor for the entire DB2
subsystem. However, there can be many tables containing
the rules of engagement provided that only one table
containing the rules is active at any one time.

 There are two kinds of governing in OS/390 — reactive
governing, and predictive governing.

UDB:

e As was said above, the UDB governor is implemented
differently fromthe OS/390 governor although the objective
IS the same.

« There can be several concurrent active UDB governors,
each monitoring a different database and writing to its own
log file. Contrast that with the OS/390 governor, which is
one per DB2 subsystem.

e Asfaras | know there is no predictive governing in UDB as
with OS/390.

« The UDB governor daemon is called db2gov.
 Here is one example of how to start the UDB governor:

$DB2GOV START nickdatabase

<name_of_cfg_file_that_contains_covernor_rules>

<name_of file_or_log_ that_contains_actions_taken_by_governor>
$DB2GOV START nickdatabase nickrules.cfg nick.log

If the daemon governor was running for a long time, it could

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 39

potentially have created severallog files such as nick.log.0,
nick.log.1, or nick.log.2, etc. The DBA canlistthese logfiles
and then use DB2GOVLG utility to read the chosen one.
Here is an example of interrogating the UDB governor log
file:

$DB2GOVLG nick.log.@
Here is an example of how to stop the UDB governor:

$DB2GOV STOP nickdatabase

There is no equivalentto a governor log file in OS/390. The
MVS syslog and DSNMSTR address space in an OS/390
environment may contain some information in that regard.

BUFFER POOLS
0S/390:

40

0OS/390DB2 provides many options for data page sizes.
The size of the data page is determined by the buffer pool
in which one defines the tablespace. For example, a table
space that is defined in a 4KB buffer pool has 4KB page
sizes, and one thatis defined in an 8KB buffer pool has 8KB
page sizes. (Indexes — unlike TS — must always be defined
in 4KB buffer pools.)

The buffer pools are areas of memory within the DBM1
address space in which DB2 stores temporary pages of
TSs and indexes. When an application needs a row from a
DB2 table, DB2 retrieves the page containing the required
row from DASD into the buffer pool area incurring an I/O. If
the page is in the buffer pool area then no I/O is incurred.
Sobuffer pools and their sizes are of the utmostimportance
to performance.

InDB2 Version 7 and earlier, virtual memory was constrained
because of DB2’s 2GB limit on the size of the DB2 DBM1
address space (31-bit addressability). In its effort to satisfy
more demands for memory usage for the buffers, DB2
Version 7 and before extended the buffer area above the

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

line to something called hyperpools and dataspace areas.
But that was history. Now, with the z/OS and z/Series
machines and the 64-bit addressability, the DBM1 address
space has gone from 2GB to 16 exabytes (2**64). Thus
larger buffer pools can be allocated in virtual memory and
the definition of data spaces and hiperspaces previously
designed to get around the old 2GB limit are no longer
required.

 Buffer pools in OS/390 are allocated at installation or
migration time. Page sizes for OS/390 buffer pools are
4KB, 8KB, 16KB, and 32KB.

For each page size kind, there are the following predefined
buffer pools:

— 4KB page buffer pools are named BP0, BP1 to BP49.

— 8KB page buffer pools are named BP8KO0, BP8K1 to
BP8KO.

— 16KB page buffer pools are named BP16K0, BP16K1
to BP16KO.

— 32KB page buffer pools are named BP32K, BP32K1 to
BP32KO9.

* One can change the attributes of OS/390 buffer pools and
their sizes with the ALTER BUFFERPOOL command. The
size is the number of pages in that particular pool.

* In OS/390 one assigns a tablespace or an index to a
particular buffer pool by a clause in any of the following SQL
statements: CREATE TABLESPACE,ALTER TABLESPACE,
CREATE INDEX, or ALTER INDEX. The buffer has to exist
before the DBA creates the TS. It's the same idea with
UDB, the buffer has to exist before one createsthe TS. The
only difference between OS/390 and UDB in this regard is
that the buffers in OS/390 are predefined at installation
time whereas in UDB one explicitly creates a buffer.

* In OS/390 one can display active buffers via SPUFI or one can

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 41

interrogate the DB2 catalog to see which TS is associated with
which buffer.

UDB:

 InDB2UDB, unlike ©S/390, the DBA can create bufferpoolswith
the CREATE BUFFERPOOL command. Here aretwoexamples:

CREATE BUFFERPOOL nickbpool
size 2000
pagesize 4096

Or:

CREATE BUFFERPOOL nickbpool
size 1000
pagesize 8192

« Howmany buffer pools canone createin UDB? The answer
is 4096 pools.

 Despite the fact that UDB (like OS/390 DB2 Version 8)
uses 64-bit addressability, the DB2 UDB still uses the
equivalent concept of the old hiperpools of OS/390, which
is called Extended Storage (estore memory) to provide a
second level of cacheing for pages.

 There is a well-known diagram about memory usage that
can be found in any book on UDB memory. Please find that
diagram and see where the bufferpools and the extended
memory storage (estore) reside.

* Remember, in UDB, the page size of the TS is entered as
partofthe CREATE TABLESPACE statement. Remember,
againin UDB, a bufferpool with the correct page size needs
to be created before creating the tablespace that uses this
page size.

« In DB2 OS/390, there is no parameter in the CREATE
TABLESPACE statement to indicate the page size to be
used (as is the case in UDB). However, by specifying the
predefined bufferpool to be used, the page size of the TSis
set.

42 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

* The default buffer pool in UDB is called IBMDEFAULTBP
andis 1000 4KB pages. Itis created by the execution of the
CREATE DATABASE command.

Do yourememberin OS/390 that there are read and write
engines? They also exist in UDB, and are called 1/0O
Servers. Their number is configurable by a parameter
called num_ioservers in the db cfg file. These 1/0O Servers
read pages from DASD into the buffer pools at the request
of a db2agent process.

 Thereisone db2agent per applicationin UDB. However, in
Version 8 with the advent of ‘concentration pooling’, a
db2agentdoes notneedto stay allocated until the application
transaction finishes. It can serve other applications.

« To find out the current active bufferpools in UDB, one can
issue the following two commands:

$DB2 "UPDATE MONITOR SWITCHES USING BUFFERPOOL ON"
$DB2 "GET SNAPSHOT FOR BUFFERPOLLS ON nickdatabase >
/tmp/nickdatabase/bufferpools.txt

Orone caninterrogate the SYSCAT.BUFFERPOOLS catalog
table.

EDM POOL
0S/390:

 In0OS/390thereis apiece of memory called Environmental
Descriptor Manager (EDM) pool. Among the many things it
contains are package structures (ie access plans sections)
and DBDs.

UDB:

 In UDB, the equivalent of the EDM pool is two pieces of
memory or caches:

— a cache for the packages, which is called
PCKCACHESIZE.

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 43

— acacheto hold the DBDs known as catalog cache, but
its real name is CATALOGCACHE_SZ

These parameters are updatable per database inthe db.cfg
file.

Nicola Nur
Senior DBA (Canada) © Xephon 2004

Parsing output of tapeutil command

For those of you with a tape library that supports the atape
drivers, and hence provide a use of the tapeutil command, you
may have found that tapeutil is not very script friendly. For
example, if you want to write a back-up script that mounts tapes
in the library via the robotics, it's quite cumbersome. | use this
script, parse_tu.sh, to put the output of tapeutil —f /dev/smcx
inventory into a script-friendly format.

For example:

tapeutil -f /dev/smc@ inventory

would result in:

tapeutil -f /dev/smc@ inventory
Reading element status...

Robot Address 1

Robot State Normal
ASC/ASCQ v it iii it ii i ii e 0000
Media Present No
Source Element Address Valid ... No
Media Inverted No
Volume Tag ..vevirnnnnnnnnnnnnn

Import/Export Station Address 16

Import/Export State Normal
ASC/ASCQ ...viiiie it iiiii i, 0000
Media Present No
Import Enabled Yes

44 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Export Enabled
Robot Access Allowed
Source Element Address Valid

Media Inverted
Volume Tag ..vvviiinnrnnnnnennnn

Drive Address 256
Drive State
ASC/ASCQ v vv ittt i i iie e
Media Present
Robot Access Allowed
Source Element Address
Media Inverted
Same Bus as Medium Changer
SCSI Bus Addressccco...
Logical Unit Number Valid
Volume Tag ...oviiiinininnnnnn.

Drive Address 257
Drive State
ASC/ASCQ v vttt it i it e e
Media Present
Robot Access Allowed
Source Element Address
Media Inverted
Same Bus as Medium Changer
SCSI Bus Addresscco...
Logical Unit Number Valid
Volume Tag ..vvveininininnnnnnn

Slot Address 4096
Slot State ...,
ASC/ASCQ . vvv ittt ii it i e
Media Present
Robot Access Allowed
Source Element Address
Media Inverted
Volume Tag ..vvvininininnnnnnnn

Slot Address 4897

Slot State i
ASC/ASCQ v i it i it i i iii e,
Media Present
Robot Access Allowed
Source Element Address Valid

Media Inverted
Volume Tag ..vvvininnnnnnnennnn

And so on...

© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

0000

No

No
@450091L2

Normal
0000

No

45

By running
parse_tu.sh smc@
| get:

parse_tu.sh smc@

Robot Address: 1 State: Normal Volume:

I0 Address: 16 State: Normal Volume:

Drive Address: 256 State: Normal Volume: @45@019L2
Drive Address: 257 State: Normal Volume: 04500912
Slot Address: 4096 State: Normal Volume: 04500412
Slot Address: 4097 State: Normal Volume:

Slot Address: 4098 State: Normal Volume: @45005L2
Slot Address: 4099 State: Normal Volume: @45007L2
Slot Address: 4100 State: Normal Volume: 045006L2
Slot Address: 4101 State: Normal Volume: 045008L2
Slot Address: 4102 State: Normal Volume: 04501012
Slot Address: 4103 State: Normal Volume: @45@013L2
Slot Address: 4104 State: Normal Volume: @45014L2

Much easier to use in scripts!
Here is the script:

#1/usr/bin/ksh
>/tmp/tu_info_x1
tapeutil -f /dev/$1 inventory >/tmp/tu_info_x1
grep -E 'Robot Address|Robot State|Volume TaglImport/Export Stat|Drive\
Address|Drive State|STot Address|STot State' /tmp/tu_info_x1\ >/tmp/
tu_info_x2;
#
#
while read one two three four; do
one_two='echo onetwo’
case $one_two 1in
RobotAddress)

export Robot_Address=$three

read one two three four;

export Robot_State=$four

read one two three four;

export Robot_Volume=$four;

echo "Robot Address: " $Robot_Address " State: " $Robot_State "\
Volume: " $Robot_Volume;;

Import/ExportStation)

export I0_Address=$four;

read one two three four;

export I0_State=$four;

read one two three four;

export I0_Volume=$four;

46 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

echo "I0 Address: " $I0_Address " State: " $I0_State " Volume: "\
$I0_Volume;
DriveAddress)
export Drive_Address=$three;
read one two three four;
export Drive_State=$four;
read one two three four;
export Drive_Volume=$four;
echo "Drive Address: " $Drive_Address " State: " $Drive_State "\
Volume: " $Drive_Volume;;
STotAddress)
export Slot_Address=$three;
read one two three four;
export Slot_State=$four;
read one two three four;
export Slot_Volume=$four;
echo "Slot Address: " $STot_Address " State: " $Slot_State "\
Volume: " $Slot_Volume;;

esacC

done </tmp/tu_info_x2

exit

#

David Miller

Database Architect

Baystate Health Systems (USA) © Xephon 2004

© 2004. Reproduction prohibited. Please inform Xephon of any infringement. 47

AlIX news

Software AG has announced Version 4.2 of
Tamino XML Server, itsnative XML server.
The new version provides accelerated data
access, advanced security, and expanded query
andtextretrieval functions. ItalsooffersXML-
based message persistence for auditing and
tracking, bus nessdocument management, and
ametadatarepository in support of aService-
Oriented Architecture (SOA). These updates
enable Taminoto better support multipleroles
for enterprise integration and software
developers.

Tamino XML Server version 4.2 iscurrently
shippinginthreeeditions—EnterpriseEdition,
Standard Edition, and Developer Edition. As
well asAlIX 5L V5.2 (64 bit), theproduct a'so
runson Linux for §/390andzSeries, Windows
XPProfessional, Solaris8 and 9 (64 bit), and
HP-UX 11i (PA RISC 64).

For further information contact:

Software AG, 11190 Sunrise Valley Drive,
Reston, VA 20191, USA.

Tel: (703) 860 5050.

URL: http://www2.softwareag.com/
Corporate/News/latestnews/
20040630 _Tamino421 Release page.asp.

* * %

OctetString has announced Version 3.0 of
Virtua Directory Engine (VDE), its virtual
technology for connecting and transforming
Identity informationbetweenenterprisesystems
software.

OctetString' sV DE Suiteconnectsapplications
to sources of identity information, including
LDAP, RDBMS, Active Directory, or
WindowsNT Domain-based. Informationfrom
oneor moreof theseidentity repositoriescanbe
joined, federated, or otherwise virtually

consolidatedtopresentasingleview of identities
to applicationsviaLDAP, XML, and JDBC.
VDE is 100 percent Java and is certified on
platforms that include AlX, HP-UX, Linux,
Windows, and Solaris.

Version3.0deliverssmplified configuration,
accelerated deployment, and greater
extengbilitytousers.

For furtherinformationcontact:

Octet String, 10N MartingaleRoad, 4th Fl oor,
Schaumburg, IL 60173, USA.

Tel: (847) 358 9358.

URL: http://www.octetstring.com/products/
VDE.php.

* % %

FileNet hasannounced Version 3.0 of P8, its
ECM (Enterprise Content Management)
platform. The new version now offers XML
Web Service-based access to provide more
platform-independent connectivity and
interoperability, and supportsrequirementsfor
ServiceOriented Architectures(SOAS).

Using the product, businesseswill be ableto
devel op content-rich applicationsthat deliver
information when and where it is needed to
empower business partners, suppliers, and
employeesto helpdecision-making.

FileNet P8 3.0runson Al X, Windows, Solaris,
andHP/UX.

For further informationcontact:

FileNet, 3565 Harbor Blvd, CostaMesa, CA
92626-1420, USA.

Tel: (714) 327 3400.

URL: http://www filenet.com/English/News/
Global-English/Current_Press_Releases/
071904webserv.asp.

xephon

	Writing a daemon process
	LPAR back-up over a network
	Creating a cacheing DNS
	Teach me DB2 on AIX! - part 2
	Parsing output of tapeutil command
	AIX news

