
© Xephon Inc 2004

June 2004

140

In this issue

3 DB2 UDB V8 LUW – the
MERGE statement

5 An ISPF-SQL interface
17 Using Real Time Statistics (RTS)
31 Renaming a DB2 subsystem for

datasharing
51 DB2 news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

DB2 Update
Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Nicole Thomas
E-mail: nicole@xephon.com

Subscriptions and back-issues
A year’s subscription to DB2 Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in
the UK; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 2000 issue, are available separately
to subscribers for $33.75 (£22.50) each
including postage.

DB2 Update on-line
Code from DB2 Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon.
com/db2; you will need to supply a word
from the printed issue.

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior
permission of the copyright owner. Subscribers are free to copy any code reproduced in this
publication for use in their own installations, but may not sell such code or incorporate it in any
commercial product. No part of this publication may be used for any form of advertising, sales
promotion, or publicity without the written permission of the publisher. Copying permits are
available from Xephon in the form of pressure-sensitive labels, for application to individual
copies. A pack of 240 labels costs $36 (£24), giving a cost per copy of 15 cents (10 pence).
To order, contact Xephon at any of the addresses above.
 Printed in England.

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the
material it contains. Neither Xephon nor the
contributing organizations or individuals
accept any liability of any kind howsoever
arising out of the use of such material.
Readers should satisfy themselves as to the
correctness and relevance to their
circumstances of all advice, information,
code, JCL, and other contents of this journal
before making any use of it.

Contributions
When Xephon is given copyright, articles
published in DB2 Update are paid for at the
rate of $160 (£100 outside North America)
per 1000 words and $80 (£50) per 100 lines of
code for the first 200 lines of original material.
The remaining code is paid for at the rate of
$32 (£20) per 100 lines. To find out more
about contributing an article, without any
obligation, please download a copy of our
Notes for Contributors from
www.xephon.com/nfc.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

DB2 UDB V8 LUW – the MERGE statement

Have you ever wanted to combine the rows from one table into
another? In the past you had to write one, possibly two or
more, statements to do this. Well, one of the new SQL
statements available with DB2 UDB V8 FP2 (LUW) is the
MERGE statement. Put simply, it lets you merge data from one
table into another table. The best way to show this is in an
example. I ran the following SQL on a Windows 2000 machine
running DB2 V8 FP2.

Let’s look at a very simple ordering system. We will create two
tables called ‘total’ and ‘daily’ in the SAMPLE database. As the
names suggest, the daily table contains orders taken on that
day, and consists of an ID number, a name, a zip code, and the
amount of the order. The total table will contain the ID number,
a name, zip code, the total number of orders for that ID
number, and the total value of all those orders for that ID
number. We will want to merge the daily table into a total table,
updating records where the ID number is the same, and
inserting into the total table where the ID number does not
exist in that table.

We will use the MERGE statement, which works on the basis
of matching and non-matching columns between two tables,
namely the daily and total tables. If a column match is found
then the SQL following the WHEN MATCHED THEN keywords
is executed; and if no match is found then the SQL following
the WHEN NOT MATCHED THEN keywords is executed. This
will become clear in the example.

So let’s create the total table:

create table total (id int, name char(1Ø), zipcode char(1Ø)

,num_of_trans int, amount decimal(6,2))

And let’s create the daily table:

create table daily (id int, name char(1Ø), zipcode char(1Ø), amount int)

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 4

Now let’s insert two rows into each table:

insert into total values(1,'Helen','123456',3,1ØØ.ØØ)

insert into total values(2,'Fred' ,'234567',1,2Ø.ØØ)

insert into daily values(1,'Helen','123456',1Ø.ØØ)

insert into daily values(3,'Sue' ,'987654',5Ø.ØØ)

And let’s select from the two tables:

select * from total

ID NAME ZIPCODE NUM_OF_TRANS AMOUNT

----------- ---------- ---------- ------------ --------

 1 Helen 123456 3 1ØØ.ØØ

 2 Fred 234567 1 2Ø.ØØ

select * from daily

ID NAME ZIPCODE AMOUNT

----------- ---------- ---------- -----------

 1 Helen 123456 1Ø

 3 Sue 987654 5Ø

Now let’s issue the MERGE statement, and we will match on
the ID column and increment the num_of_trans column in the
total table if the ID values match (and sum up the amount
values). If the ID columns don’t match, then the row from the
daily table will be inserted into the total table:

merge into total t1 using (select * from daily) t2

on (t1.id = t2.id)

when matched then

 update set t1.num_of_trans = t1.num_of_trans + 1,

 t1.amount = t1.amount + t2.amount

when not matched then

 insert (id,name,zipcode,num_of_trans,amount) values

 (t2.id, t2.name, t2.zipcode,1,t2.amount)

Now let’s select from the total table again:

select * from total

ID NAME ZIPCODE NUM_OF_TRANS AMOUNT

----------- ---------- ---------- ------------ --------

 1 Helen 123456 4 11Ø.ØØ

 2 Fred 234567 1 2Ø.ØØ

 3 Sue 987654 1 5Ø.ØØ

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

You can see that the amount column for name Helen has gone
up to 110 (100 + 10) and the num_of_trans value has gone up
from 3 to 4. Also, the row from daily for Fred has been added
to the total table.

We can still select from daily (the merged rows have not been
deleted):

select * from daily

ID NAME ZIPCODE AMOUNT

----------- ---------- ---------- -----------

 1 Helen 123456 1Ø

 3 Sue 987654 5Ø

You can use the index advisor utility (db2advis) to advise on
any indexes that are required on the tables in the MERGE
statement. However, when I tried to look at the MERGE
statement using Visual Explain, I got the following message:
‘An access plan cannot be created because the statement you
used is not in the correct format or is not a query’.

I hope I have shown how the MERGE statement works, and
how it might be beneficial to you in certain circumstances.

C Leonard
Freelance Consultant (UK) © Xephon 2004

An ISPF-SQL interface

What the following REXX EXEC does is quite simple: basically
it takes an SQL SELECT statement as input, executes it, and
fills the result set into an ISPF table for further processing. The
name of the ISPF table is given back to the calling program
(plus some other information, like errormessage, sqlcode,
number of rows returned, etc). I found that this is a much easier
approach to reading data from a DB2 table than the usual
procedure:

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 6

1 Establish DSNREXX environment.

2 Establish DSNREXX connection.

3 Establish DB2 connection.

4 DECLARE CURSOR.

5 PREPARE SQL statement.

6 OPEN CURSOR.

7 FETCH result rows.

8 CLOSE CURSOR.

9 Examine all possible error conditions for steps 1-8.

If you are a DBA or programmer who often needs to write
REXX programs that read DB2 data, you will find DSN2ISPF
very handy.

There is one thing you need to beware of: if your ISPF table
contains one or more columns that are not part of the result set
from the DB2 table, specify placeholder values in your SQL
statement! Otherwise DSN2ISPF won’t work properly.

For example, your ISPF table should consist of three columns
– COL1, COL2, and COL3. You’re about to read COL1 and
COL2 from your DB2 table and COL3 is going to be calculated
later in your program. Write an SQL SELECT similar to the
following one:

SELECT DB2_COL1, DB2_COL2, Ø

FROM your-table

WHERE where-condition

If you do so, the ISPF table column COL3 will be initially set to
zero. Of course you can choose any initial value you want.

Note: DSN2ISPF contains two subroutines, DSN2ISPF_
LOCALDB2 and DSN2ISPF_DB2LOC.DSN2ISPF_
LOCALDB2 gives you the name of a DB2 subsystem that is
running on the System/390 LPAR where DSN2ISPF is currently
executing. That DB2 subsystem is used for the DSNREXX

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

connect. DSN2ISPF_DB2LOC gives you the location name of
a given DB2 subsystem-identifier. This location name is used
for the SQL CONNECT TO statement. At our site, we use these
two subroutines as external REXX EXECs that can be used by
any other program. This is a very useful standardization
method too.

DSN2ISPF uses some input parameters that are documented
in the source code itself. I’ve chosen default values for most of
them, which is sufficient for about 99% of all the occasions
when you are using DSN2ISPF.

Following the code for DSN2ISPF you will find a tiny sample
program to show the usage of DSN2ISPF in its most basic
form.

If you have any questions or comments, feel free to contact me
at peter.adlersburg@t-systems.at.

DSN2ISPF
/* Rexx

 Proc DSN2ISPF

 Do SQL Select Stmt and Create an ISPF Table containing the Data

 Returns ISPF Tablename (DSN2nnnn)

 Who: Peter Adlersburg / T-Systems Austria

 DSN2ISPF VGETs its Parameters from the ISPF-Var-Pool

 1) DSN2SSID : the DB2 Subsystem-ID (eg DSN)

 2) DSN2STMT : the SQL Select Statement that will be executed

 3) DSN2VARS : a list of Variable names that make up the ISPF

 table (Format var1,var2,...)

 4) DSN2KEYS : a list of Variable names that make up the Key of

 the ISPF Table (if DSN2ISPF_KEYS contains no

 value an unkeyed ISPF Table is created; Format

 key1,key2,...)

 5) DSN2TRCE : Causes a REXX Trace to be activated (normal

 REXX Trace Values will be used; default O (Off))

 6) DSN2ELVL : Error-Level:

 Ø ... No Errors and Informations

 1 ... Errors only (default)

 2 ... Informations and Errors

 7) DSN2ROWS : the maximum number of Rows that will be fetched

 (default is 999)

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 8

 8) DSN2ISOL : Desired Isolation level (CS,UR,RR,RS; UR is the

 default)

 9) DSN2TABB : Behaviour if NO-ROWS-FOUND-Condition is met

 TAB ... Build empty ISPF Table and return

 NOTAB ... Do NOT build ISPF Table and return

 (default)

 1Ø) DSN2ISPP : Parameters that will be used for ISPF Table

 Creation. The default is 'NOWRITE,REPLACE'

 11) DSN2LOCL : Determines whether a Connect to DSN2SSID can

 be made via another DB2 subsystem or not

 This can be useful when DDF of DSN2SSID is down

 during execution

 1 ... Connect is allowed via another subsystem

 (default)

 Ø ... Connect is done via Locationname of

 of DSN2SSID

 1), 2) and 3) are mandatory parameters !!

 All Parameters are deleted from ISPF Variable Pool after Execution

 of DSN2ISPF

 DSN2ISPF VPUTs some Variables after Execution that can be used by

 the caller

 DSN2RETC ErrorCode

 DSN2ERRM Errormessage

 DSN2RSLT Number of Rows fetched

 DSN2RETC-Values:

 Ø Successfull Execution

 1 Max.Number of Rows reached (Trunc.ISPF-Table returned)

 4 No Rows returned (Empty ISPF-Table returned)

 8 Parameter-Error

 12 ISPF- or DSNREXX-Error

 -nnnnn SQL-Error

*/

SIGNAL ON SYNTAX NAME DSN2ISPF_SYNTAX ;

Address TSO ;

DSN2RETC = '4' ; /* Default Returncode */

DSN2RSLT = 'Ø' ; /* Default Number of Result-*/

 /* Rows */

DSN2TNAM = 'DSN2ØØØØ' ; /* Default ISPF-Tablename */

"ISPEXEC VERASE (DSN2RETC,DSN2ERRM,DSN2RSLT) BOTH" ;

/************************ ErrorLevel **********************************/

"ISPEXEC VGET DSN2ELVL" ;

if rc = 8 | DSN2ELVL = '' then, /* Set Default Error level */

 DSN2ELVL = '1' ;

if DSN2ELVL < 'Ø' | DSN2ELVL > '2' then do ; /* Check Error level */

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 DSN2ELVL_ERR = DSN2ELVL ;

 DSN2ELVL = '1' ;

 retc = DSN2ISPF_MSG('Invalid Errorlevel: 'DSN2ELVL_ERR,'E') ;

 DSN2RETC = '8' ;

 signal DSN2ISPF_END ;

end ;

retc = DSN2ISPF_MSG('Current Errorlevel: 'DSN2ELVL,'I') ;

/************************ REXX Tracing ********************************/

"ISPEXEC VGET DSN2TRCE" ;

if rc = 8 | DSN2TRCE = '' then, /* Set Default REXX Tracing */

 DSN2TRCE = 'O' ;

Rx_Cmd = "Trace "DSN2TRCE ;

interpret Rx_Cmd ; /* Activate REXX Tracing */

retc = DSN2ISPF_MSG('Current Tracelevel: 'DSN2TRCE,'I') ;

/************************ Max.Number of Rows **************************/

"ISPEXEC VGET DSN2ROWS" ;

if rc = 8 | DSN2ROWS = '' then, /* Set Default MaxRows */

 DSN2ROWS = 999

if datatype(DSN2ROWS) <> 'NUM' then do ;

 retc = DSN2ISPF_MSG('Invalid DSN2ROWS-Value 'DSN2ROWS,'E') ;

 DSN2RETC = '8' ;

 signal DSN2ISPF_END ;

end ;

DSN2ROWS = trunc(DSN2ROWS) ; /* Truncate DSN2ROWS */

retc = DSN2ISPF_MSG('Max.Number of Rows set to: 'DSN2ROWS,'I') ;

/************************ Isolationlevel ******************************/

"ISPEXEC VGET DSN2ISOL" ;

if rc = 8 | DSN2ISOL = '' then, /* Set Default-ISOLevel */

 DSN2ISOL = 'UR' ;

if DSN2ISOL <> 'UR' &,

 DSN2ISOL <> 'RR' &,

 DSN2ISOL <> 'CS' &,

 DSN2ISOL <> 'RS' then do ;

 retc = DSN2ISPF_MSG('Invalid DSN2ISOL-Value 'DSN2ISOL,'E') ;

 DSN2RETC = '8' ;

 signal DSN2ISPF_END ;

end ;

retc = DSN2ISPF_MSG('DSN2ISOL Value set to: 'DSN2ISOL,'I') ;

/************************ ISPF-Table Behaviour ************************/

"ISPEXEC VGET DSN2TABB" ;

if rc = 8 | DSN2TABB = '' then, /* Set Default */

 DSN2TABB = 'NOTAB' ;

if DSN2TABB <> 'TAB' &, /* Check Values */

 DSN2TABB <> 'NOTAB' then do ;

 retc = DSN2ISPF_MSG('Invalid DSN2TABB-Value 'DSN2TABB,'E') ;

 DSN2RETC = '8' ;

 signal DSN2ISPF_END ;

end ;

retc = DSN2ISPF_MSG('DSN2TABB-Value set to: 'DSN2TABB,'I') ;

/************************ ISPF Table Parameter ************************/

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 10

"ISPEXEC VGET DSN2ISPP" ;

if rc = 8 | DSN2ISPP = '' then, /* Set Default */

 DSN2ISPP = 'NOWRITE,REPLACE' ;

retc = DSN2ISPF_MSG('DSN2ISPP-Value set to: 'DSN2ISPP,'I') ;

/************************ DB2 Subsystem ID ****************************/

"ISPEXEC VGET DSN2SSID" ;

if rc = 8 | DSN2SSID = '' then do ;

 retc = DSN2ISPF_MSG('DSN2SSID-Value missing','E') ;

 DSN2RETC = '8' ;

 signal DSN2ISPF_END ;

end ;

DSN2_LOCATION = DSN2ISPF_DB2LOC(DSN2SSID) ; /* Get Location Name */

if DSN2_LOCATION = '????' then do ;

 retc = DSN2ISPF_MSG('Invalid DSN2SSID-Value: 'DSN2SSID,'E') ;

 DSN2RETC = '8' ;

 signal DSN2ISPF_END ;

end ;

retc = DSN2ISPF_MSG('DSN2SSID set to: 'DSN2SSID,'I') ;

retc = DSN2ISPF_MSG('DSN2_LOCATION set to: 'DSN2_LOCATION,'I') ;

/************************ Select Statement ****************************/

"ISPEXEC VGET DSN2STMT" ; /* Determine SELECT-Stmt */

if rc = 8 | DSN2STMT = '' then do ;

 retc = DSN2ISPF_MSG('DSN2STMT-Value missing','E') ;

 DSN2RETC = '8' ;

 signal DSN2ISPF_END ;

end ;

col_count = Ø ; /* Num of Cols in SEL-Stmt */

db2_colname. = '' ; /* Array of Column Names */

/************************ ISPF KEYLIST ********************************/

"ISPEXEC VGET DSN2KEYS" ; /* Determine ISPF Keylist */

if rc = 8 | DSN2KEYS = '' then DSN2KEYS = '' ;

else do ;

 DSN2_KEYS = translate(DSN2KEYS,' ',',') ;

 key_count = words(DSN2_KEYS) ;

 do kc = 1 to key_count ;

 key_col = word(DSN2_KEYS,kc) ;

 if length(key_col) > 8 then,

 do;

 retc = DSN2ISPF_MSG('Invalid IspKey-Column Name: 'key_col,'E') ;

 DSN2RETC = '8' ;

 signal DSN2ISPF_END ;

 end;

 col_count = col_count + 1 ;

 db2_colname.col_count = key_col ;

 end kc ;

end ;

/************************ ISPF VAR-NAMES ******************************/

"ISPEXEC VGET DSN2VARS" ; /* Determine ISPF Varlist */

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

if rc = 8 | DSN2VARS = '' then do ;

 retc = DSN2ISPF_MSG('DSN2VARS-Value missing','E') ;

 DSN2RETC = '8' ;

 signal DSN2ISPF_END ;

end ;

DSN2_VARS = translate(DSN2VARS,' ',',') ;

var_count = words(DSN2_VARS) ;

do vc = 1 to var_count ;

 var_col = word(DSN2_VARS,vc) ;

 if length(var_col) > 8 then,

 do;

 retc = DSN2ISPF_MSG('Invalid Isp-Column Name: 'var_col,'E') ;

 DSN2RETC = '8' ;

 signal DSN2ISPF_END ;

 end;

 col_count = col_count + 1 ;

 db2_colname.col_count = var_col ;

end vc ;

retc =,

DSN2ISPF_MSG('Number of Columns in the Result-Set: 'col_count,'I') ;

/************************ DSN2LOCL ************************************/

"ISPEXEC VGET DSN2LOCL" ; /* Determine DSN2LOCL-Value */

if rc = 8 | DSN2LOCL = '' then DSN2LOCL = '1' ; /* Set default */

else if DSN2LOCL <> 'Ø' & DSN2LOCL <> '1' then do ;

 retc = DSN2ISPF_MSG('Invalid DSN2LOCL-Value: 'DSN2LOCL,'E') ;

 DSN2RETC = '8' ;

 signal DSN2ISPF_END ;

end ;

/************************ Get local DB2-Subsystem ID ******************/

if DSN2LOCL = '1' then DSN2ISPF_LOCAL_SSID = DSN2ISPF_LOCALDB2() ;

else DSN2ISPF_LOCAL_SSID = DSN2SSID ;

if DSN2ISPF_LOCAL_SSID = '????' then do ;

 retc = DSN2ISPF_MSG('Unable to determine DSN2ISPF_LOCAL_SSID','E') ;

 DSN2RETC = '8' ;

 signal DSN2ISPF_END ;

end ;

retc = DSN2ISPF_MSG('LOCAL_SSID is: 'DSN2ISPF_LOCAL_SSID,'I') ;

/************************ Build the FETCH-Stmt ************************/

DSN2ISPF_FETCH_STMT = "FETCH C1 INTO";

do cc = 1 to col_count ;

 if cc < col_count then ,

 DSN2ISPF_FETCH_STMT = ,

 DSN2ISPF_FETCH_STMT" :"db2_colname.cc" :I"cc"," ;

 else ,

 DSN2ISPF_FETCH_STMT = ,

 DSN2ISPF_FETCH_STMT" :"db2_colname.cc" :I"cc ;

end cc ;

/************************ Generate a unique ISPF Tablename ************/

Address TSO "ISPEXEC CONTROL ERRORS RETURN";

DSN2ISPF_GENTAB:

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 12

DSN2TNAM = "DSN2"random(1,9999);

DSN2TNAM = overlay(DSN2TNAM,copies('Ø',8));

Address TSO "ISPEXEC TBQUERY "DSN2TNAM;

if rc = 12 then,

 Address TSO "ISPEXEC CONTROL ERRORS CANCEL";

else if rc = Ø then signal DSN2ISPF_GENTAB ; /* Table already exists */

/************************ Create the ISPF Table ***********************/

if DSN2KEYS = '' then,

 Address TSO "ISPEXEC TBCREATE "DSN2TNAM" NAMES ("DSN2VARS")",

 DSN2ISPP ;

else,

 Address TSO "ISPEXEC TBCREATE "DSN2TNAM" NAMES ("DSN2VARS")",

 "KEYS("DSN2KEYS")",

 DSN2ISPP ;

if rc <> Ø then do ;

 retc = DSN2ISPF_MSG('Unable to create ISPF Table:' rc,'E');

 DSN2RETC = '12' ;

 signal DSN2ISPF_END ;

end ;

/************************ Start DSNREXX Processing *******************/

'SUBCOM DSNREXX' ;

if rc <> Ø then do;

 s_rc = RXSUBCOM('ADD','DSNREXX','DSNREXX') ;

 if s_rc <> Ø then do ;

 retc = DSN2ISPF_MSG('Unable to add DSNREXX-Environment:' s_rc,'E');

 DSN2RETC = '12' ;

 signal DSN2ISPF_END ;

 end ;

 retc = DSN2ISPF_MSG('DSNREXX-Environment added','I') ;

end;

Address DSNREXX ;

"CONNECT "DSN2ISPF_LOCAL_SSID ;

if rc <> Ø then do ;

 retc = ,

 DSN2ISPF_MSG('Error at LOCAL_SSID Attach: 'rc,'E') ;

 DSN2RETC = '12' ;

 signal DSN2ISPF_END ;

end ;

DSN2ISPF_MSG('Successfull Attach to 'DSN2ISPF_LOCAL_SSID,'I') ;

"EXECSQL CONNECT TO "DSN2_LOCATION ;

if rc <> Ø then do ;

 retc = ,

 DSN2ISPF_MSG('Error at CONNECT to' DSN2_LOCATION,'E') ;

 retc = DSN2ISPF_SQLERROR() ;

 DSN2RETC = SQLCODE ;

 signal DSN2ISPF_END ;

end;

DSN2ISPF_MSG('Successfull Connect to 'DSN2_LOCATION,'I') ;

DSN2ISPF_PKSET = 'DSNREX'||DSN2ISOL ;

"EXECSQL SET CURRENT PACKAGESET = 'DSNREXUR'" ;

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

if rc <> Ø then do ;

 retc = ,

 DSN2ISPF_MSG('Error at SET CURRENT PACKAGESET','E') ;

 retc = DSN2ISPF_SQLERROR() ;

 signal DSN2ISPF_END ;

end;

DSN2ISPF_MSG('Packageset 'DSN2ISPF_PKSET' will be used','I') ;

/************************ Declare Cursor ******************************/

"EXECSQL DECLARE C1 CURSOR FOR S1" ;

if rc <> Ø then do ;

 retc = ,

 DSN2ISPF_MSG('Error at DECLARE CURSOR','E') ;

 retc = DSN2ISPF_SQLERROR() ;

 signal DSN2ISPF_END ;

end;

/************************ Prepare Statement ***************************/

"EXECSQL PREPARE S1 FROM :DSN2STMT" ;

if rc <> Ø then do ;

 retc = ,

 DSN2ISPF_MSG('Error at PREPARE STATEMENT','E') ;

 retc = DSN2ISPF_SQLERROR() ;

 signal DSN2ISPF_END ;

end;

/************************ Open Cursor *********************************/

"EXECSQL OPEN C1" ;

if rc <> Ø then do ;

 retc = ,

 DSN2ISPF_MSG('Error at OPEN CURSOR','E') ;

 retc = DSN2ISPF_SQLERROR() ;

 signal DSN2ISPF_END ;

end;

/************************ Fetch Loop **********************************/

num_rows = Ø ; /* Number of Rows fetched */

"EXECSQL "DSN2ISPF_FETCH_STMT ;

do while (SQLCODE = Ø & num_rows < DSN2ROWS) ;

 num_rows = num_rows + 1 ;

 /* Substitute NULL-Values with Empty-String and strip Outputvars */

 do cc = 1 to col_count ;

 Rx_Cmd = db2_colname.cc" = strip("db2_colname.cc",,)" ;

 interpret Rx_Cmd ;

 Rx_Cmd = "DSN2_NULLVAL = I"cc ;

 interpret Rx_Cmd ;

 if DSN2_NULLVAL < Ø then do ;

 Rx_Cmd = db2_colname.cc" = ''" ;

 interpret Rx_Cmd ;

 end ;

 end cc ;

 Address TSO "ISPEXEC TBADD "DSN2TNAM ;

 if rc <> Ø then do ;

 retc = ,

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 14

 DSN2ISPF_MSG('Error at TBADD (RowNr.'num_rows')','E') ;

 signal DSN2ISPF_END ;

 end ;

 "EXECSQL "DSN2ISPF_FETCH_STMT ;

end ;

if SQLCODE = Ø then do ;

 retc = ,

 DSN2ISPF_MSG('Max. Number of Rows ('num_rows') reached','I') ;

 DSN2RETC = '1' ;

end ;

else if SQLCODE = 1ØØ then do ;

 retc = ,

 DSN2ISPF_MSG('Number of Rows fetched: 'num_rows,'I') ;

 if num_rows = Ø then do ;

 DSN2RETC = '4' ;

 if DSN2TABB = 'NOTAB' then, /* Erase ISPF-Table */

 Address TSO "ISPEXEC TBEND "DSN2TNAM ;

 signal DSN2ISPF_CLOSE_CURSOR ;

 end ;

 else do;

 DSN2RETC = 'Ø' ;

 DSN2ERRM = 'Normal Completion' ;

 end ;

end ;

else do ;

 retc = ,

 DSN2ISPF_MSG('Error at FETCH CURSOR','E') ;

 retc = DSN2ISPF_SQLERROR() ;

 signal DSN2ISPF_END ;

end ;

/************************ Close Cursor and Disconnect *****************/

DSN2ISPF_CLOSE_CURSOR:

"EXECSQL CLOSE C1" ;

"EXECSQL CONNECT RESET" ;

"DISCONNECT" ;

Address TSO "ISPEXEC TBTOP "DSN2TNAM ;

DSN2RSLT = num_rows ; /* Set Number of Rows fetched */

/************************ End Processing ******************************/

DSN2ISPF_END:

Address TSO ;

/* Clear all DSN2ISPF-Variables in ISPF-Pool */

"ISPEXEC VERASE (DSN2SSID,DSN2STMT,DSN2VARS,DSN2KEYS,",

"DSN2TRCE,DSN2ELVL,DSN2ROWS,DSN2ISOL,DSN2TABB,DSN2ISPP) BOTH" ;

/* Set Returncode,Errormessage and Number of Rows */

"ISPEXEC VPUT (DSN2RETC,DSN2ERRM,DSN2RSLT)" ;

return(DSN2TNAM) ;

/**/

/* DSN2ISPF_MSG: SQL-Errors */

/**/

DSN2ISPF_SQLERROR:

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

DSN2RETC = SQLCODE ;

DSN2ERRM = SQLERRMC ;

retc = ,

DSN2ISPF_MSG('SQLCODE : 'DSN2RETC,'E') ;

retc = ,

DSN2ISPF_MSG(DSN2ERRM,'E') ;

return(Ø) ;

/**/

/* DSN2ISPF_MSG: Errors and Informations based on Errorlevel */

/**/

DSN2ISPF_MSG:

parse arg Msg_String,Msg_Type ;

if DSN2ELVL = 'Ø' then return(Ø) ; /* Return immediately */

if DSN2ELVL = '1' & Msg_Type = 'E' then, /* Errors only */

 say 'DSN2ISPF => 'Msg_string ;

else if DSN2ELVL = '2' & (Msg_Type = 'I' | Msg_Type = 'E') then,

 say 'DSN2ISPF => 'Msg_string ;

if Msg_Type = 'E' then DSN2ERRM = Msg_String ;

return(Ø) ;

/**/

/* DSN2ISPF_SYNTAX: REXX Errors */

/**/

DSN2ISPF_SYNTAX:

retc = DSN2ISPF_MSG('A REXX Error has occurred ||','E') ;

retc = DSN2ISPF_MSG('Maybe wrong Tracelevel ','E') ;

DSN2RETC = 8 ;

signal DSN2ISPF_END ;

return(Ø) ;

/**/

/* DSN2ISPF_DB2LOC: Maintain the following Table with your Location */

/* names !!! */

/**/

DSN2ISPF_DB2LOC:

arg conn_ssid ;

select ;

 when ssid = 'DSN' then return('your-location-name-for-dsn') ;

 /* Specify all of your DB2-Subsystems and their location-names

 here */

 otherwise return('????') ;

end ;

return(Ø) ;

/**/

/* DSN2ISPF_LOCALDB2: Returns the name of a DB2 Subsystem that is */

/* running on the LPAR where this REXX EXEC */

/* executes */

/**/

DSN2ISPF_LOCALDB2:

/* Retrieve SMF-ID of the executing System : */

cvt1 = STORAGE(1Ø,4) /* pointer to CVT hex */

cvt2 = BITAND(cvt1,'7FFFFFFF'X) /* clear high order bit */

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 16

cvt = C2X(cvt2) /* pointer to CVT char */

cvtsmca = D2X(X2D(cvt)+X2D(C4)) /* CVTSMCA address */

smca1 = STORAGE(cvtsmca,4) /* CVTSMCA value=SMCA ptr */

smca2 = BITAND(smca1,'7FFFFFFF'X) /* clear high order bit */

smca = C2X(smca2) /* pointer to SMCA char */

if X2D(smca) = Ø then smfid = '????' ; /* SMF not on system */

else do ;

 smcasid = D2X(X2D(smca)+X2D(1Ø)) ; /* SMCASID address */

 smfid = STORAGE(smcasid,4) ; /* SMCASID value = SMFID */

end ;

/* Apply one db2-subsystem for every LPAR you are running */

select;

 when(smfid = 'SYS1') THEN db2sys='DSN';

 otherwise db2sys='????';

end ;

return(db2sys) ;

SAMPLE PROGRAM TO DEMONSTRATE THE USAGE OF
DSN2ISPF
/* Rexx

*/

DSN2STMT = "SELECT DBNAME,NAME FROM SYSIBM.SYSTABLESPACE",

 "WHERE STATUS = 'A' AND DBNAME LIKE 'DBA%'",

 "ORDER BY DBNAME,NAME";

DSN2SSID = 'DSN' ;

DSN2ROWS = 999999 ;

DSN2VARS = "DB,TS" ;

/* ---*/

/* VPUT Parameters for DSN2ISPF: */

/* ---*/

"ISPEXEC VPUT (DSN2SSID,DSN2STMT,DSN2ROWS,DSN2VARS)";

/* ---*/

/* Call DSN2ISPF and build ISPF-Table */

/* ---*/

tstab = DSN2ISPF() ;

/* ---*/

/* VGET Return-Values / Check Return-Values */

/* ---*/

"ISPEXEC VGET (DSN2RETC,DSN2ERRM,DSN2RSLT)";

if DSN2RETC <> Ø then do ;

 if DSN2RETC < Ø then do ;

 say _pgm time()': DSN2ISPF()-SQLSTMT IS: ' ;

 say _pgm time()': 'DSN2STMT ;

 end ;

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 say 'DSN2ISPF()-RETURNCODE IS: 'DSN2RETC ;

 say 'DSN2ISPF()-MESSAGE IS: 'DSN2ERRM ;

 if DSN2RETC > 4 | DSN2RETC < Ø then exit(12) ;

end ;

tstab_count = DSN2RSLT ; /* Number of Rows returned */

/* ---*/

/* TBSKIP through the Result-Table */

/* ---*/

"ISPEXEC TBSKIP "tstab ;

do while rc = Ø ;

 say "Database: "db" Tablespace: "ts ;

 "ISPEXEC TBSKIP "tstab ;

end ;

exit(Ø) ;

Peter Adlersburg
Senior DBA
T-Systems (Austria) © Xephon 2004

Using Real Time Statistics (RTS)

This article is adapted from the forthcoming revision of Craig’s
book, DB2 Developer’s Guide (5th edition).

To maintain efficient production of DB2-based systems, you
must periodically monitor the DB2 objects that make up those
systems. This type of monitoring is an essential component of
post-implementation duties because the production
environment is dynamic. Fluctuations in business activity,
changes in data access patterns, or lack of attention to
administrative needs can cause a system to perform
inadequately. An effective strategy for monitoring DB2 objects
in the production environment will catch and forestall problems
before they affect performance.

One type of DB2 database object monitoring is to query the
DB2 catalog tables. However, a new feature of DB2 delivers
real time statistics, providing up-to-date information about
DB2 database objects.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 18

AUTONOMIC STATISTICS

Real Time Statistics (RTS) is the first step in IBM’s grand plans
to automate parts of DB2 database administration. Introduced
after the general availability of Version 7, but before Version 8,
RTS provides functionality that maintains statistics about DB2
databases on-the-fly, without having to run a utility program.

Prior to the introduction of RTS, the only way to gather
statistics about DB2 database structures was by running the
RUNSTATS utility. RUNSTATS collects statistical information
about DB2 database objects and stores this data in the DB2
catalog. RTS, on the other hand, runs in the background and
automatically updates statistics in two special tables as the
data in DB2 databases is modified. Where RUNSTATS is a
hands-on administrative process, RTS is hands-off.

Real Time Statistics was announced with APARs PQ48447,
PQ48448, PQ46859, and PQ56256.

THE RTS TABLES

Although DB2 is always collecting RTS data, nothing is
externalized until you set up the RTS database and tables to
store the real time statistics. The RTS database is named
DSNRTSDB and there is one table space (DSNRTSTS) with
two tables:

• SYSIBM.TABLESPACESTATS – contains statistics on
table spaces and table space partitions.

• SYSIBM.INDEXSPACESTATS – contains statistics on
index spaces and index space partitions.

The columns in the SYSIBM.TABLESPACESTATS table are
as follows:

• DBNAME – database name.

• NAME – table space name.

• PARTITION – the data set number within the table space.

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

For partitioned table spaces, it contains the partition number
for a single partition. For non-partitioned table spaces, it
contains 0.

• DBID – internal database identifier.

• PSID – internal page set identifier (for the table space).

• UPDATESTATSTIME – the timestamp when this statistics
row was inserted or last updated.

• TOTALROWS – the total number of rows or LOBs in the
table space or partition. Indicates the number of rows in all
tables for multi-table table spaces.

• NACTIVE – the number of active pages in the table space
or partition. Indicates the total number of preformatted
pages in all data sets for multi-piece table spaces.

• SPACE – the amount of space (in kilobytes) that is allocated
to the table space or partition. Indicates the amount of
space in all data sets for multi-piece linear page sets.

• EXTENTS – the number of extents used by the table space
or partition. Indicates the number of extents for the last
data set for multi-piece table spaces. For a data set that is
striped across multiple volumes, the value is the number
of logical extents.

• LOADRLASTTIME – the timestamp when the last LOAD
REPLACE was run for the table space or partition.

• REORGLASTTIME – the timestamp when the last REORG
was run on the table space or partition.

• REORGINSERTS – the number of records or LOBs that
have been inserted since the last REORG or LOAD
REPLACE was run on the table space or partition.

• REORGDELETES – the number of records or LOBs that
have been deleted since the last REORG or LOAD
REPLACE on the table space or partition.

• REORGUPDATES – the number of rows that have been

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 20

updated since the last REORG or LOAD REPLACE was
run on the table space or partition. Does not include LOB
updates because they are implemented as deletions
followed by insertions.

• REORGDISORGLOB – the number of LOBs that were
inserted since the last REORG or LOAD REPLACE that
are not perfectly chunked. A LOB is perfectly chunked if
the allocated pages are in the minimum number of chunks.

• REORGUNCLUSTINS – the number of records that were
inserted since the last REORG or LOAD REPLACE that
are not well clustered with respect to the clustering index.
A record is well clustered if the record is inserted into a
page that is within 16 pages of the ideal candidate page.

• REORGMASSDELETE – the number of mass deletes
from a segmented or LOB table space, or the number of
dropped tables from a segmented table space, since the
last REORG or LOAD REPLACE was run.

• REORGNEARINDREF – the number of overflow records
created and relocated near the pointer record since the
last REORG or LOAD REPLACE was run. For non-
segmented table spaces, a page is near the present page
if the two page numbers differ by 16 or less. For segmented
table spaces, a page is near the present page if the two
page numbers differ by SEGSIZE*2 or less.

• REORGFARINDREF – the number of overflow records
created and relocated far from the pointer record since the
last REORG or LOAD REPLACE was run. For non-
segmented table spaces, a page is far from the present
page if the two page numbers differ by more than 16. For
segmented table spaces, a page is far from the present
page if the two page numbers differ by more than
SEGSIZE*2.

• STATSLASTTIME – the timestamp when RUNSTATS was
last run on this table space or partition.

• STATSINSERTS – the number of records or LOBs that
have been inserted since the last RUNSTATS was executed

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

on this table space or partition.

• STATSDELETES – the number of records or LOBs that
have been deleted since the last RUNSTATS was executed
on this table space or partition.

• STATSUPDATES – the number of records or LOBs that
have been updated since the last RUNSTATS was executed
on this table space or partition.

• STATSMASSDELETE – the number of mass deletes from
a segmented or LOB table space, or the number of
dropped tables from a segmented table space, since the
last RUNSTATS was run.

• COPYLASTTIME – the timestamp of the last full or
incremental image copy on the table space or partition.

• COPYUPDATEDPAGES – the number of distinct pages
that have been updated since the last COPY was run.

• COPYCHANGES – the number of INSERT, UPDATE, and
DELETE operations since the last COPY was run.

• COPYUPDATELRSN – the LRSN or RBA of the first
update after the last COPY was run.

• COPYUPDATETIME – specifies the timestamp of the first
UPDATE made after the last COPY was run.

The columns of SYSIBM.INDEXSPACESTATS are as follows:

• DBNAME – database name.

• NAME – index space name.

• PARTITION – the data set number within the index space.
For partitioned index spaces, it contains the partition
number for a single partition. For non-partitioned index
spaces, it contains 0.

• DBID – internal database identifier.

• ISOBID – internal identifier of the index space page set
descriptor.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 22

• PSID – internal page set identifier (for the table space
holding the table on which this index was created).

• UPDATESTATSTIME – the timestamp when this statistics
row was inserted or last updated.

• TOTALENTRIES – the number of entries, including
duplicates, in the index space or partition.

• NLEVELS – the number of levels in the index tree.

• NACTIVE – the number of active pages in the index space
or partition.

• SPACE – the amount of space (in kilobytes) that is allocated
to the index space or partition. Indicates the amount of
space in all data sets for multi-piece linear page sets.

• EXTENTS – the number of extents used by the index
space or partition. Indicates the number of extents for the
last data set for multi-piece table spaces. For a data set
that is striped across multiple volumes, the value is the
number of logical extents.

• LOADRLASTTIME – timestamp of the last LOAD
REPLACE on the index space or partition.

• REBUILDLASTTIME – timestamp of the last REBUILD
INDEX on the index space or partition.

• REORGLASTTIME – timestamp of the last REORG INDEX
on the index space or partition.

• REORGINSERTS – the number of index entries that have
been inserted since the last REORG, REBUILD INDEX, or
LOAD REPLACE on the index space or partition.

• REORGDELETES – the number of index entries that have
been deleted since the last REORG, REBUILD INDEX, or
LOAD REPLACE on the index space or partition.

• REORGAPPENDINSERT – the number of index entries
that have been inserted since the last REORG, REBUILD

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

INDEX, or LOAD REPLACE on the index space or partition
that have a key value that is greater than the maximum key
value in the index or partition.

• REORGPSEUDODELETES – the number of index entries
that have been pseudo-deleted since the last REORG,
REBUILD INDEX, or LOAD REPLACE on the index space
or partition.

• REORGMASSDELETE – the number of times that an
index or index space partition was mass deleted since the
last REORG, REBUILD INDEX, or LOAD REPLACE.

• REORGLEAFNEAR – the number of index page splits that
occurred since the last REORG, REBUILD INDEX, or
LOAD REPLACE in which the higher part of the split page
was near the location of the original page. The higher part
is near the original page if the two page numbers differ by
16 or less.

• REORGLEAFFAR – the number of index page splits that
occurred since the last REORG, REBUILD INDEX, or
LOAD REPLACE in which the higher part of the split page
was far from the location of the original page. The higher
part is far from the original page if the two page numbers
differ by more than 16.

• REORGNUMLEVELS – the number of levels in the index
tree that were added or removed since the last REORG,
REBUILD INDEX, or LOAD REPLACE.

• STATSLASTTIME – timestamp of the last RUNSTATS on
the index space or partition.

• STATSINSERTS – the number of index entries that have
been inserted since the last RUNSTATS on the index
space or partition.

• STATSDELETES – the number of index entries that have
been deleted since the last RUNSTATS on the index
space or partition.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 24

• STATSMASSDELETE – the number of times that the
index or index space partition was mass deleted since the
last RUNSTATS.

• COPYLASTTIME – timestamp of the last full image copy
on the index space or partition.

• COPYUPDATEDPAGES – the number of distinct pages
that have been updated since the last COPY.

• COPYCHANGES – the number of INSERT and DELETE
operations since the last COPY.

• COPYUPDATELRSN – the LRSN or RBA of the first
update after the last COPY.

• COPYUPDATETIME – timestamp of the first update after
the last COPY.

Each table has a unique index defined on it. Both are defined
on the DBID, PSID, and PARTITION columns. The index
names are:

• SYSIBM.TABLESPACESTATS_IX

• SYSIBM.INDEXSPACESTATS_IX.

WHEN ARE REAL TIME STATISTICS EXTERNALIZED?

As soon as RTS is applied (by running the proper version or
maintenance level of DB2), DB2 begins to gather real time
statistics. However, the RTS tables must exist in order for DB2
to externalize the real time statistics that it gathers.

Once the RTS tables have been created and started, DB2
externalizes real time statistics to the tables at the following
times:

• When the RTS database is stopped, DB2 first externalizes
all RTS values from memory into the RTS tables before
stopping the database.

• When an individual RTS table space is stopped, DB2 first

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

externalizes all RTS values for that particular table space
from memory into the RTS tables before stopping the
database. Bear in mind, though, that the default installation
uses only a single table space to store both RTS tables.

• When you issue -STOP DB2 MODE(QUIESCE), DB2 first
externalizes all RTS values. Of course, if you stop using
MODE(FORCE) no RTS values are externalized; instead,
they are lost when DB2 comes down.

• As specified by the DSNZPARM STATSINT value. The
default is every 30 minutes.

• During REORG, REBUILD INDEX, COPY, and LOAD
REPLACE utility operations, DB2 externalizes the
appropriate RTS values impacted by running that utility.

RTS ACCURACY

In certain situations, the RTS values may not be 100% accurate.
Situations that can cause the real time statistics to be wrong
include:

• A restarted utility can sometimes cause the RTS values to
be wrong.

• Utility operations that leave indexes in a restrictive state,
such as RECOVER pending (RECP), will cause statistics
to be inaccurate.

• A DB2 subsystem failure.

• A notify failure in a data sharing environment.

To fix RTS statistics that are inaccurate, run a REORG,
RUNSTATS, or COPY on the objects for which the statistics
are suspect. Furthermore, if you are using DB2 utilities from a
third-party vendor (ie not IBM), make sure that those utilities
work with RTS. The third-party utilities should be able both to
reset the RTS values and to use the RTS statistics for
recommending when to run utilities.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 26

DSNACCOR: THE RTS STORED PROCEDURE

IBM supplies a sample stored procedure called DSNACCOR,
which can be used to query the RTS tables and make
recommendations based on the statistics. You can use
DSNACCOR to recommend when to run a REORG, take an
image copy, or run RUNSTATS. Additionally, DSNACCOR can
report on the data set extents of table spaces and index spaces
as well as on objects in a restricted state.

You can specify parameters to indicate to DSNACCOR which
table spaces and indexes to analyse, or just run it without
parameters to evaluate all table spaces and index spaces in
the subsystem.

Bear in mind, though, that if the RTS values are inaccurate, the
recommendations made by DSNACCOR will not be correct.
Also, DSNACCOR makes recommendations based on general
formulas requiring user input about your maintenance policies.
These recommendations might not be accurate for every
installation or subsystem.

You should consider using DSNACCOR in conjunction with
DB2 Control Center. Control Center provides a nice GUI
interface to the parameters of DSNACCOR, making it easier
to use than directly calling the procedure would be.

USING THE REAL TIME STATISTICS

The following RTS guidelines and queries can be used to help
you identify maintenance and administration that needs to be
carried out for database objects in your DB2 subsystems.

Checking for activity

Because real time statistics are updated in an on-going manner
as DB2 operates, you can use them to see whether any activity
has occurred during a specific timeframe. To determine whether
any activity has happened in the past several days for a
particular table space or index, use the UPDATESTATSTIME

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

column. Here is an example checking whether any activity has
occurred in the past ten days for a table space (just supply the
table space name):

SELECT DBNAME, NAME, PARTITION, UPDATESTATSTIME

FROM SYSIBM.TABLESPACESTATS

WHERE (JULIAN_DAY(CURRENT DATE) - JULIAN_DAY(UPDATESTATSTIME)) <= 1Ø

AND NAME = ?;

Basic table space information

The RTS tables contain some good basic information about
table spaces. The following query can be run to report on the
number of rows, active pages, space used, number of extents,
and when the COPY, REORG, LOAD REPLACE, and
RUNSTATS were last run:

SELECT DBNAME, NAME, PARTITION, TOTALROWS, NACTIVE,

 SPACE, EXTENTS, UPDATESTATSTIME, STATSLASTTIME,

 LOADRLASTTIME, REORGLASTTIME, COPYLASTTIME

FROM SYSIBM.TABLESPACESTATS

ORDER BY DBNAME, NAME, PARTITION;

You can add a WHERE clause to this query to limit the output
to only a certain database or for specific table spaces.

Pay particular attention to the timestamps indicating the last
time that COPY, REORG, and RUNSTATS were run. If the date
is sufficiently old, consider further investigating whether you
should take an image copy, reorganize the table space, or run
RUNSTATS.

Bear in mind, though, that the span of time between utility runs
is not the only indicator for when to copy, reorganize, or
capture statistics. For example, RUNSTATS may need to be
run only once on static data; similar caveats apply to COPY
and REORG when data does not change.

Reorganizing table spaces

Statistics that can help determine when to reorganize a table
space include space allocated, extents, number of INSERTs,
UPDATEs, and DELETEs since the last REORG or LOAD

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 28

REPLACE, number of unclustered INSERTs, number of
disorganized LOBs, and number of near and far indirect
references created since the last REORG.

SELECT DBNAME, NAME, PARTITION, SPACE, EXTENTS,

 REORGLASTTIME, REORGINSERTS, REORGDELETES, REORGUPDATES,

 REORGINSERTS+REORGDELETES+REORGUPDATES AS TOTAL_CHANGES,

 REORGDISORGLOB, REORGUNCLUSTINS, REORGMASSDELETE,

 REORGNEARINDREF, REORGFARINDREF

FROM SYSIBM.TABLESPACESTATS

ORDER BY DBNAME, NAME, PARTITION;

You might want to add a WHERE clause that limits the table
spaces returned to just those that exceed a particular limit. For
example:

• Table spaces having more than 20 extents:

WHERE EXTENTS > 20

• Table spaces with more than 100K changes:

WHERE TOT_CHANGES > 100000

• Table spaces with more than 50 far indirect references:

WHERE REORGFARINDREF > 50

Another way to get more creative with your RTS queries is to
build formulas into them to retrieve only those table spaces
that need to be reorganized. For example, the following query
will return only those table spaces having more than 10% of
their rows as near or far indirect references:

SELECT DBNAME, NAME, PARTITION, SPACE, EXTENTS

FROM SYSIBM.TABLESPACESTATS

WHERE (((REORGNEARINDREF + REORGFARINDREF)*1ØØ)/TOTALROWS) > 1Ø

ORDER BY DBNAME, NAME, PARTITION;

Of course, you can change the percentage as you wish. After
running the query you have a list of table spaces meeting your
criteria for reorganization.

Examining the impact of a program

You can use the TOTALROWS column of
SYSIBM.TABLESPACESTATS to determine how many rows

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

were affected by a particular program or process. Simply
check TOTALROWS for the table space both before and after
the process; the difference between the values is the number
of rows impacted.

When to run RUNSTATS for a table space

There are also statistics to help in determining when RUNSTATS
should be executed. Run the following query to show the
number of INSERTs, UPDATEs, and DELETEs since the last
RUNSTATS execution:

SELECT DBNAME, NAME, PARTITION, STATSLASTTIME,

 STATSINSERTS, STATSDELETES, STATSUPDATES,

 STATSINSERTS+STATSDELETES+STATSUPDATES AS TOTAL_CHANGES,

 STATSMASSDELETE

FROM SYSIBM.TABLESPACESTATS

ORDER BY DBNAME, NAME, PARTITION;

When to take an image copy for a table space

You can issue the following query to report on statistics that will
help you to determine whether a COPY is required:

SELECT DBNAME, NAME, PARTITION, COPYLASTTIME,

 COPYUPDATEDPAGES, COPYCHANGES, COPYUPDATELRSN,

 COPYUPDATETIME

FROM SYSIBM.TABLESPACESTATS

ORDER BY DBNAME, NAME, PARTITION;

Basically, as the number of distinct updated pages and changes
since the last COPY execution increases, the need to take an
image copy increases. A good rule-of-thumb to follow is when
the percentage of updated pages since the last COPY is more
than 25% of the active pages, then it is time to COPY the table
space. You can add the following WHERE clause to the above
query to limit the output to only these table spaces:

WHERE ((COPYUPDATEDPAGES*1ØØ) / NACTIVE) > 25

Basic index space information

Do not forget that there are also RTS statistics gathered on
indexes. The following query can be run to report on the

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 30

number of rows, active pages, space used, number of extents,
and when the COPY, REORG, LOAD REPLACE, and
RUNSTATS were last run:

SELECT DBNAME, INDEXSPACE, PARTITION, TOTALENTRIES, NLEVELS, NACTIVE,

 SPACE, EXTENTS, UPDATESTATSTIME, LOADRLASTTIME,

REBUILDLASTTIME,

 REORGLASTTIME, STATSLASTTIME, COPYLASTTIME

FROM SYSIBM.INDEXPACESTATS

ORDER BY DBNAME, NAME, PARTITION;

Reorganizing index spaces

Just like the table space stats, there are index space statistics
that can be used to determine when to reorganize indexes.
These statistics include the last time REBUILD, REORG, or
LOAD REPLACE occurred, as well as statistics showing the
number of INSERTs and DELETEs since the last REORG or
REBUILD. And RTS does not skimp in the details. You get both
real and pseudo DELETEs, as well as both single and mass
DELETE information. RTS also tracks both the number of
index levels and index page split information resulting in near
and far indirect references since the last REORG, REBUILD
INDEX, or LOAD REPLACE. The following query can be used
to return this information:

SELECT DBNAME, NAME, PARTITION,

 REORGLASTTIME, LOADRLASTTIME, REBUILDLASTTIME,

 TOTALENTRIES, NACTIVE, SPACE, EXTENTS,

 NLEVELS, REORGNUMLEVELS,

 REORGINSERTS, REORGAPPENDINSERT,

 REORGDELETES, REORGPSEUDODELETES, REORGMASSDELETE,

 REORGLEAFNAR, REORGLEAFFAR

FROM SYSIBM.INDEXPACESTATS

ORDER BY DBNAME, NAME, PARTITION;

These statistics can be examined after running jobs or
processes that cause heavy data modification.

Pay particular attention to the REORGAPPENDINSERT
column. It contains the number of inserts into an index since
the last REORG for which the index key was higher than any
existing key value. If this column consistently grows, you have
identified an object where data is inserted using an ascending

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

key sequence. Think about lowering the free space for such
objects because the free space is wasted space if inserts are
always done in ascending key sequence.

When to run RUNSTATS for an index space

RTS provides index space statistics to help determine when to
run RUNSTATS similar to the table space statistics. Run the
following query to show the number of INSERTs, UPDATEs,
and DELETEs since the last RUNSTATS execution:

SELECT DBNAME, NAME, PARTITION, STATSLASTTIME,

 STATSINSERTS, STATSDELETES, STATSMASSDELETE

FROM SYSIBM.TABLESPACESTATS

ORDER BY DBNAME, NAME, PARTITION;

SUMMARY

Real time statistics can be used to augment your DB2 object
monitoring process. Be sure to take advantage of the
continuously updated RTS values to improve the administration
and performance of your DB2 databases.

Craig S Mullins
Director, Technology Planning
BMC Software (USA) © Craig S Mullins 2004

Renaming a DB2 subsystem for datasharing

OVERVIEW

If and when you start to move your DB2 subsystems to
datasharing, you will need to revisit your DB2 naming standards.
In a stand-alone subsystem, datasets and other objects are
generally named in a way that makes it obvious they belong to
the subsystem. With a datasharing group, the group and the
members of the group have their own names, but the naming

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 32

should make it obvious that the members and group relate to
each other. Related datasets and other objects should be
named so that it’s obvious whether they belong to the group (ie
are shared among members) or to individual members.

All this means that moving to datasharing will involve some
sort of renaming.

It may be possible to keep the name of your existing subsystem
as the name of a member in the new datasharing group, or you
may find that it just won’t fit into any sort of naming standard
and has to be changed. In either case, some renaming will
need to be done to fit into a consistent naming structure.

One way round this is to create the datasharing group as a
brand new empty subsystem, and to unload from the old
subsystem and load into the datasharing group. There is
nothing wrong with this apart from the time involved in moving
large quantities of data. The renaming strategy which this
article considers can process a reasonably-sized production
subsystem in an hour.

Although the title of this article specifically mentions
datasharing, renaming may be done for all sorts of reasons,
and may not involve the whole subsystem. It may, for example,
need to be done just to bring dataset names into line after a
company merger, in which case a subset of the following
procedures can be used.

The idea behind the process described is that virtually all of the
effort required takes place in the preparation phase, so that the
implementation is just a simple run-through of tasks.

WHAT NEEDS TO CHANGE?

It will be easiest to see what needs changing by considering
an example. Let’s say I have a DB2 subsystem called DB2P.
I want to create a datasharing group called DBBG, with
members called DBB1, DBB2, etc. Let’s first look at DB2P and
see how its name percolates through the entire subsystem.

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

The list below shows each item and its value, followed by any
comments:

• Subsystem name – DB2P – how the subsystem is known
to MVS and anything wanting to connect to it.

• IRLM subsystem name – RB2P – the MVS subsystem
name for the IRLM.

• STC userids – STCDB2P – the userid for all the started
tasks.

• STC proc names – DB2PMSTR, DB2PIRLM, DB2PDBM1,
etc – started task names.

• DSNZPARM module – DSNZPARM – the zparm load
module.

• BSDSs – DB2P.BSDSnn.

• Active logs – DB2P.LOGCOP%.Dsnn.

• Archive logs – DB2P.ARCHLOG.**.

• System VCAT – DB2P – high-level qualifier for directory
and catalog tablespace datasets.

• Other VCAT DB2P – high-level qualifier for user
tablespace datasets.

• Location – DB2P – the DDF location.

• VTAM node – ADB2P.

Note that the DSNZPARM module can have the same name
regardless of the subsystem it belongs to. This is because, in
general, each subsystem has its own SDSNEXIT load library.

The way that the other names are based on the subsystem
name varies from site to site. The scheme shown has very
simple relationships between the different names – given a log
name, for example, it is very easy to relate it back to a
subsystem.

With datasharing, there are a couple of extra names – the

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 34

group name and the group attach name and some of the
names we’ve already looked at apply at a group level rather
than at a subsystem level because the entities they describe
are shared between the subsystem members.

The list below shows each item and its value, followed by any
comments:

• Group Name – DBBG – name of the datasharing group.

• Group attach name – DBBG – the group name that
programs connect to.

• System VCAT – DBBG – high-level qualifier for directory
and catalog tablespace datasets.

• Other VCAT – DBBG – high-level qualifier for user
tablespace datasets.

• Location – DBBG – the DDF location.

The other names apply at a member level. For our first group
member, DBB1, we have the following items with values, and
comments:

• Subsystem name – DBB1 – how the subsystem is known
to MVS and anything wanting to connect to it.

• IRLM subsystem name – RBB1 – the MVS subsystem
name for the IRLM.

• STC userids – STCDBB1 – the userid for all the started
tasks.

• STC proc names – DBB1MSTR, DBB1IRLM, DBB1DBM1,
etc – started task names.

• DSNZPARM module – DSNZPBB1 – the zparm load
module.

• BSDSs – DBBG.DBB1.BSDSnn.

• Active logs – DBBG.DBB1.LOGCOP%.Dsnn.

• Archive logs – DBBG.DBB1.ARCHLOG.**.

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• VTAM node – ADBB1.

Note that the BSDSs and logs have a high-level qualifier of
group-name.member-name. This explicitly relates the group
name and member name. It could equally well have just been
member-name. Which you choose is a matter of discretion.

Calling the ZPARM module DSNZPxxx instead of DSNZPARM
means that the different members of the group can share the
SDSNEXIT library. This is generally desirable because the
DSNHDECP module and authorization exits used by all the
members should be the same.

THE RENAMING PROCESS

The renaming needs to be done before datasharing is enabled
– the two processes can be done on different dates.

The renaming process can be split into three different stages:

• New system definition – definitions in MVS, VTAM, SMS,
etc are set up as if for a brand new subsystem. This
includes the DB2 installation CLIST (DSNTINST).
Depending on the level of bureaucracy in your organization,
definitions from departments supporting the non-DB2 side
may need to be requested some time in advance.

• DB2 job preparation – this is the building of the jobs
necessary to rename the DB2 datasets and make the
changes within the subsystem to recognize the new names.
Best done in the week preceding the rename, so that few
objects will have changed.

• Implementation – what happens ‘on the night’.

I’ll cover each of these in the following sections.

NEW SYSTEM DEFINITION

Definitions need to be set up as for a new subsystem. Loosely,
these are:

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 36

• MVS – subsystem names in SYS1.PARMLIB(IEFSSN*).
APF authorization if any new datasets.

• RACF – RACF profiles, started task names in STARTED
class, USS RACF segment.

• SMS – dataset alias for HLQ, SMS rules.

• WLM – WLM set-up.

• Network – VTAM nodes, TCP/IP ports.

Normally, when creating new definitions, the subsystem is
being created in advance of its actual use, so a few glitches in
the definitions can be picked up and corrected over a few days.
For our process, where an existing subsystem is going to use
the new definitions, there is no room for error – all the
definitions must be checked and rechecked to make sure that
they are all in place for the night of the rename.

You need to go through the DB2 installation CLIST (DSNTINST)
as if for a new install. To cut down manual transcription of the
old parameter values to the installation screens, the best way
is to copy and modify the old DSNTIDxx member (hereafter
referred to as ‘the TID’) and use that as the input member for
the CLIST.

Talking of TIDs and naming standards – the IBM standard is to
call your TID DSNTIDxx, where xx is chosen by you – in fact,
if you don’t use this naming convention, the installation CLIST
will complain but will let you use your choice anyway. The
DSNTIDxx convention is woefully inadequate for any site with
more than a few subsystems, especially if datasharing is being
used. You really need something that can be easily matched
to the subsystem it relates to. Something like TIDxxxx, where
xxxx is the subsystem name, does the job, and leaves you an
extra character for versioning.

So, from our old system, we’ve got TIDDB2P. Copy this into
member TIDDBB1. To save a bit of time, edit the new member,
and change all instances of ‘DB2P’ to ‘DBB1’. Then go through
the installation CLIST. On the first screen, choose INSTALL as

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

the install type. For INPUT MEMBER NAME, use TIDDBB1
instead of the default, DSNTIDXA. Then just go through each
panel, adjusting the names that need changing.

The names you will probably want to change are shown below
giving panel name, field, and suggested value:

• DSNTIPA1 – Input Member Name – TIDDBB1

 – Output Member Name – TIDDBB1R.

• DSNTIPA2 – Catalog Alias – DBBG.

• DSNTIPH – BSDS Names – DBBG.DBB1.BSDS01/2

 – Active Log Names –
DBBG.DBB1.LOGCOPY1/2

 – Archive Log Prefix –
DBBG.DBB1.ARCHLOG1/2

• DSNTIPO – Parameter Module – DSNZPBB1

• DSNTIPI – IRLM Subsystem Name – RBB1

 – IRLM Proc Name – DBB1IRLM

• DSNTIPM – Subsystem Name – DBB1

 – Command prefix – -DBB1

• DSNTIPR – Location Name – DBB1

 – Network LU Name – xDBB1

• DSNTIPX – WLM proc name – DBBGWLM

 – DB2 Proc name – DBB1SPAS

 – WLM Environment – DBBGWM01.

Note that the WLM proc name has the group name as a prefix
rather than the member name. The WLM environment (here
DBBGWM01) may be invoked on any member, but the WLM
set-up allows only one procedure name, unparameterized, to
be specified for a WLM environment. Thus a group name
should be used.

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 38

DB2 JOB PREPARATION

A number of jobs need to be prepared prior to implementation
night so that the process itself is fairly automatic and requires
little thought.

The jobs fall into groups:

• Dataset renaming – because of the large number of
datasets involved, the commands have to be generated
for the sake of efficiency and accuracy. Tablespaces,
indexspaces, active logs, and BSDSs need to be renamed.

• DB2 Object alteration – tablespaces and indexspaces
need their VCATs changed to the new qualifier. Again
because of the large number of objects, most of these jobs
need to be generated.

• BSDS alteration – the VCAT held within the BSDS needs
changing, and the active logs need to be removed and
added back in. The latter operation is labour-intensive and
prone to error, so we’ll look at a way to automate part of it.

The first two jobs can be done beforehand, but not too far in
advance. You need to be happy that objects won’t be created
or dropped between your preparing the jobs and running them.
Also consider that an increase in size could make a non-
partitioned tablespace throw another dataset.

For the BSDS changes, most of the jobs can be prepared in
advance, though one needs to be generated on the night.

DATASET RENAMING

The datasets that need renaming are the tablespaces,
indexspaces, BSDSs, and active logs (archive logs do not
need renaming because they will all expire over time). The
high-level qualifiers will change as shown below, giving the
object, the old HLQ, and the new HLQ:

• Table/index space – DB2P – DBBG

• BSDS – DB2P – DBBG.DBB1

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

• Active log – DB2P – DBBG.DBB1.

For each dataset to be renamed, we need an IDCAMS ALTER
statement. For example, for dataset:

DB2P.DSNDBC.DSNDBØ6.SYSPKAGE.IØØØ1.AØØ1

the rename statement looks like this:

ALTER DB2P.DSNDBC.DSNDBØ6.SYSPKAGE.IØØØ1.AØØ1 -

 NEWNAME(DBBG.DSNDBC.DSNDBØ6.SYSPKAGE.IØØØ1.AØØ1)

Note that for such a rename to be possible, the DB2P and
DBBG aliases must reside in the same MVS catalog.

For a reasonably-sized subsystem, there will probably be tens
of thousands of datasets to be renamed. The size of these
datasets doesn’t matter, just the number. Obviously we need
an automatic process to do it. First we need a list of datasets
to process: ISPF Option 3.4 is the easiest way. The list of
tablespaces for the DB2P system can be brought up by using
this pattern DB2P.DSNDBC. This brings up a list of cluster
(DSNDBC) as well as data portion (DSNDBD) datasets.

The list starts like this:

DSLIST - Data Sets Matching DB2P.DSNDBC Row 1 of 25545

Command ===> Scroll ===> CSR

Command - Enter "/" to select action Message Volume

--

 DB2P.DSNDBC.DABRATE.SABRATE.IØØØ1.AØØ1 *VSAM*

 DB2P.DSNDBC.DABRATE.SABWARM.IØØØ1.AØØ1 *VSAM*

 DB2P.DSNDBC.DABRATE.XABRATE1.IØØØ1.AØØ1 *VSAM*

 DB2P.DSNDBC.DABRATE.XABWARMØ.IØØØ1.AØØ1 *VSAM*

 DB2P.DSNDBC.DADMSDCH.SADCRGPD.IØØØ1.AØØ1 *VSAM*

 DB2P.DSNDBC.DADMSDCH.SADIFCON.IØØØ1.AØØ1 *VSAM*

 DB2P.DSNDBC.DADMSDCH.SADPJREG.IØØØ1.AØØ1 *VSAM*

 DB2P.DSNDBC.DADMSDCH.SADSYSUB.IØØØ1.AØØ1 *VSAM*

 DB2P.DSNDBC.DADMSDCH.XADCRGPD.IØØØ1.AØØ1 *VSAM*

Note that all the cluster portions come first, followed by all the
data portions. It is important that none of the datasets have
been migrated by HSM. If they have, the data portions will not
be listed. In addition, the rename process itself will be
considerably delayed. I would expect that a production
subsystem wouldn’t have any migrated datasets, while a

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 40

development subsystem might.

Save the list of datasets by typing on the command line save
db2pds. This saves the list of datasets in a dataset called
userid.db2pds.datasets, which looks like this:

VIEW SMITHAC.DB2PDB.DATASETS Columns ØØØØ1 ØØØ72

Command ===> Scroll ===> CSR

****** ************************** Top of Data **************************

ØØØØØ1 DB2P.DSNDBC.DABRATE.SABRATE.IØØØ1.AØØ1 *VSAM* VS ?

ØØØØØ2 DB2P.DSNDBC.DABRATE.SABWARM.IØØØ1.AØØ1 *VSAM* VS ?

ØØØØØ3 DB2P.DSNDBC.DABRATE.XABRATE1.IØØØ1.AØØ1 *VSAM* VS ?

ØØØØØ4 DB2P.DSNDBC.DABRATE.XABWARMØ.IØØØ1.AØØ1 *VSAM* VS ?

ØØØØØ5 DB2P.DSNDBC.DADMSDCH.SADCRGPD.IØØØ1.AØØ1 *VSAM* VS ?

ØØØØØ6 DB2P.DSNDBC.DADMSDCH.SADIFCON.IØØØ1.AØØ1 *VSAM* VS ?

ØØØØØ7 DB2P.DSNDBC.DADMSDCH.SADPJREG.IØØØ1.AØØ1 *VSAM* VS ?

ØØØØØ8 DB2P.DSNDBC.DADMSDCH.SADSYSUB.IØØØ1.AØØ1 *VSAM* VS ?

ØØØØØ9 DB2P.DSNDBC.DADMSDCH.XADCRGPD.IØØØ1.AØØ1 *VSAM* VS ?

To process the dataset, I wrote a REXX edit macro called
ALTREN (ALTer REName). ALTREN in turn calls two other
general purpose edit macros that I had already written.

ALTREN
/**/

/* REXX */

/* format for alter rename */

/* parm1 is the from-string, parm2 is the to-string */

/* Alan Smith */

/**/

ADDRESS ISPEXEC

"ISREDIT MACRO (parm1,parm2)"

"ISREDIT (lvar,rvar) = BOUNDS"

"isredit c p'=' 45 "rvar" '' all"

lno = 1

"ISREDIT (LASTNUM) = LINENUM .ZLAST"

do while lno <= lastnum

 "ISREDIT (lStat) = XSTATUS (lno)"

 if lStat = "NX" then

 do

 "ISREDIT SHIFT) "lno 1

 end

 lno = lno + 1

end

"isredit replines @"

"isredit x all @ 1"

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

"isredit c ' ' 1 ' ALTER ' all"

"isredit onend ' -'"

"isredit x all"

"isredit f @ 1 all"

"isredit c '@' 1 ' NEWNAME(' all"

"isredit onend) "

if parm2 ¬= "" then

 do

 "isredit c '"||parm1||"' '"||parm2||"' all nx"

 "isredit reset"

 end

exit

ALTREN takes two parameters, the from-string and the to-
string – in this case, ‘DB2P.’ and ‘DBBG.’.

Let’s consider a single tablespace consisting of a cluster with
its data portion. In our dataset saved from 3.4, these entries
look like this:

DB2P.DSNDBC.DSNDBØ6.SYSPKAGE.IØØØ1.AØØ1 *VSAM* VS ?

DB2P.DSNDBD.DSNDBØ6.SYSPKAGE.IØØØ1.AØØ1 S2P3Ø2+VS ? ?

First of all, ALTREN changes all the characters from column 45
to the right boundary to spaces. This is because we’re interested
in only the dataset names. Then the lines are shifted one
column to the right to give a space in the first column. Then
another edit macro, REPLINES, is called with a parameter of
@. REPLINES repeats each line, and sets the first column of
the repeated line to the specified parameter – @ in this case.
This gives us:

 DB2P.DSNDBC.DSNDBØ6.SYSPKAGE.IØØØ1.AØØ1

@DB2P.DSNDBC.DSNDBØ6.SYSPKAGE.IØØØ1.AØØ1

 DB2P.DSNDBD.DSNDBØ6.SYSPKAGE.IØØØ1.AØØ1

@DB2P.DSNDBD.DSNDBØ6.SYSPKAGE.IØØØ1.AØØ1

Then the @ lines are excluded and the string ALTER is added
to the front of the other lines. Another REXX, ONEND, is
called. ONEND takes one parameter and adds this parameter
to the end of all unexcluded lines. This gives us:

 ALTER DB2P.DSNDBC.DSNDBØ6.SYSPKAGE.IØØØ1.AØØ1 -

- - - - - - - - - - - - - - - - 1 Line(s) not Displayed

 ALTER DB2P.DSNDBD.DSNDBØ6.SYSPKAGE.IØØØ1.AØØ1 -

- - - - - - - - - - - - - - - - 1 Line(s) not Displayed

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 42

Then the @ lines are unexcluded and the others excluded.
NEWNAME(is added to the front of these lines and ‘)’ to the
end. Finally, for these lines only, c parm1 parm2 is issued to
change the old string to the new one. This gives us:

 ALTER DB2P.DSNDBC.DSNDBØ6.SYSPKAGE.IØØØ1.AØØ1 -

 NEWNAME(DBBG.DSNDBC.DSNDBØ6.SYSPKAGE.IØØØ1.AØØ1)

 ALTER DB2P.DSNDBD.DSNDBØ6.SYSPKAGE.IØØØ1.AØØ1 -

 NEWNAME(DBBG.DSNDBD.DSNDBØ6.SYSPKAGE.IØØØ1.AØØ1)

Which is what we wanted.

REPLINES REXX

/**/

/* REXX */

/* Edit Macro to repeat every line in a file */

/* Alan Smith */

/**/

ADDRESS ISPEXEC

"ISREDIT MACRO (PARM)"

lno = 1

"ISREDIT (LASTNUM) = LINENUM .ZLAST"

do while lno <= lastnum

 "ISREDIT (lStat) = XSTATUS (lno)"

 if lStat = "NX" then

 do

 "ISREDIT (theLine) = LINE (lno)"

 if parm ¬= "" then

 theLine = overlay(parm,theLine)

 "ISREDIT LINE_AFTER (lno) = (theLine)"

 lno = lno + 1

 end

 lno = lno + 1

 "ISREDIT (LASTNUM) = LINENUM .ZLAST"

end

exit

ONEND
/**/

/* REXX */

/* Edit macro to put data on the end of lines. */

/* Alan Smith */

/**/

ADDRESS ISPEXEC

"ISREDIT MACRO (PARM)"

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

lno = 1

if parm = "" then

 do

 say "ONEND needs one parameter"

 exit

 end

if left(parm,1) = "'" then

 parm = strip(parm,both,"'")

if left(parm,1) = '"' then

 parm = strip(parm,both,'"')

"ISREDIT (LASTNUM) = LINENUM .ZLAST"

do while lno <= lastnum

 "ISREDIT (lStat) = XSTATUS (lno)"

 if lStat = "NX" then

 do

 "ISREDIT (theLine) = LINE (lno)"

 pos = FindLast(substr(theLine,1,length(theLine) - 8))

 if pos > Ø then

 theLine = overlay(parm,theLine,pos)

 "ISREDIT LINE (lno) = (theLine)"

 end

 lno = lno + 1

end

exit

These REXXs are all general purpose. I had written them
some time before for other requirements not related to DB2.

Note that when I called ALTREN, I appended a full-stop
(period) to the from and to subsystem names – I used DB2P.
and DBBG. instead of DB2P and DBBG. This reduces the
chance of a problem where the from name exists within a
database or tablespace name and gets changed as well as the
first qualifier. It doesn’t completely eliminate the problem, but
if a few like this do exist, those rename statements will fail and
need to be sorted out manually – this is fairly easy to do.

Follow the same process to generate jobs for the BSDS
datasets and active logs.

DB2 OBJECT ALTERATION

DB2 indexes and tablespaces need to be altered. Those that
are DB2-defined rather than user-defined, ie DB2 performs
the DEFINE CLUSTER rather than us, need to be changed so

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 44

that DB2 can find the datasets that have had their high-level
qualifier (VCAT) changed in previous steps. In fact it is the
storage groups (STOGROUPs) referred to by the tablespaces
and indexspaces that need to be changed.
SYSIBM.SYSTABLEPART and SYSIBM.SYSINDEXPART
each have a column called STORNAME, which holds the
name of the storage group. The storage group details are held
in SYSIBM.SYSSTOGROUP.

The significance of the primary and secondary quantities will
become apparent later.

The sequence that needs to be followed is this:

• ALTER the tablespaces and indexspaces so that they do
not use a storage group, ie they are user defined.

• Drop each storage group and recreate it with the new
VCAT.

• ALTER the tablespaces and indexspaces to use the new
storage groups.

At most sites, the number of indexspaces and tablespaces will
be large, so we will need to generate the ALTERs. The number
of storage groups is typically small, as object placement can
generally be left up to SMS.

So we need to generate four jobs to ALTER the tablespaces
and indexspaces. All the information we need is in the DB2
catalog, so we can access it using SQL. Let’s look first at
altering tablespaces to not use a storage group. The statement
we need to generate is:

ALTER TABLESPACE dbname.tsname PART part USING VCAT DBBG;

The variable bits of the statement (italicized) can be filled in
from SYSIBM.SYSTABLEPART using SQL:

SELECT DBNAME,TSNAME,PARTITION

FROM SYSIBM.SYSTABLEPART

WHERE STORTYPE = 'I'

Running this in SPUFI, we get something like:

 45© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

--------+--------+--------+--------+------

SELECT DBNAME,TSNAME,PARTITION

 FROM SYSIBM.SYSTABLEPART

 WHERE STORTYPE = 'I'

--------+--------+--------+--------+------

DBNAME TSNAME PARTITION

--------+--------+--------+--------+------

DABRATE SABRATE Ø

DABRATE SABWARM Ø

DADMSDCH SADCRGPD Ø

DADMSDCH SADIFCON Ø

A couple of problems here, there are a lot of extra bits included
with the results, column headings, etc. Also, we need to get the
literals such as ALTER TABLESPACE into the results. These
are general problems with generating statements, so let’s
digress for a moment and come up with a way round the
problem.

GENERATING STATEMENTS

We’ve seen that SPUFI gives us a lot of headlines and general
layout that we don’t want. DSNTEP2 is the same. This leaves
us with DSNTIAUL, the sample unload program. By running
DSNTIAUL with a parameter of SQL, you can give it a general
SQL statement to run, and the output from this will appear in
the ‘unload’ dataset. Let’s try the statement from the previous
section and see what we get:

SELECT DBNAME,TSNAME,PARTITION

 FROM SYSIBM.SYSTABLEPART

 WHERE STORTYPE = 'I'

 ORDER BY DBNAME,TSNAME,PARTITION

 WITH UR

;

Note that I’ve added WITH UR to avoid taking any page locks
and added an ORDER BY statement. When you browse the
output dataset, you can see from the number of dots that
there’s a lot of hex in the output. Turning on hex display:

 BROWSE SMITHAC.TSP.UNLOAD

 Command ===>

DAIACCNTSSYSLCK

CCCCCCDEEEEEDCD4ØØØØØØØØØØØØØ

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 46

419133532282332ØØØØØØØØØØØØØØ

DAMMATCHSAMACA

CCDDCECCECDCCC44ØØØØØØØØØØØØØ

41441338214131ØØØ1ØØØØØØØØØØØ

DAMMATCHSAMACA

CCDDCECCECDCCC44ØØØØØØØØØØØØØ

41441338214131ØØØ2ØØØØØØØØØØØ

DAMMATCHSAMACA

CCDDCECCECDCCC44ØØØØØØØØØØØØØ

41441338214131ØØØ3ØØØØØØØØØØØ

I’ve scrolled down a few lines. You can see that the first eight
characters are the database name, and the next eight are the
tablespace name. Then comes the partition number, but this is
not in readable format – it is a two-byte binary integer. The first
row has X'00', partition zero, the next one has X'01', partition
number one, etc. The column needs to be in character format.
The char function will do this (char became much more flexible
in DB2 Version 6). Running a slightly changed query:

SELECT DBNAME,TSNAME,CHAR(PARTITION)

 FROM SYSIBM.SYSTABLEPART

 WHERE STORTYPE = 'I'

 ORDER BY DBNAME,TSNAME,PARTITION

 WITH UR

;

gives us:

 BROWSE SMITHAC.TSP.UNLOAD

 Command ===>

DAIACCNTSSYSLCK Ø

CCCCCCDEEEEEDCD4F44444ØØØØØØØ

419133532282332ØØØØØØØØØØØØØØ

DAMMATCHSAMACA 1

CCDDCECCECDCCC44F44444ØØØØØØØ

41441338214131ØØ1ØØØØØØØØØØØØ

DAMMATCHSAMACA 2

CCDDCECCECDCCC44F44444ØØØØØØØ

41441338214131ØØ2ØØØØØØØØØØØØ

DAMMATCHSAMACA 3

 47© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

CCDDCECCECDCCC44F44444ØØØØØØØ

41441338214131ØØ3ØØØØØØØØØØØØ

Now to add some of the layout. This query adds the literals we
require:

SELECT 'ALTER TABLESPACE ',DBNAME,'.',TSNAME,' PART ',

 CHAR(PARTITION),' USING VCAT DBBG;'

 FROM SYSIBM.SYSTABLEPART

 WHERE STORTYPE = 'I'

 ORDER BY DBNAME,TSNAME,PARTITION

 WITH UR

;

giving the result:

 BROWSE SMITHAC.TSP.UNLOAD Line ØØØØØØ21 Col

 Command ===> Scroll =

..ALTER TABLESPACE DAIACCNT...SSYSLCK .. PART Ø .. USING VCAT DBBG;

Ø1CDECD4ECCDCEDCCC4CCCCCCDEØØ4EEEEDCD4ØØ4DCDE4F44444Ø14EECDC4ECCE4CCCC5

Ø113359Ø3123527135Ø41913353Ø1B2282332ØØ6Ø7193ØØØØØØØØ1Ø42957Ø5313Ø4227E

 --

..ALTER TABLESPACE DAMMATCH...SAMACA .. PART 1 .. USING VCAT DBBG;

Ø1CDECD4ECCDCEDCCC4CCDDCECCØØ4ECDCCC44ØØ4DCDE4F44444Ø14EECDC4ECCE4CCCC5

Ø113359Ø3123527135Ø41441338Ø1B214131ØØØ6Ø7193Ø1ØØØØØØ1Ø42957Ø5313Ø4227E

 --

..ALTER TABLESPACE DAMMATCH...SAMACA .. PART 2 .. USING VCAT DBBG;

Ø1CDECD4ECCDCEDCCC4CCDDCECCØØ4ECDCCC44ØØ4DCDE4F44444Ø14EECDC4ECCE4CCCC5

Ø113359Ø3123527135Ø41441338Ø1B214131ØØØ6Ø7193Ø2ØØØØØØ1Ø42957Ø5313Ø4227E

 --

..ALTER TABLESPACE DAMMATCH...SAMACA .. PART 3 .. USING VCAT DBBG;

Ø1CDECD4ECCDCEDCCC4CCDDCECCØØ4ECDCCC44ØØ4DCDE4F44444Ø14EECDC4ECCE4CCCC5

Ø113359Ø3123527135Ø41441338Ø1B214131ØØØ6Ø7193Ø3ØØØØØØ1Ø42957Ø5313Ø4227E

 --

There are a few problems here. Each of the literals has a two-
byte count on the front – this is because it’s a VARCHAR. The
partition number has some trailing spaces. Although it’s not an
obvious problem here, if the database name is shorter than
eight characters, there will be one or more spaces between it
and the full-stop (period) separating it from the tablespace
name.

Two DB2 functions, concat and strip come to our rescue. Strip
removes trailing and leading spaces by default, and concat
joins strings together. For readability, a double vertical bar, ||,
can be used instead of concat, although it can be difficult to

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 48

find on some keyboards. In this version of the query, I’ve used
strip and concat to remove extra spaces and joined all the
strings together:

SELECT 'ALTER TABLESPACE ' ||

 STRIP(DBNAME)||'.'||STRIP(TSNAME) ||

 ' PART ' || STRIP(CHAR(PARTITION)) ||

 ' USING VCAT DBBG;'

 FROM SYSIBM.SYSTABLEPART

 WHERE STORTYPE = 'I'

 ORDER BY DBNAME,TSNAME,PARTITION

 WITH UR

;

Since everything is now one long varchar, there is just one two-
byte count at the start of the row:

 BROWSE SMITHAC.TSP.UNLOAD Line ØØØØ

 Command ===>

..ALTER TABLESPACE DAIACCNT.SSYSLCK PART Ø USING VCAT DBBG;....

Ø3CDECD4ECCDCEDCCC4CCCCCCDE4EEEEDCD4DCDE4F4EECDC4ECCE4CCCC5ØØØØ

Ø913359Ø3123527135Ø41913353B2282332Ø7193ØØØ42957Ø5313Ø4227EØØØØ

 --

..ALTER TABLESPACE DAMMATCH.SAMACA PART 1 USING VCAT DBBG;.....

Ø3CDECD4ECCDCEDCCC4CCDDCECC4ECDCCC4DCDE4F4EECDC4ECCE4CCCC5ØØØØØ

Ø813359Ø3123527135Ø41441338B214131Ø7193Ø1Ø42957Ø5313Ø4227EØØØØØ

 --

..ALTER TABLESPACE DAMMATCH.SAMACA PART 2 USING VCAT DBBG;.....

Ø3CDECD4ECCDCEDCCC4CCDDCECC4ECDCCC4DCDE4F4EECDC4ECCE4CCCC5ØØØØØ

Ø813359Ø3123527135Ø41441338B214131Ø7193Ø2Ø42957Ø5313Ø4227EØØØØØ

 --

..ALTER TABLESPACE DAMMATCH.SAMACA PART 3 USING VCAT DBBG;.....

Ø3CDECD4ECCDCEDCCC4CCDDCECC4ECDCCC4DCDE4F4EECDC4ECCE4CCCC5ØØØØØ

Ø813359Ø3123527135Ø41441338B214131Ø7193Ø3Ø42957Ø5313Ø4227EØØØØØ

 --

To get rid of the counts and the trailing X'00's, use char again,
this time with a second parameter, which states the length of
the resultant string:

SELECT CHAR(

 'ALTER TABLESPACE ' ||

 STRIP(DBNAME)||'.'||STRIP(TSNAME) ||

 ' PART ' || STRIP(CHAR(PARTITION)) ||

 ' USING VCAT DBBG;'

 ,8Ø)

 FROM SYSIBM.SYSTABLEPART

 WHERE STORTYPE = 'I'

 ORDER BY DBNAME,TSNAME,PARTITION

 49© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 WITH UR

;

giving:

 BROWSE SMITHAC.TSP.UNLOAD Line ØØØØ

 Command ===>

ALTER TABLESPACE DAIACCNT.SSYSLCK PART Ø USING VCAT DBBG;

ALTER TABLESPACE DAMMATCH.SAMACA PART 1 USING VCAT DBBG;

ALTER TABLESPACE DAMMATCH.SAMACA PART 2 USING VCAT DBBG;

ALTER TABLESPACE DAMMATCH.SAMACA PART 3 USING VCAT DBBG;

Almost there, but there is an additional complication: the PART
clause should be present only for partitions of a partitioned
tablespace. So, if the partition is zero, the PART clause should
simply not be there. We can achieve this fairly easily using a
CASE statement:

SELECT CHAR(

 'ALTER TABLESPACE ' ||

 STRIP(DBNAME)||'.'||STRIP(TSNAME) ||

 CASE WHEN PARTITION = Ø

 THEN ' '

 ELSE

 ' PART ' || STRIP(CHAR(PARTITION))

 END ||

 ' USING VCAT DBBG;'

 ,8Ø)

 FROM SYSIBM.SYSTABLEPART

 WHERE STORTYPE = 'I'

 ORDER BY DBNAME,TSNAME,PARTITION

 WITH UR

;

This puts out a space for a partition number of zero, otherwise
the PART clause is as before:

 BROWSE SMITHAC.TSP.UNLOAD Line

 Command ===>

ALTER TABLESPACE DAIACCNT.SSYSLCK USING VCAT DBBG;

ALTER TABLESPACE DAMMATCH.SAMACA PART 1 USING VCAT DBBG;

ALTER TABLESPACE DAMMATCH.SAMACA PART 2 USING VCAT DBBG;

ALTER TABLESPACE DAMMATCH.SAMACA PART 3 USING VCAT DBBG;

The SQL to generate the statements for the indexes is very
similar. It needs to extract the index name and qualifier from
SYSIBM.SYSINDEXPART:

SELECT CHAR(

© 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081. 50

 'ALTER INDEX ' ||

 STRIP(IXCREATOR)||'.'||STRIP(IXNAME) ||

 CASE WHEN PARTITION = Ø

 THEN ' '

 ELSE

 ' PART ' || STRIP(CHAR(PARTITION))

 END ||

 ' USING VCAT DBBG;'

 ,8Ø)

 FROM SYSIBM.SYSINDEXPART

 WHERE STORTYPE = 'I'

 ORDER BY IXCREATOR,IXNAME,PARTITION

 WITH UR

;

giving the following output:

ALTER INDEX NUAI.XAIITADJØ1 USING VCAT DBBG;

ALTER INDEX NUAI.XAIITADJØ2 USING VCAT DBBG;

ALTER INDEX NUAI.XAIITADJØ3 USING VCAT DBBG;

ALTER INDEX NUAM.XAMACA1 PART 1 USING VCAT DBBG;

ALTER INDEX NUAM.XAMACA1 PART 2 USING VCAT DBBG;

ALTER INDEX NUAM.XAMACA1 PART 3 USING VCAT DBBG;

DSNTIAUL still seems to put a trailing X'00' at the end of the
line. In any case, you need to copy the statements into an FB,
80-column dataset to execute them – this will get rid of the
trailing X'00's.

RECAP

That was a long section, so let’s just remember where we’ve
got to. We’ve just generated some SQL ALTER statements to
change indexes and tablespaces from using a DB2 storage
group to being user defined. At this point on the implementation
night, we’d drop the storage groups and recreate them, and
then change the tablespaces and indexes back to use the
storage groups they were using before. So we need to generate
statements to ALTER the tablespaces and indexes back to use
storage groups.

Editor’s note: this article will be concluded next month.

Alan Smith
Norwich Union (UK) © Xephon 2004

DB2 news

Computer Associates has announced its
continued support for DB2 Universal Database
for z/OS with a suite of Unicenter database
products that help customers reduce the cost
and complexity of managing large-scale DB2
environments.

Unicenter Database Management R11 for DB2
UDB for z/OS V8, currently in beta release,
features 33 tightly integrated products that help
protect DB2 data, improve response time, and
increase system availability. It comprises three
suites – Unicenter Database Performance
Management, Unicenter Database Backup and
Recovery, and Unicenter Database
Administration.

Similarly, NEON Systems says its Shadow
mainframe integration products have been
tested for compatibility with DB2 UDB for z/OS
Version 8.

Shadow Version 5.1 enables customers to use
new DB2 features including: support for
extended limits for names, columns, and tables;
2 MB, BLOCK FETCH/INSERT SQL and
INSERT within a SELECT statements;
performance enhancements such as
DYNAMIC SQL cacheing; 64-bit virtual
storage support; and the extension of Shadow
systems management to support GET
DIAGNOSTICS facility.

For further information contact:
Computer Associates, One CA Plaza, Islandia,
CA 11749, USA.
Tel: (631) 342 5224.
URL: http://www3.ca.com/press/
PressRelease.asp?CID=57232.
NEON Systems, 14100 Southwest Freeway,
Suite 500, Sugar Land, TX 77478, USA.
Tel: (281) 491 4200.
URL: http://neonsys.com/Shadow/
shadow_event_publisher.asp.

* * *

UFD Solutions has announced DB2RCF (DB2
Resources Checking Facility), which monitors
and checks z/OS DB2 database objects.

DB2RCF allows users to check online for the
availability of specific DB2 tables. Plus it informs
users and/or applications when DB2 objects
become unavailable, giving the reason(s) for the
unavailability.

During periodic checks of a DB2 tables
availability, latent restrictions at the tablespace
and indexspace level (COPYP, RECP, CHKP,
etc) as well as lost connections (DDF/DRDA),
stopped utilities, etc, will be detected.

For further information contact:
UFD AG Schweiz, Arnold Böcklin-Strasse 29,
CH-4011 Basel, Switzerland.
Tel: +41 61 271 65 50.
URL: http://www.ufd.ch

* * *

Sites with a mixture of databases that want to
standardize on DB2 will be interested in
AdventNet’s SwisSQL product suite. These
automated database migration tools enable the
migration of stored procedures implemented on
one database to another database. It supports
conversion of procedures, functions, triggers,
cursors, SQLs, and other constructs of the
stored procedure language. The tool automates
up to 95% of the manual tasks associated with
stored procedure migration.

Oracle, SQL Server, and Sybase can be
migrated to DB2.

For further information contact:
AdventNet, 5645 Gibralter Drive, Pleasanton,
CA 94588, USA.
Tel: (925) 924 9500.
URL: http://www.swissql.com/data-
migration.html.

x xephon

	DB2 UDB V8 LUW - the MERGE statement
	An ISPF-SQL interface
	Using Real Time Statistics (RTS)
	Renaming a DB2 subsystem for datasharing
	DB2 news

