
© Xephon Inc 2004

September 2004

63

In this issue

3 MQ Messaging using SQL
7 Finding out remote queue

manager names
19 Monitoring WebSphere MQ

Integrator Broker message flows
32 Using the distribution list to

send a message to multiple
destinations

45 MQ news

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

 2

MQ Update

© Xephon Inc 2004. All rights reserved. None of the text in this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, without the prior permission
of the copyright owner. Subscribers are free to copy any code reproduced in this publication for use
in their own installations, but may not sell such code or incorporate it in any commercial product. No
part of this publication may be used for any form of advertising, sales promotion, or publicity without
the written permission of the publisher.

Printed in England.

Published by
Xephon Inc
PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
Nicole Thomas
E-mail: nicole@xephon.com

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither Xephon nor the
organizations or individuals that supplied
information in this journal give any warranty
or make any representations as to the
accuracy of the material it contains. Neither
Xephon nor the contributing organizations or
individuals accept any liability of any kind
howsoever arising out of the use of such
material. Readers should satisfy themselves
as to the correctness and relevance to their
circumstances of all advice, information,
code, JCL, scripts, and other contents of this
journal before making any use of it.

Subscriptions and back-issues
A year’s subscription to MQ Update,
comprising twelve monthly issues, costs
$380.00 in the USA and Canada; £255.00 in the
UK; $380.00 in the USA and Canada; £261.00
in Europe; £267.00 in Australasia and Japan;
and £265.50 elsewhere. In all cases the price
includes postage. Individual issues, starting with
the July 2000 issue, are available separately to
subscribers for $33.75 (£22.50) each including
postage.

Contributions
When Xephon is given copyright, articles
published in MQ Update are paid for at the rate
of $160 (£100 outside North America) per
1000 words and $80 (£50) per 100 lines of code
for the first 200 lines of original material. The
remaining code is paid for at the rate of $32 (£20)
per 100 lines. To find out more about
contributing an article, without any obligation,
please download a copy of our Notes for
Contributors from www.xephon.com/nfc.

MQ Update on-line
Code from MQ Update, and complete issues
in Acrobat PDF format, can be downloaded
from our Web site at www.xephon.com/mq;
you will need to supply a word from the
printed issue.

 3© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

MQ Messaging using SQL

With DB2 Version 8, MQ messaging operations can be performed
using SQL statements. This feature mainly involves User Defined
Functions (UDFs) that invoke MQ using the MQ Application
Messaging Interface (AMI). With a single SQL, we can read all
the messages from a message queue and populate a database
or a table, or extract the relevant columns from a specific row in
a table and send out a message. Effectively this allows easy
integration between the messaging system and the database.

MQ AMI

With MQSeries Version 2.2, applications on the mainframe can
interface with MQ using the Application Messaging Interface
(AMI). This is in addition to the IBM Message Queue Interface
(MQI) and Java Messaging Service (JMS) and chiefly aims at
abstracting the message handling to the middleware layer.

To send or receive a message using AMI, an application should
specify the following:

1 What is being sent – the message itself in structured or free
form, sent from one program to another.

2 Where the message is going to/coming from – the ‘services’
part, which typically points to a local or remote MQSeries
queue. Services can also represent a distribution list managed
by middleware.

3 How the message is to be handled – the ‘policy’ that
encapsulates message options, like priority, timeout, number
of retries, whether the operation is part of a unit of work.

Policies and services are typically stored in a repository external
to the application and can be maintained without impacting the
application code. The policies can be used by many applications
and can be controlled at the enterprise level.

 4 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

DB2 AND MQ AMI

DB2 provides UDF for handling the following capabilities of
WebSphere MQ:

• Send and forget

• Read or receive

• Request and response

• Publish and subscribe.

In line with the AMI requirements, the key parameters for the MQ
UDFs are:

1 Msg-data – message in a CLOB/VARCHAR variable.

2 Send-service – identifying the location to which the message
has to be sent.

3 Receive-service – identifying the location from which the
message has to be read.

4 Topic-list – giving the list of topics corresponding to the
message and which are used in functions related to publish
and subscribe.

5 Publish-service – specifying the MQ publisher to whom the
message has to be published.

6 Subscriber-service – specifying the logical destination for
the messages corresponding to the topic.

7 Correl-ID – correlation identifier used for associating the
response with the requests.

Note that WebSphere MQ functions have to be registered in the
DB2 database server before they can be invoked via SQL (see
the DB2 Installation Guide for details of setting this up).

For example, the following is the SQL used to read a message
from a queue:

SELECT MQREAD('MYSERVICE','MYPOLICY') FROM TABLE;

 5© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

where MQREAD is the MQ UDF, MYSERVICE gives the location
from which the message has to be read, and MYPOLICY gives
details of how the message has to be handled.

MQ UDF SCALAR FUNCTIONS

The following is a list of MQ scalar functions:

• MQSEND – sends the message to the location corresponding
to the send-service. For request-response mode, the
correlation identifier has to be specified.

• MQREAD – returns the message from the head of the queue
without removing it from the queue.

• MQREADCLOB – similar to MQREAD; instead of VARCHAR,
the message is returned as a CLOB.

• MQRECEIVE – returns the message from the head of the
queue and also removes it from the queue. If in request-
response mode, the correlation identifier has to be specified
if the corresponding message is to be returned.

• MQRECEIVECLOB – similar to MQRECEIVE. Instead of
VARCHAR, the message is returned as a CLOB.

• MQPUBLISH – publishes the message to the publisher
corresponding to the service.

• MQSUBSCRIBE – allows the user to subscribe to the
message corresponding to a topic list.

• MQUNSUBCRIBE – allows the user to unsubscribe from the
topic list.

The following are some points worth noting:

• If the service or policy is not specified in the MQ functions,
DB2.DEFAULT.SERVICE and DB2.DEFAULT.POLICY are
used.

• Unlike RECEIVE functions, READ functions do not remove
the message from the queue.

 6 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

• In the case of VARCHAR, the maximum size is 4,000 bytes,
whereas CLOB allows a maximum of 1MB.

• If a correlation identifier is specified, the RECEIVE command
returns the message that matches it. Otherwise, the message
from the head of the queue is returned.

• READ and RECEIVE functions return a NULL value if no
message is available. All other functions return a value of 1
if successful and 0 if not successful.

• The topic-list can include multiple topics delimited by a colon
(eg topic 1:topic 2:topic 3).

MQ UDF – TABLE FUNCTIONS

MQ messages can be accessed by an application as if it were a
DB2 table, using the MQ table functions.

For example, all the messages from the queue can be returned
as a materialized DB2 table using the MQREADALL table
function:

SELECT * FROM TABLE (MQREADALL()) T;

By specifying the number of rows, the function can be used to
return the required number of rows only. Along with the message,
the meta-data is also returned.

The format of the resultant table is as follows (showing column
then data type):

• MSG – VARCHAR(4000)

• CORRELID – VARCHAR(24)

• TOPIC – VARCHAR(40)

• QNAME – VARCHAR(48)

• MSGID – CHAR(24)

• MSGFORMAT – VARCHAR(8).

The other table functions are MQREADALLCLOB,
MQRECEIVEALL, and MQRECEIVEALLCLOB .

 7© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

COMMIT ENVIRONMENT FOR MQ FUNCTIONS

DB2 provides two flavours of these MQSeries functions:

• One supports only single-phase commit and is identified by
a schema name of DB2MQ1C.

• The other supports two-phase commit and is identified by a
schema name of DB2MQ2C.

With single-phase commit, the DB commit or rollback operations
are independent of MQ operations. For example, when the DB2
transaction is rolled back, the messages sent to the queue are
not discarded. This would be quite useful when your application
needs to roll back the database operations but still send the
notification to the user using an MQ message.

In the case of two-phase commit, RRS acts as the transaction
coordinator. When the DB operations are rolled back, the
messages sent as part of a UOW are also discarded.

Note that WLM has to be customized for running MQSeries UDF
support and each flavour of the functions should run under a
separate WLM environment.

Sasirekha Cota
Tata Consultancy Services (India) © Xephon 2004

Finding out remote queue manager names

INTRODUCTION

Large WebSphere MQ (WMQ) networks usually have several
local system administrators (first and second-level Unix and
Windows application support) and centralized specialists for
base products (eg third-level WMQ support). The local
administrators may have some basic WMQ knowledge. This
knowledge may be sufficient to manage queue managers during

 8 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

normal operations (like starting and stopping) and to create
some WMQ objects (such as queues or a channel). But in
general they will not have enough know-how to solve problems
like channels being in retry mode, performance problems, looking
for missing messages, and so on.

Perhaps one of the local administrators knows a little more about
WMQ than their colleagues in the team, but he or she could be
out of the office temporarily or on vacation when a problem
occurs. In such situations, or in the case of trouble-shooting, the
local administrators have to call the specialists. These specialists
usually need access to the WMQ queue manager to solve the
problem. In a well-documented environment, maybe the
specialists open a list and get the connection data for the queue
manager, connect to it using GUI tools like MQExplorer or
MQMON (IBM SupportPac MO71), and solve the problem.

Unfortunately, real life is not that easy; such a queue manager list
may not exist or not be up-to-date. In this case, the WMQ
specialists have to ask for the name of the queue manager, IP
address, and port to connect to it, eg with MQMON. Possibly the
local administrator will not know these parameters or even what
a queue manager is. The WMQ specialist may now guide the
administrator in finding out these parameters, but often it would
be much easier for the specialist to do this by themself. A solution
to this problem is described in this article.

DESCRIPTION OF THE TOOL

Before using FindQManager

It is quite easy to find out the IP address of the system running
a WMQ queue manager. Any system administrator will know the
IP addresses of the machines that s/he is responsible for. Even
operators or developers would at least know the DNS name of
these machines. It is a little more difficult to find out the WMQ
listener port – but using the WMQ default port of 1414 or some
value near it (let’s say 1415 or 1416) or another well-known port
range of your company, could be helpful in many cases.

 9© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

The last parameter a WMQ specialist has to know is the name
of the WMQ queue manager. Asking the local administrators is
not always an option. Using the known or guessed parameters
above, the WMQ specialists may now find out the connection
attributes themselves by using the tool FindQManager. If this tool
is successful, it prints out a valid connect string, which can be
used to set up a GUI tool like MQMON for WMQ administration.

How FindQManager works

The program FindQManager was developed in Java and finds
out the name of a remote queue manager via PCF commands.
You have to know (or guess) the IP address and port of the WMQ
listener and the tool tries to find out the name of the remote queue
manager. The connect string used by FindQManager is built from
the three command line parameters – address, port, and channel.
A script called findqmgr(.cmd) calls this Java program using
different input parameters. In the examples below, it tries the
channels MY.ADMIN.SVRCONN, SYSTEM.ADMIN.SVRCONN,
and SYSTEM.DEF.SVRCONN.

If a connection is successful, the script prints out the name of the
queue manager and the successful connect string. Assuming
that most WMQ installations on client/server platforms use the
default port 1414 and have a channel
SYSTEM.ADMIN.SVRCONN defined or at least the channel
SYSTEM.DEF.SVRCONN defined and enabled, this tool finds
out the names of most of the queue managers in the network.

The script findqmgr(.cmd) may be called with at least an IP
address or DNS name, and optionally one or more port numbers.
If no port number is specified, the script tries the default WMQ
port 1414. Otherwise, it loops over all the specified port numbers
and tries to connect to a WMQ listener. The script prints out the
first successful connect string for each specified port number.

Building the class file

Use the Java compiler to create the class file. It should not matter
where you compile or execute it (because it’s Java!). I compiled
it on AIX and executed it on Windows and AIX.

 10 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Install javac FindQManager.java

This is how to install FindQManager.

First you need Java support for WMQ. This is integrated within
WMQ 5.3. If you use Version 5.2 or lower you need to install the
IBM SupportPac MA88.

To use PCF commands with Java, you have to install the Java
classes provided with IBM SupportPac MS0B. Copy the file
com.ibm.mq.pcf.jar to the WMQ Java path, eg
<WMQ_Installpath>\Java\lib for WMQ 5.3 on Windows.

The next step is to copy the file FindQManager.class to the same
Java path. You may have to define some system environment
parameters.

- set MQ_JAVA_DATA_PATH=<WMQ_Installpath>

eg 'C:\Program files\IBM\WebSphere MQ'.

- set MQ_JAVA_INSTALL_PATH= <WMQ_Installpath>\Java

- set CLASSPATH=

<WMQ_Installpath>\Java\lib;<WMQ_Installpath>\Java\lib\com.ibm.mq.pcf.jar;

<WMQ_Installpath>\Java\lib\providerutil.jar;<WMQ_Installpath>\Java\lib\com.ibm.mqjms.jar;

<WMQ_Installpath>\Java\lib\ldap.jar;<WMQ_Installpath>\Java\lib\jta.jar;

<WMQ_Installpath>\Java\lib\jndi.jar;<WMQ_Installpath>\Java\lib\jms.jar;

<WMQ_Installpath>\Java\lib\connector.jar;<WMQ_Installpath>\Java\lib\fscontext.jar;

<WMQ_Installpath>\Java\lib;<WMQ_Installpath>\Java\lib\com.ibm.mq.jar

Last but not least, copy the file findqmgr.cmd (or findqmgr on
Unix) into a local directory (eg C: or /home/mqm). You may now
run this script within a command shell.

Call FindQManager

It is possible to call the Java program directly from the command
line, but I wrote a script, which is easier to customize, and this
script itself calls the Java program. I created a Windows and a
Unix version of the script. Call the script by issuing the following
command:

findqmgr <IP address or DNS name> [<port (optional)>]

Afterwards you will see the name of the queue manager and the

 11© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

connect string, or an error message with possible reasons why
this information could not be found.

DESCRIPTION OF THE CODE

The code consists of three parts, the Java-Code
FindQManager.java, a Windows command script called
findqmgr.cmd (which calls the Java class), and a Korn shell
script, findqmgr (which works in the same way as the Windows
script, but on Unix systems).

Description of the scripts

First the script initializes the parameter SCRIPT_ERRORS. This
parameter indicates that, for each specified port, a queue
manager has been found (value NO), or at least one port could
not be associated with a queue manager (value YES).

The next step of the script is to check whether at least an IP
address or DNS name has been specified. If not, the script ends
with an error message. When an address has been specified, the
script checks further command line parameters. These will be
interpreted as port numbers and tested one by one. If no port
number is specified, the script uses the WMQ default port 1414.

Now the script calls the Java program FindQManager, using the
first SVRCONN channel, and redirects the output to the file
output.txt. Afterwards the script searches in this output file for the
string ‘Connect string’ and prints it. When this string has been
found and the Java program has run successfully, the name of
the queue manager is read from the output file.

If the Java program is unsuccessful, the script calls it again using
the next channel in the list. An error message is displayed if no
connection can be established with any of the channels. Otherwise
the first successful connect string is printed and the script checks
the next port number. If at least one of the address/port pairs fails,
a number of possible reasons are shown when the script has
finished.

 12 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Description of the Java code

The Java code is quite simple. It requires exactly three command
line parameters: host address, IP port, and SVRCONN channel.
The program sets up a connect string with the format:

<SVRCONN channel>/TCP/<host address>(<IP port>)

It tries to connect with this connect string and sends an inquire
queue manager command. If successful, the connect string and
the name of the WMQ queue manager are printed out.

Listing of findqmgr.cmd
@echo off

REM

REM Copy this file to a local directory (eg C:) and run it in a cmd

REM shell.

REM

REM Run this script now with:

REM

REM C:\findqmgr <IP address or DNS name> [<port> [<port> [...]]]

REM

REM One or more ports are optional. If no port is specified, the MQ

REM default port 1414 will be used.

REM

set SCRIPT_ERRORS=no

REM

REM Check the command line parameters - at least an IP address or DNS

name.

REM

if "%1" == "" goto script_error

set ADDRESS=%1

shift 1

set PORT=1414

if "%1" == "" goto check_address

set PORT=%1

:check_address

REM

REM Try first a connect using channel MY.ADMIN.SVRCONN.

REM

java FindQManager %ADDRESS% %PORT% MY.ADMIN.SVRCONN > output.txt 2>

error.txt

 13© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

findstr "Connect string" output.txt

if %ERRORLEVEL% == Ø goto finish

REM

REM First connect was unsuccessful, try now channel

SYSTEM.ADMIN.SVRCONN.

REM

java FindQManager %ADDRESS% %PORT% SYSTEM.ADMIN.SVRCONN > output.txt 2>

error.txt

findstr "Connect string" output.txt

if %ERRORLEVEL% == Ø goto finish

REM

REM First connect was unsuccessful, try now channel SYSTEM.DEF.SVRCONN.

REM

java FindQManager %ADDRESS% %PORT% SYSTEM.DEF.SVRCONN > output.txt 2>

error.txt

findstr "Connect string" output.txt

if %ERRORLEVEL% == Ø goto finish

REM

REM Error output - no connection has been established.

REM

echo No queue manager information has been found for following address:

echo IP address: %ADDRESS%

echo IP port: %PORT%

set SCRIPT_ERRORS=yes

goto next_address

:script_error

REM

REM Error output - missing command line parameter.

REM

echo "usage: %Ø <IP address or DNS name> [<port> [<port [...]]]"

goto script_exit

:finish

REM

REM Find the string "Queue manager" in the PCF output.

REM

findstr "Queue manager" output.txt

del output.txt error.txt

:next_address

 14 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

shift 1

if "%1" == "" goto script_finish

set PORT=%1

goto check_address

:script_finish

if "%SCRIPT_ERRORS" == "no" goto script_exit

echo One or more errors occurred. Check the following items with

echo the local system administrators:

echo - is there a queue manager running

echo - is a listener running using this port

echo - is the command server started

echo - are the channels locked or removed

echo - is a TCP wrapper running

echo - is a security exit installed

echo - is there a firewall to pass

:script_exit

Listing of findqmgr
#!/bin/ksh

#

Copy this file to a local directory (eg $HOME) and run it in a shell.

#

Run this script now with:

#

$HOME/findqmgr <IP address or DNS name> [<port> [<port> [...]]]

#

One or more ports are optional. If no port is specified, the MQ

default port 1414 will be used.

#

SCRIPT_ERRORS="no"

#

Check the command line parameters - at least an IP address or DNS

name.

#

if ["$1" = ""]

then

 # Error output - missing command line parameter.

 echo "usage: $Ø <IP address or DNS name> [<port> [<port> [...]]]"

 exit 1

 15© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

fi

ADDRESS=$1

shift 1

PORT=1414

while ["$1" != ""]

do

 found="no"

 PORT=$1

 shift 1

 SVRCONN_LIST="MY.ADMIN.SVRCONN SYSTEM.ADMIN.SVRCONN

SYSTEM.DEF.SVRCONN"

 #

 # Try now to connect using one SVRCONN channel.

 # Print out the connection string and queue manager, if found.

 #

 for channel in $SVRCONN_LIST

 do

 if ["$found" != "yes"]

 then

 java FindQManager $ADDRESS $PORT $channel > output.txt 2> error.txt

 CONNECT_STRING='grep "Connect string" output.txt'

 QUEUE_MANAGER='grep "Queue manager" output.txt'

 rm output.txt error.txt

 if ["X$CONNECT_STRING" != "X"]

 then

 echo

 echo $CONNECT_STRING

 echo $QUEUE_MANAGER

 found="yes"

 fi

 fi

 done

 #

 # Error output - no connection has been established.

 #

 if ["$found" = "no"]

 then

 cat <<EOF

No queue manager information has been found for following address:

 IP address: $ADDRESS

 16 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 IP port: $PORT

EOF

 SCRIPT_ERRORS="yes"

 fi

done

if [$SCRIPT_ERRORS = "yes"]

then

 cat <<EOF

One or more errors occurred. Check the following items with

the local system administrators:

 - is there a queue manager running

 - is a listener running using this port

 - is the command server started

 - are the channels locked or removed

 - is a TCP wrapper running

 - is a security exit installed

 - is there a firewall to pass

EOF

 fi

echo

exit 1

Listing of FindQManager.java
/**/

/* October, 16th 2ØØ3 */

/* Hubert Kleinmanns */

/* Senior Consultant */

/**/

/* Purpose: This program is meant to find out the name of a queue */

/* manager. */

/* */

/* Run this program: */

/* */

/* Required input parameters: */

/* 1. DNS name or IP address */

/* 2. WebSphere MQ port */

/* 3. Channel of type SVRCONN */

/* */

/* Output text: */

/* 1. Address (like the MQSERVER environment) */

/* 2. Name of the queue manager */

/**/

 17© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

import java.io.*;

import com.ibm.mq.*;

import com.ibm.mq.pcf.*;

/**

 * PCF example class showing use of PCFAgent and com.ibm.mq.pcf

 * structure types to generate and parse a PCF query.

 *

 */

public class FindQManager

{

 public static void main (String[] args)

 {

 int[] qmgrAttributes =

 {

 CMQCFC.MQIACF_ALL

 };

 PCFAgent pcfAgent;

 PCFParameter[] qmgrParameters =

 {

 new MQCFIL (CMQCFC.MQIACF_Q_MGR_ATTRS, qmgrAttributes)

 };

 MQMessage[] answer;

 MQCFH pcfHeader;

 PCFParameter qmgrPar;

 String connectString;

 try

 {

 // Connect a PCFAgent to the specified queue manager

 if (args.length == 3)

 {

 connectString = args[2] + "/TCP/'" + args[Ø] +"(" +

 args[1] + ")'";

 pcfAgent = new PCFAgent (args[Ø], Integer.parseInt (args[1]),

 args[2]);

 // Use the PCF agent to send the request

 answer = pcfAgent.send (CMQCFC.MQCMD_INQUIRE_Q_MGR,

 qmgrParameters);

 pcfHeader = new MQCFH (answer[Ø]);

 // Check the PCF header (MQCFH) in the first response message

 if (pcfHeader.reason == Ø)

 {

 for (int i = Ø; i < pcfHeader.parameterCount; i++)

 {

 18 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 // Walk through the returned attributes

 qmgrPar = PCFParameter.nextParameter (answer[Ø]);

 if (qmgrPar.getParameter() == CMQC.MQCA_Q_MGR_NAME)

 {

 System.out.println ("Connect string: " + connectString);

 System.out.println ("Queue manager: " +

 qmgrPar.getValue ());

 }

 }

 }

 else

 {

 System.out.println ("PCF error:\n" + pcfHeader);

 // Walk through the returned parameters describing the error

 for (int i = Ø; i < pcfHeader.parameterCount; i++)

 {

 System.out.println (PCFParameter.nextParameter (answer[Ø]));

 }

 }

 // Disconnect

 pcfAgent.disconnect ();

 }

 else

 {

 System.out.println ("Missing parameter:\n");

 System.out.println ("usage:\t" + args[Ø] + "address port channel");

 System.out.println ("\t\taddress: DNS name or IP address.");

 System.out.println ("\t\tport: WMQ listener port.");

 System.out.println ("\t\tchannel: Channel of type SVRCONN.");

 }

 }

 catch (ArrayIndexOutOfBoundsException abe)

 {

 System.out.println ("ArrayIndexOutOfBoundsException");

 }

 catch (NumberFormatException nfe)

 {

 System.out.println ("NumberFormatException");

 }

 catch (MQException mqe)

 {

 System.out.println ("MQException");

 }

 19© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 catch (IOException ioe)

 {

 System.out.println ("IOException");

 }

 }

}

Hubert Kleinmanns
Senior Consultant
N-Tuition Business Solutions AG (Germany) © Xephon 2004

Monitoring WebSphere MQ Integrator Broker
message flows

This article describes different options to monitor the processing
of message flows in WebSphere MQ Integrator Broker. It provides
an overview of the possibilities and describes what kind of
monitoring can be achieved.

ABSTRACT

The monitoring of message flows covers a wide area. It starts
with checking the availability of processes and resource managers
needed for message flow processing. It spans from the checking
of processing characteristics to monitoring the status of individual
messages. Monitoring can be divided into system monitoring
performed by IT support staff and business process monitoring
performed by business operations staff.

System monitoring checks the healthiness and processing
characteristics of the resources involved in the message flow
processing. Business process monitoring checks the health and
state of a business process. This can be done post-mortem using
reporting of consolidated business characteristics, or in real-time
for individual messages.

This article provides just an overview of different monitoring
methods. Depending on your requirements, you may need to

 20 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

take a closer look at which methods you need and how to
integrate them with your monitoring infrastructure. You may need
to combine system monitoring and business process monitoring
techniques to achieve your goals.

INTRODUCTION

Once you have developed a message flow and want to get it into
production, you need to know how to monitor the message flow.
But different people have different understandings of what
monitoring is or they have different goals for their monitoring
requirements. A wide set of requirements have been evaluated
as part of a monitoring discussion for the product WebSphere
Business Integration for Financial Networks (abbreviated to
WebSphere BI for FN) on z/OS (for product details see http://
www.ibm.com/software/integration/wbifn). Most of the discussions
apply to all other WebSphere MQ Integrator Broker message
flows and WebSphere MQ Integrator Broker supported platforms.
WebSphere BI for FN consists of an infrastructure that allows you
to deliver products on top of WebSphere MQ Integrator Broker
and extensions that exploit the infrastructure and deliver access
to different financial networks, for example the Secure IP Network
provided by SWIFT (for details about SWIFT see http://
www.swift.com).

Based on the requirements, two different general kinds of
monitoring option have been identified: IT or system monitoring
and business process monitoring, or business monitoring for
short. The following sections describe the different kinds of
monitoring followed by possible ways to achieve them.

SYSTEM MONITORING

System monitoring requirements are about checking the health
of a system. ‘Health’ refers to whether the processing is working
OK or not. The simplest forms of system monitoring are
notifications or events if something unexpected happens. Higher
requirements for system monitoring require knowing whether the

 21© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

processing takes place within a predefined set of parameters and
raising an event if the parameters are not met. Such parameters
could be informational. For example: ‘my average message
processing rate is 10 messages per second, but between 10am
and 11am I expect to process 25 messages per second; please
inform me if the actual message rate differs by more than 20%.’

For system monitoring you are usually looking to those resources
that are critical for delivering the function that is performed by the
message flow. Resources besides the message flows themselves,
for example databases or WebSphere MQ message queues, are
used by the message flows to perform their function.

System monitoring is usually performed by IT support
organizations. Once problems are detected, people from the IT
support department need instructions about what to do to resolve
the abnormal situation.

BUSINESS PROCESS MONITORING

Business process monitoring is much more sophisticated than
system monitoring. It is about the healthiness of a business
process. It can be divided into post-mortem analysis of the
messages that passed the system and real-time business
process monitoring. Post-mortem analysis is also called reporting.
Reporting needs to summarize information from all information
messages in a given time period.

Business processes usually span multiple steps, where a
message flow could represent one step within the overall business
process. Real-time business monitoring requirements are about
monitoring individual messages. For a business process, it is
necessary to know where in the processing a message currently
is and what the current state of the processing step is. Other
interesting information is, for example, whether a specific message
reached a specified processing step within the specified time. If
not, an event indicating this problem is required.

In contrast to system monitoring, business process monitoring is
performed by business operations staff. Underlying business

 22 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

monitoring is the assumption that all IT components are working
properly. Even if this is the case, the business processes can still
have problems.

Some business processes consist of a series of steps that are
monitored using system monitoring means. From these single
monitoring results some tools are available that can deduce the
state of a business process. From this you can imagine that the
transition from system monitoring to business monitoring is fluid.

SYSTEM MONITORING OVERVIEW

This section provides an overview of system monitoring
capabilities for message flows. System monitoring can be done
at different levels:

• Operating system level

• Resource level

• Broker level

• Message flow level.

The following sections describe the monitoring capabilities at
each level.

System monitoring at the operating system level

Message flows are processing within a broker. The broker itself
and all resource managers that are needed to process the
messages, for example WebSphere MQ queue managers for
messages or a database manager for persistent data, are
processes or jobs within an operating system. The existence of
these processes and whether they consume CPU resources are
already indications of the processing status of the processes.
Depending on the operating system capabilities, it can be
assumed that all required programs are up and running. For
example, z/OS provides a component called Automated Restart
Manager (ARM). This can assure you that all the required
processes are up and running, or, if they stop for any reason,

 23© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

automatically restart the process. DB2, WebSphere MQ, and
WebSphere MQ Integrator Broker support ARM. Other operating
systems may provide similar capabilities.

For message flow processing, other applications are needed to
send messages to the message flow and to consume messages
produced by the message flow. These applications and their
resource managers also need to be monitored to get a complete
view of health at the operating system level.

System monitoring at the resource level

For message flow processing different resource managers can
be involved. It is possible, for example, to monitor at the
WebSphere MQ level, the database level, or any other resource
manager level. The actual resources that can be monitored
depend on the resources that your message flow accesses. The
following paragraphs show examples of monitoring at the
WebSphere MQ level and at the database level.

Already at the WebSphere MQ level, you have some monitoring
options. Examples are that you can monitor the status of a
WebSphere MQ queue manager, message queues, or channels.
This can be done for example with a set of commands that are
issued against the WebSphere MQ queue manager. On distributed
environments, such a script can run using runmqsc, a program
provided by WebSphere MQ. On z/OS, WebSphere MQ provides
a similar program, called CSQUTIL.

Checking, for example, whether queues are open for input,
meaning that an application has issued an MQOpen function to
get messages from the queue, is a good indication of whether an
application is available to process messages. It is an indication
of whether the application is actually processing messages. For
such purposes you can look at the number of messages in a
message queue, represented by the message queue depth. If
the queue depth is constantly increasing, this indicates that the
application is not processing, or not processing enough,
messages. If the queue depth is decreasing, this is usually a
clear indication that messages are being processed.

 24 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Another way to monitor at the queue manager level is by
exploiting WebSphere MQ events. A queue manager can issue
three different kinds of event: queue manager, channel, and
performance events. Queue manager and channel events
normally report starting or stopping of these elements. An
example of a performance event is the queue depth high event.
For a message queue, the message queue high event is
reported if the queue manager detects that the message queue
contains more than a defined number of messages. For reporting,
the queue manager issues an event message onto an event
queue. For a complete list of events, their meaning, event
queues, and how to enable events, please refer to the appropriate
WebSphere MQ documentation.

For monitoring the events you can write an application that gets
the event messages from the event queues. The event messages
are coded in a WebSphere MQ defined self-defining data structure,
called Programmable Command Format (PCF). Once interpreted,
the events allow the detection of situations where the system is
not working as expected.

To avoid writing your own program you can exploit already
existing monitoring program products that are available on the
market. Such programs can monitor a queue manager, its
queues, and channels. Such products are available, for example,
from IBM Tivoli, Candle, MQSoftware, and BMC. There is also a
WebSphere MQ SupportPac, MS0K (which can be found at http:/
/www.ibm.com/software/integration/support/supportpacs), which
allows WebSphere MQ events to be displayed. To allow the
monitoring of your message flow, you need to identify the queue
managers, message queues, and channels that are required for
your message flow to perform its function.

Similar to WebSphere MQ, you could also use monitoring tools
for other resource managers to get an indication of the health of
your system. If your message flow is doing database operations,
eg WebSphere BI for FN has an audit functionality that writes
entries into a database table, a database monitoring tool can
provide information about the number of inserts into this table or

 25© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

find out whether tables are getting full. If no more inserts are
made, when you expect that messages should be processing,
you ought to look at your message flow processing. Various
database monitoring tools are available on the market.

System monitoring at the WebSphere MQ Integrator Broker level

WebSphere MQ Integrator Broker in general is also a resource
manager. It provides the run-time environments for message
flow. These environments are execution groups in a message
broker. Brokers, execution groups, and assignments of message
flows to an execution group are done using the WebSphere MQ
Integrator Broker Control Center. Once your message flows are
deployed, the Control Center provides an operations view. In this
window, the Control Center shows the actual status of brokers,
execution groups, and message flows as known to the
configuration manager. The status indicates whether a message
flow is started or stopped. An example of such status is shown in
Figure 1.

Using the operations pane, you get only started/stopped status
information. If a message flow is shown as started this does not
provide an indication of whether the message flow is really
working and processing messages. A simple example is that

Figure 1: WebSphere MQ Integrator Broker Operations view

 26 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

your message flow is deployed to the broker but you have not yet
defined its input queue. In the operations pane the message flow
is shown in green, meaning that the flow has started. To get
further information about the processing of message flows you
also need to look at the broker’s error log. The error log is platform
dependent, but on most operating systems the SYSLOG service
is used to issue error messages. Looking at the error log provides
you with information about processing errors that might have
occurred. Usually the error log is de-central, meaning that you
have to log-on to the machine on which the broker is running. If
you have multiple brokers, for example for throughput or availability
reasons, this could be a little cumbersome.

With WebSphere Business Integration Message Broker Version
5.0 (WebSphere BI MB), the follow-on version to the WebSphere
MQ Integrator Broker product, the broker provides you with an
additional function to monitor your message flow processing.
This functionality is called statistics and accounting. Once enabled,
the broker regularly provides statistics information about the
processing of message flows. Such information includes, for
example, the number of messages processed and the time
needed to process the messages. For a detailed list of information
provided by the statistics and accounting function of WebSphere
BI MB, please refer to the appropriate documentation.

Accounting and statistics can be enabled for individual message
flows, all message flows within an execution group, or the whole
broker. The information is collected by the broker without any
change to the message flow. A summary of the information is
written periodically to one of up to three different locations.
Possible destinations are the broker’s user trace files, a broker-
defined topic for publications, and Systems Management Facility
(SMF) on z/OS. The broker allows two different kinds of statistics:
archive statistics and snapshot statistics. Archive statistics are
meant more for accounting purposes, while the snapshot statistics
should be used to monitor the message processing of a message
flow. Depending on the destination, different monitoring options
are possible. Writing the information to the user trace or SMF is
more for post-mortem analysis, while publication allows more
real-time monitoring.

 27© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

The statistics information provides good information about how
many messages are processed within the statistics interval. But
the broker provides just the data. You need either to develop a
tool that displays the results or compares it with the expected
values. There are already some monitoring products available
that hook into the accounting and statistics data and display the
results. An example for such a program is PathWAI from Candle.

System monitoring at the message flow level

You can also add monitoring to your message flows. Different
methods are available. The simplest method is to participate in
the broker’s error event handling. To do this, you can produce
message flow exceptions so that your processing detects the
problems. These are then reported by the broker in the same way
as the broker internal exceptions.

Such error events are usually written to a system error log. That’s
why such exceptions are not processed automatically. Some
exceptions are of interest to monitoring programs, which react to
them.

The product WebSphere BI for FN implemented a different
approach, the main difference being that instead of broker
exceptions, WebSphere BI for FN events are used. These are
similar to broker exceptions but they are enriched with additional
information to better categorize the events and allow the filtering
of these events for monitoring. WebSphere BI for FN provides a
set of nodes that allow the issuing of an event. One node that
converts broker exceptions to WebSphere BI for FN events is
included in this set. The events in WebSphere BI for FN are
published using WebSphere BI for FN defined topics.

Once published, any subscriber can get the events. Based on the
topic structure, a monitoring program can register for all events
or just those events that are of interest to it. WebSphere BI for FN
already provides a set of monitoring programs. One such program
can be used to look on-line at the events that are of interest to an
actual user. Another such monitoring program is a message flow
that can subscribe to all interesting events. This message flow

 28 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

receives the events and writes them to the systems error log on
a central system.

In addition to publishing the event using a WebSphere BI for FN
defined topic, the events are also stored in an event database.
An event administration message flow is provided by WebSphere
BI for FN that allows users to list and maintain events within the
event database. In contrast to on-line monitoring using published
events, this approach allows post-mortem analysis of problems.

Some monitoring tools allow users to monitor message flow
processing on-line. Such tools include, for example, IBM Tivoli
Monitoring for Business Integration and BMC’s Patrol for
WebSphere MQ Integrator. To enable your flow to be monitored
by most of these tools, you can include a special monitoring node
in you message flow. Such nodes are specific to each monitoring
tool. Once integrated into a message flow, the node collects
statistics about the flow processing and reports these to a
component that displays the results. Usually such tools also
allow the expected behaviour of the flow to be defined, for
example when it has to be up and how many messages are
expected to be processed. In case there are significant deviations
from the expected values, the monitoring tools inform the operator
to look at the origin of the deviation.

BUSINESS PROCESS MONITORING OVERVIEW

This section provides an overview about business process
monitoring capabilities for message flows.

Post-mortem analysis

Post-mortem analysis or reporting is required for the analysis of
all messages that have been processed. Such analysis is usually
repeated at pre-defined intervals, eg the reports are produced
daily or weekly. The reports usually summarize the content of
messages that have been processed within the reporting period.
What sort of information should be reported depends on the
kinds of message that are processed in the message flow. It can

 29© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

be, for example, the total number of messages, the value
represented by the messages (either total or sorted by customer),
the items referenced in the messages, or similar. From such
reports you can see longer-term trends and react accordingly.
For example if the reports show that the message volume from
a specific customer is increasing, you may plan to provide
additional processing capacity.

These examples show that the reporting depends on the content
of the messages that are processed. In general there are two
different ways to provide the data for reporting. In the first
method, the message flow prepares the information while the
messages are processed. This approach can always be used if
you know in advance what data is needed for the reports. It is a
relatively fast method, but it is also inflexible should you need
other or additional information.

If you don’t know in advance what information is needed for a
report or you cannot afford the resources required to prepare the
information while your message flows are processing the
message, eg because they would reduce the message throughput
at peak times, you can produce reports based on the information
stored during processing. With this approach, there are also two
different methods you can use. WebSphere BI for FN provides
the means for both ways – called message auditing and message
warehousing. Using message audit the messages as they are at
a specific point during processing are stored as binary streams
in a message audit database. The message data is usually
stored at the beginning of the message processing (eg shortly
after the MQInput node), or at the end of processing (for example
near the MQOutput node), or at both locations.

Storing the message in a searchable format is called message
warehousing. Message warehousing can be done in different
ways. The simplest way is to collect the base for reporting by
extracting the data from each message and storing it, eg in a
database. More sophisticated approaches store the complete
message, eg using the WebSphere MQ Integrator Broker
Warehouse node. Or you can have a combination of both
approaches, as implemented by WebSphere BI for FN.

 30 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Using the WebSphere MQ Integrator Broker Warehouse node,
the messages are stored in binary format in a warehouse table.
You can also use the node to store a set of fields from the
message in a warehouse table. The WebSphere BI for FN
Message Warehouse nodes convert all messages into XML
format before storing them in a message warehouse table. For
storing the data, an XMLCLOB column is used. XMLCLOB is a
user-defined data type defined by DB2 XML Extender. Using this
technique, the complete message can be used to search for
messages or to get information about the messages that need
to appear in a report. To simplify searching, together with the
complete message, a set of pre-defined search fields can be set
when storing the data in the message warehouse.

Once stored, a reporting program is run at off-peak times and it
processes the entries collected by the flow. Depending on the
area you’re working in, there are probably already a set of
programs that can dynamically generate reports based on your
message data. If the program works on message audit data, the
program must be able to interpret and parse the messages
themselves. If the program works on a message warehouse, the
program can access the fields using standard SQL means.

Real-time business monitoring

A pre-requisite for real-time business monitoring is that you have
defined your business processes and you may run them through
a processing engine. Within such a business process, one or
more message flows can execute processing steps. Individual
process instances can then issue messages to invoke the
message flows. To be able to correlate the message with the
process instance, each of the messages needs to have an
indicator in the message that identifies the process instance it
belongs to. Such identification is called Process Instance ID.

Most business process execution engines include a real-time
business monitoring tool. An example of such a monitoring tool
is WebSphere Business Integration Monitor. (For details about
WebSphere Business Integration Monitor see http://

 31© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

www.ibm.com/software/integration/wbimonitor.) Similar to system
monitoring, the flow needs to provide the processing information
about a message to the monitoring program when integrating a
message flow into the process monitoring. This can be done by
integrating a message processing node into your message flow.
An example for such an integration using a message processing
node is available as WebSphere MQ Integrator Broker SupportPac
IB01. (You can find the SupportPac IB01 at http://www.ibm.com/
software/integration/support/supportpacs.) When using this node
in your flow you can provide a mapping of data elements from
elements in the message to the information needed for monitoring.
This information is then stored in the database of the WebSphere
Business Integration Monitor. The monitoring program can then
display the status.

Integrating a message processing node for a specific business
process monitor can be done if you already know your business
monitoring infrastructure. However, this is not the case for
products and solutions on top of WebSphere MQ Integrator
Broker. Different customers may have different business
monitoring infrastructures. Therefore with WebSphere BI for FN
you can choose an alternative way. WebSphere BI for FN defines
a message format for control information that can be passed to
a WebSphere BI for FN enabled message flow. The control
information is located in the MQRFH2 header of a message.
Parts of this control information are three optional fields –
message group id, external reference, and business group id. If
these fields are exploited by the sending program, for example
by storing the Process Instance ID in one of these optional fields,
they are stored in separate columns for message audit and
message warehouse entries. When you are looking for a specific
message, your business monitor can probe these database
tables to see whether they contain entries with your Process
Instance ID. Based on where and when during message
processing message warehouse or message audit are invoked,
the monitor can deduce the state of the process and where your
message is currently.

 32 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

CONCLUSION

It is already possible to start monitoring the processing of
message flows. The greater your monitoring requirements are,
the more information you must provide to fulfil them. Many
system monitoring tasks can already be performed by using
standard monitoring programs. You just need to identify the
resources involved in your message flow processing and you
need to provide information about what can be deduced when
looking at them.

The more you need to monitor the business characteristics of the
messages that you process, the more work you have to do to
integrate with the monitoring program. For WebSphere BI for FN,
an analysis of how to achieve this has been described. From this
it can be deduced that the same should also be possible for all
other message flows.

For detailed monitoring you need to take a closer look at your
monitoring requirements and you may have to check how this
can be achieved with the monitoring infrastructure available at
your company.

Michael Groetzner
IBM (Germany) © IBM 2004

Using the distribution list to send a message to
multiple destinations

INTRODUCTION

This is a Java console application that uses the distribution list
to put message into multiple destinations. The destinations can
be combinations of local, alias, or remote queues. This article is
intended for users who are familiar with MQ operations like put
and get; it will deal directly with the distribution list classes and
their methods.

 33© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

DISTRIBUTION LIST

Distribution lists allow a message to be sent to multiple destinations
in a single put call. Multiple queues can be opened using a single
open and a message can then be put to each of those queues
using a single put.

In distribution lists, the response records contain the specific
completion code and reason code for each destination. The
completion code MQCC_FAILED indicates that no message has
been put on any destination queue successfully. If the completion
code is MQCC_WARNING, the message has been successfully
put on one or more of the destination queues. If the return code
is MQRC_MULTIPLE_REASONS, the reason codes are not all
the same for every destination. Therefore, it is recommended to
use the MQRR structure to determine which queue or queues
caused an error and the reasons for each.

When an open call is issued, generic information is taken from
the MQ Object Descriptor (MQOD). When a message is put on
the queues, generic information is taken from the MQ Put
Message Option structure (MQPMO) and the MQ Message
Descriptor (MQMD). Specific information is given in the form of
MQ Put Message Records (MQPMRs). MW Response Records
(MQRR) can receive a completion code and reason code
specific to each destination queue.

Put Message Records (MQPMR)

The MQPMR structure is used to specify various message
properties for a single destination when a message is being put
to a distribution list.

Response Records (MQRR)

The MQRR structure is used to receive the completion code and
reason code resulting from the open or put operation for a single
destination queue, when the destination is a distribution list.

In Java, MQ structures like MQOD, MQPMR, MQRR, etc are
collapsed into the parameters of a class and their corresponding
methods.

 34 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

When the new message instance is created, all the MQMD
parameters are automatically set to their default values. The put
method of MQQueue also takes an instance of the
MQPutMessageOptions class as a parameter. This class
represents the MQPMO structure.

CODE SAMPLE
/***/

/* Program name: MQMsgDistribution */

/* Author : Balaji SR */

/* MQ Administrator */

/*eFunds International India Pvt. Ltd. */

/* mail Id: balaji_srajan@yahoo.com */

/***/

/* */

/* Function: */

/* This application uses the distribution list to put message into */

/* destinations in a single call. Queue manager name, port number, */

/* and the server multiple connection channel are hardcoded inside */

/* the program. It takes queue name(s) arguments and uses the */

/* distribution list to send message to all the queue(s) */

/* */

/* Invocation: */

/* java mqDList queue1, queue2, queue3 */

/* Enter the message to be distributed to the queue(s).... */

/* <Message for the Distribution queues> */

/***/

import com.ibm.mq.*;

import java.util.*;

import java.io.*;

public class MQMsgDistribution {

 // QMGR object

 private MQQueueManager mqQueueManager;

 // Queue object

 private MQQueue queue;

 // Open options

 private int openOptionInquire;

 // host name

 private String hostName;

 // server connection channel

 private String channel;

 // port number on which the QMGR is running

 private String port;

 35© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 // queue manager name

 private String qmgrName;

 // queue name

 private String qName;

 // distribution list

 private MQDistributionList distList;

 // distribution list item

 private MQDistributionListItem dListItem[];

 public static void main(String arg[])

 {

 try{

 if (arg.length == Ø)

 {

 System.out.print("Please enter the arguments in the order of...\n");

 System.out.print(" queue1 [queue2] [queue3] \n");

 System.exit(1);

 }

 MQMsgDistribution mqDistriList = new MQMsgDistribution();

 mqDistriList.init(arg);

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 }

 private void init(String[] args)

 {

 try{

 this.mqInit(args);

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 }

private void mqInit(String[] mqArguments)

 {

 try

 {

 //initialization of the MQ parameters

 //host name local or remote system

 hostName = "localhost";

 36 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 // queue manager to get connected to

 qmgrName = "QMGR2";

 // port number on which the queue manager listens

 port = "1415";

 // sever connection channel thru which the application

 // communicates

 channel = "SYSTEM.DEF.SVRCONN";

 //prints the MQ environment variables

 System.out.println("MQ distribution list");

 System.out.println("—————————————————————————");

 System.out.println("host name : " + hostName);

 System.out.println("QMGR name : " + qmgrName);

 System.out.println("port number : " + port);

 System.out.println("channel : " + channel);

 System.out.println("—————————————————————————");

 dListItem = new MQDistributionListItem[mqArguments.length];

 mqOperations(mqArguments);

 }

 catch (Exception exp)

 {

 System.out.println("error in mqInit....\n");

 exp.printStackTrace();

 }

 }

 private void mqOperations(String[] qNames)

 { // connect, open & put-distribution list, close & disconnects

 try

 {

 if (mqConnect() == true)

 { // queue manager connection

 // opens the queue & puts

 mqOpen(qNames);

 // close the queue

 mqClose();

 // disconects the queue manager

 mqDisconnect();

 }// end of if

 }

 catch (Exception exp)

 {

 System.out.println("error in mqOperations.....");

 exp.printStackTrace();

 }

 } //mqOperations ends here

 37© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 private boolean mqConnect()

 { // Connection to the queue manager

 try

 {

 MQEnvironment.hostname = hostName;

 MQEnvironment.channel = channel;

MQEnvironment.port = Integer.parseInt(port);

 System.out.println(hostName + " ————— " + channel +

 " ————— " + port);

 mqQueueManager = new MQQueueManager(qmgrName);

 System.out.println("Queue manager : " + qmgrName +

 " connect successful ");

 return true;

 }

 catch (MQException mqExp)

 {

 System.out.println("error in queue manager connect....");

 System.out.println("QMGR Name : " + qmgrName);

 System.out.println("CC : " + mqExp.completionCode);

 System.out.println("RC : " + mqExp.reasonCode);

 return false;

 // if connects fails it shouldn't procedure further...

 }

 catch (Exception exp)

 {

 System.out.println("error in queue manager connect");

 exp.printStackTrace();

 return false;

 }

 }

 private void mqOpen(String[] queueNames)

 { // opens the distribution list and put the message.

 // put message options

 MQPutMessageOptions putMessageOptions = new MQPutMessageOptions();

 try

 {

 // distribution list

 for (int i=Ø; i < queueNames.length ; i++)

 {

 dListItem[i] = new MQDistributionListItem();

 dListItem[i].queueName = queueNames[i] ;

 }

 // open options

 38 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 int openOption = Ø;

 openOption = MQC.MQOO_OUTPUT |

 MQC.MQOO_FAIL_IF_QUIESCING ;

 // open the distribution lists - queue(s)

 distList =

mqQueueManager.accessDistributionList(dListItem, openOption);

System.out.println("queue(s) open for distribution list successful...");

 System.out.println("number of successful open : " +

 distList.getValidDestinationCount());

 System.out.println("number of open failed : " +

 distList.getInvalidDestinationCount());

 MQMessage message = new MQMessage(); //for message

 // set the message formate to String

 message.format = MQC.MQFMT_STRING;

 try

 {

 //for capturing the input (message) from the command line

 // from user

 BufferedReader bufRead;

 InputStreamReader inStmRead;

 inStmRead = new InputStreamReader(System.in);

 bufRead = new BufferedReader(inStmRead);

 String putMessage = "";

 System.out.println("Enter the message to be distributed to the

 queue(s)....");

 //putting the message into the distribution list - queue(s)

 putMessage = bufRead.readLine();

 message.clearMessage();

 message.writeString(putMessage);

 distList.put(message, putMessageOptions);

 System.out.println("put message successful... ");

 System.out.println("number of successful put : " +

 putMessageOptions.knownDestCount);

 System.out.println("number of unsuccessful put : " +

 putMessageOptions.invalidDestCount);

 System.out.println("number of unknown (remote) destination count : "

 + putMessageOptions.unknownDestCount);

 } //end of try

 catch (IOException e)

 {

 System.out.println("IOException during put: " + e.getMessage());

 39© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

 } //end of catch

 }

 catch (MQException mqExp)

 {

 System.out.println("error in distribution queue - open & put");

 System.out.println("CC : " + mqExp.completionCode);

 System.out.println("RC : " + mqExp.reasonCode);

 System.out.println("number of put failed : " +

 putMessageOptions.invalidDestCount);

 System.out.println("number of successful put : " +

 putMessageOptions.knownDestCount);

 System.out.println("number of unknown (remote) destination count : " +

 putMessageOptions.unknownDestCount);

 // MQRC_MULTIPLE_REASONS - multiple reasons

 if (mqExp.reasonCode == 2136)

 {

 for (int i=Ø;i<dListItem.length;i++)

 {

 if (dListItem[i].completionCode != Ø)

 {

 System.out.println("Queue name : " +

 dListItem[i].queueName);

 System.out.println("Reason code : " +

 dListItem[i].reasonCode);

 } // end of inner if

 } // end of for loop

 } // end of if - reason code 2136

 } // end of catch - MQException

 } //end of mqOpen

 private void mqClose()

 { // close the queue

 try

 {

 distList.close();

 System.out.println("Close queue successful.....");

 }

 catch (MQException mqExp)

 {

 System.out.println("Error in closing queue");

 System.out.println("Queue Name : " + qName);

 System.out.println("CC : " + mqExp.completionCode);

 System.out.println("RC : " + mqExp.reasonCode);

 }

 } // end of mqClose

 private void mqDisconnect()

 40 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

 { // disconnect to queue manager

 try

 {

 mqQueueManager.disconnect();

 System.out.println("Queue manager : " + qmgrName + "

 disconnect successful ");

 }

 catch (MQException mqExp)

 {

 System.out.println("Error in queue manager disconnect....");

 System.out.println("QMGR Name : " + qmgrName);

 System.out.println("CC : " + mqExp.completionCode);

 System.out.println("RC : " + mqExp.reasonCode);

 }

 } // end of mqDisconnect

}

The following classes are used to create distribution lists:

• MQQueueManager

• MQQueue

• MQMessage

• MQDistributionList

• MQDistributionListItem

• MQPutMessageOptions

• MQException.

MQDISTRIBUTIONLIST

A distribution list represents a set of open queues to which
messages can be sent using a single call to the put method.
Methods getInvalidDestinationCount and
getValidDestinationCount are used for determining the successful
opens:

• GetInvalidDestinationCount returns the number of items in
the distribution list that failed to open successfully.

• GetValidDestinationCount returns the number of items in the
distribution list that were opened successfully.

 41© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

MQDISTRIBUTIONLISTITEM

An MQDistributionListItem represents a single item (queue)
within a distribution list. Variables are completionCode,
queueManagerName, queueName, and reasonCode:

• completionCode – the completion code resulting from the
last operation on this item. If it was an open operation, the
completion code relates to the opening of the queue. If it was
a put operation, the completion code relates to the attempt
to put a message on to this queue.

• queueName – the name of the queue to be used in the
distribution list.

• reasonCode – the reason code resulting from the last
operation on this item. If it was an open operation, the reason
code relates to the opening of the queue. If it was a put
operation, the reason code relates to the attempt to put a
message onto this queue.

MQPUTMESSAGEOPTIONS

This class contains options that control the behaviour of
MQQueue.put. The following fields in the MQPMO are rendered
as the member variables knownDestCount, unknownDestCount,
and invalidDestCount in the MQPutMessageOptions class:

• knownDestCount – an output field set by the queue manager
to the number of messages that the current call has sent
successfully to queues resolving to local queues.

• invalidDestCount – an output field set by the queue manager
to the number of messages that could not be sent to queues
in a distribution list. The count includes queues that failed to
open as well as queues that were opened successfully, but
for which the put operation failed.

• unknownDestCount – an output field set by the queue
manager to the number of messages that the current call has
sent successfully to queues resolving to remote queues.

 42 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

For example:

1 If the queue resolves to a local queue, knownDestCount is
set to 1 and the other two count fields are set to 0.

2 If the queue resolves to a remote queue, unknownDestCount
is set to 1 and the other two count fields are set to 0.

These fields are primarily intended for use with distribution lists.

MQEXCEPTION

An MQException is thrown whenever a WebSphere MQ error
occurs. Variables are completionCode and reasonCode.

• completionCode – gives the completion code of the MQ call
made.

• reasonCode – describes the error.

Example 1 output:

> java MQMsgDistribution LOCALQ2 REMOTEQ2 LOCALQ3

The message is sent to two queues (two local and one remote

Figure 1: Example 1 output

 43© 2004. Reproduction prohibited. Please inform Xephon of any infringement.

queue).

Figure 1 shows that the local queue put is successful:

number of successful put : 2

The remote queue put is successful:

number of unknown (remote) destination count : 1

Example 2 output:

> java MQMsgDistribution LOCALQ2 REMOTEQ2 LOCALQ3

The message is sent to two queues (two local and one remote
queue).

Figure 2 shows that the local queue put is successful:

number of successful put : 1

The second local queue put failed:

number of put failed : 1

Queue name : LOCALQ3

Reason code : 2051 (MQRC_PUT_INHIBITED)

The remote queue put is successful:

Figure 2: Example 2 output

 44 © 2004. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Figure 3: Example 3 output

number of unknown (remote) destination count : 1

Example 2 output:

> java MQMsgDistribution LOCALQ2 REMOTEQ2 LOCALQ3

The message is sent to two queues (two local and one remote
queue).

Figure 3 shows that the local queue put failed:

number of put failed : 2

Queue name : LOCALQ2

Reason code : 2053 (MQRC_Q_FULL)

Queue name : LOCALQ3

Reason code : 2051 (MQRC_PUT_INHIBITED)

The remote queue put is successful:

number of unknown (remote) destination count : 1

Balaji SR
MQ Administrator
eFunds International (India) © Xephon 2004

MQ news

webMethods has announced that IBM
technology users can extend the ROI of their
existing investments by leveraging
webMethods’ standards-based integration
products. webMethods also announced that it
has joined IBM’s PartnerWorld program to
better support customers using IBM’s software
and hardware, especially those running Linux on
mainframes.

webMethods offers a product set that allows
customers to access mainframe data through a
variety of methods, all of them non-invasive to
the mainframe applications. The webMethods
Enterprise Services Platform is able to easily
expose these integrations as Web services,
allowing customers to incorporate these critical
mainframe assets into service-oriented
architecture initiatives without the need for
extensive coding or development.

webMethods provides strong integration
capabilities to IBM WebSphere Application
Server and WebSphere MQ.

For further information contact:
webMethods, 3930 Pender Drive, Fairfax, VA
22030, USA.
Tel: (703) 460 2500.
URL: http://www.webmethods.com/meta/
default/folder/0000003377?hiddenRequest=
true&pressReleaseDetails_param0=6290.

* * *

ILS Technology has introduced xCoupler, a
new turnkey solution that enables industrial
manufacturers to connect logic controllers on
the factory floor directly into the company’s
message queueing or database systems. This
product is designed to replace the existing but

more expensive and problematic use of personal
computers (PCs) put in place just to handle logic
controller device drivers and the resulting data
manipulation to multiple systems in an
enterprise.

xCoupler MQLink links LOGIC
CONTROLLER data to WebSphere MQ and
Microsoft Message Queuing (MSMQ).

For further information contact:
ILS Technology, 5300 Broken Sound Blvd,
Suite 150, Boca Raton, FL 33487, USA.
Tel: (561) 982 9898.
URL: http://ilstechnology.com/products/
xCoupler.html.

* * *

ICEsoft Technologies has announced that
Triversity has adopted ICEbrowser as its
primary HTML rendering engine for
Transactionware Enterprise.

Transactionware Enterprise is a J2EE solution
for point of sales (POS) and point-of-interaction
applications in the retail enterprise. Both
ICEbrowser and Triversity Enterprise
Framework fully integrate with IBM’s J2EE
infrastructure - WebSphere Application Server
5, WebSphere MQ, and DB2 UDB.

For further information contact:
ICEsoft Technologies, Suite 300, 1717 10th St
NW, Calgary, Alberta T2M 4S2, Canada.
Tel: (877) 263 3822.
URL: http://www.icesoft.com/products/
icebrowser.html.

* * *

x xephon

	MQ Messaging using SQL
	Finding out remote queue manager names
	Monitoring WebSphere MQ Integrator Broker message flows
	Using the distribution list to send a message to multiple destinations
	MQ news

