
© Xephon plc 1999

September 1999

83

3 Opening ‘in limbo’ tablespaces
5 Identifying modified tablespaces
23 Java meets DB2: get there from

here – JDBC
35 Timestamp checking program
43 Using a relational database for

data warehouses
48 DB2 news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

DB2 Update
Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38030
From USA: 01144 1635 38030
E-mail: info@xephon.com

North American office
Xephon/QNA
1301 West Highway 407, Suite 201-405
Lewisville, TX 75077-2150
USA
Telephone: 940 455 7050

Contributions
Articles published in DB2 Update are paid
for at the rate of £170 ($250) per 1000 words
and £90 ($140) per 100 lines of code for
original material. To find out more about
contributing an article, without any
obligation, please contact us at any of the
addresses above and we will send you a copy
of our Notes for Contributors.

DB2 Update on-line
Code from DB2 Update can be downloaded
from our Web site at http://www.xephon.
com/db2update.html; you will need the user-
id shown on your address label.

© Xephon plc 1999. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.
 Printed in England.

Editor
Robert Burgess

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, and other contents of this journal
before making any use of it.

Subscriptions and back-issues
A year’s subscription to DB2 Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
January 1994 issue, are available separately
to subscribers for £22.50 ($33.50) each
including postage.

 3© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Opening ‘in limbo’ tablespaces

Occasionally, a utility on one of our testing subsystems is stopped by
the operators, Technical Support Group (TSG), or OPC. More often
than not, this happens on a Sunday morning – when we use BMC-type
utilities to image copy, reorg, runstats, or whatever, in a brief ‘window
of opportunity’, ie without scheduling the jobs. TSG then require the
machine for maintenance and don’t check whether it is in use, or the
Auto-Operator schedules a STOP DB2.

As a result, the tablespaces find themselves open RO not RW, and so,
on Monday morning, no one can update, insert, etc. There is nothing
inherently wrong with the tablespaces, they are simply ‘in limbo’.

OPFORCE is a simple REXX that extracts the names it needs from
SYSIBM.SYSTABLESPACE to do an OPEN ACCESS(FORCE). It
uses REXXTOOLS to access the catalog.

It then submits a batch job using DSNTEP2 and off it goes.

It can, of course, be amended to do whatever OPEN ACCESS() you
want, on whichever tablespaces you want, but it has got us out of a few
scrapes in the past.

OPFORCE

/*** REXX ***************/
/* PRODUCES A TABLE FROM SYSIBM.SYSTABLESPACE */
/* FOR A SKELETON JOB TO DO OPEN FORCE */
/**/
/* TRACE R */
ARG SUBSYS /* GET DB2 SUBSYSTEM VALUE */
CALL RXSUBCOM 'ADD', 'SQL', 'RXTASQL'
IF RC > 4 THEN DO
 SAY "SQL HOST ENVIRONMENT NOT ADDED. RC="RC
 EXIT
END
IF DSNALI("OPEN",SUBSYS,"RXTOOLCS") <> Ø
 THEN DO
 SAY "OPEN FOR PLAN FAILED. RC="RC "REASON="REASON
 EXIT RC
 END
IF SUBSYS = 'DB2U'

 4 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 THEN
 ADDRESS SQL "SELECT DBNAME, NAME ",
 "FROM SYSIBM.SYSTABLESPACE ",
 "WHERE (DBNAME LIKE 'UAT___DB' ",
 " OR DBNAME LIKE 'DBUWKØØ1')",
 "ORDER BY 1, 2 "
 ELSE IF SUBSYS = 'DB2P'
 THEN
 ADDRESS SQL "SELECT DBNAME, NAME ",
 "FROM SYSIBM.SYSTABLESPACE ",
 "WHERE (DBNAME LIKE 'PRD___DB' ",
 " OR DBNAME LIKE 'DBPWKØØ1')",
 "ORDER BY 1, 2 "
 ELSE IF SUBSYS = 'DB2D'
 THEN
 ADDRESS SQL "SELECT DBNAME, NAME ",
 "FROM SYSIBM.SYSTABLESPACE ",
 "WHERE (DBNAME LIKE 'DEV___DB' ",
 " OR DBNAME LIKE 'DBDWKØØ1')",
 "ORDER BY 1, 2 "
 ELSE IF SUBSYS = 'DB2T'
 THEN
 ADDRESS SQL "SELECT DBNAME, NAME ",
 "FROM SYSIBM.SYSTABLESPACE ",
 "WHERE (DBNAME LIKE 'TST___DB' ",
 " OR DBNAME LIKE 'DBTWKØØ1')",
 "ORDER BY 1, 2 "
SAY 'SQLCODE = ' SQLCA.SQLCODE
"ISPEXEC TBCREATE OPFORCE NAMES(DBNAME NAME COUNT) NOWRITE"
DBNAME1 = STRIP(DBNAME.1) /* SET UP FIRST COPY */
NAME1 = STRIP(NAME.1) /* SET UP FIRST COPY */
DO COUNT = 2 TO SQLCA.SQLROWS
 DBNAME = STRIP(DBNAME.COUNT)
 NAME = STRIP(NAME.COUNT)
 "ISPEXEC TBADD OPFORCE"
END
"ISPEXEC FTOPEN TEMP"
TSTAMP = 'D'DATE('J')'.T'TIME('M')
"ISPEXEC FTINCL OPFORCE"
"ISPEXEC FTCLOSE"
"ISPEXEC TBEND OPFORCE"
"ISPEXEC VGET ZTEMPF"
"SUBMIT '"ZTEMPF"'"
EXIT

DSNTEP2

//DMGIEMP2 JOB (DMGAC),'DSNTEP2',CLASS=A,MSGCLASS=X,NOTIFY=DMGIEM
//*

 5© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

//***
//* *
//* PROGRAM DSNTEP2 *
//* *
//***
//*
/*JOBPARM SYSAFF=OSØ2
//*
//BATCHTSO EXEC PGM=IKJEFTØ1,
// DYNAMNBR=2Ø
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SYSTSIN DD *
 DSN SYSTEM(&SUBSYS)
 -START DATABASE(&DBNAME) SPACENAM(&NAME) ACCESS(FORCE)
)DOT OPFORCE
 -START DATABASE(&DBNAME) SPACENAM(&NAME) ACCESS(FORCE)
)ENDDOT
//*
//SYSIN DD DUMMY
/*

Ian McDonald
DB2 DBA (UK) © Xephon 1999

Identifying modified tablespaces

We often need to identify which tablespaces were modified during a
particular period of time. This information can be useful to identify
tablespaces to recover, frequently updated tablespaces, etc. Although
there are products on the market that give extensive information based
on the log records, such detail is not always required. Such products
also require the tape archives of the log datasets to be mounted and the
process can run from a few minutes to several hours depending on the
time-range specified for analysis.

This utility was developed to overcome this handicap.

One of DB2’s directory files, the SYSLGRNX dataset, has information
about all the tablespaces that were opened for modification. This
utility processes the records from SYSLGRNX to find the matching

 6 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

DBIDs and OBIDs (PSIDs) in the time-range specified by the user. It
also counts the matches for each DBID and OBID combination. It
then queries the relevant database to find the database names and the
tablespace names. The result is written to an output dataset, along with
the counts noted earlier and other information.

The utility calls two subprograms which are also provided:

• CPIDCAMS – to copy the VSAM file to a sequential file.

• RUNSQL – to run a SQL through REXX.

CHKLGRNX

/* REXX */
trace o
clear
/**/
/* CHKLGRNX - A quick way to identify modified tables. */
/* Calls CPIDCAM and RUNSQL. */
/* */
/* This gives the details of the tablespaces that were */
/* modified during a given date and time range. */
/* The count, which is the number of times that it was opened */
/* for update, is also indicated. This is not to be confused */
/* with the number of records modified. */
/* The result is written to an output dataset. */
/* */
/* This differentiates between a Production & Test system. */
/* */
/* This receives the SUBSYSTEM name and the date and time */
/* ranges to check for, as the inputs. */
/* */
/* Uses: We use this to quickly check what tablespaces were */
/* modified during a given time-range. This information */
/* is useful to us in several ways such as identifying */
/* tablespaces for recovery, determining heavily used */
/* tables, etc. */
/* */
/* The subsystem names, dataset naming conventions, and the */
/* VCAT names must be modified to suit your installation. */
/* */
/**/

DEF_CONSTS:
ctnue = 'Press Enter to continue ...'
C_obid = x2c('ØØD1') /* range record identifier */

 7© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

cd = date(U)
cur_date = substr(cd,1,2)||substr(cd,4,2)||substr(cd,7)
us_date = substr(cd,7,2)||substr(cd,1,2)||substr(cd,4,2)
address TSO "ispexec vget (zsysid)"
p_sysid=zsysid
curtm = time()
cur_time=substr(curtm,1,2)||substr(curtm,4,2)
cur_time=cur_time||substr(curtm,7,2)||'ØØ'
maxdate = ØØØØØØ
mindate = 999999
fnd=Ø
match=Ø
nomatch=Ø
/* begin main routine */
MAIN_PROC:
Call GETSSID
Call COPYVCAT

/**/
/* This is the dataset that contains the copy of SYSLGRNX */
/**/
I_lgrdsn = strip(I_lgrdsn,B,"'")
"ALLOCATE DD(INDD) DSN('"I_lgrdsn"') REUSE SHR"
clear
say ' SPECIFY INPUTS CAREFULLY ...'
typ_date = ' *BEGIN* '
Call GETDATE
I_bdate = I_date
typ_date = ' *END* '
Call GETDATE
I_edate = I_date
typ_time = ' *BEGIN* '
def_time = 'ØØØØØØØ1'
Call GETTIME
I_btime = I_time
typ_time = ' *END* '
def_time = cur_time
Call GETTIME
I_etime = I_time
Call GETODSN
Call WRITEPS
Call BLDLST
Call PROCFND
if fnd <> Ø then
do
 Call PROCQUERY
 exit(Ø)
end
else

 8 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 exit(8)
/* end of MAIN_PROC */
/* Receive sub-system ID ... */
GETSSID:
Do forever until sid<>''
 Say 'Please give sub-system ID : '
 parse upper pull sid
 sid=strip(sid)
end
 /* TEST is the test MVS machine */
 /* PROD is the prod MVS machine */
 if p_sysid = 'PROD' then
 do
 say
 say ' *** Running on PROD machine *** '
 say
 select
 when sid = 'DBPR'
 then do
 nop
 end
 otherwise
 say 'incorrect subsystem id'
 exit(Ø)
 end
 end
 if p_sysid = 'TEST' then
 do
 say
 say ' *** Running on TEST machine *** '
 say
 if sid = 'DBPR' then
 do
 say 'You cannot run DBPR on TEST machine...'
 exit(Ø)
 end
 end
P_ssid = strip(sid)
return
/* end of GETSSID */

COPYVCAT:
/* modify this to reflect the proper HLQs of the VCAT names */
hlq ='XX'||substr(sid,3,2)
vcat = hlq||'.DSNDBC.DSNDBØ1.SYSLGRNX.IØØØ1.AØØ1'
I_lgrdsn = 'HRDBA.'||userid()||'.'||hlq||'.TEST.FILE'
say 'Copying master ...'
say ; say 'Please wait ..this may take a while ...'
say

 9© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

/* call the REXX routine CPIDCAM to copy the SYSLGRNX dataset */
/* to a work dataset */

address TSO "CPIDCAM" vcat I_lgrdsn
if RC > Ø then
do
 say ' *** '
 say 'Return code during copy of master is...'rc
 say 'Aborting utility ...'
 exit(8)
end
return rc
/* end of COPYVCAT */

GETDATE:
say
Say 'Please give 'typ_date' date in mmddyy format '
Say ' or press Enter for default 'typ_date' date ('cur_date')...'
pull I_date
If strip(I_date) = '' then
 I_date = strip(cur_date)
else
 I_date = strip(I_date)

if length(I_date) ¬= 6 then
do
 say
 say '*********** Incorrect date specified *********** '
 signal GETDATE
end
return
/* end of GETDATE routine */

GETTIME:
say
Say 'Please input 'typ_time' time in hhmmssth format '
Say ' or press Enter for default 'typ_time' time 'def_time' ...'
pull I_time
if strip(I_time)='' then
 I_time = def_time
I_time = strip(I_time)
If I_time > '24ØØØØØØ' | length(I_time) ¬= 8 then
 do
 say
 say '********** Incorrect time specified **********'
 signal GETTIME
 end
return
/* end of GETTIME routine */

 10 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

GETODSN:
/* This routine gets the name of the result dataset */
ods_name = "PREFX."||userid()||".RESULT."||P_ssid||".D"||us_date
say
Say 'Give the name of a new sequential dataset to write result '
say ' or Press Enter for default dataset 'ods_name
pull I_odsn
if I_odsn='' then
 ods_name = strip(ods_name)
else
 ods_name = strip(I_odsn)
return
/* end of GETODSN routine */

BLDLST:
/**/
/* This routine builds the list of DBIDs and OBIDs from the master */
/* This checks each record in SYSLGRNS for the record identifier */
/* between positions 24 and 3872. For each record found, it gets */
/* the dbid, psid, date, and time, and analyses it for a fit */
/* within the specified date and time range by calling PROCREQ */
/**/
clear
say 'Processing master ...'
cnt=Ø
/**/
/* The first two lines are not relevant to us */
/* do a dummy read of these two lines */
/**/
do i = 1 to 2
 "execio 1 DISKR INDD"
 pull lgr
end
do forever
 "execio 1 DISKR INDD"
 if RC=2 then leave
 pull lgr
 i = i+1
 xstrng=lgr
 cur_pos = 24
 k =1;
 loc = 1
 do until cur_pos > 3872
 strobid = (substr(xstrng,cur_pos,2))
 if strobid ¬= C_obid then
 do
 cur_pos = cur_pos + 52
 end
 if strobid = C_obid then
 do

 11© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 loc=cur_pos
 cnt=cnt+1
 dbidc = c2d(substr(xstrng,loc+3,2))
 obidc = c2d(substr(xstrng,loc+5,2))
 tdat = (substr(xstrng,loc+7,6))
 mdatc = substr(tdat,5,2)||substr(tdat,1,2)||substr(tdat,3,2)
 mtimc = (substr(xstrng,loc+13,8))
 Call PROCREQ
 k=k+1
 cur_pos = loc+52
 if cnt//2ØØØØ = Ø then
 say 'Scanned 'cnt' records so far ...'
 end
 end /* end of do until cur_pos > 3872 */
end /* do forever */
say 'Completed processing '
say 'Found total of 'cnt' instances in master '

/**/
/* Do a dummy read and close the input file and delete it */
/**/
"execio Ø DISKR INDD(FINIS"
x = outtrap("q1out.","*")
address TSO "FREE DDNAME(INDD)"
address TSO "delete '"I_lgrdsn"'"
x = outtrap("OFF")
return
/* end of BLDLST */

PROCREQ:
/**/
/* This checks if the dbid and obid identified are within */
/* the range specified. It also increments a relevant counter if */
/* the object had been found before */
/**/
C_bd = substr(I_bdate,5,2)||substr(I_bdate,1,2)||substr(I_bdate,3,2)
C_ed = substr(I_edate,5,2)||substr(I_edate,1,2)||substr(I_edate,3,2)
if mdatc > maxdate then
 maxdate = mdatc
if mdatc < mindate then
 mindate = mdatc
if strip(mdatc) < strip(C_bd) | strip(mdatc) > strip(C_ed) then
 return
if (mtimc >= I_btime) & (mtimc <= I_etime) then
do
 match=match+1
 if fnd = Ø then
 do
 fnd=fnd+1
 O_dbid.fnd = dbidc

 12 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 O_obid.fnd = obidc
 O_count.fnd = 1
 end
 else /* already some records were found */
 do
 in_fnd = Ø
 Do j = 1 to fnd
 if O_dbid.j = dbidc then
 do
 if O_obid.j = obidc then
 do
 O_count.j = O_count.j + 1
 in_fnd = 1
 end /* if O_obid.j = obidc */
 end /* O_dbid.j = dbidc */
 end /* Do j=1 to fnd */
 if in_fnd = Ø then
 do
 fnd=fnd+1
 O_dbid.fnd = dbidc
 O_obid.fnd = obidc
 O_count.fnd = 1
 end /* if in_fnd = Ø */
 end /* else of if fnd=Ø */
end
nomatch=nomatch+1
return
/* end of PROCREQ */

PROCFND:
say ' Found 'fnd' matches for your range. 'ctnue
do s = 1 to fnd
 O_dbid.s = strip(O_dbid.s)
 O_obid.s = strip(O_obid.s)
 O_count.s = strip(O_count.s)
end
if fnd = Ø then
do
 clear
 say ' ** NO DATA FOUND ** ';say
 say 'no tablespace changes were found in the date and time '
 say 'boundries shown below:'
 say; say 'From ..' I_bdate ' - ' I_btime ' hrs '
 say 'To ..' I_edate ' - ' I_etime ' hrs '
 say 'Terminating REXX ...'
 e.1= " ** NO DATA FOUND ** "
 e.2= "No tablespace changes were found in the date and time "
 e.3= "boundaries shown below:"
 e.4= "From .." I_bdate " - " I_btime " hrs "
 e.5= " To .." I_edate " - " I_etime " hrs "

 13© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 e.6= " "
 e.7= " Total of " cnt " records found in master "
 e.8= " Found NO matches in your range "
 e.9= " "
 e.1Ø= " Date of earliest record analysed was (yymmdd) "mindate
 e.11= " Date of latest record analysed was (yymmdd) "maxdate
 e.12= " "
 "execio * diskw opds (stem e. FINIS "
 return
end

/* records were found within specified range */
/* write details to result dataset */

"makebuf"
queue " "
queue " Total of " cnt " records found in master "
queue " Found " fnd " matches in your range "
queue " "
queue " Date of earliest record analysed was (yymmdd) "mindate
queue " Date of latest record analysed was (yymmdd) "maxdate
queue " "
queue "Details of matched DBIDs and OBIDs and COUNTS in MASTER "
queue "-------------------"
queue "DBID OBID COUNT "
queue "-------------------"
do zz = 1 to fnd
 do while length(O_dbid.zz) < 4
 O_dbid.zz = ' '||O_dbid.zz
 end
 do while length(O_obid.zz) < 4
 O_obid.zz = ' '||O_obid.zz
 end
 do while length(O_count.zz) < 8
 O_count.zz = ' '||O_count.zz
 end
 queue O_dbid.zz||" "||O_obid.zz||" "||O_count.zz
end
queue " --- "
queue " "
"execio * diskw opds "
"dropbuf"
return
/* end of PROCFND */

PROCQUERY:
/**/
/* The records found are used to build queries for identifying */
/* the database and tablespace names. The queries are built in */
/* sets of 25Ø to avoid exceeding certain size limits */

 14 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

/**/
P_ssid = strip(sid)
P_Dsname = "PREFX."||userid()||".sysin"
nqry = trunc(fnd/25Ø)
p = Ø
if nqry = Ø then
 SIGNAL TEMPJUMP
do iØ = 1 to nqry
 strt = 25Ø*(iØ-1) + 1
 lstr = strt + 249
 Call QUERYDB
 if qry_err = 1 then
 return
 if tsin.Ø > Ø then
 do
 do kk = 1 to tsin.Ø
 p = p+1
 F_out.p = tsin.kk
 end
 end
end
TEMPJUMP:
if (nqry*25Ø) ¬= fnd then
do
 strt = (nqry*25Ø) + 1
 lstr = fnd
 Call QUERYDB
 if qry_err = 1 then
 return
 if tsin.Ø > Ø then
 do
 do kk = 1 to tsin.Ø
 p = p+1
 F_out.p = tsin.kk
 end
 end
end

Call REPORT_RESULT
return
/* end of PROCQUERY */

QUERYDB:
/**/
/* This builds a SQL with the available obids and dbids and calls */
/* RUNSQL with sub-system ID and SYSIN dataset name to query DB2 */
/* It then matches the results with earlier counts of OBIDs and */
/* writes the results to the result dataset */
/**/
x = outtrap("q1out.","*")

 15© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 address TSO "delete 'PREFX."||userid()||".sysin'"
 address TSO "delete 'PREFX."||userid()||".sysrecØØ'"
x = outtrap("OFF")
 address TSO "alloc f(tempdd) new unit(sysda) space(1,1Ø)",
 "cyl reuse dsname('PREFX."||userid()||".sysin')"
if rc ¬= Ø then
do
 say 'Unable to allocate sysin dataset ...'
 say 'Terminating *** '
 exit(8)
end
say 'Building SQL for objects 'strt' to 'lstr'. 'ctnue
address TSO
"makebuf"
queue " "
QUEUE " SELECT NAME, DBNAME, DBID, PSID "
QUEUE " FROM SYSIBM.SYSTABLESPACE "
QUEUE " WHERE ("
compl = lstr - 1
do i2 = strt to compl
QUEUE "(DBID = "||O_dbid.i2||" AND PSID= "||O_obid.i2||") OR "
end
QUEUE " (DBID = "||O_dbid.lstr||" AND PSID = "||O_obid.lstr||")) "
QUEUE " ORDER BY DBNAME, NAME "
QUEUE " ; "
QUEUE " "
"execio * diskw tempdd (finis"
"dropbuf"
/**/
/* uncomment the next 4 lines to print the SQL */
/* */
/* "execio * diskr tempdd (finis stem jSQL. " */
/* do w = 1 to jSQL.Ø */
/* say jSQL.w */
/* end */
/**/
x = outtrap("q1out.","*")
say
say 'Querying database 'P_ssid' for TSnames. '
qry_err = Ø
ADDRESS TSO "RUNSQL" P_ssid P_Dsname
if RC ¬= Ø then
 qry_err = 1
address TSO "free f(tempdd)"
address TSO "delete 'PREFX."||userid()||".sysin'"
x = outtrap("OFF")
/**/
/* */
/* Read results back from sysin to stem */
/* */

 16 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

/**/
address TSO "FREE F(SYSRECØØ)"
address TSO "ALLOC F(SYSRECØØ) OLD",
 "DSNAME('PREFX."||USERID()||".SYSRECØØ')"
"EXECIO * DISKR SYSRECØØ (FINIS STEM tsin."
if qry_err = 1 then
do
 say 'REXX failed in Query processing... Aborted..'
 err.1 = 'REXX failed in query processing.. Aborted'
 "execio * diskw opds (FINIS stem err. "
 address TSO "free f(opds)"
end
return

REPORT_RESULT:
if p = Ø then
do
 say
 say 'No records found for selected DBIDs and OBIDs. 'ctnue
 pull temp
 e2.1= " "
 e2.2= "No records found for selected DBIDs and OBIDs.."
 e2.3= " "
 "execio * diskw opds (stem e2. "
 return
end
do m=1 to p
 F_out.m = strip(F_out.m)
 parse var F_out.m R_tsn.m +8 R_dbn.m +8 R_db +2 R_ob +2 Zap
 R_dbid.m = c2d(R_db)
 if R_dbid.m = Ø then R_dbid.m = 64 /* because 64 is x'4Ø' */
 /* and c2d returns Ø */
 R_obid.m = c2d(R_ob)
 if R_obid.m = Ø then R_obid.m = 64
 R_count.m = Ø
 do i3=1 to fnd
 if (O_dbid.i3 = R_dbid.m) & (O_obid.i3 = R_obid.m) then
 do
 R_count.m = O_count.i3
 end
 end
 do while length(R_dbid.m) < 4
 R_dbid.m = ' '||R_dbid.m
 end
 do while length(R_obid.m) < 4
 R_obid.m = ' '||R_obid.m
 end
 do while length(R_count.m) < 8
 R_count.m = ' '||R_count.m
 end

 17© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 R_smry.m = R_dbn.m||' '||R_tsn.m||' '||R_dbid.m||' '
 R_smry.m = R_smry.m||R_obid.m||' '||R_count.m
end
r1.1= " "
r1.2= " "
r1.3= "Results of Database query on "P_ssid":"
r1.4= " "
r1.5= "Total objects queried for: "fnd
r1.6= "Total objects found in DB: "p
r1.7= " "
r1.8= "------------------------------------- "
r1.9= " DBNAME TSNAME DBID OBID COUNT "
r1.1Ø="------------------------------------- "
"execio * diskw opds (stem r1. "
"execio * diskw opds (stem R_smry. "
say 'Successful completion of utility';say
say 'Results written into ..'ods_name
say; say 'Terminating utility'
fini.1 = "------------------------------------- "
fini.2 = " "
fini.3 = ' ******* End of report *********'
"execio * diskw opds (FINIS stem fini. "
address TSO "free f(opds)"
return

WRITEPS:
/**/
/* This deletes existing result dataset and allocates a fresh */
/* dataset. */
/* It writes some header information and statistics */
/**/
say 'Deleting existing result dataset ..'ods_name
x = outtrap("q1out.","*")
address TSO "delete '"ods_name"'"
x = outtrap("OFF")
say 'Allocating and writing into ...'ods_name
address TSO "alloc f(opds) new unit(sysda) space(5,1Ø)",
 "cyl reuse dsname('"ods_name"')",
 "dsorg(ps) blksize(133ØØ) lrecl(133) recfm(f b)"
if RC ¬= Ø then
do
 say 'Unable to allocate result dataset ...'ods_name
 say 'Terminating *** '
 exit(8)
end
f.1= " This REXX was run on " date(U) " at " cur_time " on "sid
f.2= " "
f.3= " Your start date was " I_bdate " and time " I_btime
f.4= " Your end date was " I_edate " and time " I_etime
f.5= " "

 18 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

"execio * diskw opds (stem f.
return

CPIDCAM

/* REXX */
/**/
/* CPIDCAM subroutine */
/* Called from CHKLOG */
/* This copies a VSAM dataset into a SEQUENTIAL file */
/* This takes the VSAM and the SEQUENTIAL file names as arguments */
/**/
TRACE o
PARSE UPPER ARG P_vsam P_seql
say 'In copy routine...'
xx = outtrap("junk.","*")
CALL P1ØØØ_Allocate_Seqfil
Call P3ØØØ_Execute_Repro
EXIT (RC)
/* */
/* */
P1ØØØ_Allocate_Seqfil:
 P_vsam = strip(P_vsam)
 P_seql = strip(P_seql)
 address TSO "delete '"P_seql"'"
 address TSO "alloc f(OUTFILDD) new unit(sysda) space(5Ø,5Ø)",
 "cyl release dsname('"P_seql"')",
 "dsorg(ps) blksize(4Ø96) lrecl(4Ø96) recfm(f b)"
 address TSO "alloc f(INFILDD) ",
 "shr reuse dsname('"P_vsam"')"
RETURN

P3ØØØ_Execute_Repro:
/**/
/* Execute the REPRO command */
/**/

ADDRESS TSO
 "REPRO ",
 " INFILE(INFILDD)",
 " OUTFILE(OUTFILDD) "
xx=outtrap("OFF")
if rc = Ø then
 say 'Successfully copied Master '
else
 say 'Unable to copy master file ..RC is ' RC
address TSO "FREE F(INFILDD)"
address TSO "FREE F(OUTFILDD)"
RETURN RC

 19© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

RUNSQL

/* REXX */
/**/
/* RUNSQL subroutine */
/* */
/* Invocation: TSO RUNSQL DB2SSID SYSINDSN */
/* This REXX takes the DB2 SSID and the SYSIN dataset as argument */
/* It then runs DSNTIAUL and stores the result in a file */
/* named as PREFX.USERID.SYSRECØØ */
/* The SYSPRINT dataset is also present and the code can be */
/* turned on or off to browse the same */
/* Use proper values for PREFX as allowed by your installation */
/**/
TRACE o
PARSE UPPER ARG P_db2sub P_dsname .
say 'Running RUNSQL'
if strip(P_db2sub)='' | strip(P_dsname) = '' then
do
 say 'Proper execution is RUNSQL DB2SSID SYSIN-DSNAME ...'
 exit(8)
end
x = outtrap("zap.","*")
CALL P1ØØØ_Allocate_Sysin
CALL P2ØØØ_Allocate_Output
Call P3ØØØ_Execute_DSNTIAUL
Call P4ØØØ_Clean_up
x = outtrap("OFF")
EXIT

P1ØØØ_Allocate_Sysin:
 P_pds_in = strip(P_dsname)
 Sysin = SYSDSN("'"P_pds_in||"'")
 if Sysin = "OK" then do
 address TSO "ALLOCATE DDNAME(SYSIN) SHR reu ",
 "DSNAME('"P_pds_in||"')"
 end
 if Sysin ¬= "OK" then do
 SAY '*** Error *** 'P_pds_in Sysin
 exit(8)
 end
 address TSO "delete 'PREFX."||USERID()||".SYSPRINT'"
 address TSO "delete 'PREFX."||USERID()||".SYSPUNCH'"
RETURN

P2ØØØ_Allocate_Output:
address TSO "ALLOC F(SYSRECØØ) NEW UNIT(SYSDA) SPACE(1,1Ø)",
 "UNIT(sysda)",
 "CYL REUSE DSNAME('PREFX."||USERID()||".SYSRECØØ')"
address TSO "ALLOC F(SYSPRINT) NEW UNIT(SYSDA) SPACE(8,2)",

 20 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

 "UNIT(sysda)",
 "TRACKS REUSE DSNAME('PREFX."||USERID()||".SYSPRINT')"
address TSO "ALLOC F(SYSPUNCH) NEW UNIT(SYSDA) SPACE(8,2)",
 "UNIT(sysda)",
 "TRACKS REUSE DSNAME('PREFX."||USERID()||".SYSPUNCH')"
Return

P3ØØØ_Execute_DSNTIAUL:
/***/
/* Specify the proper DSNLOAD and DSNEXIT Dataset library names */
/***/
 "STEPLIB DSN('"PROD.||P_db2sub||".DSNLOAD') SHR"
 "STEPLIB DSN('"PROD.||P_db2sub||".DSNEXIT') SHR"
/* PLACE THE RUN AND END CMDS ON THE DATA STACK AND EXECUTE DSN */
/* */
"NEWSTACK"
QUEUE "RUN PROGRAM(DSNTIAUL) PLAN(DSNTIB51) PARM('SQL')"
QUEUE "END"
QUEUE
address TSO "DSN SYSTEM("P_db2sub")"
"DELSTACK"

/* comment the signal code below to browse SYSPRINT dataset */
signal TEMPSTEP

/* BROWSE THE SYSPRINT FILE */
ADDRESS ISPEXEC "LMINIT DATAID(DSID) DDNAME(SYSPRINT)"
ADDRESS ISPEXEC "BROWSE DATAID("DSID")"
ADDRESS ISPEXEC "LMFREE DATAID("DSID")"
TEMPSTEP:
RETURN
 P4ØØØ_Clean_up:
address TSO "delete 'PREFX."||USERID()||".SYSPRINT'"
address TSO "delete 'PREFX."||USERID()||".SYSPUNCH'"
 RETURN

SAMPLE OUTPUT

This REXX was run on Ø4/16/99 at 181411ØØ on DBT3

 Your start date was Ø41699 and time ØØØØØØØ1
 Your end date was Ø41699 and time 12ØØØØØØ

 Total of 93734 records found in master
 Found 45 matches in your range

 Date of earliest record analysed was (yymmdd) 9ØØ321
 Date of latest record analysed was (yymmdd) 99Ø416

Details of matched DBIDs and OBIDs and COUNTS in MASTER

 21© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

——————————————————
DBID OBID COUNT
——————————————————
 339 28 1
 3Ø3 27 1
 3Ø3 2 1
 3Ø3 7 1
 3Ø3 12 1
 283 112 1
 45Ø 88 1
 363 2 1
 45Ø 12 5
 45Ø 2Ø 2
 281 269 2
 365 275 2
 365 114 2
 365 112 2
 365 96 2
 384 92 3
 6 1Ø 3
 6 9 8
 257 2 5
 6 121 5
 365 2Ø 1
 322 4 1
 352 4Ø 1
 349 84 2
 296 4 1
 342 24 1
 352 42 1
 349 86 2
 349 8Ø 1
 349 72 1
 352 36 1
 349 5Ø 1
 352 8 1
 352 6 1
 399 34 2
 45Ø 9Ø 4
 45Ø 86 4
 45Ø 72 5
 45Ø 128 5
 45Ø 82 2
 45Ø 194 2
 349 24 1
 351 34 1
 365 98 1
 349 64 1
 ———————————————————————————

 22 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Results of Database query on DBT3:

Total objects queried for: 45
Total objects found in DB: 36

————————————————————————————————————
 DBNAME TSNAME DBID OBID COUNT
————————————————————————————————————
DMAUNTDB DMASTSTS 352 42 1
DMAUNTDB DMAUIDTS 352 4Ø 1
DMAUNTDB DMELRLTS 352 36 1
DMAUNTDB DMRADRTS 352 8 1
DMAUNTDB DMRRPDTS 352 6 1
DMBDCLDB DMINRRTS 351 34 1
DMCLNTDB DMCLDMTS 349 86 2
DMCLNTDB DMCLIDTS 349 84 2
DMCLNTDB DMCLSTTS 349 8Ø 1
DMCLNTDB DMDPRTTS 349 72 1
DMCLNTDB DMEINCTS 349 Ø Ø
DMCLNTDB DMLIVATS 349 5Ø 1
DMCLNTDB DMSHLETS 349 24 1
DMMISCDB DMDCOMTS 342 24 1
DMPARMDB DMOTHKTS 339 28 1
DMPLAND2 DMPLANTS 363 2 1
DMRSVDDB DMRSVDTS 322 4 1
DMSPARDB DMSPARTS 296 4 1
DSNDBØ6 SYSDBASE 6 9 8
DSNDBØ6 SYSPKAGE 6 121 5
DSNDBØ6 SYSPLAN 6 1Ø 3
DSQDBCTL DSQTSCT1 257 2 5
HRKADBØ2 CACHLDTS 3Ø3 2 1
HRKADBØ2 CLCASETS 3Ø3 7 1
HRKADBØ2 CLCHLDTS 3Ø3 12 1
HRKADBØ2 CONSEDTS 3Ø3 27 1
HRRVDBØ1 TSERMSG 384 92 3
PTDB PTG3ØØUH 365 2Ø 1
PTDB PTG4ØØTS 365 275 2
PTDB PTITSRAA 365 96 2
PTDB PTITSRAB 365 98 1
PTDB PTITSRA1 365 112 2
PTDB PTITSRA2 365 114 2
RTVTSTD1 RTWPCOTA 399 34 2
WISFEADB SCFEDBØ3 281 269 2
WISPOADB SCGAUØ33 283 112 1
————————————————————————————————————

 ******* End of report *********

Jaiwant K Jonathan
DB2 DBA (USA) © Xephon 1999

 23© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Java meets DB2: get there from here – JDBC

You’ve all heard the hype – Java’s the greatest thing since sliced bread,
it will solve the world’s computing problems, and quite possibly find
the cure for the common cold. Hype aside, Java’s a wonderful
programming language that can be used to build mission-critical
software solutions, partly because of its two primary techniques for
database access, JDBC and SQLJ. In this series of two articles, both
data access technologies will be covered in depth with this first part
covering JDBC.

BACKGROUND

Java, the object-oriented programming language developed by Sun
Microsystems, was officially unleashed upon the world in January
1996. Almost immediately there came a hue and a cry from developers
all over the world concerning its lack of native database connectivity.

The engineers at Sun responded to this legitimate complaint by
beginning development of JDBC almost immediately. With input
from major players in the database industry (including IBM), JDBC
was finalized and became a part of the core Java API with the release
of Java 1.1 in February 1997.

Contrary to popular opinion, JDBC is not an acronym and does not
stand for ‘Java Database Connectivity’ – it is simply a trademarked
term loosely named after Microsoft’s very popular Open Database
Connectivity (ODBC) API. JDBC and ODBC share much in common:
both are database independent APIs, both are predicated upon the
X/Open’s CLI specification, and both require some type of driver to
translate the calls into a language understood by the specific database
product being used on the back end (see Figure 1).

JDBC DRIVERS

Unlike ODBC, JDBC works with four distinct types of driver,
officially known as Type 1 to Type 4 drivers, as described below, and
depicted in Figure 2:

 24 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

• Type 1 – the JDBC-ODBC bridge provides JDBC access via most
ODBC drivers. This bridge comes bundled free of charge with the
JDK; its purpose is to convert JDBC method calls into ODBC
function calls. This allows off-the-shelf ODBC drivers to be
used. Note that some ODBC binary code must be loaded on each
client machine that uses this driver, making this solution
inappropriate for untrusted applets. Performance is also an issue.
However, the price can’t be beaten!

• Type 2 – a native-API-partly-Java driver converts JDBC calls
into calls on the client API for the specific DBMS to which you
are connecting. Like the JDBC-ODBC bridge driver, this type
also requires that some binary code be loaded onto each client
machine, so it, too, is inappropriate for untrusted Java applets.
However, it functions well in a typical thick-client two-tier

DBMSDBMS

JDBC

JDBC Driver

Java applet or
application

ODBC

ODBC Driver

Windows
application

Figure 1: JDBC versus ODBC

 25© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

JD
B

C
-O

D
B

C
br

id
ge

D
riv

er
D

riv
er

JD
B

C
-n

at
iv

e
A

P
I b

rid
ge

JD
B

C
-n

et
br

id
ge

D
ire

ct
 J

D
B

C
dr

iv
er

O
D

B
C

 d
riv

er
m

an
ag

er
N

at
iv

e
A

P
I

lib
ra

ry

D
riv

er

D
riv

er

Li
st

en
er

O
D

B
C

 d
riv

er
m

an
ag

er

JD
B

C
 A

P
I

JD
B

C
 d

riv
er

 A
P

I

P
ro

pr
ie

ta
ry

P
ro

pr
ie

ta
ry

P
ro

pr
ie

ta
ry

P
ub

lis
he

d

pr
ot

oc
ol

pr
ot

oc
ol

pr
ot

oc
ol

pr
ot

oc
ol

Ja
va

 a
pp

le
t o

r
ap

pl
ic

at
io

n

JD
B

C
 d

riv
er

 m
an

ag
er

1
2

T
yp

e
1

T
yp

e
2

T
yp

e
3

T
yp

e
4

D
B

M
S

D
B

M
S

D
B

M
S

D
B

M
S

Figure 2: Four types of driver

 26 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

architecture as well as on the middle tier of a three-tier solution.
Performance of Type 2 drivers is typically quite good.

• Type 3 – a net-protocol all-Java driver translates JDBC calls into
a DBMS-independent net protocol, which is then translated to a
DBMS protocol by a server. The specific protocol used depends
on the vendor. Several vendors are adding JDBC drivers to their
existing database middleware products. In general, this is the
most flexible driver architecture. It adds a technical third tier to
the architecture; this extra tier can be used for performance
enhancers (eg connection pooling and results cacheing) and for
security enhancers (eg user ID mapping and HTTP tunnelling).
But unless the extra tier is properly exploited, the net result is a
protocol conversion bottleneck. These drivers are often written in
100% pure Java, making them appropriate for untrusted applets.

• Type 4 – a native-protocol all-Java driver converts JDBC calls
into the network protocol used by the DBMSs directly. This
allows for a direct call from the client machine to the DBMS
server. The database vendors will be the primary source of these
drivers. Sometimes called thin drivers, they are often written in
100% pure Java. Performance is typically very good.

Since JDBC is well over two years old, many software companies –
particularly database vendors – have had plenty of time to bring JDBC
drivers to the marketplace (see Figure 3).

Notice that database products from IBM are well-represented. This
list was gleaned from a much larger master list maintained by Sun
Microsystems. The master list can be found on the Web at http://
java.sun.com/products/jdbc/jdbc.drivers.html.

The JDBC driver class required by your applet or application must be
loaded prior to establishing a connection to a database. This will
guarantee that any initialization that the JDBC driver must do will be
handled before your code actually uses the driver. The simplest, and
most common, way to do this is to explicitly load the class using the
forName() method of the java.lang.Class class, as follows:

try {
Class.forName("ibm.sql.DB2Driver");

}

 27© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

catch (ClassNotFoundException e) {
System.err.print("Error loading driver class: ");
System.err.println(e.getMessage());

}

The forName() method is passed the name of the class that implements
the JDBC driver. Note that the forName() method can throw a
ClassNotFoundException, which must be accounted for using standard
Java try-catch syntax. In the code example shown, we are using IBM’s
JDBC driver for DB2 for OS/390, namely ibm.sql.DB2Driver.

Vendor Type DBMS/ Data store

Agave Software Design 3 Oracle, Informix, Sybase

BEA / Web Logic 2 Oracle, Sybase, SQL Server

Caribou Lake Software 3 CA-Ingres

Cloudscape 4 JBMS

Hit Software 4 DB2, DB2/400

HOB Electronic 4 DB2, VSAM under CICS, IMS-DB

IBM 2/3 DB2 CS and UDB

IBM 4 DB2/400

IBM 4 DB2 for OS/390

Intersolv 3 DB2, Ingres, Informix, Oracle, etc.

Recital Corporation 3 DB2/6000, Informix, Ingres, Oracle

StarQuest Software 1 DB2 for MVS, DB2 UDB, DB2 CS

Trifox 3 Adabas, DB2, Informix, Rdb, legacy

Figure 3: Some commercially available drivers

under CICS or IMS-DC, DL/I

systems via GENESIS

 28 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Explicitly loading the driver’s class this way will cause the Java
interpreter’s class loader to load the class, if it has not already done so.
If this is the case, Java will look to find out if the class has a static
initializer section. If it does, Java will invoke that static code
immediately after the class is loaded. That allows the driver to
implement any required initialization code (eg instantiating itself,
registering itself with the DriverManager, loading a dynamic link
library if the driver uses native methods, etc) in such a way that the
code is guaranteed to get called before any other method. There is no
limit on the number of drivers that can be loaded by a single applet or
application.

USING THE JDBC API

Once a viable driver has been loaded the API can be used to first
connect to a data source and then execute statements against that data.
The API defines six Java classes and eight Java interfaces that can be
used in a Java applet or application. All fourteen are bundled into a
Java package (Java-speak for class library) called java.sql. The six
classes are listed here:

• DriverManager provides a basic service for managing a set of
JDBC drivers. As part of its initialization, this class will attempt
to load the driver classes referenced in the ‘jdbc.drivers’ system
property.

• DriverPropertyInfo is of interest only to advanced programmers
who need to interact with a driver via getDriverProperties() to
discover or supply properties for connections.

• Types defines no methods, only constants that are used to identify
SQL types. The actual constant values are equivalent to those
defined by the X/Open consortium.

• Date is a thin wrapper around java.util.Date that allows JDBC to
identify this as a SQL DATE value.

• Time is a thin wrapper around java.util.Date that allows JDBC to
identify this as a SQL TIME value.

• Timestamp is a thin wrapper around java.util.Date that allows
JDBC to identify this as a SQL TIMESTAMP value. It adds the

 29© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

ability to hold the SQL TIMESTAMP nanosecond value.

In addition to those six classes, JDBC defines the eight interfaces
listed here:

• Statement – a Statement object is used for executing an SQL
statement and obtaining the results produced by it. Only one
result set per statement can be open at any one time.

• PreparedStatement – an SQL statement is pre-compiled and
stored in a PreparedStatement object. This object can be used to
efficiently execute this statement multiple times. The statement
may have one or more IN parameters.

• CallableStatement – used to execute stored procedures.

• Connection – a Connection represents a session with a specific
database. Within the context of a Connection, SQL statements are
executed and result sets returned.

• DatabaseMetaData – provides information about the database as
a whole.

• Driver – the Java SQL framework allows for multiple database
drivers. Each driver should supply a class that implements the
Driver interface. This interface is not typically used by the Java
application programmer.

• ResultSet – provides access to a table of data generated by
executing a Statement.

• ResultSetMetaData – can be used to find out about the types and
properties of the columns in a ResultSet.

The journey into the use of the API begins with the DriverManager
class. It provides a method called getConnection that is used to
establish a persistent connection to any of a number of available data
sources. The general format of the method invocation is:

DriverManager.getConnection(name-of-data-source);

But there’s a trick – the data source name must be specified in a special
URL format:

jdbc:<subprotocol>:<driver-specific-stuff>

 30 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

The subprotocol will generally be the name of a database product or
vendor, while the third node will often be a server or location name,
and may include a port number as well. For example, to connect to
DB2 for OS/390, use a URL that looks like this:

jdbc:db2os39Ø:location_name

where ‘location_name’ is defined in the DB2 catalog table
SYSIBM.LOCATIONS. To connect to DB2 UDB on Unix, use a URL
that looks like this:

jdbc:db2://server_name:port_nbr/db_name

To illustrate, let’s assume that there is a DB2 subsystem known by the
location name ORLANDO. Assume further that there is a table of
automobile data (called INV_TAB) being used by a car dealership to
keep track of its inventory. The goal is to first establish a connection
to the subsystem, then a non-prepared Statement object. That Statement
object is used to execute the SQL query represented by the String
object referred to as q. While the next() method continues to return
true, we continue retrieving the next row from the result set and send
it to standard output (a rather trivial use of the data!). Then we close
both the statement and the database connection. A JDBC example
with dynamic SQL code to accomplish these tasks follows:

import java.sql.*;
public class JDBCExample1 {
 public static void main(String args[]) throws Exception {

Class.forName("ibm.sql.DB2Driver");
String sourceURL = "jdbc:db2os39Ø:ORLANDO";
Connection dbConn = DriverManager.getConnection(sourceURL);
Statement stmt = dbConn.createStatement();
String q = "SELECT VIN, YEAR, MODEL FROM INV_TAB";
q = q + " WHERE MSRP > 18ØØØ.ØØ";
ResultSet rs = stmt.executeQuery(q);
while (rs.next()) {

String v = rs.getString(1);
int y = rs.getInt(2);
String m = rs.getString(3);
System.out.println("Row data = " + v + " " + y + " " + m);

}
stmt.close();
dbConn.close();

 } // end of method
} // end of class

 31© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Note that, since we know the column names, we had the option of
retrieving column values using a slightly different technique:

String v = rs.getString("VIN");
int y = rs.getInt("YEAR");
String m = rs.getString("MAKE");

Column names used in getXXX() methods are case-insensitive.
While the use of column names may be more self-documenting, the
use of ordinal column numbers will probably provide slightly better
performance. Furthermore, there are some cases where the column
number is required.

The next example accomplishes the same task as the previous example,
but now the statement is prepared (ie compiled) prior to execution:

import java.sql.*;
public class JDBCExample2 {
 public static void main(String args[]) throws Exception {

Class.forName("ibm.sql.DB2Driver");
String sourceURL = "jdbc:db2os39Ø:ORLANDO";
Connection dbConn = DriverManager.getConnection(sourceURL);
String q = "SELECT VIN, YEAR, MODEL FROM INV_TAB";
q = q + " WHERE MSRP > ?";
PreparedStatement stmt = dbConn.prepareStatement(q);
stmt.setDouble(1,18ØØØ.ØØ);
ResultSet rs = stmt.executeQuery();
while (rs.next()) {

String v = rs.getString(1);
int y = rs.getInt(2);
String m = rs.getString(3);
System.out.println("Row data = " + v + " " + y + " " + m);

}
stmt.close();
dbConn.close();

 }
}

Only five lines of code have changed from the previous example. The
question mark used in the WHERE clause is a marker parameter. A
value must be provided for all marker parameters prior to running the
query. The PreparedStatement interface provides one setXXX() method
for each valid X/Open-defined data type; this is how IN parameters
are set. Naturally, PreparedStatement objects can also be used for SQL
with no parameters.

Although the example above doesn’t show it, PreparedStatement

 32 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

objects are most useful when executed repeatedly because the cost of
statement compilation is incurred only once.

Now let’s assume that we have a stored procedure called SHOW_CARS
that does the same type of SELECT statement as seen in the previous
two examples and returns a single result set. The code to run such a
stored procedure might look like the following:

import java.sql.*;
public class JDBCExample3 {
 public static void main(String args[]) throws Exception {

Class.forName("ibm.sql.DB2Driver");
String sourceURL = "jdbc:db2os39Ø:ORLANDO";
Connection dbConn = DriverManager.getConnection(sourceURL);
CallableStatement stmt = dbConn.prepareCall("{call SHOW_CARS}");
ResultSet rs = stmt.executeQuery();
while (rs.next()) {

String v = rs.getString(1);
int y = rs.getInt(2);
String m = rs.getString(3);
System.out.println("Row data = " + v + " " + y + " " + m);

}
stmt.close();
dbConn.close(); // could have been re-used

 } // end of method
} // end of class

When using stored procedures, the programmer has the option of the
SQL-92 CALL syntax enclosed within curly brackets (the escape
syntax) as shown above. The escape sequence should be favoured
over the DBMS-specific call syntax because it leads to more portable
code.

Also, although the example doesn’t show it, JDBC CallableStatement
objects support the use of IN parameters through methods inherited
from PreparedStatement. Furthermore, OUT parameters can be
registered using an overloaded method called registerOutParameter()
that is specific to this interface.

In the event that the stored procedure returns two (or more) separate
result sets, the code would have to look something like this:

CallableStatement stmt;
stmt = dbConn.prepareCall("{call SHOW_CARS}");
stmt.execute(); // notice the different method call!
ResultSet rs = stmt.getResultSet();
// process first result set (as shown previously)
stmt.getMoreResults();

 33© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

rs = stmt.getResultSet();
// process second result set

This process can be repeated any number of times.

JDBC ENHANCEMENTS

The Java Platform 2, commonly known as JDK 1.2, was officially
released in December 1998 to coincide with the Java Business Expo
in New York. Some enhancements include the introduction of the Java
Foundation Classes (JFC), CORBA support, and a new collection
framework. A complete list of new features can be found at http://
java.sun.com/products/jdk/1.2/docs/relnotes/features.html.

For the purposes of this article, the enhancements to the JDBC spec
– officially called JDBC 2.0 – are the most interesting. The ResultSet
interface was expanded to include new methods that support more
robust ways to move through the rows in an answer set (see the
following code) above and beyond the next() method that was shown
in the previous code examples. Naturally, these new features can be
exploited only if the driver being used supports the JDBC 2.0 spec.

import java.sql.*;
public class JDBCExample4 {
 public static void main(String args[]) throws Exception {

Class.forName("ibm.sql.DB2Driver");
String sourceURL = "jdbc:db2os39Ø:ORLANDO";
Connection dbConn = DriverManager.getConnection(sourceURL);
Statement stmt = dbConn.createStatement();
String q = "SELECT VIN, YEAR, MODEL FROM INV_TAB";
ResultSet rs = stmt.executeQuery(q);
rs.next(); // sitting on first row
rs.absolute(1Ø); // sitting on tenth row
rs.previous(); // sitting on ninth row
rs.relative(-2); // sitting on seventh row
rs.relative(3); // sitting on tenth row again
rs.first(); // sitting on the first row again
stmt.close();
dbConn.close();

 } // end of method
} // end of class

Also new for JDBC 2.0, the batch update facility allows a Statement
object to submit a set of heterogeneous update commands together as
a single unit to the underlying DBMS. Depending on the network
infrastructure and JDBC driver, this approach can yield impressive

 34 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

performance gains compared with the traditional approach of individual
statement execution. As a rule, autocommit mode should be disabled
to prevent JDBC from committing the transaction when executeBatch()
is called.

The executeBatch() method submits a batch of commands to the
underlying DBMS for execution. Commands are executed in the
order in which they were added to the batch. ExecuteBatch() returns
an array of update counts for the commands that were executed. A ‘for’
loop is a handy way to spin through the update counts, as follows:

import java.sql.*;
public class JDBCExample5 {
 public static void main(String args[]) throws Exception {

Class.forName("ibm.sql.DB2Driver");
String sourceURL = "jdbc:db2os39Ø:ORLANDO";
Connection dbConn = DriverManager.getConnection(sourceURL);
dbConn.setAutoCommit(false);
Statement stmt = dbConn.createStatement();
stmt.addBatch("DELETE FROM INV_TAB WHERE YEAR < 199Ø");
stmt.addBatch("UPDATE INV_TAB SET MSRP = MSRP * 1.Ø5");
int[] counts = stmt.executeBatch();
for (int x = Ø; x < counts.length; x++) {

System.out.print("Nbr rows affected by statement # " + x);
System.out.println(" is " + counts[x]);

}
dbConn.commit();
stmt.close();
dbConn.close();

 } // end of method
} // end of class

Only DDL and DML commands that return a simple update count may
be executed as part of a batch. Also, although the example doesn’t
show it, PreparedStatements and CallableStatements can be used in
batch updates.

FURTHER READING

There’s a lot more to JDBC than I have covered in this article. To
expand upon your new-found knowledge, consider purchasing one of
the many books on the market that cover the topic of JDBC either
directly or indirectly. Two of the best are JDBC Database Access with
Java by G Hamilton et al (ISBN 0-201-30995-5) and Teach Yourself
Database Programming With JDBC in 21 Days by Ashton Hobbs
(ISBN 1-57521-123-8).

 35© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Also worthwhile is a visit to IBM’s DB2 for OS/390 Database
Connectivity Web site at http://www.software.ibm.com/data/db2/
os390/jdbc.html.

The good folks at the IBM International Technical Support Centers
have written a relevant redbook entitled Integrating Java with Existing
Data and Applications on OS/390 (SG24-5142-00). This is also
available at http://publib.boulder.ibm.com/pubs/pdfs/redbooks/
sg245142.pdf. Finally, Sun maintains a Web site devoted to JDBC at
http://java.sun.com/products/jdbc/index.html. It’s information straight
from the horse’s mouth.

Editor’s note: in a future article, the author will examine the emerging
standard of embedded SQL in Java, SQLJ.

If you would like to discuss this article further, the author can be
contacted at jbradford@gr.com.

John T Bradford
Greenbrier and Russel (USA) © Xephon 1999

Timestamp checking program

THE PROBLEM

Every DBA and programmer has experienced the dreaded –818 or
–805 error, indicating that the version of the load module you are
running doesn’t match the version of the package or plan in the DB2
catalog. If I had a dollar for every one of these that I have found and
fixed, I think I would be a rich man today. With the advent of
automated software configuration managers (such as Endevor or
ChangeMan) the number of occurrences has been minimized, but the
recent addition of a non-Endevor managed Y2K testing environment
to our site brought up the problem again. I decided to develop
something that would enable us to do a timestamp ‘health check’ on
a given group of load modules so that we could quickly determine
what needed to be fixed and what could be done to fix it.

 36 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

OUR SOLUTION

Timestamps or consistency tokens can be found easily for a given
package or DBRM from the catalog, but I know of no quick and
accurate way to find the timestamp within the object code that makes
up the load module. The COBOL II compiler stores the timestamp in
a section of the load module called the Constant Global Table (CGT)
as two four-byte literals which, for some reason best known to the
compiler, have their order reversed from that in which they are stored
in the catalog (ie LOAD timestamp = catalog timestamp bytes 5-8 plus
catalog timestamp bytes 1-4). I decided to retrieve the timestamp (or
list of timestamps in the case of package versions) from the catalog
and the DBRM and then search through the load module to see
whether I could find a string that matched. If I found a match I
considered that the load module was OK; if I didn’t, I assumed that
there would be a timestamp error. This approach is not foolproof, but
it will certainly work in 99% of the cases, which is a lot better than
what we had.

This situation is further complicated by the use of static linking. If all
modules are dynamically linked then we can assume that there is a
one-to-one correspondence between a load module and a package, but
if static linking is in use then a single load module can contain CSECTs
that correspond to many packages (and conversely a single package
can correspond to a CSECT in multiple load modules). To get around
this, I used the AMBLIST utility to dump out information about the
CSECTs contained in the module and built a table in my program that
cross-referenced module and CSECT information. Depending on
how many modules you are checking, the AMBLIST step can be quite
time-consuming, so I set this as an option to be used only if necessary.

ASSUMPTIONS AND DEPENDENCIES

The following code allows for static or dynamic linking. It assumes
that packages are being used (ie static plans are not supported,
although it should not be too hard to add this) and package versioning
is catered for. The program currently only checks COBOL II programs,
but it should be simple to extend it to other language types once you
know the format of the timestamp string within the load module. The
timestamp check program uses DB2REXX, a REXX-DB2 interface

 37© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

program from General DB2/REXX interface, DB2 Update, Issue 53,
March 1997, but any program that allows communication between
REXX and DB2 could be substituted.

There are a number of site-specific areas in the code. Firstly, our site
standards allow us to assume that each application has its own
package collection, and that this will match the first two characters of
the program name. I use this information to restrict the number of
programs checked so that the elapsed time will be reasonable
(particularly when using AMBLIST processing), but you can break it
up in whatever way is appropriate to your installation. Secondly, the
load and DBRM library names are site-specific and you will need to
tailor these for your installation. Lastly, it is possible that the format
of the AMBLIST output will vary from site to site, particularly if you
are using a different linkage editor (we use the MVS binder), so if you
use the static link option it may be necessary to tweak the code that
builds the cross reference list.

PROGRAM OUTPUT

The timestamp check program checks all combinations of the catalog,
program, and DBRM timestamps to see whether they match. The
amount of output received is controlled by the first parameter to the
program, the error level. If this is ‘E’, only error level messages are
displayed. This means that error messages are displayed only if the
catalog and the program do not match (ie the program will receive a
–805 when it runs). This is the normal mode that the program should
be run in. If the error level is ‘W’ then all mismatches will be displayed
regardless of whether they will cause the program to fail or not (for
instance catalog does not match DBRM or DBRM does not match
catalog).

Some sample output is shown below:

Error level = E, only load module timestamp errors will be printed
Dynamic linking specified, module xref table will not be built

Reading package details from catalog
Running timestamp comparison
TN1Ø73Ø
 No package timestamp matched in load module TN1Ø73Ø
 DBRM timestamp does not match any package
 Load module and DBRM timestamps match

 38 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

TN2Ø25Ø
 No package timestamp matched in load module TN2Ø25Ø
 DBRM timestamp does not match any package
 Load module and DBRM timestamps do not match

Normally, you will be concerned only about whether the program
matches the catalog, and, if not, whether the program matches the
DBRM. If the program and the DBRM do match, simply binding the
package again will fix the problem. If they do not, you will most likely
have to recompile the program. Note that because error level is set to
E in this example, DBRM/catalog and load module/DBRM matching
messages are printed only when the load module and the catalog do
not match.

THE CODE

Three objects are supplied:

• GENAMB – this REXX EXEC generates the AMBLIST
commands necessary to produce the module cross reference
listing. This will be required only if you are using static linking.
This is invoked using GENAMB xx, where ‘xx’ is the prefix for
the load modules you wish to generate commands for. This prefix
may be any length.

• TSCHECK2 – this REXX EXEC is the timestamp checking
program and is invoked with the following parameters:

TSCHECK2 ssid collid errlvl linkopt

where:

– ‘ssid’ is the DB2 subsystem-id to check against.

– ‘collid’ is the name of the collection to check.

– ‘errlvl’ is the error level, as described above (E or W).

– ‘linkopt’ is a flag to denote whether static linking is used (Y
for static linking, N for dynamic).

• JCL to run the programs. Some tweaking will be required if you
are not going to use the static linking option (ie remove the first
two steps and modify the IF processing).

 39© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

GENAMB

/* REXX */
arg appl
say ""

/* The following dataset names are site specific. Be sure to */
/* alter them to match your site's naming standards */
if appl = "EL" then env = 'CPSR'
else env = 'COMM'
loadlib.Ø = 4
loadlib.1 = "TLM."env".ACPT.CICSLOAD"
loadlib.2 = "TLM."env".PROD.CICSLOAD"
loadlib.3 = "TLM."env".ACPT.LOADLIB"
loadlib.4 = "TLM."env".PROD.LOADLIB"
dsname = ""
do i = 1 to loadlib.Ø
 dsname = dsname||"'"||loadlib.i||"' "
end
pattern = appl"*"
"ALLOC F(LOADSCAN) DA("dsname") SHR REUSE"
ADDRESS ISPEXEC "LMINIT DATAID(LOADDSID) DDNAME(LOADSCAN) ENQ(SHR)"
ADDRESS ISPEXEC "LMOPEN DATAID("loaddsid") OPTION(INPUT)"
ADDRESS ISPEXEC "LMMLIST DATAID("loaddsid") OPTION(LIST)",
 "MEMBER(LOADMEM) STATS(YES) PATTERN("pattern")"
listcc = rc
if rc <> Ø then do
 if rc = 4 then say "No members match pattern" pattern
 else say "Error executing LMMLIST (1). Return code =" listcc
 zispfrc = 8
 ADDRESS ISPEXEC "VPUT (ZISPFRC)"
 exit 8
end
say "AMBLIST commands generated for the following members"
say ""
do while (listcc = Ø)
 say " " loadmem loadlib.zllib
 queue " LISTLOAD OUTPUT=XREF,DDN=LOADLIB"zllib",MEMBER="loadmem
 ADDRESS ISPEXEC "LMMLIST DATAID("loaddsid") MEMBER(LOADMEM)",
 "STATS(YES)"
 listcc = rc
end
if listcc > 8 then do
 say "Error executing LMMLIST (2). Return code =" listcc
 zispfrc = 8
 ADDRESS ISPEXEC "VPUT (ZISPFRC)"
 exit 8
end
queue ""
say " "
say queued() "AMBLIST commands written to output"

 40 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

"EXECIO * DISKW AMBCMD (FINIS"
if rc <> Ø then delstack
exit:
ADDRESS ISPEXEC "LMCLOSE DATAID("loaddsid")"
ADDRESS ISPEXEC "LMFREE DATAID("loaddsid")"
"FREE F(LOADSCAN)"
out:
exit

TSCHECK2

/* REXX */
arg ssid appl errlvl static_flag
/* */
/* Explanations of input parameters: */
/* ssid - DB2 subsystem ID to check timestamps in */
/* appl - collection ID to check */
/* errlvl - 'E' print messages only on timestamp error */
/* - 'W' print all messages and warnings */
/* Defaults to E */
/* static_flag - 'N' assume all load modules are dynamically */
/* linked (ie no AMBLIST processing) */
/* - 'Y' assume load modules are statically */
/* linked and build module cross reference table*/
/* */
maxrows = 5ØØØ
prev_pkg = ""
pkg_timestamp. = ""
pkg_count = 1
zispfrc = Ø
if errlvl = "" then errlvl = "E"
if static_flag = "" then static_flag = "N"
select
 when errlvl = "E" then,
say "Error level = E, only load module timestamp errors will be printed"
 when errlvl = "W" then,
 say "Error level = W, all errors and warnings will be printed"
 otherwise do
 say "Invalid value for error level supplied - " errlvl
 say "Error level E assumed"
 errlvl = "E"
 end
end
select
 when static_flag = "Y" then,
 say "Static linking specified, module xref table will be built"
 when static_flag = "N" then,
 say "Dynamic linking specified, module xref table will not be built"
 otherwise do

 41© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

 say "Invalid value for static flag supplied" static_flag
 say "Dynamic linking assumed, module xref table will not be built"
 static_flag = "N"
 end
end

say ""
if static_flag = "Y" then do
 /* Build module cross reference table */
 say "Building module cross reference table"
 call BuildXREF
end
/* Allocate and open load and DBRM libraries */
call AllocLibs
/* Read package details from DB2 catalog */
say "Reading package details from catalog"
query = "SELECT NAME, CONTOKEN",
 "FROM SYSIBM.SYSPACKAGE",
 "WHERE COLLID = '"appl"'",
 "ORDER BY 1"
ADDRESS ISPEXEC "SELECT PGM(DB2REXX)"
if rc <> Ø | (sqlcode <> Ø & sqlcode <> 1ØØ)| cafcode <> Ø then do
 say "Error occurred selecting from SYSTABLES"
 say query
 say " RC = " rc
 say " SQLCODE = " sqlcode
 say " CAFCODE = " cafcode
 say " CAFREASON = " cafreason
 zispfrc = 8
 signal exit
end
say "Running timestamp comparison"
do i = 1 to rows
 /* Build a list of timestamps for versions of each package */
 /* When package name changes we can start to run the checks */
 if name.i <> prev_package & i <> 1 then do
 call RunChecks
 pkg_count = 1
 end
 /* Build up table of timestamps for each package version */
 pkg_timestamp.pkg_count = contoken.i
 pkg_count = pkg_count + 1
 prev_package = name.i
end
call RunChecks
exit:
ADDRESS ISPEXEC "LMCLOSE DATAID("loaddsid")"
ADDRESS ISPEXEC "LMFREE DATAID("loaddsid")"
ADDRESS ISPEXEC "LMCLOSE DATAID("dbrmdsid")"
ADDRESS ISPEXEC "LMFREE DATAID("dbrmdsid")"
"FREE F(LOADSCAN)"

 42 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

"FREE F(DBRMSCAN)"
ADDRESS ISPEXEC "VPUT (ZISPFRC)"
exit

CheckLoad:
 ADDRESS ISPEXEC "LMMFIND DATAID("loaddsid") MEMBER("module")",
 "STATS(YES)"
 if rc > 8 then do
 say "Error executing LMMFIND for load member" module
 zispfrc = 8
 signal exit
 end
 if rc = 8 then return
 if rc = Ø then found_load = "YES"
 get_rc = Ø
 /* Read each record from the given load module and check whether */
 /* we find a match with either the package (ie catalog) timestamp */
 /* or the DBRM timestamp. Remember that the timestamp is */
 /* stored with the first and second full words reversed in a */
 /* load module */
 do until (get_rc > Ø)
 ADDRESS ISPEXEC "LMGET DATAID("loaddsid") MODE(INVAR)",
 "DATALOC(LOADLINE) DATALEN(LENVAR) MAXLEN(3276Ø)"
 get_rc = rc
 if get_rc > 8 then do
 say "Error during LMGET for load module" prev_package
 say "Return code = " rc
 zispfrc = 8
 signal exit
 end
 dbrm_load_timestamp = substr(dbrm_timestamp,5,4)||,
 substr(dbrm_timestamp,1,4)
 if pos(dbrm_load_timestamp,loadline) > Ø then,
 match_load_dbrm = "YES"
 do j = 1 to pkg_count - 1
 load_timestamp = substr(pkg_timestamp.j,5,4)||,
 substr(pkg_timestamp.j,1,4)
 if pos(load_timestamp,loadline) > Ø then do
 match_load = "YES"
 leave
 end
 end
 if match_load_dbrm = "YES" & match_load = "YES" then return
 end
return

Editor’s note: this article will be concluded next month.

Matthew Keene (Australia) © Xephon 1999

 43© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

Using a relational database for data warehouses

Editor’s note: although this article is independent of RDBMS, it is
appropriate for DB2, as well as for Oracle7, Sybase, Ingres, etc.

WHAT IS A DATA WAREHOUSE?

A data warehouse is a concept not a product. It is the compiling,
assembling, and consolidating of application data common to user
communities at a single logical point. Typical uses include ad hoc
queries, ‘what if’ queries, data matching, trend analysis, and other
sophisticated information functions.

Warehouse data is generally extracted from OLTP databases that are
optimized for transaction processing. Data warehouses are optimized
for information processing.

A data warehouse can be described as a read-only database that
provides users with access to consolidated, historic, or static data
extracted from operational databases, usually augmented with external
data.

Read-only and static data require breaking application mindsets.
Building a data warehouse means abandoning many traditional IT
concepts including methodology, normalization, and back-up and
recovery.

METHODOLOGY

Standard IT methodology is built for application systems – a data
warehouse is not an application system. ISO9001 methodologies
usually require:

• A description of business processes and flows.

• A description of application system interfaces.

• A conceptual data model and entity descriptions.

• Unit, module, and integration testing.

 44 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

A data warehouse has none of these:

• There are no business processes because the data warehouse is
providing information to improve decision-making.

• There are no application system interfaces because the data
warehouse only extracts the data it needs.

• There is no conceptual model because the data warehouse schema
is an amalgamation schema combining data from multiple
operational and external databases.

• There is no unit, module, or integration testing because there are
no units.

Most methodologies do allow some activity overlap but are essentially
sequential. Almost all data warehouse activities can be done in
parallel.

NORMALIZATION

Normalization is another ISO9001 standard. The question is not
should normalization be used but to which form (level). The
fundamental normalization rationale is the elimination of storage
anomalies. Figure 1 shows a table of the differences between OLTP
and data warehouse applications.

Note the response time for the data warehouse (*). Having a response
time of hours is untimely. Traversing hundreds of gigabytes or tens of
terabytes takes time. It is important to reduce that time to the minimum
to make the data warehouse as useful as possible. Normalization
produces many tables.

Queries that need data from many tables must do an SQL join. Joins
take time and that time increases geometrically as more tables are
involved. The obvious answer is a denormalized schema – its name is
the star schema and this is discussed later.

BACK-UP AND RECOVERY

Back-up takes a considerable time. A recent test showed that a system
with fifteen high-speed tape drives could achieve a back-up rate of
about 500GB per hour. It would take this expensive system 20 hours

 45© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

to back-up a 10TB data warehouse. Less efficient systems can easily
require more than 24 hours, making the data warehouse inaccessible.

A data warehouse is a database, and databases must be backed-up so
that they can be recovered in case of data loss. That is true for standard
databases but is untrue for read-only data warehouses.

Because there are no updates, there is no need to back-up the entire
database every time. The only back-up required is for new data that
has been appended. The data warehouse append window should allow
for the creation of an incremental tape. The incremental tapes can be
used for recovery. If the incremental tapes become unusable then the
final fall-back position is to use the operational system’s back-up
tapes to recreate the data warehouse.

DATA WAREHOUSE SCHEMA

The data warehouse schema should not be an OLTP schema, as shown
by Figure 1. OLTP schemas are typically normalized to provide
efficient data access for a large number of transactions using few rows
from a few tables.

Function OLTP Data warehouse

Data content Current values Archival and aggregations

Data organization Application Amalgamation

Data nature Dynamic Static; read only

Data structure Complex Simple

Accessibility High Low to moderate

Usage Highly structured Highly unstructured

Response time <2 seconds *

Figure 1: OLTP and data warehouse comparison

 46 © 1999. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

Data warehouse queries usually involve accessing many rows. Data
warehouse queries can easily access gigabytes or terabytes of data. If
those many rows are in many normalized tables then the performance
penalty is severe.

The data warehouse schema must be denormalized to provide minimum
tables. The minimum number is one, but one row is impractical
because of excessive DASD requirements.

The recommended schema is a star or variation of this. A star schema
is divided into two table types – fact and dimension. The fact table is
at the star centre whereas the dimension tables are at its points. The
fact table contains the columns to be measured such as sales and units.
The dimension tables hold the measuring columns such as date and
location.

Fact tables are usually displayed horizontally:

date_dimkey location_dimkey $$$ units

dimkey is the ‘foreign key’ to the dimension table, such as date. The
date_dimkey does not contain the actual date but is an odometer. The
first date in the data warehouse is numbered 1. Dimension tables are
usually displayed vertically because of their hierarchical nature.

date_dimkey 57

year 1999

quarter first

month_number 2

month_name February

week_number 9

day 26

dayofweek Friday

Figure 2: Example date dimension table

 47© 1999. Reproduction prohibited. Please inform Xephon of any infringement.

A date dimension table is shown in Figure 2, giving example values
for 26 February 1999. Certain columns in Figure 2, such as month_name
and dayofweek, are descriptive text. Dimension tables allow rapid
drill down or up because they are arranged in hierarchical order. It is
unnormalized because February would be redundantly stored 28
times. If month_number is used as a foreign key to month_name then
an additional join is required. The goal of a star schema is to reduce
joins.

Recent benchmarking has shown that a query that took about 60
minutes using OLTP schema was reduced to about 1 minute using star
– an improvement of 60 times!

Sometimes, DASD considerations require that descriptive text is
normalized. This variation of star is a snowflake. Studies also show
that most queries require SUM. Summing a billion rows is not fast.
The better way is to build aggregation tables:

• Fact by date

• Fact by location

• Fact by date by location.

The last aggregation table can be very large because it requires a
‘Cartesian product’ of date and location. If there are 1,000 locations,
then the table contains 365/6 thousand rows. A schema having some
normalization and aggregations is called a melted snowflake.

It should be evident that a melted snowflake schema will differ
substantially from a typical OLTP schema, regardless of its
normalization level. Physical implementation of a star or variation
requires careful planning, including using little known features.

Editor’s note: in a future article, the author will provide a logical
melted snowflake schema with its physical schema and will provide
specific recommendations for DB2.

Eric Garrigue Vesely
Principal
Analyst Workbench Consulting (Malaysia) © Xephon 1999

BMC has announced XBM Enterprise
Snapshot, aimed at increased automation,
availability, and reliability of CICS and
DB2, IMS, and VSAM databases. The
software enables BMC tools and utilities to
take advantage of the various snapshot point-
in-time copies of data now available. This
allows those utilities to perform processing
in parallel with regular production
workloads, resulting in greater applications
availability.

Utilities enabled by XBM include COPY
PLUS for DB2, REORG PLUS for DB2,
UNLOAD PLUS for DB2, and CHECK
PLUS for DB2.

For further information contact:
BMC Software, 2101 CityWest Boulevard,
Houston, TX 77042-2827, USA.
Tel: (713) 918 8800.
BMC Software, Compass House, 207-215
London Road, Camberley, Surrey, GU15
3EY, UK.
Tel: (01276) 24622.
URL: http://www.bmc.com.

* * *

Cisco Systems has announced Cisco
Transaction Connection (CTRC), providing
TCP/IP end users and servers with access to
DB2 databases using SNA. The software and
router system based on Cisco IOS software is
designed to replace Unix and NT gateways
for database access.

Jointly developed with StarQuest Software,
CTRC uses the Distributed Relational
Database Architecture (DRDA) protocol to

access remote databases using a standard
messaging format over TCP/IP or SNA. It
converts TCP/IP data requests into SNA
messages and forwards them to the host.

For further information contact:
Cisco, 5305 Gulf Drive. Suite 1, New Port
Richey, FL 34652, USA.
Tel: (813) 817 0131.
URL: http://www.cisco.com.

* * *

DB2 users can benefit from Software AG’s
announcment of support for Java
applications on OS/390 mainframes.
Although Bolero creates Java Byte Code that
can theoretically run on all platforms that
have a Java Virtual Machine, Java
implementations are different on
mainframes, NT, and Unix. The OS/390
version supports mainframes specifically,
and allows Bolero applications to store
persistent objects in DB2 databases and be
used in the CICS Open Transaction
Environment.

For further information contact:
Software AG (UK), Charter Court, 74/78
Victoria Street, St Albans, Herts, AL1 3XH,
UK.
Tel: (01727) 844 455.
Software AG of North America, 11190
Sunrise Valley Drive, Reston, VA 22091,
USA.
Tel: (703) 860 5050.
URL: http://www.software-ag.com.

* * *

DB2 news

x xephon

	 Opening ‘in limbo’ tablespaces
	Identifying modified tablespaces
	Java meets DB2: get there from here – JDBC
	 Timestamp checking program
	 Using a relational database for data warehouses
	 DB2 news

