40

October 2002

In this Issue

M QSeries Publish/Subscribe
Service Pack MAOC

A server cc_)nnection chann€l
security exit

10 Very large queues with WebSphere
MQSeries V5.3

14 A tale of two queues

32 Multiple CKTI trigger monitor
transactions in CICS

37 A better MQSeries batch trigger
monitor

39 WebSphere Financial Network
|ntegrator: technical preview

47 Natural — MQSeries interface
48 MQ news

(o8]

(o)

© Xephon plc 2002

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

MQ Update

Published by

Xephon

27-35 London Road

Newbury

Berkshire RG14 1JL

England

Telephone: 01635 38126

From USA: 01144 1635 38126
Fax: 01635 38345

E-mail: info@xephon.com

North American office
Xephon/QNA

Post Office Box 350100
Westminster CO 80035-0100, USA
Telephone: (303) 410 9344

Fax: (303) 438 0290

Disclaimer

Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in thisjournal giveany warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organi zations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Editor
Madeleine Hudson
E-mail: Madel eineH@xephon.com

Subscriptions and back-issues

A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
£255.00 in the UK; $380.00 in the USA and
Canada; £261.00 in Europe; £267.00 in
Australasia and Japan; and £265.50
elsewhere. In all cases the price includes
postage. Individual issues, starting with the
July 1999 issue, are available separately to
subscribers for £22.50 ($33.75) each
including postage.

Contributions

When Xephon is given copyright, articles
published in MQ Update are paid for at the
rate of £170 ($260) per 1000 wordsand £100
($160) per 100 lines of codefor the first 200
linesof original material. Theremaining code
is paid for at the rate of £50 ($80) per 100
lines. In addition, there is a flat fee of £30
($50) per article. For moreinformation about
contributing an article you can download a
copy of our Notes for Contributors from
www.xephon.com/nfc.

MQ Update on-line

Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mg;
you will need to supply a word from the
printed issue.

© Xephon plc 2002. All rights reserved. None of the text in this publication may be
reproduced, stored in aretrieval system, or transmitted in any form or by any means, without
theprior permission of thecopyright owner. Subscribersarefreeto copy any codereproduced
inthispublicationfor useintheir owninstallations, but may not sell such code or incorporate
it in any commercial product. No part of this publication may be used for any form of
advertising, sales promation, or publicity without the written permission of the publisher.
Copying permits are available from Xephon in the form of pressure-sensitive labels, for
applicationtoindividual copies. A pack of 240 |abelscosts $36 (£24), giving acost per copy
of 15 cents (10 pence). To order, contact Xephon at any of the addresses above.
Printed in England.

2

MQSeries Publish/Subscribe Service Pack MAOC

In typical publish/subscribe implementations there is often aneed for
persistent queues to store publications if the subscribing applications
are not alive. Organizations where applications are subscribers may
typically have not more than 30 subscribers and 100 events. In these
cases, athough software jurisprudence may direct you towards an
established product such as Tibco or MQSI, the MQSeries Publish/
Subscribe service pack provides a no-licence-cost, sturdy publish/
subscribe mechanism. It's aso a good springboard to MQSI.

The MQSeries Publish/Subscribe service pack supports both events
and states. Eventsareindependent of each other whilestate publications
contain information, which is regularly updated. If missed, event
publications cannot be retrieved, while state publications — even if
missed —will be updated in the next publication. State publicationsare
implemented typically through retained publications stored by the
broker. The service pack also supports broker-to-broker networks,
where publications have to be sent across queue managers on the same
or multiple hosts.

For apublish/subscribe mechanismwherethe subscribersare usersthis
servicepack may not providethe performancerequired. Whenusersare
subscribers the number of subscriptionsis typically in the thousands.
But if thenumber of user subscribersislessthan 100it might makegood
business sense to use service pack MAOC: Figure 1 shows a typica
implementation.

THE BROKER

The broker is the engine for any publish/subscribe architecture and it
isinstalledwiththe servicepack. It hasto be started separately whenthe
gqueuemanager isstarted. Eachqueuemanager will haveacorresponding
broker. Publishing and subscribing applications send messages to the
broker in MQRFH format, which contains a NameVa ueString. Using
the NameVal ueString applications can specify the command they want
the broker to perform.

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 3

r-—--—-— ——"-""-"""""""F"""""""""F"""—""—"—""—"— A

I — — I

[Trigger [

| < |

Database | ¢ |
! Event :

i Publisher I

| v |

: ’l Subscribe . :

I Register I

| Broker Publisher |

| Publish |

I I

I I

I I

I] - I

I — I

— I

L o—_ e — e — —_—

\ 4
Subscriber 1 Subscriber 2 Subscriber 3
JMS MQSeries MQSeries
i servei client i
@ = 1= DO
Local Q Remote Q Application Process
Figure 1. A typical architecture where MAOC isinstalled

TOPICS

Topics are events that the publisher will publish and subscribers
subscribe to. They are typically of the form XXX/YYYY/ZZZZ. For
example, astock ticker subscription to Microsoft stock might look like
"STOCK/MSFT". You can use wild card characters to receive one or
more events. So, using the previous example, "STOCK/*" will giveall
stock events while "STOCK/M*" will give al events where the stock
name starts with ‘M.

4 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

PUBLISHER

The EventPublisher will feed the stream queues that are part of the
broker infrastructurein pseudo real-time. The EventPublisher will poll
thequeuetowhichtriggered messagesaresent. It will parsethedataand
identify the topic and put the message on the appropriate stream.

The RegisterPublisher will allow administratorsto register apublisher
beforeit starts publishing events. Thisallowsthe broker to recognizea
stream and pick eventsfrom it to be published. You may chooseto send
al published events to one stream queue.

Register Publisher

A stream queue to which messages are published has to be registered
with the broker. The RegisterPublisher process will send a Register
Publisher command message to the broker’s control queue to indicate
that a process has been defined, which is capable of publishing dataon
one or more specified topics. The RegisterPublisner will use the
following NameValueStrings for the commands:

e MQPSCommand: RegPub.

« MQPSRegOpts: Local.

« MOQPSStreamName: <Passed as parameter to the process>.

« MQPSTopic: <Passed as parameter to the process>.

This process will be used by an administrator to register publishers as
required.

EventPublisher

TheEventPublisher will put messagesintothestream defined abovefor
a particular topic. For each event identified by the trigger the
EventPublisher will collect the required data and identify the topic
name.

Toget repliesback fromthebroker all stream queuesand queues should
be defined by an administrator before the EventPublisher starts
publishing messages.

This process will build the MQRFH header, the NameVaueString

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 5

defined below, and the related data as part of the message. It will put
these messagesin theappropriate stream, depending onthetopic name.
The stream to which the message is being put should have been
registered with the broker, using the RegisterPublisher process.

e MQPSCommand: Publish.

« MQPSTopic: <Set by EventPublisher>.

o MQPSSegNum: <Set by EventPublisher>.

« MQPSTimeStamp: <Set by EventPublisher>.

The queue nameto get repliesfrom the broker or to get update requests
from subscribersdirectly will haveto be defined. Thisshould be set as
theReplyToQintheMQMD. TheReplyToQMgrintheMQMD should
be set to the same as the one on which the broker resides.

SUBSCRIBER
There are three ways of subscribing to published information:

e MQSeries subscribers can subscribe dynamically, by sending a
subscription message to the control queue on the ODS host queue
manager.

e SubscriberswhohaveM QSeriesserver softwareinstalled cansend
a subscribe message through a remote definition of the control
queue.

e Subscriberswho have M QSeriesclient softwareinstalled can send
a subscribe message through a channel to the host queue manager
control queue.

Subscribers build a NameVaueString as below, and send it to the
control queue of the broker to subscribe to topic(s).

e MQPSCommand: RegSub.

« MQPSTopic: <Provided by Subscriber>.

« MQPSStreamName: <Provided by Subscriber>.
« MQPSRegOpts: InclStreamName.

6 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MQSeries Server Subscriber

Thebroker will publisnall eventstowhichthesubscriber hassubscribed
into a stream queue (specified during subscription). Thisqueuewill be
defined as aremote queue to aloca queue on the MQSeries Server at
the remote host. The subscriber should send subscription messagesto
aremotequeuedefinedfor theHost Broker Control queue. Subscription
messages should contain one of the topic names mentioned above and
the stream name.

MQSeries Client Subscriber

M QSeriesclient does not support queue managers. Theclient software
only allows applications to access queues defined as part of an
MQSeries server on a different host. The ODS M QSeries server will
provide alocal queue asaresource for applications which will usethe
M QSeriesclient software. It can pick publicationsfromthislocal queue
if the channel is running.

The subscriber application can access the Host Broker Control queue
if the channel is running, to send subscription messages. Subscription
messages should contain one of the topic names mentioned above and
the stream name.

J2EE applications

J2EE applications residing on application servers such as WebSphere
or WebL ogic can use JMS to subscribe directly to the broker. These
applications can have local stream queues defined on the same host as
the broker; the Java application can pick up messages from theselocal
gueues or the J2EE application can subscribe on-the-fly and receive
events that are of interest.

INTEGRATION WITH OTHER MIDDLEWARE

MQSeries can be easily integrated with other middleware, such as
Tuxedo and Tibco. In these situations you will have application-
specific code, including MQI and API calls. During compilation/build
of the code you may have to set some specific optionsto compile your
code.

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 7

PERFORMANCE

The performance of the broker is proportionate to the number of
subscribers in a single-broker network. The publish/subscribe
architecture should be able to handle up to 128 subscribersfor multiple
topics and still provide reasonable response times.

These performance rates are projected from the MQSeries — Publish/
ubscribe Performance report (see below).

REFERENCES

e Savicepack MAOD: aquick-start guideto the M QSeries Publish/
Subscribe service pack. (http://www-4.ibm.convsoftware/ts/
mgseries/txppacs/mald.html.)

 Service pack MAOC: software and user guide. (http://www-
4.ibm.convsoftware/ts/mgseries/txppacsy/ma0c.html.)

 Performance metrics of service pack MAOC. (http://www-
4.ibm.convsoftware/tsmgseries/txppacs/supportpacs/mp03.pdf.)

Ramnath Cidambi, Engineer
United Airlines (USA) © Xephon 2002

A server connection channel security exit

Channel security exits normally comein pairs—one at each end of the
channel. However, in our organi zation we have asecurity exit that runs
only on the server connection channel (not on the client end). Two
problems in our setup resulted in the development of this exit: an
authentication problem and a concurrent connection problem.

THEAUTHENTICATION PROBLEM

Wehaveseveral hundred Windows M QSeriesclientsconnectingtoone
of two WindowsNT gueue managers, whichin turn communicatewith
gueue managers on other platforms. User authentication is carried out
by an NT domain controller with atrust relationship with the domain
containing the MQSeries servers. The authentication service security

8 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

policy on MQSeriesis set to NTS DsRequired to ensure that the user-
ID being sent to the M QSeries server isthe same user-ID that has been
validated by the domain controller.

However, when the MQSeries client code was at V5.0 authentication
did not happen as we hoped. We found that no user-ID was being sent
in the MQCD structure with the connect request. As a result the
connected client assumed the user-ID and authority of the MQSeries
listener on the queue manager. Being part of the mgm group this user-
ID effectively gave them universal access.

We found that upgrading the clientsto V5.1 resulted in the logged-on
user-1D being sent tothequeuemanager andthe OAM didthenecessary
verification asexpected. However, if no user waslogged ontotheclient
machineablank user-1D was still sent to the server. Also, how werewe
to be sure that al clients were using MQSeries 5.1 (or later) code?

These issues were solved with the first version of this security exit,
which simply checks the user-1D length field in the MQCD structure.
If the length is zero the connect request is rejected by returning
MQXCC_SUPPRESS FUNCTION in the ExitResponse field. An
error messageisal sowrittentoalog filestating why the connectionwas
rejected.

THE CONCURRENT CONNECTION PROBLEM

Some client applicationswerefailing to issue an MQDISC call before
terminating. When thishappensthe | P connectionisnot terminated and
as far as the queue manager is concerned the channel is still active. If
this happensrepeatedly, the number of active channelsmay soon reach
the MaxA ctiveChannels setting. Increasing this parameter is not the
answer because resources on the queue manager are being held
unnecessarily. Wetried to find away of killing a particular instance of
a server connection channel but only managed to stop all channel
occurrences with the same name.

In order to track down the offending applications we included some
codein the channel security exit to run on a connect request and check
the number of concurrent connections aready active for the incoming
|P address. If this exceeds a specified limit the MQCONN request is
rejected and a message is written to the log file.

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 9

REJECTED CONNECTIONS

When the channel security exit regjects a connect request for one of the
abovereasons, MQSerieswritesan error messageto AMQERRO1.LOG
“AMQ9536 Channel ended by anexit”. Thelog messagesgenerated by
the channel security exit haveasimilar format to the explanation of the
AMQ9536 message as well as additional information explaining the
reason for rgjection.

CONCLUSION

It is unlikely that your own requirements will dictate an identical
channel security exit to ours, but perhaps some of theideas can be used.
In particular, the function ConnectionCount shows how to use PCF
messages to invoke the command server —inthiscaseto inquire on the
status of channels. It isinteresting to note that most MQSeriescallsare
supported in channel exits. Comments at the beginning of the Channel
Security Exit program, which can be found at www.xephon.com/
extras/channel security.txt, explain what it does and how to specify
parameters for the exit program. For instructions on how to compile
channel exit programs see the MQSeries | ntercommunication Manual.

Eric Judd, Technical Consultant
T-Systems (South Africa) © Xephon 2002

Very large queues with WebSphere MQSeries V5.3

It isoften said that the best queueisan empty queue, but for thosetimes
whenadqueueisn’t empty thefollowinginformation might proveuseful.

The total amount of datathat can be stored on a queue has notionally
always been controlled by two attributes — the maximum size of a
message (MAXMSGL) and the maximum depth of a queue
(MAXDEPTH). In practice, however, another limit was normally
reached beforeeither of theseformal values. Thisarticleshowshow the
latest version of MQ for thedistributed platforms (WindowsNT, Unix,
Linux, OS/400) has removed that [imit and dramatically extended the
storage available for messages.

10 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Thekey point to understand isthat files on disk in the local filesystem
are used to represent each queue defined to MQ. All queues, including
alias and remote definitions, are stored this way. You can see themin
subdirectories under the /var/mgm/gmgrs/<gmgr>/queues tree on
Unix andin similar placeson other operating systems. Wecall thesethe
gfiles and there is dways a single gfile for each defined queue.

All gfilescontaininformation about an object’ sattributes, whichiswhy
alias and remote queues require files, and those dfiles that represent
local queues (of which transmission queues are a subset) also hold
message data.

One hidden attribute of aqueueisa32-bit number that says how large
thedfileisalowedto get. Thisisthe MaxQFileSize attribute. It cannot
be viewed asan MQSC attribute but it isautomatically set and read by
the queue manager, exactly like external attributes such asthe creation
time of the object. Whenever a message is put to a queue the queue
manager will check that the data does not cause this attribute to be
exceeded; if it does, it will regject the MQPUT.

The earliest version of MQSeries (V2.X) for the distributed platforms
had alimit of 320M B for message data. Thereasonsfor thisnumber are
lost in the mists of time but, essentially, it was derived from the size of
various internal data structures and how many of them could fit into a
particular type of OS400 file. With amaximum file size of 320MB to
holdall persi stent and non-persi stent messages, includingtheirMQMD,
alimit of 640,000 messages per queue was chosen. Thiswasasuitable
limit, matching the avail able space and based on a minimum message
size of approximately 512 bytes, but should be compared to the
definable maximum depth of 999,999,999 messageson aqueueheldon
MQSeries for OS/390.

The OS/390 depth can never actually be reached as queues there also
have a physical architectura limit —in this case 4GB — but that was
chosen asthe M QSC attribute asit isthe sameasmany of themaximum
values for other integer attributes.

Very quickly, anumber of customersfound the 320MB sizerestrictive
and so SupportPac M P01 wasrel eased, which documented how to tune
thequeuemanagerssothat newly created queuescouldreach 1GB. This
was the real limit that the queue manager could cope with at the time;

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 11

to make the dfiles larger required internal code changes.

When MQSeries V5.0 was released the default maximum size of a
gueue was changed to 2GB. Thiswas also the maximum size of afile
on most operating systems of the time and was a reasonably sensible
choice. However, when existing queue managers were upgraded by
running the newer version of the product, the MaxQFileSize for those
existing queueswas not changed. Only new queuesgot thelarger space
for data. There were some internal algorithm changes to manage the
gfiles better, but nothing too radical. The advicein MPO1 about tuning
the dfile sizes now became irrelevant, although other parts of that
SupportPac are still useful.

Over the last few years changes to other parts of MQ have made both
the 640,000 and 2GB limits more of a concern to customers. The
introduction of MQ clustering, with its use of a single transmission
gqueue and the enormous performance boosts started in V5.2 and
extended in V5.3, have combined to mean that it isnow possibleto fill
a2GB queue in well under a minute.

A network failure can mean that applications start to get bad return
codes as a transmission queue fills up before any monitoring tool has
had much of a chance to react to the failure.

With V5.3 these concerns have now been addressed. The only directly
visible change is that queues can now be set to have the same
MAXDEPTH value as MQSeries for OS390. Internally there have
been major changesto the storage of queuesand messages. Thereisstill
aone-to-onemapping of alogica queuetothephysical gfile. However,
the availability of filesystems that support larger files is now near-
universal and the 2GB limit can be discarded while maintaining the
single dfile design. The queue manager has been changed to handle
efficiently gfilesthat get tonearly 2TB insize—that’ sabout 1,000 times
larger than previoudly.

Many interna algorithms have been enhanced to make sure that
messages can still befound quickly and that the disk spaceisreclaimed
inatimely way when it isno longer needed, but none of these changes
can be seen directly.

No migration is needed for queue manager data as far as MQ is
concerned. Unlike the change from V2 to V5 you do not need to

12 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

redefine queuesto reset the MaxQFileSize. Asthiswas never apublic
attribute of aqueue, V5.3 smply re-interpretsthe existing 32-bit value
stored inthedfile by multiplying it by 1024! Thisimmediately getsthe
larger dfilesavailable for all queues. However, amigration step might
still be needed for your filesystems before the larger size can be used.

On some operating systems, such asWindows 2000, largefiles(iefiles
bigger than 2GB) arealwaysavailableinthefilesystem. On most of the
Unix platforms, however, largefilesare only available asanon-default
optiononthefilesystemsand filesystems cannot be modified after their
creation to permit large files.

If you have used the normal design for Unix filesystemsyou will have
al/var/mgmand a/var/mgnvlog filesystem andit islikely that you have
not created these filesystemswith the large file option. To enablelarge
filesyou will haveto take action along the following lines:

o Stop dl queue managers and listeners.
e Unmount the /var/mgmvlog filesystem.

* Create anew filesystem the same size as /var/mgm but using the
options that alow largefiles.

OnAIX usethecrfscommandwiththeoption"-abf=true". (Other
operating systems have ssmilar commands and options.)

* Mountthisnew filesysteminatemporary place, such as/tmp/mgm.

e Copy al data from /var/mgm to /tmp/mgm, being careful to
preserve permissions.

e Unmount /tmp/mgm and /var/mgm.

* Remount the new filesystem in its correct, fina position of /var/
mgm.

 Remount /var/mgmvlog.

* Usetheipcrm commandtoremoveal | PC e ementsowned by the
mgm user as they may be anchored from the original /var/mgm
filesystem.

o Start the queue managers.

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 13

 Délete the origina /var/mgm filesystem (delay this step until
you' re happy that the queue managers are running successfully).

Note that this procedure does not modify thelog directories. Although
thedfileshave changed, thelogfiles till do not exceed 64MB each and
so do not need any change to the filesystem configuration.

If afilesystem does not support large files the queue manager will get
an appropriate return code when trying to extend the gfile. Thiswill be
exactly the same as running out of space on the filesystem when a

message is pu.

Itisstill recommended that you do not alow queuesto get too deep and
do not expect magnificent performance if you do lots of msg-I1D or
correl-ID retrieval on very deep queues. The 999,999,999 depth limit
Isstill anunreachablenumber. However, for thosetimeswhentemporary
storage of lots of messages becomes unavoidable, this new capability
should find afew friends.

Mark E Taylor
MQSeries Technical Srategy
IBM Hursley (UK) © IBM 2002

A tale of two queues

Thereisaphilosophical difference between IBM’s Message Queueing
(MQ) and Oracle' s Advanced Queueing System (AQS) that can cause
some interesting and challenging headaches when you are handling
messages that are being relayed between these two queue types.

MQ assumes that all the message content will be transmitted as a
payload and that a single payload or message will have a set of fixed
attributes that are provided by the queueing system. These attributes
include Enqueue Time, Dequeue Time, Queue Name, Reply To Queue,
Message-1D, Correlation-1D, and others.

The AQS system provides similar attributes for amessage but viewsa
message as a collection of columns in an Oracle table. In fact at the
simplest highlevel, an AQSmessageisarow inatablethat theuser has

14 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

defined. Enqueueing consists of inserting a row and dequeueing
involvesretrieving arow (and deleting it to removeit from the queue).

Intruth, IBM doesthe samething andamessageinMQisactually arow
in a DB2 database. But this fact is well hidden under the MQ
application and the API layer. Thedifferenceisthat MQ predefinesthe
columns in the database and the programmer/user never sees them as
columns. Oraclealowsthe user to definethe columns of the* message’
and provides a collection of Oracle database procedures — called a
package — for enqueueing and dequeueing.

From astructural perspective an MQ messageisabunch of predefined
attribute columns, one of which happensto be alarge column/attribute
for holding the message payload. An AQS message is a bunch of
predefined attributes columns plus a bunch of user-defined attributes.
If a user decided to define a single payload column as the meat of a
messagean A QS messagewould bealmost identical toan M Q message.

Of course it never works out that way. Usually you have to collect a
messagefroman Oracle AQSthat hasnumeroususer-defined attributes
and drop it off in an MQ queue that has only onetruly usable attribute,
the payload.

In this real world example for an insurance company | had to collect
such a message from an AQS queue. The message had one large
payload column but certain key pieces of information were made to
stand out by creating separate columns for them. These columns were
ClaimNo, PolicyNo, and Application-1D; respectively, the insurance
claim number, the policy number, and a unique ID generated by the
initiating application. This ID had to travel up the mainframe for
logging and bereturned by the mainframe so that the response could be
tied to theinitiating request back at the application. Thiswassimilar in
concept to the MQ correlation-ID but had been generated by the
application.

If it weren't for thesethree additional attributesthe message could have
been picked up at AQS, dropped off at MQ, and then moved merrily on
its way.

Therewerevarioussolutionsavail able: keep atemporary tableof these
three attributes, generate a correlation-1D, send the message off to the
MQwiththecorrelation 1D, and then, ontheway back, usethereturning

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 15

correlation-1D to look up the three attributes, put them back into the
outbound Oracle message columnsand oh, yuk.

The best solution was to come up with away of embedding the extra
attributes in the message itself so that when it got placed into the MQ
payload the message carried its extra attributes with it, but these
attributes could still be identified as separate from the payload itself.

XML isadataformat that allows multiple attributes to appear within
aset of data.

Some thought is needed to convert a message and any associated
attributesinto XML butitissurprisingly easier thanyouwouldimagine
thanks to Open Source XML packages such as Xerces (http://
xml.apache.org/).

Assumefor amoment that you have amessagein an Oracle AQStable
asdescribed inListing 1. Whenretrieving it you need to extract each of
the four attributes.

LISTING 1: THE ORIGINAL MESSAGE

Message AAB4A2720023522BAKER CHARLES etc.
ClaimNo 00-4004

PolicyNo = XX345678

AppIld = APP-1212

To pass it on to MQ you need to wrap the message up so that the
attributes travel within the body of the message. The schemel usedis
shown in Listing 2.

LISTING 2: THE MESSAGE WRAPPED IN XML

<The_Wrapped_Message>
<Message>AAPQ4279920023522BAKER CHARLES etc</Message>
<CTaimNo>@@-40@4</ClaimNo>
<PolicyNo>XX345678</PolicyNo>
<AppId>APP-1212</Appld>
</The_Wrapped_Message>

All characters from <The_Wrapped_Message> through to
</The Wrapped Message> are included as the payload in the MQ

message.
At themainframean XML utility or even aCOBOL program using the

16 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

UNSTRING verb can be used to break out the pieces, as shown in
Listing 3.

LISTING 3: USING UNSTRING TO EXTRACT XML DATA

UNSTRING INPUT-XML
DELIMITED BY "<ClaimNo>" OR "</ClaimNo>"
INTO JUNK-1,
CLAIM-NO,
JUNK-2.
UNSTRING INPUT-XML
DELIMITED BY "<Message>" OR "</Message>"
INTO JUNK-1,
THE-MESSAGE,
JUNK-2.

The turnaround from the mainframe creates an XML return value by
reassembling all the tags (Listing 4).

LISTING 4: A COBOL RESPONSE IN XML

MOVE " |AAG42799APPROVED|" TO THE-MESSAGE
STRING
"<The_Wrapped_Message>" DELIMITED BY SIZE
"<Message>" DELIMITED BY SIZE
THE-MESSAGE DELIMITED BY "|"
"</The_Message>" DELIMITED BY SIZE
"<ClaimNo>" DELIMITED BY SIZE
CLAIM-NO DELIMITED BY SPACE
"</ClaimNo>" DELIMITED BY SIZE
* remaining fields
"<.The_Wrapped_Message>" DELIMITED BY SIZE
INTO OUTPUT-XML.
(* and drop it in the appropriate queue.)

The message arriving from MQ when picked up by the middleware
looks like that shown in Listing 5.

LISTING 5: THE RETURN MESSAGE WRAPPED IN XML

<The_Wrapped_Message>
<Message>AA@42799APPROVED</Message>
<CTaimNo>@0-40@4</ClaimNo>
<PolicyNo>XX345678</PolicyNo>
<AppId>APP-1212</Appld>

</The_Wrapped_Message>

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 17

It must be converted to the one shown in Listing 6 to be dropped off at
the AQS.

LISTING 6: THE ORIGINAL MESSAGE UNWRAPPED

Message AAB42799APPROVED
ClaimNo 00-4004

PolicyNo = XX345678

AppId = APP-1212

The key to thisis the middleware piece | had to write that wraps and
unwraps the message.

| implemented minein C++ because of very high volumerequirements
that caused Javato break down. However, if you do not have this high
volumethesimilarity between C++ and Javawould maketheconversion
simple enough.

The base class for the system is a gMsg class that is derived from a
Standard TemplateL ibrary map class. Intheexamplesbelow | havealso
created ssimpleagsand mq objectsfor reading fromand writing to these
two queue types.

A simplified example of how the objects are used in practice is shown
inListing 7. Listing 8 showstheoutput of AQS2M Q on an 80-character
screen.

LISTING 7: SAMPLE CODE USING WRAPPED MESSAGES

// AQS2MQ.cpp

// illustration of using wrapped and unwrapped messages
// to accommodate the extra attributes in an AQS message
#include <iostream>

#include <sstream>

using std::cout;
using std::endl;
using std::stringstream;

#include "aqs.h"
#include "mqg.h"
#include "gMsg.h"
// format into rows
string gMsg_rows(qMsg& q)
{
stringstream strWork;
gMsg::iterator pos;

18 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

for(pos = q.begin(); pos != q.end(); +tpos)

{
striWork << pos->first << "=" << pos->second << endl;
}
return strWork.str();
}
int main(int argc, char* argv[])
{
mq mq_g; // an MQ processing object
ags aqgs_g; // an AQS processing object
gMsg ml,m2; // the actual messages

// connecting to ags and mg goes here

// (not shown)

// pick up a message from AQS

aqs_q.getMsg(ml);

cout << "msg from aqs >>>\n"<< gMsg_rows(ml) << endl;
// wrap the message so that all elements appear in the payload as XM
ml.addWrapper();

cout << "after wrap >>>\n"<< gMsg_rows(ml) << endl;
// output to MQ

mg_q.putMsg(ml);

// wait for the reply

mg_q.getMsg(m2);

cout << "msg from mg >>>\n"<< gMsg_rows(m2) << endl;
// remove the XML wrapper

m2.removeWrapper();

cout << "after unwrap >>>\n"<< gMsg_rows(m2) << endl;
// put result on the AQS queue

aqs_q.putMsg(m2);

// disconnecting from aqs and mq here

// (not shown)

return 0;

LISTING 8: AQS2MQ OUTPUT ON AN 80-CHARACTER SCREEN

msg from aqs >>>

AppId=APP-1212

ClaimNo=00-4004

Message=AA@B4279920020521BARKER CHARLES
PolicyNo=XX345678

after wrap >>>
Message=<The_Wrapped_Message><Appld>APP-1212</Appld><ClaimNo>0@@-4004</
ClaimNo><M

essage>AAQ427992002@521BARKER CHARLES</
Message><PolicyNo>XX345678</PolicyN
0></The_Wrapped_Message>

msg from mq >>>
Message=<The_Wrapped_Message><Message>AAB42799APPROVED</

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement.

L

19

Message><ClaimNo>@0-4004
</ClaimNo><PolicyNo>XX345678</PolicyNo><AppIld>APP-1212</Appld></
The_Wrapped_Message>

after unwrap >>>

AppId=APP-1212

ClaimNo=00-4004

Message=AA@42799APPROVED

PolicyNo=XX345678

In practice the gM sg class would probably be itself a base class from
which specific messages derive, but | am trying to illustrate how to
make AQS and MQ interoperable so | will keep the derivation chain
short.

The gMsg class shown in Listing 9 has two public methods for
wrapping and unwrapping, a couple of private assistance methods for
placing XML tags around a string, and the private ‘isWrapper()’
method for determining whether or not a message has arrived with a

Wrapper.

LISTING 9: QMSG.H

#ifndef _QMSG_H
#define _QMSG_H

#include <map>
using std::map;
#include <string>

using std::string;
// These define keys/tags used for the four parts of the message
extern const string PAYLOAD_KEY;
extern const string CLAIM_NO_KEY;
extern const string POLICY_NO_KEY;
extern const string APP_ID_KEY;
// The Xerces global XMLPlatform Utilities Class
#include <util/PlatformUtils.hpp>
class gMsg : public map<string,string>
{
public:
long addWrapper();
long removeWrapper();
private:
bool isWrapped();
string& tagOpen(string& dest,const string& tag);
string& tagClose(string& dest,const string& tag);
string& tagWrap(string& dest, const string& tag, const string& val);
s
// This class will be used a sentry to ensure that
// XMLPlatformUtils::Terminate() is called when

20 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

// The method using XMLPTatformUtils() completes
class XMLPTatformSetup

{
public:
XMLPTatformSetup() {}
void initialize() {XMLPTatformUtils::Initialize();}
~XMLPTatformSetup() {XMLPlatformUtils::Terminate();}
}.

#endif // _QMSG_H

Starting at thefirst step of Listing Seven, thecall toretrievethemessage
from AQS uses ags g.getMsg(m1l). This method is shown in Listing
10.

The elements or keys of a map can be accessed directly, using the []
operator so the gMsg object can be loaded directly. In Listing ten the
getMsg() method of the ags class calls a lower level getAgsMsg()
method and passesin receiversfor the four piecesof datathat areto be
retrieved from an AQS message.

Assume that upon return from getAgsMsg(), the sMsg, sClaimNo,
sPolicyNo, and sAppld variables have been filled in. Upon return, the
four pieces are used to populate the gM sg object.

| am not providing the details of getAgqsMsg(). The API to the AQS
looks nothing like the MQ API that you might be familiar with and is
fairly complex and beyond the scope of this article.

LISTING 10: THE GETMSG() MEMBER OF AQSM SG

// collect the four part message and place them in the gMsg map
long aqsMsg::getMsg(qMsg& m)

{
string sMsg, sClaimNo, sPolicyNo, sAppld;
// call into the AQS to fill in the 4 strings
getAqsMsg(sMsg,sClaimNo,sPolicyNo, sAppld);
m.clear(); // clear the map before Toading
m[PAYLOAD_KEY] = sMsg;
m[CLAIM_NO_KEY] = sClaimNo;
m[POLICY_NO_KEY] = sPolicyNo;
m[APP_ID_KEY] = sAppld;
return @;

}

The next step in the process callsthe m1.addWrapper() method shown
inListing 11. Thismethod functions by taking each el ement of themap,

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 21

adding a beginning and ending tag, and then appending that to astring
that is being built.

LISTING 11: THE ADDWRAPPER() METHOD

// Adding a wrapper can be done in text mode

// Take each attribute of the message and wrap it in a start and end tag
// using the attribute name as the tag name

// then wrap the whole Tot in a start and end wrapped message tag.

long qMsg::addWrapper()

{
string strWrk, strOutput;

gMsg::iterator pos;

strirk = "";

// for each element in the map

for(pos = begin(); pos != end();++pos)

{

// wrap the value with the element key as a tag
strWrk += tagWrap(strOutput, (pos->first).c_str(),pos->second);

}

strWrk = tagWrap(strOutput,WRAPPED_MESSAGE_KEY,strWrk);
// clear out the current map
(*this).clear();
// and insert the newly built string as the only payload
(*this)[PAYLOAD_KEY] = strWrk;
return @;

}

Since map elements are in alphabetical order the first element to be
located will be Appld. Using the example previoudly illustrated this
element will have a value of APP 1212. This will be wrapped up as
<Appld>APP 1212</Appld>. The next dement is ClaimNo which
becomes <ClaimNo0>00 4004</ClaimNo> and is added to the output
string to become <Appld>APP 1212</Appld><ClaimNo>00 4004</
ClamNo> and so on until all elements are wrapped up as shown here
in Example 1.

<AppId>APP-1212</Appld><ClaimNo>0@-40@4</ClaimNo><Message>
<AA@4279920020521BARKER CHARLES</Message><PolicyNo>XX345678</PolicyNo>

The final step puts a beginning and ending tag around the whole
assembly and then makesthisthe payload of the gM sg object, asshown
here in Example 2:

<The_Wrapped_Message><AppId>APP-1212</Appld><ClaimNo>@@-4004</ClaimNo>
<Message>AA@B427992002@521BARKER CHARLES</Message>

22 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

<PolicyNo>XX345678</PolicyNo></The_Wrapped_Message>

Listing 12 showsthe private tagging methods called by addWrapper().

LISTING 12: METHODS FOR ADDING TAGSTO TEXT

// these methods pass string references in

// and out to avoid building temp strings on the return

// create an open tag

string& gMsg::tagOpen(string& strDest,const string& strTag)

{
strDest = string("<") + string(strTag) + string(">");
return strDest;

}

// create a close tag
string& gMsg::tagClose(string& strDest,const string& strTag)

{
strDest = string("</") + string(strTag) + string(">");
return strDest;

}

// wrap a value with a starting and ending tag
string& gMsg::tagWrap(string& strDest, const string& strTag, const
string& strVal)

{
string strOutputl,strOutput2;

strDest = (tagOpen(strOutputl,strTag) + strVal +
tagClose(strOutput2,strTag));
return strDest;

}

We then return to Listing 7, where the wrapped message is sent off to
anMQ queueusingmg_d.putMsg(m1). That completesone side of the
transaction.

Now we await the return from the mainframe. In this instance the
mainframe returns XML. There is no restriction on XML requiring
children elements to be in aphabetical order so the return message
children can be in any order as long as they are within awell-formed
XML message, as shown here in Example 3:

<The_Wrapped_Message><Message>AAQ42799APPROVED</Message> <ClaimNo>0@-
4004</ClaimNo><PoT1icyNo>XX345678</PolicyNo> <AppId>APP-1212</Appld></
The_Wrapped_Mesage>

The returned message calls its public removeWrapper() method to
unwrap the message into map elements and values.

Before you explore Listing 13 it is important to understand that the

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 23

information in a Document Object Model (DOM) tree is arranged
dightly differently from the information in an XML document.

Inan XML document atag, avalue, and an end tag make up acomplete
unit, eg <ClaimNo>00-4004</ClaimNo>.

In adocument object an additional layer is placed between the tag and
thevaluecalled #text. Thenatural arrangement would beanode named
ClamNowithavalueof 00-4004 but the DOM arrangestheseasanode
named ClamNo with no value. This node has a child named ‘ #text’

with avalue of 00 4004, as shown herein Example 4. (Remember this
when reviewing the code.)

I
[Node: I
| Name = ClaimNo |
I Value = (none) I
I I

I
|Node: I
I Name = #text I
I Value = 00-4090 I
I I

Example five, which is shown in Figure 1, is the complete document
object created by loading the XML message from Example 3 above.

TheremoveWrapper() function startsby checking whether the payload
portion of the messageiswrapped. A wrapped messageisoneinwhich
the first part of the string matches the wrapper tag
<The Wrapped Message>. If there is no match the message is not
wrapped andisreturned without further processing. Listing 13includes
the isWrapped() method.

LISTING 13: REMOVEWRAPPER() AND THE ISWRAPPED() HELPER
METHOD

// removing a wrapper can be done in text mode,
// but it is more instructive and more efficient to
// do it using an XML parser and a DOM tree
long gMsg::removeWrapper()
{
// if the message is unwrapped then we can bail out
if(isWrapped() == false)
return 0;

24 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Node:
Type DOCUMENT
Name #document
Value = (none)

Node:
Type = ENTITY
Name = The_Wrapped_Message
Value = (none)

Node:
Type = ENTITY
Name = Message
Value = (none)

Node:
Type = TEXT
Name = #text
Value = AA@42799APPROVED

Node:
Type ENTITY
Name ClaimNo
Value = (none)

Node:
Type TEXT
Name #text
Value = 00-4004

Node:
Type = ENTITY
Name = PolicyNo
Value = (none)

Node:
Type EXT

Value = XX345678

Node:
Type ENTITY
Name Appld
Value = (none)

Node:
Type = TEXT

Name #text
Value = APP-1212

Figure 1. The document object (Example 5) created from
Example 3.

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement.

// Set up a Sentry so that we

// can exit from anywhere and the sentry will call
// XMLPTatformUtils::Terminate() for us.
XMLPTatformSetup XMLSetup;

// Initialize the Xerces XML system

// through the sentry

// and bailout if that fails

try

{

}
catch (const XMLException& toCatch)

{

XMLSetup.initialize();

cerr << "Error during initialization!" << endl;
return -1;

}

// the parser needs values during set up

DOMParser::ValSchemes valScheme = DOMParser::Val_Never; // non-
validating

bool doNamespaces = false; //
without name spaces

// And an error handler

DOMError dError;

DOM_Node wrapperNode;

DOM_Node pNode;

DOM_Node childNode;

string strNodeValue, strNodeName, strChildNodeName;

// this temporary message is populated while parsing the input

gMsgwrkMsg;

string& wrappedMsg = (*this)[PAYLOAD_KEYT];

// Instantiate the DOM parser.

DOMParser parser;

// and set it up

parser.setValidationScheme(valScheme);

parser.setDoNamespaces(doNamespaces);

// Install the error handler

parser.setErrorHandler(&dError);

// In this named memory buffer, the name is just a convenience

// that the parser can use when printing error messages.

// The parse uses a named memory buffer when it is parsing and

// and XML string in memory.

char* gMemBufId="NamedBuff";

// Set up an input buffer source that uses the characters in the

// wrapped message string

MemBufInputSource xmlBuf((XMLByte*) wrappedMsg.c_str(),

wrappedMsg.size(),
gMemBufId,false);

// Kick off the parse of a wrapped message string

// file. Catch any exceptions that might propagate out of it.

try

{

parser.parse(xmlBuf);

26 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

}
catch (const XMLException& toCatch)

{
DOMString s(toCatch.getMessage());
cerr << "\nError during parsing: '" << gMemBuflId << "'\n"
<< "Exception message is: \n"
<< s.transcode() << "\n" << endl;
return -1;
}

// Extract the DOM tree
DOM_Document doc = parser.getDocument();
// down one Tayer to the highest level wrapper which should be
// the wrapped message tag
wrapperNode = doc.getFirstChild();
if(wrapperNode == NULL)
{
cerr << "Could not find wrapper key" << endl;
return 1;
}
// extract the node name and translate to ASCII
// getNodeName() returns a DOMString (Unicode 16 bit wide characters)
// the DOMString provides a transcode() method to retrieve the value as
// 8 bit characters which are inserted into a string object
strNodeName = (wrapperNode.getNodeName()).transcode();
//error if not the wrapper message
if (strNodeName != WRAPPED_MESSAGE_KEY)
{
cerr << "Could not find wrapper key" << endl;
return 1;
}
// We extract all tagged pieces inside the wrapped message
// Walk the DOM tree using
// getFirstChild() returns the first child node of a parent node
// getSibling() returns the node next to the a child node
for(pNode = wrapperNode.getFirstChild();
pNode != NULL;
pNode = pNode.getNextSibling())

// get the node name
strNodeName = (pNode.getNodeName()).transcode();
// the child of each node here should be a #text node
// get child node and the child nodes name
childNode = pNode.getFirstChild();
strChildNodeName = (childNode.getNodeName()).transcode();
// for the pay load tag
if (strChildNodeName != "#text")
{
cerr << "Contents of " << strNodeName << " tag are not
text." << endl;
return 1;

}

else

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 27

// We use the name of the node as the map key and

// we use the value of the child #text node as the value
strNodeValue = (childNode.getNodeValue()).transcode();
wrkMsg[strNodeName] = strNodeValue;

} }

// clear this message and
(*this).clear();
// store the resulting work message in me
(*this) = wrkMsg;
return 0;
}
// Return true if this is a wrapped message
bool gMsg::isWrapped()

{
string strPayload;
string strWrapped;
// a message is wrapped if the value of the first piece of
// information in (first part of) the payload string
// matches the WRAPPED_MESSAGE_KEY
strPayload = (*this)[PAYLOAD_KEY];
if(strPayload.size() < WRAPPED_MESSAGE_TAG.size())
return false;
strWrapped = strPayload.substr(@,WRAPPED_MESSAGE_TAG.size());
if(strWrapped == WRAPPED_MESSAGE_TAG)
return true;
return false;
}

A call to XMLP atformUtils::Initialize() initializes the Xerces XML
processing environment. This is done inside the XMLPatformSetup
sentry that is used to ensure that XMLPlatformUtils:: Terminate() is
correctly called when remove\Wrapper exits.

Thenext steps set upthe XML parser. Most of Xerces toolsneedto be
instanti ated with options and the parseisno exception. Hereitisset up
without validation or name spaces.

TheXercesDOM parser parsesfromany sourcethat isderivedfromthe
XML base class InputSource. The Xerces package provides a number
of classes derived from this base. These sources include
L ocalFilelnputSource, MemBufInputSource, StdlnlnputSource, and
URLInputSource. They are each set up differently, but ultimately
handed to the parser. It would have been possible to derive a
StringlnputSource and use it directly, but it wasjust as easy to specify
MemBufInputSource that pointed to the buffer inside a string object,
because the parser does not change the buffer.

28 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

The input is parsed and errors are trapped and displayed in detail by
wrapping the Unicode error message into a DOM String and using the
transcode() method to get into a displayable ASCII. The parser error
messages in the Exception object are provided in Unicode and the
DOM String provides this convenient method for trand ating.

Once parsing succeeds, DOM _Document doc = parser.getDocument()
provides the document object, which is the top of the DOM tree.

A DOM treeis made up of nodes (DOM _Node class). The document
object is a speciadlized example of the node class and has al of the
methods of that node class, which include, most importantly:

getNodeName() Retrieve the node name as a DOMString

getNodeValue() Retrieve the node value as a DOMString
getFirstChild() Retrieve the first child as a DOM_Node
getNextSibling() Retrieve the next sibling as a DOM_Node

Listing 14 and Example 6, which follows, show the uses of these key
functions.

LISTING 14: USING THE FOUR KEY METHODS OF A DOM NODE

// Call this function passing the DOM_Document to
// process the entire DOM tree
void treeWalk(DOM_Node n)
{
static int indents = @;
string strindents(indents,' ');
DOM_Node sib;
cout << strlIndents << "node=" << (n.getNodeName()).transcode()
<< " value=" << (n.getNodeValue()).transcode() << endl;
for(sib = n.getFirstChild(); sib != NULL; sib =
sib.getNextSibling())

{
indents += 2;
treeWalk(sib);
indents -= 2;
}

}

Example Six is the output of processing the document we have been
using in this article using the treeWalk function.

node=#document value=
node=The_Wrapped_Message value=
node=Message value=
node=#text value=AA@42799APPROVED
node=ClaimNo value=

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 29

node=#Htext value=00-4004
node=PolicyNo value=

node=#Htext value=XX345678
node=AppId value=

node=#text value=APP-1212

Review Figure 1 — the Document Object — and you will see that the
DOM _Document is the top node. The first child of this special node
must be The Wrapped Message node if this process is to work
correctly, so the method extracts the child of the document node and
verifiesthat anodeexistsand that itisnamed The Wrapped Message.
If elther test fails we abort with an error.

The four elements that we want are all children of
The Wrapped Message node and, of course, siblings of each other.

The process of walking through these is handled with a for loop of
for(pNode = wrapperNode.getFirstChild(); pNode!= NULL ;pNode =
pNode.getNextSibling()) usingthegetFirstChild() and getNextSibling()
methods to walk the tree.

Inside the loop atest is made to ensure that the payload is #text.

POTENTIAL PROBLEMS

In practicethere are several potential problem areasand they arenot all
discussed inthisarticle. I have handled many of them but the key ones
to be aware of are detailed below.

If theinitial messageisitself XML thenthevalue of the<Message> tag
will not show up astext. An XML messagethat hasbeenwrapped using
thismethod isjust alarger XML document. Thetagsand text valuesin
the initial message become DOM nodes within the document and the
<Message> nodewill not have a#text child; consequently therewill be
no value in that #text node. To extract such values it is necessary to
create an XML writer or formatter that takes all nodes below the
<Message>nodeandformatsthembackintoXML. TheformatAsXML()
method would haveto bewritten using thetool s provided inthe Xerces
package. Listing 15 shows what that might look like.

LISTING 15: HANDLING A <MESSAGE> THAT ISXML RATHER THAN
H#TEXT

for(pNode = wrapperNode.getFirstChild();

30 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

pNode != NULL;
pNode = pNode.getNextSibling())

{
// get the node name

strNodeName = (pNode.getNodeName()).transcode();

// get child node and child node name

childNode = pNode.getFirstChild();

strChildNodeName = (childNode.getNodeName()).transcode();

// for the pay load tag

if ((strNodeName == PAYLOAD_KEY) && (strChildNodeName != "#text"))

// we create XML from the child

// and use it as the payload

string ss = formatAsXML(childNode);
wrkMsg[PAYLOAD_KEY] = ss.str();

// we use the value of the #text node as the value
strNodeValue = (childNode.getNodeValue()).transcode();
wrkMsg[strNodeName] = strNodeValue;

}

The next big concern is that the mainframe does not usually return
XML. The output from the mainframeis more likely to be aflat string
of bytes containing all the information that is to be returned to the
application. Example 7 shows a flat record returned from a COBOL
application.

AP42799APPROVEDOD-4004XX345678APP-1212

In thisexample bytes 1 to 15 form the message, 16 to 22 the ClaimNo,
23 to 30 the PolicyNo, and 31 to 38 the Appld.

We have just stepped off the edge here into the subject of data
transformation. You can write amessage-specific handling programme
for this message or apply amore genera approach. | ended up writing
ageneric datatrand ation packagethat wasscript-configurableand very
fast and that did most of the functions of the MQ Series Integrator. But
that is perhaps a subject for another article.

ONE FINAL NOTE ON XML PACKAGES

| have used both the Xerces package for XML/DOM processing and
Microsoft' SMSXML package. If you are so unlucky asto beforced to
use the MSXML package you can use the same approach, but getting

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 31

there is much more tedious and error prone. The MSXML packageis
designed to be used asa COM object. Within the framework of COM
it does a pretty good job. When used directly from C/C++ it does not
automati cally freeall ocated resourcesunlessyou usevariousmechanisms
that slow thepackagedown. Soif youwant speed you spendal ot of time
hunting for memory leaks.

| recommend the X erces package. It workswell in C/C++, Javacan be
compiled on a Windows environment, and it has a COM wrapper for
the Visual Basic and script users. IBM’s XML parser XML4C isbased
on the Xerces package so it should be as easy to use.

Mo Budlong (Mobudlong@aol.com), Middleware Integration Soecialist
King Computer Services (USA) © Mo Budlong 2002

Multiple CKTI trigger monitor transactions in CICS

The IBM-supplied MQSeries CICS adapter and CKTI trigger monitor
enables the triggering of CICS transactions when messages arrive on
gqueues. In most cases one CKTI trigger monitor and the proper
initqueue are sufficient for asingle CICS system for triggering.

However, there are instances — when using shared queues for example
—whereadditional CKTI transactionswithinthesame CICSsystemare
required. Figure 1 illustrates a possible scenario.

MQA and MQB are members of a queue-sharing group running on
different MVS images. CICSA and CICSB are connected to MQA,
CICSC is connected to MQB. Shared queue SQ1 uses INITQL1 for
triggering and is processed by CICSA and CICSC,; shared queue SQ2
uses INITQ2 for triggering and is processed by CICSB and CICSC.

The CKTI transactions of CICSA and CICSC havetolistento INITQ1
and CKTI of CICSB and CICSC haveto listento INITQ2, so CICSC
needs two CKTI because it has to listen to two different initqueues.

The initqueue has to be of type QLOCAL; therefore, it isnot possible
to use QALIAS definitions to point to a single initqueue.

Theinitqueuescan also bedefined asshared queuesbut thisisirrelevant

32 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

MVSA MVSB

Coupling Facility
MQA MQB
INITQ1 . A S INITQ1
T T
_— riggering/ 22 \ Triggering
INITQ2 SQ2 INITQ2
_—
| I / \ =

v
CICSA

CICSC

CICSB

Figure 1. Implementation requiring additional CKTI
transactions

and does not remove the requirement for two CKTI transactions in
CICSC (check with Concepts and Planing Guide, Chapter 2, Shared
gueues and queue-sharing groups).

How to deal with multiple CKTI transactionsin asingle CICS system
is described in the System Administration Guidein the chapter entitled
Operating the CICS Adapter.

Your reason for multiple CKTI may differ from the shared-queue
example. No matter why, if multiple CKTI transactions are required
there are two problems that have to be solved:

« Thetransaction usedto start the CKTI trigger monitor transactions
has to be a terminal-oriented task.

e Thereisno automatic CKTI restart.

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 33

STARTING THE CKTI TRIGGER MONITOR TRANSACTIONS

TheCKTI-startingtransactionmust runonaterminal (start transaction()
userid() isnot an option). If done manually, CKTI will be assigned the
starter’suser-1D, and, therefore, all started applicationtransactionswill
run with this user-1D. This may result in security problems.

To solve this issue two transactions/programs and a special terminal
definition are needed. Transaction one, whichisvery small, isrequired
to start transaction two on aterminal (console) that hasthe proper user-
ID defined. Transaction two issues the CKQC STARTCKTI
commands. The started CKTI transactions will then get the termina
user-I1D assigned.

Transaction one can be started manually, or the related program can be
used in CICS PLTPI to launch the CKTI-starter two at CICS start-up
time.

In this example the terminal name is CNCK (typeterm, using device
console user-ID CICSDFLT), STC1 transaction (program STCKTI1)
starts transaction STC2 (program STCKTI2) on terminal CNCK.

STCKTI2readsanamelist namedsysid.INITQ.NAMELIST andissues
the CKQC STARTCKTI command for every initqueue to start the
proper CKTI transaction.

NO AUTOMATIC CKTI RESTART

If MQ is stopped and the adapter is in a pending state all CKTI
transactions are stopped. If MQ isrestarted and the adapter reconnects
then only the ‘default’ CKTI isrestarted, which isthe CKTI that was
started automatically when the adapter becameactivethefirsttime. The
CICS adapter does not restart all other previous running CKTI
transactions.

Instead of using automation tools to create a restart procedure it is
possible to make MQSeries restart these CKTI transactions by using
triggering.

When the CICS Adapter is started and the MQSeries connection is
established the ‘default’” CKTI is started, which opens the initqueue,
MQSeries now checks all QLOCAL to see if this queue is used as
initqueue and, if it is, whether the trigger conditions match; if they do

34 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

atrigger messageis created for that specific local queue.

Thismechanism can be used to trigger transaction STC1 within CICS.
STCLlwill start STC2 onterminal CNCK and STC2will start (or restart)
the CKTI transactions.

This solution provides a QLOCAL named sysid.INITQ.CONTROL
with the proper trigger attributes and a persistent message to make
MQSeries create the trigger at initqueue open time.

CONCLUSION

Theadvantageof thissolutionisthat, at any time, all CKTI transactions
will berestarted automatically whenthe Cl CSadapter startsor reconnects
to MQSeries.

Besides that, if a manual restart is required it can be achieved by
triggering the control queue (eg alter no trigger/alter trigger) that starts
transaction STC1, or by starting the transaction STC1 manually.

All CKTI transactions will run with the user-ID defined in terminal
CNCK.

To add an initqueueto arunning CICS system just add the namein the
sysSid.INITQ.NAMELIST and trigger the sysid.INITQ.CONTROL
queue. Thiswill asotry to restart already running CKTI transactions;
thiswill only resultinaCSQC383D (another CKTI aready running for
that INITQ) console message, but no error.

To remove an initqueue just remove the name from the
sysid.INITQ.NAMELIST. Wait for CICS restart or stop the proper
CKTI manually by using the CKQC transaction.

Some organizations do not like the idea of having these kinds of
‘control-queues and ‘control messages within MQSeries because
M QSeries should be used for transportation only (and not be misused
as a database or for operational purposes).

In that case STC1 and STC2 transactions may still be used to start the
CKTI transactionsbut thestart of STC1 hasto bedoneinadifferent way
(eg by an automation tool that checks for proper adapter console

messages).

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 35

SETTING UP

Check object names and adapt to your naming conventionsif required.
Of course attributeslike storageclasses or typeterms may differ inyour
system. Do not forget to check security definitions.

If your CICSsystemsaredesigned to runon different MV Simagesand
if the appropriate M QSeries queue managers are members of a queue
sharing group then the MQ objects sysid.INITQ,
sysSId.INITQ.NAMELIST, sysid.INITQ.CONTROL, and all other
initqueues used to trigger applications should be defined with
DISP(GROUP) so that they are the same on all queue managers.

MQSERIESDEFINITIONS

 DefineQLOCAL(sysid.INITQ), whichwill be used asthe default
initqueue when the CICS adapter is started.

* DefineQLOCAL (sysd.INITQ.CONTROL),whichwill beusedto
trigger transaction STC1 when the CICS adapter is started and
CKTI has become active. Use TRIGGER, TRIGTY PE(FIRST),
INITQ(sysd.INITQ), PROCESS(STC1), DEFPSIST(YES).

e Put a persstent message to sysSid.INITQ.CONTROL. This is
requiredtofulfil all trigger conditions. If themessageisnot present
STC1 will not betriggered. If you use DISP(GROUP) apersistent
message has to be put to every instance of the queue.

- Define PROCESS(STC1), APPLTYPE(CICS), and
APPLICID(STCL).

 Define NAMELIST(sysid.INITQS.NAMELIST), holding the
names of the initqueues used to trigger applications, eg
NAMES(APPOLINITQ"APPO2.INITQ". Of coursethesehaveto
be defined too, perhaps as group entries.

e Check that the triggered application queues do not refer to
sysid.INITQ but to one of the application initqueues specified in
the namelist. Otherwise you may runinto security problemswhen
restarting the default CKTI manually.

36 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

CICSDEFINITIONS

Compileandlink STCKTI1and STCKTI2 programsand placethe
load modulesinto CICS DFHRPL.

Definetransaction STCL (program STCKTI1) and STC2 (program
STCKTI2) to CICS.

Define terminal CNCK to CICS using a TYPETERM that has
devicer CONSOLE defined, NETNAME(CNCK),
USERID(CICSDFLT), or use whatever exists or fits into your
system.

Specify sysd.INITQintheCICSINITRPARM for theCICSAdapter
and default CKTI trigger monitor.

Install al definitions into the CICS system (or perform a cold

restart).
Your CICSlog after restart should show something similar to this:

+DFHSI84341 A@1CW781 Control returned from PLT programs during the ...

+DFHSI1517 A@1CW781 Control 1is being given to CICS.

+START-CKTI PROGRAM STARTED

+ ISSUE CKQC STARTCKTI FOR INITQ APP@1.INITQ

+CSQC3861 A@PICW781 CSQCSSQ STARTCKTI initiated from TERMID=CNCK
TRANID=STC2

USERID=CICSDFLT and 1is accepted

+ ISSUE CKQC STARTCKTI FOR INITQ APP@2.INITQ

+CSQC3861 A@1CW781 CSQCSSQ STARTCKTI initiated from TERMID=CNCK
TRANID=STC2

USERID=CICSDFLT and 1is accepted

+00000002 CKTI START COMMANDS ISSUED

+START-CKTI NORMAL COMPLETION

Sefan Raabe (stefan.raabe@t-online.de)

| ndependent Consultant (Ger many) © Xephon 2002

A better MQSeries batch trigger monitor

At my company we have discovered a need to trigger batch jobs
from MQSeries queues. Through support pack MA12 IBM supplies
what it calls a sample batch trigger monitor. This program runs as a
started task and waits for atrigger message on an initiation queue and

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 37

thentriggersajob pointedtoby aDD cardinitsown JCL. Theprogram
as implemented can only start one job for each batch trigger monitor
that isrunning. | found thisto be a bit limiting so | set out to design a
more versatile replacement. What | came up with works as follows,

My monitor runs as a started task and awaits a trigger message on a
single initiation queue, asdoes IBM’s, but | do not rely on aDD card
to get the JOB card JCL to submit to the internal reader. Instead, |
decided to use the trigger message itself to supply the JCL.

Todothisyoufirst defineaQLOCAL astrigger withitsinitiation queue
as the queue that the trigger monitor is monitoring. You then define a
PROCESSthat hasthe JOB JCL codedintheAPPLICID,ENVRDATA,
andthe USERDATA fields. The APPLICID field allows 256 bytesand
the ENVRDATA and USERDATA fields allow for 128 bytes each. |
break thesefieldsupinto 64-byterecordssoyou cancodeeight different
JCL cards that this program will deliver to the internal reader. That
should be enough to start most jobs.

Using thismethod you can define asmany triggered QLOCALsasyou
havejobsyouwant to start and point themall toasingleinitiation queue
that this program is watching. With all the JCL provided in the
PROCESS definition no DD cards are needed in the trigger monitor
started task and no modificationsare needed inthe program whenanew
job needs to be started.

PROGRAM LOGIC

When the trigger monitor is started it first reads the Parm input to
determine the name of theinitiation queueto listen on and the name of
the queue manager to connect to. |t then connectsto the queue manager
and opens the initiation queue. While it is doing this it is putting out
little informational messages to the SY SPRINT DD.

The program then goes into a GET wait on the initiation queue
until it is awakened by a trigger message. When a trigger message
arrives the monitor wakes up and parses the message for the JCL it is
to submit to theinternal reader. After doing thisit then goes back into
a GET wait on the initiation queue.

38 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Stopping thetrigger monitor

To stop this trigger monitor you must put a message on the initiation
gueue which is of type REPORT and feedback of MQFB-QUIT.
The sample program, CKTIEND, which is part of the MA12 support
pac, can be used to generatethismessage. | haveincluded thesourcefor
thisprogram but you can also download it fromthe| BM Web siteif you
find that easier. JCL to run CKTIEND follows the program source.

The batch trigger monitor program source can be found on the Web at
www.xephon.com/extras/batchtrigger.txt.

Bruce Borchardt, OS390 Systems Coordinator
Kohls Department Stores (USA) © Xephon 2002

WebSphere Financial Network Integrator: technical
preview

INTRODUCTION

Early this year IBM announced a preview of WebSphere Financial
Network Integrator (WebSphereFNI). Thisisaproduct for thefinancial
market and consists of a messaging hub or base, an extension for
accessing the SWIFT financia network, and an extension for trusted e-
payments. Both extensions are implemented on top of WebSphere
MQSeries Integrator (MQI) as message processing middleware. They
both share a common customization, configuration, and security
model, and therefore useacommon set of subflowsand plug-ins. These
common functions are available separately in the messaging hub —the
WebSphereFNI baseproduct. Eventhoughtheextensionsarepositioned
in the financial market the common functions are al so useful for other
exploiters of MQI.

This article concentrates on the WebSphere FNI base product and
provides an overview of its concepts and functionality.

TERMINOLOGY
To understand WebSphere FNI you need to know some new termsthat

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 39

were introduced with the product and the ways in which they relateto
MQI and other terminology.

All messageprocessingfunctionsin WebSphereFNI arecalled services.
A service can be implemented as an MQI message flow or subflow or
both. A serviceimplemented asamessageflow can beaccessed by non-
MQI programs using WebSphere M essage Queueing (M Q) messages.
A serviceimplemented asasubflow can beembedded by any WebSphere
FNI-enabled message flow just like any MQI delivered primitive.

In addition to message flows WebSphere FNI supports services
implemented asnormal WebSphere M Q message processing programs,
but this will not be described in this article.

Figure lillustratesthe servicesand server inaWebSphere FNI instance.

Services can be provided either by WebSphere FNI itself or devel oped
with WebSphere FNI functionality. A service does not only require a
message processing implementation; usually it also requires a set of
resourcesor resourcedefinitions, egWebSphereM Q queuesor database
tables or their equivalent. The naming of such resources must be
consistent with their referencein themessageflow. Typically, you must
transfer resources from a development environment to some test
environments and to the production environment. These environments
usually have different naming standards or use different resource
managers, eg databases.

Server 1 Server 2
% Service 1 Service 1
— Service 2
Service 4
E Service 3
Figure 1. WebSohere FNI instance

40 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Each servicerunsinaWebSphere FNI server, whichisimplemented on
an MQI broker. Asshownwith Service 1in Figure 1, aservicecanrun
on multiple servers for availability or throughput reasons. All servers
that belong together form a WebSphere FNI instance. Thisinstanceis
maintained by one MQI broker domain (one MQI Configuration
Manager). You can have as many instances as you like. MQI itself
provides a graphical tool, the Control Centre, to maintain this set of
brokerswith its message flows. They can also be administered as a set
for the publish/subscribe functionality. In addition, WebSphere FNI
providesacomponent called WebSphereFNI Customi zationtomaintain
the message flows and their resources in a consistent manne.

WEBSPHERE FNI CUSTOMIZATION

The WebSphere FNI Customi zation program allowsyou to create your
Instance, tointroduceWebSphereFNI server, andtodefineorgani zational
units (OUs). In addition, it lets you import service bundles. A service
bundleisaset of servicesandtheir rel ated resources. Thecustomization
program does not handle single services. Many services, a least in the
WebSphere FNI extensions, share resources with other services.
Examplesof sharedresourcesincludeastatustableor anerror processing
queue.

A message flow usually references externa resources. Bringing this
messageflow toanew environment, say fromadevel opment environment
to a test environment, usualy requires adaptations to the resource
definitionsand themessageflow. Resource definitionsin devel opment,
test, and production environmentsat most customer siteshavedifferent
naming conventions, eg different high-level qualifiers. This hasto be
reflected in the message flow aso. Adapting a message flow and the
resource definitionsto anew environment isvery time-consuming and
error-prone. Thisisespecially trueif you provide your messageflow as
part of aserviceoffering, solution, or product. Inthiscaseyoumust rely
onyour customer to perform the adaptati onscorrectly. Maintaining and
servicing such adapted message flows and resource definitions can be
a nightmare.

To solve the problem WebSphere FNI collects all the necessary
information about the instance and its servers during customization.
When loading a service bundle to a new server in a new instance the
customization program automatically adapts the resource definitions

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 41

Customization data

Personalized
message flow

Message flow template

WebSphere FNI
customization

Personalized

Resource definition template resource definition

Figure 2. WebSpohere FNI customization process

and the message flow according to the collected information. This
process is shown in Figure 2, where the imported message flow and
resource definition are referenced as templates because they will be
enriched with information fed into the customization program as
customization data. As a result of the customization process you get
personalized message flows and personalized resource definitions,
which you can deploy to your resource managers.

The personalized message flow has to be imported into the Control
Centre that manages the MQI domain in which the WebSphere FNI
instanceresides. Thismessage flow can then be assigned and deployed
to the broker running the WebSphere FNI server. It isasimilar process
for personalized resource definitions, eg a WebSphere MQ queue
definition has to be processed with the WebSphere MQ program
runmgsc on distributed platformsfor the queue manager that isused for
the broker. With this process you get message flowsthat are consistent
with the resource definitions required to run the message flow.

Service bundles are used by WebSphere FNI to adapt WebSphere FNI
servicesto the customer environment. But they can also be devel oped
by anyone else viaa simple process.

An intermediate object in the customization is an organization unit
(OU). AnOU isalogical construct used to restrict accessto resources.
It can be used to represent a department in an enterprise, an entire
company, or any unit that, from aresource access point of view, isto be

42 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

Organizational unit 1 Organizational unit 2

Configuration object 1 Configuration object

Attribute 1 = value 1 Attribute 1 = value 1
WebSphere FNI Attribute 2 = value 2 Attribute 2 = value 5
configuration type p>

Pt

Attribute 1 | _ _ _ _
Attribute 2 ——_ Configuration object 2 Configuration object 3

\ \
Attribute 1 = value 3 Attribute 1 = value 6
Attribute 2 = value 4 Attribute 2 = value 7

Figure 3. WebSohere FNI configuration types and
configuration objects

IH

considered distinct from other units. One WebSphere FNI instance can
handlerequestsfor any number of OUs. Several OUscansharethesame
implementation of aservice, iethey can use the same message flow or
each can have its own implementations of a service. WebSphere FNI
usesaspecia OU called SY SOU for itsadministrationand configuration
services.

WEBSPHERE FNI CONFIGURATION

If amessageflow should be shared by different OUsthat need different
resources, eg OU-specificdestination queuesor OU-specific databases,
static attributes as supported with WebSphere FNI customization
would lead to a set of very similar message flows. To avoid this
WebSphere FNI offers you dynamic attributes with a WebSphere FNI
configuration service.

With the configuration service you can define configuration types and
configuration objects, as shown in Figure 3. A configuration typeisa
definition with a name and a collection of attribute names. The
configurationtypeisdefined for thewholeinstance. For aconfiguration
type you can define configuration objects and assign values to each
attributeof theobj ect. Thiscanbedonefor each OU. Theseconfiguration

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 43

objects can then be fed into message flow processing and be accessed
with the usual MQI compute or filter nodes, for example.

The configuration service is implemented as a message flow that can
process a set of commands. To access this message flow WebSphere
FNI providestheWebSphere FNI Command Linelnterface(CLI). This
program formats user input, sends it as a WebSphere FNI request
message to the configuration message flow, and displays the results.

With the configuration service you have the option to set up dua
authorization. Dual authorization meansthat achangeto configuration
definitions done by one administrator becomes active only after it is
approved by another administrator. Such approval processes are often
required by financia ingtitutions. Dual authorization is enabled by
default but can be switched on or off using the configuration service.

WEBSPHERE FNI SECURITY

All services process messages. Each message has a user-1D associated
with it. For an application thisis the user-1D of the person using the
program. In most casesthe use of the serviceiseither restricted to some
people or amessageisonly alowed to be processed by auser if certain
criteria are met, eg the addressee is alowed for this person. You can
protect the whole service by protecting its input queue using externa
security managers, eg RACF on z/OS. For further security WebSphere
FNI provides the WebSphere FNI Security service.

WebSphere FNI provides a service that lets you create and maintain
security definitions. Like the configuration service, this service is
accessedviatheCLI. TheWebSphere FNI security model comprisesthe
following:

e Accessrights, which define the operations that can be performed
on configuration types. Customers can definewhich operationson
a specific configuration type can be protected. The access right
definitions are carried out for a WebSphere FNI instance.

 Roles. A roleisaset of accessrightsthat are required to perform
a specific task. Roles are independent of OUs and they can be
defined by customers. WebSphere FNI a ready hassomepredefined
roles for configuration and security administration.

44 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

e Usars. Usears of WebSphere FNI are those user-IDs that are
transported by WebSphereM Qinthemessagedescriptor (MQMD).
Users can be assigned to roles in an OU. A user can exercise
different rolesin an OU or the samerole in different OUs.

In aservice message flow you can check whether amessageisallowed
to be processed by the message flow. This check is done against
WebSphere FNI security definitions.

Aswith configuration, dual authorization can also be implemented for
security definitions.

WEBSPHERE FNI FUNCTIONS

In addition to the configuration and security services WebSphere FNI
provides a set of services that can be used in message flows. These
servicesareimplemented asM QI subflows. Examplesof thesesubflows
are detailed below.

» Configuration Provider. The Configuration Provider subflow
retrieves configuration information provided by the WebSphere
FNI configuration service. This subflow enriches the message
currently being processed with this information. This way, the
informationisavailableto subsequent nodes. Thesenodesthencan
use the information to make decisions or to use the values as
resource names. A decision in amessage flow could be whether a
specific operation, eg auditing, should be performed for the OU.
When using the information as a resource name the values could
represent a queue name for an MQOutput node, a database or
database table name, or any other resource you need.

e Access Control. The Access Control subflow checks whether the
user-ID referenced in the MQMD is alowed to perform an
operation. This check is done against the definitions made using
the WebSphere FNI Security service.

* Message auditing. This subflow writes a part of a message to a
WebSphere FNI audit database. The audit datais separate for each
OU so that an administrator for the OU can view only those audit
records written by its own services,

o Timer. WebSphere FNI provides a timer service for processing

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 45

timer events. Thisserviceisimplemented in a set of subflowsand
amessageflow. A timer event canbedefined, updated, or cancelled,
using the appropriate subflow.

A WebSphere FNI timer message flow regularly checks timer
eventsand generates\WebSphere FNI servicerequest messagesfor
expired events.

Thiskind of timer isuseful for timer eventsthat aretypically longer
than several minutes and where the probability that the time-out
occursislow.

 \Warehouse. The WebSphere FNI warehouse subflow is more
sophisticated than the warehouse function provided with MQI.
ThewarehouseentrieswrittenusingtheWebSphereFNI warehouse
subflow can be used for customer-defined queries based on fields

in the message body.

Some of the functions provided as subflows are also available as
services that can be accessed using WebSphere MQ messages.

Internally, WebSphere FNI uses additional services that are not
disclosed in the first release. One of these services is an event-
emitting service. The WebSphere FNI events emitted by this
service can be monitored centrally using a monitoring program
provided by WebSphere FNI.

WEBSPHERE FNI PROGRAMMING MODEL

Accessing WebSphere FNI servicesissmple. Servicesimplemented as
message flows and that are accessible as WebSphere MQ messages
have to use standard WebSphere M Q messages with aWebSphere MQ
request and format header version 2 (RFH2). Inthisheader WebSphere
FNI requires a specific folder; the use of such folders is a standard
technique when creating MQI messages.

Some of the WebSphere FNI subflows also require the information
containedintheWebSphere FNI-specificfolder of theRFH2. Othersdo
not. Those that do not can be controlled using usual MQI propertiesif
required.

46 © 2002. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (303) 410 9344, fax (303) 438 0290.

SUMMARY

WebSphereFNI isageneral infrastructurebasedonMQI. It extendsthis
product so that you can base your service offering, solutions, or
products on it. WebSphere FNI lets you adapt message flows and
resource definitions required by these message flows to a customer
environment and provides a configuration and security model that
extends MQI functionality.

Michadl Groetzner
IBM (Germany) © IBM 2002

Natural — MQSeries interface

Information resources are generally managed by key enterprise
applications that have been designed and developed using software
products from many different vendors, eg IBM and Software AG. In
order to integrate these information resourcesit is necessary to ensure
that these heterogeneous applications can interoperate seamlessy
across the enterprise.

The code provided (which can be found at www.xephon.com/extras/
natural.zip) illustrates how aninterface can be built and used to support
such seamlessinteroperation. Specifically, thecodeillustrates how any
application built using Software A G products caninteroperate with the
rest of the world by using MQSeries as the messaging mechanism.

Developers experienced with either Software AG’s Natural or IBM’s
Websphere MQ — or both — can use this code as a starting point for
building a more functionally rich interface between applications built
using Software AG’s product set and those from other vendors.

Thecodesuppliedillustratesaninterfacethat will work onthe Microsoft
Windows platform. However, IBM provides additional support packs
on its Web site (http: //mww-3.ibm.conysoftware/tsymagseries/txppacs),
detailing interfaces that will work on the mainframe and on Unix
platformsaswell. Thesupport pack that providesdetailsof theinterface
for IBM’s mainframe platform and Unix platforms is md07.

Mohammed Ajab, Martin Howson, Michael Fabianski
IBM (UK) © IBM 2002

© 2002. Reproduction prohibited. Pleaseinform X ephon of any infringement. 47

MQ news

CommerceQuest hasannouncedVersion7 of
its EnableNet Data Integrator, a bulk data/
file movement and integration application
that exploits WebSphereMQ. It provides
integration with CommerceQuest’'s
integration software, aWeb-based interface,
and the addition of a scripting integration
language.

Product improvements include a process-
centric, component-based, service-oriented
architecture, common scripting language
across operating systems, role-based
command and control centre access control,
and XML-based callable interfaces. It is
WebSphere cluster-enabled and exploitsthe
latest WebSphereM Q capabilities.

Version 7.1, planned for Q4, will feature
expanded platform support for thel BM 4690
point-of-sale system and additional Unix
platforms.

Thesoftwarewill al soallow customizabl efile-
to-messageand message-to-filecomponentsto
facilitate rapid integration with
WebSphereM Q-enabled applications,
including WebSphereM Q I ntegrator.

For more information contact:
CommerceQuest, 2202 N Westshore Blvd,
Tampa, FL, 33607, USA.

Tel: +1 813 639 6300.

Fax: +1 813 639 6900.

Web: http://www.commercequest.com

CommerceQuest (UK), Doncastle House,
DoncastleRoad, Bracknell, Berkshire, RG12
8PE, UK.

Tel: +44 1344 861010.

Fax: +44 1344 861011.

* * %

M QSoftwarehasupdateditsWebSphereMQ
educational offeringstosupport | BM’ snewest
rel ease of WebSphereM Q.

MQSoftware’ sWebSphere M Q courseswill
cover IBM’s new features for version 5.3,
including| BM’sJM Sapplications, API exits,
new product functionality, and added
security features.

Announced separately, MQSoftware has
signedadistributionagreementtoresall Europe-
based Primeur’ sDataSecureproductlineinthe
United States.

Primeur’s DataSecure is a security solution
for WebSphere MQ and the IBM 0OS/390
environment. It includes an application
developer’s toolkit for customization, an
MQ-based solution for transparent end-to-
end security, andalink solutionthat provides
link-oriented security for MQ channels.

DataSecure supports ICSF, HSM and MQ
clientsand MQ clusters, and offersfull PKI
compliance, PEA, encryption and
authentication, and integrated compression.

For more information contact:
MQSoftware, 1660 South Highway 100,
Suite 400, Minneapolis, Minnesota 55416,
USA.

Tel: +1 952 345 8720.

Fax: +1 952 345 8721.

MQSoftware, Surrey Technology Centre, 40
Occam Road, Surrey Research Park,
Guildford, Surrey, GU2 7Y G, UK.

Tel: +44 1483 295400.

Fax: +44 1483 573704.

* % %

xephon

	MQSeries Publish/Subscribe Service Pack MA0C
	A server connection channel security exit
	Very large queues with WebSphere MQSeries V5.3
	A tale of two queues
	Multiple CKTI trigger monitor transactions in CICS
	A better MQSeries batch trigger monitor
	WebSphere Financial Network Integrator: technical preview
	Natural - MQSeries interface
	MQ news

