
© Xephon Inc 2005

July 2005

153

In this issue

3 DB2 LUW – how to alter the
columns of a table

10 Distributed Relational Database
Architecture

19 DB2 LUW – using maintained
tables in a federated
environment

29 Managing DB2 for z/OS through
WAP and Web environments

49 DB2 news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

DB2 Update
Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Colin Smith
E-mail: info@xephon.com

Subscriptions and back-issues
A year’s subscription to DB2 Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in
the UK; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50 elsewhere.
In all cases the price includes postage. Individual
issues, starting with the January 2000 issue, are
available separately to subscribers for $33.75
(£22.50) each including postage.

DB2 Update on-line
Code from DB2 Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at http://www.xephon. com/
db2; you will need to supply a word from the
printed issue.

© Xephon Inc 2005. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.
 Printed in England.

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in good
faith, neither Xephon nor the organizations or
individuals that supplied information in this
journal give any warranty or make any
representations as to the accuracy of the material
it contains. Neither Xephon nor the contributing
organizations or individuals accept any liability of
any kind howsoever arising out of the use of such
material. Readers should satisfy themselves as to
the correctness and relevance to their
circumstances of all advice, information, code,
JCL, and other contents of this journal before
making any use of it.

Contributions
When Xephon is given copyright, articles
published in DB2 Update are paid for at the rate
of $160 (£100 outside North America) per
1000 words and $80 (£50) per 100 lines of code
for the first 200 lines of original material. The
remaining code is paid for at the rate of $32 (£20)
per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

 3© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

DB2 LUW – how to alter the columns of a table

This article looks at changing a column in a table; changing in
this context can mean altering its attributes or dropping it. It
has long been the bane of the DBA’s life to be requested to
change the attributes of a column, rename it, or drop it. With
DB2 UDB V8.2 this process has been made a lot simpler.
What you had to do in the past was get the DDL for the table,
unload it, make the changes to the DDL, drop and re-create
the table (making sure all the views etc defined on the original
table were re-created), edit the unload file, and then load the
data back into the newly-defined table. This could be
‘automated’ up to a point by having a set of scripts available,
but it was still best done as a manual (albeit infrequent)
process. Now we can perform all of these tasks using the DB2
Control Center.

Let’s look at a couple of examples (all of which were performed
on a Windows 2000 Professional system running DB2 V8 FP8
and using the sysadm userid db2admin and the SAMPLE
database).

The first example will involve removing a column from the
middle of a table and the second example will involve changing
the attributes of a column in a table.

So let’s start with removing a column from the middle of a
table. Create a table called hmtab with three integer columns
called c1, c2, and c3:

>db2 connect to sample user db2admin using xxxxxxxx

>db2 create table hmtab (c1 int, c2 int, c3 int)

Populate the table:

>db2 insert into hmtab values(1,1,1)

>db2 insert into hmtab values(2,2,2)

Create the following: a view on just columns c1 and c3; a view
based on all the columns; and two Materialized Query Tables
(MQTs) based on the sum of column c2.

 4 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

To create the view called vc1c3 based on columns c1 and c3
and the view vc1c2c3 based on the columns c1, c2, and c3
issue:

>db2 create view vc1c3 as select c1,c3 from hmtab

>db2 create view vc1c2c3 as select c1,c2,c3 from hmtab

We want to create the two MQTs. The first one (called
shmtabd) is defined as refresh deferred, and the other one
(called shmtabs) is defined as refresh immediate:

>db2 create table shmtabd as (select sum(c2) as tot from hmtab) data

initially deferred refresh deferred

>db2 refresh table shmtabd

>db2 select * from shmtabd

TOT

 3

>db2 create table shmtabs as (select c2,count(*) as tot from hmtab group

by c2) data initially deferred refresh immediate maintained by system

>db2 set integrity for shmtabs immediate checked

>db2 select * from shmtabs

C2 TOT

---------- -----------

 1 1

 2 1

 2 record(s) selected.

Now we have finished setting up everything, let’s drop column
c2. Don’t forget that the userid performing the alter needs the
DBADM and LOAD authorities on the table (because we are
using the db2admin userid we are OK). We drop the column
using the Control Center by right-clicking on table name
hmtab and then selecting Alter…. You will get the screen
shown in Figure 1 – highlight the line containing c2 and then
press the Remove button.

Click on Close and then OK. You will see Figure 2.

 5© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

What has failed? Well, the view vc1c3 is re-created, but the
creation of view vc1c2c3 failed because column c2 no longer

Figure 1: Changing an attribute

Figure 2: Error message

 6 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

exists. The creation of the MQTs shmtabd and shmtabs also
failed because they are based on column c2, which now no

longer exists. You have the option to test each of the failed
creations to determine why they failed, which is a very useful
option.

If everything works out OK, then you would see something like
Figure 3.

If you get the following error when trying to alter the table it
means that the userid issuing the alter command did not have
the DBADM and LOAD authorities:

[IBM][CLI Driver][DB2/NT] SQLØ443N Routine "SYSPROC.ALTOBJ" (specific

name "ALTOBJ") has returned an error SQLSTATE with diagnostic text

"DBA79Ø4, DBAD". SQLSTATE=38553

All the Control Center does is invoke a stored procedure. This
is shown below:

Figure 3: Successful conclusion

 7© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

CALL SYSPROC.ALTOBJ ('APPLY_CONTINUE_ON_ERROR', 'CREATE TABLE

DB2ADMIN.HMTAB (C1 INTEGER , C3 INTEGER) IN USERSPACE1 ', -1, ?);

Can I run this as a command script? Yes you can. When I ran
it I got:

SQLØ443N Routine "ALTOBJ" (specific name "") has returned an error

SQLSTATE with diagnostic text "SQLØ2Ø6 Reason code or token: C2".

SQLSTATE=38553

If you select from the hmtab table you will see just columns c1
and c3 and the view vc1c3 exists, whereas vc1c2c3 doesn’t.
It seems that the command works and the error occurs
because we are trying to create the objects like view v1c2c3,
which cannot be created because column c2 has been dropped.

The Information Center tells us that we can use the ALTOBJ
stored procedure to do the following:

• Rename a column.

• Increase or decrease the size of a column.

• Alter a column type and transform existing data using DB2
scalar functions.

• Change the precision or the scale of decimal values.

• Change the default value of a column.

• Change the nullability attribute of a column to nullable.

• Drop a column.

The stored procedure can be run with the following options:
GENERATE, VALIDATE, APPLY_CONTINUE_ON_ERROR,
APPLY_STOP_ON_ERROR, UNDO, and FINISH.

If you run the stored procedure with the GENERATE option,
then you see the following (the file alter02.txt just contains the
CALL SYSPROC lines shown):

>type alterØ2.txt

CALL SYSPROC.ALTOBJ

('GENERATE', 'CREATE TABLE DB2ADMIN.HMTAB (C1 INTEGER , C3 INTEGER)

IN USERSPACE1 ', -1, ?);

 8 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

>db2 -tvf alterØ2.txt

CALL SYSPROC.ALTOBJ ('GENERATE', 'CREATE TABLE DB2ADMIN.HMTAB (C1

INTEGER , C3 INTEGER) IN USERSPACE1 ', -1, ?)

 Value of output parameters

 Parameter Name : ALTER_ID

 Parameter Value : 1Ø

 Parameter Name : MSG

 Parameter Value : SELECT OBJ_TYPE, OBJ_SCHEMA, OBJ_NAME,

SQL_OPERATION, SQL_STMT, EXEC_SEQ FROM SYSTOOLS.ALTOBJ_INFO_V WHERE

ALTER_ID=1Ø ORDER BY EXEC_MODE, EXEC_SEQ

 Return Status = Ø

And we could see the statements generated using the query:

>db2 select * from systools.altobj_info_v where alter_id = 1Ø

Thirty-two rows are created. This isn’t the easiest format to
read, but it will tell you that all the steps in the stored procedure
executed. The best way to look at this view is by using the
Control Center. The main columns of interest are the
SQL_OPERATION and SQL_STMT columns.

The second example involves changing the column attributes
from char to integer of a table called hmtab2. Our table will
have three columns defined as integer, character, and integer,
and we want to change this to be three integer columns.
Clearly, the character column could contain a name, which
cannot be converted to an integer, as shown below:

>db2 connect to sample user db2admin using xxxxxxxx

>db2 create table hmtab2 (c1 int, c2 char(5), c3 int)

>db2 insert into hmtab2 values(1,'Helen',1)

Using the Control Center to change the attributes of column
c2 from char to integer as in example 1, everything works up
to the final step where we try to load into the re-created table.
This step fails for obvious reasons (you cannot load a character
value into a numeric field). The error panel is shown in Figure
4. The table has been created with the three integer columns

 9© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

– it’s just that it is empty. All is not lost though – a copy of the
original table still exists and is called something like
<userid>.T<date>_<hhmmss>. This contains the original table
entries.

The stored procedure call is:

CALL SYSPROC.ALTOBJ ('APPLY_CONTINUE_ON_ERROR', 'CREATE TABLE

DB2ADMIN.HMTAB2 (C1 INTEGER , C2 INTEGER , C3 INTEGER) IN USERSPACE1

', -1, ?)

What would have happened if our character column had
contained only numeric values? Suppose our insert statement
had looked like this:

>db2 insert into hmtab2 values(1,'2',1)

If we now try to convert the table to have three integer values,
then the conversion is successful.

I hope I have shown how easy it now is to change the column

Figure 4: Error message

 10 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Distributed Relational Database Architecture

In this article I introduce the basic concepts of distributed
databases and then describe how IBM developed DRDA to
handle distributed databases.

A distributed database is a database that is not all stored at a
single physical location, but is dispersed over a network of
interconnected computers at different locations. The database
can be viewed as a virtual object that physically consists of
components located in different locations or on different
computers in the same location. As far as a user is concerned,
the database appears as a whole. A user can access any data
in the network as if it is all stored on his local system – in the
sense that he can access any database with a common
access method. He does not have to use any special method
according to the target database.

A distributed database has one or more of the following
characteristics:

• Transparency of location.

Users and applications do not need to know where the
data is stored. This should result in being able to move the
database without rewriting the application.

• Scalability.

The maximum number of transactions and the size of the
database are theoretically unlimited when you use a
distributed database because you can extend your

attributes of a table, but, as ever on a production system, it’s
worth testing it first!

C Leonard
Freelance Consultant (UK) © Xephon 2005

 11© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

distributed database without modifying existing databases
and applications by adding more processing power.

• Growth can be phased.

In essence it is possible to add more hardware to extend
a database at each location independently of other
locations.

• Application portability.

It should be possible to develop an application at one
location and migrate it to another without any modification.

• System independent.

Application programs and users should be independent of
the operating system and protocols.

In 1988 IBM added the distributed database functionality to its
Systems Application Architecture. To put this concept into
practice the Distributed Data Facility was incorporated into
DB2, but at first this only provided connectivity for MVS/ESA
and DB2 on mainframe platforms. In 1990 IBM then designed
and published Distributed Relational Database Architecture
(DRDA). This defined rules and protocols that could be used
to develop distributed databases across various networks.
Most importantly it was designed to be platform independent.
Throughout the ’90s DRDA was adopted, and by 1998 the
Open Group adopted it as an industry standard.

DRDA is an open vendor-independent architecture for providing
connectivity between a client and database servers. By using
DRDA it is possible for an application program to access
various databases that support DRDA using SQL. One of the
base concepts of DRDA is the Unit Of Work (UOW). A Unit of
Work is a single logical transaction. It will normally consist of
a sequence of SQL statements that are either all successfully
performed, or the entire sequence of SQL statements is
considered unsuccessful. Either will be a Unit of Work.

The second main concept is the two-phase commit protocol.

 12 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Two-phase commit is used by the Unit of Work and enables it
to exist across multiple database management systems.

There are three well-known variants of two-phase commit
protocols – presumed nothing, presumed abort, and presumed
commit. You also need to understand that certain of these
common protocols can only be used with certain network
protocols. This is highlighted below:

• Presumed nothing – SNA supported – DRDA (TCP/IP) not
supported.

• Presumed abort – SNA supported – DRDA (TCP/IP)
supported.

• Presumed commit – SNA not supported – DRDA (TCP/IP)
not supported.

So what is DRDA? Basically it is a standard for database
interoperability protocol. It is not the only common interface
for database access, but DRDA has proven to be a superior
architecture in its performance and abundant functions. DRDA
includes two-phase commit protocol, TCP/IP support, and
support for stored procedures. Some of the major DBMS
software products have adopted the DRDA architecture in
their products. DRDA provides a common protocol, so an
application program that uses DRDA can access any DRDA-
supported databases.

The major features of DRDA are:

• DRDA is a database interoperability protocol using SQL
as the standardized API. Both static and dynamic SQL are
available.

• Remote bind support.

• Automatic data transformation.

• Unit of Work support.

• Stored procedure support.

• Superior performance, scalability, and availability.

 13© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

• Support for data encryption.

The next concept to understand is that of function types.
DRDA provides the following function types:

• Application Requester (AR) – functions support SQL and
program preparation services from applications.

• Application Server (AS) – functions support requests that
application requesters have sent and routes requests to
database servers by connecting as an application
requester.

• Database Server (DS) – this is to support requests from
application servers.

DRDA also provides a number of protocols. These are:

• Application Support Protocol – provides connection
between application requesters (AR) and application
servers (AS).

• Database Support Protocol – provides connections
between application servers (AS) and database servers
(DS).

DRDA uses different architectures.

• Distributed Data Management (DDM) – the DDM
architecture provides the command and reply structure
used by the distributed databases.

• Formatted Data: Object Content Architecture (FD:OCA) –
the FD:OCA provides the data definition architectural
base for DRDA.

• Character Data Representation Architecture (CDRA) –
CDRA provides the consistency of character data across
the multiple platforms.

Communication protocols SNA and TCP/IP must be available.
DRDA requires the ability to identify and authenticate the end
user associated with the DRDA requests. Some network
protocols, such as LU6.2, provide the ability to pass the

 14 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

information for identification and authentication. However,
when the network protocol does not provide this function,
DRDA provides the security mechanisms instead, as follows:

• User ID and password.

• User ID, password, and new password.

• User ID only.

• User ID and password substitute.

• User ID and encrypted password.

• Encrypted user ID, encrypted password.

• Encrypted user ID, encrypted password, and encrypted
new password.

• Kerberos support.

IBM DB2 uses the Distributed Data Facility (DDF) to provide
the connectivity to and from other databases over the network.
DB2 for z/OS and OS/390 DDF supports two network protocols
(SNA and TCP/IP), as well as two database communication
protocols (DB2 Private Protocol and DRDA). DDF implements
a full DRDA application server and application requester.

DDF was first delivered by IBM in DB2 for MVS V2R2. At that
time, the only supported protocol was the DB2 Private Protocol
over SNA. Since V2R3, both the DB2 Private Protocol and
DRDA protocol have been available. IBM recommends that all
new applications be developed using DRDA, but does still
support the DB2 Private Protocol.

DDF is DB2’s transaction manager for distributed database
connections. With DRDA, connections can come from
anywhere on the SNA or TCP/IP network that DB2 is operating
with. For this reason DDF has developed very mature thread
management strategies to be able to handle thousands of
connections from anywhere.

DDF runs as an additional address space in the DB2
subsystem. The address space name is xxxxDIST, where xxxx

 15© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

is the DB2 subsystem name. DDF is an efficient connection
handler that will use SRBs instead of TCBs, thus reducing
CPU overhead.

When DDF is using TCP/IP as a network protocol it will
execute TCP/IP services using the Unix System Services
(USS) asynchronous I/O callable Assembler interface.
However, whether the network protocol is SNA or TCP/IP, it is
a DDF requirement that it has to open its VTAM ACB when it
starts. DRDA is the only protocol that supports TCP/IP. You
cannot use the DB2 Private Protocol when using TCP/IP as a
network communication protocol.

IBM recommends using TCP/IP as the network protocol for
your applications. TCP/IP does not have the same level of
security implementation as SNA does, and there are some
limitations when using TCP/IP as the network protocol for
DRDA. However, as TCP/IP continues to overtake the
traditional SNA networks, you should develop using it as the
underlying protocol.

DDF, as mentioned previously, should be developed using
DRDA. However, many sites still use the DB2 Private Protocol,
so I will briefly mention it here. DB2 for z/OS and OS/390 can
use this proprietary protocol. The DB2 Private Protocol can be
used only to provide connectivity between DB2 for z/OS and
OS/390 subsystems. It uses the VTAM Advanced Program-
to-Program Communication (APPC) function for internal
communications.

Each DB2 subsystem will execute as a VTAM LU and has a
LUNAME that is unique in the network associated with it. Each
DB2 subsystem also has a unique location name. In the case
of a DB2 data sharing group, the location name is unique for
the data sharing group – enabling the different members of the
DB2 data sharing group to have the same location name but
use a different VTAM LU name. In a distributed data
environment, every table can be accessed using a unique
name represented by a three-part name (location-name.table-
owner.table-name).

 16 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

There are many differences between DRDA and the DB2
Private Protocol. DRDA supports:

• Remote bind.

• The use of static SQL.

• Connectivity to DB2 and non-DB2, IBM and non-IBM
databases.

With DB2 V2R3, the DRDA SQL CONNECT was introduced.
This statement can be used to connect to a remote database
instead of using a three-part name. Using the SQL CONNECT
statement requires that the application be aware of where the
data resides, because it first has to connect to that remote
DBMS before issuing the SQL statement. For this reason, this
is also called application-directed remote database access.

It is possible, when using DB2 Private Protocol, to use an alias
to mask the actual location of the data from the application,
making the location of the data transparent to the application.
This is called system-directed remote database access.

Until DB2 for OS/390 V6, DRDA protocol did not support the
use of aliases. Since DB2 V6, you can uses aliases and three-
part names in combination with the DRDA protocol.

DRDA is defined by using different levels, so that vendors can
implement their applications step-by-step, depending on the
level of DRDA.

DRDA level 1 supports Remote Unit of Work. DRDA level 2
supports Distributed Unit of Work, two-phase commit, and
scrollable cursors. In DRDA level 3, in addition to the previous
features, you can use TCP/IP communication manager as
support for DRDA RUW or DUW. DCE is supported for the
security mechanism. Stored procedures with result sets are
supported.

In DRDA level 4, the following additional features are supported:

• Database-directed access.

• Support for DESCRIBE INPUT. This allows an application

 17© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

requester to obtain a description of input parameters from
a remote database in a consistent format.

• Password encryption.

Function DRDA Private Protocol
Network protocol SNA, TCP/IP SNA only
Accessible database Any RDBMS implementing Only DB2 for z/OS and

DRDA AS functions. OS/390 subsystems.
Connection Connect statement, 3-part 3-part name, alias.

name, alias
CDB Inbound name translation Support for inbound

is not supported (when translation.
TCP/IP is used)

SQL DML, DCL, and DDL are Only DML such as
supported INSERT, UPDATE,

DELETE, SELECT,
OPEN, and FETCH.
In addition, certain
clauses are not
supported.

Stored procedures Supported Not supported.
Data type No limitation Large object (LOB) and

user-defined data type
(UDT) are not supported.

Remote bind Supported Not supported. Always
dynamic SQL.

Block fetch Limited block fetch Continuous block fetch.
(enhanced with extra
query block support)

Static SQL Supported Not supported.
(Executed as
dynamic SQL).

Dynamic SQL Supported Supported.
Two-phase commit Supported Supported.
Inactive database Type 2 inactive threads Type 1 inactive
access thread supported (thread thread supported.

pooling)

Figure 1: DB2 Private Protocol and DRDA

 18 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• Data link data type support.

• Support for user-defined data types.

• Support for large objects.

Further information on the various levels can be found on The
Open Group Web site.

Further information about which levels of DB2 support which
levels of DRDA can be found on IBM’s Web site. Figure 1
provides a comparison of features of DRDA and the DB2
Private Protocol.

Some of the advantages of using DRDA are:

• The message format of DRDA is simpler and more
optimized (condensed) than that of the DB2 Private
Protocol. This improves network traffic performance.

• Stored procedures can be used in DRDA while not
supported by DB2PP. The use of stored procedures can
help minimize the network traffic between the application
requester and application server.

• Since the DB2 Private Protocol does not support remote
bind, all SQL is treated as dynamic SQL, which may cause
performance degradation. This is also known as deferred
embedded SQL.

• DRDA supports TCP/IP.

• Thread pooling is available.

• The DRDA block fetching protocol was enhanced to make
it perform more like the DB2 Private Protocol’s continuous
block fetch protocol. Actually, the DRDA implementation
is better in a way, because it allows both partners (AR and
AS) to negotiate the number of blocks that can be sent in
a single message, to avoid flooding the requester with
data that it cannot keep up with.

John Bradley
Systems Programmer
Meerkat Computer Services (UK) © Xephon 2005

 19© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

DB2 LUW – using maintained tables in a federated
environment

This article looks at using maintained tables in a federated
scenario. Maintained tables have been around for a long time
(they were called Automatic Summary Tables previously), but
what’s new in V8.2, amongst other things, is that they now do
not have to include a group by keyword and you can ‘switch’
a table between being maintained and not maintained. Why
would I want to use maintained tables? Well, say I was
accessing a federated non-relational source (a flat file), then
I could try to access that source for every query. Or, if the file
isn’t that large and not updated frequently, I could create a
local DB2-maintained table based on the federated source
and then update this table on a regular basis. If you do this,
don’t forget that the data will only be as current as the last
refresh time. To start with, let’s create a nickname to our flat
file source, run a query against it, and look at the EXPLAIN
output.

The commands executed below were carried out on a Windows
2000 Professional system running DB2 UDB V8.1 FP8 using
the SAMPLE database and the system administrator userid
(db2admin).

Create the two flat files (c:\ii_ff\flatfile1.txt and c:\ii_ff\flatfile2.txt)
to contain three columns (id, region, wid), with a delimiter of
‘|’.

The file flatfile1.txt will contain:

Ø|Asia|1ØØ

1|America|2ØØ

2|Europe|3ØØ

The file flatfile2.txt will contain:

4|Aus|4ØØ

5|Antarc|5ØØ

We will be using the SAMPLE database:

 20 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

>db2 connect to sample user db2admin using xxxxxxxx

Create the flat file wrapper:

>db2 CREATE WRAPPER "FLATFILE" LIBRARY 'db2lsfile.dll' OPTIONS(ADD

DB2_FENCED 'N')

Create the flat file server:

>db2 CREATE SERVER FLATSERV WRAPPER "FLATFILE"

Create the flat file nicknames (note, that the files do not have
to exist for the command to be successful):

>db2 "CREATE NICKNAME DB2ADMIN.FLATN1 (ID INTEGER ,REGION CHARACTER

(1Ø) ,wid INTEGER) FOR SERVER FLATSERV OPTIONS(COLUMN_DELIMITER '|' ,

FILE_PATH 'c:\ii_ff\flatfile1.txt')"

>db2 "CREATE NICKNAME DB2ADMIN.FLATN2 (ID INTEGER ,REGION CHARACTER

(1Ø) ,wid INTEGER) FOR SERVER FLATSERV OPTIONS(COLUMN_DELIMITER '|' ,

FILE_PATH 'c:\ii_ff\flatfile2.txt')"

Check that the nicknames were created successfully by
selecting from them:

>db2 select * from flatn1

ID REGION WID

---------- ---------- -----------

 Ø Asia 1ØØ

 1 America 2ØØ

 2 Europe 3ØØ

 3 record(s) selected.

>db2 select * from flatn2

ID REGION WID

---------- ---------- -----------

 4 Aus 4ØØ

 5 Antarc 5ØØ

 2 record(s) selected.

(If you get a SQL1822N message, make sure that you have
pressed the delete key immediately after the last line of the
input file.)

We can see that the nicknames were successfully created.
Let’s create a view (flatview) over these two nicknames:

 21© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

>db2 create view flatview as select * from flatn1 union all select *

from flatn2

Let’s check the state of the view:

>db2 select substr(viewname,1,1Ø),valid from syscat.views where viewname

= 'FLATVIEW'

1 VALID

---------- -----

FLATVIEW Y

And selecting from it:

>db2 select * from flatview

ID REGION WID

---------- ---------- -----------

 4 Aus 4ØØ

 5 Antarc 5ØØ

 Ø Asia 1ØØ

 1 America 2ØØ

 2 Europe 3ØØ

So let’s look at the EXPLAIN output for running this query. To
check this I used the db2expln command with an input file
called runsql01.txt containing:

select * from db2admin.flatview

And I ran the db2expln command as:

>db2expln -d sample -t -f runsqlØ1.txt

(where -d specifies the database, -t that the output should be
written to the screen, and -f for the input file name).

The bottom half of the screen output shows:

SQL Statement:

 select *

 from db2admin.flatview

| Ship Distributed Subquery #2

| | #Columns = 3

UNION

| Ship Distributed Subquery #1

| | #Columns = 3

)

 22 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Return Data to Application

| #Columns = 3

Nicknames Referenced:

 DB2ADMIN.FLATN1 ID = 32771

 Source File = c:\ii_ff\flatfile1.txt

Nicknames Referenced:

 DB2ADMIN.FLATN2 ID = 3277Ø

 Source File = c:\ii_ff\flatfile2.txt

We can see our query select * from flatview and that the
source tables c:\ii_ff\flatfile1.txt and flatfile2 are being accessed
via the flatn1 and flatn2 nicknames.

So now let’s create a maintained table for our flat files over the
view summing up the wid column. This is a two step process
– the first step is to create the maintained table and the second
step is to change the value of the special registers CURRENT
MAINTAINED TABLE TYPES FOR OPTIMIZATION and
CURRENT REFRESH AGE so that the maintained table can
be used by the optimizer.

So the first step we need to take is to create a maintained table
(let’s call it sumflat) based on the db2admin.flatfview view and
summing up column wid. We do this as follows:

>db2 create table sumflat (total) as (select sum(wid) from flatview)

data initially deferred refresh deferred

Note that we don’t have to specify the SUMMARY keyword.

Let’s check how the table is registered in the catalog tables:

>db2 select substr(tabname,1,1Ø),type from syscat.tables where tabname

like '%FLAT%'

1 TYPE

---------- ----

FLATN2 N

FLATN1 N

FLATVIEW V

SUMFLAT S

The flatn1 and flatn2 files have a type of ‘N’ (which means
nickname), and the sumflat file has a type of ‘S’ (which means
summary table) for backward compatibility.

 23© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Before you can select from this table you need to populate it
(otherwise you will get a SQL0668N error). Populate the
maintained table using the command:

>db2 refresh table sumflat

You would also use this command to ‘refresh’ it at whatever
frequency you decide is appropriate.

We can select from our maintained table as below:

>db2 select * from sumflat

TOTAL

 15ØØ

But that’s not the point! We don’t want to specifically name the
maintained table in any query – we want the optimizer to select
it automatically when it matches the user query.

So, the second step is to change the value of the special
registers. I can change the value of the special register
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
(whose default value is SYSTEM) by connecting to the database
(>db2 connect to sample user db2admin using xxxxxxxx) and
then issuing the command:

>db2 SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION ALL

The ALL means that all types of maintained tables controlled
will be considered for dynamic SQL. What other options are
there? You could specify NONE, FEDERATED_TOOL,
SYSTEM, and USER. The NONE keyword means that you
won’t be using maintained tables. The FEDERATED_TOOL
keyword means that tables maintained by a federated tool will
be supported. The SYSTEM and USER keywords refer to
system and user maintained tables.

The CURRENT REFRESH AGE special register has to be set
to a value other than zero (its default value) for us to use our
maintained table in any query. We set it using the command:

>db2 set current refresh age any

Let’s bring it all together in our second example. Let’s create

 24 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

a new input file (runsql02.txt) for the db2expln command, as
below, where we set our special registers and issue our select
query from our flat files view:

set current maintained table types for optimization all

set current refresh age any

select sum(wid) from db2admin.flatview

And rerun our db2expln command using the new input file:

>db2expln -d sample -t -f runsqlØ2.txt

The bottom half of the screen output shows:

SQL Statement:

 select sum(wid)

 from db2admin.flatview

Access Materialized Query Table Name = DB2ADMIN.SUMFLAT ID = 4,31

We can see that the SQL statement is still select sum(wid)
from db2admin.flatview, but that we are now using our
maintained table sumflat.

Another perhaps simpler test to see whether we are using a
maintained table is to rename one of the source files and rerun
the select sum(wid) from db2admin.flatview query from the
CLP. If we are not using the maintained table, the query will
work only partially! We can issue the commands below from
a CLP session:

>db2 set current maintained table types for optimization all

>db2 set current refresh age any

And check both values by using the db2 values command:

>db2 values current maintained table types for optimization

1

ALL

And:

>db2 values current refresh age

1

 25© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 99999999999999.ØØØØØØ

The keyword ANY equates to a refresh age of 99999 (as
shown).

So we can now issue our select command from this CLP
session (try renaming the source file and see what happens
– or change a row in it and see what happens – we will still be
accessing our maintained table). If we opened a new CLP
session and issued our select command we would pick up the
values from the source table (and not the maintained table).

Note that both the special registers CURRENT MAINTAINED
TABLE TYPES FOR OPTIMIZATION and CURRENT
REFRESH AGE need to be set for maintained tables to be
considered by the optimizer.

Can I selectively tell the optimizer to use/not use the maintained
tables? You can control the use at the database level, but not
at an individual query level within the same CLP session. The
Information Center says [that a maintained table cannot be]
‘under transaction control’. What you have to remember is
that the special register values are set at the database level
for each CLP session – so if two users open two CLP sessions
and one of them sets the special registers and the other one
doesn’t, the first user will use the maintained tables and the
second user won’t.

The examples I used were simple flat files, but you can use
maintained tables for relational and non-relational sources. If
you are going to use maintained tables then remind your end
users about what that means with regard to the ‘freshness’ of
the data.

What happens if I delete one of the underlying flat files? Let’s
delete flatfile1.txt and check what happens if I try to select
from the view:

>rem flatfile1.txt

>db2 select * from flatview

ID REGION WID

 26 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

---------- ---------- -----------

 4 Aus 4ØØ

 5 Antarc 5ØØ

SQL1822N Unexpected error code "ERRNO = 2" received from data source

"FLATSERV". Associated text and tokens are "Unable to read file".

SQLSTATE=56ØBD

You can see that we still get the results from the flat file that
still exists and an error from the one that was deleted.

If we check the view, we can see that it is still valid:

>db2 select substr(viewname,1,1Ø),valid from syscat.views where viewname

= 'FLATVIEW'

1 VALID

---------- -----

FLATVIEW Y

Now what happens if I drop the nickname for flatfile1.txt?

>db2 drop nickname flatn1

If we now check the catalog for the view:

>db2 select substr(viewname,1,1Ø),valid from syscat.views where viewname

= 'FLATVIEW'

1 VALID

---------- -----

FLATVIEW X

We can see that the view is not invalid. And if we check the
catalog for the tables:

>db2 select substr(tabname,1,1Ø),type from syscat.tables where tabname

like '%FLAT%'

1 TYPE

---------- ----

FLATN2 N

FLATVIEW V

we can see that not only has the entry for flatn1 been deleted
but the summary table has been dropped. This is an important
point to remember: if you drop a nickname then any maintained
tables based on that nickname will also be dropped.

Note: you can use the ALTER TABLE command to change a

 27© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

regular table to a summary table (and vice versa), as shown
in the example below:

>db2 create table sumtab2 like flatview

>db2 select substr(tabname,1,1Ø),type from syscat.tables where tabname =

'SUMTAB2'

Check the table definition:

1 TYPE

---------- ----

SUMTAB2 T

Now alter the table to make it a summary table:

>db2 alter table sumtab2 add materialized query (select * from flatview)

data initially deferred refresh deferred maintained by user

And check the catalog entry:

>db2 select substr(tabname,1,1Ø),type from syscat.tables where tabname =

'SUMTAB2'

1 TYPE

---------- ----

SUMTAB2 S

You can see that the table is now defined as ‘S’ (for summary).
To change the table back again from summary to regular
issue:

>db2 alter table sumtab2 set summary as definition only

And check the catalog entry:

>db2 select substr(tabname,1,1Ø),type from syscat.tables where tabname =

'SUMTAB2'

1 TYPE

---------- ----

SUMTAB2 T

You can see that the table is again defined as ‘T’.

If you want to drop the nickname without losing the summary
table, you need to convert it to a normal table before dropping
the nickname, as shown below:

>db2 select substr(tabname,1,1Ø),type from syscat.tables where tabname

like '%FLAT%'

 28 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

1 TYPE

---------- ----

FLATN1 N

FLATN2 N

FLATVIEW V

SUMFLAT S

We can see that the sumflat table is still a summary table. Now
alter it to be a regular table:

>db2 alter table sumflat set summary as definition only

And let’s check the definitions again:

>db2 select substr(tabname,1,1Ø),type from syscat.tables where tabname

like '%FLAT%'

1 TYPE

---------- ----

FLATN1 N

FLATN2 N

FLATVIEW V

SUMFLAT T

We can see that sumflat is now a regular table. So if we now
drop the nickname:

>db2 drop nickname flatn1

And check the catalog:

>db2 select substr(tabname,1,1Ø),type from syscat.tables where tabname

like '%FLAT%'

1 TYPE

---------- ----

FLATN2 N

FLATVIEW V

SUMFLAT T

You can see that the nickname entry flatn1 has gone but the
sumflat file is still there.

I hope I have shown how easy it is to set up and administer
maintained tables in a federated environment and
demonstrated some of the points to be aware of when dropping
nicknames.

C Leonard
Freelance Consultant (UK) © Xephon 2005

 29© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Managing DB2 for z/OS through WAP and Web
environments

24x7 availability is vital in production banking environments.
Achieving high availability for DB2 depends on the accurate
management of system and DB2 resources. Besides the
usual TN3270 host session method, managing DB2 through
WAP and Web environments, with the help of stored procedures
running on DB2 for z/OS environment, helps database staff to
control DB2 remotely. This article shows a useful Web page
where users can choose (just click on an HTML radio button)
the DB2 command they wish to run. This speeds up operation
and decreases the likelihood of making errors while entering
commands. This project also shows direct DB2 for z/OS
access through wireless devices (mobile/cellular phones,
palm tops etc). Hence, database staff can control DB2 directly
when they are away from the office. It helps staff with

REXX stored
procedure
(input, output) DB2 for

z/OS V7

GUI (a Web or WAP page)
that is run from a PC Web
browser or wireless device

WLM-established
stored procedure
address space

Figure 1: Calling DB2 REXX stored procedure

INPUT=DB0T-
DISPLAY UTILITY(*)

OUTPUT=DSNU100I
UTILID=TDB2REO

 30 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

management and availability. By calling DB2 REXX stored
procedures from the intranet and WAP environments, all
REXX programs (even non-DB2 related) can be started from
an open platform. For example, even JCL can be submitted
from mobile (cell) phones. This article covers the
implementation of this whole idea.

DB2 for z/OS commands can call JCL, IMS, CICS, application
programs, and REXX programs. REXX programs can be run
as DB2 stored procedures. DB2 stored procedures can be
called through programming languages (Java, Visual Basic,
.asp, .jsp, etc) that run SQL CALL statements. In this project,
a DB2 command is sent to a DB2 REXX stored procedure via
a Web browser. The stored procedure runs the command and
sends back the result to the Web browser. The logic diagram
is shown in Figure 1.

Here are the steps to implement this project:

1 Preparation of DB2 REXX stored procedure.

The stored procedure is defined to DB2.

CREATE PROCEDURE SYSPROC.DB2COMME

(

 IN MYINPUT1 CHAR (1Ø4),

 OUT MYOUTPUT VARCHAR (327Ø3)

)

DYNAMIC RESULT SET 1 EXTERNAL NAME DB2COMME

LANGUAGE REXX PARAMETER STYLE GENERAL

NOT DETERMINISTIC FENCED CALLED ON NULL INPUT MODIFIES SQL DATA

NO DBINFO WLM ENVIRONMENT DBØTWLM3 STAY RESIDENT NO

PROGRAM TYPE MAIN SECURITY DB2 COMMIT ON RETURN NO;

COMMIT;

GRANT EXECUTE ON PROCEDURE SYSPROC.DB2COMME TO PUBLIC;

COMMIT;

On the MVS side, WLM (Work Load Manager) and RRS
(Resource Recovery) have to be installed. A WLM application
environment named DB0TWLM3 is defined. DB0TWLM3
address space started task JCL is put into SYS2.PROCLIB.
Note that the system REXX library is defined with SYSEXEC
DD S000.COMM.REXX.

 31© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

SYS2.PROCLIB(DB0TWLM3)
//***

//* JCL FOR RUNNING THE WLM-ESTABLISHED STORED PROCEDURES

//* ADDRESS SPACE

//* RGN -- THE MVS REGION SIZE FOR THE ADDRESS SPACE.

//* DB2SSN -- THE DB2 SUBSYSTEM NAME.

//* NUMTCB -- THE NUMBER OF TCBS USED TO PROCESS

//* END USER REQUESTS.

//* APPLENV -- THE MVS WLM APPLICATION ENVIRONMENT

//* SUPPORTED BY THIS JCL PROCEDURE.

//***

//DBØTWLM3 PROC RGN=ØK,APPLENV=DBØTWLM3,DB2SSN=&IWMSSNM,NUMTCB=8

//IEFPROC EXEC PGM=DSNX9WLM,REGION=&RGN,TIME=NOLIMIT,

// PARM='&DB2SSN,&NUMTCB,&APPLENV'

//STEPLIB DD DISP=SHR,DSN=DSN71Ø.RUNLIB.LOAD

// DD DISP=SHR,DSN=CEE.SCEERUN

// DD DISP=SHR,DSN=DSN71Ø.SDSNEXIT

// DD DISP=SHR,DSN=DSN71Ø.SDSNLOAD

// DD DISP=SHR,DSN=TØØØ.COMM.SPLOADBA

//SYSEXEC DD DISP=SHR,DSN=SØØØ.COMM.REXX

// DD DISP=SHR,DSN=DØØØ.COMM.CLIB

//TRANFILE DD DISP=SHR,DSN=TCPIP.TCPIPT.STANDARD.TCPXLBIN

//SYSPRINT DD SYSOUT=*

//CEEDUMP DD SYSOUT=*

//SYSUDUMP DD SYSOUT=*

//SYSMDUMP DD SYSOUT=*

//SYSTSPRT DD SYSOUT=*

The DB2COMME and DB2REXX programs that will run the
DB2 commands are put into the system REXX library dataset
(S000.COMM.REXX)

S000.COMM.REXX(DB2COMME)
/* REXX */

 PARSE ARG SSID_COMMAND /* Get the SSID to connect to */

 SAY 'SSID_COMMAND=' || SSID_COMMAND /* and the DB2 command to be */

 SSID = LEFT(SSID_COMMAND,4) /* executed */

 say 'SSID=' || SSID

 COMMAND = SUBSTR(SSID_COMMAND,5,1ØØ)

 say 'COMMAND=' || COMMAND

/* SSID = 'DBØT' */

/* COMMAND = '-DISPLAY GROUP' */

 /**/

 /* Set up the host command environment for SQL calls. */

 /**/

$SUBCOM DSNREXX$ /* Host cmd env available? */

IF RC THEN /* No--make one */

 32 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 S_RC = RXSUBCOM('ADD','DSNREXX','DSNREXX')

 /**/

 /* Connect to the DB2 subsystem. */

 /**/

/* ADDRESS DSNREXX $CONNECT$ SSID */

say 'a1'

/*IF SQLCODE <> Ø THEN CALL SQLCA */

say 'a2'

PROC = 'COMMAND'

RESULTSIZE = 327Ø3

RESULT = LEFT(' ',RESULTSIZE,' ')

 /**/

 /* Call the stored procedure that executes the DB2 command. */

 /* The input variable (COMMAND) contains the DB2 command. */

 /* The output variable (RESULT) will contain the return area */

 /* from the IFI COMMAND call after the stored procedure */

 /* executes. */

 /**/

ADDRESS DSNREXX $EXECSQL$,

$CALL$ DB2REXX $(:COMMAND, :RESULT)$

say 'a3'

IF SQLCODE < Ø THEN CALL SQLCA

/*SAY 'RETCODE ='RETCODE */

/*SAY 'SQLCODE ='SQLCODE */

/*SAY 'SQLERRMC ='SQLERRMC */

/*SAY 'SQLERRP ='SQLERRP */

/*SAY 'SQLERRD ='SQLERRD.1',', */

/* || SQLERRD.2',', */

/* || SQLERRD.3',', */

/* || SQLERRD.4',', */

/* || SQLERRD.5',', */

/* || SQLERRD.6 */

/*SAY 'SQLWARN ='SQLWARN.Ø',', */

/* || SQLWARN.1',', */

/* || SQLWARN.2',', */

/* || SQLWARN.3',', */

/* || SQLWARN.4',', */

/* || SQLWARN.5',', */

/* || SQLWARN.6',', */

/* || SQLWARN.7',', */

/* || SQLWARN.8',', */

/* || SQLWARN.9',', */

/* || SQLWARN.1Ø */

/* SAY 'SQLSTATE='SQLSTATE */

/* SAY C2X(RESULT) $'$||RESULT||$'$ */

 /**/

 /* Display the IFI return area in hexadecimal. */

 /**/

OFFSET = 4+1

TOTLEN = LENGTH(RESULT)

 33© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

MYOUTPUT=$$

DO WHILE (OFFSET < TOTLEN)

 LEN = C2D(SUBSTR(RESULT,OFFSET,2))

 SAY SUBSTR(RESULT,OFFSET+4,LEN-4-1)

 MYOUTPUT = MYOUTPUT || SUBSTR(RESULT,OFFSET+4,LEN-4-1) ||$@$

 OFFSET = OFFSET + LEN

END

/*MYOUTPUT = 11 */

/* MYOUTPUT =1234567891234567 */

RETURN MYOUTPUT

 /**/

 /* Routine to display the SQLCA */

 /**/

SQLCA:

TRACE O

SAY 'SQLCODE ='SQLCODE

SAY 'SQLERRMC ='SQLERRMC

SAY 'SQLERRP ='SQLERRP

SAY 'SQLERRD ='SQLERRD.1',',

 || SQLERRD.2',',

 || SQLERRD.3',',

 || SQLERRD.4',',

 || SQLERRD.5',',

 || SQLERRD.6

SAY 'SQLWARN ='SQLWARN.Ø',',

 || SQLWARN.1',',

 || SQLWARN.2',',

 || SQLWARN.3',',

 || SQLWARN.4',',

 || SQLWARN.5',',

 || SQLWARN.6',',

 || SQLWARN.7',',

 || SQLWARN.8',',

 || SQLWARN.9',',

 || SQLWARN.1Ø

SAY 'SQLSTATE='SQLSTATE

/* EXIT 99 */

S000.COMM.REXX(DB2REXX)
/* REXX */

PARSE UPPER ARG CMD /* Get the DB2 command text */

 /* Remove enclosing quotes */

IF LEFT(CMD,2) = $$'$ & RIGHT(CMD,2) = $'$$ THEN

CMD = SUBSTR(CMD,2,LENGTH(CMD)-2)

ELSE

IF LEFT(CMD,2) = $$$'$ & RIGHT(CMD,2) = $'$$$ THEN

CMD = SUBSTR(CMD,3,LENGTH(CMD)-4)

COMMAND = SUBSTR($COMMAND$,1,18,$ $)

 /**/

 34 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 /* Set up the IFCA, return area, and output area for the */

 /* IFI COMMAND call. */

 /**/

IFCA = SUBSTR('ØØ'X,1,18Ø,'ØØ'X)

IFCA = OVERLAY(D2C(LENGTH(IFCA),2),IFCA,1+Ø)

IFCA = OVERLAY($IFCA$,IFCA,4+1)

RTRNAREASIZE = 262144 /*1Ø48572*/

RTRNAREA = D2C(RTRNAREASIZE+4,4)LEFT(' ',RTRNAREASIZE,' ')

OUTPUT = D2C(LENGTH(CMD)+4,2)||'ØØØØ'X||CMD

BUFFER = SUBSTR($ $,1,16,$ $)

 /**/

 /* Make the IFI COMMAND call. */

 /**/

ADDRESS LINKPGM $DSNWLIR COMMAND IFCA RTRNAREA OUTPUT$

WRC = RC

RTRN= SUBSTR(IFCA,12+1,4)

REAS= SUBSTR(IFCA,16+1,4)

TOTLEN = C2D(SUBSTR(IFCA,2Ø+1,4))

 /**/

 /* Set up the host command environment for SQL calls. */

 /**/

$SUBCOM DSNREXX$ /* Host cmd env available? */

IF RC THEN /* No--add host cmd env */

 S_RC = RXSUBCOM('ADD','DSNREXX','DSNREXX')

 /**/

 /* Set up SQL statements to insert command output messages */

 /* into a temporary table. */

 /**/

SQLSTMT='INSERT INTO SYSIBM.SYSPRINT(SEQNO,TEXT) VALUES(?,?)'

ADDRESS DSNREXX $EXECSQL DECLARE C1 CURSOR FOR S1$

IF SQLCODE <> Ø THEN CALL SQLCA

ADDRESS DSNREXX $EXECSQL PREPARE S1 FROM :SQLSTMT$

IF SQLCODE <> Ø THEN CALL SQLCA

 /**/

 /* Extract messages from the return area and insert them into */

 /* the temporary table. */

 /**/

SEQNO = Ø

OFFSET = 4+1

DO WHILE (OFFSET < TOTLEN)

 LEN = C2D(SUBSTR(RTRNAREA,OFFSET,2))

 SEQNO = SEQNO + 1

 TEXT = SUBSTR(RTRNAREA,OFFSET+4,LEN-4-1)

 ADDRESS DSNREXX $EXECSQL EXECUTE S1 USING :SEQNO,:TEXT$

 IF SQLCODE <> Ø THEN CALL SQLCA

 OFFSET = OFFSET + LEN

END

 /**/

 /* Set up a cursor for a result set containing the command */

 /* output messages from the temporary table. */

 35© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 /**/

SQLSTMT='SELECT SEQNO,TEXT FROM SYSIBM.SYSPRINT ORDER BY SEQNO'

ADDRESS DSNREXX $EXECSQL DECLARE C2 CURSOR FOR S2$

IF SQLCODE <> Ø THEN CALL SQLCA

ADDRESS DSNREXX $EXECSQL PREPARE S2 FROM :SQLSTMT$

IF SQLCODE <> Ø THEN CALL SQLCA

 /**/

 /* Open the cursor to return the message output result set to */

 /* the caller. */

 /**/

ADDRESS DSNREXX $EXECSQL OPEN C2$

IF SQLCODE <> Ø THEN CALL SQLCA

S_RC = RXSUBCOM('DELETE','DSNREXX','DSNREXX') /* REMOVE CMD ENV */

EXIT SUBSTR(RTRNAREA,1,TOTLEN+4)

 /**/

 /* Routine to display the SQLCA */

 /**/

SQLCA:

SAY 'SQLCODE ='SQLCODE

SAY 'SQLERRMC ='SQLERRMC

SAY 'SQLERRP ='SQLERRP

SAY 'SQLERRD ='SQLERRD.1',',

 || SQLERRD.2',',

 || SQLERRD.3',',

 || SQLERRD.4',',

 || SQLERRD.5',',

 || SQLERRD.6

SAY 'SQLWARN ='SQLWARN.Ø',',

 || SQLWARN.1',',

 || SQLWARN.2',',

 || SQLWARN.3',',

 || SQLWARN.4',',

 || SQLWARN.5',',

 || SQLWARN.6',',

 || SQLWARN.7',',

 || SQLWARN.8',',

 || SQLWARN.9',',

 || SQLWARN.1Ø

SAY 'SQLSTATE='SQLSTATE

SAY 'SQLCODE ='SQLCODE

EXIT 'SQLERRMC ='SQLERRMC';' ,

|| 'SQLERRP ='SQLERRP';' ,

|| 'SQLERRD ='SQLERRD.1',',

 || SQLERRD.2',',

 || SQLERRD.3',',

 || SQLERRD.4',',

 || SQLERRD.5',',

 || SQLERRD.6';' ,

|| 'SQLWARN ='SQLWARN.Ø',',

 || SQLWARN.1',',

 36 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 || SQLWARN.2',',

 || SQLWARN.3',',

 || SQLWARN.4',',

 || SQLWARN.5',',

 || SQLWARN.6',',

 || SQLWARN.7',',

 || SQLWARN.8',',

 || SQLWARN.9',',

 || SQLWARN.1Ø';' ,

|| 'SQLSTATE='SQLSTATE';'

PREPARATION OF THE WEB ENVIRONMENT

DB2 stored procedures can be called from a Web browser via
a .jsp (Java server page) or .asp (active server page) file. For
our project, we will use an .asp page. In order to serve active
server pages, a Web server (for our project IIS (Internet
Information Server)) is installed on a Windows machine. An
.asp is prepared and put into an IIS directory.

C:\Inetpub\wwwroot\test\db2command\Db2comme2.asp

<%

session("aktifortam")=request.form("ortam")

session("aktifcommand")=request.form("mycommand1")

session("aktifdb2")=request.form("myssid")

if session("aktifortam")="" then session("aktifortam")="TEST"

if session("aktifdb2")="" then session("aktifdb2")="DB1T"

if session("aktifcommand")="" then session("aktifcommand")="DISPLAY

DB(DTGNL*) SP(*) USE LIMIT(*)"

%>

<|DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<html>

<head>

<title>Akbank T.A.S© 2ØØ4</title>

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=windows-

1254">

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=ISO-8859-9">

<META HTTP-EQUIV="content-language" content="TR">

<META HTTP-EQUIV="Copyright" CONTENT="Akbank T.A.S© 2ØØ4">

<META NAME="Pragma" CONTENT="no-cache">

<META HTTP-EQUIV="cache-control" CONTENT="no-cache">

<style>

 .tarih{ font-size: 7pt; font-family: Courier New; color:blue }

 .tarih{ font-size: 8pt; font-family: Arial; color:blue }

 .firstcol{ font-size: 8pt; font-weight:bold; font-family: Arial;

color:blue }

 .firstcol1{ font-size: 8pt; font-weight:bold; font-family: Arial;

color:blue}

 37© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

 .tarih1{ font-size: 8pt; font-weight:bold; font-family: Arial;

color:blue }

 .tarih2{ font-size: 8pt; font-weight:bold; font-family: Arial;

color:blue }

</style>

<script LANGUAGE="JavaScript">

<|--

function radioClick (f,i) {

 f.mycommand1.value = f.komut[i].value;

 f.myhidden.value=i;

 return true;

}

//-->

</script>

</HEAD>

<body bgcolor=white text="blue">

<form action="db2comme2.asp" method="post" name="myform">

<p align="left">

<input TYPE="hidden" VALUE="Ø" NAME="myhidden">

Choose the environment:

<input TYPE="radio" VALUE="TEST" NAME="ortam"

<%if session("aktifortam")="TEST" then response.write "CHECKED"%> >

TEST ENVIRONMENT

<input TYPE="radio" VALUE="PRODUCTION" NAME="ortam"

<%if session("aktifortam")="PRODUCTION" then response.write "CHECKED"%>

> PRODUCTION ENVIRONMENT

Enter the name of DB2 datasharing group :

<input size="4" maxlength="4" name="myssid" value="<%response.write

session("aktifdb2")%>" >

You can either CLICK ON or WRITE DOWN the DB2 command that you would

like to run

<% response.write session("selectedradiobutton") %>

<TABLE BORDER=1 width="6Ø%">

<TR><TD>

<input TYPE="radio" VALUE="DISPLAY DB(DTGNL*) SP(*) USE LIMIT(*)"

NAME="komut"

 onclick="return radioClick (document.forms[Ø],Ø)"

 <%if cint(request.form("myhidden"))=Ø then response.write "CHECKED"%> >

 DISPLAY DB(DTGNL*) SP(*) USE LIMIT(*)

<input TYPE="radio" VALUE="START DB(DTGNLØ1) SP(STGNLGØ1) ACCESS(FORCE)"

NAME="komut"

onclick="return radioClick (document.forms[Ø],1)"

<%if cint(request.form("myhidden"))=1 then response.write "CHECKED"%> >

START DB(DTGNLØ1) SP(STGNLGØ1) ACCESS(FORCE)

 38 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

<input TYPE="radio" VALUE="DISPLAY DB(*) SP(*) RESTRICT LIMIT(*)"

NAME="komut"

onclick="return radioClick (document.forms[Ø],2)"

<%if cint(request.form("myhidden"))=2 then response.write "CHECKED"%> >

DISPLAY DB(*) SP(*) RESTRICT LIMIT(*)

</TD></TR>

<TR><TD>

<input TYPE="radio" VALUE="DISPLAY UTILITY(*)" NAME="komut"

onclick="return radioClick (document.forms[Ø],3)"

<%if cint(request.form("myhidden"))=3 then response.write "CHECKED"%> >

DISPLAY UTILITY(*)

<input TYPE="radio" VALUE="TERM UTILITY(TGNLLOAD)" NAME="komut"

onclick="return radioClick (document.forms[Ø],4)"

<%if cint(request.form("myhidden"))=4 then response.write "CHECKED"%> >

TERM UTILITY(TGNLLOAD)

</TD></TR>

<TR><TD>

<input TYPE="radio" VALUE="DISPLAY PROCEDURE" NAME="komut"

onclick="return radioClick (document.forms[Ø],5)"

<%if cint(request.form("myhidden"))=5 then response.write "CHECKED"%> >

DISPLAY PROCEDURE

<input TYPE="radio" VALUE="DISPLAY DDF" NAME="komut"

onclick="return radioClick (document.forms[Ø],6)"

<%if cint(request.form("myhidden"))=6 then response.write "CHECKED"%> >

DISPLAY DDF

<input TYPE="radio" VALUE="DISPLAY GROUP" NAME="komut" onclick="return

radioClick (document.forms[Ø],7)" <%if cint(request.form("myhidden"))=7

then response.write "CHECKED"%> > DISPLAY GROUP

</TD></TR>

<TR><TD>

<input TYPE="radio" VALUE="DISPLAY THREAD(*) TYPE(*)" NAME="komut"

onclick="return radioClick (document.forms[Ø],8)"

<%if cint(request.form("myhidden"))=8 then response.write "CHECKED"%> >

DISPLAY THREAD(*) TYPE(*)

<input TYPE="radio" VALUE="DISPLAY THREAD (*) TYPE(INDOUBT)"

NAME="komut"

onclick="return radioClick (document.forms[Ø],9)"

<%if cint(request.form("myhidden"))=9 then response.write "CHECKED"%> >

DISPLAY THREAD (*) TYPE(INDOUBT)

<input TYPE="radio" VALUE="RECOVER INDOUBT (CICSTSA1) ACTION(ABORT)

ID(ENTRTTOHØØØ1)" NAME="komut"

onclick="return radioClick (document.forms[Ø],1Ø)"

<%if cint(request.form("myhidden"))=1Ø then response.write "CHECKED"%> >

RECOVER INDOUBT (CICSTSA1) ACTION(ABORT) ID(ENTRTTOHØØØ1)

 39© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

</TD></TR>

</TABLE>

DB2 Command that will run:

<input size="1ØØ" maxlength="1ØØ" name="mycommand1"

value="<%response.write session("aktifcommand")%>" >

<input type="submit" name="submit" value="RUN THE DB2 COMMAND"></p>

</p>

</form>

<|-- #include file="constans.inc" -->

<%

if cstr(request.form("submit"))="RUN THE DB2 COMMAND" then

'beginning of the result

Set Connvs = Server.CreateObject("ADODB.Connection")

MYCOMMAND=request.form("mycommand1")

MYSSID=request.form("myssid")

if session("aktifortam")="PRODUCTION" then

 Session("ConnectionString") =

"DSN=DB2PRODUCTION;UID=akbank;PWD=btvyg"

else

if cstr(UCASE(MYSSID))="DBØT" then Session("ConnectionString") =

"DSN=DB2MVS;UID=akbank;PWD=btvyg"

if cstr(UCASE(MYSSID))="DB1T" then Session("ConnectionString") =

"DSN=DB2MVS;UID=akbank;PWD=btvyg"

if cstr(UCASE(MYSSID))="DB2T" then Session("ConnectionString") =

"DSN=DB2DB3TS;UID=akbank;PWD=btvyg"

if cstr(UCASE(MYSSID))="DB3T" then Session("ConnectionString") =

"DSN=DB2DB3TS;UID=akbank;PWD=btvyg"

end if

Connvs.Open Session("ConnectionString")

set cmd = Server.CreateObject("ADODB.Command")

cmd.ActiveConnection = Connvs

set rs = Server.CreateObject("adodb.recordset")

RS.CursorType = 1

RS.LockType = 3

CMD.CommandText = "SYSPROC.DB2COMME"

CMD.CommandType = adCmdStoredProc

myinputoutputvar="STORED PROCEDURE OUTPUT RESULT WILL BE STORED IN THIS

VARIABLE"

MYINPUT1 = MYSSID & "-" & MYCOMMAND

set ADO_Parm1 = CMD.CreateParameter("parm1", adChar, adParamInput, 1Ø4,

MYINPUT1)

set ADO_Parm2 = CMD.CreateParameter("parm2", adChar,

adParamOutput,327Ø3,myinputoutputvar)

CMD.Parameters.Append ADO_Parm1

CMD.Parameters.Append ADO_Parm2

cmd.Execute ()

response.write "
"

response.write "RESULT OF THE DB2 COMMAND THAT'S JUST BEEN RUN"

response.write "
"

 40 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

%>

<table border="Ø" width="1ØØ%" >

<TR class=tarih align=left><td>

<%

 stringtowrite = cmd.parameters(1)

i=1

 while i<= len(stringtowrite)-1

 if mid(stringtowrite,i,1)="@" then response.write "
"

 if mid(stringtowrite,i,1)=" " then response.write " "

 if mid(stringtowrite,i,1)<>"@" then response.write

mid(stringtowrite,i,1)

 i=i+1

 wend

'end of the result

 end if

 %>

 </td></tr></table>

</body>

</html>

PREPARATION OF THE WAP ENVIRONMENT

DB2 stored procedures can be called from a WAP (Wireless
Application Protocol) browser via a .wml (Wireless Mark-up
Language) file. In order to serve .wml pages, a Web server (for
our project IIS) is installed and WML MIME types are configured
on a Windows machine. An .asp (active server page) is

 Figure 2: WAP arrangement

WML

WMLScript

WTAI

Etc

WML encoder

WMLScript
compiler

Protocol
adapters

Web ServerClient WAP Gateway

CGI
scripts,
etc

W
M

L
de

ck
s

w
ith

 W
M

LS
cr

ip
t

HTTPWSP/WTP

Content

 41© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

prepared in .wml format and put into an IIS directory. A proper
MIME type configuration for WML pages is set on IIS. (Start/
Settings/Control Panel/Administrative Tools/Internet
Information Services/Default Web Site/HTTP Headers/
MIME Map). The MIME types below are added:

• Text/vnd.wap.wml for .wml files (WML source files).

• Application/vnd.wap.wmlc for .wmlc files (WML compiled
files).

• Text/vnd.wap.wmlscript for .wmls files (WMLScript source
files).

• Application/vnd.wap.wmlscriptc for .wmlsc fi les
(WMLScript compiled files).

• Image/vnd.wap.wbmp for .wbmp files (wireless bitmaps).

A WAP gateway, like Nokia Wap GateWay, Ericsson Wap
gateway etc, is installed on the Windows machine. A WAP
gateway delivers HTTP data to wireless systems. A WAP
Gateway has a WML Encoder and a WML Script Compiler. For
our project, we will use the Nokia Wap GateWay. As the client
GUI, a wireless phone or a simulation like Nokia Mobile
Browser, Opera, etc, is installed on the Windows machine. For
our project, we will use the Nokia Mobile Browser. This
arrangement is illustrated in Figure 2.

C:\Inetpub\wwwroot\test\db2command\wmldb2comme.asp

<|-- #include file="constans.inc" -->

<% Response.ContentType = "text/vnd.wap.wml" %>

<?xml version="1.Ø"?>

<|DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1//EN" "http://

www.wapforum.org/DTD/wml_1.1.xml">

<wml>

 <template>

 <do type="prev">

 <noop/>

 </do>

 </template>

 <card id="init" newcontext="true">

 <do type="options" label="Copyright">

 <go href="#copyright"/>

 </do>

 <p align="center">

 42 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

<%

Set Connvs = Server.CreateObject("ADODB.Connection")

Session("ConnectionString") = "DSN=DB2MVS;UID=akbank;PWD=btvyg"

Connvs.Open Session("ConnectionString")

set cmd = Server.CreateObject("ADODB.Command")

cmd.ActiveConnection = Connvs

set rs = Server.CreateObject("adodb.recordset")

RS.CursorType = 1

RS.LockType = 3

CMD.CommandText = "SYSPROC.DB2COMME"

CMD.CommandType = adCmdStoredProc

myinputoutputvar="STORED PROCEDURE OUTPUT RESULT WILL BE STORED IN THIS

VARIABLE"

MYCOMMAND="DISPLAY UTILITY(*)"

MYSSID="DB1T"

MYINPUT1 = MYSSID & "-" & MYCOMMAND

set ADO_Parm1 = CMD.CreateParameter("parm1", adChar, adParamInput, 1Ø4,

MYINPUT1)

set ADO_Parm2 = CMD.CreateParameter("parm2", adChar,

adParamOutput,327Ø3,myinputoutputvar)

CMD.Parameters.Append ADO_Parm1

CMD.Parameters.Append ADO_Parm2

Figure 3: Running a DB2 command from a Web page

 43© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

cmd.Execute ()

response.write "CALISTIRILAN KOMUT:DISPLAY UTILITY(*)"

stringtowrite = cmd.parameters(1)

i=1

while i<= len(stringtowrite)-1

 if mid(stringtowrite,i,1)<>"@" then response.write

mid(stringtowrite,i,1)

 i=i+1

 wend

%>

</p>

 </card>

 <card id="copyright">

 <onevent type="ontimer">

 <prev/>

 </onevent>

 <timer value="25"/>

 <p align="center">

 <small>Copyright© 2ØØ4
Akbank T.A.S.
All rights

reserved.</small>

 </p>

 </card>

</wml>

Figure 4: Running a DB2 command from a Web page

 44 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Now, let’s see how the DISPLAY DB(*) SP(*) RESTRICT
LIMIT(*) command is run through our intranet browser – see
Figure 3.

When we run the DB2 command from an intranet browser, on
the MVS side the DB0TWLM3 WLM address space is started.
The same command output is also printed in both the intranet
page and the DB0TWLM3 address space.

 Display Filter View Print Options Help

--

------ SDSF OUTPUT DISPLAY DBØTWLM3 STCØ5525 DSID 1Ø5 LINE 1,851

COLUMNS Ø2- 81 COMMAND INPUT ===>

SCROLL ===> CSR DSN9Ø22I +DB1T DSNTDDIS 'DISPLAY DATABASE' NORMAL

COMPLETION SSID_COMMAND=DB1T-DISPLAY DB(*) SP(*)

RESTRICT LIMIT(*) SSID=DB1T

COMMAND=-DISPLAY DB(*) SP(*) RESTRICT LIMIT(*)

DSNT36ØI +DB1T ***********************************

DSNT361I +DB1T * DISPLAY DATABASE SUMMARY

* RESTRICTED

DSNT36ØI +DB1T ***********************************

Figure 5: Running a DB2 command from a WAP browser

 45© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

DSNT362I +DB1T DATABASE = DTGLAØØ STATUS = RW

DBD LENGTH = 28256 DSNT397I

+DB1T

NAME TYPE PART STATUS PHYERRLO PHYERRHI CATALOG PIECE

-------- ---- ---- ------------------ -------- -------- -------- ----

STGLAPØ5 TS ØØ1 RW,COPY

Now, let’s see how the START DB(DTGLA00) SP(STGLAP05
) ACCESS(FORCE) command is run through our intranet
browser – see Figure 4.

When we run the DB2 command from an intranet browser, on
MVS the DB0TWLM3 WLM address space is started. The
same command output is also printed in both the intranet page
and the DB0TWLM3 address space.

 Display Filter View Print Options Help

--

------ SDSF OUTPUT DISPLAY DBØTWLM3 STCØ5525 DSID 1Ø5 LINE 1,894

COLUMNS Ø2- 81 COMMAND INPUT ===>

SCROLL ===> CSR SSID_COMMAND=DB1T-START DB(DTGLAØØ) SP(STGLAPØ5)

ACCESS(FORCE) SSID=DB1T

COMMAND=-START DB(DTGLAØØ) SP(STGLAPØ5) ACCESS(FORCE)

DSNIØ15I +DB1T OBJECT STGLAPØ5.ØØ1 IS ALREADY STARTED FOR RW ACCESS.

THE OBJECT WILL REMAIN STARTED FOR RW ACCESS

DSNIØ15I +DB1T OBJECT STGLAPØ5.ØØ2 IS ALREADY STARTED FOR RW ACCESS.

THE OBJECT WILL REMAIN STARTED FOR RW ACCESS

DSNIØ15I +DB1T OBJECT STGLAPØ5.ØØ3 IS ALREADY STARTED FOR RW ACCESS.

Figure 6: Network Traffic on WAP Gateway

 46 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

THE OBJECT WILL REMAIN STARTED FOR RW ACCESS

DSNIØ15I +DB1T OBJECT STGLAPØ5.ØØ4 IS ALREADY STARTED FOR RW ACCESS.

Now, let’s see how the DISPLAY UTILITY(*) command is run
through a mobile browser (see Figure 5):

 Display Filter View Print -------------------------- SDSF OUTPUT

DISPLAY DBØTWLM3 STCØ4429 DSID 1Ø5 LINE Ø COLUMNS Ø2- 81 COMMAND

INPUT ===> SCROLL ===>CSR

********************************* TOP SSID_COMMAND=DB1T-DISPLAY

UTILITY(*) SSID=DB1T

COMMAND=-DISPLAY UTILITY(*)

DSNU1ØØI +DB2T DSNUGDIS - USERID = STCUSR

MEMBER = DB1T

UTILID =STCUSR.TISTGL25

PROCESSING UTILITY STATEMENT 1

UTILITY = LOAD

PHASE = UTILINIT COUNT = Ø

NUMBER OF OBJECTS IN LIST = 1

LAST OBJECT STARTED =1

STATUS = STOPPED DSNU1ØØI

+DB2T DSNUGDIS - USERID = STCUSR MEMBER = DB1T

When we run the DB2 command from a mobile browser, the
same command output is also printed in both the mobile
browser .wml page and the DB0TWLM3 address space. The
network traffic on the WAP Gateway during DB2 command
call is shown in Figure 6.

CONSTANS INC
<%

'---- CursorTypeEnum Values ----

Const adOpenForwardOnly = Ø

Const adOpenKeyset = 1

Const adOpenDynamic = 2

Const adOpenStatic = 3

'---- CursorOptionEnum Values ----

Const adHoldRecords = &HØØØØØ1ØØ

Const adMovePrevious = &HØØØØØ2ØØ

Const adAddNew = &HØ1ØØØ4ØØ

Const adDelete = &HØ1ØØØ8ØØ

Const adUpdate = &HØ1ØØ8ØØØ

Const adBookmark = &HØØØØ2ØØØ

Const adApproxPosition = &HØØØØ4ØØØ

Const adUpdateBatch = &HØØØ1ØØØØ

Const adResync = &HØØØ2ØØØØ

'---- LockTypeEnum Values ----

 47© 2005. Reproduction prohibited. Please inform Xephon of any infringement.

Const adLockReadOnly = 1

Const adLockPessimistic = 2

Const adLockOptimistic = 3

Const adLockBatchOptimistic = 4

'---- CursorLocationEnum Values ----

Const adUseClient = 1

Const adUseServer = 2

Const adUseClientBatch = 3

'---- DataTypeEnum Values ----

Const adEmpty = Ø

Const adTinyInt = 16

Const adSmallInt = 2

Const adInteger = 3

Const adBigInt = 2Ø

Const adUnsignedTinyInt = 17

Const adUnsignedSmallInt = 18

Const adUnsignedInt = 19

Const adUnsignedBigInt = 21

Const adSingle = 4

Const adDouble = 5

Const adCurrency = 6

Const adDecimal = 14

Const adNumeric = 131

Const adBoolean = 11

Const adError = 1Ø

Const adUserDefined = 132

Const adVariant = 12

Const adIDispatch = 9

Const adIUnknown = 13

Const adGUID = 72

Const adDate = 7

Const adDBDate = 133

Const adDBTime = 134

Const adDBTimeStamp = 135

Const adBSTR = 8

Const adChar = 129

Const adVarChar = 2ØØ

Const adLongVarChar = 2Ø1

Const adWChar = 13Ø

Const adVarWChar = 2Ø2

Const adLongVarWChar = 2Ø3

Const adBinary = 128

Const adVarBinary = 2Ø4

Const adLongVarBinary = 2Ø5

'---- ConnectPromptEnum Values ----

Const adPromptAlways = 1

Const adPromptComplete = 2

Const adPromptCompleteRequired = 3

Const adPromptNever = 4

'---- ConnectModeEnum Values ----

Const adModeUnknown = Ø

 48 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Const adModeRead = 1

Const adModeWrite = 2

Const adModeReadWrite = 3

Const adModeShareDenyRead = 4

Const adModeShareDenyWrite = 8

Const adModeShareExclusive = &Hc

Const adModeShareDenyNone = &H1Ø

'---- IsolationLevelEnum Values ----

Const adXactUnspecified = &Hffffffff

Const adXactChaos = &HØØØØØØ1Ø

Const adXactReadUncommitted = &HØØØØØ1ØØ

Const adXactBrowse = &HØØØØØ1ØØ

Const adXactCursorStability = &HØØØØ1ØØØ

Const adXactReadCommitted = &HØØØØ1ØØØ

Const adXactRepeatableRead = &HØØØ1ØØØØ

Const adXactSerializable = &HØØ1ØØØØØ

Const adXactIsolated = &HØØ1ØØØØØ

'---- XactAttributeEnum Values ----

Const adXactPollAsync = 2

Const adXactPollSyncPhaseOne = 4

Const adXactCommitRetaining = &HØØØ2ØØØØ

Const adXactAbortRetaining = &HØØØ4ØØØØ

Const adXactAbortAsync = &HØØØ8ØØØØ

'---- FieldAttributeEnum Values ----

Const adFldBookmark = &HØØØØØØØ1

Const adFldMayDefer = &HØØØØØØØ2

Const adFldUpdatable = &HØØØØØØØ4

Const adFldUnknownUpdatable = &HØØØØØØØ8

Const adFldFixed = &HØØØØØØ1Ø

Const adFldIsNullable = &HØØØØØØ2Ø

Const adFldMayBeNull = &HØØØØØØ4Ø

Const adFldLong = &HØØØØØØ8Ø

Const adFldRowID = &HØØØØØ1ØØ

Const adFldRowVersion = &HØØØØØ2ØØ

Const adFldCacheDeferred = &HØØØØ1ØØØ

'---- EditModeEnum Values ----

Const adEditNone = &HØØØØ

Const adEditInProgress = &HØØØ1

Const adEditAdd = &HØØØ2

'---- RecordStatusEnum Values ----

Const adRecOK = &HØØØØØØØ

Const adRecNew = &HØØØØØØ1

Const adRecModified = &HØØØØØØ2

Const adRecDeleted = &HØØØØØØ4

Const adRecUnmodified = &HØØØØØØ8

Editor’s note: this article will be concluded next month.

Kadir Güray Meriç
DB2 Systems Programmer
Akbank (Turkey) © Kadir Güray Meriç 2005

BMC Software has announced Version 3.0 of
SmartDBA Performance Solution for DB2
UDB, its product for managing and tuning DB2
UDB.

The product works with DB2 UDB running on
Unix, Linux, and Windows, and provides
database analysis and identification and
resolution of problems.

SmartDBA Performance Solution for DB2
UDB is designed to allow DBAs to maintain
desired performance levels, reduce
maintenance needs and timing, and better
prepare for future growth of applications. Its
built-in intelligence reduces costs traditionally
associated with this process by automating data
collection and analysing transactions flowing
through databases, identifying trends, and
detecting abnormalities.

For further information contact:
URL: www.bmc.com/datamanagement.

* * *

Computer Associates has announced Unicenter
Database Management r11 for DB2 UDB for
Linux, Unix, and Windows.

The product, they claim, enables organizations
to optimize and streamline database operations
across multi-platform environments. Customers
are able to unload data from large databases and
transport it quickly to other databases or
applications, thereby accelerating business
processes and increasing the scalability of their
data centre architectures.

DB2 news

A browser-based management console
simplifies the unloading of large databases for
increased operational efficiency.

For further information contact:
URL: www3.ca.com/press/
PressRelease.aspx?CID=69647.

* * *

SAP AG and IBM have announced an
optimized version of DB2 UDB to help
customers ease configuration, enhance
performance, and increase availability of their
SAP solutions running on DB2.

SAP and IBM have integrated new features into
DB2 Version 8.2.2 that enhance deployment,
maintenance, and availability in a scalable
architecture for SAP customers.

The new version streamlines the installation and
configuration process, and has improved self-
managing features, such as DB2’s ‘SAP tuner’
feature developed to auto-configure DB2 in a
SAP solutions environment.

The optimized DB2 offering for SAP solutions,
including SAP Enterprise Services Architecture
(SAP ESA), is tailored for both new and existing
SAP application developers and customers.

For further information contact:
URL: www.sap.com/services/servsuptech/
smp.

* * *

x xephon

	DB2 LUW - how to alter the columns of a table
	Distributed Relational Database Architecture
	DB2 LUW - using maintained tables in a federated environment
	Managing DB2 for z/OS through WAP and Web environments
	DB2 news

