

© Xephon plc 2003

April 2003

126 DB2
u

p
d

ate

In this issue
3 Recreating ZPARM
8 DataPropagator user experiences

and expectations on MVS
27 Commit effects
32 UDB – introduction to identity

columns and sequences
47 How to get DB2 entity-relationship

diagrams via your Web browser
55 DB2 news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

DB2 Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38342
From USA: 01144 1635 38342
E-mail: trevore@xephon.com

North American office
Xephon
PO Box 350100
Westminster, CO 80035-0100
USA
Telephone: 303 410 9344

Subscriptions and back-issues
A year’s subscription to DB2 Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 1999 issue, are available separately
to subscribers for £22.50 ($33.75) each
including postage.

DB2 Update on-line
Code from DB2 Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/db2; you will need to supply a word
from the printed issue.

© Xephon plc 2003. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.
 Printed in England.

Editor
Trevor Eddolls

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, and other contents of this journal
before making any use of it.

Contributions
When Xephon is given copyright, articles
published in DB2 Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. To find out more about
contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from www.xephon.
com/nfc.

 3© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Recreating ZPARM

Although there are many ways to display the contents of the
running ZPARM, eg as a stored procedure from IBM, there is no
way to recreate it, should the current version be lost.
ZPARMR7 recreates the most recent Assembler version of your
DSNZPARM and DSNDECP, in the form that makes it available
as a load module. Reassembling this version will recreate the
input file. All PTFs up to November 2002 are allowed for.
A JCL example is included in the ASM file itself.

ZPARMR7.ASM
* ===
* DISPLAY DSNZPARM VALUES
* NAME LEVEL RELEASE ASSEMBLY
* ZPARMV7 DSN71Ø DSN71Ø 11/2Ø/Ø2
* DSNZPARM DSN71Ø DSN71Ø 11/2Ø/Ø2
* ---
 DSN6ENV MVS=XA DEFAULT VALUE
 DSN6SPRM RESTART, RESTART TYPE X
 ALL, X
 ABEXP=NO, EXPLAIN DURING AUTOBIND X
 ABIND=NO, AUTOBIND ENABLED X
 AUTH=NO, AUTHORIZATION ENABLED X
 AUTHCACH=128Ø, AUTHORIZATION CACHE X
 BINDNV=BIND, BIND OR BINDADD AUTHORITY X
 BMPTOUT=7, IMS/BMP TIMEOUT FACTOR X
 CACHEDYN=NO, CACHE DYNAMIC SQL IN EDM POOL X
 CACHEPAC=27, CACHE FOR PACKAGE AUTHORIZATION X
 CACHERAC=67, AUTHORIZATION CACHE FOR ROUTINESX
 CHGDC=NO, ACTIVATE CHANGED DATA CAPTURE X
 CATALOG=DSNC$$Ø7, VSAM CATALOG NAME X
 CDSSRDEF=ANY, CURRENT DEGREE SPECIAL REGISTER X
 CONTSTOR=NO, CONTRACT DBM1 CT STORAGE X
 DBACRVW=NO, DBA CREATE VIEWS/ALIASES FOR OTHX
 DBCHK=NO, SERVICE AID - CHECK DB CONSISTENX
 DECDIV3=NO, DECIMAL DIVIDE OPTION X
 DEFLTID=ME§WHO§7, SYSTEM DEFAULT USERID X
 DESCSTAT=NO, REMOTE DESCRIBE AS STATIC SQL X
 DLITOUT=7, IMS/DLI WAIT TIMEOUT FACTOR X
 DSMAX=7767, MAXIMUM CONCURRENT DATASETS X

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 4

 EDMBFIT=NO, BETTER FIT FOR LARGE EDMPOOLS X
 EDMPOOL=12377, EDMPOOL SIZE X
 EDMDSMAX=1Ø48576, EDMPOOL DATA SPACE SIZE MAX X
 EDMDSPAC=237767, EDMPOOL DATA SPACE SIZE X
 EDPROP=NO, ALLOW CHANGES TO CAPTURED TABLESX
 EVALUNC=NO, EVALUATION OF UNCOMMITTED DATA OX
 HOPAUTH=RUNNER, 3RD SITE HOP REQUESTER AUTHORITYX
 IRLMAUT=NO, IRLM AUTOSTART X
 IRLMPRC=IRLMPRO7, IRLM PROZEDURE NAME X
 IRLMSID=IRØ7, IRLM SUBSYSTEM ID X
 IRLMRWT=997, DB2 MAXIMUM SECONDS WAIT FOR LOCX
 IRLMSWT=7, IRLM START COMPLETION DELAY X
 LEMAX=7, LE ELEMENTS X
 MAXKEEPD=17, SYSTEM KEEPDYNAMIC SQL ALLOWED X
 MINDVSCL=NONE, MIN SCALE FOR DECIMAL DIVISION X
 MAXRBLK=144, RID SIZE IN KBYTES X
 MINRBLK=7, MIN RIDLISTS IN EACH RIDMAP X
 MINSTOR=NO, MANAGE STORAGE TO MINIMIZE SIZE X
 MXQBCE=2777, LIMIT DIFFERENT JOIN SEQUENCES X
 MXTBJOIN=15, MAX TABLES IN A QUERY - V7 X
 NPGTHRSH=Ø, NPAGE ADJUSTMENT FOR ACCESS PATHX
 NUMLKTS=2557, LOCKS PER TABLESPACE X
 NUMLKUS=1557, LOCKS PER USER X
 OJPERFEH=NO, OUTER JOIN PERFORMANCE ENHANCEMEX
 OPTHINTS=NO, ALLOW OPTIMIZER HINTS X
 PARAMDEG=177, PARALLEL GROUP DEGREE LIMIT X
 OPTSUBQ1=NO, OPTIMIZER SUBQ ENHANCEMENTS X
 PARTKEYU=YES, ALLOW UPDATE OF PARTITIONING KEYX
 PKGLDTOL=NO, TOLERATE 'PACKAGE NOT FOUND' V7 X
 RECALL=NO, HSM AUTO RECALL X
 RECALLD=667, SECONDS WAIT HSM AUTO RECALL COMX
 RELCURHL=NO, RELEASE LOCKS FOR HELD CURSOR ATX
 RETLWAIT=7, IRLMWAIT FOR INCOMPATIBLE RETAINX
 RETVLCFK=NO, ALLOW KEY WITH VARCHAR X
 RGFCOLID=RGCO7, DDL REGISTRATION OWNER ID X
 RGFDBNAM=RGFD7, DDL REGISTRATION DATABASE NAME X
 RGFDEDPL=NO, DDL ONLY BY REGISTERED APPLICATIX
 RGFDEFLT=REJECT, NOT REGISTERED DDL REACTION DEFAX
 RGFESCP=:, DDCS DEFAULT ESCAPE IN ART/ORT SX
 RGFFULLQ=NO, OBJECT LOOKUP WITH FULL LOCAL NAX
 RGFINSTL=NO, VALIDATE DDL STATEMENTS X
 RGFNMORT=REGISTER_OBJT_MY7, NAME OF OBJECT RGN TBL X
 RGFNMPRT=REGISTER_APPL_MY7, NAME OF APPL. RGN TBL X
 RRULOCK=NO, RR U-LOCK FOR CURRENT PAGE X
 SEQCACH=BYPASS, SET SEQ MODE BYPASS IN I/O COMMAX
 SEQPRES=NO, UTILITIES CAN CACHE SEQUENTIALDX
 SITETYP=LOCALSITE, TYPE OF RESTART X
 SMSDCFL=SMSFL7, SMS DATACLASS NAME FOR FILE TS X
 SJTABLES=1Ø, TOTAL TABLES IN STARJOIN X

 5© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 SMSDCIX=SMSXI7, SMS DATACLASS NAME FOR INDEX TS X
 SUPERRS=YES, SUPPRESS LOGREC SOFT ERR RECORD X
 STARJOIN=12377, STATUS OF STARJOIN ALLOWANCE X
 STATHIST=NONE, STATISTICS HISTORY DEFAULT X
 STATROLL=NO, AGGREGATE PARTITION LEVEL STATS X
 TABLES_JOINED_THRESHOLD=225, JOIN THRESHOLD FOR OPT LIMIX
 TRKRSITE=NO, SITE IS USED FOR TRACKER X
 STATSINT=3Ø, RTS STATISTICS TIMER INTERVAL X
 XLKUPDLT=NO, X LOCK FOR SEARCHED UPDATE/DELETX
 SRTPOOL=31732, SIZE OF SORT POOL X
 SYSADM=SYSADM27, SYSADM1 X
 SYSADM2=SYSADM37, SYSADM2 X
 SYSOPR1=SYSOPR77, SYSOPR1 X
 SYSOPR2=SYSOPR57, SYSOPR2 X
 UTIMOUT=1Ø7 UTILITY TIME OUT FACTOR
 DSN6ARVP ALCUNIT=CYL, ARCHIVE ALLOCATION UNIT X
 ARCWRTC=(1,3,7), ARCHIVE MSG ROUTE CODE X
 ARCWTOR=NO, ARCHIVE WTOR REQUIRED X
 ARCPFX1=DSNC$$17, X
 ARCPFX2=DSNC$$27, X
 ARCRETN=7, ARCHIVE RETENTION PERIOD X
 BLKSIZE=16384, ARCHIVE BLOCKSIZE X
 CATALOG=NO, CATALOG ARCHIVE DATASET X
 COMPACT=NO, ARCHIVE TAPE COMPACT WITH IDRC X
 MSVGP=GROUP7, ARCHIVE MSS GROUP X
 MSVGP2=GROUP27, ARCHIVE MSS GROUP X
 PRIQTY=7, ARCHIVE ALLOCATION PRIMARY SPACEX
 PROTECT=NO, ARCHIVE RACF PROTECTION X
 QUIESCE=7, ARCHIVE LOG MODE(QUIESCE) MAX PEX
 SECQTY=7, ARCHIVE LOG SECONDARY SPACE ALLOX
 SVOLARC=NO, DASD ARCH WITH UNIT 1,VOL 1 X
 TSTAMP=NO, ARCHIVE LOG MIDDLE-FIX IS TIMESTX
 UNIT=NODASD, ARCHIVE TAPE UNIT TYPE X
 UNIT2=DASD#7 ARCHIVE TAPE UNIT TYPE
 DSN6LOGP DEALLCT=(3,7), ARCH TAPE DEALLOCATION TIME (MINX
 MAXARCH=997, MAX ARCHIVE ENTRIES IS BSDS X
 MAXRTU=7, MAXIMUM ARCHIVE READ TAPE UNITS X
 OFFLOAD=NO, ==> NOT FIT FOR PRODUCTION <== X
 OUTBUFF=378Ø, OUTPUT BUFFER FOR ACTIVE LOG X
 TWOACTV=NO, TWO ACTIVE LOG COPIES X
 TWOARCH=NO, TWO ARCHIVE COPIES X
 ARC2FRST=NO, ALLOC SECOND ARCHIVE AT RECOVERYX
 TWOBSDS=NO TWO BSDS DATASETS
 DSN6SYSP AUDITST=(1,2,4,5,7,9,1Ø,11,12,13,14,15,16,17,18,19,23,24X
 ,26,27,28,29,3Ø,31,32), AUDIT TRACE START X
 BACKODUR=7, NON DATA SHARING BACKOUT DURATIOX
 CONDBAT=7, MAX NO. CONNECTED DBAT X
 CTHREAD=7, MAX NO OF CONCURRENT THREADS X
 DBPROTCL=PRIVATE, DATABASE PROTOCOL FOR 3-PART NAMX

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 6

 DLDFREQ=7, CHECKPOINTS PER LEVEL ID UPDATE X
 DSSTIME=7, TIME BETWEEN RESET OF DATASET STX
 EXTSEC=NO, EXTENDED SECURITY X
 IDBACK=7, MAX NO OF BACKGROUND IDS X
 EXTRAREQ=7, EXTRA DRDA QUERY BLOCKS REQUESTEX
 EXTRASRV=7, EXTRA DRDA QUERY BLOCKS SERVER X
 IDFORE=7, MAX NO OF FOREGROUND IDS X
 CHKFREQ=5ØØØØ, CHECKPOINT FREQUENCY X
 MAXDBAT=7, MAX NO OF ACTIVE REMOTE THREADS X
 MON=(1,2,4,5,6,7,8,9,1Ø,11,12,13,14,15,16,17,18,19,23,24X
 ,26,27,28,29,3Ø,31,32), MONITOR TRACING FLAGS X
 MONSIZE=1Ø48576, MONITOR BUFFER SIZE X
 PCLOSEN=7, CHECKPOINTS FOR READ ONLY SWITCHX
 PCLOSET=7, MINUTES TO PSEUDO-CLOSE READ ONLX
 PTASKROL=NO, ROLL UP PARALLEL TASK ACCOUNTINGX
 RLF=NO, ENABLE RLF X
 RLFTBL=Ø7, RESOURCE LIMIT FACILITY TABLE IDX
 RLFAUTH=SYSIBM7, RESOURCE LIMIT FACILITY X
 RLFERR=NORUN, RLF SU OVERRUN ACTION X
 ROUTCDE=(1,2,7), SYSTEM MESSAGE ROUTING CODE X
 SMFACCT=(1,2,4,5,7,9,1Ø,11,12,13,14,15,16,17,18,19,23,24X
 ,26,27,28,29,3Ø,31,32), SMF ACCOUNTING FLAGS X
 SMFSTAT=(1,2,4,5,7,9,1Ø,11,12,13,14,15,16,17,18,19,23,24X
 ,26,27,28,29,3Ø,31,32), SMF STATISTICS FLAGS X
 STATIME=7, STATISTICS TIME X
 STORPROC=STOR7, STORED PROCEDURE MVS NAME X
 STORMXAB=7, ALLOWABLE ABENDS FOR STORED PROCX
 STORTIME=5, STORED PROCEDURE TIMEOUT VALUE X
 SYNCVAL=NO, SYNCHRONIZE STATISTICS RECORDINGX
 URCHKTH=7, UR CHECKPOINT THRESHOLD X
 URLGWTH=Ø, UR LOG RECORD WRITTEN THRESHOLD X
 TRACLOC=7, 4K ELEMENTS IN LOCAL TRACE TRABLX
 TRACSTR=(1,2,4,5,7,9,1Ø,11,12,13,14,15,16,17,18,19,23,24X
 ,26,27,28,29,3Ø,31,32), MONITOR TRACING FLAG X
 IDXBPOOL=BP7, DEFAULT BP FOR INDEXES X
 TBSBPOOL=BP7, DEFAULT BP FOR TABLESPACES X
 LOGAPSTG=7, FAST LOG APPLY STORAGE IN MB X
 LBACKOUT=NO, RESTART BACKOUT OPTION NON DS X
 LOBVALA=7, KB FOR LOB VALUES PER AGENT X
 LOBVALS=7, MB FOR LOB VALUES PER SYSTEM X
 WLMENV=MASTER7, DEFAULT WLM ENVIRONMENT NAME X
 TRACTBL=7 4K SEGMENTS IN LOCAL TRACETBL
 DSN6FAC DDF=NO, DDF STARTUP X
 CMTSTAT=INACTIVE, DDF THREAD STATUS X
 IDTHTOIN=7, DDF IDLE THREAD TIMEOUT X
 RESYNC=7, DDF RESYNC PERIOD LENGTH (MIN) X
 POOLINAC=7, DDF INACTIVE POOL TIME (SEC) X
 TCPKPALV=7, TCP/IP STACK KEEP ALIVE TIME X
 TCPALVER=NO, TCP/IP USERID ALREADY VERIFIED X

 7© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 MAXTYPE1=7, MAXIMUM NUMBER OF INACT TYP1 DDFX
 RLFERRD=5ØØØØØØ RLF ERROR LIMIT (CPU SECONDS)
* DSN6GRP DSN71Ø
 DSN6GRP DSHARE=NO, DATASHARING DEFINITION X
 GRPNAME=GROUP7, DB2 GROUPNAME X
 COORDNTR=NO, DS COORD. FOR QUERY PARALLELISM X
 ASSIST=NO, DS ASSIST FOR QUERY PARALLELISM X
 IMMEDWRI=NO, IMMEDIATE WRITE AT COMMIT X
 MEMBNAME=MEMBER7 DS MEMBER NAME
 AGO .EXIT
* ===
* DISPLAY DSNHDECP VALUES
* NAME LEVEL RELEASE ASSEMBLY
* ZPARMV7 DSN71Ø DSN71Ø 11/2Ø/Ø2
* DSNHDECP 71Ø V7R1MØ
* ---
 DSNHDECM CHARSET=ALPHANUM, DEFAULT SUBSYSTEM CHARACTER SET X
 COMPAT=OFF, SERVICEBILITY PARAMETER X
 ASCCSID=875, ASCII SINGLE BYTE CHARSET ID X
 AMCCSID=65534, ASCII MIXED BYTE CHARSET ID X
 AGCCSID=65534, ASCII DOUBLE BYTE CHARSET ID X
 SCCSID=29Ø, EBCDIC SINGLE BYTE CHARSET ID X
 MCCSID=93Ø, EBCDIC MIXED BYTE CHARSET ID X
 GCCSID=3ØØ, EBCDIC DOUBLE BYTE CHARSET ID X
 USCCSID=875, UNICODE SINGLE BYTE CHARSET ID X
 UMCCSID=65534, UNICODE MIXED BYTE CHARSET ID X
 UGCCSID=65534, UNICODE DOUBLE BYTE CHARSET ID X
 APPENSCH=EBCDIC, DEFAULT ENCODING SCHEME X
 ENSCHEME=EBCDIC, DEFAULT ENCODING SCHEME X
 DATE=ISO, DEFAULT DATE FORMAT X
 DATELEN=15, DEFAULT DATE LENGTH X
 DECARTH=DEC31, DEFAULT DECIMAL PRECISION X
 DECIMAL=PERIOD, DEFAULT DECIMAL PERIOD X
 DEFLANG=CPP, DEFAULT LANGUAGE X
 DELIM=APOST, DEFAULT DELIMITER X
 MIXED=YES, DEFAULT MIXED GRAPHIC X
 SQLDELI=APOST, DEFAULT SQL DELIMITER X
 DSQLDELI=APOST, DEFAULT DDF SQL DELIMITER X
 SSID=DB24, SUBSYSTEM ID X
 DYNRULS=YES, DYNAMIC RULES FROM PRECOMPILER X
, LC_CTYPE=ANY.NAM4.YOU.NEED.FOR.XLATION.OR.MORE.THAN.YOU.X
 NED, X
 STDSQL=YES, USE 86 STD SQL, NOT DB2 SQL X
 TIME=EUR, TIME FORMAT X
 TIMELEN=14 TIME LENGTH
.EXIT END DSN6SPRM

Rolf Loeben (Germany) © Xephon 2003

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 8

DataPropagator user experiences and expectations
on MVS

Our project was simply to install DataPropagator and to set up
continuous replication of all tables in a database from one MVS/
DB2 to another MVS/DB2 system to run as fast as possible. That
sounds straightforward, and it worked OK with a small volume of
changes, but when first tried with a full workload it simply couldn’t
cope. Then we used many tricks and techniques that are not in
the IBM manual. This article explains many of those things,
including some undocumented features of DataPropagator.

WHAT IS DATAPROPAGATOR?
DataPropagator (Dprop) is the relational data replication product
from IBM. It runs as two main component tasks called Capture
and Apply. Capture reads source table changes directly from the
DB2 logs and stores a copy of them in Change Data (CD) and
Unit of Work (UOW) tables on the source DB2 subsystem.
Apply makes regular subscription set cycles to read those CD
and UOW tables. Then it replicates any outstanding changes as
inserts, updates, or deletes to the target tables, which may be on
a different DB2 subsystem.
Replication is controlled via Control tables called
ASN.IBMSNAP_xxxxxx, which can be on the source, target, or
a separate DB2 subsystem. These tables contain data specifying
exactly what to replicate, and Capture and Apply read and
update them to coordinate their actions.

MANUALS
No hardcopy manuals come with the Dprop software for MVS.
Softcopy manuals are on the CDs for DB2 Connect, or you can
get them from http://www.ibm.com/software/data/dpropr/
library.html.

 9© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

The manual for Dprop is supplied in either PDF or BookManager
format. It is called Replication Guide and Reference. It contains
all the information about Dprop for MVS (and also for Windows,
OS/2, AIX, and Linux platforms). Use it as your main reference
for Dprop.
For Dprop V8 there will also be a new Redbook, which is entitled
IBM Data Replication V8 in the draft (but that may change when
it is released). It contains a lot of information to supplement the
main manual.
There are also a few interesting Redbooks and white papers,
which you can get from the Internet address above. I suggest that
you copy at least the Guide and Reference manual to a shared
folder on a hard disk.

WHAT VERSION TO USE
At the time of writing, Version 8.1 of Dprop has not been released.
However, draft versions of the new reference manual and
Redbook are available, and they detail many changes, some of
which I will mention in this article. Because Version 8 has so
many changes and is not yet thoroughly tested by customers, I
would recommend waiting for a while before using it.
Use Version 7.1 of Dprop on MVS even if your DB2 is Version 5
or 6. Then you can use some of the undocumented features I
describe here. The only disadvantage with Dprop V7 is that there
is no ‘try and buy’, as there was for previous versions.

DB2 UDB CONNECT
You will need DB2 Connect installed on a Windows, Unix, or
Linux server, which can connect to your MVS system(s) to
administer Dprop, even if your propagation runs entirely on MVS.
Preferably use Version 7.2, because DB2 Connect Version 7.1
has bugs in Client Configuration Assistant and Control Center,
which must be fixed by installing Fixpack 3 (or later), before you
can use it. If you have DB2 Connect Version 8.1 installed, you

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 10

should be able to use it (although I personally haven’t tested
that).
If a migration to Dprop V8 is to be done, you can install
maintenance to make Dprop V7 compatible with Dprop V8
control tables, but in that case you will need a DB2 Connect V8
too.

ADMINISTRATION
I recommend that all Dprop administration be done via the Data
Joiner Replication Administration tool, which is referred to as
DJRA tool in the rest of the article. You can download it from http:/
/www6.software.ibm.com/dl/datajoiner/djra-p. It uses DB2
Connect to access the MVS DB2 systems and update control
tables etc.
The only alternative is Control Center in DB2 Connect. But even
with the maintenance, Control Center does not have all the
functions of DJRA tool, and it doesn’t always work!
Neither of the above can be used for administration of Dprop V8.
You must use Replication Center, a new user interface packaged
with the DB2 Administration Client of DB2 Connect V8.

CONFIGURING MVS DB2 SUBSYSTEMS TO DB2 CONNECT
It may sound trivial, but when you are configuring MVS DB2
subsystems in Client Configuration Assistant:
• Specify the DB2 ssid name in Database Alias.
• Specify the MVS system name in System name (if you leave

it blank, the IP address will be shown in Control Center).
That makes it easier to work with.

CREATING DPROP CONTROL TABLES
DB2 Connect comes with facilities for data replication, including
a sample DDL file c:\Program\SQLLIB\samples\repl\dpcntl.mvs

 11© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

to create Dprop control tables. But the SQL in that file generates
only one tablespace with LOCKSIZE ROW for all the Dprop
control tables. The Dprop Installation Instructions say you should
use that file, but I recommend that you don’t use it.
The DJRA tool can generate a better DDL file to create the
control tables. Its DDL creates a separate UOW tablespace with
LOCKSIZE TABLE, and the rest of the tables together in a
TSCNTL tablespace with LOCKSIZE ROW. DJRA also specifies
TYPE 2 indexes, but that is hopefully your default anyway. You
should also consider splitting the tables in TSCNTL into separate
tablespaces. In particular, the ASN.IBMSNAP_APPLYTRAIL
table can grow very quickly if your propagation is running as fast
as possible. Then a large number of Apply cycles will occur and
be logged in the APPLYTRAIL table. IBM has recommended
preformatting the APPLYTRAIL’s tablespace for better INSERT
performance, but that is probably not necessary with DB2
Version 7, which does automatic asynchronous pre-formatting of
the new pages. Use the DJRA file and edit it as required.
Unfortunately, the DJRA-generated DDL files are still not optimal
for DB2 on MVS. I recommend that you copy the DDL file to your
MVS system, modify it to your own standards, and run it using
SPUFI. Consider adding the following:
• SET CURRENT SQLID
• (CREATE STOGROUP)
• (CREATE DATABASE)
• STOGROUP, PRIQTY, SECQTY, and BPOOL for

tablespaces and indexes.
The control tables are required on every DB2 subsystem that will
use Dprop, hence that modified DDL can run (with small changes)
on each. Not all the tables are required on each subsystem, but
it’s easiest to create them all anyway.
The tables structures and usage are described in great detail in
Table Structures, Chapter 14 of the Replication Guide and
Reference manual.

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 12

Dprop V8 has extensive control table changes. Dprop V7 has 16
control tables. In Dprop V8, 12 of those tables have changes
(mostly extra columns), two old tables become obsolete, and 17
completely new tables are added.

CUSTOMIZING DPROP CONTROLS
There are a few run-control values specified in the Dprop control
tables. They will be given default values, or different values can
be specified directly in DJRA before it generates the SQL to
create the control tables, or you can update them later via normal
UPDATE SQL.
Some of the control table default values should be changed for
better performance. Here are some default values and
recommended values (that we used) to achieve the fastest
possible replication.
Table ASN.IBMSNAP_SUBS_SET (for Apply):
 SLEEP_MINUTES 2Ø —> Ø (don't sleep)
 MAX_SYNCH_MINUTES 3Ø —> 5 (max 5 min changes/cycle)

Table ASN.IBMSNAP_CCPPARMS (for Capture):
 COMMIT_INTERVAL 3Ø —> 1Ø (seconds)
 PRUNE_INTERVAL 3ØØ —> 6Ø48ØØ (7 days)

The meaning of these columns is detailed in the manual in
Chapter 14, Table Structures. In summary:
• SLEEP MINUTES was set to zero to get almost continuous

propagation.
• MAXIMUM SYNCH MINUTES was set low so that Apply will

not try to replicate more than five minutes of changes in a
single Apply cycle. This is to limit the use of temporary work
database (DSNDB07) on the DB2 source subsystem.

• COMMIT INTERVAL was set to the minimum time
recommended by IBM for a DB2 subsystem with dynamic
cacheing active – namely 10 seconds. This value affects the
lag in reading the log: it normally ranges from 2 to 16 seconds
when commit interval is 10 seconds. Commit interval of 5

 13© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

seconds was also tried and that reduced the Capture lag to
range from 2 to 8 seconds, which resulted in an average end-
to-end lag time of 5 to 10 seconds.
For Dprop V8 the commit interval can be set to 1 or even 0
seconds according to the latest IBM performance advice.

• PRUNING INTERVAL was set very high so that Capture will
not do any pruning even if it is started without the NOPRUNE
parameter. For Dprop V8 the pruning is done in a separate
thread so there will be no need to avoid pruning for maximum
performance.

If any of these values are to be altered, it is normally best to stop
Apply or Capture then restart it once the change has been made.
But it is also possible to make some dynamic changes. For
example, if you change the SLEEP_MINUTES for a running
Apply it will see the change when the next subscription set cycle
starts and then honour the new sleep time.

SPECIFYING SUBSCRIPTION SETS AND REPLICATION SOURCES
Use DJRA to generate SQL to create control table entries and
Change Data tables. The generated file to define table(s) as
replication source can be tailored by modifying DJRA scripts or
by using an ISPF edit macro, as I described in Tailoring
DataPropagator tables for OS/390 in DB2 Update (Issue 114).
The DJRA tool can also be used for much more (eg to generate
SQL to create CCD tables) but it has many bugs. Therefore, you
must check the output carefully (and possibly modify it) to ensure
that it is valid and correct by your local standards. IBM probably
will not make much effort to improve the DJRA tool, since it is not
valid for future versions of Dprop.

SYSTEM SET-UP FOR MAXIMUM PERFORMANCE
For best Dprop performance, make the Control Server the same
subsystem as the Target Server, and run your Apply task(s)
there. Then Apply is optimized because the propagation data
transfer uses DB2’s block fetch, and the reading and updating of

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 14

Dprop control tables is done from the same subsystem.
Our project called for the maximum performance from Dprop,
meaning the minimum delay between changes in the source
tables and the corresponding changes replicated to the target
tables. Therefore, we set up our source application on one
member of a (two member) DB2 data sharing group and Dprop
on the other member of the group, thereby separating the load.
There are no other applications running on either the source or
target DB2 systems.
Because of this separation, the Dprop tables and application
tables are not usually shared by the members, hence their Group
Bufferpools have very little activity. That is because Dprop
Capture normally reads the DB2 logs to get any changes, then
writes them into Dprop’s CD and UOW tables – never reading the
source tables directly. Dprop Apply does regular subscription set
cycles, reading the CD and UOW tables then replicating any
changes to the target tables – also not reading the source tables
directly. The only exception to that is when Dprop Apply must do
a full refresh of a table. Then it reads the source table(s) directly
and replicates all rows to the target table(s). But that is very rarely
required, for example for a COLD start of Dprop.
In the set-up described above, the application tables need to
have Group Bufferpools to allow for possible full refreshes. The
Dprop Control and CD tables do not need Group Bufferpools
unless a Dprop task is moved from one DB2 group member to
another. But for added flexibility we defined Group Bufferpools
for the Control and CD tables too.
If your source application has an extremely high update rate, the
above arrangement may not cope with the load. Then you could
try creating one more DB2 group member so that you can split
up Capture and Apply (source activity) onto separate subsystems.
(The communication database tables SYSIBM.IPNAMES and
SYSIBM.LOCATIONS are used to direct these remote Apply
activities to the desired subsystem.) However, note that the
Group Bufferpools for the Dprop tables will become busy too,
possibly requiring more space in the Coupling Facility.

 15© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

BUFFERPOOLS
For best performance you would have bufferpools dedicated to
Dprop. We are lucky enough to have a DB2 system with primarily
only one application, and its data is also being propagated to
another DB2. Our MVS systems have 2GB of real storage,
enabling us to be generous with bufferpools to get the best
performance.
The SOURCE DB2 system is the most critical for Dprop
performance, so that is where bufferpool tuning makes the most
difference.
The main activity of Apply on the SOURCE DB2 is the following:
 SELECT IBMSNAP_OPERATION, IBMSNAP_INTENTSEQ, IBMSNAP_COMMITSEQ,
 source table columns
 FROM cd_table A , ASN.IBMSNAP_UOW
 WHERE ASN.IBMSNAP_UOW.IBMSNAP_UOWID = A.IBMSNAP_UOWID AND
 ASN.IBMSNAP_UOW.IBMSNAP_COMMITSEQ > ? AND
 ASN.IBMSNAP_UOW.IBMSNAP_COMMITSEQ <= ?
 ORDER BY IBMSNAP_COMMITSEQ ASC,
 A.IBMSNAP_INTENTSEQ ASC OPTIMIZE FOR 5ØØØØ ROWS;

That is done for each CD table in each subscription set for each
Apply subscription cycle. It does a nested loop join of the two
tables (or hybrid join if you use our fake statistics), then sorts for
the ORDER BY. To optimize that we have four bufferpools for
Dprop:
• UOW table
• UOW table index
• All CD tables
• All CD table indexes.
Our UOW and UOW index bufferpools are large enough to hold
most of the table and index permanently. Our CD and CD index
bufferpools are large enough to hold 50% of the largest table and
index at one time. This results in very little I/O and hit ratios close
to 100%.
They do not really need to be so large provided they are
separated from the rest to prevent their bufferpool pages from

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 16

being ‘stolen’ for some other application. If you have only limited
real storage to back extra bufferpools, it is more important to
isolate the UOW table/index than the CD tables/indexes.
In Dprop V8, all of the above has been changed. The CD tables
include a column (IBMSNAP_COMMITSEQ), which holds the
log sequence number of the captured commit statement, which
is also in the UOW table. That enables Apply to avoid the CD/
UOW join for some types of target tables. If that is your case, you
will not have to optimize I/Os for the UOW table with separate
bufferpools.
DSNDB07 can be heavily used by Dprop for sorts, therefore we
set it up with its own dedicated bufferpools, with:
• VDWQT = 80% (default 10%)
• DWQT = 90% (default 50%).
In Dprop V8 the changes supposedly allow the ORDER BY
described above to be satisfied by the index, to avoid the sorts.
That should reduce the bufferpool size requirement for the
temporary database.
The main application has its own bufferpools. The DB2 catalog
and directory are the only things in bufferpool BP0 (of course!).

STATISTICS
Like any other DB2 application, you need appropriate catalog
statistics for the optimizer to get the best access paths for Dprop.
All of the Dprop control tables in tablespace TSCNTL are small
and their size rarely alters. Therefore, a normal RUNSTATS
should be run for them whenever significant changes are made
to the Dprop definitions.
The possible exception to that would be the
ASN.IBMSNAP_APPLYTRAIL table, which I recommend to be
separated into its own tablespace. Dprop writes to this table but
never reads it. If you have a Dprop monitor (like the one in
Monitoring DataPropagator on MVS in DB2 Update, Issues 120

 17© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

and 121 (October and November 2002), an index should have
been added to this table for efficient access. Then you should run
RUNSTATS when the table has a representative number of
rows.
Additionally, the source DB2 system has CD tables and a UOW
table. When first created, these tables are empty. But do not run
RUNSTATS on them!
Apply does a join of CD and UOW tables, and will use a
tablespace scan instead of index access. If you are replicating a
large number of changes, these tables can grow very quickly
(especially if you run Capture with NOPRUNE). The best statistics
are those representative of the largest size that the tables
normally reach. If you are not sure of the expected sizes, it is
much better to have statistics for large tables than for empty
tables (or the DB2 defaults). You can generate fake statistics to
achieve that, for example with the following SQL, which has been
used successfully with DB2 Versions 5, 6, and 7:
 UPDATE SYSIBM.SYSTABLES
 SET CARD = 1ØØØØØ
 , CARDF = 1ØØØØØ
 , STATSTIME = CURRENT TIMESTAMP
 , NPAGES = -1
 , PCTPAGES = -1
 , PCTROWCOMP = -1
 WHERE DBNAME = 'dbname'
 AND TSNAME ^= 'TSCNTL'
 AND CARD < 1ØØØØØ ;
 UPDATE SYSIBM.SYSCOLUMNS
 SET COLCARD = 1Ø1ØØ
 , COLCARDF = 1Ø1ØØ
 , STATSTIME = CURRENT TIMESTAMP
 , LOW2KEY = X'ØØØØØØØØØØØØØØØ1'
 , HIGH2KEY = X'FFFFFFFFFFFFFFFE'
 WHERE NAME = 'IBMSNAP_INTENTSEQ'
 AND TBCREATOR = 'userid'
 AND TBNAME IN (
 SELECT CD_TABLE
 FROM ASN.IBMSNAP_REGISTER
 WHERE CD_OWNER = 'userid'
 AND SOURCE_VIEW_QUAL = Ø
);
 UPDATE SYSIBM.SYSCOLUMNS
 SET COLCARD = 1Ø1

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 18

 , COLCARDF = 1Ø1
 , STATSTIME = CURRENT TIMESTAMP
 , LOW2KEY = X'ØØØØØØØØØØØØØØØ1'
 , HIGH2KEY = X'FFFFFFFFFFFFFFFE'
 WHERE NAME = 'IBMSNAP_UOWID'
 AND TBCREATOR = 'userid'
 AND TBNAME IN (
 SELECT CD_TABLE
 FROM ASN.IBMSNAP_REGISTER
 WHERE CD_OWNER = 'userid'
 AND SOURCE_VIEW_QUAL = Ø
);
 UPDATE SYSIBM.SYSINDEXES
 SET FIRSTKEYCARD = 1Ø1
 , FIRSTKEYCARDF = 1Ø1
 , FULLKEYCARD = 1Ø1ØØ
 , FULLKEYCARDF = 1Ø1ØØ
 , CLUSTERRATIO = 99
 , NLEVELS = 3
 , NLEAF = 12Ø
 , STATSTIME = CURRENT TIMESTAMP
 WHERE TBCREATOR = 'userid'
 AND TBNAME IN (
 SELECT CD_TABLE
 FROM ASN.IBMSNAP_REGISTER
 WHERE CD_OWNER = 'userid'
 AND SOURCE_VIEW_QUAL = Ø
);
 DELETE FROM SYSIBM.SYSCOLDIST
 WHERE TBOWNER = 'userid'
 AND TBNAME IN (
 SELECT CD_TABLE
 FROM ASN.IBMSNAP_REGISTER
 WHERE CD_OWNER = 'userid'
 AND SOURCE_VIEW_QUAL = Ø
);

BINDING APPLY AND CAPTURE
Once the control tables exist and the statistics have been
created, you can BIND the Dprop programs. And don’t forget to
REBIND them after each time you change the statistics. Almost
all of the packages have ISOLATION(UR). Leave them as
specified by IBM. If they are changed you can get occasional
contention timeouts. For best performance, enable dynamic
cacheing in your DB2 subsystems using the ZPARM
CACHEDYN=YES. Then bind all Dprop packages with

 19© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

KEEPDYNAMIC(YES) instead of the default (NO) in the sample
job from IBM.

APPLY SPILL FILES
The sample Apply JCL from IBM has the parameter:

PARM='.. DISK ..',REGION=1ØM

If you use the DISK parameter, it creates temporary spill files. It
uses the ASNASPL DD statement in your Apply JCL as a model
– so you can adjust their SPACE by altering that DD statement.
There will be one file created for each table to propagate. They
are not freed until Apply is stopped, even if the tables are
removed from the subscription set. Each of them will have the
same size allocation, which can become a problem if you have
a large number of tables to propagate (one size fits all). Note that
this can require many I/Os for your MVS system, and, if the Apply
cycles are very quick, many SMF type 101 records will be written
(for each propagated table one file will be written in each cycle),
even if there are no changes to propagate!
If possible, it is better to use memory for the spill files (that is the
default). You may need to increase the region size to hold all the
data to be propagated. If there is not enough memory, Apply will
fail.
The REGION=10M was too much for our MVS systems (we
could use up to 9M for the private area below the line) , so that
had to be changed. We decided to use the maximum (above and
below the line). Our Apply uses REGION=0M and PARM='..
MEMORY'.

TRACING APPLY
The sample Apply JCL from IBM has the parameter:

PARM='.... TRCFLOW'

It produces too much output to be used in a normal production
system, but it is occasionally requested by IBM Support to help
diagnose a difficult problem with Apply.

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 20

The default NOTRC produces no trace information.
Parameter TRCERR produces trace information only in the case
of errors. Unfortunately, each time an error occurs you can get
several thousand lines of output, but often that information
includes basic diagnostic details, which are missing from the
console error messages – making the reason much clearer.
A new parameter, TRCPERF, was introduced in Apply Version 7,
but it is not documented in any of the manuals. It must be used
in conjunction with another trace parameter (eg PARM='...
TRCERR TRCPERF'). IBM says that it creates negligible
overhead for Apply.
TRCPERF is now documented in the Dprop V8 manual.
The output from TRCPERF is a set of statistics at the end of each
Apply cycle (corresponding to a row in the APPLYTRAIL table).
It includes one line of data for each table defined for propagation.
Thus you can see how many updates/inserts/deletes/reworks
were done for each table in each Apply cycle. It is formatted as
raw data values, separated by commas, with no headings. To
interpret it, we compared the values with those in the APPLYTRAIL
table to determine the meanings.
From our brief testing, it appears to contain (in this order):
• ‘S’ or ‘M’ – ‘S’ is first line of each cycle (has many timestamps);

‘M’ is for each table member line with more statistics.
• SUBSET – subscription set name.
• cycle no. – the Apply cycle number (starting from 1).
• table no. – number of the table (using the order in the

subscription set) starting from 0; or it is ‘S’ for first line of
cycle.

• timestamps – six timestamps in ‘yyyy/mm/dd hh:mm:ss’
format.

• inserts – number of inserts (for the table).
• updates – number of updates (for the table).

 21© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• deletes – number of deletes (for the table).
• reworks – number of reworks (for the table).
Our Apply uses PARM='.. TRCERR'.

STARTED TASK FOR APPLY
Our Apply runs as a started task with the following JCL:
 //D2OØAPP PROC PRM='DELAY(3) TRCERR ERRWAIT(12Ø) OPT4ONE MEMORY'
 //*
 //* PARM OPTIONS: 'DELAY(Ø)' DO NOT WAIT AFTER EACH CYCLE
 //* 'DELAY(6)' WAIT 6 SECONDS AFTER EACH CYCLE
 //* 'TRCERR' TRACE FOR ERROR INFORMATION ONLY
 //* 'TRCFLOW' VERY DETAILED TRACING
 //* 'TRCPERF' PERFORMANCE TRACING
 //* 'ERRWAIT(3ØØ) WAIT 3ØØ SECONDS AFTER EACH ERROR
 //* 'OPT4ONE' OPTIMISE FOR 1 SUBSCRIPTION SET
 //* 'MEMORY' STORE FETCHED ROWS IN MEMORY
 //* 'DISK' STORE FETCHED ROWS IN DISK FILES
 //* 'COMMIT(X)' COMMIT AFTER EVERY X TRANSACTIONS
 //*
 //* START: S D2OØAPP OR S D2OØAPP,PRM='DELAY(6) TRCERR TRCPERF'
 //* STOP : P D2OØAPP
 //*
 //**/
 //* THIS STEP PREVENTS OUTPUT BEING IMMEDIATELY DELETED */
 //**/
 //DUMMY EXEC PGM=IEBGENER
 //SYSPRINT DD DUMMY
 //SYSUT1 DD DSN=D2OØ.DUMMY.TEXT,DISP=SHR (one line of '-' chars)
 //SYSUT2 DD SYSOUT=T
 //SYSIN DD DUMMY
 //*
 //**/
 //* FOR EXECUTION OF THE APPLY FOR MVS PROGRAM */
 //**/
 //ASNAPV76 EXEC PGM=ASNAPV76,REGION=ØM, APPLY V7 WITH DB2 V6
 // PARM='APP1 D2O1 DR_D2OØ &PRM'
 //* ! ! ! !
 //* ! ! ! +— OTHER PARAMETERS
 //* ! ! +— CONTROL_SERVER (LOCATION NAME)
 //* ! +— DB2 SUBSYSTEM ID
 //* +— APPLY_QUALIFIER
 //*
 //STEPLIB DD DISP=SHR,DSN=D2OØ.ASNALNK
 // DD DISP=SHR,DSN=D2OØ.DSNLOAD
 // DD DISP=SHR,DSN=CEE.SCEERUN

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 22

 //SYSTERM DD SYSOUT=*
 //SYSTSPRT DD SYSOUT=*
 //SYSPRINT DD SYSOUT=*
 //MSGS DD DISP=SHR,DSN=D2OØ.ASNAMSGS
 //ASNASPL DD DSN=&&ASNASPL,
 // DISP=(NEW,DELETE,DELETE),
 // UNIT=SYSDA,SPACE=(CYL,(5,5)),
 // DCB=(RECFM=VB,BLKSIZE=64Ø4)

We added a step (DUMMY) to let JES3 keep the output when the
task ends.

APPLY OPT4ONE
We use the undocumented parameter OPT4ONE, which can be
used for an Apply with only one subscription set. Hence our Apply
task reads the details of the subscription set from the
ASN.IBMSNAP_SUBS_MEMBR and ASN.IBMSNAP_
SUBS_COLS tables only once instead of re-reading the same
information in each subscription cycle. The information is cached
and reused, improving CPU utilization and throughput rates. But
if you change the subscription set details, you must stop and start
Apply to recognize the changes. OPT4ONE is now documented
in the Dprop V8 manual.

APPLY DELAY(x)
We use DELAY(3) to make the gap between cycles 3 seconds
(default = 6). The value for this parameter is a balancing act when
Apply runs with SLEEP_MINUTES = 0. We have some Apply
cycles that have nothing to replicate because Capture has not
done a COMMIT since the last Apply cycle. I call these ‘zero
cycles’. If this value were less we would get many more zero
cycles, and if it were more we would get increased lag times. The
zero cycles use system resources and can fill up the APPLYTRAIL
table with zero rows, hence we don’t use DELAY(0). About two-
thirds of our current Apply cycles are zero cycles, and that seems
to be a good balance without sacrificing lag too much.

APPLY COMMIT(x)
COMMIT(x) is another undocumented Apply parameter. It is a

 23© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

foretaste of what is coming in Dprop V8. Apply works by writing
all changes for a subscription cycle into spill files, one file for each
table to be updated. Then it normally processes all the changes
for each of the tables in turn until all tables have been updated,
and does a COMMIT at the end. Alternatively, when parameter
COMMIT(x) is specified, it processes the changes in chronological
UOW order, updating all tables involved in each UOW, and does
a COMMIT after every ‘x’ units of work have been replicated –
and that process is repeated until all UOWs in the cycle are
complete. COMMIT(x) probably makes each subscription set
cycle marginally slower than the standard process, but some
changes are committed earlier and commits done more often
(with full referential integrity and with less locking). Hence, it
could reduce timeouts when you have other applications
simultaneously reading the target tables. COMMIT(x) is now
documented in the Dprop V8 manual.

REPLICATION WITH DB2 DATASHARING SUBSYSTEMS
Note that Capture and Apply require a parameter specifying the
DB2 ssid and not a group name in Data Sharing group. To make
this more flexible, we created a variable in the Capture JCL for
the DB2 subsystem id, and created an MVS system static
symbol on each MVS system. Then the task can be started on
alternative MVS systems and the parameter is always the
correct local DB2 subsystem.
Here is a sample of defining the symbol in
SYS1.PARMLIB(IEASYM**):
 SYSDEF SYSNAME(S5H1)
 SYMDEF(&DB2SSID='D2H1') /* DB2 DATA PROPAGATOR*/

STARTED TASK FOR CAPTURE
 //D2HØCAP PROC START='WARMNS NOPRUNE'
 //*
 //* &DB2SSID='D2H1' OR 'D2H2', DEFINED AS A SYSTEM STATIC
 //* SYMBOL IN SYS1.PARMLIB(IEASYM**)
 //* //OVERIDE SET DB2SSID=D2H2 <== UNCOMMENT THIS TO USE AS OVERRIDE
 //*
 //**/

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 24

 //* FOR EXECUTION OF THE CAPTURE FOR MVS PROGRAM */
 //**/
 //ASNL2RN6 EXEC PGM=ASNLRP76,REGION=8M, CAPTURE V7 WITH DB2 V6
 // PARM='&DB2SSID &START'
 //*
 //STEPLIB DD DISP=SHR,DSN=D2HØ.ASNLLNK
 // DD DISP=SHR,DSN=D2HØ.DSNLOAD
 // DD DISP=SHR,DSN=CEE.SCEERUN
 //MSGS DD DISP=SHR,DSN=D2HØ.ASNLMSGS
 //SYSTERM DD SYSOUT=*
 //SYSPRINT DD SYSOUT=*

We also have a DUMMY step to keep the JES3 output, but it is
not shown.

CAPTURE WARMNS START
To warm start Capture I recommend using start type WARMNS.
The default start type for Capture is WARM. But if any problem
is found in the warm start data (in ASN.IBMSNAP_WARM_START
table) it will switch automatically to a COLD start. That is not
always desirable!
My recommendation is to use start type WARMNS, which will not
switch, just terminate with an error message. Then you can
check the error and decide what is the best action to take.

CAPTURE COLD START
COLD start invokes a full refresh of all target tables. It makes
Apply read the source tables directly and replace the contents of
the targets. Our application was the only one to be replicated on
that DB2 subsystem and it was active only during normal
business hours. Also, the source tables were backed up then
emptied before the beginning of each day. Therefore, we were
able to do a COLD start at the beginning of each day, via MVS
command:
 S D2HØCAP,START='COLD NOPRUNE'

Capture COLD start resets the warm start table, then empties the
trace, UOW, and CD tables with SQL like:
 DELETE table WHERE 1=1;

 25© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

which can cause lots of DB2 logging. Therefore, it’s better to do
your own LOAD REPLACE with dummy input, for all CD and
UOW tables before a COLD START; and the target tables can
also be cleared the same way before Apply is started.
You must be careful starting Capture and Apply if you are doing
a COLD start. Up to Dprop V7, you must first start Capture and
wait for it to initialize. Capture will show the message:
 'ASNØ1Ø3I The Capture program started ..'.

Only then should you start Apply; otherwise it may do an initial
full refresh of the target tables, but it will not propagate any further
incremental changes.
Dprop V8 has been changed to overcome this weakness – the
Capture and Apply tasks can be started in any order and they will
wait if necessary to achieve correct synchronization.
Up to Dprop V7, Apply does the full refresh of target tables via
mass deletes of all existing rows followed by INSERTS to
repopulate each table. It cannot use the LOAD utility. Therefore
it could be slow with much logging if the volume of data is large.
In such cases it is better to use your own external full refresh
technique. This is described in the Dprop manual for Version 5
(but not for Version 6 or 7), and is still valid in principle. (But be
warned that the section in the manual has 12 SQL statements
with a total of 8 syntax errors!) You stop the propagation, copy the
data from source to target tables externally from Dprop (eg via
LOAD REPLACE utility), reset some values in Dprop control
tables, then restart the Apply. DJRA also has an option for this,
Replication Operations / Off-line Load. And now, after many
years of user requests, a full refresh in Dprop V8 invokes the
LOAD utility, through a WLM-managed stored procedure.
If you have multiple subscription sets, you can use the same
technique to stop, refresh, and restart a single set, while the
others continue unaffected, whereas a COLD start would refresh
ALL subscription sets.

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 26

CAPTURE NOPRUNE
The Capture reads the DB2 logs and writes the data updates into
the CD tables. When those updates have been propagated
Capture can ‘prune’ them again, which can be very time
consuming:
 DELETE
 FROM cd_table
 WHERE cd_table.IBMSNAP_UOWID
 IN (SELECT DISTINCT B.IBMSNAP_UOWID
 FROM ASN.IBMSNAP_UOW B
 WHERE B.IBMSNAP_REJ_CODE = 'Ø' AND B.IBMSNAP_COMMITSEQ <= ?);

IBMSNAP_REJ_CODE can be added to the index for
ASN.IBMSNAP_UOW table to change the access to index only,
but IBM advised that it has tried that and not found it significantly
better.
Up to Dprop V7, Capture does alternately either pruning or log
reading, hence the log reading is not continuous if pruning is
done and that can delay propagation. Starting with Dprop V8 the
pruning will be done in parallel with log reading by a separate
subtask to alleviate this ‘problem’; and IBM recommends running
with pruning active for the best performance. Also note that the
join of CD and UOW tables is not necessary for pruning in Dprop
V8, further improving performance.
However, for maximum performance with the current releases
the best solution is to run Capture with NOPRUNE and initiate
pruning manually at times when the load is not too high (via the
MVS command: F capture-task,PRUNE), or alternatively create
your own external job to prune the tables and run it whenever
necessary.
Editor’s note: this article will be concluded in the next issue.
Ron Brown (Consultant) © Xephon 2003

 27© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

Commit effects

Many people working with DB2 for z/OS or OS/390 believe that
all commit does is apply changes and release locks – but,
depending on the nature of the application, a commit can have
a lot more to do.
This article explains the various implications a commit can have
on an application with respect to its performance, availability, and
recovery.
Let us start by focusing on one of the less understood functions
of commit – releasing claims. Both locks and claims are released
on commit. The only exception to this is an application that uses
a cursor defined with the WITH HOLD option, where locks and
claims are retained past a commit point.

CLAIMS AND DRAINS
When an application first accesses an object, it makes a CLAIM
on the object. This claim is released on the next commit point.
Claims prevent other applications/processes taking over the
access of a particular object. The action of taking over the access
to an object is called a drain. When DB2 requests a drain on an
object, it allows the application to reach a commit point, but
prevents the application from making a new claim. Keep in mind
that making a claim does not depend upon any of the bind
parameters. Even a program bound with ISOLATION (UR) doing
a simple SELECT statement makes a claim. Claims play a vital
role in deciding an application’s availability when running
concurrently with utilities (especially REORG). REORG, and
some utilities, requires a drain lock on the object (in some phase
or another) and will wait until it can acquire one. A drain lock is
acquired when all the claims on the object are released and there
are no pre-existing drain locks. Drain requestors prevent any
new claims from being taken on the drained object.
To monitor CLAIMS on a particular object, issue the DB2
command:

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 28

-DISPLAY DB(database name) SPACE(tablespace name) CLAIMERS

EFFECT OF COMMIT ON PRE-FETCH
Whereas a commit has no effect on list and sequential pre-fetch
because these are detected at bind time by the optimizer,
commit does have a significant role to play on dynamic pre-fetch
(or sequential detection). Dynamic pre-fetch is activated during
run-time when DB2 detects a sequential data access pattern.
This is also known as sequential detection. If five of the last eight
pages accessed by an application are sequential, DB2 activates
dynamic pre-fetch. A page access is considered sequential if it
is within P/2 pages (left or right) of a previously retrieved page –
where P is the pre-fetch quantity, usually 32.
When a program is bound with the bind parameter
RELEASE(COMMIT), COMMITS, sequential page access
tracking information is reset. In such a case, increasing the
program’s commit frequency can eliminate (or reduce) dynamic
pre-fetch requests associated with the program’s execution.
Unlike sequential and list pre-fetch, which can be detected using
EXPLAIN, a plan table does not show sequential detection
(dynamic pre-fetch). An accounting record (SMF 101) indicates
whether dynamic pre-fetch was activated or not.

EFFECT OF COMMIT ON LOGICAL CLOSE OF A DATASET
DB2 maintains a counter for each open dataset. This counter
indicates the number of active users of the dataset at a given
point in time. On a commit, DB2 decrements this counter by 1 if
the release parameter specified at bind time is
RELEASE(COMMIT).
When this counter is zero, page set is considered not in use and
becomes a candidate of physical close. If 99% of DSMAX is
reached, DB2 asynchronously closes 3% of the datasets that are
candidates for a physical close. Tablespaces defined with CLOSE
YES are closed first followed by the ones with CLOSE NO
attribute (if 3% of datasets are not closed).

 29© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

COMMIT IMPACTS INDEX LOOKASIDE
DB2 uses the index lookaside technique to minimize the number
of getpages and lock requests by storing the keys and identifiers
on the leaf and next higher non-leaf page.
For some applications, index lookaside can significantly reduce
the number of getpages and lock requests, thereby reducing the
CPU time. If such applications are bound with the bind parameter
RELEASE(COMMIT) and COMMIT is issued, the stored keys
and identifiers are lost. The higher the commit frequency, the
more expensive it gets if the application is utilizing index lookaside.

IMPACT OF COMMIT ON IPROCS AND UPROCS
When DB2 detects repetitive insert or update activity against the
same table within a unit of work, it builds procedures for insert or
update activity. These procedures reduce the path length for
performing the insert or update activity, thereby reducing CPU
costs.
Frequent commits executed by programs bound with
RELEASE(COMMIT) destroy or prevent the building of insert
procedures (IPROCS) and update procedures (UPROCS). As a
result, the performance of the program doing repetitive inserts or
updates degrades. An untimely commit in a program that has the
potential to use IPROCS or UPROCS can in fact result in the
higher overhead of building the PROCS but never utilizing them.

IMPACT ON LOCK ESCALATION
When DB2 finds too many locks at row or page level it releases
the low level locks and takes a lock at the table level or partition
level. This is lock escalation. This helps in releasing the memory
that is required for storing information for every lock (approximately
250 bytes per lock), but may result in decreased application
availability. With frequent commits, lock escalation can be
prevented. The value for NUMLKTS specified in DSNZPARM
determines the threshold for lock escalation. If the sum of locks
for a tablespace at all levels (row, page, table, table space) per

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 30

user exceeds the value specified in NUMLKTS, DB2 escalates
the lock at table level or partition level (for partitioned tablespace).
DB2 statistics trace indicates whether lock escalation took place.
This is also flagged as an informational message in the DB2
subsystem address space (MSTR) with complete thread and
lock details like LOCK STATE (Share or Exclusive), PLAN/
Package Name, Statement number, etc.

USE CAUTION WITH COMMIT PLACEMENT WHEN USING ROWID
COLUMN
Because a column defined with the ROWID data type may
change its value after a REORG, care should be taken to utilize
the value retrieved from the ROWID column prior to committing.
As commit releases the claim on an object, there is a potential
risk to data integrity if the REORG job takes over after the
commit. A previously retrieved, but unused, ROWID value may
have been changed by the REORG utility and may no longer be
of interest to the application.

WHEN ARE THE CHANGES APPLIED?
The final destination of any change (Update/Delete/Insert) is the
tablespace page on the DASD, but an updated page need not be
written to the tablespace immediately. In fact DB2 first logs the
change to the DB2 subsystem log buffer. This buffer is externalized
to a subsystem log dataset when it is filled, or an application
commits, so that the data can be recovered in case of a failure.
Commit frees up the log buffer space.
Updated pages may still be in the bufferpool and are externalized
when any of the following happens:
• DB2 takes a checkpoint. It takes a checkpoint when a

predefined number of log records have been written. This
number is defined either on the installation panel by field
CHECKPOINT FREQ or by DSNZPARM parameter
LOGLOAD. DB2 also takes a checkpoint when there is a
switch of active log dataset.

 31© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

• QUIESCE is done on the table space.
• The percentage of updated pages in a buffer pool for a table

space or index space (or partition) exceeds the vertical
deferred write threshold (VDWQT).

• The percentage of unavailable pages exceeds the deferred
write threshold (DWQT); DB2 schedules a write operation to
decrease the number of unavailable pages. When this
happens the dataset with the oldest updated pages are
written asynchronously.

COMMIT FREQUENCY
In general, a high commit frequency has a negative impact on
applications’ performance and a positive impact on resource
consumption by releasing storage acquired by locks and log
buffers, application availability, and recovery time. Not committing
at all leaves us to the mercy of successful termination.
In the event of a rollback, a long-running job doing updates
without interim commits can face a tragic end by taking even
longer to undo changes. If the undo logs are archived off to tape,
oh dear!!!
As seen earlier, committing too frequently may add an extremely
high overhead, depending on the nature of the application.
Besides the impact of frequent commits, as mentioned earlier,
there is an additional cost of two MVS cross-memory service
calls when committing updates, deletes or inserts: one to the
system services address space to write out to the system logs
and the other to the IRLM address space to release locks. Having
a commit logic in the program also makes it necessary to code
the restart logic.
No matter what the nature of the application is, when you decide
to commit, you are releasing locks and setting your application
free. With careful planning it is possible to achieve good returns
(application availability) with a fairly low investment.
Pranav Sampat
Consultant
Cognizant Technology Solutions (USA) © Xephon 2003

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 32

UDB – introduction to identity columns and
sequences

This article looks at the identity column and sequence functions
in DB2 UDB. What is an identity column and what is a sequence
function? Let’s first look at the identity function. In a nutshell, an
identity column allows you to have a counter column in a table,
which is automatically incremented every time a row is inserted
into that particular table. For example, this could be the invoice
number column in an order table. The identity column concept
was introduced in Release 7.1 of UDB DB2. Before this release,
you had to write a trigger to achieve similar functionality.
Let’s look at how to set up and use an identity column. You set
up an identity column in a table when you define the table using
the create table statement. You can either have DB2 always
generate a number for you, or you can override the generated
number and insert a number of your own. The parameters you
have to play with are: do you want to allow a user to generate the
identity column value themselves (GENERATED BY DEFAULT
AS IDENTITY), or do you want the system to always generate
them (GENERATED ALWAYS AS IDENTITY)? Secondly, do the
identity column values have to be sequential (NO CACHE) or can
there be gaps in the numbering (CACHE n)? Examples of both
of these operations will be shown, and the merits of each
discussed.
The different parameters you can specify are GENERATED
ALWAYS AS IDENTITY or GENERATED BY DEFAULT AS
IDENTITY, and CACHE 20, CACHE n, or NO CACHE.
You always need a starting value and an increment value:
(START WITH numeric-constant)
INCREMENT BY numeric-constant

If you use the GENERATED ALWAYS AS IDENTITY option then
you cannot override the number generated. If you use the
GENERATED BY DEFAULT AS IDENTITY option, you can

 33© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

specify a number – if you don’t, DB2 will use the next one in the
sequence.
The best way to see how to use these parameters is to look at
various examples. Let’s look at the following four examples:
• GENERATED ALWAYS AS IDENTITY – default CACHE 20.
• GENERATED BY DEFAULT AS IDENTITY – default CACHE

20.
• GENERATED ALWAYS AS IDENTITY – NO CACHE.
• GENERATED BY DEFAULT AS IDENTITY – NO CACHE.
I ran all of the SQL below on Windows 2000 running DB2 UDB
7.2 FP7 and used the sample database.

GENERATED ALWAYS AS IDENTITY – DEFAULT CACHE 20
Create a table called FRED as follows:
CREATE TABLE FRED
(INV_NUM INT NOT NULL unique GENERATED ALWAYS AS IDENTITY
(START WITH 1ØØØ,INCREMENT BY 1), ITEM CHAR (1Ø))

Then try the following:
>db2 insert into fred values('videos')

This insert statement will fail with a ‘SQL0117N The number of
values assigned is not the same as the number of specified or
implied columns. SQLSTATE=42802’ message.
>db2 insert into fred values(1,'videos')

This insert statement will fail with a ‘SQL0798N A value cannot
be specified for column "INV_NUM" which is defined as
GENERATED ALWAYS. SQLSTATE=428C9’ message.
>db2 insert into fred(item) values('videos')

This statement will work, and if you do a:
>db2 select * from fred

it will return:

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 34

INV_NUM ITEM
---------- ----------
 1ØØØ videos

This shows that if you are going to use the GENERATED
ALWAYS AS IDENTITY parameter, you need to specify the
same number of columns in the insert statement as there are
columns in the table; you cannot specify you own value, and you
need to specify a column name for the other columns in the table
when you do the insert.
Now consider the following scenario: what happens if two users
(user1 and user2) try to insert a record into table FRED at the
same time? Each one will issue the SQL to update table FRED
using the +c option of the CLP (do not commit on statement
completion). User1 then rolls back the update. What is the
result? This is shown below:
User1 issues: User2 issues:
>db2 select * from fred
INV_NUM ITEM
---------- ----------
 1ØØØ videos

>db2 select * from fred
INV_NUM ITEM
---------- ----------
 1ØØØ videos

>db2 +c "insert into fred(item)
values('videosa')"

>db2 +c "insert into fred(item)
values('videosb')"

>db2 rollback
>db2 commit
>db2 select * from fred
INV_NUM ITEM
---------- ----------
 1ØØØ videos
 1ØØ2 videosb

When user1 issues the insert command, DB2 allocates the value
1001 to INV_NUM. So, when user2 issues an insert command,
DB2 allocates the next value (1002) to INV_NUM. It has no
choice about this – just because user1 hasn’t issued a commit
when user2 issues the insert, DB2 doesn’t know if user1 will
commit or not, so it must use the next value for INV_NUM. When

 35© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

user1 rolls back and user2 commits, the value for INV_NUM is
then 1002. There is a gap; this is unavoidable if you have multiple
users inserting into the table (with some users rolling back).
If we now disconnect then reconnect to the database, the
INV_NUM counter value will continue with 1020 (this is because
the default cache size is 20, and so the next available number on
a 20 boundary is 1020). If we were to disconnect and reconnect
to the database again, then the next value of INV_NUM to be
used will be 1040. This is shown below:
(a6) >db2 select * from fred

INV_NUM ITEM
---------- ----------
 1ØØØ videos
 1Ø2Ø videosa
 1ØØ2 videosb

GENERATED BY DEFAULT AS IDENTITY – DEFAULT CACHE 20
Drop and create the table FRED as follows:
Drop table FRED;
CREATE TABLE FRED
(INV_NUM INT NOT NULL unique GENERATED BY DEFAULT AS IDENTITY
(START WITH 1ØØØ,INCREMENT BY 1),ITEM CHAR (1Ø));

Then try the following:
>db2 insert into fred values('videos1')

You will get a ‘SQL0117N The number of values assigned is not
the same as the number of specified or implied columns.
SQLSTATE=42802’ message.
This is because the insert command still expects the number of
columns in the insert command to match the number of columns
in the table, or it expects you to explicitly specify the column
names that you want to insert values for. Therefore, the insert
command should look like:
>db2 insert into fred(item) values('videos1')

>db2 select * from fred

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 36

INV_NUM ITEM
---------- ----------
 1ØØØ videos1

The identity number generated is a DB2 generated value. Now
let’s try to insert an identity value of our choosing:
>db2 insert into fred values(1ØØ1,'videos2')

>db2 select * from fred

INV_NUM ITEM
---------- ----------
 1ØØØ videos1
 1ØØ1 videos2

Now let’s try to let DB2 generate the next identity number:
>db2 insert into fred(item) values('videos3')

You get back a message: ‘SQL0803N One or more values in the
INSERT statement, UPDATE statement, or foreign key update
caused by a DELETE statement are not valid because the
primary key, unique constraint or unique index identified by "1"
constrains table "DB2ADMIN.FRED" from having duplicate rows
for those columns. SQLSTATE=23505’. DB2 does not recognize
the identity value that you entered manually (1001), it assumes
that the last value was 1000 and that its next value should be
1001 – but this value already exists, hence the SQL0803N
message.
What the above shows is that the GENERATED BY DEFAULT
AS IDENTITY option lets you override the identity value that DB2
chooses, but DB2 does not take into account any non-DB2
generated identity values. This was shown in the above example,
where we inserted a value of 1001. What this means is that if you
do specify the GENERATED BY DEFAULT AS IDENTITY option
you have to be extremely careful in allowing users the privilege
of inserting non-DB2 identity values.
If you use the GENERATED BY DEFAULT AS IDENTITY option
instead of the GENERATED ALWAYS AS IDENTITY option, you
will get the same results as above if two users try to insert into the
table at the same time.

 37© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

GENERATED ALWAYS AS IDENTITY – NO CACHE
If you use the NO CACHE option instead of the default cache
option, you will get the same results as above if two users try to
insert into the table at the same time, except that if you disconnect
and reconnect to the database, the next value of INV_NUM will
be the next numeric value that DB2 thinks it should use (see
below for a sequence of events).
Drop and create the table FRED:
Drop table FRED;
CREATE TABLE FRED (INV_NUM INT NOT NULL unique GENERATED BY DEFAULT AS
IDENTITY (START WITH 1ØØØ,INCREMENT BY 1, no CACHE), ITEM CHAR (1Ø))

Then try the following:
>db2 Insert into fred(item) values('videos1')

>db2 select * from fred

INV_NUM ITEM
---------- ----------
 1ØØØ videos1

>db2 connect reset; >db2 connect to sample

>db2 Insert into fred(item) values('videos2')

>db2 select * from fred

INV_NUM ITEM
---------- ----------
 1ØØØ videos1
 1ØØ1 videos2

As you can see, the next value of the identity column is 1001 (as
the increment is 1, and the starting point is the last inserted value
of 1000).

GENERATED BY DEFAULT AS IDENTITY – NO CACHE
If you use the NO CACHE option instead of the default cache
option, you will get the same results as above if two users try to
insert into the table at the same time, except when you disconnect/
reconnect to the database, when the next value of INV_NUM will

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 38

be the next numeric value. All the caveats that were mentioned
above about users inserting their own values apply equally to the
NO CACHE option as to the CACHE option.

QUESTIONS
Below is a list of questions that summarize the above examples.
Can I insert identity numbers manually?
Yes – if you specify GENERATED BY DEFAULT AS IDENTITY.
No – if you specify GENERATED ALWAYS AS IDENTITY.
Don’t forget that DB2 doesn’t take into account numbers that you
enter manually when it decides what the next number to generate
should be.
If I input an identity number manually, then will DB2 take this
number into account when generating the next identity number?
No – but if you don’t define the identity number as unique, then
you can have duplicate values. Also, see answer above.
Can I use the ALTER TABLE command to toggle between the
CACHE and NO CACHE options?
Yes, you can. The SQL is:
>db2 alter table fred alter column inv_num set no cache

I could not do the alter through the control centre.
Can I use the ALTER TABLE command to change the
INCREMENT value?
Yes, you can. The SQL is:
>db2 alter table fred alter column inv_num set increment by 2

Can I use the ALTER TABLE command to change the START
value?
Yes, you can. The SQL is:
>db2 alter table fred alter column inv_num set minvalue 2ØØØØ

 39© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

This will not change the START value in syscat.sequences, but
it will be picked up the next time you disconnect/reconnect to the
database.
If I must have sequential identity column numbers, is this
possible?
I don’t think this is possible, unless you can guarantee that only
one user will be inserting into the table at any one time. In this
situation you must define the table with the NO CACHE option.
If you have multiple users trying to do inserts, then, assuming
that some of them will roll back their transactions, you will have
gaps.
When should I use the CACHE/NO CACHE options?
The advantage of using the CACHE n option is that DB2 will
cache the next n values, and will thus not have to recalculate the
next value every time. This is good for performance, but bad if
you want sequential numbers, as any numbers stored in memory
when you disconnect from the database will be ‘lost’. If you
definitely need sequential numbering, then I think your only
option is to use the NO CACHE option.
In which catalog tables do I find information about identity
columns?
There are three tables that you need to look at – syscat.columns,
syscat.sequences, and syscat.tables. Below is a query which
you might find useful. Just change the tabname value in the
WHERE clause to the table you are interested in:
Select
create_time,
substr(seqname,1,2Ø),
start,increment From syscat.sequences;
--
Select
substr(a.tabschema,1,1Ø) as schema,
substr(a.tabname,1,1Ø) as tabname,
substr(a.colname,1,1Ø) as colname,
a.identity as id,
a.generated as gen,
b.cache,
substr(char(b.start),25) as start,

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 40

substr(char(b.increment),25) as incre,
substr(char(b.minvalue),25) as minv,
substr(char(b.maxvalue),25) as maxv,
b.cycle
From syscat.columns a,syscat.sequences b, syscat.tables c
where
a.tabname = 'FRED'
and b.create_time=c.create_time
and a.identity = 'Y';

This will produce:
SCHEMA TABNAME COLNAME ID GEN CACHE START INCRE MINV MAXV CYCLE
--------- -------- -------- -- --- ----- -------- -------- ------- ----- -----
DB2ADMIN FRED INV_NUM Y A 1 ØØØ1ØØØ. ØØØØØØ2. ØØ2ØØØØ. 7483647. N

Note that I have truncated the start/increment/min/max columns
to make the output easier to read – if you have large values, then
the substr value of 25 may have to be reduced.
Can I specify a maximum value for the identity column value?
Yes, you can, by using the alter table command to specify a
maximum value. This is shown in the SQL below. One thing I did
find was that, after you issue the alter table command, DB2 will
calculate a new start value based on multiplying the increment
by the cache and adding it to the start value specified in the create
table statement, to give you a new start value. This is best shown
in an actual example:
CREATE TABLE FRED
(INV_NUM INT NOT NULL unique GENERATED ALWAYS AS IDENTITY
(START WITH 1ØØØ,INCREMENT BY 5,cache 5Ø),
ITEM CHAR (1Ø))

>db2 insert into fred(item) values('videosa')
>db2 select * from fred

INV_NUM ITEM
---------- ----------
 1ØØØ videosa

>db2 insert into fred(item) values('videosb')
>db2 select * from fred

INV_NUM ITEM
---------- ----------
 1ØØØ videosa

 41© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 1ØØ5 videosb

>db2 insert into fred(item) values('videosc')
>db2 select * from fred

INV_NUM ITEM
---------- ----------
 1ØØØ videosa
 1ØØ5 videosb
 1Ø1Ø videosc

>db2 insert into fred(item) values('videosd')
>db2 select * from fred

INV_NUM ITEM
---------- ----------
 1ØØØ videosa
 1ØØ5 videosb
 1Ø1Ø videosc
 1Ø15 videosd

>db2 insert into fred(item) values('videose')
>db2 select * from fred

INV_NUM ITEM
---------- ----------
 1ØØØ videosa
 1ØØ5 videosb
 1Ø1Ø videosc
 1Ø15 videosd
 1Ø2Ø videose

>db2 alter table fred alter column inv_num set maxvalue 12ØØ

>db2 insert into fred(item) values('videosf')

DB21Ø34E The command was processed as an SQL statement because it was
not a valid Command Line Processor command. During SQL processing it
returned:
SQLØ359N The range of values for the identity column or sequence is
exhausted. SQLSTATE=23522

Therefore, if you are going to specify a maximum value, I would
issue the alter table command before you insert any records. If
you do, you don’t seem to hit this restriction; however, if you issue
the alter command once the table is populated, you seem to hit
the above problem.
What does the CYCLE/NO CYCLE option do?

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 42

You use the CYCLE/NO CYCLE option when you have used the
MAXVALUE option. What it does is tell DB2 to start from the
beginning once you have hit the maxvalue limit. However, if you
have the identity column defined as unique, you just end up with
lots of messages saying, ‘SQL0803N One or more values in the
INSERT statement, UPDATE statement, or foreign key update
caused by a DELETE statement are not valid because the
primary key, unique constraint or unique index identified by "1"
constrains table "DB2ADMIN.FRED" from having duplicate rows
for those columns. SQLSTATE=23505’, because you are trying
to insert an identity column value which already exists.
Now let’s look at the SEQUENCE function.
The SEQUENCE function allows you define a counter that is not
dependent on any particular column in a table, but is defined for
the database in which it is created. This is different from an
identity column described above, which is table/column
dependent. Just as with an identity column, you can specify
various options when you define the sequence. You can specify
a start value, an increment value, and whether you want values
cached by DB2 or not (or accept the defaults). You can also
specify a maximum value and a minimum value, and whether
you want to cycle back to the beginning when you hit the
maximum/minimum value.
Let’s look at an example. You define a sequence (let’s call it hm)
as follows:
>db2 create sequence hm as integer start with 1Ø increment by 2

The default values for the options not specified in the above
command are: MINVALUE (1), MAXVALUE (2147483647),
CYCLE (N), CACHE (200), ORDER (N).
Now create a table – note that there is nothing in the table
creation SQL which specifies that we will be using the sequence
function with it.
>db2 CREATE TABLE FRED (INV_NUM INT NOT NULL unique, ITEM CHAR (1Ø))

Now insert a row into this newly created table using the sequence
function:

 43© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

>db2 INSERT INTO fred (inv_num,item) VALUES (NEXTVAL FOR hm,'video')

Now select from the table:
>db2 select * from fred

INV_NUM ITEM
---------- ----------
 1Ø video

If we now create a second table (FRED2) and use the same
sequence function to insert a row into that table, it will use the next
value in the sequence (12), and if we then insert a record into
table FRED it will use a sequence value of 14. This is shown
below:
>db2 CREATE TABLE FRED2 (INV_NUM INT NOT NULL unique, ITEM CHAR (1Ø))

>db2 INSERT INTO fred2 (inv_num, item) VALUES (NEXTVAL FOR hm, 'videob')

>db2 select * from fred2

INV_NUM ITEM
---------- ----------
 12 videob

>db2 INSERT INTO fred (inv_num,item) VALUES (NEXTVAL FOR hm,'videoc')

>db2 select * from fred

INV_NUM ITEM
---------- ----------
 1Ø videoa
 14 videoc

What happens if two users (user1 and user2) try to use sequence
numbers at the same time? Let’s use the above table FRED as
an example. Just as with the identity column example, each user
will issue the SQL to update table FRED using the +c option of
the CLP (do not commit on statement completion). User1 then
rolls back the update. What is the result? This is shown below:
User1 issues: User2 issues:
>db2 select * from fred

INV_NUM ITEM
---------- ----------
 1Ø video

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 44

>db2 +c INSERT INTO fred
(inv_num,item) VALUES
(NEXTVAL FOR hm,'videoa')

>db2 +c INSERT INTO fred
(inv_num,item) VALUES
(NEXTVAL FOR hm,'videob')

>db2 rollback
>db2 commit
>db2 select * from fred

INV_NUM ITEM
---------- ----------
 1Ø video
 14 videob

You can see that the sequence function operates in exactly the
same way as the identity column function. When user1 issues
the insert command the value 12 is assigned to INV_NUM, and
therefore when user2 issues the insert command the value 14 is
assigned to INV_NUM. When user1 rolls back its insert, the
value 12 of INV_NUM is ‘lost’, and when user2 commits, it uses
the value of 14 for INV_NUM.
Along with the NEXTVAL expression there is the PREVVAL
expression. This is useful if you want to insert records into two
tables with the same sequence value. For example, you might
have an order table (fred1) and a dispatch table (fred2), where
the primary column of each is a unique order number. You want
the row in the dispatch table to have the same sequence value
as the row in the order table. You would therefore use the
NEXTVAL expression to insert a row into the first table (fred1)
and the PREVVAL expression to insert a row into the second
table (fred2). This is shown below:
>db2 create sequence hm as integer start with 4Ø increment by 5

>db2 CREATE TABLE FRED1 (INV_NUM INT NOT NULL unique,ITEM CHAR (1Ø))

>db2 CREATE TABLE FRED2 (INV_NUM INT NOT NULL unique,DISP CHAR (1Ø))

>db2 INSERT INTO fred1 (inv_num,item) VALUES (NEXTVAL FOR hm,'video1')

>db2 INSERT INTO fred2 (inv_num,disp) VALUES (PREVVAL FOR hm,'Sent')

>db2 select * from fred1

 45© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

INV_NUM ITEM
---------- ----------
 4Ø video1

>db2 select * from fred2

INV_NUM DISP
---------- ----------
 4Ø Sent

You can see that both tables fred1 and fred2 have an INV_NUM
value of 40. You could, of course, have written a trigger to do this.
Just like the identity column, you use an alter command (ALTER
SEQUENCE command to be precise) to change the option
values of sequences. The command is (taken from the SQL
Reference manual):
ALTER SEQUENCE <sequence-name> RESTART
WITH numeric-constant
INCREMENT BY numeric-constant
MINVALUE numeric-constant / NO MINVALUE
MAXVALUE numeric-constant/ NO MAXVALUE
CYCLE / NO CYCLE
CACHE integer-constant / NO CACHE
ORDER / NO ORDER

The meanings of the above options are as in the identity column
description.
You drop the sequence (hm in this example) as follows:
>db2 drop sequence hm restrict

You need the restrict keyword, which stops you dropping it if there
are dependencies on it. You cannot unconditionally drop a
sequence, you need to break all the dependencies first (if any
exist).
Can I change/delete sequences through the control centre?
I could not find a way of doing this!
Which catalog table contains details about the sequence?
The catalog table of interest is syscat.sequences, and you can
use the query shown below to obtain details about a particular

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 46

sequence:
>db2 select
substr(seqname,1,1Ø),
start, minvalue, maxvalue, cycle, cache, order
from syscat.sequences
where seqname = 'HM'

This will give you:
1 START MINVALUE MAXVALUE CYCLE CACHE ORDER
------ ---------- -------------- ------------ ------ ------ -----
HM 1Ø. 1Ø. 2147483647. N 2Ø N

When would I use the sequence function/the identity column
function?
I think the only difference between the sequence function and the
identity column function is that the identity column function is
specific to a particular table, whereas the sequence function is
defined for use by the whole database in which it was defined.
Both functions have the restriction about not being able to
generate strictly consecutive numbers if you have concurrent
users using the functions and some of them perform roll backs.
I hope I have shown how easy it is to implement identity columns
and sequences and have given you some design pointers.
Which one you use depends on whether you want to restrict the
counter to a particular table or whether you want the counter to
be available to the whole database. Coding an identity column in
the create table statement is a lot easier than coding a trigger,
and coding a sequence create statement couldn’t be easier, so,
if you haven’t used them before, give them a go!
C Leonard
Freelance Consultant (UK) © Xephon 2003

 47© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

How to get DB2 entity-relationship diagrams via
your Web browser

A database data model is needed by database administrators as
well as the application development team in their everyday work
for reasons such as the definition of system requirements,
picture of referential constraints, system documentation, etc.
This application is developed to satisfy some of those needs –
providing an easy way of presenting a graphical view of the data
model, as well as getting it in a printed form. It is designed for DB2
database management systems, but with some modifications it
can be also applied for other relational DBMSs. Since, at our site,
all application development staff workstations are connected to
a local intranet and have some kind of Web browser installed,
using it is a very simple and convenient way to provide the
desired information.
So, on the client side, you need just a Java-enabled Web
browser. On the server side Java 1.1.6 or higher, Web server,
and DB2 server should be installed. If the server is on a PC
platform, as in our case now, and a picture of the database on the
mainframe is needed, then DB2 Connect, installed on the same
machine as the Web server, is also required. Another prerequisite
is that the DB2 JDBC applet server should be started.
The reason for using Java is obvious: it is platform-independent,
so the code can be executed on the mainframe if desired. The
Java applet is initiated by HTML with dynamically assigned
applet parameters. Our internal standard is that linked tables
have the same creator name, so this is used as the filtering
criterion for presenting the data model. Obviously it can easily be
changed and adjusted to different standards. Bearing in mind
how much visual information the human eye can take in at one
time, this application gives a good picture of approximately 7–10
entities and the relationships between them. Information on
referential constraints is extracted from the DB2 catalog. In
cases where the target database is on a mainframe, data is

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 48

collected from SYSIBM.SYSRELS and
SYSIBM.SYSFOREIGNKEYS tables, while on a PC platform all
necessary information resides in the table SYSIBM.SYSRELS.
So the existence of the table SYSIBM.SYSFOREIGNKEYS in
the DB2 catalog is used as an indicator that it is a mainframe
database.
In this application the principles of IDEFIX (Integration Definition
for Information Modelling) methodology are used for presenting
the physical data model. Programming is based on the Graph
theory and doubly-linked adjacent lists are used to determine the
relationships among parent and child tables.
The data model includes independent and dependent entities
depending on the relationship that exists between them. So in
contrast to a dependent entity, in the case of an independent
entity its instances can be uniquely identified without determining
its relationship to another entity. Entities are graphically
represented by rectangles (those for dependent entities have

Figure 1: Main panel on Web browser

 49© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

rounded corners). Primary keys are positioned in the upper part
of the rectangle, while corresponding foreign keys are identified
by the sign (fk). Relationships are represented by lines that
connect the entities: thick lines are for identifying while thin are
for non-identifying relationships and self-referencing constraints.
The type of delete rule for the referential constraint is shown by
the corresponding letter above the line – R for restrict, C for
cascade, N for set null, and A for no action.
GraphApp.html and GraphApp.class should be stored on the
Web server. In the source code, GraphApp.html parameters
‘code base’ and ‘server value’ should be set according to your
environment, while other parameters are optional. If DB2 JDBC
applet server is not started on default port 6789, the chosen port
should be given in the parameter ‘port value’. File Db2java.zip,
which is in the DB2 installation directory, should be copied into
the directory where the application is stored (on the Web server,
for example c:\inetpub\wwwroot).
Compilation of Java source code is executed by the following

Figure 2: Example of entity-relationship diagram

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 50

command:
javac –deprecation GraphApp.java

If order to use the print function, in the java.policy file the following
lines should be inserted (where xxxx represents the pathname
where the application resides):
grant codeBase "http://xxxx/" {
 permission java.lang.RuntimePermission "queuePrintJob";
};

If you access a database on a different DB2 DBMS, obviously
this database should be catalogued.
Figure 1 shows the main panel on a Web browser.
Figure 2 shows an example of an entity-relationship diagram
produced.

GRAPHAPP.HTML
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.Ø Transitional//EN">
<HTML>
<HEAD>
<META name="GENERATOR" content="IBM WebSphere Homepage Builder V5.Ø.1
for Windows">
<TITLE></TITLE>
<SCRIPT type="text/javascript">
<!-- Begin
function buildApplet(thisform) {
 var db = thisform.DBNAME.value;
 var us = thisform.USERID.value;
 var pa = thisform.PASSWORD.value;
 var cr = thisform.CREATOR.value;
document.write("<applet code='GraphApp.class' codebase='http://pc228-4/'
width=7ØØ height=4ØØ archive='db2java.zip'>")
 document.write("<param name=server value=pc228-4>")
 document.write("<param name=port value=6789>")
 document.write("<param name=dbname value=",db,">")
 document.write("<param name=userid value=",us,">")
 document.write("<param name=password value=",pa,">")
 document.write("<param name=creator value=",cr,">")
 document.write("<\/applet>")
}
// End -->
</SCRIPT>
</HEAD>
<BODY>

 51© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

<FORM method="POST">
<TABLE border="Ø">
 <TBODY>
 <TR>
 <TD>DBNAME:</TD>
 <TD><INPUT size="2Ø" type="text" name="DBNAME" value="DB7PROD"></TD>
 </TR>
 <TR>
 <TD>USERID:</TD>
 <TD><INPUT size="2Ø" type="text" name="USERID" value="Q"></TD>
 </TR>
 <TR>
 <TD>PASSWORD:</TD>
 <TD><INPUT size="2Ø" type="password" name="PASSWORD" value=""></TD>
 </TR>
 <TR>
 <TD>CREATOR:</TD>
 <TD><INPUT size="2Ø" type="text" name="CREATOR" value="DSN871Ø"></TD>
 </TR>
 </TBODY>
</TABLE>

<INPUT type="submit" name="SUBMIT" onclick="buildApplet(this.form);">
</FORM>
</BODY>
</HTML>

GRAPHAPP.JAVA
 // GraphApp.java
 // ER diagram for DB2 tables
 import java.applet.Applet;
 import java.awt.*;
 import java.awt.event.*;
 import java.util.*;
 import java.sql.*;
 public class GraphApp extends Applet {
 final static int maxCharHeight = 15;
 private boolean pc;
 private String message;
 private Vector queryResults = new Vector();
 private ScrollPane sp;
 private int maxdx = 64Ø;
 private int maxdy = 48Ø;
 private Font font;
 // ---
 class Key {
 public String name;
 public String description;

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 52

 public String fklabel;
 public Key nextK;
 public Key previousK;
 public Key(String kna, String kde) {
 name = kna;
 description = kde;
 fklabel = " ";
 }
 }
 class DoublyLinkedListKey {
 public Key firstK;
 public Key lastK;
 public DoublyLinkedListKey() {
 firstK = null;
 lastK = null;
 }
 }
 class OtherAttr {
 public String nameA;
 public String descriptionA;
 public String fklabelA;
 public OtherAttr nextA;
 public OtherAttr previousA;

 public OtherAttr(String ana, String ade) {
 nameA = ana;
 descriptionA = ade;
 fklabelA = " ";
 }
 }
 class DoublyLinkedListOtherAttr {
 public OtherAttr firstA;
 public OtherAttr lastA;

 public DoublyLinkedListOtherAttr() {
 firstA = null;
 lastA = null;
 }
 }
 class adjList {
 public String tbcreatorL;
 public String tbnameL;
 public String deleteruleL;
 public boolean strongL;
 public adjList nextL;
 public adjList previousL;
 public adjList(String tbcL, String tbnL, String delR, boolean
ind) {
 tbcreatorL = tbcL;
 tbnameL = tbnL;
 deleteruleL = delR;

 53© 2003. Reproduction prohibited. Please inform Xephon of any infringement.

 strongL = ind;
 }
 }
 class DoublyLinkedListadjList {
 public adjList firstL;
 public adjList lastL;
 public DoublyLinkedListadjList() {
 firstL = null;
 lastL = null;
 }
 }
 // ---
 class Vertex {
 public String tbcreator;
 public String tbname;
 public boolean strong;
 public int xv;
 public int yv;
 public int dxv;
 public int dyv;
 public int rowv;
 public int colv;
 public boolean visited;
 public DoublyLinkedListKey theKey;
 public DoublyLinkedListOtherAttr theAtt;
 public DoublyLinkedListadjList theadjList;
 public Vertex next;
 public Vertex previous;
 public Vertex(String tbc, String tbn) {
 tbcreator = tbc;
 tbname = tbn;
 xv = Ø;
 yv = Ø;
 dxv = Ø;
 dyv = Ø;
 rowv = Ø;
 colv = Ø;
 visited = false;
 strong = true;
 theKey = new DoublyLinkedListKey();
 theAtt = new DoublyLinkedListOtherAttr();
 theadjList = new DoublyLinkedListadjList();
 }
 }
 class DoublyLinkedListVertex {
 private draw_area da;
 private Vertex first;
 private Vertex last;
 public DoublyLinkedListVertex() {
 first = null;

© 2003. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290. 54

 last = null;
 }
 public boolean isEmptyVertex() {
 return first==null;
 }
 public void insertLastVertex(String tbc, String tbn) {
 Vertex newVertex = new Vertex(tbc, tbn);
 if (isEmptyVertex())
 first = newVertex;
 else {
 last.next = newVertex;
 newVertex.previous = last;
 }
 last = newVertex;
 }
 // first adjList with max number Vertexes
 public void arrangeVertex() {
 if (first != null && first.next != null) {
 Vertex current = first;
 Vertex follow;
 Vertex help;
 DoublyLinkedListKey theKey;
 DoublyLinkedListOtherAttr theAtt;
 DoublyLinkedListadjList theadjList;
 adjList currentL;
 int nadjcur;
 int nadjfol;
 while(current.next != null) {
 nadjcur = Ø;
 currentL = current.theadjList.firstL;
 while(currentL != null) {
 nadjcur++;
 currentL = currentL.nextL;
 }

Editor’s note; this article will be concluded in next month’s issue.
Nikola Lazovic
DB2 System Administrator
Postal Savings Bank (Yugoslavia) © Xephon 2003

IBM has announced DB2 UDB Version 8, a
new reengineered database for z/OS. New in
this version are 64-bit virtual addressing,
‘extensive’ enhancements to SQL, and
usability and portability enhancements
through major catalogue changes.

There are major improvements in long object
names, Unicode for worldwide support and
improved SQL compatibility, DB2 family
compatibility for portability of transaction
applications from Unix and Windows
environments, and enhanced data availability
through on-line schema evolution.

Database management flexibility has been
improved with indexing enhancements:
variable-length indexes and up to 4,096
partitions and data partitioning for indexes.

Utility enhancements include system-level
point-in-time back-up and recovery,
automatic restart of utilities, and greater DB2
family compatibility through support for load
and unload with delimited data.

Specifically, virtual storage addressing has
been expanded from 31-bit to full 64-bit
addressing, table name sizes expanded from
18 to 128 characters, VIEW and ALIAS
names expanded from 18 to 128 characters,
column name sizes expanded from 18 to 30
characters, maximum number of partitions
expanded from 254 to 4096, SQL statement
length expanded from 32KB to 2MB, index
key size expanded from 255 to 2,000
characters, character literals expanded from
255 to 32,704 characters, tables in a join
expanded from 15 to 225, active logs
expanded from 31 to 93, and archive logs
expanded from 1,000 to 10,000.

For further information contact your local
IBM representative.
URL: http://www.ibm.com/software.

* * *

DB2 news

BMC is to fully support DB2 Universal
Database (UDB) V8 on zSeries. The
company is taking part in the testing of DB2
V8 in its early release stage. It’s also
supporting customer participants in their V8
Early Support Program (ESP) activities,
including planned delivery and support
during the ESP of specific BMC products for
validation in DB2 UDB for z/OS V8
customer environments.

For further information contact:
BMC Software, 2101 City West Blvd,
Houston, TX 77042-2827, USA.
Tel: (800) 841 2031.
URL: http://www.bmc.com/solutions/
database.

* * *

Princeton Softech has begun shipping
Archive for DB2 5.1, its software for active
archiving in mainframe environments, which
promises better processing performance and
faster access to archived data.

Version 5.1 has new options to speed the
removal of large volumes of rarely-accessed
data from overloaded databases once it’s
been safely archived. The enhanced archive
indexing and search capabilities are said to
provide faster methods for accessing
archived data.

Archive indexing is designed to be more
efficient for searching archived data stored
on tape or near-line devices, or searching data
that has been migrated using DFHSM or
similar software, without directly accessing
the data.

For further information contact:
Princeton Softech, 111 Campus Drive,
Princeton, NJ 08540-6400, USA.
Tel: (609) 627 5500.
URL: http://www.princetonsoftech.com

x xephon

	Recreating ZPARM
	DataPropagator user experiences and expectations on MVS
	Commit effects
	UDB - introduction to identity columns and sequences
	How to get DB2 entity-relationship diagrams via your Web browser
	DB2 news

