104

June 2001

]
In this issue

3 Business Intelligence with DB2
Universal Database Version 7.1

13 Printing out DSNZPARM and
DSNHDECP

22 Partitioned tablespace
management

35 Sample user-defined functions —
part 2

48 DBZ2 news

© Xephon plc 2001

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

DBZ2 Update

Published by
Xephon

27-35 London Road

Newbury

Berkshire RG14 1JL

England

Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon

PO Box 350100

Westminster, CO 80035-0100
USA

Telephone: 303 410 9344

Editor
Trevor Eddolls

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their

o) circumstances of all advice, information,
Subscriptions and back-issues code, JCL, and other contents of this journal
A year's subscription tdDB2 Update pefore making any use of it.
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA andContributions
Canada; £261.00 in Europe; £267.00 iMvhen Xephon is given copyright, articles
Australasia and Japan; and £265.5published inDB2 Updateare paid for at the
elsewhere. In all cases the price includeate of £170 ($260) per 1000 words and £100
postage. Individual issues, starting with th€160) per 100 lines of code for the first 200
January 1997 issue, are available separatdityes of original material. The remaining code
to subscribers for £22.50 ($33.50) eacls paid for at the rate of £50 ($80) per 100
including postage. lines. In addition, there is a flat fee of £30

_ ($50) per article. To find out more about
DB2 Updateon-line contributing an article, without any
Code fronDB2 Updateand complete issuesgpjigation, please contact us at any of the
in Acrobat PDF format, can be downloadeddqresses above and we will send you a copy
from our Web site at http://www.xephon.of our Notes for Contributorsor you can

com/db2update.html; you will need togownload a copy from www.xephon.com/
supply a word from the printed issue. contnote.html.

© Xephon plc 2001. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England

Business Intelligence with DB2 Universal
Database Version 7.1

In DB2 Updatelssue 100, February 2001, | wrote an article entitled
E-business enhancements with DB2 Universal Database Version 7.1
In that article | wrote about some of the major enhancements that were
added to the most recent version of DB2 to enable businesses to
conduct electronic commerce more easily, faster, and more reliably.
In that article, DB2 was positioned in tBaild andRunquadrants of

the Cartesian plane in Figure 1. DB2 had some enhancements, such as
identity columns and declared temporary tables, that helped application
developers build or migrate database applications. DB2 was also
more strongly positioned with Version 7.1 in Renquadrant with
enhancements such as the XML Extender and increased log limit size
helping companies run more scalable business environments.

Although there was a lot of focus on e-business enhancements in DB2
Version 7.1, there were some powerful enhancements for Business
Intelligence (Bl) as well. The Bl enhancements strongly position DB2
(and its associated products) in tleerageguadrant. Théeverage
guadrant is the final stage of the e-business cycle. It takes the
information and knowledge thatis stored and managed by the database

Transform
core business
processes

Leverage
knowledge and
information

Run
a scalable,

available, safe
environment

Build

new
applications

Figure 1. E-business model

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 3

(in this case DB2) and leverages that information to make better and
more timely business decisions.

The driving force behind Bl solutions is to allow information that is
managed a chance to help a business ‘think outside the box’, so to
speak. Why should you care about the Bl enhancements that were
introduced in DB2 Version 7.17? Quite frankly, your competition does.

If you want to play in today’s game, you have to practise Bl!

It's your competition that is using Customer Relationship Management
(CRM) software like Siebel to find ways to address customer
vulnerability — they are trying to steaurcustomers! The reason the
beer was moved to the other side of the store in your local grocery
store, where the diapers are, is because a Bl application told them to
do it. Why is the stinky cheese beside those expensive pre-washed
vegetables in the produce aisle? Because someone, somewhere,
figured out that you’'d buy them together. How are companies able to
make these decisions? They analyse data that they collect every day
with Bl tools. Data is collected through customer loyalty programs
like Air Miles and through point-of-purchase analysis. Since much of
this data is managed by DB2, it would be a natural extension for DB2
to provide applications and functionality to leverage that information.

This article will discuss the major Bl enhancements in DB2 UDB
Version 7.1 that let businesses leverage the data that they collect to
make better, faster, more informed decisions.

FEDERATED DATABASE SUPPORT

One enhancement to DB2 Version 7.1 is the bundled Federated
Database Support component that is available with any DB2 server
product. Federated Database Support allows customers to join data
(read) from disparate DB2-family (distributed and mainframe)
databases in a single transaction.

Customers’ environments are rarely homogeneous and the requirement
for managing and manipulating ‘federations’ of data is becoming
more and more critical. An additional DB2 product, called DB2
Relational Connect, is required for read-only access to non-DB2 data
sources. It’s possible using SQL statements to join rows from a table

4 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

on a DB2 for S/398ystem and an Oracle-based system, using the
DB2 SQL API. Results are returned to the client application that
issued the SQL statement despite the data residing on two different
RDBMSs.

The federated component in DB2 Universal Database Version 7.1
gives users access to many forms of data, including relational data
from other vendors (using DB2 Relational Connect) and non-relational

data sources from a single DB2 API.

A DB2 federated database system enables users and applications to
reference multiple database management systems within a single

SQL statement. For example, with DB2's Federated Database Support,

you can join data that is located on a DB2 for AlX server table with

a table that resides on a DB2 for OS/390 system. Statements of this

type are called distributed requests.

To read and write data in other relational databases, there is a product
called DB2 DataJoiner. DB2 DataJoiner is built upon existing DB2
technology. It gives the user write and read access to Oracle, Sybase,
Informix, SQL Server, and other relational databases, as if they were
DB2 data sources. There is a strategic direction to move the read and
write DataJoiner functionality for the DB2 family into the core DB2
engine. The first stage of this process was to provide read access
between any members of the DB2 family in a single SQL statement
as the federated component. The DB2 family is made up of DB2
Universal Database for Windows, OS/2, Linux, Unix, AS/400, VM/
VSE, and S/390. The strategic direction for all non-DB2 family
databases is to provide read and write access using DB2 Relational
Connect. Version 7.2 willadd read-only access for SQL Serverto DB2
Relational Connect.

In a federated environment, a developer or user would still use the
DB2 syntax they understand to obtain or update data found on these
federated data sources (including non-DB2 servers). The federated
pieces in DB2 have been designed to understand these relational data
sources and provide efficient optimization when accessing data
across multiple platforms and vendors. This means that the user
doesn’t need to understand how to write efficient queries that hit an
Oracle data source. The federated functionality provided by DB2

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 5

allows companies to leverage the skill of employees by focusing
efforts on reporting and trend analysis, as opposed to statement
tuning.

OLAP STARTER KIT

DB2 has very strong OnLine Analytical Processing (OLAP) offerings
that allow users to easily define multidimensional applications, link
and populate those applications with warehouse data, and share the
applications among a workgroup. When you add one of the DB2
OLAP products to your DB2 installation, you suddenly grow the
power of your DB2 server to store and manage both relational and
multidimensional databases.

OLAP allows users to ask questions intuitively because the OLAP
datais presented in business dimensions. OLAP can perform analyses
such as: “Display the profit of my highest and lowest performing
products last quarter in my domestic sales regions”. You can use
DB2’s OLAP offering to deliver analytic applications that give your
business a competitive edge.

Relational OLAP has been extended in the latest version of DB2. New
SQL functions for moving aggregates, such as moving average and
moving sum, are now available for analytical queries. They comply
with the proposed OLAP Addendum to SQL-99. These extended
functions are discussed later in this article.

There are two offerings in the DB2 family that provide OLAP services
—DB2 OLAP Starter Kitand DB2 OLAP Server. Both packages come
with an easy-to-use interface to build and manage OLAP applications.
Both packages allow you to create, use, and analyse relational and
multidimensional databases. DB2’'s OLAP implementation is based
on the Hyperion Essbase analytic engine.

With every server copy of DB2 except DB2 Satellite Edition, you get
a copy of the DB2 OLAP Starter Kit. The installation of the DB2

OLAP Starter Kit is integrated into any DB2 server install. You can
use the DB2 OLAP Starter Kit, a scaled-down version of the full-
function DB2 OLAP Server product, to perform multidimensional

analysis on your data.

6 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

The DB2 OLAP Starter Kit gives you DB2’s OLAP power for up to
three concurrent users. If you need to extend this power to multiple
clients and add some restricted OLAP functionality with this version,
you can purchase DB2 OLAP Server,

ADVANCED RELATIONAL SQL

DB2 UDB Version 7.1 includes a number of advanced SQL features
that will be useful for analysts who work with enterprise data and rely
on arobust and powerful set of functions to aid in the decision-making
process. SQL enhancements that are related to Bl are referred to as
Relational OLAP (Online Analytical Processing) extensions (or
ROLAP by those with an affinity for jargon). These new ROLAP
extensions are new SQL commands that allow for sophisticated
moving averages to be calculated against column functions and
ranking functions.

Along with the integrated OLAP offering mentioned in the previous
section, DB2 Version 7.1 implements new classes of aggregate
functions for use in OLAP applications. These classes are designed to
compute functions that are important to OLAP applications, but were
difficult if not impossible with traditional SQL.

New SQL functions for moving aggregates, such as moving average
and moving sum, are now available for analytical queries and they are
in compliance with the proposed OLAP Addendum to SQL-99. These
additional computational functions expand your OLAP capabilities
with SQL and improve the performance against queries that are
typically challenging to write, if possible at all.

Moving aggregate functions are those that operate on a ‘window’ of
the data at a time. Syntactically, moving aggregate functions are
regular aggregate functions with additional arguments. Moving
aggregates are directed towards business analysts within a firm that
need to be empowered with the ability to create sophisticated queries
againsttheir data. Since this function can now be done at the SQL level
and is therefore driven in the database engine (instead of by third-
party tools, which can lead to performance degradation), DB2 can
offer better performance for the end user. For example, users may

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 7

wish to average a number of consecutive rows of output for the
purposes of curve-smoothing. This function would be especially
useful for business analysts or economists who work with stock price
fluctuations or have a need to seasonally adjust information.

Another ROLAP enhancement in DB2 UDB Version 7.1 is with the
grouping of information, built upon the pre-existing ROLLUP function

that was introduced in DB2 Version 5.2. Functions that apply to
groups of data can now include a form of logic within them to allow
for a more sophisticated level of grouping.

THE DB2 SPATIAL EXTENDER

DB2 UDB Version 7.1 introduces the notion of spatially aware SQL
gueries. Users can now integrate spatial data (locations via coordinates)
with normal SQL data in compliance with the OpenGIS Consortium
(OGC) and ISO SQLMM standards. The combination of these two
technologies gives users access to new types of query that they could
not previously run. These queries will result in even more insightinto
business and social issues. Why is spatial data becoming so important?
Think about it: businesses spend thousands, if not millions, of dollars
to extract, transform, and load (ETL) information into giant data
warehouses. Almost all data has some sort of spatial component to it.

The fact that Nancy Doyle lives at 213 Weatherborn is a spatially
enabled piece of data. Now imagine the combination of knowing that
Nancy lives at 213 Weatherborn, with the fact that there is public
transportation to the country’s most upmarket shopping centre. Finally,
visualizing this information allows a marketing manager to offer
some sort of transit-related promotion to try and capture Nancy’s
spending money.

Spatial data can be geocoded by DB2 so it can be mapped into
graphical representations that offer business analysts a more realistic
view into the data. Figure 2 shows an example of address and
occurrence data, stored and managed by DB2, being translated to a
visual map using a partner tool such as ESRI's Arcinfo. In DB2 UDB
Version 7.1, the new Spatial Extender is used to achieve this
functionality. The Spatial extender will store and index the spatial data

8 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

'-E]
f_' é

e
**}*
5‘]
m..nm
£ y) T

- e

Tmm.ﬂ B ceme

3

ﬁ’

f#

E0 N

(AL T Agperze LOmBEs Lerame

Figure 2: Example of address and occurrence data

(coordinate information) and allow specific spatial queries against
this data.

Figure 2 might represent the result set of an FBI crime data query such
as robbery crimes per 100,000 people or car thefts per 100,000 people.
Figure 2 could also represent a safe zone for a tarnished water system
in the event of an emergency. Whatever the query in Figure 2
represents, the important thing to note here is that your DB2-managed
data has been transformed and has become spatially aware. Humans
tend to comprehend and digest visuals much more easily than tabulated
data. The DB2 Spatial Extender is a new enhancement that helps Bl
experts better use and leverage their data for better decisions.

ENHANCEMENTS TO THE LOAD UTILITY

The LOAD process is very important to data warehousing
environments. Depending on the line of business and the industry,
data may need to be refreshed at an hourly rate, or perhaps even faster.
For example, a famous cellular provider reloads millions of rows into
their data warehouse every few minutes. To meet such needs, some
changes to the LOAD and IMPORT utilities have been introduced in

© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

DB2 UDB Version 7.1. These changes can be categorized as:

« IMPORT/LOAD data type extensions — data files can now
contain user-defined date and time formats as well as zoned
decimal data. In addition, blanks can now be preserved in
delimited (DEL) columns that are being placed into CHAR or
VARCHAR columns.

 LOAD authority — the LOAD authority, in previous releases only
available with DB2 Universal Database for OS/390, is now
available for the whole DB2 Universal Database family. Users
granted LOAD authority can run the LOAD utility without the
need for SYSADM or DBADM authority. This allows users to
perform more DB2 functions, and gives database administrators
more granular control over the administration of their database.

 Remote load capability — you can specify a remote load through
a LOAD API call without changing the LOAD API’s prototype.
When you specify an input source to be of type
SQLU_CLIENT_LOCATION instead, the LOAD utility can
invoke the new remote LOAD functionality. Through CLP, a new
optional keyword ‘CLIENT’ can be added to the LOAD command
that will invoke a remote load.

DATA WAREHOUSE CENTRE

Data warehousing is the foundation for business intelligence and
customer relationship management, so it is important to do it right.
Doing it right means accurately translating your business user needs
into data models, building an easily accessible data warehouse that
continually draws on diverse applications and data sources, and
finding away to maintain that data warehouse sxcemocenvironment

that is ever-changing.

If you're thinking that data warehousing is a resource-depleting and
costly mechanism, you're wrong! DB2 has tools that provide a
graphical environmentto help you create and manage data warehouses
or data marts — all from the Control Center!

There are two offerings in the DB2 family that provide data warehousing

10 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

services—DB2 Data Warehouse Center and DB2 Warehouse Manager.
Both packages come with an easy-to-use interface, called the Data
Warehouse Center, that can be used to build and manage data
warehouses.

The power of Visual Warehouse (an old DB2 product used to create
data warehouses) and the simplicity of the DB2 Control Center have
been merged to provide a single, new user interface for business
intelligence customers. You can use the Data Warehouse Center to
register and access data sources, define data extraction and
transformation steps, populate data warehouses, automate and monitor
warehouse management processes, and manage and interchange
metadata. The Data Warehouse Center is integrated witha DB2 server
installation.

You will often hear the activities involved in data warehousing
referredto as ETL (Extract, Transform, and Load). Extractis associated
with the extraction of data for input into the database warehouse; for
example, moving data from the operational side of your business.
Transform refers to massaging (also called cleansing) data so that it
is clean and usable in the data warehouse; for example, not having 126
Rory Rd., 126 Rory Road, and 126 Rory in the database. Loading
refers to moving that extracted and cleansed data into the data
warehouse using DB2 loading utilities.

Using the Data Warehouse Center, you can manage all the activities
that encompass the building, loading, and maintenance of a Data
Warehouse.

The DB2 Data Warehouse Center is available for Windows NT and
Windows 2000 versions of DB2 and is limited to one worker agent
that can perform requests on behalf of the administrators.

If you need to run a full-scale data warehouse too, you can purchase
the DB2 Warehouse Manager. This product suite comes with a set of
agents that can be deployed for data warehouse work, QMF for

Windows, Query Patroller (used to manage queries that are submitted
against the data warehouse), and the Information Catalog (for meta-
data management).

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 11

MISCELLANEOUS ENHANCEMENTS

There are various other enhancements to DB2 UDB Version 7.1 that
have a ‘Bl-flavour’ to them. For example, you can now convert your
ODBC gueries into static SQL. This capability provides a performance
gain for those canned queries that are repeatedly run against the data
warehouse.

The database system monitor now allows you to monitor your DB2
UDB Enterprise — Extended Edition system from a single partition. It
collects data and aggregates values across all partitions and returns a
single result. This capability provides database administrators with a
single point of control for monitoring their entire data warehouse. The
database system monitor also collects information on the operation
and performance of database activities ranging from reads and writes
through to locks and deadlocks.

DB2 Universal Database Version 7.1 also expands support for metadata
interchange with support for Object Management Group (OMG)
standard Common Warehouse Metadata Interchange for facilitating
solution integration among heterogeneous tools. The OMG standard
has the support of industry leaders including IBM, Oracle, NCR, and
Hyperion.

Finally, there is even an online HTML-based tutorial that you can take
to become more familiar with the end-to-end typical business
intelligence tasks. The lessons in this tutorial provide step-by-step
instructions for data warehousing and OLAP tasks, using the sample
databases that come with DB2.

Paul Zikopoulos
Database Specialist
IBM DB2 Sales Support Team (Canada) © IBM 2001

12 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

Printing out DSNZPARM and DSNHDECP

The March 2001 issue BB2 Updatecontained an article/program
for displayingDSNHDECP values. This is a much simpler C++
program for displaying both DSNZPARM and DSNHDE/@RIes —
the program just calls an IBM-supplied stored procedure.

INTRODUCTION

This article looks at a way of printing the DSNZPARM and
DSNHDECP values for a DB2 subsystem. This will be done by using
a CAF C++ program calling IBM-supplied stored procedure DSNWZP.

WHY?
Why do we want to do this?

The main reason is system documentation — knowing how your
system’s set up. This information is readily available in online
monitors, but being able to print it from a batch job means that you can
dump these parameters automatically.

Preventing system parameters being regressed is an important issue.
When emergency parameter changes are made — for instance EDM
pool changes — it’s likely that this will be done by updating the
DSNTIJUZ job directly, rather than through the installation CLIST.
This can result in the changes not being reflected in the DSXTID
member, and then being lost at the next upgrade. Printing the system
parameters to a file and then comparing them after upgrades can help
spot such errors.

DSNWZzZP

DSNWZP is an IBM-supplied stored procedure. It gets bound along
with a lot of other stuff in installation job DSNTIJSG. Its reason for
existence is the Control Centre. It's the means of passing system
information back to the workstation — but we can call it ourselves
directly on the mainframe.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 13

The advantage of using DSNWZP is that it's IBM-supplied and
therefore IBM-maintained. As new parameters are added, DSNWZP
will have them incorporated. Our program is really just a wrapper for
DSNWZP. This reduces the maintenance effort on our part to almost
zero.

DSNWZP has no inputs, and one output, a VARCHAR 8,600 bytes
long in DB2 V5 and 12,000 bytes long in V6. The difference is
because, in V5, DSNWZP only outputs DSNZPARM values, whereas
under V6, it outputs DSNHDECP as well.

The output format of DSNWZP consists of a series of lines, each
separated from the next by a X'25' character. It looks like this:

SYSPAUDT/DSN6SYSP/AUDITST/DSNTIPN/ 1/AUDIT TRACE/
10000000000020000000020000000200

SYSPCDB/DSN6SYSP/CONDBAT/DSNTIPE/ 4/MAX REMOTE CONNECTED/@000000020
SYSPCT/DSN6SYSP/CTHREAD/DSNTIPE/ 2/MAX USERS/00100

Each line represents a system parameter and consists of seven fields
separated by a slash (/).

The first field is the internal parameter name as used in the system
macro. The second is the name of the macro itself. You will find these
used in the DSNTIJUZ job, which assembles and links the system
parameters. The third field is the external parameter name as used in
the DSNTIDxxmember. The fourth field is the install panel name, and
the fifth field the number of the input field on the panel that this
parameter relates to. The sixth field is the description as used on the
panel, and the last field is the value of the parameter.

Each line is therefore a cross-reference —if you change a parameter in
the DSNTIJUZ job directly, you can find the DSNMDparameter
name to change so you can retrofit it, or find the panel in the
installation CLIST to regenerate the DSNXOmember and
DSNTIJUZ job.

Because it's a stored procedure, DSNWZP needs to be called from
static SQL (unless it's called from an ODBC program).

14 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

WHY C++?

Why C++? — because it’s the easiest way to do it. <evangelization>
Believe me, if you know COBOL, Assembler, and C++, C++ is by far
the easiest </evangelization>. However, for those who don’t have
C++ set up on their mainframes, the SQL and techniques mentioned
here will work from any other language.

| could have used Cinstead, but I'mjust using a couple of C++ goodies
to make things easier:

 Streams — a simple, type-safe output method.

» Object orientation — the ability to define objects. In this exercise
the only object I'm going to use is the IBM-supplied 10String
object, which will enable easy string manipulation.

THE SQL

The heart of this program is just one SQL call — the call to the stored
procedure. Everything else is just set-up, error-checking, and
formatting.

A varchar is required:

EXEC SQL BEGIN DECLARE SECTION;

struct
{ short int 1len;
char data 32767 ;

}
OUTSTR;

I've made it 32KB because the size of the varchar returned is likely to
increase in future releases of DB2.

The SQL call looks like this:

EXEC SQL
CALL DSNWZP(:0UTSTR);

IOSTRING

I0String is an IBM-provided class that represents strings in C++ (by
the way, the second character is a zero, not an oh). The advantage over

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 15

using normal C strings is easier allocation and resizing, and the
provision of operators to do concatenation and output.
To allocate an 10String, | can just say:

I0String str("abcde");

or point it at a block of memory:

I0String str(charPtr,length)

where lengthis the length | want the string to be. There are alot of other
constructors to create 10Strings from integers, floats, etc.

To print an 10String to standard output:
cout << str;
Concatenating two strings to make a third string:

strc = stra + strb;

To use 10String, you need this statement in your program:

f##include <i@string.h>

GENERAL ROUTINES

The program uses a number of routines for setting up CAF and error
handling. I've set these up in a separate module because they will
come in handy for any future DB2/C++ programs.

To open CAF:

int open_for_CAF(const I@String &db2sys,const I@String &plan)
{
long retcode;
unsigned long reascode;
I@String pl = plan.subString(@,8,"' ');
DSNALI("OPEN ",(char*)db2sys, (char*)pl,
&retcode, &reascode);
if (retcode != @)
caf_error("Can't open CAF -",(char*)(db2sys+"/"+pl),
retcode,reascode);
return(retcode);
}

The routine takes as input the DB2 subsystem name and plan name.
It pads out the plan name before calling DSNALLI. If there’s an error,
it calls caf_error:

16 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

void caf_error(char *pl,char *p2,long retcode,
unsigned Tong reascode)

{
cerr << pl;
if (p2)

cerr <L p2;
cerr << ",retcode=" << retcode << ",reascode ="

<< I@String(reascode).d2x().rightdustify(8,'0') << "\n";
exit(retcode);
}

This just prints out the subsystem name, plan name, and return, and
reason codes. The reason code is converted to hex and padded out with
leading zeroes so it's easy to look up in an online message-look-up
tool:

To close CAF:
int close_for_CAF()
{
long retcode;
unsigned long reascode;
DSNALI("CLOSE ","SYNC",
&retcode,&reascode);
if (retcode != @)
caf_error("Error closing CAF",NULL,retcode,reascode);
return(retcode);
}

For these routines, DSNALI must be defined thus:
extern "0S" {int DSNALI(char *func,...):}

I've also got a generic DB2-error-handling routine, which takes a C
string and the SQLCA as input and prints out a formatted DB2
message:

int process_db2_error(char *text,struct sqlca *sqlca)

{

cerr << text << "\n";

DSNTIAR(sqlca,&error_message,& _dsntiar_len);

for (int i=@;i < _DATA_DIM;i++)
{

I0String str(error_message.error_text i ,_ DATA_LEN);
if (str.strip() 1= "")
cerr << str << "\n";

}

return(@);

}

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 17

The routine depends on these definitions, which come straight out of
the Application Programming and SQL Guide

ffdefine _ DATA LEN 120
ffdefine _ DATA DIM 10

struct error_struct

{
short int error_len;

char error_text _ DATA_DIM _ DATA_LEN ;
};

struct error_struct
error_message = {__ DATA_DIM * _ DATA_LEN};

extern "0S" short int DSNTIAR(struct sqlca *sqlca,
struct error_struct *error_message,int *data_len);

int _ _dsntiar_Tlen = _ DATA_LEN;

THE MAIN PROGRAM

The program takes the subsystem name as its first parameter. It prints
out an error message if there are no parameters:

int main(int argv,char** argc)
{
if (argv < 2)
{
cerr << "subsystem parameter required\n";
exit(l2);
}

The subsystem name (argc[1]) and the program name (argc[0] — this
is used as the plan name) are converted to upper case (in case they
weren't) and passed to the CAF-opening routine:

I8String subsys(argc[1]);
subsys = subsys.upperCase();
I@String plan(argc[@]);

plan = plan.upperCase();
open_for_CAF(subsys,plan);

The SQL is invoked and checked for error:
EXEC SQL
CALL DSNWZP(:0UTSTR);
if (SQLCODE < @)
{

18 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

process_db2_error("Error calling DSNWZP",&sqlca);
exit(l2);
}

The returned varchar is formatted and printed:

process_output();

Finally, CAF is closed and we go home:
close_for_CAF();
return(@);
}

FORMATTING THE OUTPUT

The process_output routine splits the varchar up into lines and passes
each one as an 10String to format_line:

void process_output()
{
char *ptr,*sPtr,*endPtr;
ptr = sPtr = OUTSTR.data;
endPtr = OUTSTR.data+OUTSTR.len;
while (sPtr < endPtr)
{
while (ptr < endPtr && *ptr != @x25)
ptr++;
I@String str(sPtr,ptr - sPtr);
format_line(str);
SPtr = ++ptr;
}
}

The format_line calls format_field for each field. It passes to
format_field a pointer to the current position in the line, a pointer to
the end of the line, the width of the field, and whether the field should
be right-justified. If the input line is all blanks, format_line does

nothing:

void format_line(I@String &line)
{
char *ptr,*endPtr;
if (Tine.strip() == "")
return;
ptr = (char*)line;
endPtr = ptr + line.size();
ptr = format_field(ptr,endPtr,8,false); //Int Parameter Name
ptr = format_field(ptr,endPtr,8,false); //Macro Name
ptr format_field(ptr,endPtr,18,false); //Ext Parameter Name

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 19

ptr = format_field(ptr,endPtr,8,false); //Install panel

ptr = format_field(ptr,endPtr,4,true); //Install Panel Number
ptr = format_field(ptr,endPtr,d,false); //Description

cout <K "=";

ptr = format_field(ptr,endPtr,d,false); //Value
I@String str(ptr,endPtr - ptr);

cout << str.strip(); //rest of Line
cout << "\n";
}

The format_field prints from the current position up to the next /" or
the end of the line. It gets rid of any leading or trailing blanks and right-
justifies the output if required. If the field is shorter than the requested
length it pads it out, but it does not truncate longer fields. It returns the
new pointer position to the calling routine:

char *format_field(char *ptr,char *endPtr,int width,int rjustify)
{
char *sPtr = ptr;
while (ptr < endPtr && *ptr != '/")
ptr++;
I8String str(sPtr,ptr - sPtr);
str = str.strip();
if (width > 0)
if (rjustify)
str = str.rightdustify(width,' ');
else
str = str.leftdustify(width,' ");
cout << str <« " "
if (ptr < endPtr)
++ptr;
return(ptr);
}

PREPARATION
The program must be precompiled, compiled, linked, and bound.

The DSNHCPP procedure created during DB2 installation is an
example of JCL to do this. Note that the program should be bound as
a program object rather than linked as a load module so that it can
handle routine names longer than eight characters — it must therefore
be bound into a PDSE.

RUNNING THE PROGRAM
JCL to run the program looks like:

20 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

//STEP1 EXEC PGM=PiHIWZP

// PARM="'DB2S"
//STEPLIB DD DSN=NUDBS.SMITHAC.LOADE,DISP=SHR
/1 DD DSN=SYS2.DB2S.SDSNLOAD,DISP=SHR

//SYSOUT DD SYSOUT=V
//SYSPRINT DD SYSOUT=V

THE OUTPUT
The output looks like this:

SYSPAUDT DSN6SYSP AUDITST DSNTIPN 1 AUDIT TRACE =
10000000000020000000020000000200

SYSPCDB DSN6SYSP CONDBAT DSNTIPE 4 MAX REMOTE CONNECTED = 0000000020
SYSPCT DSN6SYSP CTHREAD DSNTIPE 2 MAX USERS = 00100

SYSPDFRQ DSN6SYSP DLDFREQ DSNTIPN 16 LEVELID UPDATE FREQUENCY = 00005
SYSPFRQ DSN6SYSP PCLOSEN DSNTIPN 14 RO SWITCH CHKPTS = 00005

SYSPIDB DSN6SYSP IDBACK DSNTIPE 6 MAX BATCH CONNECT = 00200

SYSPIDF DSN6SYSP IDFORE DSNTIPE 5 MAX TSO CONNECT = 00100

SYSPLOGL DSN6SYSP LOGLOAD DSNTIPN 1@ CHECKPOINT FREQ = 0000050000
SYSPMON DSN6SYSP MON DSNTIPN 8 MONITOR TRACE = 00000000

SYSPMONS DSN6SYSP MONSIZE DSNTIPN MONITOR SIZE = 0000008192
SYSPRLFA DSN6SYSP RLFAUTH DSNTIPP RESOURCE AUTHID = NUDBSSYS
SYSPRLF DSN6SYSP RLF DSNTIPO RLF AUTO START = NO

SYSPRLFN DSN6SYSP RLFERR DSNTIPO RLST ACCESS ERROR = NOLIMIT
SYSPRLFT DSN6SYSP RLFTBL DSNTIPO RLST NAME SUFFIX = @1

o1 o B~ 00O

Removing leading zeroes on the numeric output fields is left as an
exercise for the reader.

CAVEATS

When a new system parameter is added to DSNZPARM through an
application of a PTF, it will probably not appear in DSNWZP straight
away. It is also unlikely to get saved in the DSNXX¥Dnember.
Eventually DSNWZP and the installation CLIST get upgraded to deal
with the new parameter.

Because DSNWZP is a stored procedure, you cannot run it when in
maint mode.

Alan Smith
DB2 Systems programmer
Norwich Union (UK) © Xephon 2001

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 21

Partitioned tablespace management

Partition balancing is one of the activities that need to be done by
DBAs on a routine basis. It is neglected mostly because of the
difficulty in identifying partitions that are out of balance as well as in
re-defining the limit keys. For well-designed databases, the degree of
parallelism during atablespace scan is determined by the total number
of pages, the number of partitions, and the partition having the highest
number of pages. For example, if a table has 10,000 pages and has 10
partitions, and the partition having the highest number of pages is
partition 10 with 2,000 pages, then the highest degree of parallelism
that can be achieved is 10,000 divided by 2,000, which is 5. However,
if the highest number of pages in any partition is 1,000, then a
parallelism degree of 10 can be easily achieved for a tablespace scan.

The number of partitions to have depends largely on the record length
and the size of the table. Sometimes, peculiar business cases would
dictate the number and size of partitions. Version 5.0 of DB2 allows
255 partitions, numbered from 0 to 254, each of which can be up to
4GB, for atablespace defined as’ large’. For a ‘non-large’tablespace,
the partition size can be 1GB, 2GB, or 4GB, depending on the number
of partitions being in the ranges 33 to 64, 17 to 32, or 1 to 16
respectively.

The limit keys are critical to partitioning and maintaining a good
balance. The limit keys are normally derived from an algorithm that
utilizes areverse timestamp, so as to give agood spread of randomness
to the keys. Awell-defined algorithm will result in a uniform distribution

of the limit keys. However, as time goes on, the partitioning ranges
tend to get uneven with the result that some partitions will be crowded
while others will be sparse. In this case, the partitions need to be
balanced again. Effectively, this means recomputing and redefining
the limit keys so as to realize the uniform distribution of rows across
each partition.

The query PARTINF3 helps to decide whether a tablespace needs to
be re-partitioned. It is best if executed soon aftenatats has been

22 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

done on all the partitioned tablespaces. It identifies the total rows in
the tablespace, the average rows expected in each partition, and also
shows the deviation from the average for each partition. Based on this
statistic, you may decide to re-partition or leave it alone for some more
time.

Query PARTINF3 is shown below:

SELECT A.DBNAME, A.TSNAME, A.PARTITION AS P1, A.CARD,
Y.ACRD AS AVERAGE,
(A.CARD-Y.ACRD) AS DIFF,
SUBSTR(A.LIMITKEY,1,1@) AS LIMKEY
FROM SYSIBM.SYSTABLEPART A,
(SELECT DBNAME, TSNAME, AVG(CARD) AS ACRD
FROM SYSIBM.SYSTABLEPART
WHERE TSNAME LIKE 'DB%'
AND PARTITION > @
GROUP BY DBNAME, TSNAME) AS Y

WHERE A.TSNAME LIKE 'DB%'
AND A.PARTITION > @
AND Y.DBNAME = A.DBNAME
AND Y.TSNAME = A.TSNAME
AND A.DBNAME = 'DBADB@@1’
AND A.TSNAME = 'DBATS@@L'

The query PARTINF4 calculates the difference between row counts
of the successive partitions. It can also be used to give an idea of
partition balancing.

Query PARTINF4 is shown below:

SELECT A.DBNAME, A.TSNAME, A.PARTITION AS P1, A.CARD AS CARD1,
SUBSTR(A.LIMITKEY,1,10) AS LIMKEY1,
Y.ACRD AS AVGCRD,
(A.CARD-Y.ACRD) AS ROWDEV,
X.PARTITION AS P2, X.CARD AS CARDZ,
SUBSTR(X.LIMITKEY,1,10) AS LIMKEYZ,
(A.CARD - X.CARD) AS DIFFBETPARTS
FROM SYSIBM.SYSTABLEPART A
, (SELECT DBNAME, TSNAME, PARTITION, CARD, LIMITKEY
FROM SYSIBM.SYSTABLEPART
WHERE TSNAME LIKE 'DB%’
AND PARTITION > @) AS X
, (SELECT DBNAME, TSNAME, AVG(CARD) AS ACRD
FROM SYSIBM.SYST ABLEPART
WHERE TSNAME LIKE 'DB%'

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 23

AND PARTITION > @

GROUP BY DBNAME, TSNAME) AS Y
.TSNAME LIKE 'DB%'
.PARTITION > 0@
.DBNAME = A.DBNAME
.TSNAME = A.TSNAME
AND Y.DBNAME = A.DBNAME
AND Y.TSNAME = A.TSNAME
AND (X.PARTITION - A.PARTITION) =1
AND A.DBNAME 'DBADB@@A1"’
AND A.TSNAME 'DBATS@@1"’

WHERE
AND
AND
AND

< < X X > >

For tablespaces that need partitioning or re-partitioning, the COBOL
program PART2 will be a great time-saver. It uses dynamic SQL, to
enable it to run on any tablespace, and is written in COBOL. It
assumes that there is only one column that constitutes the limit key. (A
different version of the program can be coded for concatenated limit
keys of two or more columns.) This has to be compiled and bound as
a regular COBOL-DB2 batch program, with a suitable plan name.
Ensure that the isolation level for the plan is explicitly defined as
‘Uncommitted Read’. The defaultisolation levelis ‘Repeatable Read’
which could be a very nasty surprise when you run this program in
production. With the Uncommitted Read isolation, this program can
be run during peak times without any impact. The inputs to the
program are given as one lineinthe SYSIN DD card and are described
in the execution JCL. One of the inputs is a BUFFER, which may be
specified as zero. A non-zero BUFFER will add an extra number of
rows as specified by BUFFER to each calculated partitioning range.
Forexample, if we are dividing 1000 rows into 5 partitions, specifying
a BUFFER of 10 rows will put 210 rows into each partition instead of
200. The last partition will always end with all 9s.

Sample outputs from the queries and the program are shown, as also
Is execution JCL for the program.

CONCLUSION

A tablespace will benefit from partitioning if it has grown too big. Be
judicious in the use of partitioning. Avoid too much as well as too little.
Keeping your partitions in balance will definitely help parallelism and
performance.

24 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

A crucial parameter to consider for partitioned tablespaces is the
LOCKPART parameter. LOCKPART YES is very critical for
concurrency as well as parallelism. Unless you have a good reason,
this should always be YES. Ensure that the packages are bound with
degree ANY for LOCKPART to be really effective.

Remember that dropping a partitioned index will drop the partitioned
tablespace. In Version 5.0 of DB2, altering the limit keys would mean
dropping the tablespace and recreating it. However, in DB2 Version
7.0, there is the ability to alter the limit keys without having to drop

the index and hence the table. However, the revised partitioning will
take effect only when the tablespace is REORGed.

SAMPLE OUTPUT FOR PARTINF3

R T oo T T T T +----
DBNAME TSNAME P1 CARD AVERAGE DIFF LIMKEY
R e T e e e e +----
DBADB@@1 DBATSEQ1 1 159064 164179 -5115 7780331
DBADB@A1 DBATS@O1 2 159064 164179 -5115 12571170
DBADBA@1 DBATSGQL 3 159064 164179 -5115 19912534
DBADBA@1 DBATSGQ1 4 159064 164179 -5115 36075430
DBADB@@1 DBATSGQ1 5 159064 164179 -5115 41449281
DBADB@@1 DBATSGQ1 6 159064 164179 -5115 47699301
DBADB@@1 DBATSEQ1 7 159064 164179 -5115 63200794
DBADB@A1 DBATS@O1 8 159064 164179 -5115 85078772
DBADBA@1 DBATSGQL 9 184469 164179 20299 196293021
DBADBO@1 DBATS@Al 10 190225 164179 26046 311585808
DBADBO@1 DBATS@Al 11 189002 164179 24823 427462016
DBADB@@1 DBATS@@Ll 12 189618 164179 25439 544010900
DBADBO@1 DBATS@A1 13 189331 164179 25152 660570808
DBADB@@1 DBATSOQ@1 14 33808 164179 -139371 777383516
DBADBA@1 DBATS@@Ll 15 189269 164179 25090 891514017
DBADBA@1 DBATS@Al 16 188631 164179 24452 999999999
R T fomo- T T T T +----

where: P1 is the partition number; CARD is the # rows; AVERAGE
IS total rows / # patrtitions); DIFF is the difference between CARD and
AVERAGE; LIMKEY is the present limit key range.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 25

SAMPLE OUTPUT FOR PARTINF4

————————— e e e e S e R
DBNAME TSNAME P1 CARDI LIMKEY1 ~AVGCRD ROWDEV P2 CARD2 LIMKEY2 DIFFBETPARTS
————————— e s e S e S
DBADBB@1 DBATSP@1 1 159864 7788331 164179 -5115 2 159064 12571170 0
DBADBB@1 DBATSP@1 2 159864 12571179 164179 -5115 3 159064 19912534 0
DBADBOAL DBATSOBl 3 159864 19912534 164179 -5115 4 159864 36075430 0
DBADBOAL DBATSOBl 4 159864 36075430 164179 -5115 5 159864 41449281 8
DBADBOPL DBATSOBl 5 159864 41449281 164179 -5115 6 159864 47699301 8
DBADBB@1 DBATSGQ1 6 159864 4769931 164179 -5115 7 159064 63200794 0
DBADBB@1 DBATSB@1 7 159864 63200794 164179 -5115 8 159864 85078772 0
DBADBB@1 DBATSP@1 8 159864 85078772 164179 -5115 9 184469 196293021 -25405
DBADBOAL DBATSOB1 9 184469 196293021 164179 20298 10 196225 311585808 -5756
DBADBOAL DBATSOBLl 18 196225 311585808 164179 26046 11 189802 427462016 1223
DBADBOAL DBATSOBL 11 189802 427462016 164179 24823 12 189618 544010900 -616
DBADBB@1 DBATSPQ1 12 189618 544910900 164179 25439 13 189331 660570808 287
DBADBB@1 DBATSP@1 13 189331 668570808 164179 25152 14 33808 777383516 155523
DBADBB@1 DBATSB@1 14 33808 777383516 164179 -13@371 15 189269 891514917 -155461
DBADBOAL DBATSOAL 15 189269 891514917 164179 25098 16 188631 999999999 638
————————— e e e e S e R

where: ROWDEYV is the difference between AVERAGE and CARD
for partitions under P1, and DIFFBETSPARTS is the difference
between CARD of successive parts.

SAMPLE OUTPUT FROM PROGRAM PART2
NO OF PARTITIONS: gl6

TABLENAME : CUST_TABLE
COLUMN NAME : CUSTOMER_NO
QUALIFIER : PRODDB
BUFFER NUMBER : 000

PART # MAXIMUM VALUE

P01 PPPPDDDDBBA5DT79058
002 PPPRRVEIP010852150
003 PPPRIPIIPN53619052
04 PPRVYVPID101637718
025 PPPPPPPPA150804623
P06 PPPPPPPPA154353346
a7 PPPPPPPPA250015914
P08 PPPPRVBBA253234629
009 PPPRYVPID350448650
010 PPPVYPPPP353850738
P11 PPPPPPPPRAD1383781
P12 PPPPPPPPPAD5183658

26 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

P13 PPPROVPPPA53487209

P14 PRRVYVR2D715008790
P15 PPRRYVRPB771010184
P16 $99999999999999999

where MAXIMUM VALUE is the limit key value to use for each
partition.

PART?2

IDENTIFICATION DIVISION.
PROGRAM-ID. PART.

AUTHOR. JAIWANT JONATHAN.
INSTALLATION. JKJ.
DATE-WRITTEN. OCTOBER, 200@.
DATE-COMPILED.

* *
*REMARKS. THIS IS A PROGRAM TO PARTITION A TABLESPACE EVENLY BASED
* ON THE TOTAL RECORDS AND THE NUMBER OF RECORDS IN EACH
* PARTITION

*INPUT: DATASET CONTAINING THE FOLLOWING:

* PARTN - NO OF PARTITIONS TO DIVIDE INTO (OPTIONAL)

* coL - THE COLUMN USED AS THE PARTITIONING KEY

* TAB - THE NAME OF THE TABLE

* CRET - THE CREATOR/QUALIFIER OF THE TABLE

*

* *

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-3780.
0BJECT-COMPUTER. IBM-378@.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INPUT-FILE ASSIGN TO UT-S-SYSIN.
SELECT REPORT-FILE ASSIGN TO UT-S-REPORT.
DATA DIVISION.
FILE SECTION.
* THE INPUT PARAMETERS
FD INPUT-FILE
BLOCK CONTAINS @ RECORDS
RECORDING MODE IS F
LABEL RECORDS ARE OMITTED.
@1 INPUT-FILE-RECORD.

@5 PARTNO PIC X(3).
@5 FILLER PIC X(1).
@5 COLNAM PIC X(18).
@5 FILLER PIC X(1).

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 27

@5 TABNAM PIC X(18).

@5 FILLER PIC X(1).
@5 CRETOR PIC X(8).
@5 FILLER PIC X(1).
@5 BUFFER PIC X(4).
@5 FILLER PIC X(25).

PGM PRODUCES A REPORT

FD REPORT-FILE

BLOCK CONTAINS @ RECORDS

RECORDING MODE IS F

LABEL RECORDS ARE OMITTED

DATA RECORD IS REPORT-FILE-RECORD.
@1 REPORT-FILE-RECORD PIC X(80@).
WORKING-STORAGE SECTION.
@1 WS-WORK-VAR.

@5 WS-PARTNO PIC X(3) VALUE '@000°.

@5 WS-CRETOR PIC X(8) VALUE SPACES.

@5 WS-TABNAM PIC X(18) VALUE SPACES.

@5 WS-COLNAM PIC X(18) VALUE SPACES.

@5 WS-TOT-ROWS PIC S9(19) COMP-3.

@5 WS-BREAKLIM PIC S9(1@) COMP-3.

@5 WS-PRTNO PIC S9(4) COMP.

@5 WS-COL-INFO PIC S9(18) COMP-3.

@5 WS-PARTNO-NUM PIC 9(4).

@5 WS-BUFFER-NUM PIC 9(4).
@1 ERROR-MESSAGE.

@5 ERROR-LEN PIC S9(4) COMP VALUE +960.

@5 ERROR-TEXT PIC X(88) OCCURS 8 TIMES

INDEXED BY ERROR-INDEX.

@1 STMTBUF.

49 STMTLEN PIC S9(4) COMP VALUE 10@.

49 STMTCHAR PIC X(100).
Pl WS-CT.

@5 WS-CT-SEL PIC X(23)

VALUE ' SELECT COUNT(*) FROM '.

@5 WS-CT-CRE PIC X(18) VALUE SPACES.

@5 FILLER PIC X(1) VALUE SPACES.

@5 WS-CT-TAB PIC X(27) VALUE SPACES.

@5 FILLER PIC X(52) VALUE SPACES.
@1 WS-DT.

@5 WS-DT-SEL PIC X(1@9) VALUE '"SELECT .

@5 WS-DT-COL PIC X(18) VALUE SPACES.

@5 WS-DT-FRM PIC X(6) VALUE " FROM ".

@5 WS-DT-TAB PIC X(27) VALUE SPACES.

@5 FILLER PIC X(39)

VALUE ' ORDER BY 1 FOR FETCH ONLY WITH UR'.

@1 WS-0UT.

@5 WS-OUT-PRTNO PIC 9(4).

@5 FILLER PIC X(6) VALUE SPACES.

@5 WS-0UT-VALUE PIC X(40).

28 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

@5 FILLER PIC X(30) VALUE SPACES.
@1 WS-FLAGS.

05 WS-FILE-NOT-AT-EOF PIC X(3)
VALUE 'NO '.
88 WS-FILE-AT-EOF VALUE 'YES'.
@5 WS-PROCESS-COMPLETE PIC X(3)
VALUE 'NO .
88 WS-COMPLETE-CN VALUE 'YES'.
*hkkhkhkkhkkhhkhkkhhkhkkhhkhkkhhhkhhhkhkhhkhkhhkhkhhhkhhkhkhhkhkhhkhkhhhkhhhkhkhhkhkhdkhdkkx
** REPORT HEADER STRUCTURE *
*Ahkhkhkkkkhkkhkhhkhkhkhkhkhkkkdkhkhhhhkhkhhkhkkhdkhkhkhhhkhhhkhkkdkhkhhhhkhkhrkikkkkkkkx
@1 HEADER.
@5 FILLER PIC X(35)
VALUE ' PART NO VALUE '

#1 MSG-SQLERR.
@5 FILLER PIC X(31)
VALUE " DSNT493I SQL ERROR, SQLCODE .
@5 MSG-MINUS PIC X(1).
@5 MSG-PRINT-CODE PIC 9(8).
@5 FILLER PIC X(41) VALUE ' .
@1 MSG-NOROW.
@5 FILLER PIC X(89)
VALUE ' NO ROWS FOUND IN TABLE '.
@1 WS-HDR-ROW.

@5 FILLER PIC X(1) VALUE SPACES.

@5 WS-HDR-NAME PIC X(20).

@5 WS-HDR-DTL PIC X(59).
77 WS-NOT-FOUND PIC S9(8) COMP VALUE +100 .
77 WS-COUNT PIC S9(8) COMP VALUE @ .
77 ERROR-TEXT-LEN PIC S9(8) COMP VALUE +8@ .

Kok ok ok kkkk ok hk ok ki ok kk ok hkkk ok hk ok kkkkkhkkhkkkkhkkkkhkkhkkxkhk
* DECLARE CURSOR AND STATEMENT FOR DYNAMIC SQL

ook ko ko ok ko ok ok ok ek ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ke ko ok ok ok ok ok ok k ok
*

EXEC SQL DECLARE ~ CT CURSOR FOR CNT END-EXEC.
EXEC SQL DECLARE CNT STATEMENT END-EXEC.
EXEC SQL DECLARE DT CURSOR FOR STMT END-EXEC.
EXEC SQL DECLARE STMT STATEMENT END-EXEC.
EXEC SQL INCLUDE SQLCA END-EXEC.

*

PROCEDURE DIVISION.

*

kkhkkhkkkhkkkkhhkkhkhkhkkhhkkhkkhhkkhkhhkkhhkkhkkhhkkhkhhkkhhkkhkkhhkkhkhhkkhhkhkhhkkhkhhkkhhkkkihkkhikk

* SQL RETURN CODE HANDLING *

*hkkhkkhkhkkhkkhhkkhkhkhkkhhkhkkhhkkhhhkkhhkkhkhhkkhhhkkhhkhkkhhkkhhhkkhhkhkhhkkhhhkkhhkkhihkkhiik
EXEC SQL WHENEVER SQLERROR ~ GOTO DBERROR END-EXEC.
EXEC SQL WHENEVER SQLWARNING GOTO DBERROR END-EXEC.
EXEC SQL WHENEVER NOT FOUND CONTINUE END-EXEC.

*
*hkhkhkkkkkhkhhhkhkhkhkhkkkkhkhkhhhhkhkhkhkkkkhkhhhhhhkhkhkkkkhkhhhhhhkhkkkkkkkx

© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

* MAIN PROGRAM ROUTINE *
khkkhkhkkkhhkhkkhhkhkkhhhkkhhhkhkhhkhhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhkhdkikhikiik
OPEN OUTPUT REPORT-FILE.
OPEN INPUT INPUT-FILE.
PERFORM 1@@@-PROCESS-INPUT UNTIL WS-FILE-AT-EOF.
CLOSE INPUT-FILE.
CLOSE REPORT-FILE.
GOBACK.
EJECT
10@0-PROCESS- INPUT.

* 1. READ EACH RECORD IN INPUT FILE
* 2. CHECK FOR ALL INPUTS. IF PARTNO IS NOT SPECIFIED, THEN
* USE EXISTING PARTNO FROM THE TABLESPACE.

DISPLAY "IN 10@0@-PROCESS-INPUT PARA...'
READ INPUT-FILE

AT END
SET WS-FILE-AT-EOF TO TRUE
END-READ
DISPLAY 'SYSIN RECORD..." PARTNO, TABNAM, COLNAM, CRETOR

MOVE PARTNO TO WS-PARTNO
MOVE BUFFER TO WS-BUFFER-NUM
IF WS-PARTNO =" " OR WS-PARTNO = '0@@'
PERFORM 20@@-GET-PARTNO
THRU 200@-GET-PARTNO-EXIT
END-IF
PERFORM 3000-GET-TOT-ROWS
THRU 30@@-GET-TOT-ROWS-EXIT
MOVE WS-PARTNO TO WS-PARTNO-NUM
MOVE BUFFER TO WS-BUFFER-NUM
COMPUTE WS-BREAKLIM = ((WS-TOT-ROWS + 1) / WS-PARTNO-NUM)
+ WS-BUFFER-NUM
MOVE 1 TO WS-COUNT
MOVE 1 TO WS-PRTNO
PERFORM 4000-PROCESS-ROWS
THRU 400@-PROCESS-ROWS-EXIT.
EJECT
STOP RUN.
2000-GET-PARTNO.

* THIS PARA GETS THE PARTNO FROM THE SYSTABLESPACE AND SYSTABLE
* USING THE INPUT PARAMETERS TABLENAME AND CREATOR.

DISPLAY "IN 2000-GET-PARTNO PARA...'
MOVE PARTNO TO WS-PARTNO-NUM

MOVE TABNAM TO WS-TABNAM

MOVE COLNAM TO WS-COLNAM

MOVE CRETOR TO WS-CRETOR

IF WS-PARTNO-NUM = @ THEN

30 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

EXEC SQL
SELECT PARTITIONS INTO :WS-PARTNO
FROM SYSIBM.SYSTABLESPACE A, SYSIBM.SYSTABLES B
WHERE B.CREATOR :WS-CRETOR AND B.NAME = :WS-TABNAM
AND B.TSNAME = A.NAME AND B.DBNAME = A.DBNAME
END-EXEC
END-IF.
2000-GET-PARTNO-EXIT.
EXIT.
3000-GET-TOT-ROWS.
DISPLAY "IN 3000-GET-TOT-ROWS PARA ...°'
STRING CRETOR DELIMITED BY SPACES '.' TABNAM
DELIMITED BY SPACES
INTO WS-CT-TAB
MOVE CRETOR TO WS-CT-CRE
MOVE TABNAM TO WS-CT-TAB
MOVE WS-CT TO STMTCHAR
EXEC SQL
PREPARE CNT FROM :STMTBUF
END-EXEC.
EXEC SQL
OPEN CT
END-EXEC.
EXEC SQL
FETCH CT INTO :WS-TOT-ROWS
END-EXEC.
DISPLAY 'AFTER FETCH CT SQLCODE..."' SQLCODE
EXEC SQL
CLOSE CT
END-EXEC.
3000-GET-TOT-ROWS-EXIT.
EXIT.
4900-PROCESS-ROWS.
DISPLAY "IN 4000-PROCESS-ROWS ..." SQLCODE
PERFORM 4@15-WRITE-HDR
THRU 4@15-WRITE-HDR-EXIT

STRING CRETOR DELIMITED BY SPACES '.' TABNAM
DELIMITED BY SPACES INTO WS-DT-TAB
MOVE COLNAM TO WS-DT-COL
MOVE TABNAM TO WS-DT-TAB
MOVE WS-DT TO STMTCHAR
EXEC SQL
PREPARE STMT FROM :STMTBUF
END-EXEC.
EXEC SQL
OPEN DT
END-EXEC.
EXEC SQL
FETCH DT INTO :WS-COL-INFO

© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

31

END-EXEC.
IF SQLCODE = WS-NOT-FOUND
WRITE REPORT-FILE-RECORD FROM MSG-NOROW
AFTER ADVANCING 2 LINES
ELSE
PERFORM 4010-CHECK-ROWS
THRU 401@-CHECK-ROWS-EXIT
UNTIL SQLCODE EQUAL TO WS-NOT-FOUND OR
WS-COMPLETE-CN
END-IF
EXEC SQL
CLOSE DT
END-EXEC.

40P@-PROCESS-ROWS-EXIT.

EXIT.

4910-CHECK-ROWS.

ADD 1 TO WS-COUNT
IF WS-BREAKLIM < WS-COUNT
PERFORM 4020-WRITE-INFO
THRU 40@2@-WRITE-INFO-EXIT
MOVE 1 TO WS-COUNT
ADD 1 TO WS-PRTNO
IF WS-PRTNO = WS-PARTNO-NUM
MOVE 99999999999999999 TO WS-COL-INFO
PERFORM 4020-WRITE-INFO
THRU 40@2@-WRITE-INFO-EXIT
SET WS-COMPLETE-CN TO TRUE
GO TO 401@-CHECK-ROWS-EXIT
END-IF
END-IF
EXEC SQL
FETCH DT INTO :WS-COL-INFO
END-EXEC.

4910-CHECK-ROWS-EXIT.

EXIT.

4915-WRITE-HDR.

32

MOVE 'NO OF PARTITIONS:' TO WS-HDR-NAME
MOVE WS-PARTNO TO WS-HDR-DTL

WRITE REPORT-FILE-RECORD FROM WS-HDR-ROW
INITIALIZE WS-HDR-ROW

MOVE 'TABLENAME :'" TO WS-HDR-NAME
MOVE TABNAM TO WS-HDR-DTL

WRITE REPORT-FILE-RECORD FROM WS-HDR-ROW
INITIALIZE WS-HDR-ROW

MOVE 'COLUMN NAME :" TO WS-HDR-NAME
MOVE COLNAM TO WS-HDR-DTL

WRITE REPORT-FILE-RECORD FROM WS-HDR-ROW
INITIALIZE WS-HDR-ROW

MOVE "QUALIFIER :" TO WS-HDR-NAME
MOVE CRETOR TO WS-HDR-DTL

© 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telef@ine 10 9344, fax (303) 438 0290.

WRITE REPORT-FILE-RECORD FROM WS-HDR-ROW
INITIALIZE WS-HDR-ROW
MOVE 'BUFFER NUMBER :" TO WS-HDR-NAME
MOVE WS-BUFFER-NUM TO WS-HDR-DTL
WRITE REPORT-FILE-RECORD FROM WS-HDR-ROW
INITIALIZE WS-HDR-ROW
WRITE REPORT-FILE-RECORD FROM WS-HDR-ROW.
INITIALIZE WS-HDR-ROW
MOVE '"PART # MAXIMUM' TO WS-HDR-NAME
MOVE 'VALUE' TO WS-HDR-DTL
WRITE REPORT-FILE-RECORD FROM WS-HDR-ROW
AFTER ADVANCING 2 LINES
INITIALIZE WS-HDR-ROW
WRITE REPORT-FILE-RECORD FROM WS-HDR-ROW.
4915-WRITE-HDR-EXIT.
EXIT.
492@-WRITE-INFO.
MOVE WS-COL-INFO TO WS-OUT-VALUE
MOVE WS-PRTNO TO WS-OUT-PRTNO
WRITE REPORT-FILE-RECORD FROM WS-0UT.
4920-WRITE-INFO-EXIT.
EXIT.
DBERROR.
* **SQL ERROR
MOVE SQLCODE TO MSG-PRINT-CODE.
IF SQLCODE < @ THEN MOVE '-' TO MSG-MINUS.
WRITE REPORT-FILE-RECORD FROM MSG-SQLERR
AFTER ADVANCING 2 LINES.
CALL 'DSNTIAR" USING SQLCA ERROR-MESSAGE ERROR-TEXT-LEN.
IF RETURN-CODE = ZERO
PERFORM ERROR-PRINT VARYING ERROR-INDEX
FROM 1 BY 1 UNTIL ERROR-INDEX GREATER THAN 8
ELSE
**ERROR FOUND IN DSNTIAR
**PRINT ERROR MESSAGE
MOVE RETURN-CODE TO RETCODE
WRITE MSGREC FROM MSGRETCD
AFTER ADVANCING 2 LINES.
GO TO PROG-END.

* o X X X

*
*Ahkhkhkkkhkkhkkhkkhhkhkhkhkhkhkkkhkhkhhhkhkhhkhkkkhkdkhkhhhkhkhkhhkdkdkhkhhhkhkhhrikkkkkkkx
* PRINT MESSAGE TEXT *
kkhkkhkkkhkkkkhhkkhkhkhkkhhkkhkkhhkkhkhhkkhhkkhkkhhkkhkhhkkhhkkhkkhhkkhkhhkkhhkhkhhkkhkhhkkhhkkkihkkhikk
ERROR-PRINT.
WRITE REPORT-FILE-RECORD FROM ERROR-TEXT (ERROR-INDEX)
AFTER ADVANCING 1 LINE.
PROG-END.
* **CLOSE FILES
CLOSE INPUT-FILE
REPORT-FILE.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

GOBACK.

EXECUTION JCL

//J0BCARD1

/1*

/1%

//JOBLIB DD DSN=Yourhlq.DSNLOAD,DISP=SHR

// DD DSN=Your load 1ib dataset, DISP=SHR
//***
/1*

//PART2 EXEC PGM=IKJEFT1B,REGION=@M

//SYSTSPRT DD SYSOUT=*

//SYSPRINT DD SYSOUT=*

//SYSOUT DD SYSOUT=*

//SYSDBOUT DD SYSOQUT=*

//SYSUDUMP DD SYSQUT=*

//REPORT DD DSN=the report dataset name,DISP=(NEW,KEEP),

/7 SPACE=(TRK, (10,20)),DCB=(LRECL=80,RECFM=FBA,BLKSIZE=3120),
/7 UNIT=SYSDA

//SYSABOUT DD SYSOUT=*

/1*

//SYSTSIN DD *
DSN SYSTEM(ssid)
RUN PROGRAM (PART2) -
PLAN (planname)

END
//*
//SYSIN DD *
916 CUSTOMER_NO CUST_TABLE PRODDB 0000
/*
//* Please follow record layout as given below for the SYSIN card
//* @5 PARTNO PIC X(3).
//* @5 FILLER PIC X(1).
//* @5 COLNAM PIC X(18).
//* @5 FILLER PIC X(1).
//* @5 TABNAM PIC X(18).
//* @5 FILLER PIC X(1).
//* @5 CRETOR PIC X(8).
//* @5 FILLER PIC X(1).
/1* @5 BUFFER PIC X(4).
//* @5 FILLER PIC X(25).
//*
//*
Jaiwant K Jonathan
DB2 DBA
QSS (USA) © Xephon 2001

34 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

Sample user-defined functions — part 2

This month we publish the remaining user-defined functions.

COUNTER - PL/I source code

* PROCESS SYSTEM(MVS);
COUNTER: PROC(UDF_RESULT, UDF_INDR,
UDF_SQLSTATE, UDF_NAME, UDF_SPEC_NAME,
UDF_DIAG_MSG, UDF_SCRATCHPAD,
UDF_CALL_TYPE, UDF_DBINFO)
OPTIONS(MAIN NOEXECOPS REENTRANT);

/**/

/* UDF : COUNTER */
/* OUTPUT: UDF_RESULT CHAR COUNTER OUTPUT PARAMETER */
/**/
DCL UDF_RESULT BIN FIXED(31); /* RESULT PARAMETER */
DCL UDF_INDR BIN FIXED(15); /* INDICATOR FOR RESULT */
DCL 1 UDF_SCRATCHPAD, /* SCRATCHPAD */

3 UDF_SPAD_LEN BIN FIXED(31),
3 UDF_SPAD_TEXT CHAR(109),
5 COUNTR BIN FIXED(31);

%INCLUDE UDFINFO; /* DBINFO */
DCL (LENGTH,ADDR) BUILTIN;
COUNTR=COUNTR+1;
UDF_RESULT=COUNTR;
END COUNTER;

COUNTERS - PL/I source code

* PROCESS SYSTEM(MVS);
COUNTER: PROC(UDF_PARMI1, UDF_RESULT,
UDF_IND1, UDF_INDR,
UDF_SQLSTATE, UDF_NAME, UDF_SPEC_NAME,
UDF_DIAG_MSG, UDF_SCRATCHPAD,
UDF_CALL_TYPE, UDF_DBINFO)
OPTIONS(MAIN NOEXECOPS REENTRANT);

/**/

/* UDF : COUNTER */
/* INPUT : UDF_PARML INTEGER ~ COUNTER STEP VALUE */
/* OUTPUT: UDF_RESULT INTEGER ~ COUNTER OUTPUT PARAMETER */
/**/
DCL UDF_PARMI1 BIN FIXED(31); /* INPUT PARAMETER */
DCL UDF_RESULT BIN FIXED(31); /* RESULT PARAMETER */
DCL UDF_IND1 BIN FIXED(15); /* INDICATOR FOR INPUT PARM */
DCL UDF_INDR BIN FIXED(15); /* INDICATOR FOR RESULT */
DCL 1 UDF_SCRATCHPAD, /* SCRATCHPAD */

3 UDF_SPAD_LEN BIN FIXED(31),

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 35

3 UDF_SPAD_TEXT CHAR(1989),
5 COUNTR BIN FIXED(31);
%INCLUDE UDFINFO; /* DBINFO */
DCL (LENGTH,ADDR) BUILTIN;
COUNTR=COUNTR+UDF_PARM1;
UDF_RESULT=COUNTR;
END COUNTER;

CUMULI — PL/I source code

* PROCESS SYSTEM(MVS);
CUMULI: PROC(UDF_PARM1, UDF_RESULT,
UDF_IND1, UDF_INDR,
UDF_SQLSTATE, UDF_NAME, UDF_SPEC_NAME,
UDF_DIAG_MSG, UDF_SCRATCHPAD,
UDF_CALL_TYPE, UDF_DBINFO)
OPTIONS(MAIN NOEXECOPS REENTRANT);

/**/

/* UDF : CUMUL - CUMULATIVE OPERATION */
/* INPUT : UDF_PARM1 INTEGER OR SMALLINT PARAMETER */
/* OUTPUT: UDF_RESULT INTEGER OUTPUT PARAMETER */
/**/
DCL UDF_PARMI1 BIN FIXED(31); /* INPUT PARAMETER */
DCL UDF_RESULT BIN FIXED(31); /* RESULT PARAMETER */
DCL UDF_IND1 BIN FIXED(15); /* INDICATOR FOR INPUT PARM */
DCL UDF_INDR BIN FIXED(15); /* INDICATOR FOR RESULT */
DCL 1 UDF_SCRATCHPAD, /* SCRATCHPAD */

3 UDF_SPAD_LEN BIN FIXED(31),
3 UDF_SPAD_TEXT CHAR(109),
5 CUMULI BIN FIXED(31);

%INCLUDE UDFINFO; /* DBINFO */
DCL (LENGTH,ADDR) BUILTIN;
CUMULI=CUMULI+UDF_PARM1;
UDF_RESULT=CUMULT;
END CUMULTI;

CUMULD - PL/I source code

* PROCESS SYSTEM(MVS);
CUMULD: PROC(UDF_PARM1, UDF_RESULT,
UDF_IND1, UDF_INDR,
UDF_SQLSTATE, UDF_NAME, UDF_SPEC_NAME,
UDF_DIAG_MSG, UDF_SCRATCHPAD,
UDF_CALL_TYPE, UDF_DBINFO)
OPTIONS(MAIN NOEXECOPS REENTRANT);

/**/

/* UDF ¢ CUMUL - CUMULATIVE OPERATION */
/* INPUT : UDF_PARM1 DECIMAL PARAMETER */
/* OUTPUT: UDF_RESULT DECIMAL PARAMETER */

/**/

36 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

DCL UDF_PARM1 DECIMAL(15,3); /* INPUT PARAMETER */

DCL UDF_RESULT DECIMAL(15,3); /* RESULT PARAMETER */
DCL UDF_IND1 BIN FIXED(15); /* INDICATOR FOR INPUT PARM */
DCL UDF_INDR BIN FIXED(15); /* INDICATOR FOR RESULT */
DCL 1 UDF_SCRATCHPAD, /* SCRATCHPAD */

3 UDF_SPAD_LEN BIN FIXED(31),
3 UDF_SPAD_TEXT CHAR(1989),
5 CUMULI PIC'999999999999Vv999";

%INCLUDE UDFINFO; /* DBINFO */
DCL (LENGTH,ADDR) BUILTIN;
CUMULI=CUMULI+UDF_PARMI1;
UDF_RESULT=CUMULTI;
END CUMULD;

CUMULF — PL/I source code

* PROCESS SYSTEM(MVS);
CUMULF: PROC(UDF_PARM1, UDF_RESULT,
UDF_IND1, UDF_INDR,
UDF_SQLSTATE, UDF_NAME, UDF_SPEC_NAME,
UDF_DIAG_MSG, UDF_SCRATCHPAD,
UDF_CALL_TYPE, UDF_DBINFO)
OPTIONS(MAIN NOEXECOPS REENTRANT);

/**/

/* UDF : CUMUL - CUMULATIVE OPERATION */
/* INPUT : UDF_PARM1 FLOAT PARAMETER */
/* OUTPUT: UDF_RESULT FLOAT PARAMETER */
[Fkk ok ok ok ok ok ok ok ke ok ko ok ok ok ok ok k ok k
DCL UDF_PARM1 BIN FLOAT(53); /* INPUT PARAMETER */
DCL UDF_RESULT BIN FLOAT(53); /* RESULT PARAMETER */
DCL UDF_IND1 BIN FIXED(15); /* INDICATOR FOR INPUT PARM */
DCL UDF_INDR BIN FIXED(15); /* INDICATOR FOR RESULT */
DCL 1 UDF_SCRATCHPAD, /* SCRATCHPAD */

3 UDF_SPAD_LEN BIN FIXED(31),
3 UDF_SPAD_TEXT CHAR(109),
5 CUMULI BIN FLOAT(53);

%INCLUDE UDFINFO; /* DBINFO */
DCL (LENGTH,ADDR) BUILTIN;
CUMULI=CUMULI+UDF_PARM1;
UDF_RESULT=CUMULT;
END CUMULF;

DATEUDF — PL/I source code

* PROCESS SYSTEM(MVS);
DATEUDF: PROC(UDF_PARM1, UDF_PARM2, UDF_RESULT,
UDF_IND1, UDF_INDR,
UDF_SQLSTATE, UDF_NAME, UDF_SPEC_NAME,
UDF_DIAG_MSG, UDF_SCRATCHPAD,
UDF_CALL_TYPE, UDF_DBINFO)

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 37

OPTIONS(MAIN NOEXECOPS REENTRANT);

/**/

/* UDF : DATEUDF */
/* INPUT : UDF_PARM1 CHAR(12) */
/* : UDF_PARM2 VARCHAR(1) */
/* QUTPUT: UDF_RESULT VARCHAR(20) */
[Fkkdkkdkkkkhkkhkkhkkhkkhkkhkkhkkkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkk*
DCL UDF_PARM1 CHAR(19); /* INPUT PARAMETER */
DCL UDF_PARM2 CHAR(1) VAR; /* INPUT PARAMETER */
DCL UDF_RESULT CHAR(20) VAR; /* RESULT PARAMETER */
DCL UDF_IND1 BIN FIXED(15); /* INDICATOR FOR INPUT PARM */
DCL UDF_INDR BIN FIXED(15); /* INDICATOR FOR RESULT */
DCL 1 UDF_SCRATCHPAD, /* SCRATCHPAD */

3 UDF_SPAD_LEN BIN FIXED(31),
3 UDF_SPAD_TEXT CHAR(100);
EXEC SQL INCLUDE UDFINFO; /* DBINFO */
DCL (ADDR,LENGTH,SUBSTR,NULL) BUILTIN;
EXEC SQL INCLUDE SQLCA;
/* kkhkkkkhkkkkhkhkkhkkhkhkkhhkkhkkhhkkhkhkhkkhhkkhkhhkkhhhkkhhkkhkhhkkhhhkkhhkkhkhhkkhhkkhkkhhkkhkhhkkhhkkkihkkhikk */
/* M: RETURNS FULL ENGLISH NAME OF THE MONTH. */
/* DATEUDF(DATE('20@@-08-18"),'W') -> 'AUGUST' */
/* *hkkhkkhkhkkhkkhkhkkhhkhkkhhkhkkhhkkhhkhkkhhkhhhkkhhkhkkhhkhhhkkhhkhkkhhkhhhkkhhhkkhhkhhhkkhhkkkihkkhhik */
IF UDF_PARM2="M"' THEN DO;
EXEC SQL SELECT

CASE MONTH(DATE(:UDF_PARM1))

WHEN (1) THEN 'J"||LCASE("ANUARY")

WHEN (2) THEN 'F'||LCASE('EBRUARY")

WHEN (3) THEN 'M'||LCASE('ARCH")

WHEN (4) THEN "A'||LCASE('PRIL")

WHEN (5) THEN 'M'||LCASE('AY")

WHEN (6) THEN 'J"||LCASE('UNE")

WHEN (7) THEN 'J"||LCASE('ULY")

WHEN (8) THEN 'A'||LCASE('UGUST")

WHEN (9) THEN 'S'||LCASE('EPTEMBER")

WHEN (1@) THEN 'O'||LCASE('CTOBER")

WHEN (11) THEN 'N'||LCASE('OVEMBER")

WHEN (12) THEN 'D'||LCASE('ECEMBER")

END

INTO :UDF_RESULT

FROM SYSIBM.SYSDUMMY1 WITH UR;

END;

[* kkkkkkkkkkkkhkkhkkhkkhkhhkhhkhkkhkkhkkhkkhkkhkkhkkhkkhkkkx */
/* W: RETURNS FULL ENGLISH NAME FOR THE DAY OF THE WEEK. */
/* DATEUDF(DATE('2000-08-18"),"W") -> 'FRIDAY' */

/* *hkhkhkkkkkhkkhhhkhkhkhkhkhkkhkkhkhkhhhhkhhkhkhkkhkkhkhkhhhhhhkhkhkkkhkhkhhhhhhkhkkkkhkhkhhhhxkx */

IF UDF_PARM2='W' THEN DO;
EXEC SQL SELECT
CASE (DAYOFWEEK(:UDF_PARM1))
WHEN 1 THEN 'S'||LCASE('UNDAY")
WHEN 2 THEN 'M'||LCASE('ONDAY")
WHEN 3 THEN 'T'||LCASE('UESDAY")

38 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

WHEN 4 THEN 'W'||LCASE('EDNESDAY')
WHEN 5 THEN 'T'||LCASE('HURSDAY")
WHEN 6 THEN 'F'||LCASE('RIDAY")
WHEN 7 THEN 'S'||LCASE('ATURDAY")
END
INTO :UDF_RESULT
FROM SYSIBM.SYSDUMMY1 WITH UR;

END;

/*
/*
/*
/*
IF

*hkhkhkkkkkhkkhhhkhkhkhkhkhkkhkkhkhkhhhhkhhkhkhkkhkkhkhkhhhhhhkhkhkkkhkhkhhhhhhkhkkkkhkhkhhhhxkx

N: RETURNS DATE IN THE DEFAULT FORMAT 'YYYY-MM-DD'.
DATEUDF (DATE('2000-28-18"),'N') -> '2000-08-18"
kkhkkkkhkkkkhkhkkhkkhkhkkhhkkhkkhhkkhkhkhkkhhkkhkkhhkkhkhkhkkhhkkhkhhkkhhhkkhhkkhkhhkkhhkkhhkkhkhhkkhhkkkihkkhkikk
UDF_PARM2="N' THEN DO;
EXEC SQL SELECT DATE(:UDF_PARMI)

INTO :UDF_RESULT
FROM SYSIBM.SYSDUMMY1 WITH UR;

END;

/*
/*
/*
/*
IF

*hkhkhkkkkkhkhhhkhkhkhkhkkkhkhkhkhhhhkhhkhkhkkhkdkhkhhhhhhkhkdhkhkhkdhhhhhhhkkkkdkdkhhhhxkx

U RETURNS DATE IN THE FORMAT "MM-DD-YYYY"'.
DATEUDF (DATE('2000-08-18"),'U') -> '08-18-2000"
khkkkkhkhkkhkkhhkkhkhkhkkhhkkhkkhhkkhhkhkkhhkkhhhkkhkhkhkkhhkkhhhkkhhhkkhhkkhkhhkkhhhkkhhkkhkhhkkhhkhkkihkkhiik
UDF_PARM2="U" THEN DO;
EXEC SQL SELECT CHAR(DATE(:UDF_PARM1),USA)

INTO :UDF_RESULT
FROM SYSIBM.SYSDUMMY1 WITH UR;

END;

/*
/*
/*
/*
IF

*hkhkhkkkkkhkkhhhkhkhkhkhkhkkhkkhkhkhhhhkhhkhkhkkhkkhkhkhhhhhhkhkhkkkhkhkhhhhhhkhkkkkhkhkhhhhxkx

E: RETURNS DATE IN THE FORMAT "DD.MM.YYYY ",
DATEUDF(DATE('2000-08-18"),"E") -> '18.08.2000"
ek o ok ek ko ok ok ok ok ko ok ok ok ok ok ko o ok ok ok ok ok ok o ok ook ok ok ok ok o ok ok ok ok ok ke o ok ok ko ok ok
UDF_PARM2='E' THEN DO;
EXEC SQL SELECT CHAR(DATE(:UDF_PARM1),EUR)

INTO :UDF_RESULT
FROM SYSIBM.SYSDUMMY1 WITH UR;

END;

/*
/*
/*
/*
IF

*hkhkhkkkkkhkhhhkhkhkhkhkkkhkhkhkhhhhkhhkhkkhkhkhkhhhhhhhkhkhkhkhkdhhhhkhhkhkkdkdkdkhhhhxkx

S: RETURNS DATE IN THE FORMAT 'DD MON YYYY'.
DATEUDF (DATE('2000-08-18'),'S") -> '18 AUG 2000"
*hkkhkhkkkhhkhkkhhkhkkhhkhkhhhkkhhhkhkhhkhkhhkhkhhhkhhhkhhhkhhkhkhhkhkhhkhkhhhkhhhkhkhdkhktk
UDF_PARM2="S' THEN DO;
EXEC SQL SELECT STRIP(CHAR(DAY(:UDF_PARM1)))

[l

CASE MONTH(DATE(:UDF_PARM1))

WHEN (1) THEN "J'||LCASE('AN")

WHEN (2) THEN "F'||LCASE('EB")

WHEN (3) THEN "M'||LCASE('AR")

WHEN (4) THEN "A'||LCASE('PR")

WHEN (5) THEN "M'||LCASE('AY")

WHEN (6) THEN "J'||LCASE('UN")

WHEN (7) THEN "J'||LCASE('UL")

WHEN (8) THEN "A'||LCASE('UG")

© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

39

WHEN (9) THEN 'S'||LCASE('EP")
WHEN (18) THEN "0'||LCASE('CT")
WHEN (11) THEN "N'||LCASE('OV')
WHEN (12) THEN 'D'||LCASE('EC")
END [| " " []
STRIP(CHAR(YEAR(:UDF_PARM1)))
INTO :UDF_RESULT
FROM SYSIBM.SYSDUMMY1 WITH UR;

END;

J* dkkkdokkkokkkkk ok ok kok ok ko k ok ok ok ok ok ko kkkkkkkkkkkkkkkkkkkkkkkkkkkk *k
/* L: RETURNS DATE IN THE FORMAT 'DD MONTHNAME YYYY'. */
/* DATEUDF(DATE('2000-08-18"),'S") -> "18 AUGUST 2000’ */

/* khkhkhkkkkkhkhhhkhkhkhkhkkkkhkhhhhhhhkhkkkkhkdhhhhhhkhkkkkhkhkhhhhhhkhkkkkkhkhhhhxkx */

IF UDF_PARM2="L' THEN DO;
EXEC SQL SELECT STRIP(CHAR(DAY(:UDF_PARM1)))

[

CASE MONTH(DATE(:UDF_PARM1))
WHEN (1) THEN "J'||LCASE('ANUARY")
WHEN (2) THEN "F'||LCASE('EBRUARY")
WHEN (3) THEN "M'||LCASE("ARCH")
WHEN (4) THEN "A'||LCASE('PRIL")
WHEN (5) THEN "M'||LCASE('AY")
WHEN (6) THEN "J"||LCASE('UNE")
WHEN (7) THEN "J"||LCASEC'ULY")
WHEN (8) THEN "A'||LCASE('UGUST")
WHEN (9) THEN 'S'||LCASE('EPTEMBER")
WHEN (1@) THEN '0'||LCASE('CTOBER")
WHEN (11) THEN "N'||LCASE('OVEMBER')
WHEN (12) THEN 'D'||LCASE('ECEMBER")

END || " "]

STRIP(CHAR(YEAR(:UDF_PARM1)))

INTO :UDF_RESULT

FROM SYSIBM.SYSDUMMY1 WITH UR;

END;

[* kkkkkkkkkkkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkkx %/
/* J: RETURNS DATE IN THE FORMAT "YYYYDDD". */
/* DATEUDF(DATE('2000-08-18"),'S") -> '2000231" ' */

/* *hkhkhkkkkkhkhhhkhkhkhkhkhkkkhkhkhhhhkhkhkhkhkkkhkhkhhhhhhkhkhkkkkhkhhhhhhkhkkkkkhkihhhhk */

IF UDF_PARM2="J' THEN DO;

EXEC SQL

SELECT STRIP(CHAR(YEAR(:UDF_PARM1))) |
CHAR(DAYS(:UDF_PARM1) -
DAYS(DATE(STRIP(CHAR(YEAR(:UDF_PARMI)))
||'-01-81")) + 1)

INTO :UDF_RESULT

FROM SYSIBM.SYSDUMMY1 WITH UR;

END;
/* kkhkkkkhkkkkhkhkkhkkhkhkkhhkkhkkhhkkhkhkhkkhhkkhkhhkkhkhkhkkhhkkhkhhkkhhkkkhhkkhkhhkkhhkkkhhkkhkhhkkhhkkkihkkhkikk */
/* D: RETURNS NUMBER OF DAYS, INCLUDING THE CURRENT DAY */
/* DATEUDF(DATE('2000-08-18"),'S") -> '231" ' */

/* *hkhkhkkkkkhkkhhhkhkhkhkhkkkhkkhkhkhhhhhhkhkhkkkhkhkhhhhhhkhkhkkkhkhkhhhhkhhkhkkkkkkhhhhxkx */

40 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

IF UDF_PARM2='D' THEN DO;

EXEC SQL

SELECT CHAR(DAYS(:UDF_PARM1) -
DAYS(DATE(STRIP(CHAR(YEAR(:UDF_PARM1)))
||'-01-01")) + 1)

INTO :UDF_RESULT

FROM SYSIBM.SYSDUMMY1 WITH UR;

END;
END DATEUDF;

DATEUDFD - PL/I source code

* PROCESS SYSTEM(MVS);
DATEUDF: PROC(UDF_PARM1, UDF_RESULT,
UDF_IND1, UDF_INDR,
UDF_SQLSTATE, UDF_NAME, UDF_SPEC_NAME,
UDF_DIAG_MSG, UDF_SCRATCHPAD,
UDF_CALL_TYPE, UDF_DBINFO)
OPTIONS(MAIN NOEXECOPS REENTRANT);

/**/

/* UDF : DATEUDF */
/* INPUT : UDF_PARM1 CHAR(19) */
/* QUTPUT: UDF_RESULT VARCHAR(1@) */
[Fr Kk ko d ko kkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkhkkhkkhkkhkkhkkhkkhkkkkk* /
DCL UDF_PARMI1 CHAR(1@); /* INPUT PARAMETER */
DCL UDF_RESULT CHAR(1@) VAR; /* RESULT PARAMETER */
DCL UDF_IND1 BIN FIXED(15); /* INDICATOR FOR INPUT PARM */
DCL UDF_INDR BIN FIXED(15); /* INDICATOR FOR RESULT */
DCL 1 UDF_SCRATCHPAD, /* SCRATCHPAD */

3 UDF_SPAD_LEN BIN FIXED(31),

3 UDF_SPAD_TEXT CHAR(100);
EXEC SQL INCLUDE UDFINFO; /* DBINFO */
DCL (ADDR,LENGTH,SUBSTR,NULL) BUILTIN;
EXEC SQL INCLUDE SQLCA;

/* *khkkhkhkkkkhkkhkhkhkkkhkhkhkhkhkkkhkhkhkhkhkhkhhkhkhhkhkhhkhhkhkhkhkhhkhkhkhkhkhhkhkhkhkhkhhkkhkkixxk */

/* RETURNS DATE IN THE DEFAULT FORMAT 'YYYY-MM-DD'. */
/* DATEUDF(DATE('2000-08-18")) -> '2000-08-18" */
[* kkkkkkkkkkkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkx * /
EXEC SQL SELECT DATE(:UDF_PARMIL)
INTO :UDF_RESULT
FROM SYSIBM.SYSDUMMY1 WITH UR;
END DATEUDF;

REVERSE — PL/I source code

* PROCESS SYSTEM(MVS);
REVERSE: PROC(UDF_PARM1, UDF_RESULT,
UDF_IND1, UDF_INDR,
UDF_SQLSTATE, UDF_NAME, UDF_SPEC_NAME,

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 41

UDF_DIAG_MSG, UDF_SCRATCHPAD,
UDF_CALL_TYPE, UDF_DBINFO)
OPTIONS(MAIN NOEXECOPS REENTRANT);

/**/

/* UDF : REVERSE */
/* INPUT : UDF_PARM1 CHAR INPUT PARAMETER */
/* QUTPUT: UDF_RESULT CHAR REVERSE INPUT PARAMETER */
[Rk dkkdkkkkkkkkkkkkkkkkkkk ok ko kkkk ok kkkk ok kkkkkkkkkkhkkhkkhkkhkkkkkk /
DCL UDF_PARM1 CHAR(4046) VAR; /* INPUT PARAMETER */
DCL UDF_RESULT CHAR(4046) VAR; /* RESULT PARAMETER */
DCL UDF_IND1 BIN FIXED(15); /* INDICATOR FOR INPUT PARM */
DCL UDF_INDR BIN FIXED(15); /* INDICATOR FOR RESULT */
DCL 1 UDF_SCRATCHPAD, /* SCRATCHPAD */

3 UDF_SPAD_LEN BIN FIXED(31),
3 UDF_SPAD_TEXT CHAR(100);

%INCLUDE UDFINFO; /* DBINFO */
DCL (LENGTH,SUBSTR) BUILTIN;

DCL (IC,START) BIN FIXED(31);

UDF_RESULT="";

START=LENGTH(UDF_PARM1);
DO IC=START TO 1 BY -1;
UDF_RESULT=UDF_RESULT || SUBSTR(UDF_PARM1,IC,1);
END;
END REVERSE;

TIMEUDF — PL/I source code

* PROCESS SYSTEM(MVS);
TIMEUDF: PROC(UDF_PARM1, UDF_PARMZ2, UDF_RESULT,
UDF_IND1, UDF_INDR,
UDF_SQLSTATE, UDF_NAME, UDF_SPEC_NAME,
UDF_DIAG_MSG, UDF_SCRATCHPAD,
UDF_CALL_TYPE, UDF_DBINFO)
OPTIONS(MAIN NOEXECOPS REENTRANT);

/**/

/* UDF : TIMEUDF */
/* INPUT : UDF_PARM1 CHAR(8) */
/* : UDF_PARM2 VARCHAR(1) */
/* QUTPUT: UDF_RESULT VARCHAR(1@) */
[Fkk ok ok ok ok ok ok ok ke ok ko ok ok ok ok ok k ok k
DCL UDF_PARM1 CHAR(8); /* INPUT PARAMETER */
DCL UDF_PARM2 CHAR(1) VAR; /* INPUT PARAMETER */
DCL UDF_RESULT CHAR(1@) VAR; /* RESULT PARAMETER */
DCL UDF_IND1 BIN FIXED(15); /* INDICATOR FOR INPUT PARM */
DCL UDF_INDR BIN FIXED(15); /* INDICATOR FOR RESULT */
DCL 1 UDF_SCRATCHPAD, /* SCRATCHPAD */

3 UDF_SPAD_LEN BIN FIXED(31),

3 UDF_SPAD_TEXT CHAR(109);
EXEC SQL INCLUDE UDFINFO; /* DBINFO */
DCL (ADDR,LENGTH,SUBSTR,NULL) BUILTIN;
EXEC SQL INCLUDE SQLCA;

42 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

/*
/*
/*
/*
IF

khkhkhkkkkkhkhhhkhkhkhkhkkkkhkhkhhhhhhkhkhkkkdkhkhhhhhhkhkkkkkhkhhhhhhkhkkkkkhkhhhhxx

N: RETURNS TIME IN THE DEFAULT FORMAT 'HH:MM:SS'.

TIMEUDF(TIME('17:83:00",'N") -> '17:03:00°

khkkhkkhkhkhkkhkhkkhhkhkkhhkkhkkhhkkhhkhkkhhkkhhhkkhhhkkhhkhhhkkhhkhkkhhkkhhhkkhhhkkhhkhhhkkhhkkhhkkhhik

UDF_PARM2="N" THEN DO;

EXEC SQL SELECT TRANSLATE(CHAR(TIME(:UDF_PARM1)),':",".")
INTO :UDF_RESULT

FROM SYSIBM.SYSDUMMY1 WITH UR;

END;

/*
/*
/*
/*
IF

*hkhkhkkkkhkkhkkhhhkhkhkhkhkhkkkhkhkhhhkhkhkhkhkhkkhkhkhhhhhhkhkhkhkkhkhkhkhhhkhkhhkhkkkkhkhkhhhhxkx

M: RETURNS NUMBER OF MINUTES SINCE MIDNIGHT IN FORM 'MMMM'
TIMEUDF(TIME('17:83:00','M") -> '1023"
ke ok ok ek ok o ok ok ko ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok o ok ok ko ok ok ok o ok ok ko ok ok ok o ok ok ko ok ok
UDF_PARM2="M' THEN DO;
EXEC SQL SELECT STRIP(CHAR(HOUR(TIME(:UDF_PARM1))*6@ +
MINUTE(TIME(:UDF_PARM1))))

INTO :UDF_RESULT

FROM SYSIBM.SYSDUMMY1 WITH UR;

END;

/*
/*
/*
/*
IF

*hkhkhkkkkkhkhhhkhkhkhkhkhkkkkhkhhhhhkhkhkhkkkhkhkhkhhhhhhkhkkhkkhkhkhkhhhhhkhkhkkkkhkhkhhhhikx

S: RETURNS NUMBER OF SECONDS SINCE MIDNIGHT IN FORM 'SSSSS'
TIMEUDF(TIME('17:03:08",'S") -> '61380"
*hkhkhkhkkkhkkhkkhhhkhkhkhkhkhkkkhkhkhhhkhkhkhkhkhkkhdkhkhhhhkhhhkhkkdkhkhhhhkhhhhkkkkdkhhhhhxkx
UDF_PARM2="S" THEN DO;

EXEC SQL SELECT CHAR((HOUR(TIME(:UDF_PARM1))*6@ +
MINUTE(TIME(:UDF_PARM1)))*60 +
SECOND(TIME(:UDF_PARM1)))

INTO :UDF_RESULT
FROM SYSIBM.SYSDUMMY1 WITH UR;

END;

/*
/*
/*
/*
IF

khkhkhkkkkkhkhhhkhkhkhkhkhkkkkhkhhhhhkhhkhkkkhkhkhhhhkhhhkhkkkkhkhhhhhhhkhkkkkkhhxx *

D: RETURNS TIME IN THE FORMAT 'HHMMSS' *
TIMEUDF(TIME('17:03:00",'D") -> '170300" *
khkkhkkhkhkhkkhkhkkhkhkhkkhhkhkkhhkkhhkhkkhhkkhkhhkkhhkhkkhhkhhhkkhhkhkkhhkkhhhkkhhhkkhhkhhhkkhhkkhhkhidx *
UDF_PARM2="D" THEN DO;

EXEC SQL SELECT SUBSTR(CHAR(TIME(:UDF_PARM1)),1,2) CONCAT
SUBSTR(CHAR(TIME(:UDF_PARM1)),4,2) CONCAT
SUBSTR(CHAR(TIME(:UDF_PARM1)),7,2)

INTO :UDF_RESULT
FROM SYSIBM.SYSDUMMY1 WITH UR;

END;

/*
/*
/*
/*
IF

hhkhkhkkkkkhkhhhkhkhkhkhkkkkhkhkhhhhhhhkhkkhkhkdkhhhhhhhkhkkkhkdkhkhhhhhhkkkkkkkkxx *

C: RETURNS TIME IN THE FORMAT 'HH:MMam/pm' *
TIMEUDF(TIME('17:03:00",'C") -> '17:03pm’ *
*hkkhkhkkhkhkhkkhhkkhkhkhkkhkhkhkkhhkkhhkhkkhhkkhkhhkkhhkhkkhhkkhkhhkkhhhkkhhkkhhhkkhhkhkkhhkkhkhhkkhhkkhhkkhidx *
UDF_PARM2="C" THEN DO;
EXEC SQL SELECT
CASE

WHEN HOUR(TIME(:UDF_PARM1)) = 12

THEN '12:'||SUBSTR(CHAR(TIME(:UDF_PARM1)),4,2) || LCASE('PM")

WHEN HOUR(TIME(:UDF_PARM1)) > 12

© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

/
/
/
/

/
/
/
/

43

THEN STRIP(CHAR(HOUR(TIME(:UDF_PARM1)) - 12)) || ":' ||
SUBSTR(CHAR(TIME(:UDF_PARM1)),4,2) || LCASE('PM')
ELSE STRIP(CHAR(HOUR(TIME(:UDF_PARM1)))) || ':' ||
SUBSTR(CHAR(TIME(:UDF_PARM1)),4,2) || LCASE('AM')
END
INTO :UDF_RESULT
FROM SYSIBM.SYSDUMMY1 WITH UR;
END;
END TIMEUDF;

TIMEUDFD — PL/I source code

* PROCESS SYSTEM(MVS);
TIMEUDF: PROC(UDF_PARM1, UDF_RESULT,
UDF_IND1, UDF_INDR,
UDF_SQLSTATE, UDF_NAME, UDF_SPEC_NAME,
UDF_DIAG_MSG, UDF_SCRATCHPAD,
UDF_CALL_TYPE, UDF_DBINFO)
OPTIONS(MAIN NOEXECOPS REENTRANT);

/**/

/* UDF : TIMEUDF */
/* INPUT : UDF_PARM1 CHAR(8) */
/* QUTPUT: UDF_RESULT VARCHAR(1@) */
[Fr Kk ko d ko kkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkhkkhkkhkkhkkhkkhkkhkkkkk* /
DCL UDF_PARMI1 CHAR(8); /* INPUT PARAMETER */
DCL UDF_RESULT CHAR(1@) VAR; /* RESULT PARAMETER */
DCL UDF_IND1 BIN FIXED(15); /* INDICATOR FOR INPUT PARM */
DCL UDF_INDR BIN FIXED(15); /* INDICATOR FOR RESULT */
DCL 1 UDF_SCRATCHPAD, /* SCRATCHPAD */

3 UDF_SPAD_LEN BIN FIXED(31),
3 UDF_SPAD_TEXT CHAR(100);
EXEC SQL INCLUDE UDFINFO; /* DBINFO */
DCL (ADDR,LENGTH,SUBSTR,NULL) BUILTIN;
EXEC SQL INCLUDE SQLCA;
J* dkkkdokkkokkkkk ok ok ok ok ok ko k ok ok ok ok ok ko k ok ok kkkkkkkkkkkkkkkkkkkkkkkk k)
/* RETURNS TIME IN THE DEFAULT FORMAT 'HH.MM.SS'. */
/* TIMEUDF(TIME('17:83:00"') -> '17.03.00° */
[* kkkkkkkkkkkkhkkhkkhkkhkhhkhkkkkkkkkhkkhkkhkkhkkhkkhkkkkkkx */
EXEC SQL SELECT TIME(:UDF_PARMIL)
INTO :UDF_RESULT
FROM SYSIBM.SYSDUMMY1 WITH UR;
END TIMEUDF;

UDBINFO — include udbinfo declaration from SYSLIB

DCL UDF_SQLSTATE CHAR(5); /* SQLSTATE RETURNED TO DB2 */
DCL UDF_NAME CHAR(27) VAR; /* QUALIFIED FUNCTION NAME */
DCL UDF_SPEC_NAME CHAR(18) VAR; /* SPECIFIC FUNCTION NAME */
DCL UDF_DIAG_MSG CHAR(7@) VAR; /* DIAGNOSTIC STRING */
DCL UDF_CALL_TYPE BIN FIXED(31); /* CALL TYPE */

44 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

DCL 1 UDF_DBINFO,

3 UDF_DBINFO_LLEN BIN FIXED(15),
3 UDF_DBINFO_LOC CHAR(128),

3 UDF_DBINFO_ALEN BIN FIXED(15),

3 UDF_DBINFO_AUTH CHAR(128), /* AUTHORIZATION 1ID

3 UDF_DBINFO_CCSID CHAR(48), /* CCSIDS FOR DB2 0S/390
5 UDF_DBINFO_ESBCS BIN FIXED(31), /* EBCDIC SBCS CCSID
5 UDF_DBINFO_EMIXED BIN FIXED(31), /* EBCDIC MIXED CCSID
5 UDF_DBINFO_EDBCS BIN FIXED(31), /* EBCDIC DBCS CCSID
5 UDF_DBINFO_ASBCS BIN FIXED(31), /* ASCII SBCS CCSID
5 UDF_DBINFO_AMIXED BIN FIXED(31), /* ASCII MIXED CCSID
5 UDF_DBINFO_ADBCS BIN FIXED(31), /* ASCII DBCS CCSID
5 UDF_DBINFO_RESERV1 CHAR(20@), /* RESERVED

3 UDF_DBINFO_QLEN BIN FIXED(15), /* QUALIFIER LENGTH

3 UDF_DBINFO_QUALIF CHAR(128), /* QUALIFIER NAME

3 UDF_DBINFO_TLEN BIN FIXED(15), /* TABLE LENGTH

3 UDF_DBINFO_TABLE CHAR(128), /* TABLE NAME

3 UDF_DBINFO_CLEN BIN FIXED(15), /* COLUMN LENGTH

3 UDF_DBINFO_COLUMN CHAR(128), /* COLUMN NAME

3 UDF_DBINFO_RELVER CHAR(8), /* DB2 RELEASE LEVEL

3 UDF_DBINFO_PLATFORM BIN FIXED(31), /* DATABASE PLATFORM

3 UDF_DBINFO_NUMTFCOL BIN FIXED(15), /* #f OF TF COLS USED

3 UDF_DBINFO_RESERV1 CHAR(24), /* RESERVED

3 UDF_DBINFO_TFCOLUMN PTR, /* -> TABLE FUN COL LIST

3 UDF_DBINFO_RESERV2 CHAR(24); /* RESERVED

/*
/*
/*
/*

DBINFO

LOCATION LENGTH
LOCATION NAME
AUTH ID LENGTH

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

SAMPLE JCL — precompile, link, and bind the DATEUDF function.

//SYSADMF J0B (#fACCOUNT#),UDF’,

/1 CLASS=A,MSGLEVEL=(1,1),MSGCLASS=X,
/7 NOTIFY=SYSADM,TIME=3@,COND=(9,LT),
/7 USER=SYSADM

//PRECOM EXEC PGM=DSNHPC,PARM='HOST(PLI),S",

/7

//DBRMLIB
//STEPLIB

/7

//SYSLIB
//SYSCIN

/7

REGION=4096K

SPACE=(800, (500,500))

//SYSPRINT DD SYSOUT=X
//SYSTERM DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X

DD DSN=DB2.DBRMLIB(DATEUDF),DISP=SHR

DD DISP=SHR,DSN=SYS1.DSN61@.SDSNEXIT

DD DISP=SHR,DSN=DSN61@.SDSNLOAD

DD DSN=SKUPNI.DB2.DCL,DISP=SHR

DD DSN=&DSNHOUT,DISP=(MOD,PASS),UNIT=3390,

//SYSUT1 DD SPACE=(80@,(500,5008),,,ROUND),UNIT=3390
//SYSIN DD DSN=SYSADM.PLI.FUNCTION(DATEUDF),DISP=SHR
//PLI EXEC PGM=IEL@AA,REGION=4096K,

/1 PARM="0BJECT,NODECK, INCLUDE"

//STEPLIB DD DISP=SHR,

// DSN=CEE.SCEERUN

// DD DSN=CEE.SCEELKED,DISP=SHR

© 2001. Reproduction prohibited. Please inform Xephon of any infringement.

45

// DD DSN=IEL.VIRIM1.SIELCOMP,DISP=SHR
// DD DSN=SKUPNI.DB2.DCL,DISP=SHR
//SYSPRINT DD SYSOUT=X
//SYSIN DD DSN=&DSNHOUT,DISP=(OLD,DELETE)
//SYSLIN DD DSN=SKUPNI.OBJ(DATEUDF),DISP=SHR
//SYSLIB DD DSN=SKUPNI.DB2.DCL,DISP=SHR
//SYSUT1 DD UNIT=SYSALLDA,DCB=BLKSIZE=1024,
/7 SPACE=(1024,(300,60),,CONTIG)
//LINKER EXEC PGM=IEWL,REGION=4096K,
/1 PARM='LIST,XREF,RENT,AMODE(31),CASE=MIXED, RMODE=ANY'
//SYSLIB DD DSN=SKUPNI.OBJ,DISP=SHR
1/ DD DSN=DSN61@.SDSNLOAD,DISP=SHR
// DD DSN=DSN61@.RUNLIB.LOAD,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=CEE.SCEELKED,DISP=SHR
//SYSLMOD DD DISP=SHR,
// DSN=DSN61@.RUNLIB.LOAD(DATEUDF)
//SYSUT1 DD UNIT=SYSALLDA,DCB=BLKSIZE=1@24,
/7 SPACE=(1024, (200,20))
//SYSPRINT DD SYSOUT=X
//SYSLIN DD *

INCLUDE SYSLIB(DATEUDF)

INCLUDE SYSLIB(DSNRLI)
/*
//BIND EXEC PGM=IKJEFT@1,DYNAMNBR=20
//STEPLIB DD DISP=SHR,DSN=SYS1.DSN61@.SDSNEXIT

// DD DISP=SHR,DSN=DSN61@.SDSNLOAD
//DBRMLIB DD DISP=SHR,
/1 DSN=DB2.DBRMLIB(DATEUDF)

//SYSUDUMP DD SYSOUT=*

//SYSTSPRT DD SYSOUT=X

//SYSPRINT DD SYSOUT=X

//SYSTSIN DD *

DSN SYSTEM(DSNN)
BIND PACKAGE(DATEUDF) -
MEMBER(DATEUDF) -
LIBRARY('DB2.DBRMLIB") -
ACT(REP) ISO(CS) -
VALIDATE(BIND)
END
/*

The user-defined function works when WLM is started. Below are
some WLM commands and their description:

e D WLM - current state-policy of WLM.
« D WLM,APPLENV=* — check application environment.

46 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA tele@®30d 10 9344, fax (303) 438 0290.

DWLM,APPLENV=DSNNWLML1 - status of appl.environment
dsnnwiml.

V WLM,APPLENV=DSNNWLM1,QUIESCE - request for
termination.

V WLM,APPLENV=DSNNWLM1,RESUME - restart an
application dsnnwiml.

VWLM,APPLENV=DSNNWLM1,REFRESH —refresh LE for
new load module.

F WLM,MODE=COMPAT — compat mode.
F WLM,MODE=GOAL - goal mode.

Bernard Zver (Slovenia) © Xephon 2001

Need help with a DB2 problem or project?

Maybe we can help:

 Ifit's on a topic of interest to other subscribers, we’ll
commission an article on the subject, which we'll
publish inDB2 Update and which we’ll pay for — it
won’t cost you anything.

« If it's a more specialized, or more complex, problem,
you can advertise your requirements (including one-of
projects, freelance contracts, permanentjobs, etc) to the
hundreds of DB2 professionals who visg2 Updatés
home page every month. This service is also free o
charge.

—

Visit the DB2 UpdateWeb site, http://www.xephon.com/
db2update.html, and follow the linkBiB2-related problems
or Opportunities for DB2 specialists

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 47

DB2 news

IBM has announced Version 7.1 of itsDay-one supportfor CICS TS V2 DB2 UDB
Content Manager OnDemand forServer for OS/390 and z/OS is covered by
Multiplatforms enterprise report manager OMEGAMON Il for CICS and DB2 and
positioned as an alternative to microficheCCC for CICS and DB2plex, respectively.
and hardcopy storage and retrieval.

For further information contact:
It enables sites to organize and store an@andle, 201 N Douglas St, EI Segundo, CA
printed output, as well as e-mails and imag80245, USA.
documents. It supports leading ERP andel: (310) 535 3600.
CRM applications and provides a platformURL: http://www.candle.com/
for implementing electronic bill news_events/press_releases/mainframe/
presentment and payment systems. dayone_zOS_033001.html

The new version now supports DB2 UDB * oKk

V7.1, inadditionto Oracle&nd SQL Server

2000. Platform support is available for AIX Landmark Systems is shipping its TMON for

Version 4.3, HP-UX 11, Linux, Solaris 8, Unix System Services monitor, which is

and Windows 2000 along with Adobe 4.0. designed to make it possible to change
parameters and abort processes without

For further information contact your local leaving the monitoring console.

IBM representative.

URL: http://www.software.ibm.com. It identifies problems, bottlenecks, and
availability issues in OS/390 USS resources
*okox and enables immediate action to be taken to

correct them.
Candle has announced that the company will
provide day-one solution support for CICSFrom one workstation, users can access
Transaction Server for z/OS Version 2DB2, CICS, IMS, MVS, TCP/IP, or VTAM
(CICS TS V2) and DB2 Universal Databasedata to monitor performance.
Server for 0S/390 and z/OS, Version 7.
It monitors key activity components such as
The company also reaffirmed itsgloball/O buffers, HFS data sets, processes,
commitment to the IBM’s workload threads, and TCP/IP stacks. An exception
software pricing structure for its CICS, DB2, monitor automates the problem detection
and IMS solutions. process by creating alerts whenever pre-
defined problems occur.
Candle’s day-one support for z/OS Version
1.1 includes OMEGAMON Il availability For further information contact:
and performance monitors for MVS, CICS,Landmark Systems, 12700 Sunrise Valley
DB2, IMS, DBCTL, SMS, and VTAM, Drive, Reston, VA 20191-5804, USA.
OMEGAVIEW for 3270, OMEGAVIEW Il Tel: (703) 464 1300.
for the Enterprise, OMEGACENTER URL: http://www.landmark.com/products/
Gateway, AF/OPERATOR, and AF/tmonuss.shtml
REMOTE.

QO xephon

	Business Intelligence with DB2 Universal Database Version 7.1
	Printing out DSNZPARM and DSNHDECP
	Partitioned tablespace management
	Sample user-defined functions – part 2
	DB2 news

