
© Xephon plc 2001

December 2001

30

3 Managing system resources on
Unix

6 Message processing monitor
22 Enhancing MQSeries transaction

coordination
39 MQSeries Integrator V2

performance
44 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon plc 2001. All rights reserved. None of the text in this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, without
the prior permission of the copyright owner. Subscribers are free to copy any code reproduced
in this publication for use in their own installations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promotion, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
application to individual copies. A pack of 240 labels costs $36 (£24), giving a cost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.

Printed in England.

Published by
Xephon
27-35 London Road
Newbury
Berkshire RG14 1JL
England
Telephone: 01635 38126
From USA: 01144 1635 38126
Fax: 01635 38345
E-mail: info@xephon.com

North American office

Xephon/QNA
Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344
Fax: (303) 438 0290

Contributions

When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 words and £100
($160) per 100 lines of code for the first 200
lines of original material. The remaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For more information about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

Commissioning Editor (temporary)
Harry Harris
E-mail: harrya.harris@virgin.net

Managing Editor

Madeleine Hudson
E-mail: MadeleineH@xephon.com

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 3

Managing system resources on Unix

In general, MQSeries performance depends on how effectively its
resources are applied to the requirements of different applications on
the system. This includes operating system resources, which can
sometimes prove to be a bottleneck and restrict optimum performance.
From this perspective, CPU, semaphores, message queues, memory,
disk I/O, and other device I/O can prove to be problems when
troubleshooting.

The first step in eliminating these problems is determining what is
causing the resource shortage. Many times, a queue manager shares
an environment with resource ‘hogs’, eg database management
systems. MQ will lose the battle to attain resources simply because the
systems running will have already locked-up some of the required
resources, such as memory. Other times, there is just ineffective
control over how the resources are managed. In any event, when there
is a shortage of system resources there is a limited number of options
available to improve the situation: in short, you can add more, use less,
or limit the amount allocated to each user.

Although managing the whole Unix system may be out of your control
you can assist in troubleshooting and MQ resource management more
effectively by executing proper shutdowns. If you are unable to
execute a proper shutdown (and sometimes even when you are able)
MQ may hold resources that need to be released in order to prevent a
degradation in MQSeries and Unix performance and, eventually,
cause you to perform a system reboot. Because of the numerous
platforms that middleware administration requires you to know, many
administrators may be unable to become sufficiently fluent in one
operating system to perform the complex troubleshooting that
performance tuning requires. The remainder of this article will trace
the steps required to avoid system performance degradation by
effectively cleaning up after a pre-emptive, manual, or otherwise
abnormal stoppage of the queue manager on the Unix platform.

First, let’s define an abnormal shutdown. For the purposes of this
article an abnormal shutdown will be defined as any shutdown caused
by issuing the endmqm –p qmgrname command or a manual

4 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

shutdown of the queue manager. While everyone who works with
MQSeries is probably familiar with the various options of the endmqm
command, not everyone has had the misfortune of shutting down a
queue manager manually. This can be accomplished by issuing a kill
command (or a kill –9 command for a process that fails to terminate)
for the queue manager process ids, in the following order:

1 amqpcsea: command server.
2 amqhasmx: logger.
3 amqharmx: log formatter (linear logs only).
4 amqzllp0: checkpoint processor.
5 amqzlaa0: queue manager agents.
6 amqzxma0: processing controller.
7 amqrrmfa: repository process (for clusters).

When the shutdown is complete you must assess what resources are
still marked as ‘in use’ and what you must do to free them. We will
begin this by using the ipcs command, which displays information
about active interprocess communication facilities. In order to get the
information that is pertinent just to MQSeries we must issue this
command with a grep that searches for processes with an mqm user-
id: Ex. ipcs | grep mqm.

The output of this command will look something like this:

IPC status from /dev/kmem as of Wed Sep 5 13:4Ø:51 2ØØ1
T ID KEY MODE OWNER GROUP
q 2 ØxØØØØØØØØ —rw——— mqm mqm
q 3 ØxØØØØØØØØ —rw——— mqm mqm
m 29 ØxØc8ØØØ54 —rw-rw—— mqm mqm
m 3Ø ØxØc8ØØØ55 —rw-rw—— mqm mqm
s 22 ØxØcacØØØ2 —ra-ra-ra- mqm mqm
s 23 ØxØc8ØØØØ8 —ra-ra—— mqm mqm

This output defines the facility type, id, key, mode, owner, and group.
We have now effectively narrowed down the resources that are being
held by MQSeries and the information required to release them. Now
lets’s take a look at the various facility types so you know what you
are removing.

The symbol ‘q’ represents a message queue (unrelated to an MQSeries
queue). A message queue is a linked list of messages, each of a fixed
size. Messages are put at the end of the queue so that the sending order
is preserved. Each message may have a type, allowing multiple
message streams to be processed in the same queue.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 5

The symbol ‘m’ represents a shared memory segment. Shared memory
allows two or more processes to share a segment of memory so they
can all examine and edit the contents. Prior to using a shared memory
segment a process must obtain the queue identifier for it.

The symbol ‘s’ represents a semaphore. Semaphores are counters that
are used to synchronize access to a shared object, such as a memory
segment. They do not, however, exchange data between processes. By
incrementing and decrementing the counter the semaphore can
effectively synchronize the updating of shared resources.

Now that we have all the information we need from the system we
must release the resources using this information with a command
called ipcrm . The ipcrm command was made to remove one or more
specified message queue, semaphore set, or shared memory identifiers.

Ex. ipcrm –s 22
Ex. ipcrm –m 29
Ex. ipcrm –q 2

The above commands remove a semaphore with an ID of 22, a shared
memory segment with an ID of 29, and a message queue with an ID
of 2. This command can also be used in a shell script to clean up these
resources.

#!/bin/ksh
Clear Unix system objects held by MQSeries by using IPCRM
setenv PATH /bin:/usr/bin
#Because the IPCS output may vary between platforms and releases, we are
going to use the awk command to separate the columns.
#This will clear all shared memory segments being held by the mqm id
for thing in ‘ipcs -m | grep mqm | awk -Fm ‘{print $2}’ | awk ‘{print
$1}’‘
 do
 ipcrm -m $thing
done
#This step will clear all semaphores being held by the mqm id
for thing in 'ipcs -s | grep mqm | awk -Fs '{print $2}' | awk '{print
$1}''
 do
ipcrm -s $thing
done
#This step will clear all message queues being held by the mqm id
for thing in 'ipcs -q | grep mqm | awk -Fq '{print $2}' | awk '{print
$1}''
 do
 ipcrm -q $thing
done

6 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

In summary, it is extremely important to monitor the system resources
that MQSeries uses and, periodically, remove any resources that are
being held in error. By failing to monitor this you run the risk of
degrading the performance of MQSeries and other applications on the
Unix box.

Paul Siracusa, Middleware Architect
Blue Cross Blue Shield of Missouri (USA) © Xephon

Message processing monitor

MQSeries is mainly used in asynchronous applications; however,
problems can occur if a message is not processed for a long time. If the
queue is processed sequentially it can also mean that other messages
in the queue are not processed.

MQSeries Event Monitoring does not provide an event when a
message stays in the queue for longer than the specified time interval.
MQSeries Queue Service Interval Events are not generated for
individual message processing problems, they are generated after a
successful GET occurs for any message on the queue, and these events
are not generated when the message is still on the queue.

The current depth of a queue does not indicate whether messages in
the queue are being processed.

The only way to check whether or not there is a problem with message
processing is to look at the queue content to see whether the first
message is changing each time. For a site with hundreds of queues an
automated solution is required to monitor all queues.

The solution we have developed runs on CICS/OS390. It may also be
easily converted to non-CICS environments.

The COBOL program given here – QMONHOST – monitors selected
queues and reports whether messages in each queue are processed
properly or not. The information gathered is sent to a queue that
everyone can process in their own way.

The program collects specific information about a set of queues.
Queue names to be monitored are stored in a namelist. The output is

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 7

an MQ message for each queue. The output message includes status
of the queue, put enabled, get enabled, trigger set, input use count,
output use count, and queue depth. The status information of the
queue indicates whether or not the first message in the queue is
processed during a specified time interval. This program is invoked as
a CICS transaction at CICS start-up and is triggered to start every three
minutes.

The program gets the queue names from the namelist: for each queue
it stores the message-ids of the first message to a temporary storage
queue (TSQ) named QMON.

The next time it’s started it compares the current message-id of the
first message of the queue with the one stored previously in the TSQ.
If they are identical, this means that the message has not been
processed for three minutes and it sets the queue status flag as
‘problem’. If message-ids are different it means that messages are
being processed, so there is no problem. It then stores the current
message-id of the first message in the TSQ for the next comparison
three minutes later. Together with other information (put enabled, get
enabled, trigger set, input use count, output use count, and queue
depth), it builds the output as an MQ message and puts it to a queue.

QMONHOST
CBL XOPTS(ANSI85)
CBL NODYNAM,LIB,OBJECT,RENT,RES,APOST
 IDENTIFICATION DIVISION.
 PROGRAM-ID. QMONHOST.
 * MODULE NAME = QMONHOST *
 * ENVIRONMENT = CICS, COBOL II *
 * CICS TRANSACTION NAME = QMON *
 * DESCRIPTIVE NAME = Queue Monitor (QMON) *
 * FUNCTION : *
 * DESCRIPTION : *
 * The Program uses a number of parameters defined in *
 * the working-storage section of this program. These *
 * parameters are namelist name, MQ-NAMELIST-NAME and total *
 * number of queues in the namelist, TOTAL-QUEUE-NUMBER. *
 * Each queue is represented by a number, QUEUENO. *
 * PROGRAM LOGIC *
 * START. *
 * set transaction (QMON) to start 3 minutes later. *
 * get system time and write to time field of output message. *
 * check the QMON TSQ for existence.(READ-TSQ) *
 * get name of the QManager.(GET-QMGR-NAME) *

8 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 * get queue names to be monitored from the namelist. *
 * (GET-QUEUE-NAMES) *
 * for each queue in the namelist *
 * open queue(OPEN-APP-QUEUE) *
 * inquire queue(INQUIRE-APP-QUEUE) *
 * get "put enabled", "get enabled", "trigger set" *
 * information *
 * set put, get, trigger bit of output message *
 * (1->OK, Ø->PROBLEM) *
 * get "input use count", "output use count" and *
 * "queue depth" *
 * write "input use count", "output use count" and *
 * "queue depth" to output message *
 * browse first message in queue(GET-BROWSE-APP-QUEUE) *
 * close queue(CLOSE-APP-QUEUE) *
 * read stored message id in TSQ(READ-TSQ) *
 * compare browsed and stored message ids(COMPARE-MESSAGES) *
 * if browsed and stored message ids are different *
 * messages in the queue are processed properly *
 * set status bit of output message "1"(OK) *
 * write browsed message id to TSQ(WRITE-TSQ) *
 * else *
 * first messages is not processed *
 * set status bit of output message "Ø"(PROBLEM) *
 * write stored message id again to TSQ(WRITE-TSQ) *
 * end-if *
 * if all bits(status, put, get and trigger bit) are "1"(OK)*
 * set overall bit to "1" (OK) *
 * else *
 * set overall bit to "Ø" (PROBLEM) *
 * end-if *
 * open output queue(OPEN-OUTPUT-QUEUE) *
 * put output message to output queue(PUT-OUTPUT-QUEUE) *
 * close output queue(CLOSE-OUTPUT-QUEUE) *
 * end-for. *
 * END. *
 DATE-WRITTEN. OCTOBER, 1998.
 DATE-COMPILED.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. IBM-3Ø9Ø.
 OBJECT-COMPUTER. IBM-3Ø9Ø.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 I-O-CONTROL.
 DATA DIVISION.
 FILE SECTION.
 WORKING-STORAGE SECTION.
 Ø1 QMGR-NAME PICTURE X(48) VALUE SPACES.
 Ø1 MQ-OBJECTNAME PICTURE X(48) VALUE SPACES.
 Ø1 MQ-HCONN PICTURE S9(9) BINARY VALUE ZERO.
 Ø1 MQ-OPTIONS PICTURE S9(9) BINARY.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 9

 Ø1 MQ-OUTPUT-Q-HOBJ PICTURE S9(9) BINARY VALUE ZERO.
 Ø1 MQ-INPUT-Q-HOBJ PICTURE S9(9) BINARY VALUE ZERO.
 Ø1 MQ-QUEUE-HOBJ PICTURE S9(9) BINARY VALUE ZERO.
 Ø1 MQ-QMGR-HOBJ PICTURE S9(9) BINARY VALUE ZERO.
 Ø1 MQ-COMPCODE PICTURE S9(9) BINARY.
 Ø1 MQ-REASON PICTURE S9(9) BINARY.
 Ø1 MQ-BUFFLEN PICTURE S9(9) BINARY VALUE +3ØØØ.
 Ø1 MQ-DATALEN PICTURE S9(9) BINARY.
 Ø1 MQ-GET-BUFFER PICTURE X(3ØØØ) VALUE SPACES.
 Ø1 MQ-SELECTORCOUNT PICTURE S9(9) BINARY VALUE 6.
 Ø1 MQ-SELECTORS-TABLE.
 Ø5 MQ-SELECTORS PICTURE S9(9) BINARY OCCURS 6 TIMES.
 Ø1 MQ-INTATTRCOUNT PICTURE S9(9) BINARY VALUE 6.
 Ø1 MQ-INTATTRS-TABLE.
 Ø5 MQ-INTATTRS PICTURE S9(9) BINARY OCCURS 6 TIMES.
 Ø1 MQ-CHARATTRLENGTH-NLIST PICTURE S9(9) BINARY VALUE 96ØØ.
 Ø1 MQ-CHARATTRS-TABLE-NLIST.
 Ø5 MQ-CHARATTRS-NLIST PIC X(48) OCCURS 1ØØ TIMES.
 Ø1 MQ-CHARATTRLENGTH PICTURE S9(9) BINARY VALUE 48.
 Ø1 MQ-CHARATTRS-TABLE.
 Ø5 MQ-CHARATTRS PIC X(48) OCCURS 1 TIMES.
 * MQ-NAMELIST-NAME is the name of the namelist containing names *
 * of monitored queues. *
 Ø1 MQ-NAMELIST-NAME PICTURE X(2Ø) VALUE
 ‘QMON.NAMELIST’.
 Ø1 MQ-HOBJ-NAMELIST PICTURE S9(9) BINARY.
 Ø1 QNAME-TABLE-NLIST.
 Ø5 QNAME-NLIST PIC X(48) OCCURS 1ØØ TIMES.
 Ø1 LEN-MQ-ERROR-MESSAGE PICTURE S9(4) COMP VALUE 87.
 * ERROR MESSAGE STRUCTURE *
 Ø1 MQ-ERROR-MESSAGE.
 Ø5 YEAR-ERROR PICTURE 9999.
 Ø5 FILLER PICTURE X VALUE '.'.
 Ø5 MONTH-ERROR PICTURE 99.
 Ø5 FILLER PICTURE X VALUE '.'.
 Ø5 DAY-ERROR PICTURE 99.
 Ø5 FILLER PICTURE X VALUE ' '.
 Ø5 HOUR-ERROR PICTURE 99.
 Ø5 FILLER PICTURE X VALUE ':'.
 Ø5 MINUTE-ERROR PICTURE 99.
 Ø5 FILLER PICTURE X VALUE ':'.
 Ø5 SECOND-ERROR PICTURE 99.
 Ø5 FILLER PICTURE X(7) VALUE ' QMON: '.
 Ø5 MQ-ERROR-OPERATION PICTURE X(1Ø) VALUE SPACES.
 Ø5 FILLER PICTURE X(18) VALUE
 ' ERROR: COMPCODE: '.
 Ø5 MQ-ERROR-COMPCODE PICTURE Z9.
 Ø5 FILLER PICTURE X(Ø4) VALUE SPACES.
 Ø5 FILLER PICTURE X(Ø9) VALUE ' REASON: '.
 Ø5 MQ-ERROR-REASON PICTURE Z(Ø8)9.
 Ø1 LEN-ABEND-MESSAGE PICTURE S9(4) COMP VALUE 6Ø.
 Ø1 ABEND-MESSAGE.

10 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 Ø5 FILLER PICTURE X(14) VALUE 'TRANSACTION : '.
 Ø5 ABEND-TRANS-ID PICTURE X(4) VALUE 'QMON'.
 Ø5 FILLER PICTURE X(44) VALUE
 ' ABNORMALLY ENDED '.
 Ø1 TSQ-MESSAGE-LEN PIC S9(4) COMP VALUE 72.
 * TSQ contains items, which has a name same as Qname and *
 * the message id of the first message in this Queue *
 * for later comparison. *
 Ø1 TSQ-MESSAGE.
 Ø5 Q-NAME PICTURE X(48) VALUE ZEROS.
 Ø5 OLD-MSGID PICTURE X(24) VALUE ZEROS.
 Ø1 GET-INT-BUFFER PICTURE S9(9) COMP VALUE Ø.
 Ø1 PUT-INT-BUFFER PICTURE S9(9) COMP VALUE Ø.
 Ø1 TRIGGER-INT-BUFFER PICTURE S9(9) COMP VALUE Ø.
 Ø1 MQ-PUT-BUFFER-LEN PICTURE S9(9) COMP VALUE +52.
 * MQ-PUT-BUFFER contains output message for each queue. This *
 * structure is composed of queue number(QUEUENO), *
 * monitor time (YEAR-WORK, MONTH WORK, DAY-WORK, *
 * HOUR-WORK, MINUTE-WORK, SECOND-WORK), overall *
 * bit(OVERALL-BUFFER), status of the queue *
 * (STATUS-BUFFER), put-enable bit(PUT-BUFFER), *
 * get-enable bit(GET-BUFFER),trigger-set bit *
 * (TRIGGER-BUFFER), input use count *
 * (INPUT-USE-COUNT), output use count *
 * (OUTPUT-USE-COUNT), queue depth(QDEPTH). *
 Ø1 MQ-PUT-BUFFER.
 Ø5 QUEUENO PICTURE 999.
 Ø5 YEAR-WORK PICTURE 9999.
 Ø5 MONTH-WORK PICTURE 99.
 Ø5 DAY-WORK PICTURE 99.
 Ø5 HOUR-WORK PICTURE 99.
 Ø5 MINUTE-WORK PICTURE 99.
 Ø5 SECOND-WORK PICTURE 99.
 Ø5 OVERALL-BUFFER PIC X(1) VALUE 'Ø'.
 Ø5 STATUS-BUFFER PIC X(1) VALUE 'Ø'.
 Ø5 PUT-BUFFER PIC X(1) VALUE 'Ø'.
 Ø5 GET-BUFFER PIC X(1) VALUE 'Ø'.
 Ø5 TRIGGER-BUFFER PIC X(1) VALUE 'Ø'.
 Ø5 INPUT-USE-COUNT PIC X(9) VALUE 'Ø'.
 Ø5 OUTPUT-USE-COUNT PIC X(9) VALUE 'Ø'.
 Ø5 QDEPTH PIC X(9) VALUE '1Ø'.
 Ø1 TIME-IN-MSEC PICTURE S9(15) COMP-3.
 Ø1 DATE-SYSTEM.
 Ø5 YEAR-SYSTEM PICTURE 9999.
 Ø5 MONTH-SYSTEM PICTURE 99.
 Ø5 DAY-SYSTEM PICTURE 99.
 Ø1 TIME-SYSTEM.
 Ø5 HOUR-SYSTEM PICTURE 99.
 Ø5 MINUTE-SYSTEM PICTURE 99.
 Ø5 SECOND-SYSTEM PICTURE 99.
 Ø5 FILLER PICTURE 99.
 * TOTAL-QUEUE-NUMBER is total queue number written in the *

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 11

 * namelist. This number is set *
 * automatically when namelist is read. *
 Ø1 TOTAL-QUEUE-NUMBER PICTURE 999 VALUE 1ØØ.
 Ø1 I PICTURE 999 COMP VALUE 1.
 Ø1 XXX PICTURE S9(8) COMP VALUE Ø.
 Ø1 YYY PICTURE S9(8) COMP VALUE Ø.
 * MSGID-TABLE is filled with the message-ids of the first *
 * in each monitored queue. Number of monitored queues is *
 * assumed to be maximum 1ØØ. *
 Ø1 MSGID-TABLE.
 Ø5 MSGID PICTURE X(24) OCCURS 1ØØ TIMES.
 * ******* FLAG definitions *
 Ø1 OPEN-QMGR-FLAG PICTURE X VALUE SPACE.
 88 OPEN-QMGR-OK VALUE 'Y'.
 Ø1 CLOSE-QMGR-FLAG PICTURE X VALUE SPACE.
 88 CLOSE-QMGR-OK VALUE 'Y'.
 Ø1 INQ-QMGR-FLAG PICTURE X VALUE SPACE.
 88 INQ-QMGR-OK VALUE 'Y'.
 Ø1 INQ-NAMELIST-FLAG PICTURE X VALUE SPACE.
 88 INQ-NAMELIST-OK VALUE 'Y'.
 Ø1 OPEN-NAMELIST-FLAG PICTURE X VALUE SPACE.
 88 OPEN-NAMELIST-OK VALUE 'Y'.
 Ø1 CLOSE-NAMELIST-FLAG PICTURE X VALUE SPACE.
 88 CLOSE-NAMELIST-OK VALUE 'Y'.
 Ø1 OPEN-QUEUE-FLAG PICTURE X VALUE SPACE.
 88 OPEN-QUEUE-OK VALUE 'Y'.
 Ø1 INQ-QUEUE-FLAG PICTURE X VALUE SPACE.
 88 INQ-QUEUE-OK VALUE 'Y'.
 Ø1 GET-QUEUE-FLAG PICTURE X VALUE SPACE.
 88 GET-QUEUE-OK VALUE 'Y'.
 Ø1 CLOSE-QUEUE-FLAG PICTURE X VALUE SPACE.
 88 CLOSE-QUEUE-OK VALUE 'Y'.
 Ø1 OPEN-OUTPUT-FLAG PICTURE X VALUE SPACE.
 88 OPEN-OUTPUT-OK VALUE 'Y'.
 Ø1 PUT-OUTPUT-FLAG PICTURE X VALUE SPACE.
 88 PUT-OUTPUT-OK VALUE 'Y'.
 Ø1 CLOSE-OUTPUT-FLAG PICTURE X VALUE SPACE.
 88 CLOSE-OUTPUT-OK VALUE 'Y'.
 Ø1 READ-TSQ-FLAG PICTURE X VALUE SPACE.
 88 READ-TSQ-OK VALUE 'Y'.
 Ø1 WRITE-TSQ-FLAG PICTURE X VALUE SPACE.
 88 WRITE-TSQ-OK VALUE 'Y'.
 Ø1 COMPARE-MESSAGES-FLAG PICTURE X VALUE SPACE.
 88 COMPARE-MESSAGES-OK VALUE 'Y'.
 Ø1 DELETE-TSQ-FLAG PICTURE X VALUE SPACE.
 88 DELETE-TSQ-OK VALUE 'Y'.
 * ******* Data structures *
 Ø1 MQM-OBJECT-DESCRIPTOR.
 COPY CMQODV.
 Ø1 MQM-MESSAGE-DESCRIPTOR.
 COPY CMQMDV.
 Ø1 MQM-GET-MESSAGE-OPTIONS.

12 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 COPY CMQGMOV.
 Ø1 MQM-PUT-MESSAGE-OPTIONS.
 COPY CMQPMOV.
 Ø1 MQM-CONSTANTS.
 COPY CMQV SUPPRESS.
 LINKAGE SECTION.
 PROCEDURE DIVISION.
 START-PROG.
 PERFORM INIT-PROG
 THRU INIT-PROG-EXIT.
 PERFORM MAIN-PROG
 THRU MAIN-PROG-EXIT.
 PERFORM END-PROG
 THRU END-PROG-EXIT.
 INIT-PROG.
 EXEC CICS HANDLE ABEND
 LABEL (ABEND-PROC)
 END-EXEC.
 * Set transaction (QMON) start itself 3 minutes later. *
 EXEC CICS START INTERVAL(ØØØ3ØØ) TRANSID('QMON') END-EXEC.
 * Get absolute time and convert it to a readable format *
 PERFORM DATE-CONVERSION
 THRU DATE-CONVERSION-EXIT.
 MOVE MQHC-DEF-HCONN TO MQ-HCONN.
 INIT-PROG-EXIT.
 EXIT.
 MAIN-PROG.
 * Check TSQ whether it exists properly. *
 PERFORM READ-TSQ
 THRU READ-TSQ-EXIT.
 * Get QManager name CICS is connected to. *
 PERFORM GET-QMGR-NAME
 THRU GET-QMGR-NAME-EXIT.
 * Get Queue names from namelist *
 IF QMGR-NAME NOT = SPACES
 PERFORM GET-QUEUE-NAMES
 THRU GET-QUEUE-NAMES-EXIT
 ELSE
 PERFORM END-PROG
 THRU END-PROG-EXIT.
 * First queue is represented by number 1Ø in this program. *
 * You can give any number as desired. *
 * (We used at least 2 digits number for compatibility with the *
 * GUI program presenting the results of this program.) *
 * So QUEUENO is initialized to 9 at start. *
 MOVE 9 TO QUEUENO.
 * Procedure GET-ONE-MESSAGE gets information for each queue, *
 * compares the message id of the first message in the queue with*
 * the message id of the first message 3 minutes before stored *
 * to the TSQ. If they are same, so the first message in the *
 * is not processed since 3 minutes. *
 * Then the message for the status of the Queue is built and put *

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 13

 * to the output queue. *
 PERFORM GET-ONE-MESSAGE
 THRU GET-ONE-MESSAGE-EXIT
 VARYING I FROM 1 BY 1
 UNTIL I > TOTAL-QUEUE-NUMBER.
 MAIN-PROG-EXIT.
 EXIT.
 GET-QMGR-NAME.
 MOVE SPACES TO QMGR-NAME.
 PERFORM OPEN-QMGR
 THRU OPEN-QMGR-EXIT.
 IF OPEN-QMGR-OK
 PERFORM INQ-QMGR
 THRU INQ-QMGR-EXIT
 PERFORM CLOSE-QMGR
 THRU CLOSE-QMGR-EXIT.
 GET-QMGR-NAME-EXIT.
 EXIT.
 OPEN-QMGR.
 MOVE MQOT-Q-MGR TO MQOD-OBJECTTYPE.
 MOVE SPACES TO MQOD-OBJECTNAME.
 MOVE SPACES TO MQOD-DYNAMICQNAME.
 MOVE ZERO TO MQ-QMGR-HOBJ.
 MOVE MQHC-DEF-HCONN TO MQ-HCONN.
 MOVE MQOO-INQUIRE TO MQ-OPTIONS.
 CALL 'MQOPEN' USING MQ-HCONN
 MQOD
 MQ-OPTIONS
 MQ-QMGR-HOBJ
 MQ-COMPCODE
 MQ-REASON.
 IF (MQ-COMPCODE = MQCC-OK) THEN
 MOVE 'Y' TO OPEN-QMGR-FLAG
 ELSE
 MOVE 'N' TO OPEN-QMGR-FLAG
 MOVE 'MQOPEN QM' TO MQ-ERROR-OPERATION
 PERFORM HANDLE-ERROR
 THRU HANDLE-ERROR-EXIT
 PERFORM END-PROG
 THRU END-PROG-EXIT.
 OPEN-QMGR-EXIT.
 EXIT.
 INQ-QMGR.
 MOVE 1 TO MQ-SELECTORCOUNT.
 MOVE Ø TO MQ-INTATTRCOUNT.
 MOVE MQCA-Q-MGR-NAME TO MQ-SELECTORS(1).
 MOVE MQ-Q-MGR-NAME-LENGTH TO MQ-CHARATTRLENGTH.
 CALL 'MQINQ' USING MQ-HCONN
 MQ-QMGR-HOBJ
 MQ-SELECTORCOUNT
 MQ-SELECTORS-TABLE
 MQ-INTATTRCOUNT

14 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 MQ-INTATTRS-TABLE
 MQ-CHARATTRLENGTH
 MQ-CHARATTRS-TABLE
 MQ-COMPCODE
 MQ-REASON.
 IF MQ-COMPCODE = MQCC-OK
 MOVE 'Y' TO INQ-QMGR-FLAG
 MOVE MQ-CHARATTRS(1) TO QMGR-NAME
 ELSE
 MOVE 'N' TO INQ-QMGR-FLAG
 MOVE 'MQINQ QM' TO MQ-ERROR-OPERATION
 PERFORM HANDLE-ERROR
 THRU HANDLE-ERROR-EXIT
 PERFORM END-PROG
 THRU END-PROG-EXIT.
 INQ-QMGR-EXIT.
 EXIT.
 CLOSE-QMGR.
 CALL ‘MQCLOSE’ USING MQ-HCONN
 MQ-QMGR-HOBJ
 MQCO-NONE
 MQ-COMPCODE
 MQ-REASON.
 IF (MQ-COMPCODE = MQCC-OK) THEN
 MOVE 'Y' TO CLOSE-QMGR-FLAG
 ELSE
 MOVE 'N' TO CLOSE-QMGR-FLAG
 MOVE 'MQCLOSE QM' TO MQ-ERROR-OPERATION
 PERFORM HANDLE-ERROR
 THRU HANDLE-ERROR-EXIT
 PERFORM END-PROG
 THRU END-PROG-EXIT.
 CLOSE-QMGR-EXIT.
 EXIT.
 GET-QUEUE-NAMES.
 PERFORM OPEN-NAMELIST
 THRU OPEN-NAMELIST-EXIT.
 IF MQ-COMPCODE = MQCC-OK
 PERFORM INQ-NAMELIST
 THRU INQ-NAMELIST-EXIT
 IF INQ-NAMELIST-OK
 MOVE MQ-INTATTRS(1) TO TOTAL-QUEUE-NUMBER.
 PERFORM CLOSE-NAMELIST
 THRU CLOSE-NAMELIST-EXIT.
 GET-QUEUE-NAMES-EXIT.
 EXIT.
 OPEN-NAMELIST.
 MOVE MQOT-NAMELIST TO MQOD-OBJECTTYPE.
 MOVE MQ-NAMELIST-NAME TO MQOD-OBJECTNAME.
 MOVE QMGR-NAME TO MQOD-OBJECTQMGRNAME.
 COMPUTE MQ-OPTIONS = MQOO-INQUIRE.
 CALL 'MQOPEN' USING MQ-HCONN

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 15

 MQOD
 MQ-OPTIONS
 MQ-HOBJ-NAMELIST
 MQ-COMPCODE
 MQ-REASON.
 IF (MQ-COMPCODE = MQCC-OK) THEN
 MOVE 'Y' TO OPEN-NAMELIST-FLAG
 ELSE
 MOVE 'N' TO OPEN-NAMELIST-FLAG
 MOVE 'MQOPEN NL' TO MQ-ERROR-OPERATION
 PERFORM HANDLE-ERROR
 THRU HANDLE-ERROR-EXIT
 PERFORM END-PROG
 THRU END-PROG-EXIT.
 OPEN-NAMELIST-EXIT.
 EXIT.
 INQ-NAMELIST.
 MOVE 2 TO MQ-SELECTORCOUNT.
 MOVE 1 TO MQ-INTATTRCOUNT.
 MOVE MQIA-NAME-COUNT TO MQ-SELECTORS(1).
 MOVE MQCA-NAMES TO MQ-SELECTORS(2).
 CALL 'MQINQ' USING MQ-HCONN
 MQ-HOBJ-NAMELIST
 MQ-SELECTORCOUNT
 MQ-SELECTORS-TABLE
 MQ-INTATTRCOUNT
 MQ-INTATTRS-TABLE
 MQ-CHARATTRLENGTH-NLIST
 MQ-CHARATTRS-TABLE-NLIST
 MQ-COMPCODE
 MQ-REASON.
 IF (MQ-COMPCODE = MQCC-OK) THEN
 MOVE MQ-CHARATTRS-TABLE-NLIST TO QNAME-TABLE-NLIST
 MOVE 'Y' TO INQ-NAMELIST-FLAG
 ELSE
 MOVE 'N' TO INQ-NAMELIST-FLAG
 MOVE 'MQINQ NL' TO MQ-ERROR-OPERATION
 PERFORM HANDLE-ERROR
 THRU HANDLE-ERROR-EXIT
 PERFORM END-PROG
 THRU END-PROG-EXIT.
 INQ-NAMELIST-EXIT.
 EXIT.
 CLOSE-NAMELIST.
 CALL 'MQCLOSE' USING MQ-HCONN
 MQ-HOBJ-NAMELIST
 MQCO-NONE
 MQ-COMPCODE
 MQ-REASON.
 IF (MQ-COMPCODE = MQCC-OK) THEN
 MOVE 'Y' TO INQ-NAMELIST-FLAG
 ELSE

16 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 MOVE 'N' TO INQ-NAMELIST-FLAG
 MOVE 'MQCLOSE NL' TO MQ-ERROR-OPERATION
 PERFORM HANDLE-ERROR
 THRU HANDLE-ERROR-EXIT
 PERFORM END-PROG
 THRU END-PROG-EXIT.
 CLOSE-NAMELIST-EXIT.
 EXIT.
 GET-ONE-MESSAGE.
 PERFORM OPEN-APP-QUEUE
 THRU OPEN-APP-QUEUE-EXIT.
 PERFORM INQUIRE-APP-QUEUE
 THRU INQUIRE-APP-QUEUE-EXIT.
 PERFORM GET-BROWSE-APP-QUEUE
 THRU GET-BROWSE-APP-QUEUE-EXIT.
 PERFORM CLOSE-APP-QUEUE
 THRU CLOSE-APP-QUEUE-EXIT.
 MOVE 'N' TO COMPARE-MESSAGES-FLAG.
 COMPUTE QUEUENO = QUEUENO + 1.
 MOVE 'Ø' TO STATUS-BUFFER.
 MOVE 'Ø' TO OVERALL-BUFFER.
 IF READ-TSQ-OK THEN
 PERFORM COMPARE-MESSAGES
 THRU COMPARE-MESSAGES-EXIT.
 PERFORM WRITE-TSQ
 THRU WRITE-TSQ-EXIT.
 PERFORM WRITE-MESSAGES
 THRU WRITE-MESSAGES-EXIT.
 GET-ONE-MESSAGE-EXIT.
 EXIT.
 COMPARE-MESSAGES.
 PERFORM READ-TSQ
 THRU READ-TSQ-EXIT.
 MOVE 'N' TO COMPARE-MESSAGES-FLAG.
 IF READ-TSQ-OK AND GET-QUEUE-OK
 IF ((OLD-MSGID = SPACES) AND (MSGID(I) = SPACES)) OR
 (OLD-MSGID NOT = MSGID(I)) THEN
 MOVE 'Y' TO COMPARE-MESSAGES-FLAG.
 COMPARE-MESSAGES-EXIT.
 EXIT.
 WRITE-MESSAGES.
 IF (COMPARE-MESSAGES-OK AND GET-QUEUE-OK) THEN
 MOVE '1' TO STATUS-BUFFER
 ELSE
 MOVE 'Ø' TO STATUS-BUFFER.
 IF ((STATUS-BUFFER = '1') AND (PUT-BUFFER = '1') AND
 (GET-BUFFER = '1') AND (TRIGGER-BUFFER = '1')) THEN
 MOVE '1' TO OVERALL-BUFFER.
 PERFORM PUT-MESSAGES
 THRU PUT-MESSAGES-EXIT.
 WRITE-MESSAGES-EXIT.
 EXIT.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 17

 OPEN-APP-QUEUE.
 MOVE MQOT-Q TO MQOD-OBJECTTYPE.
 MOVE MQ-CHARATTRS-NLIST(I) TO MQOD-OBJECTNAME.
 MOVE QMGR-NAME TO MQOD-OBJECTQMGRNAME.
 MOVE ZEROS TO MQ-QUEUE-HOBJ.
 COMPUTE MQ-OPTIONS = MQOO-INQUIRE
 + MQOO-BROWSE.
 CALL 'MQOPEN' USING MQ-HCONN
 MQOD
 MQ-OPTIONS
 MQ-QUEUE-HOBJ
 MQ-COMPCODE
 MQ-REASON.
 IF MQ-COMPCODE = MQCC-OK
 MOVE 'Y' TO OPEN-QUEUE-FLAG
 ELSE
 MOVE 'N' TO OPEN-QUEUE-FLAG
 MOVE 'MQOPEN Q ' TO MQ-ERROR-OPERATION
 PERFORM HANDLE-ERROR
 THRU HANDLE-ERROR-EXIT.
 OPEN-APP-QUEUE-EXIT.
 EXIT.
 INQUIRE-APP-QUEUE.
 MOVE 6 TO MQ-SELECTORCOUNT.
 MOVE 6 TO MQ-INTATTRCOUNT.
 MOVE MQIA-CURRENT-Q-DEPTH TO MQ-SELECTORS(4).
 MOVE MQIA-INHIBIT-GET TO MQ-SELECTORS(1).
 MOVE MQIA-INHIBIT-PUT TO MQ-SELECTORS(2).
 MOVE MQIA-TRIGGER-CONTROL TO MQ-SELECTORS(3).
 MOVE MQIA-OPEN-INPUT-COUNT TO MQ-SELECTORS(5).
 MOVE MQIA-OPEN-OUTPUT-COUNT TO MQ-SELECTORS(6).
 CALL 'MQINQ' USING MQ-HCONN
 MQ-QUEUE-HOBJ
 MQ-SELECTORCOUNT
 MQ-SELECTORS-TABLE
 MQ-INTATTRCOUNT
 MQ-INTATTRS-TABLE
 MQ-CHARATTRLENGTH
 MQ-CHARATTRS-TABLE
 MQ-COMPCODE
 MQ-REASON.
 MOVE 'Ø' TO GET-BUFFER.
 MOVE 'Ø' TO PUT-BUFFER.
 MOVE 'Ø' TO TRIGGER-BUFFER.
 MOVE 'Ø' TO QDEPTH.
 MOVE '9' TO INPUT-USE-COUNT.
 MOVE '9' TO OUTPUT-USE-COUNT.
 IF MQ-COMPCODE = MQCC-OK
 MOVE 'Y' TO INQ-QUEUE-FLAG
 MOVE MQ-INTATTRS(1) TO GET-INT-BUFFER
 MOVE MQ-INTATTRS(2) TO PUT-INT-BUFFER
 MOVE MQ-INTATTRS(3) TO TRIGGER-INT-BUFFER

18 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 MOVE MQ-INTATTRS(4) TO QDEPTH
 MOVE MQ-INTATTRS(5) TO INPUT-USE-COUNT
 MOVE MQ-INTATTRS(6) TO OUTPUT-USE-COUNT
 IF PUT-INT-BUFFER = Ø THEN
 MOVE '1' TO PUT-BUFFER
 END-IF
 IF TRIGGER-INT-BUFFER = 1 THEN
 MOVE '1' TO TRIGGER-BUFFER
 END-IF
 IF GET-INT-BUFFER = Ø THEN
 MOVE '1' TO GET-BUFFER
 END-IF
 ELSE
 MOVE 'N' TO INQ-QUEUE-FLAG
 MOVE 'MQINQ Q' TO MQ-ERROR-OPERATION
 PERFORM HANDLE-ERROR
 THRU HANDLE-ERROR-EXIT.
 INQUIRE-APP-QUEUE-EXIT.
 EXIT.
 GET-BROWSE-APP-QUEUE.
 COMPUTE MQGMO-OPTIONS = MQGMO-ACCEPT-TRUNCATED-MSG +
 MQGMO-BROWSE-FIRST.
 MOVE MQMI-NONE TO MQMD-MSGID.
 MOVE MQCI-NONE TO MQMD-CORRELID.
 CALL 'MQGET' USING MQ-HCONN
 MQ-QUEUE-HOBJ
 MQMD
 MQGMO
 MQ-BUFFLEN
 MQ-GET-BUFFER
 MQ-DATALEN
 MQ-COMPCODE
 MQ-REASON.
 IF (MQ-COMPCODE = MQCC-OK) OR
 (MQ-REASON = MQRC-TRUNCATED-MSG-ACCEPTED) THEN
 MOVE MQMD-MSGID TO MSGID(I)
 MOVE 'Y' TO GET-QUEUE-FLAG
 ELSE
 IF (MQ-REASON = MQRC-NO-MSG-AVAILABLE)
 MOVE SPACES TO MSGID(I)
 MOVE 'Y' TO GET-QUEUE-FLAG
 ELSE
 MOVE 'N' TO GET-QUEUE-FLAG
 MOVE '2222' TO MSGID(I)
 MOVE 'MQGET Q' TO MQ-ERROR-OPERATION
 PERFORM HANDLE-ERROR
 THRU HANDLE-ERROR-EXIT.
 GET-BROWSE-APP-QUEUE-EXIT.
 EXIT.
 CLOSE-APP-QUEUE.
 CALL 'MQCLOSE' USING MQ-HCONN
 MQ-QUEUE-HOBJ

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 19

 MQCO-NONE
 MQ-COMPCODE
 MQ-REASON.
 IF MQ-COMPCODE = MQCC-OK
 MOVE 'Y' TO CLOSE-QUEUE-FLAG
 ELSE
 MOVE 'N' TO CLOSE-QUEUE-FLAG
 MOVE 'MQCLOSE Q ' TO MQ-ERROR-OPERATION
 PERFORM HANDLE-ERROR
 THRU HANDLE-ERROR-EXIT.
 CLOSE-APP-QUEUE-EXIT.
 EXIT.
 READ-TSQ.
 EXEC CICS READQ TS QUEUE('QMON') INTO(TSQ-MESSAGE)
 ITEM(I) RESP(XXX)
 END-EXEC.
 IF (XXX = DFHRESP(ITEMERR)) OR (XXX = DFHRESP(QIDERR))
 PERFORM DELETE-TSQ
 THRU DELETE-TSQ-EXIT
 MOVE 'N' TO READ-TSQ-FLAG
 MOVE 'READTSQ E' TO MQ-ERROR-OPERATION
 PERFORM HANDLE-ERROR
 THRU HANDLE-ERROR-EXIT
 ELSE
 MOVE 'Y' TO READ-TSQ-FLAG.
 READ-TSQ-EXIT.
 EXIT.
 DELETE-TSQ.
 EXEC CICS DELETEQ TS QUEUE('QMON') RESP(YYY)
 END-EXEC.
 IF (YYY = DFHRESP(QIDERR)) THEN
 MOVE 'N' TO DELETE-TSQ-FLAG
 MOVE 'DELETETSQE' TO MQ-ERROR-OPERATION
 PERFORM HANDLE-ERROR
 THRU HANDLE-ERROR-EXIT
 ELSE
 MOVE 'Y' TO DELETE-TSQ-FLAG.
 DELETE-TSQ-EXIT.
 EXIT.
 WRITE-TSQ.
 MOVE QNAME-NLIST(I) TO Q-NAME.
 MOVE MSGID(I) TO OLD-MSGID.
 IF READ-TSQ-OK THEN
 EXEC CICS WRITEQ TS QUEUE('QMON') FROM(TSQ-MESSAGE)
 ITEM(I) REWRITE RESP(XXX)
 END-EXEC
 ELSE
 EXEC CICS WRITEQ TS QUEUE('QMON') FROM(TSQ-MESSAGE)
 ITEM(I) RESP(XXX)
 END-EXEC.
 IF XXX = DFHRESP(ITEMERR) THEN
 MOVE 'N' TO WRITE-TSQ-FLAG

20 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 MOVE 'WRITETSQE' TO MQ-ERROR-OPERATION
 PERFORM HANDLE-ERROR
 THRU HANDLE-ERROR-EXIT
 ELSE
 MOVE 'Y' TO WRITE-TSQ-FLAG.
 WRITE-TSQ-EXIT.
 EXIT.
 PUT-MESSAGES.
 PERFORM OPEN-OUTPUT-QUEUE
 THRU OPEN-OUTPUT-QUEUE-EXIT.
 PERFORM PUT-OUTPUT-QUEUE
 THRU PUT-OUTPUT-QUEUE-EXIT.
 PERFORM CLOSE-OUTPUT-QUEUE
 THRU CLOSE-OUTPUT-QUEUE-EXIT.
 PUT-MESSAGES-EXIT.
 EXIT.
 OPEN-OUTPUT-QUEUE.
 MOVE MQOT-Q TO MQOD-OBJECTTYPE.
 MOVE 'CMON' TO MQOD-OBJECTNAME.
 MOVE QMGR-NAME TO MQOD-OBJECTQMGRNAME.
 MOVE ZEROS TO MQ-QUEUE-HOBJ.
 COMPUTE MQ-OPTIONS = MQOO-OUTPUT.
 CALL 'MQOPEN' USING MQ-HCONN
 MQOD
 MQ-OPTIONS
 MQ-QUEUE-HOBJ
 MQ-COMPCODE
 MQ-REASON.
 IF MQ-COMPCODE = MQCC-OK
 MOVE 'Y' TO OPEN-OUTPUT-FLAG
 ELSE
 MOVE 'N' TO OPEN-OUTPUT-FLAG
 MOVE 'MQOPEN OQ ' TO MQ-ERROR-OPERATION
 PERFORM HANDLE-ERROR
 THRU HANDLE-ERROR-EXIT
 PERFORM END-PROG
 THRU END-PROG-EXIT.
 OPEN-OUTPUT-QUEUE-EXIT.
 EXIT.
 PUT-OUTPUT-QUEUE.
 MOVE MQMI-NONE TO MQMD-MSGID.
 MOVE MQCI-NONE TO MQMD-CORRELID.
 MOVE MQFMT-STRING TO MQMD-FORMAT.
 COMPUTE MQPMO-OPTIONS = MQPMO-SYNCPOINT +
 MQPMO-FAIL-IF-QUIESCING.
 CALL 'MQPUT' USING MQ-HCONN
 MQ-QUEUE-HOBJ
 MQMD
 MQPMO
 MQ-PUT-BUFFER-LEN
 MQ-PUT-BUFFER
 MQ-COMPCODE

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 21

 MQ-REASON.
 IF MQ-COMPCODE = MQCC-OK
 MOVE 'Y' TO PUT-OUTPUT-FLAG
 ELSE
 MOVE 'N' TO PUT-OUTPUT-FLAG
 MOVE 'MQPUT OQ ' TO MQ-ERROR-OPERATION
 PERFORM HANDLE-ERROR
 THRU HANDLE-ERROR-EXIT
 EXEC CICS SYNCPOINT ROLLBACK END-EXEC
 PERFORM END-PROG
 THRU END-PROG-EXIT.
 PUT-OUTPUT-QUEUE-EXIT.
 EXIT.
 CLOSE-OUTPUT-QUEUE.
 CALL 'MQCLOSE' USING MQ-HCONN
 MQ-QUEUE-HOBJ
 MQCO-NONE
 MQ-COMPCODE
 MQ-REASON.
 IF MQ-COMPCODE = MQCC-OK
 MOVE 'Y' TO CLOSE-OUTPUT-FLAG
 ELSE
 MOVE 'N' TO CLOSE-OUTPUT-FLAG
 MOVE 'MQCLOSEOQ ' TO MQ-ERROR-OPERATION
 PERFORM HANDLE-ERROR
 THRU HANDLE-ERROR-EXIT
 EXEC CICS SYNCPOINT ROLLBACK END-EXEC
 PERFORM END-PROG
 THRU END-PROG-EXIT.
 CLOSE-OUTPUT-QUEUE-EXIT.
 EXIT.
 END-PROG.
 EXEC CICS RETURN END-EXEC.
 STOP RUN.
 END-PROG-EXIT.
 EXIT.
 DATE-CONVERSION.
 EXEC CICS ASKTIME ABSTIME (TIME-IN-MSEC) END-EXEC.
 EXEC CICS FORMATTIME ABSTIME (TIME-IN-MSEC)
 YYYYMMDD (DATE-SYSTEM)
 TIME (TIME-SYSTEM)
 END-EXEC.
 MOVE DAY-SYSTEM TO DAY-WORK.
 MOVE MONTH-SYSTEM TO MONTH-WORK.
 MOVE YEAR-SYSTEM TO YEAR-WORK.
 MOVE HOUR-SYSTEM TO HOUR-WORK.
 MOVE MINUTE-SYSTEM TO MINUTE-WORK.
 MOVE SECOND-SYSTEM TO SECOND-WORK.
 MOVE DAY-SYSTEM TO DAY-ERROR.
 MOVE MONTH-SYSTEM TO MONTH-ERROR.
 MOVE YEAR-SYSTEM TO YEAR-ERROR.
 MOVE HOUR-SYSTEM TO HOUR-ERROR.

22 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

 MOVE MINUTE-SYSTEM TO MINUTE-ERROR.
 MOVE SECOND-SYSTEM TO SECOND-ERROR.
 DATE-CONVERSION-EXIT.
 EXIT.
 ABEND-PROC.
 * Error messages during the processing of this program *
 * are written to a specific Cics TDQ TSSL. *
 EXEC CICS WRITEQ TD QUEUE('TSSL') FROM(ABEND-MESSAGE)
 LENGTH(LEN-ABEND-MESSAGE) END-EXEC.
 PERFORM END-PROG
 THRU END-PROG-EXIT.
 ABEND-PROC-EXIT.
 EXIT.
 HANDLE-ERROR.
 MOVE MQ-COMPCODE TO MQ-ERROR-COMPCODE.
 MOVE MQ-REASON TO MQ-ERROR-REASON.
 EXEC CICS WRITEQ TD QUEUE('CKMQ') FROM(MQ-ERROR-MESSAGE)
 LENGTH(LEN-MQ-ERROR-MESSAGE) END-EXEC.
 HANDLE-ERROR-EXIT.
 EXIT.

Barlas Solakoglu
Transaction and Messaging Systems Specialist (Turkey) © Xephon

Enhancing MQSeries transaction coordination

INTRODUCTION

One of the functions introduced in MQSeries Version 5.0 for distributed
platforms, released in 1997, was the ability to act as a transaction
coordinator. This meant that updates to queues (messages being put
and got) could be synchronized with updates made to other resource
managers, such as SQL databases, without the need for additional
products, such as CICS or Tuxedo. Although IBM is now delivering
MQSeries Version 5.2, there have been no significant extensions to
the transaction coordination functions since its original release.

This coordination facility has proven very useful to many customers
and is also used by other IBM products such as WebSphere MQ
Integrator (previously known as MQSeries Integrator). However, as
with any successful feature, there have been requests for enhancements
in order to make it easier to define and use the databases from within
an application.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 23

This article will begin by describing the technical details behind
MQSeries transaction coordination. It will then go on to show how
two of the suggested enhancements can be made without the need for
any changes to MQSeries itself; specifically:

• The ability to vary the usernames used when connecting to
databases.

• The ability to select the databases used by each individual
application.

Using these options might improve the performance of your system
and can extend your security configuration options. By the end of this
article you should be able to understand and then customize for your
own environment the example source code that implements these
enhancements.

TRANSACTIONS AND XA

Transactions can be thought of as groups of operations, which either
all succeed or all fail. They reduce the need for error recovery logic
inside an application program. Databases and MQSeries can all be
called ‘Resource Managers’, which handle transactions within their
own scope of resources, such as tables or queues. When there is a
requirement to update more than one Resource Manager (RM) as part
of the same transaction, a Transaction Manager (TM) or Transaction
Coordinator (TC) gets the job of driving all of the RMs so that they
maintain a consistent state. Such a transaction, involving more than
one RM, is often called a global unit of work.

While there are a number of ways in which this consistent state can be
controlled, the most common protocol is called two-phase commit, or
2PC. One programming interface which has been defined to implement
that protocol is called XA.

XA is an invention of the X/Open standards organization. The way a
TM calls an RM is specified as a group of functions and variables in
the C language. This does not mean that application programs, TMs,
or RMs have themselves to be written in C, only that they will
communicate using C calling conventions.

There are 12 function calls defined in the XA document, such as
xa_open, xa_close, xa_prepare, and xa_commit. Ten of these are

24 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

used for calling from a TM to an RM; two are used for the RM to
invoke functions in the TM. There is no standard for how an application
program starts or specifies the outcomes of transactions; the syntax is
dependent on the TM in use. For example, MQSeries provides the
MQBEGIN, MQCMIT, and MQBACK verbs to manage global
transactions. CICS programmers will be familiar with the EXEC
CICS SYNCPT and EXEC CICS ROLLBACK statements.

The XA specification also defines state transitions and error codes.
Other interfaces exist (for example, CICS on z/OS talks to MQSeries
via a similar set of functions but using a different programming
interface), but we will be concerned here only with XA.

Transaction management is often part of a much larger product. CICS
and Tuxedo for example, have a lot of functions, such as the scheduling
of transactions that are outside the basic TM operation. It was because
these Transaction Processing Monitor products were often beyond
what was needed by MQSeries customers that IBM developed the TM
component of MQSeries.

APPLICATION PROGRAMMING WITH MQSERIES COORDINATION

An earlier article in MQ Update (March 2000) talks about using
MQSeries as a transaction coordinator, and there are several sample
programs shipped with MQSeries. I don’t intend to repeat that
information or go through it in detail. You can look at the IBM-
supplied examples in the samples/xatm subdirectory after you have
installed MQSeries. The basic structure of these programs, however,
is much the same.

Leaving out all the parameter details, a program will often look
something like this:

MQCONN()
MQOPEN()
Begin loop
 MQBEGIN()
 MQGET()
 EXEC SQL SELECT …
 EXEC SQL UPDATE …
 MQPUT1()
 MQCMIT()
End loop
MQCLOSE()

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 25

MQDISC()

There are a couple of things to note here. Firstly, we do not explicitly
connect to the database. That would, in stand-alone programs, normally
be done by the EXEC SQL CONNECT function: here, the queue
manager does it on behalf of the application during the MQBEGIN
call. Secondly, we do not use the EXEC SQL COMMIT statement.
MQSeries handles that through the XA commitment protocol; if an
application calls the database directly to resolve a transaction it is an
error.

The significant verb in this program is the call to MQBEGIN. That
tells the queue manager that the program is starting a global unit of
work and that it needs to be ready to work with external resource
managers. From there on, calls to MQCMIT and MQBACK will be
able to drive the XA transaction processing functions inside those
external resource managers as well as being able to control the
MQSeries messages.

CONFIGURING MQSERIES FOR COORDINATION

MQSeries knows to coordinate an external resource from stanzas
added to the queue manager’s qm.ini file (or by updates to the
corresponding part of the Windows NT registry). Each stanza tells the
queue manager several things; the name of the database, the location
of the switch file described below, and the parameters that must be
passed to the database during xa_open and xa_close processing.

This example qm.ini file tells the queue manager that it will need to
coordinate updates to two different DB2 databases. The XAOpenString
field is what the DB2 client libraries use so that it can attach to the
correct database and it may contain a number of additional parameters.
Some of these attributes become important later, when we see how to
extend the configuration possible with MQSeries.

QM.INI
------------------- /var/mqm/qmgrs/QMNAME/qm.ini ------------------
#* Module Name: qm.ini *#
#* Type : MQSeries queue manager configuration file *#
Function : Define the configuration of a single queue manager *#
#* Notes : *#
#* 1) This file defines the configuration of the queue manager *#

26 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

ExitPath:
 ExitsDefaultPath=/var/mqm/exits/
Service:
 Name=AuthorizationService
 EntryPoints=9
ServiceComponent:
 Service=AuthorizationService
 Name=MQSeries.Unix.auth.service
 Module=/usr/mqm/lib/amqzfu
 ComponentDataSize=Ø
Log:
 LogPrimaryFiles=3
 LogSecondaryFiles=2
 LogFilePages=64
 LogType=CIRCULAR
 LogBufferPages=17
 LogPath=/var/mqm/log/TWOPC/
XAResourceManager:

Name=DB2 MQBankDB
SwitchFile=/var/mqm/exits/db2swit
XAOpenString=db=MQBankDB

XAResourceManager:
Name=DB2 SAMPLE
SwitchFile=/var/mqm/exits/db2swit
XAOpenString=db=SAMPLE

------------------------- End qm.ini file ------------------------------

THE SWITCH FILE

The XA standard says that the fundamental part of the interface
between a TM and an RM is a variable of a particular datatype. It is
actually called the xa_switch_t structure, whose fields are defined
further in the XA specification. The documentation for each RM
defines the name of that variable, which has to be used by the TM to
get access to the functions in the RM that do the real work.

How can we use that information inside a product like MQSeries?
When C programs are compiled and linked you normally want or need
to have all function symbols resolved during the link process. When
IBM compiles MQSeries it does not know about symbols in other
RMs, so there has to be a way to get and use that information at run-
time.

The switch file is a way of deferring symbol resolution until run-time.
The switch file is compiled as a dynamically-loadable module (or
DLL), whose single entry-point returns the address of the xa_switch
variable to the queue manager. Just like MQSeries channel exits, the

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 27

queue manager knows how to load these modules and execute the
code at its entry-point. Because the switch file is itself linked with the
database run-time libraries, all the functions that the application or
queue manager needs to work with the database are now available
directly inside the process and can be called or used.

There is normally one switch file for each database product such as
DB2 or Oracle installed on a machine. Depending on the amount of
compatibility between different versions of the RDBMS, there may
need to be more than one switch file. For example, one vendor
modified the XA capabilities when a new release of the product was
shipped, and had a new name for the xa_switch variable to access this
new function. This meant that separate switch files were needed; one
referring to the old name and one referring to the new name.

Most switch files contain only one real line of C code. The difficulties
that some people experience arise from finding the XA information in
the first place, and then compiling and linking the module.

Here, as an example, is the absolute minimum source code for the
DB2 switch file.

#include "xa.h"
extern struct xa_switch_t db2xa_switch;
struct xa_switch_t * MQStart(void){
 return(&db2xa_switch);
}

The important line here is the ‘return’. This tells the queue manager
the address of DB2’s XA interface structure. To write this small piece
of code we had to look in the DB2 manuals where the db2xa_switch
variable is documented. MQSeries ships a file called xaswit.mak,
which can be used to compile and link this module.

STATIC AND DYNAMIC XA

One of the flags returned in the xa_switch structure indicates whether
or not the RM supports dynamic registration for transactions. The
alternative static interface is slightly easier to implement and
understand, but may not perform as well in an environment where
many RMs might be known to a TM, but only a small number are
actually used by any given transaction.

28 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

In the static XA interface, the TM tells every RM that it knows about
every time a transaction is started . The TM does not get involved any
further with the work carried out by the application program. Once the
application has finished its work it tells the TM to do the commit
processing and the TM blindly drives the two-phase protocol for all
of these RMs. If the application has not done any work that requires
a recoverable transaction on some of these RMs, the TM has just
wasted some time asking it to commit non-existent work.

In dynamic XA, the job of enrolling in a transaction is left to the RM.
As in static XA, the TM issues an xa_open to all RMs to create the
connection, but this time the TM does not explicitly start any transaction.
Instead, the application issues a recoverable request to an RM and the
RM tells the TM (via the ax_reg call-back function) that it has been
asked to be part of a transaction and requests the global transaction ID
that it can share with the TM and any other RMs that are used. Now,
when it is time to commit the work, the TM knows that it only need
call the RMs that have actually participated in the transaction.

Dynamic XA is to be preferred wherever possible. In the case of a
single RM being used with a queue manager, the performance of
dynamic XA is about the same as static XA. Once more, RMs are
defined to the TM, then the performance benefit becomes more
noticeable.

Not all TMs and RMs support the dynamic XA option. However,
when MQSeries is running as a coordinator, it does support RMs that
wish to use dynamic XA.

WHEN DOES MQSERIES CALL THE DATABASE?

As most people probably know, the MQSeries design splits work
between two processes – the application program and the agent acting
on its behalf. When the application issues an MQGET call, only a
small amount of code is executed in that process. The real work is done
by the separate agent process that has access to all the important and
protected resources, such as files, locks, and shared memory. This
split of responsibility is continued in the XA implementation, where
some of the XA verbs are executed directly by the application, some
by the queue manager agent, and some by both processes. Of course,
most databases also split function calls into a small stub inside the

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 29

application process and the real work is done inside their own agent
processes, so there might be a number of interconnected processes in
total. We do not need to worry about the distinction here; as far as
MQSeries is concerned, all XA operations on an RM are executed in-
line.

The XA functions can be grouped into several sets; connection
management, transaction association, and transaction resolution.
Both the application and the agent need to connect to the database, so
the first MQBEGIN causes both processes to dynamically load the
switch file and, in the case of static XA, to then issue the xa_open call
to the database. In dynamic XA, the xa_open from the agent process
is delayed until it is actually needed. The connection from the
application process to the database is done immediately during the
MQBEGIN call for both static and dynamic XA.

Transaction association (starting, suspending, and moving transactions)
is all done within the application program. The queue manager does
not need to issue any XA verbs from its own processes, although it
does need to keep track internally of the state of each transaction.

The queue manager does all transaction resolution – when the
application issues MQCMIT its agent drives the xa_prepare and
xa_commit interfaces. Figure 1 illustrates this for a dynamic XA
session. Static XA is similar, except that the ax_reg calls are replaced
by xa_start in the application process.

In both static and dynamic XA the application program issues the
xa_open call to all databases defined in the qm.ini file. This means
that the security configuration of the database must be set up to allow
any application that is using the queue manager to connect to the
database. Often, the security controls are set so that the username
associated with the running process is automatically used by the
database (based on the assumption that the operating system has
already authenticated the user), but this is not always the case.
Sometimes, the database will be configured to require a user-id and
password to be provided during the connection flows or, in this case,
during the xa_open flows. If user-id and password parameters are
needed they will be set as part of the XAOpenString parameter in the
qm.ini file.

30 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Figure 1: Interaction of MQI and XA verbs for dynamic XA
resources

Application Agent

Resource
Manager

(DB2)

MQCONN

MQBEGIN

MQGET

EXEC SQL
UPDATE

MQCMIT

:
:

▲

▼ ▼▼

1 xa_open
(only on first mqbegin)

4 database update

5 ax_reg

▲

3 mqbegin

2 mqbegin ▲
▲6 ax_reg

7 xa_open
(only on first
ax_reg)

▲

8 xa_reg

9 xa_end

▼

▲10 mqcmit

11 xa_prepare

12 xa_commit

▲

13 mqcmit

▼ ▼

USING THE RIGHT DATABASE CONNECTION

In the qm.ini file above, two databases are configured. When the
application calls MQBEGIN the queue manager does not know which
of the databases is going to be used by the application – it could be one
or both – so the MQSeries code in both the application and the agent
sides of the picture will call xa_open for both databases. A call to
xa_open is approximately equivalent to an EXEC SQL CONNECT
and sets up all of the internal structures needed by the database for the
application to work with.

The application should not (and probably must not) call EXEC SQL
CONNECT as that would create a separate session, which could not
be part of a global transaction. So the application starts doing its SQL
UPDATE and SQL INSERT work. But which database is it actually
working with? Experiments with DB2 show that, if the first thing you

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 31

do after MQBEGIN is to simply call EXEC SQL UPDATE, then that
operation is sent to the last database listed in the qm.ini file – the last
one that has been opened by the xa_open processing in the application
side of the queue manager.

This might not be the right database for your work and so there are a
couple of ways of forcing the right session to be used. The easiest
method is to use EXEC SQL SET CONNECTION , where the
parameter to this operation is the name of the database. For example,
when using the two databases configured in the qm.ini file, I added the
line EXEC SQL SET CONNECTION MQBANKDB to my test
program immediately after the MQBEGIN verb. An alternative
syntax supported by some products is to name the database on the
actual operation EXEC SQL AT MQBANKDB SELECT …

This second method is most useful when you are only switching
temporarily to a second database: if an application program only ever
works with one database the first method is preferable.

THE SAMPLE XA SWITCH FILE

Earlier, I said that a typical XA switch file contains only a single
functional line of C code, but there’s nothing that enforces that. As the
switch file tells the queue manager the address of the XA functions
within the RM it’s possible to modify those addresses and insert user-
written code that gets called before (or even possibly instead of) the
real functions inside the RM. And that is exactly what the sample code
does. In particular, what it is designed for is to modify the xa_open
step, so that the XAOpenString parameter can be modified, and in
some cases, an RM can be completely bypassed.

The code extends the queue manager configuration in two ways.
Firstly, it allows us to have different ways to authenticate to the
database. Instead of requiring operating system authentication or that
the qm.ini file should contain a user-id and password for all users of
that database to connect with, we can now modify the authentication
programmatically.

Secondly, the new switch file can decide to not even attempt to
connect to a database that the application is not going to use. This is
a performance improvement beyond that provided by the dynamic

32 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

XA capability, as setting up a connection is often a comparatively
expensive operation.

How does it work?

The new switch file obtains the addresses of the DB2 XA functions in
the usual way, by getting the address of the xa_switch variable. Now,
however, instead of returning that address to the queue manager, a
modified structure is filled in, containing the address of a new
xa_open function implemented within the switch file itself. That new
function needs to know the original address because after doing its
work it will pass through to the original function.

Note that the code supplied here is written for DB2 and AIX, but it
should be clear how it could be extended for other databases and other
operating systems. There are a number of comments in the code to
explain how it works and how it might be modified. The switch file
also traces its behaviour to stdout if it is running in an interactive
application, or writing to /tmp/db2.out if it is loaded into a queue
manager process.

DB2SWIT.C

/* Module name: db2swit.c
/* Description: MQSeries XA switch program for DB2 & AIX
#include <stdio.h>
#include <pwd.h>
#include <cmqc.h> /* MQ header */
#include “xa.h” /* MQ supplied XA header */
/* This variable is supplied by DB2 and contains XA function pointers */
extern struct xa_switch_t db2xa_switch;
/* Local variables
static FILE *fp = NULL; /* For debug printing
static struct xa_switch_t myxa; /* The modified switch vector
static struct xa_switch_t dbxa;/* The original switch vector from DB2 */
static int (*reg_func)(int,char *,const char *) = NULL; /* Appl
callback */
/* The max number of XA Resource Managers that might be defined to */
/* MQSeries at this site. There is no 'real' maximum; choosing a */
*/ moderate number lets me have a fixed size array for ease of use */
*/ later. */ MQSeries allocates rmid values sequentially from 1; one */
*/ for each stanza in the qm.ini file. */
#define MAXRMS (5Ø)
/* Is this rmid being used by this application? Assume 'yes'. */
int rmlist[MAXRMS] = {TRUE};
int my_xa_open(char *xa_info,int rmid, long flags)
{

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 33

 int rc;
 struct passwd *pw;
 char local_xa_info[MAXINFOSIZE+1]={Ø}; /* length is defined in xa.h */
 char *p = xa_info;
 pw = getpwuid(geteuid()); /* Who are we? */
 fprintf(fp,"!! Running as user %d (\"%s\")\n",pw->pw_uid,pw->pw_name);
 if (pw && (strcmp(pw->pw_name,"mqm")==Ø))
 {
/* We are running as 'mqm' ... This probably means we are running */
/* inside a queue manager process, which will need full access to all */
/* resource managers so it can manage all transactions. */
/* We will modify the xa_info, to add 'standard' username/password */
/* information, perhaps read from a file to which only mqm has read */
/* access. In this case, I’m going to add some hardcoded info. */
/* (Bad idea for real code, good idea for samples!) Remember that the */
/* username must have authorities on the database to connect and then */
/* manage other people's transactions. */
 strcpy(local_xa_info,xa_info);
 strcat(local_xa_info,",uid=mqm,pwd=mqm");
 p = local_xa_info;
 rc = dbxa.xa_open_entry(p,rmid,flags);
 }
 else
 {
 p = local_xa_info;
 if (rmid >= MAXRMS)
 {
 fprintf(fp,"!! Too many Resource Managers defined\n");
 rc = XAER_RMERR;
 }
 else if (reg_func &&
(reg_func(sizeof(local_xa_info),local_xa_info,xa_info)==TRUE))
 {
 fprintf(fp,"!! Leaving resource turned on\n");
 rc = dbxa.xa_open_entry(strlen(p)?p:xa_info,rmid,flags);
 }
 else
 {
/* RMs which only support static registration cannot be disabled */
/* through this interface. They must be opened always, as the qmgr */
/* will also always open them and attempt to commit/rollback later */
/* for this transaction branch. */
/* Which would, of course, be an error if the rmid were not known */
/* to the RM being driven. */
 if (dbxa.flags & TMREGISTER)
 {

fprintf(fp,"!! Bypassing resource\n");
rmlist[rmid] = FALSE;
rc = XA_OK;

 }
 else
 {

34 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

/* The app's registration function has said it doesn't want */
/* to call this RM. But we're going to have to anyway. If the */
/* local_xa_info has been modified, use that. Otherwise */
/* use the original xa_info string. */

fprintf(fp,"!! Cannot bypass RM which uses static registration\n");
rc = dbxa.xa_open_entry(strlen(p)?p:xa_info,rmid,flags);

 }
 }
 }
 fprintf(fp,"!! xa_open:\"%s\" rmid=%Ø8X rc=%d\n",p,rmid,rc);
 return rc;
}
/* A fairly simple xa_close function. We don’t want to close a */
*/ database that we’ve never really opened as that might be an error. */
int my_xa_close(char *xa_info,int rmid, long flags)
{
 int rc;
 if (rmlist[rmid])
 rc = dbxa.xa_close_entry(xa_info,rmid,flags);
 else
 rc = XA_OK;
 fprintf(fp,"!! xa_close:\"%s\" rmid=%Ø8X
rc=%d\n",xa_info?xa_info:"NULL",rmid,rc);
 return rc;
}
/* This is the entrypoint to the module. It's called once per process */
/* that loads it, no matter how many resource managers are defined */
*/ that use the same switch file. */
/* The name of the function has to be MQStart.
struct xa_switch_t * MQENTRY MQStart(void)
{
/* Take two copies of the switch .. one that we'll change and return, */
/* and one we'll leave alone, containing the original pointers */
/* for this database. */
 memcpy(&myxa,&db2xa_switch,sizeof(struct xa_switch_t));
 memcpy(&dbxa,&db2xa_switch,sizeof(struct xa_switch_t));
/* These are the 2 functions that need to be overridden if we’re */
*/ going to bypass default processing. */
 myxa.xa_open_entry = my_xa_open;
 myxa.xa_close_entry = my_xa_close;
/* Set up some debug print paths ... user apps will print to stdout, */
/* while queue manager processes will be sent to a file which you can */
/* follow with 'tail -f'. I'll assume the fopen succeeds. */
 if (isatty(fileno(stdout)))
 fp = stdout;
 else
 fp = fopen("/tmp/db2.out","a");
 setbuf(fp,Ø);
 fprintf(fp,”\n\n!! In the switch file %s: compiled at %s
%s\n",__FILE__,__DATE__,__TIME__);
 fprintf(fp,"!! XA flags %Ø8X\n",dbxa.flags);
 find_registration_function();

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 35

 /* And return the modified XA function pointers
return(&myxa);
}
#include <dlfcn.h>
typedef int (_PFN)(int,char *,const char*);
typedef _PFN *PFN;
find_registration_function()
{
 char *p=Ø;
 char *s=Ø;
 char *e=Ø;
 p = dlopen(NULL,RTLD_NOW);
 fprintf(fp,"dlopen p=%Ø8X error=%s\n",p,e=dlerror()?e:"NULL");
 s = dlsym(p,"application_xa_registration");
 fprintf(fp,"dlsym s=%Ø8X error=%s\n",s,e=dlerror()?e:"NULL");
 dlclose(p);
 if (s)
 reg_func = (PFN)s;
}

Authentication modifications

Authentication is often be done by putting additional parameters on
the XAOpenString. In the case of DB2, the format of the XAOpenString
is db=dbname,uid=xxx,pwd=yyy.

If the username and password are not in the string then operating
system authentication is assumed and the connection is made with the
authority of the process issuing the xa_open. The Oracle syntax is
different, but has similar capabilities.

The sample switch file is expecting that the XAOpenString passed to
it does not contain a username or password. All authorizations inside
the database will have been set for the application program, but
transaction control functions will be issued by the user-id of the queue
manager, the mqm account. There are several reasons why you might
not want that account to be authorized in the same way as the
application program; it is, in effect, an administrative account in the
database as it is going to carry out management of other people’s
transactions. You might also want to have different user-ids associated
with different queue managers, which is not possible unless you put
that user-id in the XAOpenString.

The sample switch file is coded so that, if the user-id loading and
running the switch is mqm, then a special user-id and password is
added to the XAOpenString; otherwise the string is untouched and

36 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

passed directly to the database. The sample program has got the
special user-id and password written in the source code; a more secure
version would probably use an external configuration file that only the
mqm user could read.

Clearly, this can be extended in a number of ways. For example, you
could have the application program use different user-ids and passwords
that might have to be read from privately-protected configuration
files. Or you could pop-up a window asking for a user-id and
password at run-time. You might like to design your database systems
so that the XAOpenString stored in the qm.ini file can never be used
directly for connection to a database: a separate user-id and password
must always be used.

Dynamic selection of databases

The queue manager must always be able to connect to every database
that it might need to coordinate. But application programs may only
be using one or two of these databases and the user might not even be
authorized to connect to the other databases.

When the queue manager attempts to open a connection to a database
by calling the xa_open function, the switch file now has the opportunity
to ask the application if the connection is really needed. The way I
implemented this was to add a call-back from the switch file to the
application code; because there is no way to add parameters to the load
phase of the switch file, this seemed like a reasonably easy way to do
the job.

An alternative approach that might be suitable for some environments
is to have the list of RMs used by an application in an external
configuration file (or even directly coded in the switch itself).

If the application program has a function called
application_xa_registration, whenever the switch file has its xa_open
function called it will ask the application code whether or not this RM
(and the only readily available identification is from the XAOpenString)
is going to be used by this program during the lifetime of this session
from MQCONN to MQDISC. If the answer is ‘yes’ the xa_open is
passed on to the real function inside the database. If the answer is ‘no’
we return directly to the queue manager and let it think that the
database was opened. The code does remember that the connection
was bypassed, so that it can also bypass the xa_close function later on,

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 37

but that is the only extra piece of processing needed. The call-back
function is also allowed to modify the XAOpenString. My test
program needed to do that in order to add a user-id and password that
is not defined in the qm.ini file.

If a process running with the mqm user-id loads the switch file, the
switch will always try to connect to the database. The main queue
manager processes will need to connect to all databases in order to
manage all transactions and perhaps recover them at start-up time.
There is no simple way in the switch file to tell whether the process
loading it is a queue manager internal process or an application
program; basing the behaviour on the current user-id is a reasonable
test.

Bypassing the connections is only suitable for RMs that support
dynamic XA. If the RM only supports static XA we must not fake the
connection processing as the queue manager will always attempt to
commit transactions on all RMs. If it tries to do that for an RM that has
not seen a started transaction, the RM will report an error that the
queue manager will pass on.

My test program

To test the switch file and demonstrate the functions, I used the sample
program amqsxas0.sqc provided with MQSeries. That sample requires
you to define a database called MQBankDB with a single table called
MQBankT. Full instructions on how to configure and run the sample
are included in the MQSeries Application Programming Guide. I also
created the DB2 sample database used by DB2 installation verification
so that the queue manager could be defined with two XA resources,
as shown in the qm.ini file.

Security was set on the two databases so that my personal user-id
could not connect to MQBankDB. Instead, a new user-id was defined
with a password in DB2. The mqm user-id was also defined to both
databases with appropriate privileges to allow it to manage transactions
for other user-ids. Operating system authentication was not allowed
for the mqm user-id when connecting to the database and a password
was defined for it in DB2.

There were only two modifications made to the IBM-supplied

38 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

amqsxas0.sqc. As mentioned earlier, immediately after the call to
MQBEGIN I added the line:

EXEC SQL SET CONNECTION MQBankDB.

The second modification was to add a function that knows this
application will be using only one of the defined databases. This code
is the dynamic selection call-back invoked from the switch file. On
AIX, in order that this function be accessible from the call-back, add
"–bexpall" to the link step when compiling the program. Exporting the
symbol may not be necessary on other operating systems.

int application_xa_registration(
 int len,
 char *outbuf,
 const char *inbuf)
{
 int rc;
 if (strstr(inbuf,"MQBankDB"))
 {
 strcpy(outbuf,inbuf);
 strcat(outbuf,",uid=dbu1,pwd=dbu1pwd"); /* use this id */
 rc = TRUE;
 }
 else
 rc = FALSE;
 printf("app_xa_reg: rc=%d inbuf \"%s\"\n",rc,inbuf);
 return rc;
}

CONCLUSION

Using MQSeries as a coordinator can be a cost-effective way of
building business transactions that reliably update other resources.
Getting the best out of MQSeries in such configurations can only be
done with an understanding of how MQSeries works. While the
sample switch file does not attempt to implement a production-ready
solution for all systems, I hope it has given some ideas to system
administrators and programmers on how to extend MQSeries
capabilities further into their enterprises.

Mark Taylor
Technical Strategist, IBM Hursley (UK) © IBM

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 39

MQSeries Integrator V2 performance

This article outlines how we first tested the performance of MQSI V2
and explains some of our conclusions. IBM does publish some
benchmark performance figures as a support pack but the information
provided – although useful – is not a substitute for testing with the
actual flows, data, and platforms expected in a given environment.

OBJECTIVES OF OUR STUDY

• Measure MQSI throughput performance using flows similar to
our intended asynchronous application, which updates a DB/2
database.

• Measure MQSI performance with a typical client/server request/
reply scenario (synchronous; with two flows used, one for the
request, one for the reply).

• Suggest the production hardware capacity for MQSI in terms of
TPC-C units.

HARDWARE AND SOFTWARE USED

MQSI V2.0.1 was installed under Windows NT 4 on an IBM Netfinity
6000R with four Intel Pentium III 700 MHz processors and 2 GB of
memory. Three internal SCSI disks (10,000 RPM) were fitted and
configured as separate disks (non-RAID). This machine is rated at
approximately 34,000 TPC-C. MQSeries 5.1 was installed.

We tested the effect of using MQSeries 5.2 as this is meant to increase
the queue manager performance. However, we could not detect any
difference and the reason would appear to be that 5.2 optimizes the
MQ log locking algorithm, and this does not improve performance
until a larger number of broker applications are running.

TESTING METHODS

Two testing techniques were used; the first was a Java program, which
had been developed as a stress-testing tool (a similar program has
been published in MQ Update previously). Running on several PCs,

40 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

this was able to send multiple MQ requests to the MQSI broker,
receive MQ replies, and time the responses.

The second method involved loading an MQSeries queue with several
thousand sample messages and then running them through the MQSI
broker. With both methods, the Windows NT performance monitor
(perfmon) was able to measure the output queue message enqueue
rate, CPU usage, and disk activity levels.

Limitations of the testing

• Performance will depend on the MQSI flow complexity and,
since this can vary almost infinitely, we made broad assumptions
with our sample flows.

• With the request/reply flow we did not include any application
server processing time, but assumed a broker turnaround target of
1.5 seconds. (One flow was used to route the inbound request to
a queue and another flow was used to route the reply from this
queue back to the requestor.)

• Our database accesses were being made to a very small DB2
UDB database (this being the sample database that comes with
UDB).

• We did not have access to real test data so we used messages of
a length estimated to represent the average expected.

• The disks tested were 10,000 RPM disks configured on a single
controller (non-RAID). The performance of other disks could
vary considerably.

OUR REQUIREMENTS FOR THROUGHPUT

• We estimated a requirement throughput of 20 transactions per
second for the asynchronous application. These test messages
were 2K in length.

• We had no specific requirements for request/reply transactions.
Most of these messages would be non-persistent. Our test messages
were 8K in length.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 41

TESTING RESULTS OBTAINED

Various factors affect the throughput, which will ultimately be limited
either by the CPU or disk performance. With persistent messages that
are logged to disk (the MQ logs), the disk performance will normally
be the limiting factor. If database updates are XA coordinated with
MQ transactions, then extra database logging takes place.

XA coordination links the database transaction to the MQseries
transactions in the same unit of work, so that both are either committed
or rolled-back. Using XA coordination had a dramatic effect on
performance, reducing the throughput (in our tests) by about 30%
because of disk logging.

Node complexity (ESQL statements) requires more CPU power as the
complexity increases. Adding more CPUs is an easy way to increase
capacity in this case, assuming the application can be scaled up
without a bottleneck occurring. We collected a large number of test
figures, but publishing them all would be rather confusing. I have
summarized them here (using four MQSI execution groups):

• The asynchronous flow (XA on) sustained a rate of 49 messages
per second. (CPUs 75% used, disks 65% busy.)

• The request/reply flows sustained a rate of 20 messages per
second. (CPUs 40% used, disks 99% busy.)

• A combination of the above sustained a rate of 30 (async) and 14
(r/r). (CPUs 92% used, disks 83% busy.)

ACCEPTABILITY OF THE RESULTS

• The 6000R (with a 34,000 TPC-C rating) processed our
asynchronous throughput comfortably, even with a synchronous
workload overlaid.

• Routing real-time request/replies through a broker will add a
delay overhead to the direct response times, in the order of 700
milliseconds.

RECOMMENDATIONS

• The results suggest a target platform of around 40,000 TPC-C
rating with room for extra CPUs, ideally with fast-write disk
caches (or ESS).

42 © 2001. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

• Capacity would need to be re-checked if additional workloads are
added or the complexity of the flows grows beyond those assumed.

• Tests should be conducted on other platforms if Intel/NT is not
used in production. The performance under Unix might be quite
different.

• The good performance under Windows NT suggests that one
approach to minimize hardware costs would be to use clustered
Intel platforms.

CONCLUSIONS AND AFTERTHOUGHTS

Since we conducted this study we have found that our application
complexity in terms of lines of ESQL and the number of MQSI nodes
in the flows has grown far more than anticipated. Our application is
now more CPU- than disk-constrained, given our use of high-
performance disk sub-systems. Therefore, the ability to scale to more
CPUs is critical and any hardware should be chosen with this in mind.

Version 2.0.2 of MQSI has become available with significant
improvements in performance. We have seen our application perform
50% faster on the new release, and would recommend its use for this
reason alone. There are also ways to optimize the coding of flows and
I will expand on this subject in a future article. MQSI v2 performance
is manageable with careful testing and planning – providing that the
applications are scalable (that is several flows can run well in
parallel).

APPENDIX A: DETAILS OF TESTED MQSI FLOWS

Asynchronous functional flow
This simulated a typical asynchronous flow in terms of processing
complexity, ie number and type of nodes, amount of SQL and database
activity. XA co-ordination was switched on, and commit count was
found to be most effective with a value of one.

• Message size in/out: 2K persistent messages.
• SQL: 110 lines.
• Database: 20 selects: one update, which consisted of an insert

immediately followed by a delete.

© 2001. Reproduction prohibited. Please inform Xephon of any infringement. 43

The flow sequence comprises the following nodes:

• Message in.
• Exception subflow – a generic trycatch flow.
• Filter.
• Conversion to XML (compute).
• Generic translation subflow:

– database lookup
– compute processing
– database update.

• Message out.

Synchronous flow (request/reply)

This simulates a typical synchronous request/reply process and consists
of two flows: one for request, one for reply. XA co-ordination was
switched off.

• Message size in/out: 8K non-persistent messages.
• SQL: 150 lines.
• Database: one select.

The flow sequence comprises the following nodes:

• Request:
– message in
– XML to XML transformation (compute)
– filter
– database lookup
– conversion of XML to MRM COBOL – use of the MQSI

Message Repository
– filter x2
– message out.

• Reply:
– message in
– reset content to use new message set
– conversion of MRM to XML COBOL – use of the MQSI

Message Repository
– filter
– message out.

Peter Toogood (UK) © Xephon

MQ news

IBM has announced Version 1 Release 1 of
its Tivoli Manager for MQSeries Integrator
application integration software, the systems
management software for MQSI.

It monitors and manages the MQSI
infrastructure and helps optimize
availability and response time. It operates as
a management tool that manages MQSI as a
component of overall business systems,
linking to databases, applications, and other
middleware products.

Specific features include availability
management, discovery of MQSeries
Integrator components, configuration
management of MQSeries Integrator and
Tivoli components, performance
management with an MQSeries Integrator
node, and operations management.

New features include support for MQSI
V2.0.1 and V2.0.2, tracking changes to
broker topology, performance monitoring of
message flows with a Tivoli monitoring
node, and availability monitoring of MQSI
components, administration, event filtering,
and automation.

For further information, contact your local
IBM representative.
Web: http://www.software.ibm.com

* * *

Xephon’s annual MQ Update 2001 event
runs 12-13 December at the Radisson SAS
Portman Hotel in London. This two-day
Conference provides a thorough analysis of
recent product developments in the MQ

environment and provides essential pointers
on how to maximize performance within the
enterprise.

For further information contact:
Xephon, 27-35 London Road, Newbury,
Berks, RG14 1JL, UK.
Tel: + 44 (0) 1635 33823
Fax: + 44 (0) 1635 38345
Web:http://www.xephon.com/events

* * *

Sonic Software has recently introduced
SonicMQ 4.0, the next generation of its
messaging software, which is based on the
Java Message Service (JMS) specification.

Enhancements include secure HTTP
support, multi-part message streaming with
guaranteed delivery for any message size,
per-message encryption to ensure maximum
security, and client-side persistence that
guarantees client-to-broker message
delivery and extends client resilience to
network outages.

For further information contact:
Progress Software, 14 Oak Park, Bedford,
MA 01730, USA
Tel: +1 781 280 4000
Fax: +1 781 280 4095
Web: http://www.progress.com

Progress Software, 210 Bath Road, Slough,
Berkshire SL1 3XE, UK
Tel: +44 1753 216300
Fax: +44 1753 216301

* * *

x xephon

	Managing system resources on Unix
	Message processing monitor
	Enhancing MQSeries transaction coordination
	MQSeries Integrator V2 performance
	MQ news

