

© Xephon Inc 2004

February 2004

136 DB2
In this issue
3 Homemade replication
7 Sequence objects and identity

columns
16 Capturing dynamic SQL on DB2

for z/OS and OS/390 distributed
processing

23 Refreshing test and
development environments with
the most current production data

36 A program to fix tablespaces/
indexes with RESTRICTed
access

51 DB2 news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

DB2 Update
Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Nicole Thomas
E-mail: nicole@xephon.com

Subscriptions and back-issues
A year’s subscription to DB2 Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in
the UK; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 2000 issue, are available separately
to subscribers for $33.75 (£22.50) each
including postage.

DB2 Update on-line
Code from DB2 Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/db2; you will need to supply a word
from the printed issue.

© Xephon plc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.
 Printed in England.

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, and other contents of this journal
before making any use of it.

Contributions
When Xephon is given copyright, articles
published in DB2 Update are paid for at the
rate of $160 (£100 outside North America)
per 1000 words and $80 (£50) per 100 lines of
code for the first 200 lines of original material.
The remaining code is paid for at the rate of
$32 (£20) per 100 lines. To find out more
about contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from
www.xephon.com/nfc.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Homemade replication

Core banking applications run on OS/390 DB2 V6.1 in our
environment. When a new branch application project development
is started, it will use DB2/UDB V7.2 for its local data. But some
core banking data is also needed for branch applications, for
example personnel account information for local authentication.
We had no replication tool in our shop, so we created our real-
time replication tool on base tables. After the initial synchronization,
we captured changes (insert/update/delete) on the original table
with the help of triggers. Triggers call WLM-managed SQL stored
procedures, which connect to the remote location and execute
the same DML. Connection is made via DRDA and TCP/IP to the
remote location.
Table definition:
 CREATE TABLE TDB2.DB2_TTRIG
 (SICIL INTEGER
 NOT NULL WITH DEFAULT,
 UNVAN CHAR (8)
 NOT NULL WITH DEFAULT,
 FLAG CHAR (1)
 NOT NULL WITH DEFAULT,
 ZAMAN TIMESTAMP
 NOT NULL WITH DEFAULT) ;

Tables created on both sides are identical.
Remote location definitions look like this:
SYSIBM.LOCATIONS :

LOCATION LINKNAME PORT

TESTDB TESTDB 6ØØØØ

TESTDB is a DB2/UDB database name containing table
TDB2.DB2_TTRIG.
Port number of TESTDB is 60000.
SYSIBM.IPNAMES :

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 4

LINKNAME SECURITY_OUT USERNAMES IPADDR

TESTDB P O 172.16.4.15Ø

The IP number of the server containing the TESTDB database
is 172.16.4.150.
SYSIBM.USERNAMES :

Y AUTHID LINKNAME PASSWORD

O SDBA1 TESTDB xxxxx
O STCUSR TESTDB yyyyy

SDBA1 is the BIND owner.
STCUSR is the stored procedure address space started task
user.
The users mentioned above are defined on DB2/UDB with
passwords xxxxx and yyyyy.

TRIGGER DEFINITION
//STEP1 EXEC PGM=IKJEFTØ1,DYNAMNBR=2Ø
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(DBØT)
 RUN PROGRAM(DSNTEP2) PLAN(DSNTEP61) LIB('DSN61Ø.RUNLIB.LOAD') -
 PARMS('SQLTERM($)')
//SYSIN DD *
CREATE TRIGGER TTDB2Ø2 AFTER INSERT ON TDB2.DB2_TTRIG REFERENCING NEW N
 FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 CALL DB2LØØ2(N.SICIL,N.UNVAN,N.FLAG,N.ZAMAN) ;
 END
$
--
CREATE TRIGGER TTDB2Ø3 AFTER UPDATE ON TDB2.DB2_TTRIG REFERENCING NEW N
 OLD O FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 CALL DB2LØØ3(N.SICIL,N.UNVAN,N.FLAG,N.ZAMAN,O.SICIL) ;
 END
$
--

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

CREATE TRIGGER TTDB2Ø4 AFTER DELETE ON TDB2.DB2_TTRIG REFERENCING OLD O
 FOR EACH ROW MODE DB2SQL
 BEGIN ATOMIC
 CALL DB2LØØ4(O.SICIL);
 END
$

TTDB202 is for capturing inserts. TTDB203 is for capturing
updates. TTDB204 is for capturing deletes.

STORED PROCEDURE DEFINITION

DB2L002 (for insert)
 CREATE PROCEDURE SYSPROC.DB2LØØ2
 (IN H_SICIL INTEGER,
 IN H_UNVAN CHAR(8),
 IN H_FLAG CHAR(1),
 IN H_ZAMAN TIMESTAMP)
 LANGUAGE SQL
 MODIFIES SQL DATA
 COLLID CDDB299
 EXTERNAL NAME 'DB2LØØ2'
 WLM ENVIRONMENT DB3TWLM2
 ASUTIME NO LIMIT
 STAY RESIDENT YES
 RESULT SETS 2

 -- SQL STORED PROCEDURE

 BEGIN
 CONNECT TO TESTDB;
 INSERT INTO TDB2.DB2_TTRIG (SICIL,UNVAN,FLAG,ZAMAN)
 VALUES(H_SICIL,H_UNVAN,H_FLAG,H_ZAMAN);
 END

DB2L003 (for update)
 CREATE PROCEDURE SYSPROC.DB2LØØ3
 (IN N_SICIL INTEGER,
 IN N_UNVAN CHAR(8),
 IN N_FLAG CHAR(1),
 IN N_ZAMAN TIMESTAMP,
 IN O_SICIL INTEGER)
 LANGUAGE SQL
 MODIFIES SQL DATA
 COLLID CDDB299

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 6

 EXTERNAL NAME 'DB2LØØ3'
 WLM ENVIRONMENT DB3TWLM2
 ASUTIME NO LIMIT
 STAY RESIDENT YES
 RESULT SETS 2

 -- SQL STORED PROCEDURE

 BEGIN
 CONNECT TO TESTDB;
 UPDATE TDB2.DB2_TTRIG SET (SICIL,UNVAN,FLAG,ZAMAN) =
 (N_SICIL,N_UNVAN,N_FLAG,N_ZAMAN)
 WHERE SICIL = O_SICIL; END

DB2L003 (for delete)
 CREATE PROCEDURE SYSPROC.DB2LØØ4
 (IN O_SICIL INTEGER)
 LANGUAGE SQL
 MODIFIES SQL DATA
 COLLID CDDB299
 EXTERNAL NAME 'DB2LØØ4'
 WLM ENVIRONMENT DB3TWLM2
 ASUTIME NO LIMIT
 STAY RESIDENT YES
 RESULT SETS 2

 -- SQL STORED PROCEDURE

 BEGIN
 CONNECT TO TESTDB;
 DELETE FROM TDB2.DB2_TTRIG WHERE SICIL = O_SICIL;
 END

DB2L002 is for applying inserts. DB2L003 is for applying updates.
DB2L004 is for applying deletes.
These stored procedures are WLM managed and their application
environment is DB3TWLM2.
These stored procedures must bind with location information:
BIND PACKAGE(TESTDB.CDDB299) MEMBER(DB2LØØn) OWNER(SDBA1)

Serdar Sabri Özkubulay
DB2 Systems Programmer
Akbank (Turkey) © Xephon 2004

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Sequence objects and identity columns

When designing DB2 databases, a frequently-asked request is
for a column that contains sequentially-generated numbers. For
example, each row has a counter associated with it. When a new
row is inserted, the counter should be incremented by 1 for the
new row. This way, each new DB2 row has a unique ‘row number’
associated with it. Until recently, such a design was difficult to
deliver.
Without sequence objects or identity columns, an application
program can implement similar functionality, but usually not in a
manner that performs adequately as database usage scales. A
common technique is to maintain a one-row table that contains
the sequence number. Each transaction locks that table,
increments the number, and then commits the change to unlock
the table. In this scenario only one transaction at a time can
increment the sequence number. A variation uses something
like this:
SELECT MAX()+ 1
FROM ONEROW_TABLE
WITH RR;

The result is the next highest number to be used. This value is
used by the application and ONEROW_TABLE must be updated
with the incremented value. Performance bottlenecks will occur
with this method when a lot of concurrent usage is required.
But now DB2 offers two methods of automatically generating
sequential numbers for a column:
• Identity columns
• SEQUENCE objects.

IDENTITY COLUMNS
Identity columns were formally added to DB2 as of Version 7, but
were actually available as of the DB2 Version 6 refresh. The

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 8

identity property is applied to a DB2 column using the IDENTITY
parameter. A column defined in this way will cause DB2 to
automatically generate a sequential value for that column when
a row is added to the table. For example, identity columns might
be used to generate primary key values or a value that somewhat
mimics Oracle’s row number capability. Using identity columns
helps to avoid some of the concurrency and performance
problems that can occur when application programs are used to
populate sequential values for a ‘counter’ column.
When inserting data into a table that uses an identity column, the
program or user will not provide a value for the identity column.
Instead, DB2 automatically generates the appropriate value to
be inserted.
Only one identity column can be defined per DB2 table.
Additionally, the data type of the column must be SMALLINT,
INTEGER, or DECIMAL with a zero scale, that is DECIMAL(n,0).
The data type also can be a user-defined DISTINCT type based
on one of these numeric data types. The designer has control
over the starting point for the generated sequential values, and
the number by which the count is incremented.
An example creating a table with an identity column follows:
CREATE TABLE EXAMPLE
 (ID_COL INTEGER NOT NULL
 GENERATED ALWAYS AS IDENTITY
 START WITH 1ØØ
 INCREMENT BY 1Ø
 ...);

In this example, the identity column is named ID_COL. The first
value stored in the column will be 100 and subsequent INSERTs
will add 10 to the last value. So the identity column values
generated will be 100, 110, 120, 130, and so on.
Note, too, that each identity column has a property associated
with it assigned using the GENERATED parameter. This
parameter indicates how DB2 generates values for the column.
You must specify GENERATED if the column is to be considered
an identity column or the data type of the column is a ROWID.

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

This means that DB2 must be permitted to generate values for
all identity columns. There are two options for the GENERATED
parameter – ALWAYS and BY DEFAULT:
• GENERATED ALWAYS indicates that DB2 will always

generate a value for the column when a row is inserted into
the table. You will usually specify ALWAYS for your identity
columns unless you are using data propagation.

• GENERATED BY DEFAULT indicates that DB2 will generate
a value for the column when a row is inserted into the table
unless a value is specified. So, if you want to be able to insert
an explicit value into an identity column, you must specify
GENERATED BY DEFAULT.

Additionally, you can specify what to do when the maximum
value is hit. Specifying the CYCLE keyword will cause DB2 to
begin generating values from the minimum value all over again.
Of course, this can cause duplicate values to be generated and
should be used only when uniqueness is not a requirement.
Actually, the only way to ensure uniqueness of your identity
columns is to create a unique index on the column. The IDENTITY
property alone will not guarantee uniqueness.
Sometimes it is necessary to retrieve the value of an identity
column immediately after it is inserted. For example, if you are
using identity columns for primary key generation you may need
to retrieve the value to provide the foreign key of a child table row
that is to be inserted after the primary key is generated. DB2
provides the IDENTITY_VAL_LOCAL() function, which can be
used to retrieve the value of an identity column after insertion. For
example, you can run the following statement immediately after
the INSERT statement that sets the identity value:
VALUES IDENTITY_VAL_LOCAL() INTO :IVAR;

The host variable IVAR will contain the value of the identity
column.

Problems with identity columns
Identity columns can be useful, depending on your specific

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 10

needs, but the problems that accompany identity column are
numerous. Some of these problems include:
• Handling the loading of data into a table with an identity

column defined as GENERATED BY DEFAULT. The next
identity value stored by DB2 to be assigned may not be the
correct value that should be generated. This can be especially
troublesome in a testing environment.

• LOAD INTO PART x is not allowed if an identity column is
part of the partitioning index.

• What about environments that require regular loading and
reloading (REPLACE) for testing? The identity column will
not necessarily hold the same values for the same rows from
test to test.

• Prior to V8, it was not possible to change the GENERATED
parameter (such as from GENERATED BY DEFAULT to
GENERATED ALWAYS).

• The IDENTITY_VAL_LOCAL() function returns the value
used for the last insert to the identity column. But it works only
after a single INSERT. This means you cannot use INSERT
INTO SELECT FROM or LOAD, if you need to rely on this
function.

• When the maximum value is reached for the identity column,
DB2 will cycle back to the beginning to begin reassigning
values – which might not be the desired approach.

If you can live with these caveats, then identity columns might be
useful to your applications. However, in general, these ‘problems’
make identity columns a very niche solution. IBM has intentions
to rectify some of these problems over time in forthcoming
versions of DB2.

SEQUENCE OBJECTS
Remember, DB2 has two methods of automatically generating
sequential numbers. The first method is to define an identity

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

column for the table, the second is to create a SEQUENCE
object. A SEQUENCE object is a separate structure that generates
sequential numbers.
New to DB2 V8, a SEQUENCE is a database object specifically
created to generate sequential values. So, using a SEQUENCE
object requires the creation of a database object; using an
identity column does not.
A SEQUENCE object is created using the CREATE SEQUENCE
statement.
When the SEQUENCE object is created it can be used by
applications to ‘grab’ the next sequential value for use in a table.
SEQUENCE objects are ideal for generating sequential, unique,
numeric key values. A sequence can be accessed and
incremented by many applications concurrently without the hot
spots and performance degradation associated with other
methods of generating sequential values.
Sequences are designed for efficiency and to be used by many
users at the same time without causing performance problems.
Multiple users can concurrently and efficiently access
SEQUENCE objects because DB2 does not wait for a transaction
to COMMIT before allowing the sequence to be incremented
again by another transaction.
An example creating a SEQUENCE object follows:
CREATE SEQUENCE ACTNO_SEQ
 AS SMALLINT
 START WITH 1
 INCREMENT BY 1
 NOMAXVALUE
 NOCYCLE
 CACHE 1Ø;

This creates the SEQUENCE object named ACTNO_SEQ. Now
it can be used to generate a new sequential value, for example:
INSERT INTO DSN881Ø.ACT
 (ACTNO, ACTKWD, ACTDESC)
 VALUES
 (NEXT VALUE FOR ACTNO_SEQ, 'TEST', 'Test activity');

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 12

The NEXT VALUE FOR clause is known as a sequence
expression. Coding the sequence expression causes DB2 to use
the named SEQUENCE object to automatically generate the
next value. You can use a sequence expression to request the
previous value that was generated. For example:
SELECT PREVIOUS VALUE FOR ACTNO_SEQ
INTO :IVAR
FROM DSN881Ø.ACT;

As you can see, sequence expressions are not limited to
INSERT statements, but can be used in UPDATE and SELECT
statements too.
Caution: if you specify the NEXT VALUE FOR clause more than
once in the same SQL statement DB2 will return the same value
for each NEXT VALUE FOR specification.

SEQUENCE object parameters
Similar to identity columns, a SEQUENCE object has parameters
to control the starting point for the generated sequential values,
and the number by which the count is incremented. You can also
specify the data type to be generated (the default is INTEGER).
You can also specify a minimum value (MINVALUE) and a
maximum value (MAXVALUE) if you wish to have further control
over the values than is provided by the data type chosen.
Again, as with identity columns, you can specify how the
SEQUENCE should handle running out of values when the
maximum value is hit. Specifying the CYCLE keyword will cause
the SEQUENCE object to wrap around and begin generating
values from the minimum value all over again.
A final consideration for SEQUENCE objects is cacheing.
Sequence values can be cached in memory to facilitate better
performance. The size of the cache specifies the number of
sequence values that DB2 will pre-allocate in memory. In the
previous example CACHE 10 indicates that ten sequence values
will be generated and stored in memory for subsequent use. Of
course, you can turn off cacheing by specifying NO CACHE.

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

With cacheing turned off, each new request for a sequence
number will cause I/O to the DB2 catalog
(SYSIBM.SYSSEQUENCES) to generate the next sequential
value.

SEQUENCE object guidelines
DB2 does not wait for an application that has incremented a
sequence to commit before allowing the sequence to be
incremented again by another application. Applications can use
one sequence for many tables, or create multiple sequences to
be used by each table requiring generated key values. In either
case, the applications control the relationship between the
sequences and the tables.
The name of the SEQUENCE object indicates that we are going
to use it to generate activity numbers (ACTNO), but its usage is
not limited to that. Of course, failure to control the use of a
SEQUENCE object can result in gaps in the sequential values.
For example, if we use the ACTNO_SEQ object to generate a
number for a different column, the next time we use it for ACTNO
there will be a gap where we generated that number.
Other scenarios can cause gaps in a SEQUENCE, too. For
example, issuing a ROLLBACK after acquiring a sequence
number will not roll back the value of the sequence generator –
so that value is lost. A DB2 failure can also cause gaps because
cached sequence values will be lost.
Please note, too, that when sequences were introduced in non-
mainframe DB2, syntax was supported that did not conform to
the SQL standard. This non-standard syntax is supported on the
mainframe as well:
• NEXTVAL can be used in place of NEXT VALUE.
• PREVVAL can be used in place of PREVIOUS VALUE.

CHOOSING BETWEEN IDENTITY AND SEQUENCE
Although both identity columns and SEQUENCE objects are

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 14

useful for generating incremental numeric values, you will be
confronted with situations where you will have to choose between
the two. Consider the following criteria for when to use one
instead of the other. Identity columns are useful when:
• Only one column in a table requires automatically-generated

values.
• Each row requires a separate value.
• An automatic generator is desired for a primary key of a

table.
• The LOAD utility is not used to load data into the table.
• The process of generating a new value is tied closely to

inserting into a table, regardless of how the insert happens.
SEQUENCE objects are useful when:
• Values generated from one sequence are to be stored in

Identity columns SEQUENCE objects

Internal objects generated Stand-alone database objects
and maintained by DB2 created by a DBA

Associated with a single table Not associated with a specific
table; usable across tables

Use IDENTITY_VAL_LOCAL() to Use PREVIOUS VALUE FOR seq-
get last value assigned expr to get last value assigned

N/A Use NEXT VALUE FOR seq-expr
to get next value to be assigned

Add/change using ALTER TABLE Administer using ALTER
...ALTER COLUMN (DB2 V8 only) SEQUENCE, DROP, COMMENT,
...ALTER COLUMN (DB2 V8 only) GRANT, and REVOKE

Version 6 refresh; Version 7 Version 8

Figure 1: Identity columns and SEQUENCE objects

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

more than one table.
• More than one column per table requires automatically-

generated values (multiple values may be generated for
each row using the same sequence or more than one
sequence).

• The process of generating a new value is independent of any
reference to a table.

Unlike SEQUENCE objects, which are more flexible, identity
columns must adhere to several rigid requirements. For example,
an IDENTITY column is always defined on a single table and
each table can have, at most, one IDENTITY column.
Furthermore, when you create an IDENTITY column, the data
type for that column must be numeric – not so for sequences. If
you used a SEQUENCE object to generate a value you could put
what’s generated into a CHAR column, for example. Finally,
when defining an IDENTITY column you cannot specify the
DEFAULT clause, and the column is implicitly defined as NOT
NULL. Remember, DB2 automatically generates the IDENTITY
column’s value, so default values and nulls are not useful
concepts.
Figure 1 shows a summary comparison of SEQUENCE objects
and identity column characteristics.

SUMMARY
Both identity columns and SEQUENCE objects can be used to
automatically generate sequential values for DB2 columns. Prior
to Version 8, identity columns are your only option. However,
after you move to V8, SEQUENCE objects will provide more
flexibility and be easier to use than the identity column option.
Craig S Mullins
Director, Technology Planning
BMC Software (USA) © Craig S Mullins 2004

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 16

Capturing dynamic SQL on DB2 for z/OS and
OS/390 distributed processing

Nowadays, most applications use distributed processing in
some form or other to access data from the mainframe host that
is running DB2 for OS/390 or z/OS. The access mechanisms
could be either ODBC or JDBC. There are many products for
database connectivity, such as DB2 Connect, HIS-2000 server,
Shadow Direct, etc. All these products use DB2’s internal
mechanisms for accessing the data and it is invariably DRDA
(Distributed Relational Database Architecture).
With the Web-enablement of most applications, dynamic SQL
has come to be used more. The issue with dynamic SQL is that
it cannot be kept in a DBRM like the static SQL. Since developers
tend to churn out dynamic SQL without much thought for
performance, problems surface when the programs start running
in production. Distributed processing threads are executed in
DB2 under a plan called DISTSERV, and it is common to have
several threads running under this at one time. Depending on
which type of product is being used for the host connection, and
a variety of other parameters, it may be difficult or impossible to
identify which thread is executing which query. In a development
environment, it is difficult to debug and also tune such queries.
Hence the need arises for capturing dynamic SQL for analysis,
performance tuning, etc. A few methods will be discussed to
achieve this.
It is assumed that the reader is familiar with using traces. For
details about traces and IFCIDs, please refer to the DB2 Universal
Database for OS/390 and z/OS Administration Guide, Version 7.

USING DB2 TRACES IN THE SPECIAL UTILITY JOB DSN1SDMP
This is a crude way of capturing SQL, but it has been useful in
several instances as a quick way of getting trace data for solving
special problems. The utility is known as IFC Selective Dump

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

and is used to produce a dump. The DB2 UDB for OS/390 and
z/OS, Utility Guide and Reference, Version 7 lists details about
this job and its parameters.
Caution: the manual suggests that this must be used under the
directive of IBM Support Center.
In the sample JCL provided below, the dump control cards are
given in the SDMPIN DD card:
START TRACE(MONITOR) DEST(OPX)
AUTHID(*)
IFCID(63)
PLAN(DISTSERV)
FOR(5ØØØ)

This states that we start a monitor trace for IFCID(63) using OPX
(the next available output buffer) as the destination and for PLAN
name DISTSERV for any AUTHID. It also says that we want it to
terminate after dumping 5,000 records. The plan name DISTSERV
is the one used for distributed processing.
The output or the dump dataset is defined on the SDMPTRAC
DD card.
The SYSTSIN DD card specifies the subsystem on which to
execute the command and also the program and plan.
Sample JCL for DSN1SDMP:
//JOBCARD your job card
//IFCSD EXEC PGM=IKJEFTØ1,DYNAMNBR=2Ø,COND=(4,LT)
//STEPLIB DD DISP=SHR,DSN=SYS1.DB2T.DSNLOAD
//SYSPRINT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SDMPPRNT DD SYSOUT=*
//*--
//* SDMPTRAC DD USED ONLY FOR DEST(OPX)
//*--
//SDMPTRAC DD DISP=(NEW,CATLG,CATLG),
// DSN=your output dataset
// UNIT=HSM,SPACE=(CYL,(5Ø,1ØØ),RLSE),
// DCB=(DSORG=PS,LRECL=8188,RECFM=VB,BLKSIZE=8192)
//*--
//* DO NOT USE SUBSYSTEM IDENTIFIER CHARACTER ON
//* TRACE STATEMENT
//*--

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 18

//SDMPIN DD *
 START TRACE(MONITOR) DEST(OPX)
 AUTHID(*)
IFCID(63)
 PLAN(DISTSERV)
 FOR(5ØØØ)
/*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(DB2T)
 RUN PROGRAM(DSN1SDMP) PLAN(DSNEDCL)
 END
/*
//

Important: if you need to stop or cancel the program before it has
collected the dump information, you need to do it only with the –
STOP TRACE command. Cancelling the job in SDSF will not
work. Take care to correctly identify the trace and fully qualify the
trace using trace number, trace type, destination, etc, before you
issue the –STOP TRACE command. To identify the trace number
issued by this job, look in the job log under SDSF option display
active (DA). The –STOP TRACE command could be like this:
 -STOP TRACE(MONITOR) DEST(OPx) TNO(n)

Note that the OPx destination and TNO(n) will have to be
determined from the –DIS TRACE(*) command or from the
SDSF active job log. The STOP TRACE and/or the DISPLAY
TRACE commands may be issued from the DB2I (DB2 Interactive)
panel under the DB2 commands option, which is Option 7.
Once the job has terminated, we can browse the output dataset
and identify the SQL. A partial sample output dataset is shown
below with the hexadecimal display:

----+----1----+----2----+----3----+----4----+----5----+----6----+--
--7----+----8
--

. SELECT * FROM EMPLY.<
e .'. . DBT2¾P.An93c...a...(....DBT2
ØØØ2ØØØØØØØ1Ø1ØØØØØ1ECDCCE454CDDD4ECCECØØ4Ø1Ø3Ø51733CCEFBD269FF8ØØØ4ØØØ4ØØØØ
ØØØC1EØ1ØØØ4Ø7Ø14ØØ5253533ØCØ6964Ø53125ØØC16ØF215DE8423297F45933ØØØ6ØØØDØØØØ4232

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

. . .O. N. LSELECT TBCREATOR as TABLE_OWNER,
TBNAME as TABLE_NAME, NAME
ØØØEØØØØØØØ1ØDØØØØØDECDCCE4ECCDCCEDD48A4ECCDC6DEDCD64ECDCDC48A4ECCDC6DCDC64DCD
ØØØC1EØ1ØØØ4Ø5Ø14ØØ3253533Ø323951369Ø12Ø31235D66559BØ325145Ø12Ø31235D5145BØ5145Ø

...o.........I.....ESELECT SYSIBM.SYSINDEXES.TBCREATOR as
TABLE_QUALIFIER, SYSIB
ØØØ8ØØØØØØØ1Ø7ØØØØØ7ECDCCE4EEECCD4EEECDCCECE4ECCDCCEDD48A4ECCDC6DECDCCCCD64EEEC
ØØ2C1EØ1ØØØ425Ø14Ø23253533Ø282924B2829545752B323951369Ø12Ø31235D841396959BØ28292

In the output dataset, the first 5 lines pertain to header information.
The following lines contain the SQL statements. The SQL
statements begin in column 21. The length of the SQL statement
is stored in binary form in column 19 as shown in hex format
above. Note that this length value takes column 19 as the starting
position. For example, for the SQL shown in the example above:
 SELECT * FROM EMPLY

the length is hex(0015), which is 21 in decimal. Counting from
Column 19, we find that it is the length of the SQL statement in
this case. With this information, we can write a REXX routine to
extract only the SQL and dump it to another file. The maximum
length for the SQL statement is 5,000 characters.
I used IFCID 63 for an application that uses the OLEDB technique
to access data from DB2 on the host. This essentially helped us
identify the sequence of events that were happening on the DB2
server after the OLEDB call was issued. Using monitors like
DB2-PM or TMON for DB2, the thread did not stay long enough
for us to view the SQL.
Please note host variables or symbolic variables will be
represented by ‘?’ in these statements. We need to use IFCID
247 to capture host variable data. It is possible to capture both
IFCID 63 and 247 records in the same DSN1SDMP dump.
However, identifying them requires more knowledge of traces
and header records. Also, the host variables for decimal data are
stored in a special format and it needs to be debugged differently.
In the output dataset, columns 3 and 4 contain the offset at which

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 20

the relevant IFCID header information is. Going back to our
example, the value is hex(002C), which is decimal 44. At column
44, the IFCID 63 record details are stored. This can be verified
by the IFCID value in columns 45 and 46, namely hex(003F).
More details about IFCID 63 and other IFCID record layouts may
be found in the IBM-supplied member DSNWMSGS in the
DSNSAMP dataset. Look specifically under RMID 22 or
performance trace records to identify which IFCIDs you will have
to activate. For JDBC applications that use prepares, you may
want to use IFCID 64, 65, etc.
Normally, IFCID 58 signifies the end of IFCID 63 and must also
be captured. However, depending on your requirements, this
may or may not be included.

USING CA UNICENTER’S DETECTOR PRODUCT
The Detector feature of CA (Computer Associates) Unicenter
offers a simple way to capture all dynamic SQL. The advantage
of this is we have all the information readily available, including
accurate timestamp data. At our site, we have a mechanism
whereby the collected data is archived by the hour and recycled
every 72 hours.
The following section explains how to set up an exception profile
for capturing dynamic SQL using Detector.
From the Detector main menu, choose Option 4, View/modify
profile. From the next panel choose Option 1, View Collection
Profiles. This will navigate to the Detector Collection Profiles
Display panel. Enter ‘Y’ against the Create Profile field near the
top right of this screen. In the following panel, specify valid values
for Profile SSID, Profile ID (say TESTPROF), and Profile desc.
Specify the high-level qualifier(s) and other parameters like
volume name, allocation units, and primary and secondary
spaces for allocating the exception dataset. The message
‘Detector profile successfully initialized’ will be displayed if all
input is correct.
Press the Exit key to return to the previous screen. The newly-

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

created profile will be displayed here. Type S (for view/modify
profile) against the newly created profile. This will navigate to the
Detector View/Modify application groups panel. Type S against
Set Global Defs in the second line to go to the Global Defaults
panel. This is where we set the exception thresholds for dynamic
and static SQL. Specify the exception limit for CPU time under
dynamic SQL to a very low value, say 00:00:00.001. Specify the
exception limit for Getpage Reqs and Rows Returned to 1.
Specify S against the field Update Global Defs at the top to go
through with the update. The updated screen is displayed when
you press Enter. Press the Exit key three times to come to the
Detector Collection Profiles Display panel. You are now ready to
load your profile. Enter L (load) against the new profile that you
created. If all necessary authorization is available then this
becomes the active profile.
Now all dynamic SQL that exceeds the threshold specified will be
captured in the Detector data store. Since we have set the
thresholds so low, we will virtually trap every dynamic SQL that
is executed. To view the dynamic SQL that was captured, utilize
the exception tracking feature of Detector. Detector lists a bunch
of useful accounting statistics like getpages, I/O wait times,
synchronous reads, etc, for the dynamic SQL. One can also run
Explain on the SQL utilizing the Explain product of Unicenter for
DB2. It is also possible to load the SQL into DB2 tables utilizing
the features of Index Expert, also from CA.

DB2 PM (PERFORMANCE MONITOR) FOR THE WORKSTATION
A detailed discussion of the features of this product can be found
in the IBM Red Book, Squeezing the most out of Dynamic SQL
with DB2 for z/OS and OS/390.
Essentially, this runs on the workstation and interfaces with DB2
on the host and collects and reports various performance data,
such as accounting statistics, SQL activity, EDM pool, etc.
However, it utilizes a graphical user interface to present its data.
It also has the ability to start and stop traces and issue any
authorized start command except START DB2.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 22

A notable feature of this product is the ability to capture the SQL
in the dynamic cache and also to run an explain on any of it. IFCID
316 needs to be activated to analyse the statement cache. You
will also need IFCID 317 for viewing the entire SQL statement
because 316 logs only the first 60 bytes of the statement text.
Note that 316 must be captured in order to get 317 as well. They
too may be linked using the statement identifier that is generated
by DB2. Since the trace information for these two IFCIDs cannot
be externalized to SMF or GTF like other conventional traces,
using an online monitor like DB2 PM or an IFI program is the only
way to view this information. Another trace that may be required
is IFCID 318, which acts like a trigger to fill in the values for IFCID
316. DB2 PM for the workstation provides easy controls in the
interface to activate and view this data in a real-time fashion.
Additionally, DB2 PM for the workstation can download the
collected trace data from the host. We can also set filters to show
only a subset of the data. Most of these features are incorporated
as point and click options or buttons, making it easy to use.

CONCLUSION
Three mechanisms for capturing Dynamic SQL were introduced
and discussed. There are also other DB2 support products from
other vendors that have features similar to Detector in CA
Unicenter or DB2 PM for Workstation to capture and analyse
SQL. These mechanisms should complement each other and
help the DBA to deal in a competent manner with dynamic SQL
in a distributed environment.
Jaiwant K Jonathan
DB2 DBA
QSS Inc (USA) © Xephon 2004

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Refreshing test and development environments
with the most current production data

There is always a requirement at some time to refresh various
test and development environments with the most current
production data – particularly for fixing defects reported in the
production environment. Appropriate production data is very
important to help developers reduce the time taken to fix a
problem or deliver a solution. Moving a database from one
system to another can be a complex job and requires a DB2 DBA.
DBAs are often too busy to look at development and test
environments prior to seeing to production issues. This article
intends to help system engineers who understand the workings
of DB2 to automate the movement of a recoverable production
database to a test machine in order to perform tests on the most
current production data. An important thing to remember here is
to work with the DBA responsible for the production environment
and take a recoverable production database and perform an
online back-up using a script via DB2’s Script Center GUI tool.
A script can then be executed on the Test machine to perform a
redirected restore followed by a rollforward to apply the log files.
The article also explains how incremental delta back-ups can be
taken in the test environments. Incremental back-ups provide an
option to go back to the state of the test data at a particular date/
time in the past. This is particularly useful as an initial refresh of
test from production, depending on the size of the database,
might take quite a long time.

ADVANTAGES AND DISADVANTAGES OF VARIOUS UTILITIES
There are different ways to move a database from one system
to another. The db2move utility allows movement of tables via
the export and load/import APIs. This is a great method if you
need to move a database across heterogeneous platforms.
However, it does not move other database objects such as
triggers, sequences, tablespaces, bufferpools, and indexes.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 24

These objects would have to be re-created in a separate
operation with the aid of the db2look utility. And for LOB tables,
there is a limitation of 26,000 rows per table.
Performing a split mirror is another way to move a database.
Although this is also a great way to clone a database, it is more
complicated and requires a storage vendor’s facilities to access
the split mirror. In addition, you must have the exact directory
paths on the development machine for the database directory,
the tablespace containers, and log files as they would appear on
the production system. Often, the necessary drive letters are not
even available on development machines to reproduce the
pathing required. Also, the DB2 server’s instance must be the
same name.
DB2’s back-up and restore utility moves all objects in the
database, and you can specify alternative paths to where your
tablespace containers will reside. This allows for maximum
flexibility when moving your database.
Note: some objects, such as User Defined Functions (UDFs)
and stored procedures that are stored externally, will have to be
moved separately since they are not included in the back-up
image.

ENVIRONMENT
The example provided later uses two Windows machines that
are mapped to each other via a local network (it is required that
both machines have the same OS platform). In our example,
each machine has DB2 Version 7.2.3, Enterprise Edition, with
fixpak 6 applied. The Control Center is included by default during
installation of DB2 and is required for running the Script Center.
If you have a Unix environment, the same rules apply. Both
machines must have the same OS platform (an exception is a
restore between SunOS and HP) and must have file systems
mounted via the network during the back-up/restore procedure.
Additionally, the Control Center component is not installed on
Unix by default. So it will be necessary to install it before using

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

the scheduler (an alternative would be to execute the scripts
using a cron job).

INITIAL STEPS
Some initial directories should be created before executing the
scripts.
On the production machine create \scripts (to hold the script that
will perform the online database back-up).
Note: this should already exist, because the DBA must be taking
back-ups of production databases.
On the test machine create \backups (to hold the backed-up
image of the production database), \scripts (to hold the script to
restore the database), and \tablespaces (to hold the containers
for the tablespaces).
Create the back-up script on the production machine. The DBA
should have the \backups directory dedicated for this database
only and back up.
db2cmd "db2 backup db proddb online to G:\backups"

This command executes the db2 command window session,
runs the database back-up command, and saves the image on
the test machine. Since it is assumed that the production
database must be running 24 hours a day, seven days a week,
an online back-up is necessary. In the instance above, the G:
drive letter is pointing to the C: drive on the test machine. It is
required to have at least one full off-line database back-up of the
production database before you can execute an on-line back-up.
Create the restore scripts on the development machine. There
are two scripts for the restore. The first script will call a DB2
command window session and execute the second script,
which, in turn, will execute multiple DB2 and OS commands.
Script 1:
\scripts\restore_testdb.cmd ...executes the following...
db2cmd restore_testdb_2.cmd

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 26

Script 2:
\scripts\restore_testdb_2.cmd ...executes the following...

1 db2 "force application all"

Before dropping the old database on the test machine, it is
necessary to force any applications off the DB2 instance
where the database resides. Currently, there is no automated
way of forcing all applications off a single database. If there
are any other services running that are dependent on the
DB2 instance, it may be necessary to stop those services
first before stopping the DB2 instance.

2 db2 "restore db proddb from C:\backups into testdb redirect without

prompting"

The restore will now create the new database testdb and
indicate a redirect to allow containers to be specified for the
tablespaces. Do not be worried when receiving the message
SQL1277N. This is only a warning that containers can be
defined for the tablespaces (see Step 3).
The above REDIRECT option allows us to specify alternative
tablespace container paths from the production system. If
REDIRECT is not specified, you must create the same
database <drive letter>\<instance name>\NODE0000 as is
shown on the production system. And if the production
tablespace containers are located in a different path, they
too must have paths set up for them on the development
machine.

3 db2 "set tablespace containers for Ø using (path "C:\tablespaces\tbspcØ")"

db2 "set tablespace containers for 1 using (path"C:\tablespaces\tbspc1")"

db2 "set tablespace containers for 2 using (path "C:\tablespaces\tbspc2")"

In order to automate the restore process, we will redirect all
tablespaces associated with the production database by
setting new container paths on the development machine.
To determine what tablespaces reside in the database, you
must first connect to the production database and execute
the following command at the DB2 command window.

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

4 db2 "list tablespaces show detail"

The output will look something like this:
Tablespace ID = Ø
Name = SYSCATSPACE
Type = System managed space
Contents = Any data
State = ØxØØØØ
Detailed explanation:
Normal

Tablespace ID = 1
Name = TEMPSPACE1
Type = System managed space
Contents = System Temporary data
State = ØxØØØØ
Detailed explanation:
Normal

Tablespace ID = 2
Name = USERSPACE1
Type = System managed space
Contents = Any data
State = ØxØØØØ
Detailed explanation:
Normal

5 In the SET commands in Step 3, the tablespace IDs 0, 1, and
2 are used to specify the tablespace that will be assigned the
new container path. All three tablespaces are System
Managed Spaces (SMS) with the containers pointing to
C:\tablespaces directory. Note, you need to create only the
C:\tablespaces directory. Executing the SET commands will
create the directories tbspc1, tbspc2, and tbspc3. If you have
Database Managed Spaces (DMS), the syntax is slightly
different. Let’s say there’s a fourth tablespace that is a DMS
tablespace. We would perform something like the following.

6 db2 "set tablespace containers for Ø using (path"C:\tablespaces\tbspcØ")"

7 db2 "set tablespace containers for 1 using (path "C:\tablespaces\tbspc1")"

8 db2 "set tablespace containers for 2 using (path "C:\tablespaces\tbspc2")"

9 db2 "set tablespace containers for 3 using (file "C:\tablespaces\tbspc3"

5ØØØØ)"

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 28

10 Note: the path is changed to file and 50000 is the number of
pages you are allocating for the container. Make sure the
number of pages you assign is at least the same number of
pages as the production database. You can also consolidate
multiple containers into one during a redirected restore if
your development machine uses fewer disks than the
production server.

11 db2 "restore database proddb continue"

12 This is the final process of the redirected database restore.
13 copy /y E:\DB2\NODEØØØØ\SQLØØØ1Ø\SQLOGDIR*.*

C:\DB2\NODEØØØØ\SQLØØØØ2\SQLOGDIR*.*

14 Above, we copy the log files from the production machine to
the development machine. Continuing with the assumption
that your production database uses the on-line back-up
method, it is a requirement that a recovered database rolls
forward all log files to ensure database consistency. Because
of this, we will need to copy all log files from the production
machine to the development machine and place them in the
directory path where the database manager can find them.
The path to the log files can be determined by performing the
following command:

15 db2 "get database configuration for <database name>"

16 Look for ‘path to log files’ or ‘changed path to log files’. You
should execute the above command on both the production
and development servers to determine the log path to
specify.

17 db2 "rollforward database devdb to end of logs and stop"

18 Finally, we can perform a rollforward operation after all log
files are copied to the D:\DB2INST\NODE0000\
SQL00002\SQLOGDIR on the development machine. Rolling
forward the log files is necessary since the database back-
up is performed on-line. Remember that the log path will be
based on the path indicated in the database configuration
file.

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

IMPORTANT RESTORE CONSIDERATIONS
If you plan to move a database from the production machine to
a development machine and it does not have the default code
page 1252 (for Windows), you will need to create your database
on the development machine with the correct code page before
you perform the restore. If you do not do this and your production
code page is different, such as 1208, the restore utility will
assume the default code page of 1252 and try to restore the code
page 1208 database into a code page 1252 database. This will
result in an SQL2548N error.

SCHEDULING THE JOB
Now that we have detailed the steps for writing the scripts, a
scheduled job can be created to run the back-up and restore
operation at a specific time of the day, week, or month. Our
strategy is to run the back-up script on the production machine
before running the restore script on the development machine.
Depending on the size of your production database, it may be
prudent to schedule your back-up several hours before you run
the restore operation. This will ensure the restore does not start
before the back-up has completed.
Using the development machine as our example, let us go
through the steps of creating a schedule using the Script Center
GUI tool.
1 Open the Control Center. Left mouse click on Tools from the

menu bar and select Script Center.
2 Script Center opens. Left mouse click on Script from the

menu bar and select Import....
3 Select your \scripts directory where the scripts are located

and select restore_devdb.cmd:
– In the Instance list box, select the DB2 instance where

the database was created.
– Type a new script name for the script you selected. This

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 30

is just a copy of the script you selected in Step 3 and will
be used as the executing script.

– Provide a description of the script in the Script Description
text box.

– The Working Directory text box gives you the option of
specifying where you would like the output from your
scripts (ie error and warning messages).

– Make sure you select the OS command radio button
since we are using a command file.

4 Now that the script is prepared, we can schedule it to run at
a predefined date. Right mouse click on the script to be run
and select Schedule....

After you run the scripts, it is very important to know whether they
executed successfully. When executing scripts from the Script
Center, it is a general practice to use the Journal to determine
whether the script is successful. But since we are running OS
scripts that execute other OS scripts, the results of the output will
not be displayed in the Journal. To alleviate this problem, you can
send the DB2 messages to output within your script. For instance,
in the back-up script above, we back up the database in the
following manner:
db2cmd "db2 backup db proddb online to G:\backups"

We could include the following to allow the results of the
command to be sent to backup_results.msg:
db2cmd " "db2 backup db proddb online to g:\backups" >
backup_resultslog.msg"

INCREMENTAL DELTA BACK-UPS
Incremental back-up on the test database can help in
troubleshooting problems in applications specific to the state of
data from a certain date/time. We can choose different storage
media for saving a back-up image. The most often used solutions
are local or remote disk file system or TSM (Tivoli Storage

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

Manager). The TSM solution is widely used for large databases.
Below I will explain the TSM solution in detail and give an
example of hard disk usage. Before we start, we will check what
needs to be installed and configured on the test server:
• Tivoli Storage Manager Client API.
• C Compiler for compiling user exit program db2uext2.c.
• TSM management classes for full back-up, delta back-up,

and DB2 logs.
• Disk space on a separate file system in case we back-up on

a hard disk.
We need to configure the user exit program db2uext.c to ensure
that archived log files are correctly handled and saved on TSM.
Usually you need to change only the log destination before
compiling it.
Edit file ~/c/db2uext2.c and create directory structure (/logs/*):
#define ARCHIVE_PATH “/logs/archive”
#define RETRIEVE_PATH “/logs/retrieve”
#define AUDIT_ERROR_PATH “/logs/log”

Compile the source file. Take this warning into account:
IY09505:INCORRECT
COMPILE INSTRUCTIONS IN DB2UEXT2.CADSM FOR ADSM 3.1.6 OR HIGHER.

In the db2uext2.cadsm skip the documentation that tells you to
use “cc -o db2uext2 db2uext2.c libApiDs.a” and use the following:
"cc_r -o db2uext2 db2uext2.c libApiDs.a"

This will use the re-entrant (threadsafe) compiler.
Copy the final compiled version to destination ~/sqllib/adm/
db2uext2. Now we are ready to go to the database.
Our test database, AMSTEST, is running in no-logging mode.
db2 => get db cfg for AMSTEST

 Database Configuration for Database AMSTEST

 Track modified pages (TRACKMOD) = OFF

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 32

 Log retain for recovery enabled (LOGRETAIN) = OFF
 User exit for logging enabled (USEREXIT) = OFF
We are going to change the configuration for Archive Logging and check
the back-up pending indicator.
db2 =>update db cfg for AMSTEST using USEREXIT ON

DB20000I The UPDATE DATABASE CONFIGURATION command completed
successfully.

db2 =>update db cfg for AMSTEST using LOGRETAIN ON

DB20000I The UPDATE DATABASE CONFIGURATION command completed
successfully.

$db2 "get db cfg for AMSTEST" | grep -i "BACKUP PENDING"

Log retain for recovery enabled (LOGRETAIN) = BACKUP PENDING

The back-up pending indicator (LOGRETAIN) now has the value
‘BACKUP PENDING’, which is the new recovery point for the
database. DB2 requires an off-line back-up to establish this new
recovery point and get the database out of the BACKUP PENDING
state. Before making an off-line back-up we have to close all
connections and restart the database.
$ db2 force application all

DB20000I The FORCE APPLICATION command completed successfully.
DB21024I This command is asynchronous and may not be effective
immediately.

$db2 connect reset
DB20000I The SQL command completed successfully.

$db2stop
SQL1064N DB2STOP processing was successful

$db2start
SQL1063N DB2START processing was successful.

TSM:
$db2 backup db AMSTEST to tsm
Backup successful. The timestamp for this backup image is :
20021311141448001

FILE SYSTEM

$db2 backup db AMSTEST to /backup_fs/amstestdb/
Backup successful.

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

The timestamp for this backup image is :20021311141448001

If the back-up ends successfully, then the updated history file will
reset the back-up pending flag from BACKUP PENDING to
RECOVERY.
We’ve just produced a database image, which will be a starting
point for the recovery process if we need to rebuild the database
to a consistent state. The image is:
 Database configuration release level = 0x0900
 Database release level = 0x0900
 Log retain for recovery enabled (LOGRETAIN) = RECOVERY
 User exit for logging enabled (USEREXIT) = ON

Finally we have everything prepared for an online back-up.
TSM:
db2 => backup database AMSTEST online use tsm
Backup successful. The timestamp for this backup image is:
20021311141448001
FILE SYSTEM

$db2 backup db AMSTEST online to /backup_fs/amstest/

Backup successful. The timestamp for this backup image is :
20021311141448001

If we were to try to run the delta back-up now, the database log
file would display the message: ‘Incremental backup not permitted
for tablespace 0 (SYSCATSPACE). TRACKMOD not enabled’.
We need to update the TRACKMOD parameter:
db2 => update db cfg for AMSTEST using TRACKMOD ON
DB20000I The UPDATE DATABASE CONFIGURATION command completed
successfully.

Restart the database after that change is made and make the off-
line back-up.
$ db2 force application all
DB20000I The FORCE APPLICATION command completed successfully.
DB21024I This command is asynchronous and may not be effective
immediately.

$db2 connect reset
DB20000I The SQL command completed successfully.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 34

$db2stop
SQL1064N DB2STOP processing was successful

$db2start
SQL1063N DB2START processing was successful.

TSM:
$db2 backup db AMSTEST to tsm
Backup successful. The timestamp for this backup image is :
20021311161448001
$db2 backup db AMSTEST online incremental delta use tsm
Backup successful. The timestamp for this backup image is :
20021311161448001

FILE SYSTEM :

$db2 backup db AMSTEST online incremental delta to /backup_fs/amstest
Backup successful. The timestamp for this backup image is :
20021311161448001

BACK-UP CONTROL
All important information is stored in one file, called the history
file (db2rhist.asc). DB2 handles duplicated versions of the same
file (db2rhist.bak) for recovery reasons.
For example, the history file contains information of all the back-
ups for database AMSTEST:
$ db2 "list history backup all for AMSTEST"

Op Obj Timestamp+Sequence Type Dev Earliest Log Current Log Backup ID
 -- -- ------------------ ---- -- ------------ ------------ ------------
 B D 2ØØ21111162Ø15ØØ3 E A SØØØ22Ø7.LOG SØØØ22Ø7.LOG

 Contains 3 tablespace(s):

 ØØØØ1 SYSCATSPACE
 ØØØØ2 OLTP_1A
 ØØØØ3 OLTB_1B
--
 Comment: DB2 BACKUP AMSTEST ONLINE
 Start Time: 2ØØ21311141448ØØ1
 End Time: 2ØØ21311141848ØØ1

The suggested restore order of images using timestamp
20021311141448001 for database AMSTEST is:

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

==
 restore db amstest incremental taken at 2ØØ212Ø6Ø1Ø134
 restore db amstest incremental taken at 2ØØ212Ø4Ø1Ø129
 restore db amstest incremental taken at 2ØØ212Ø4172723
 restore db amstest incremental taken at 2ØØ212Ø5Ø1Ø133
 restore db amstest incremental taken at 2ØØ212Ø6Ø1Ø134

It is recommended that every DBA checks and compares the
back-up size on TSM or file system for delta and full back-ups.
Compare on TSM:
 >> dsmc query backup "/AMSTEST/DELTA.*.*"

 Size Backup Date Mgmt Class A/I File
 ---- ---------- ---------- -- ----
API 7.944.346 K 02.11.2002 01:02:47 MC3650 A /AMSTEST/NODE0000/
DELTA.20021111010247.1

>> dsmc query backup “/AMSTEST/FULL.*.*”

 Size Backup Date Mgmt Class A/I File
 ---- ---------- ---------- -- ----
API 7.944.363 K 11.11.2002 01:05:52 MC3650 A /AMSTEST/NODE0000/
FULL.20021111010552.1

This information is critical in making a final decision. In our case,
delta back-up is almost as large as a full back-up and will not be
the right solution for us.

CONCLUSION
Moving a production database to a test machine can be a
complicated and frustrating process. This article attempts to
alleviate the potential pitfalls by providing a step-by-step guide
for creating your own back-up/restore scripts and automating
them to run without any user intervention. As with any major
movement of data, it is highly recommended to practise the
back-up and restore scripts using a test database for both the
production and test machine before implementing a large-scale
back-up and restore.
Vikas Baruah
Senior Technical Specialist
American Management Systems (USA) © Xephon 2004

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 36

A program to fix tablespaces/indexes with
RESTRICTed access

DB2 objects with RESTRICTed access are tablespaces/indexes
that became inaccessible through (for example) the cancellation
of a job (LOAD for example), or because a utility executing on a
resource will not permit other processes to access the same
resource.
When a DB2 object is RESTRICTed in our production
environment, we need to quickly identify which utility is executing
and solve the problem because it negatively affects the availability
of the system. We decided to provide the operators with a tool to
assist them in this situation.
In the development and test environments, a RESTRICTed DB2
object causes delay in the work of the programmers. It was
desirable to have a tool for them to resolve the problem
themselves.
I developed the program DB2RES to automatically fix
RESTRICTed DB2 objects, which can be executed by the person
who detects the problem (operators or programmers).
This program may be executed by people with little knowledge
of DB2 because they don’t need to know DB2 commands or DB2
utilities to use it. The program is actually executed by operators
(in the production environment) and programmers (in
development and test environments).
We now quickly and easily resolve incidents caused by DB2
objects becoming RESTRICTed (and inaccessible), cutting down
the number of calls to and interventions by the DB2 support staff.
As a consequence, we have improved the quality of the service
and the availability of the system.
DB2RES (REXX/ISPF) shows in the main panel all the DB2
objects in RESTRICTed mode, the various statuses possible
(RO/STOP/CHKP/COPY/RECP/... etc), the name of the object,

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

the database, the partition, and the type of object (tablespace/
index).
The program is initiated by means of a unique option R (fix or
resolve), and in some cases (RECP for example) with suboptions.
The program analyses the status of the DB2 object selected and
builds a combination of commands and/or utility jobs to fix the
problem and make it accessible (RW). The DB2 commands are
executed automatically. In the case of the job(s) these are
displayed on an ISPF window (not editable), and they are
submitted for execution by pressing Enter. After running the
job(s), the user may again check the DB2 objects by pressing
Enter in the main panel. The object should now be accessible (ie
it should not appear on the panel).
DB2RES fixes DB2 objects in any combination of the following
RESTRICTed statuses: RO, STOP, STOPP, UT, UTRO, UTRW,
GRECP, LPL, COPY, CHKP, PSRBD, RBDP, RBDP*, RECP. It
may be extended to resolve other RESTRICTed statuses too.
The only condition is that it first fixes the tablespace and then its
index(es) in the case where both the tablespace and its index(es)
are RESTRICTed.
The program may accept many options together on the main
panel (it uses the ISPF variable ZTDSELS) and processes them
one-by-one until all the commands and/or utilities are completed.
This version of the DB2RES program uses BMC utilities, but it
could be changed to generate IBM utilities or any third-party’s
software.
The program recognizes/checks when a DB2 object is in use by
a utility (and as a consequence of this could be RESTRICTed –
a load, for example IBM’s Load or BMC’s Load Plus – and refuses
to start, not building any commands and/or utilities.
If the utility is not active (STOPPED for example), the program
terminates the utility and then fixes the DB2 object.
The program supplies help panels (F1 key). In addition, it has

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 38

explanatory and error messages in two versions – short and long
(accessible by pressing the F1 key when it shows a short
message).
It uses a library of messages (ISPMLIB).
It maintains a log in which to write all the users’ actions. It stores
information about the option chosen (D to display the main panel
and R to fix/resolve), the user who executes DB2RES, DB2
subsystem, status (restrict) of the DB2 object, name of the DB2
object, database, tablespace or index, and date and time of the
DB2RES execution.
At the start of its execution the program searches the DB2
subsystems defined on OS/390 (reads the DB2 vectors from
storage), which are shown in an initial panel – where the user can
choose the DB2 subsystem.
DB2RES is a REXX/ISPF program that uses tables and windows
ISPF. At present the program is executed with OS/390 V2.9, DB2
V6.1.
It uses BMC commands BMCDSN V2.R3.00 to drive the BMC
utilities. The BMC utilities used are BMC Copy Plus V6.2 and
BMC Recover Plus V3.4. It can be any version of the BMC utilities
or you can change the program to use IBM utilities.
I installed the program DB2RES as an option on the DB2 panel
DSNEPRI (beside SPUFI, QMF).
/* REXX carlos-osorio@excite.com */
TRACE OFF
NUMERIC DIGITS 12;
CVT = C2X(STORAGE(1Ø,4)) /* ADDR DE CVT */
CVTJESCT= D2X((X2D(CVT))+296) /* POINTER A CVTJESCT */
JESCT = C2X(STORAGE(CVTJESCT,4)) /* ADDR DE JESCT */
JESSSCT = D2X((X2D(JESCT))+24) /* POINTER A JESSSCT */
SSCVT = C2X(STORAGE(JESSSCT,4)) /* ADDR DE SSCVT */
J = Ø
DO I = 1 WHILE (SSCVT <> ØØØØØØØØ)
 SSCTSNAM=D2X((X2D(SSCVT))+8) /* POINTER A SSCTSNAM */
 ERLY = D2X((X2D(SSCVT))+2Ø) /* POINTER A ERLY */
 ERLYAD= C2X(STORAGE(ERLY,4)) /* ADDR DE ERLY */
 ERLYSCOM= D2X((X2D(ERLYAD))+56) /* POINTER A ERLYSCOM */
 IF SUBSTR(STORAGE(ERLYSCOM,64),29,8) = 'DSN3EPX ' THEN

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 DO
 J = J + 1
 SSIDDB2.J = STORAGE(SSCTSNAM,4) /* ADDR DE SSCTSNAM */
 END
 SSCTSCTA = D2X((X2D(SSCVT))+4) /* POINTER AL SGTE SSCVT*/
 SSCVT = C2X(STORAGE(SSCTSCTA,4))
END
"ISPEXEC LIBDEF ISPPLIB DATASET ID('YOUR.PANELI')"
"ISPEXEC LIBDEF ISPMLIB DATASET ID('YOUR.MSGLBI')"
"ISPEXEC TBCREATE TSSIDDB2",
"NAMES(O SDB2)",
"NOWRITE REPLACE"
O= '';
DO J = 1 TO J
SDB2 = SSIDDB2.J
"ISPEXEC TBADD TSSIDDB2"
END
"ISPEXEC TBTOP TSSIDDB2"
"ISPEXEC TBDISPL TSSIDDB2 PANEL(DB2RESSP)"
IF RC = 8 THEN EXIT;
"ISPEXEC LIBDEF ISPPLIB"
"ISPEXEC LIBDEF ISPMLIB"
"ISPEXEC TBEND TSSIDDB2"
SSID = SDB2
SELECT
 WHEN SSID = 'DB2P' THEN
 DO
 "ISPEXEC LIBDEF ISPPLIB DATASET ID('YOUR.PROD.PANELLIB.USER')"
 "ISPEXEC LIBDEF ISPMLIB DATASET ID('YOUR.PROD.MSGLIB')"
 LOGPREFIX = 'PROD'
 END
 WHEN SSID = 'DB2D' THEN
 DO
 "ISPEXEC LIBDEF ISPPLIB DATASET ID('YOUR.DESA.PANELLIB.USER')"
 "ISPEXEC LIBDEF ISPMLIB DATASET ID('YOUR.DESA.MSGLIB')"
 LOGPREFIX = 'DESA'
 END
 WHEN SSID = 'DB2T' THEN
 DO
 "ISPEXEC LIBDEF ISPPLIB DATASET ID('YOUR.TEST.PANELLIB.USER')"
 "ISPEXEC LIBDEF ISPMLIB DATASET ID('YOUR.TEST.MSGLIB')"
 LOGPREFIX = 'MBVD'
 END
 OTHERWISE
 DO
 "ISPEXEC LIBDEF ISPPLIB DATASET ID('YOUR.PROD.PANELLIB.USER')"
 "ISPEXEC LIBDEF ISPMLIB DATASET ID('YOUR.PROD.MSGLIB')"
 LOGPREFIX = 'PROD'
 END
END

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 40

"ISPEXEC TBCREATE TRES",
"NAMES(O STATUS NAME DATABASE PART TYPE)",
"NOWRITE REPLACE"
RESCOPY_EXIT = 'N';
RESCHKP_EXIT = 'N';
RESRBDP_EXIT = 'N';
RESREC1_EXIT = 'N';
RESREC2_EXIT = 'N';
RESREC3_EXIT = 'N';
RESREC4_EXIT = 'N';
DO FOREVER
O = ''
IF RESCOPY_EXIT = 'N' & ,
 RESCHKP_EXIT = 'N' & ,
 RESRBDP_EXIT = 'N' & ,
 RESREC1_EXIT = 'N' & ,
 RESREC2_EXIT = 'N' & ,
 RESREC3_EXIT = 'N' & ,
 RESREC4_EXIT = 'N' THEN CALL DISRES;
"ISPEXEC TBDISPL TRES PANEL(DB2RESP)";
IF RC = 8 THEN
 DO
 "ISPEXEC LIBDEF ISPPLIB"
 "ISPEXEC LIBDEF ISPMLIB"
 "ISPEXEC TBEND TRES"
 EXIT Ø;
 END
ELSE DO
 TDSELS = ZTDSELS
 IF TDSELS = Ø THEN
 DO
 RESCOPY_EXIT = 'N';
 RESCHKP_EXIT = 'N';
 RESRBDP_EXIT = 'N';
 RESREC1_EXIT = 'N';
 RESREC2_EXIT = 'N';
 RESREC3_EXIT = 'N';
 RESREC4_EXIT = 'N';
 END
 IF PFKEYIN = 'S' THEN "ISPEXEC DISPLAY PANEL(DB2RESH)"
 IF TDSELS > Ø THEN CALL TRATA_RESTRICT
 DO WHILE TDSELS > 1
 "ISPEXEC TBDISPL TRES"
 TDSELS = ZTDSELS
 IF TDSELS > Ø THEN CALL TRATA_RESTRICT
 END
 IF RESCOPY_EXIT = 'N' & ,
 RESCHKP_EXIT = 'N' & ,
 RESRBDP_EXIT = 'N' & ,
 RESREC1_EXIT = 'N' & ,

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 RESREC2_EXIT = 'N' & ,
 RESREC3_EXIT = 'N' & ,
 RESREC4_EXIT = 'N' THEN CALL TBDELROWS
 END
END
/*--*/
/*--------------------- R U T I N A S - carlos-osorio@excite.com -*/
/*--*/
DISRES:
W = OUTTRAP('RES.')
 QUEUE "-DIS DB(*) SPACE(*) RES LIMIT(*)"
 QUEUE "END"
 "DSN SYSTEM("SSID")"
W = OUTTRAP('OFF')
IF RC >= 12 THEN
 DO
 "DELSTACK"
 ADDRESS ISPEXEC "SETMSG MSG(DBC3ØØ)" /* DB2 ABAJO */
 RETURN
 END
RESMAX = RES.Ø
IF WORD(RES.RESMAX,1) = 'DSN9Ø22I' THEN /* NORMAL DIS RES */
 DO
 IF SUBSTR(RES.1,1,8) = 'DSNT365I' THEN /* NO HAY OBJETOS RES */
 DO
 ADDRESS ISPEXEC "SETMSG MSG(DBC3Ø1)"
 DISRES_ZERO = 1
 CALL GRABALOG
 RETURN
 END
 END
ELSE
 IF WORD(RES.RESMAX,1) = 'DSN9Ø23I' THEN /* ABNORMAL DIS RES */
 DO
 ADDRESS ISPEXEC "SETMSG MSG(DBC3Ø2)"
 RETURN
 END
I = 1;
DO I = I WHILE I < RES.Ø
 IF (SUBSTR(RES.I,1,8) = 'DSNT362I') THEN /* DATABASE */
 DO
 DATABASE = WORD(RES.I,5)
 DO K = 1 UNTIL (SUBSTR(RES.I,1,8) = 'DSNT397I' |,
 SUBSTR(RES.I,1,8) = '******* ') /*FIN DISPLAY*/
 I = I + 1;
 END
 IF (SUBSTR(RES.I,1,8) = '******* ') THEN
 DO
 ADDRESS ISPEXEC "SETMSG MSG(DBC3Ø1)"
 DISRES_ZERO = 1

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 42

 CALL GRABALOG
 RETURN
 END
 DO K = 1 UNTIL (SUBSTR(RES.I,1,8) = '--------' |, /* TS/IX */
 SUBSTR(RES.I,1,8) = '******* ') /*FIN DISPLAY*/
 I = I + 1;
 END
 IF (SUBSTR(RES.I,1,8) = '******* ') THEN
 DO
 ADDRESS ISPEXEC "SETMSG MSG(DBC3Ø1)"
 DISRES_ZERO = 1
 RETURN
 END
 I = I + 1;
 DO K = 1 UNTIL (SUBSTR(RES.I,1,8) = '******* ')
 NAME = WORD(RES.I,1)
 TYPE = WORD(RES.I,2)
 SELECT
 WHEN TYPE = 'TS' THEN TYPE = 'TABLESPACE'
 WHEN TYPE = 'IX' THEN TYPE = 'INDEX '
 OTHERWISE TYPE = ' '
 END
 PART = SUBSTR(RES.I,15,4)
 STATUS = SUBSTR(RES.I,2Ø,18)
 IF SUBSTR(NAME,1,1) <> '-' THEN
 DO
 "ISPEXEC TBADD TRES"
 DISRES_ADD = 1
 CALL GRABALOG
 END
 I = I + 1;
 END
 END
END
"ISPEXEC TBSORT TRES FIELDS(DATABASE,C,A,NAME,C,A,TYPE,C,D,PART,N,A)"
"ISPEXEC TBTOP TRES"
RETURN
/*---------------------------------- carlos-osorio@excite.com --*/
TRATA_RESTRICT:
IF O = 'R' THEN
 DO
 SELECT
 WHEN SUBSTR(DATABASE,1,4) = 'DSND' THEN
 DO
 ADDRESS ISPEXEC "SETMSG MSG(DBC4ØØ)"
 RETURN
 END
 WHEN SUBSTR(DATABASE,1,3) = 'DSQ' THEN
 DO
 ADDRESS ISPEXEC "SETMSG MSG(DBC4Ø1)"

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 RETURN
 END
 WHEN SUBSTR(DATABASE,1,3) = 'BMC' THEN
 DO
 ADDRESS ISPEXEC "SETMSG MSG(DBC4Ø2)"
 RETURN
 END
 OTHERWISE NOP
 END
 CALL STATUS_PARSE
 DO R = 1 TO NRES
 SELECT
 WHEN STATUSRES.R = 'RW' THEN NOP
 WHEN STATUSRES.R = 'RO' THEN CALL RESSTA
 WHEN STATUSRES.R = 'STOP' THEN CALL RESSTA
 WHEN STATUSRES.R = 'STOPP' THEN CALL RESSTA
 WHEN STATUSRES.R = 'UT' THEN CALL RESSTA
 WHEN STATUSRES.R = 'UTRO' THEN CALL RESSTAFORCE
 WHEN STATUSRES.R = 'UTRW' THEN CALL RESSTAFORCE
 WHEN STATUSRES.R = 'GRECP' THEN CALL RESSTAFORCE
 WHEN STATUSRES.R = 'LPL' THEN CALL RESSTAFORCE
 WHEN STATUSRES.R = 'COPY' THEN CALL RESCOPY
 WHEN STATUSRES.R = 'CHKP' THEN CALL RESCHKP
 WHEN STATUSRES.R = 'PSRBD' THEN CALL RESRBDP
 WHEN STATUSRES.R = 'RBDP' THEN CALL RESRBDP
 WHEN STATUSRES.R = 'RBDP*' THEN CALL RESRBDP
 WHEN STATUSRES.R = 'RECP' THEN CALL RESRECP
 OTHERWISE DO
 ADDRESS ISPEXEC "SETMSG MSG(DBC4Ø3)"
 RETURN
 END
 END
 END
 END
IF O = 'D' THEN NOP /* PARA FUTURA AMPLIACION DB2RES */
RETURN
/*--*/
STATUS_PARSE:
STATUST = TRANSLATE(STRIP(STATUS),' ',',')
NRES = WORDS(STATUST)
DO I = 1 TO NRES
 STATUSRES.I = WORD(STATUST,I)
END
RETURN
/*--*/
RESSTA:
CALL DISUTIBMC;
IF STATUSRBMC = 'X' THEN RETURN;
CALL TERUTIIBMSTOP;
W = OUTTRAP('STA.')

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 44

QUEUE "-START DATABASE("DATABASE") SPACE("NAME") ACCESS(RW)"
QUEUE "END"
"DSN SYSTEM("SSID")"
W = OUTTRAP('OFF')
IF RC = Ø THEN
 DO
 ADDRESS ISPEXEC "SETMSG MSG(DBC3Ø4)" /* START SATISFACTORIO */
 CALL GRABALOG
 END
ELSE
 ADDRESS ISPEXEC "SETMSG MSG(DBC3Ø3)" /* START CON PROBLEMAS */
RETURN
/*--*/
RESSTAFORCE:
CALL DISUTIBMC;
IF STATUSRBMC = 'X' THEN RETURN;
CALL TERUTIIBMSTOP;
W = OUTTRAP('STA.')
QUEUE "-START DATABASE("DATABASE") SPACE("NAME") ACCESS(FORCE)"
QUEUE "END"
"DSN SYSTEM("SSID")"
W = OUTTRAP('OFF')
IF RC = Ø
 DO
 ADDRESS ISPEXEC "SETMSG MSG(DBC3Ø4)" /* START SATISFACTORIO */
 CALL GRABALOG
 END
ELSE
 ADDRESS ISPEXEC "SETMSG MSG(DBC3Ø3)" /* START CON PROBLEMAS */
RETURN
/*---*/
RESCOPY:
CALL DISUTIBMC;
IF STATUSRBMC = 'X' THEN RETURN;
CALL TERUTIIBMSTOP;
"NEWSTACK"
CALL LIBDEFWINDJ;
DSNJOB = USERID() || '.RES' || '.JOB' || TIME('S')
ADDRESS TSO "ALLOC FILE(JOB) DATASET('"DSNJOB"') " ,
 "NEW CAT REUSE UNIT(SYSDA)" ,
 "LRECL(8Ø) BLKSIZE(2792Ø) RECFM(F B) SPACE(1,1) CYL"
 IF RC <> Ø THEN
 DO
 ADDRESS ISPEXEC "SETMSG MSG(DBCØ21)"
 RETURN
 END
JOBNAME = SUBSTR((USERID() || 'IC'),1,8)
QUEUE "//"JOBNAME" JOB (DB2),'OSORIO',MSGCLASS=X,"
QUEUE "// CLASS=S,MSGLEVEL=(1,1),NOTIFY=&SYSUID"
QUEUE "//STEP1 EXEC PGM=ACPMAIN,PARM='"SSID",,NEW,MSGLEVEL(1)',"

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

QUEUE "// REGION=ØM"
QUEUE "//SYSPRINT DD SYSOUT=*"
QUEUE "//SYSIN DD *"
SELECT
 WHEN SSID = 'DB2P' THEN
 DO
 QUEUE " OUTPUT LOCALP UNIT SYSDA"
 QUEUE " DSNAME PROD.P.&DB.&TS.D&DATE.H&TIME"
 QUEUE " OUTPUT RECOVP UNIT SYSDA"
 QUEUE " DSNAME BRS.P.&DB.&TS.D&DATE.H&TIME"
 END
 WHEN SSID = 'DB2D' THEN
 DO
 QUEUE " OUTPUT LOCALP UNIT SYSDA"
 QUEUE " DSNAME DESA.A.&DB.&TS.D&DATE.H&TIME"
 END
 WHEN SSID = 'DB2T' THEN
 DO
 QUEUE " OUTPUT LOCALP UNIT SYSDA"
 QUEUE " DSNAME TEST.A.&DB.&TS.D&DATE.H&TIME"
 END
 OTHERWISE
 DO
 QUEUE " OUTPUT LOCALP UNIT SYSDA"
 QUEUE " DSNAME PROD.P.&DB.&TS.D&DATE.H&TIME"
 QUEUE " OUTPUT RECOVP UNIT SYSDA"
 QUEUE " DSNAME BRS.P.&DB.&TS.D&DATE.H&TIME"
 END
END
IF PART = '' THEN
QUEUE " COPY TABLESPACE "DATABASE"."NAME
ELSE
QUEUE " COPY TABLESPACE "DATABASE"."NAME" DSNUM "PART;
SELECT
 WHEN SSID = 'DB2P' THEN QUEUE " COPYDDN(LOCALP) RECOVERYDDN(RECOVP)"
 WHEN SSID = 'DB2D' THEN QUEUE " COPYDDN(LOCALP)"
 WHEN SSID = 'DB2T' THEN QUEUE " COPYDDN(LOCALP)"
 OTHERWISE QUEUE " COPYDDN(LOCALP) RECOVERYDDN(RECOVP)"
END
QUEUE " SHRLEVEL CHANGE"
QUEUE " FULL YES"
QUEUE " RESETMOD NO"
QUEUE "//"
QUEUE ""
ADDRESS TSO "EXECIO * DISKW JOB (FINIS"
ADDRESS TSO "EXECIO * DISKR JOB (STEM JOBCOPQ. FINIS"
"ISPEXEC TBCREATE TJOBCOP",
"NAMES(JOBCOP)",
"NOWRITE REPLACE"
DO I = 1 TO JOBCOPQ.Ø

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 46

 JOBCOP = JOBCOPQ.I
 "ISPEXEC TBADD TJOBCOP"
END
RESCOPY_EXIT = 'N'
ADDRESS TSO "FREE DDNAME(JOB)"
ADDRESS ISPEXEC 'TBTOP TJOBCOP';
ADDRESS ISPEXEC 'ADDPOP ROW(3) COLUMN(16)';
ADDRESS ISPEXEC 'TBDISPL TJOBCOP PANEL(DB2TCOPJ)';
IF RC = 8 THEN
 DO
 RESCOPY_EXIT = 'S'
 END
ELSE
 DO
 Y = OUTTRAP(DELSUB.)
 "SUBMIT '"DSNJOB"'"
 Y = OUTTRAP('OFF')
 IF RC <> Ø THEN
 DO
 ADDRESS ISPEXEC "SETMSG MSG(DBCØ22)"
 RETURN
 END
 CALL GRABALOG
 END
ADDRESS ISPEXEC 'REMPOP';
"DELSTACK"
"ISPEXEC TBEND TJOBCOP"
CALL LIBDEFPANEL;
CALL DELJOB;
RESCOPY_EXIT = 'S'
RETURN
/*---*/
RESCHKP:
CALL DISUTIBMC;
IF STATUSRBMC = 'X' THEN RETURN;
CALL TERUTIIBMSTOP;
IF TYPE = 'INDEX' THEN CALL TRAEIXCREATOR;
"NEWSTACK"
"ISPEXEC ADDPOP ROW(3) COLUMN(16)"
CALL LIBDEFWINDJ;
DSNJOB = USERID() || '.RES' || '.JOB' || TIME('S')
ADDRESS TSO "ALLOC FILE(JOB) DATASET('"DSNJOB"') " ,
 "NEW CAT REUSE UNIT(SYSDA)" ,
 "LRECL(8Ø) BLKSIZE(2792Ø) RECFM(F B) SPACE(1,1) CYL"
 IF RC <> Ø THEN
 DO
 ADDRESS ISPEXEC "SETMSG MSG(DBCØ21)"
 RETURN
 END
JOBNAME = SUBSTR((USERID() || 'CK'),1,8)

 47© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

QUEUE "//"JOBNAME" JOB (DB2),'OSORIO',MSGCLASS=X,"
QUEUE "// CLASS=S,MSGLEVEL=(1,1),NOTIFY=&SYSUID"
QUEUE "//STEP1 EXEC PGM=DSNUTILB,PARM='"SSID",,',REGION=ØM"
QUEUE "//SYSPRINT DD SYSOUT=*"
QUEUE "//UTPRINT DD SYSOUT=*"
QUEUE "//SYSUDUMP DD SYSOUT=*"
QUEUE "//SORTOUT DD DSN=&&SORTOUT,"
QUEUE "// DISP=(NEW,DELETE,CATLG),UNIT=SYSDA,"
QUEUE "// SPACE=(TRK,(1ØØ,1ØØ),,,ROUND)"
QUEUE "//SYSUT1 DD DSN=&&SYSUT1,"
QUEUE "// DISP=(NEW,DELETE,CATLG),UNIT=SYSDA,"
QUEUE "// SPACE=(TRK,(1ØØ,1ØØ),,,ROUND)"
QUEUE "//SYSERR DD DSN=&&SYSERR,"
QUEUE "// DISP=(NEW,DELETE,CATLG),UNIT=SYSDA,"
QUEUE "// SPACE=(TRK,(1ØØ,1ØØ),,,ROUND)"
QUEUE "//SYSIN DD *"
IF TYPE = 'TABLESPACE' & PART = '' THEN
QUEUE " CHECK DATA TABLESPACE "DATABASE"."NAME;
IF TYPE = 'TABLESPACE' & PART <> '' THEN
QUEUE " CHECK DATA TABLESPACE "DATABASE"."NAME" PART "PART;
IF TYPE = 'INDEX' & PART = '' THEN
QUEUE " CHECK INDEX ("IXCREATOR"."NAME")";
IF TYPE = 'INDEX' & PART <> '' THEN
QUEUE " CHECK INDEX ("IXCREATOR"."NAME") PART "PART;
QUEUE "//"
QUEUE ""
ADDRESS TSO "EXECIO * DISKW JOB (FINIS"
ADDRESS TSO "EXECIO * DISKR JOB (STEM JOBCHKQ. FINIS"
"ISPEXEC TBCREATE TJOBCHK",
"NAMES(JOBCHK)",
"NOWRITE REPLACE"
DO I = 1 TO JOBCHKQ.Ø
 JOBCHK = JOBCHKQ.I
 "ISPEXEC TBADD TJOBCHK"
END
RESCHKP_EXIT = 'N'
ADDRESS TSO "FREE DDNAME(JOB)"
"ISPEXEC TBTOP TJOBCHK"
"ISPEXEC TBDISPL TJOBCHK PANEL(DB2TCHKJ)"
IF RC = 8 THEN
 DO
 RESCHKP_EXIT = 'S'
 END
ELSE
 DO
 Y = OUTTRAP(DELSUB.)
 "SUBMIT '"DSNJOB"'"
 Y = OUTTRAP('OFF')
 IF RC <> Ø THEN
 DO

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 48

 ADDRESS ISPEXEC "SETMSG MSG(DBCØ22)"
 RETURN
 END
 CALL GRABALOG
 END
"DELSTACK"
"ISPEXEC REMPOP"
"ISPEXEC TBEND TJOBCHK"
CALL LIBDEFPANEL;
CALL DELJOB;
RESCHKP_EXIT = 'S'
RETURN
/*--*/
RESRBDP:
CALL DISUTIBMC;
IF STATUSRBMC = 'X' THEN RETURN;
CALL TERUTIIBMSTOP;
CALL TRAEIXCREATOR;
"NEWSTACK"
"ISPEXEC ADDPOP ROW(3) COLUMN(16)"
CALL LIBDEFWINDJ;
DSNJOB = USERID() || '.RES' || '.JOB' || TIME('S')
ADDRESS TSO "ALLOC FILE(JOB) DATASET('"DSNJOB"') " ,
 "NEW CAT REUSE UNIT(SYSDA)" ,
 "LRECL(8Ø) BLKSIZE(2792Ø) RECFM(F B) SPACE(1,1) CYL"
 IF RC <> Ø THEN
 DO
 ADDRESS ISPEXEC "SETMSG MSG(DBCØ21)"
 RETURN
 END
JOBNAME = SUBSTR((USERID() || 'RB'),1,8)
QUEUE "//"JOBNAME" JOB (DB2),'OSORIO',MSGCLASS=X,"
QUEUE "// CLASS=S,MSGLEVEL=(1,1),NOTIFY=&SYSUID"
QUEUE "//STEP1 EXEC PGM=AFRMAIN,REGION=ØM,"
QUEUE "// PARM='"SSID",,NEW,MSGLEVEL(1),,RDB2STAT(RW)'"
QUEUE "//SYSPRINT DD SYSOUT=*"
QUEUE "//UTPRINT DD SYSOUT=*"
QUEUE "//SYSIN DD *"
IF PART = '' THEN
QUEUE " RECOVER INDEX ("IXCREATOR"."NAME")";
IF PART <> '' THEN
QUEUE " RECOVER INDEX ("IXCREATOR"."NAME") DSNUM "PART;
QUEUE " SORTDEVT SYSDA"
QUEUE " SORTNUM 12"
QUEUE " NOWORKDDN"
QUEUE " ANALYZE YES"
QUEUE " REDEFINE YES"
QUEUE "//"
QUEUE ""
ADDRESS TSO "EXECIO * DISKW JOB (FINIS"

 49© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

ADDRESS TSO "EXECIO * DISKR JOB (STEM JOBRBDQ. FINIS"
"ISPEXEC TBCREATE TJOBRBD",
"NAMES(JOBRBD)",
"NOWRITE REPLACE"
DO I = 1 TO JOBRBDQ.Ø
 JOBRBD = JOBRBDQ.I
 "ISPEXEC TBADD TJOBRBD"
END
RESRBDP_EXIT = 'N'
ADDRESS TSO "FREE DDNAME(JOB)"
"ISPEXEC TBTOP TJOBRBD"
"ISPEXEC TBDISPL TJOBRBD PANEL(DB2TRBDJ)"
IF RC = 8 THEN
 DO
 RESRBDP_EXIT = 'S'
 END
ELSE
 DO
 Y = OUTTRAP(DELSUB.)
 "SUBMIT '"DSNJOB"'"
 Y = OUTTRAP('OFF')
 IF RC <> Ø THEN
 DO
 ADDRESS ISPEXEC "SETMSG MSG(DBCØ22)"
 RETURN
 END
 CALL GRABALOG
 END
"DELSTACK"
"ISPEXEC REMPOP"
"ISPEXEC TBEND TJOBRBD"
CALL LIBDEFPANEL;
CALL DELJOB;
RESRBDP_EXIT = 'S'
RETURN
/*--*/
RESRECP:
IF TYPE = 'INDEX' THEN
 DO
 CALL RESRBDP
 RETURN
 END;
CALL DISUTIBMC;
IF STATUSRBMC = 'X' THEN RETURN;
CALL TERUTIIBMSTOP;
CALL LIBDEFWINDJ;
"NEWSTACK"
E = ''
RESREC1_EXIT = 'N'
"ISPEXEC ADDPOP ROW(2) COLUMN(2)"

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 50

"ISPEXEC DISPLAY PANEL(DB2TRECO)"
IF RC = 8 THEN
 DO
 RESREC1_EXIT = 'S'
 R = NRES + 1
 END
ELSE DO
 IF E = '1' THEN
 DO
 DO I = 1 TO 9
 SYSIN.I = ''
 END
 CALL ALLOCSYS;

Editor’s note: this article will be concluded next month.
Carlos German Osorio Montoya
Database Administrator
BBVA Banco Continental (Peru) © Xephon 2004

Safe Software has announced that it has
added support for DB2 Universal Database
Spatial Extender to its complete product line,
including its Feature Manipulation Engine
(FME), FME Objects, SpatialDirect, and
FME SDP Server. The result is a direct
connection between DB2 Universal
Database and over 100 FME-supported GIS
(Geographic Information System), CAD and
database formats.

DB2 UDB with the DB2 Spatial Extender
enables businesses to store, manage, and
analyse spatial data (information about
geographic features) with traditional
business data. Customers can generate,
analyse, and exploit spatial information about
geographic features, such as the locations of
office buildings or the size of flood zones, and
integrate that information with any business
data to add another element of business
intelligence to the enterprise.

For further information contact:
Safe Software, Suite 2017, 7445 132nd
Street, Surrey, BC, Canada, V3W 1J8.
Tel: (604) 501 9985.
URL: http://www.safe.com/products/fme/
index.htm.

* * *

IBM has announced Version 8 (technically,
Version 8.1.4) of its DB2 Everyplace
middleware to enable the flow of information
to handheld computing devices, and has also
introduced an SMB-focused mid-market
version of the product, DB2 Everyplace
Express.

DB2 news

The new release features changes to simplify
both applications development and
administration. There’s now support for
Microsoft’s .Net Framework and .Net
Compact framework, and there are
significant improvements to the Java side of
the product. New support bundles IBM’s J9
Java Virtual Machine for improved
connectivity and performance to Java
databases to help developers build mobile
applications faster.

For further information contact your local
IBM representative.
URL: http://www-306.ibm.com/software/
data/db2/everyplace.

* * *

ACCPAC International (a CA subsidiary) has
announced Version 5.6 of ACCPAC CRM,
its customer relationship management
application.

The new version includes enhancements to
improve integration capabilities with other
business management applications, including
DB2, Lotus Notes, and Microsoft Outlook.

For further information contact:
ACCPAC, 6700 Koll Center Parkway, Third
Floor, Pleasanton, CA 94566, USA.
Tel: (925) 461 2625.
URL: http://www.accpac.com/products/
crmsfa/.

* * *

x xephon

	Homemade replication
	Sequence objects and identity columns
	Capturing dynamic SQL on DB2 for z/OS and OS/390 distributed processing
	Refreshing test and development environments with the most current production data
	A program to fix tablespaces/indexes with RESTRICTed access
	DB2 news

