August 2005

In this issue

3 Access RACF data using LDAP
In just five steps

5 RACE in focus — finding
redundant RACF groups

10 ICSF events reporting
48 RACF 101 — a RACF quiz

52 Querying and reporting the
RACF database

/4 RACF and encryption
/6 RACF news

© Xephon Inc 2005

AE:PUBLICATION

Current Support

Xephon magazine issues are now supported at www.cbttape.org.

Please go to www.cbttape.org if you have any support questions.

RACF Update

Published by
Xephoninc

PO Box 550547
Dallas, Texas 75355
USA

Phone: 214-340-5690
Fax: 214-341-7081

Editor
Trevor Eddolls
E-mail: trevore@xephon.com

Publisher
CalinSmith
E-mall:info@xephon.com

RACF Update on-line

Code from RACF Update, and complete
issues in Acrobat PDF format, can be
downloaded from http://www.xephon.com/
racf; youwill need to supply aword fromthe
printedissue.

Subscriptions and back-issues

A year’ ssubscription to RACF Update (four
quarterly issues) costs$290.00intheUSA and
Canada; £190.00 in the UK; £196.00 in
Europe; £202.00inAustralasiaand Japan; and
£200.50 elsewhere. The price includes
postage. Individual issues, starting with the
August 2000issue, areavail ableseparately to
subscribersfor $72.75(£48.50) eachincluding

postage.

Disclaimer

Readers are cautioned that, although the
informationinthisjournal ispresentedingood
faith, neither X ephon nor the organi zationsor
individuals that supplied information in this
journal give any warranty or make any
representationsastotheaccuracy of thematerial
itcontains. Neither X ephonnor thecontributing
organizationsor individua sacceptany ligbility of
any kindhowsoever arisingout of theuseof such
meateria . Readersshoul d satisfy themsel vesasto
the correctness and relevance to their
circumstancesof al advice, information, code,
JCL, and other contents of thisjournal before
makingany useof it.

Contributions

When Xephon is given copyright, articles
published in RACF Update are paid for at the
rateof $160 (£100 outsideNorth America) per
1000wordsand $80 (£50) per 100linesof code
for thefirst 200 linesof origina material. The
remainingcodeispaidfor attherateof $32 (£20)
per 100 lines. To find out more about
contributing anarticle, without any obligation,
please download a copy of our Notes for
Contributorsfromwww.xephon.com/nfc.

© XephonInc2005. All rightsreserved. Noneof thetextinthispublication may bereproduced,
storedinaretrieval system, or transmittedinany formor by any means, without theprior permission
of thecopyright owner. Subscribersarefreeto copy any codereproducedinthispublicationfor use
intheir owninstallations, but may not sell suchcodeor incorporateitinany commercia product. No
part of thispublicationmay beusedfor any formof advertising, salespromotion, or publicity without

thewritten permissionof thepublisher.

Printed in England.

Access RACF data using LDAP in just five steps

This article is aimed at beginners who wish to quickly set up
an LDAP server on z/OS to make RACF data available to
LDAP clients. RACF data (such as user profiles, group profiles,
and resources profiles) can be added/altered from LDAP
clients with the proper user credentials using the SDBM
database of the LDAP server implementation on z/OS.

IMPLEMENTATION STEPS

It is assumed that RACF is already installed and up and
running. Only the simplest of LDAP SDBM implementations
has been considered, and the version considered is z/OS 1.6.
Definitions in the steps may vary from version to version. The
reader’s discretion is advised while applying the steps below
at their installation:

e Step 1-copy the configuration files from the /usr/Ipp/ldap/
etc directory to the /etc/Idap.

e Step 2 — customize the LDAP server configuration file,
slapd.conf, in /etc/Idap. This file is divided into sections,
such as top section, SDBM section, TDBM section, etc.
For this implementation, only the top section and SDBM
section are relevant and would need editing.

A couple of definitions are required in the top section to
specify on which port the LDAP server would be listening
and who would be the LDAP server administrator. In the
sample definition below, the LDAP server would be listening
on port 389 and RACF userid LDAPADM would be the
administrator:

listen Tdap://:389
adminDN "racfid=1dapadm, profiletype=user, sysplex=mvsl"

A couple of definitions are also required in the SDBM
section to inform the LDAP server that SDBM is enabled

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 3

and to specify its base DN. In the sample definition below,
the base DN is sysplex=mvs1.:

database sdbm GLDBSDBM
suffix "sysplex=mvsl"

e Step 3 — create the required started PROC for the LDAP
server from sample member LDAPSRV in
HLQ.SGLDSAMP. A sample JCL PROC is given below:

//LDAPSRV ~ PROC REGSIZE=64M,

// PARMS="",

// OUTCLASS='A"

//G0 EXEC PGM=GLDSLAPD,REGION=®SIZE,TIME=1440,
// PARM=("'/&PARMS >DD:SLAPDOUT 2>&1')

//STEPLIB DD DISP=SHR,DSN=SYS1.SIEALNKE
//SLAPDOUT DD SYSOUT=&OUTCLASS
//SYSOUT DD SYSOUT=&O0UTCLASS
//SYSUDUMP DD SYSOUT=&OUTCLASS
//CEEDUMP DD SYSOUT=&OUTCLASS

« Step 4 — configure RACF for the LDAP server. A RACF
userid would be required to run the LDAP server. In the
sample below, the RACF group LDAP and userid
LDAPSRYV are created:

LDAP SUPGROUP(SYS1) OMVS(GID(5))

ADDUSER LDAPSRV NOPASSWORD DFLTGRP(LDAPGRP)
OMVS(UID(5) PROGRAM ('/bin/sh'))

The userid that is going to run the LDAP server as a
started task should be permitted in the BPX.SERVER
facility class:

PERMIT BPX.SERVER CLASS(FACILITY) ID(CLDAPSRV) ACCESS(UPDATE)
SETROPTS RACLIST(FACILITY) REFRESH

For the start-up procedure, the started class profile should
also be defined as below:

DEFINE STARTED LDAPSRV.** STDATA(CUSER(LDAPSRV))
SETROPTS RACLIST(STARTED) REFRESH

e Step 5 — now LDAPSRYV is ready to start. Issue the
command START LDAPSRYV to start the LDAP server.

Arun Kumaar R
MVS Systems Programmer (India) © Xephon 2005

4 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

RACF in focus — finding redundant RACF groups

This is a regular column focusing on specific aspects of RACF.
In this issue, we will discuss the problem of redundant RACF
groups in the RACF database, and look at a programmed
approach to addressing this issue.

Most RACF databases have all kinds of redundancies. These
crop up as a result of the daily RACF administrative work, and
there is not much we can do about it except find ways
(hopefully, automated) to address the issue.

Keeping your RACF database free from redundancies is in
your own best interest. Not only will it satisfy the auditors, it will
also simplify and reduce the daily RACF administrative
workload. If it is not done regularly, the problem will grow and
become unmanageable in the future.

What redundancies? Just to mention a few... there are the
userids of users who have left the company; then there are
resource profiles that no longer make sense; you may even
have CICS transaction profiles for transactions that don’t exist
in CICS any more; and dataset profiles that were created at
some time in the past for datasets that no longer exist; and
most installations will have redundant RACF groups.

In this article we will look at the last issue, that of redundant
RACF groups. These RACF groups were created at one time
for a reason, but may no longer be useful, or even valid.

DEFINITION OF A REDUNDANT RACF GROUP

How can we define a redundant RACF group? We can safely
say that a RACF group is redundant if all these conditions are
met:;

1 It has no users connected to it. The normal RACF
administrative process of connecting and removing userids
from groups can sometimes leave a RACF group with no
users connected.

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 5

2 Ithas no sub-groups. Of course, if a RACF group has sub-
groups then it is not redundant; even though it may not
have users connected to it, it cannot be deleted.

3 Itis not a dataset High-Level Qualifier (HLQ). If it is, then
it may meet the two conditions above, but it is still not
redundant, because in RACF it is a requirement that all
dataset high-level qualifiers be defined as RACF groups.

Of course, even when all these conditions are met, a RACF
group may still not be redundant. We can never say for sure,
because it could be a newly-defined group, and user
connections may have been planned for the future. But if we
can somehow list all groups in the RACF database that meet
the above criteria, we can then do a further manual check to
make sure the groups are indeed redundant before deleting
them.

AUTOMATED SOLUTION

Proposed below is an automated method that will identify all
RACF groups meeting the three criteria listed above. This
process can be run once a month to:

1 Identify all potentially redundant RACF groups.

2 Review manually the output list to verify that the groups
are indeed redundant.

3 Execute the delete commands generated by the REXX
routine to remove the redundant groups.

You will find that you will catch many redundant groups the first
time you run this process. After that, on an on-going basis, you
will find only a few.

The solution requires a REXX routine to be run in batch mode.
The REXX routine uses RACF database unload records. It
requires as its input sorted lists of all type 100, 101, and 102
records from the RACF database. You should already have
these datasets created nightly. If not, your systems
programmers can help you to create them.

6 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Presented below is the JCL needed to run the REXX routine,
followed by the REXX routine itself.

BATCH JCL

//REDGRP JOB (..),'YOUR NAME', MSGCLASS=X,CLASS=X,NOTIFY=&SYSUID
//STEP@1 EXEC PGM=IKJEFT@1,REGION=2M

//SYSTSPRT DD SYSOUT=*

//INDSNHLQ DD DSN=HLQ.LIST,DISP=SHR

//INDBU1@® DD DSN=REC.TYPE1@@,DISP=SHR

//INDBU1@#1 DD DSN=REC.TYPE1@1,DISP=SHR

//INDBU1@2 DD DSN=REC.TYPE1@2,DISP=SHR

//0UTGROUP DD DSN=OUTPUT.FILE.PDS(JUN@5),DISP=SHR

//SYSTSIN DD *

REDUNDGP

/*

Input files:

INDSNHLQ — this DDname points to the file containing a
sorted list of all valid dataset high-level qualifiers at your
installation. The dataset high-level qualifiers start at column
15.

INDBU100 - this DDname points to the sorted file
containing all type 100 records from the RACF unloaded
database.

INDBU101 — this DDname points to the sorted file
containing all type 101 records from the RACF unloaded
database.

INDBU102 — this DDname points to the sorted file
containing all type 102 records from the RACF unloaded
database.

Output file:

OUTGROUP - this DDname points to the output file that
will contain the list of possible redundant groups. The
dataset is a PDS, with a member name reflecting the
month on which the list was produced.

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 7

THE REXX ROUTINE

This REXX routine (REDUNDGP) generates a list of potentially
redundant groups in dataset OUTPUT.FILE.PDS(JUNO5).
The list is as follows:

DELGRX GROUP1
DELGRX GROUP88

etc.

The program deliberately produces DELGRX commands
instead of the correct spelling DELGRP. This allows you time
to review the list, and verify that the group names are indeed
redundant before submitting them for deletion. It also prevents
accidental execution of the list.

Once you are satisfied that you are ready to remove the
redundant groups, change all DELGRX to DELGRP in a TSO
edit session.

/* REXX */
[R Rk kkkkkkhkkkhkkhkkhkkkhkkhkkhkkkhkkhkkkkkkhkkkkkkhkkkkk /
/* NAME: REDUNDGP */
/* PURPOSE: THIS REXX WILL REPORT ON GROUPS THAT: */
/* 1 HAVE NO USERS CONNECTED, AND */
/* 2 HAVE NO SUB-GROUPS */

/***/

"EXECIO * DISKR INDSNHLQ (STEM INHLQ. FINIS)";
"EXECIO * DISKR INDBU1@@ (STEM IN1@@. FINIS)";
"EXECIO * DISKR INDBU1@1 (STEM IN1@1. FINIS)";
"EXECIO * DISKR INDBU1@2 (STEM IN1@2. FINIS)";
DO T =1 TO INHLQ.@

PARSE VAR INHLQ.I JUNKI 15 HLQGRP.I 23 JUNKZ
END

DO T =1 TO IN100@.0Q
PARSE VAR IN1@@.I JUNK1 6 GRP1@@.I 14 JUNK2
END

DO I =1 TO IN1@1.0
PARSE VAR IN1@1.I JUNK1 6 GRP1@1.I 15 ID1@1 23 JUNK2
END

DO I=1 TO IN1@2.0

PARSE VAR IN1@2.I JUNK1 6 GRP1@2.I 15 1ID1@2 23 JUNK2
END

8 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

DO J =1 TO 1IN10Q.0
DSNHLQ = 'NO'
DO K =1 TO INHLQ.@
IF GRP1@#@.J = fOLQGRP.K THEN DO

DSNHLQ = "YES'
K = INHLQ.O
END
END
IF DSNHLQ = 'NO'" THEN DO
DO L =1TO0 IN192.0
CONNECT = 'NO'
IF GRP10G.J = GRP1@42.L THEN DO
CONNECT = 'YES'
L = IN1p2.0
END
END
IF CONNECT = 'NO' THEN DO
DOM=1 TO IN1Q1.9Q
SUBGRP = "NO'
IF GRP1#@.J = GRP1@1.M THEN DO
SUBGRP = 'YES'
M= 1IN1O1.0Q
END
END
IF SUBGRP = 'NO' THEN DO
QUEUE 'DELGRX' GRP1@@.J
END
END
END
END
IF QUEUED() = @ THEN DO
QUEUE 'NO GROUPS TO REPORT'
END
"EXECIO * DISKW OUTGROUP (FINIS)";
EXIT

IN CONCLUSION

Removing redundant RACF groups is a useful exercise,
necessitated by the fact that daily RACF administration will
inevitably produce redundant groups.

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 9

Periodically running the REXX routine shown above is the
answer to automatically cleaning these redundant groups.

This process can be placed in your RACF ‘tool-kit’ along with
other aids to clean up other aspects of RACF redundancies.

Dinesh Dattani would welcome feedback, comments, and
queries about this column. He can be contacted at
dinesh123@rogers.com.

Dinesh Dattani
Mainframe Security Consultant
Toronto (Canada) © Xephon 2005

ICSF events reporting

INTRODUCTION

As the connectivity of computer networks and the quantity as
well as the value of information processed by systems
increases, concerns have grown about the threat of disclosure
or modification of sensitive data, either accidentally or
intentionally. In addition to that, because of the pervasive use
of personalidentification numbers atautomated teller machines
and point-of-sale terminals, and the increasing use of electronic
funds transfer among banks and wholesale institutions, the
financial industry has become more security conscious and
has started to demand high-performance and high-security
computer systems to support many types of financial
transaction. As a result, the efficient economical protection of
enterprise-critical information has become increasingly
important in many diverse application environments.

Therefore it was not a surprise that computer users have
demanded high-speed cryptographic functions for bulk
encryption to provide network and database security. The

10 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

protection required to conduct commerce on the Internet,
provide data confidentiality, and authenticate individuals can
be provided only by cryptographic services and techniques.
Cryptography is an effective method of protecting information
while it is being transmitted through a communication link or
while it is stored in a medium vulnerable to unauthorized
access. Cryptographic operations can also be used for
processing message authentication codes and personal
identification numbers in a financial-transaction environment.
The cryptographic feature is secure high-speed hardware that
performs the actual cryptographic functions. The cryptographic
feature available to your applications depends on the server
or processor hardware. The cryptographic hardware currently
available comes in two forms: cryptographic coprocessors
and cryptographic accelerators.

PCI Cryptographic Coprocessor (PCICC) is a data encryption
coprocessor card designed to provide data security functions.
It is attached via an internal PCI (Peripheral Component
Interconnect) bus to the system. The card operation is
controlled by an on-board 486-type processor. It has special
hardware for various cryptographic operations (Rivest-Shamir-
Adleman (RSA) algorithm, DES, or Secure Hash Algorithm 1
(SHA-1)). Other cryptographic algorithms are carried out
using the on-board processor. The card works in parallel and
asynchronously to the zSeries processors. The PCICC card is
aimed at high-security environments where the keys are
encrypted when outside the protected card. It is mainly used
for RSA public key algorithm operations including RSA key
generation, special PIN operations, and special user
cryptographic functions (using the User Defined Extension
(UDX) capability of the card).

PCI Cryptographic Accelerator (PCICA) is a cryptographic
hardware accelerator card that is attached via the PCI bus to
the system. This card provides a competitive option to
customers who do not need the high-security environment of
the PCICC, but need high cryptographic performance for RSA
public key algorithms that may be required in Web server

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 11

applications. The PCICA provides clear key RSA operations
with a modulo length of 1024 bits or 2048 bits. Two algorithms
are available, Modular Exponentiation (ME) and Chinese
Remainder Theorem (CRT) for both key lengths. The card has
five hardware engines that can work in parallel and
asynchronously to the zSeries processors. There are always
two cards packaged in one adapter that plugs into the system
board. This allows for a scalable and cost-effective system
performance in Web server applications.

The Integrated Cryptographic Service Facility (ICSF) is a
software element of z/OS that works with the cryptographic
hardware and the z/OS Security Server to provide secure,
high-speed cryptographic services in the z/OS environment,
ICSF provides many cryptographic services to protect your
data. Some of these services are authentication, digital
signatures, encryption, and key protection:

e Authentication is a process that calculates a Message
Authentication Code (MAC) for some given data. The
MAC provides a means for the receiver to verify that the
data was not changed after it was authenticated. For
example when a bank sends an Electronic Funds Transfer
transaction to another bank, the MAC can be verified by
the receiving bank to ensure that the account number and
amount have not been changed in transit, whether by
accident or mischief.

* Digital signatures are similar to authentication but differ
from authentication in that you can guarantee the sender
of the message. Algorithms supported for digital signatures
are RSA and the DSS (Digital Signature Standard).

 Encryption is a process that scrambles sensitive data so
unauthorized people cannot read it. Account numbers,
personal medical information, and other private company
or customer information are examples of typically encrypted
information. Supported algorithms, in order of strength,
include DES, Triple-DES, and AES.

12 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

ICSF also provides the APIs by which applications request the
cryptographic services. Thus, ICSF shields the complexity of
the hardware communication from the user. On the other
hand, the ICSF provides administrative and application
interfaces to allow the installation to generate, manage, and
exchange cryptographic keys. ICSF can also help you to
perform other functions related to data integrity and digital
signatures. With ICSF, one can, for example, change the
master encryption key and update other keys without disrupting
service to applications currently using those keys.

MONITORING AND REPORTING

ICSF records certain ICSF events in the SMF dataset. ICSF
also sends messages that are generated during processing to
diagnostic datasets and consoles. The SMF recording and
messages help you detect problems and track events. Let us
now describe the events that ICSF records in the SMF record.

RMF reporting

While ICSF is running, one can use RMF and SMF to monitor
certain events and operations. For example, RMF provides
performance monitoring of installed cryptographic hardware
in the Postprocessor Crypto Hardware Activity report. This
report is based on SMF record type 70, subtype 2. In order to
start gathering cryptographic hardware performance data,
RMF Monitor | control statement CRYPTO should be specified.
In order to evaluate the utilization of each configured crypto
card, three kinds of metrics are provided: requestrate (requests
executed per second), exec time (the average amount of time
(in ms) for a single request), and utilization % (busy time /
interval time * 100). In addition to standard encrypting/
decrypting requests, key generation requests are measured
separately. For PCICA cards, a drill-down into special types of
operations is available with both 1024- and 2048-bit format
ME and CRT. The above-mentioned report also separately
provides the ICSF statistics about specific types of services.

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 13

This data is formatted on the bottom part of the report: using
data encryption standard to encipher and decipher (DES),
generating and verifying Message Authentication Codes
(MAC), using public Hash functions (HASH) and translating
and verifying Pins (PIN). See z/OS RMF Report Analysis
(SC33-7991) for full descriptions of the fields in this report.

Starting with z/OS V1R2, RMF adds more transparency in the
area of cryptographic processing by reporting Crypto Using
and Delay values in the Goals vs Actuals section of the
postprocessor WLMGL report. This was done by WLM'’s
sampling address spaces or enclaves that are using or waiting
for crypto-related hardware. In WLM goal mode, SMF type 72,
subtype 3 reports on each service or report class in the active
WLM policy. In the Service/Report Class Period Data section
there are fields reporting cryptographic coprocessor usage
and delays. Tasks that are found to be using or waiting for a
crypto processor (synchronous or asynchronous) are reported
on a service or report class period level.

There are three different types of delay/using samples:

e CAM Crypto samples (CAM) —a TCB was found executing
on or waiting for a Cryptographic Asynchronous Message
processor.

 Feature Queue sample (FQ) —a TCB was found executing
on or waiting for a processor feature queue associated
with a CPU.

AP Crypto samples (AP) —a TCB was found executing on
or waiting for a cryptographic Adjunct Processor.

While CAM and FQs are related to general purpose processors
(CPs) that are assigned for crypto work, APs are related to PCI
Crypto Coprocessors. Since the WLMGL report does not
show the using and delay metrics on type granularity, the
following overview criteria are introduced for more detailed
reporting: CAPUSGP (Crypto CAP Using%), CAPDLYP (Crypto
CAP Delay%), FQDLY (Crypto FQ Delay%), APUSGP (Crypto
AP Using%), APDLYP (Crypto AP Delay%), CRYUSGP (Crypto
Overall Using%), and CRYDLYP (Crypto Overall Delay%).

14 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

ICSF SMF records

As already stated, the main API to exploit the zSeries hardware
cryptographic coprocessors is ICSF. ICSF dynamically routes
the requests to crypto hardware, transparently to the
application. Application designers cannot directly specify which
coprocessor is to be used. ICSF makes the decision based on
the required functions, which coprocessor type supports it,
and performance considerations. The ICSF APl is available to
Assembler programs and to high-level languages as well.
Note that the ICSF API is also accessible to REXX programs
using a link ‘stub’. The following IBM program products that
call ICSF services imply the use of operational keys encrypted
under a Master Key or a Key-Encrypting-Key. Therefore, they
require at least one cryptographic coprocessor to be in
operation for the z/OS image. In z/OS V1R4, the SSL-enabled
servers (which therefore use System SSL) are IBM HTTP
server, CICS Transaction System and CICS Transaction
Gateway, TN3270 server, FTP server and client, LDAP server
and client, WebSphere Application Server, and WebSphere

MQ.

If one is eager to see who has been using ICSF services, SMF
record type 30 (Common Address Space Work) field
SMF30CSC in the Processor Accounting Section should be
consulted because it contains the number of cryptographic
instructions executed on behalf of the caller (within the caller’s
address space). In order to get that data, ICETOOL was used
to select and display SMF type 30 records. Run this job to
determine what offsets to use for the next job:

//* OFFSET3@ JCL: run this job to

//* find out what SMF record 30/4 offsets
//* to use for the next job.

//* Identification section (SMF3@IOF)

//* Processor section (SMF3@COF)

//T00L1 EXEC PGM=ICETOOL

//DFSMSG DD SYSOUT=*

//RAWSMF DD DSN=your.smf.weekly.ds,DISP=SHR

//SMFOFF DD DSN=&&SMFOFF,DISP=(,PASS),SPACE=(CYL,(50,25)),
// UNIT=SYSDA,DCB=(RECFM=VB,LRECL=32756 ,BLKSIZE=0)

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 15

//SRTICNTL DD *
OPTION DYNALLOC,VLSHRT,STOPAFT=1@,SPANINC=RC4
INCLUDE COND=(6,1,BI,EQ,X'1E',AND,23,2,BI,EQ,X'00@04")
SORT FIELDS=(7,4,FI,A)
/*
//TOOLMSG DD SYSOUT=*
//REPORT DD SYSOUT=*
//TOOLIN DD *
SORT FROM(RAWSMF) TO(SMFOFF) USING(SRT1)
DISPLAY FROM(SMFOFF) LIST(REPORT) -
TITLE(C'SMF Record 30/4 Offsets display') -
PAGE DATE TIME BLANK -
* Use values displayed for a, b in the next ICETOOL job

HEADER('ID. Sec. (a)') ON(33,4,FI) -
HEADER('Proc Sec.(b)') ON(57,4,FI)

/*

//*

Output from this job looks like:

SMF Record 3@/4 0ffsets display

ID. Sec.(a) Proc Sec.(b)

Use a=214 and b=470 on the next ICETOOL job:

//SORT1 EXEC PGM=ICETOOL

//DFSMSG DD SYSOUT=*

//SRT1IN DD DSN=your.smf.weekly.ds,DISP=SHR

//SRT1INT DD DSN=&&SMF3@0UT,DISP=(,PASS),SPACE=(CYL,(50,25)),
// UNIT=SYSDA,DCB=(RECFM=VB,LRECL=32756,BLKSIZE=0)
//SRTICNTL DD *

OPTION DYNALLOC,VLSHRT,SPANINC=RC4

Run previous icetool job (OFFSET3@) to get values for a, b
and substitute with the appropriate values

SMF3@LEN (RDW) @+1=1 start of record

SMF3@TME (TIME) 6+1=7 start of record

SMF3@DTE SMF record write date: 10+1

Identification Section offset (a): 214 + 1 = 215
off Tlen filed

@+215: 215 8 SMF3@JBN - Job or session name.

8+215: 223 8 SMF30PGM - Program name

32+215: 247 8 SMF3@JNM - JES job identifier.

Processor Accounting Section offset (b): 470 + 1 = 471
off len filed

4+471: 475 4 SMF3@CPT - CPU time under the TCB

8+471: 479 4 SMF3@CPS - CPU time under the SRB

* %k ok ok ok kX ok X X X X ok X ok X

16 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

* 56+471: 527 4 SMF3@CSC - ICSF/MVS service count

*
INCLUDE COND=(6,1,BI,EQ,X"'1E',AND,23,2,BI,EQ,X'0004",

AND,527,4,BI,GT,X'00000000")

SORT FIELDS=(11,4,FI,A,7,4,FI,A)

/*

//TOOLMSG DD SYSOUT=*

//REPORT DD SYSOUT=*

//TOOLIN DD *
SORT FROM(SRTIIN) TO(SRTIINT) USING(SRTL1)
DISPLAY FROM(SRTI1INT) LIST(REPORT) -
TITLE(C'ICSF/MVS Service count') -
PAGE DATE TIME BLANK -

HEADER('Date") ON(11,4,DT1,E'9999/99/99') -
HEADER('Time") ON(@7,4,TM1,E'99:99:99") -
HEADER('JES2 #') ON(247,8,CH) -
HEADER('Job name"') ON(215,8,CH) -
HEADER('Program') ON(223,8,CH) -
HEADER('ICSF count') ON(527,4,FI) -
HEADER('TCB time") ON(475,4,FI,F1) -
HEADER('SRB time') ON(479,4,FI,F1)
/*

This simple ICETOOL report (below) provides only a summary
list of jobs/tasks using ICSF services. However, please note
that each time ICSF issues a hardware instruction, this count
Is incremented. This means that in some cases, like bulk
encryption, the count would be incremented by more than 1,
and for other operations, like a PIN verification, the count
would increment by 1. There is no correlation between the
‘number of cryptographic instructions’ and the number of
service calls.

Date Time JES2 # Job name Pgm ICSF count TCB time SRB time
2003/07/16 09:14:32 STCP6982 CSFSTART CSFMMAIN 3575 0.37 @.07
2003/07/28 ©09:17:09 STC@7333 PKISERVD IKYPKID 133 506.25 5.52
2003/07/29 12:4@:57 STC@7892 IMWEBSRV IMWHTTPD 1572 69.41 5.53
2003/09/12 ©@8:33:57 STCO@256 IMWEBSRV IMWHTTPD 1684 66.96 5.37
2003/10/05 13:38:49 STC@81@3 BBODMNB BBODAEMN 9 @.53 @.03
2003/1@/10 15:49:29 STC@8285 BBOS@AA1 BBOCTL 29 53.17 @.09
2003/1@/12 ©89:39:55 STC@8341 BB0OSAA1 BBOCTL 2528 153.05 @.27
2003/1@/12 10:22:39 STC@8360 BBOSAA1 BBOCTL 987 109.73 g.12
2003/1@/12 11:83:39 STC@8339 IMWEBSRV IMWHTTPD 311 74.35 5.95
2003/10/19 13:56:15 STCP8419 IMWEBSRV IMWHTTPD 2626 638.27 51.67
2003/10/19 13:56:57 STC@853@ BBODMNB BBODAEMN 9 1.09 @.22
2003/1@/19 13:57:02 STC@A8529 BBOS@A1 BBOCTL 8443 261.13 .61

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 17

ICSF uses SMF record type 82 to record certain ICSF events
and operations. Record type 82 contains a fixed header
section and subtypes. Each subtype contains information
about the event/operation that caused ICSF to write to the
SMF record:

18

Subtype 1 (ICSF Initialization) — when ICSF starts, ICSF
writes to subtype 1 after initialization is completed. This
subtype describes the values of installation options that
are specified in the installation options dataset.

Subtype 3 (ICSF Status Change) — ICSF writes to subtype
3 when processors are verified at initialization, after a
master key is set or changed, when ICSF switches from
stand-by mode to normal mode, or when a processor
comes on-line or off-line. When processor status changes,
subtype 3 gives the status of the processors still on-line.

Subtype 4 (Error Handling for Cryptographic Coprocessor
Feature) — ICSF writes to subtype 4 when the Coprocessor
Isin standby mode or when the Cryptographic Coprocessor
Feature detects tampering. The error conditions for
cryptographic feature failure is CC3, Reason Code 1, and
for cryptographic tampering is CC3 Reason Code 3.

Subtype 5 (Special Secure Mode Change) — ICSF writes
to subtype 5 when the status of the special secure mode
changes. ICSF also updates subtype 5 when the
Cryptographic Coprocessor Feature indicates that special
secure mode was required for an instruction, but was not
enabled.

Subtype 6 (Master Key Part Entry) — ICSF writes to
subtype 6 when master key parts are entered using a TKE
workstation and are processed using the TKE master key
entry ICSF panels.

Subtype 7 (Operation Key Part Entry) — ICSF writes to
subtype 7 when key parts are entered using a TKE
workstation and are processed using the operational key
entry ICSF panels.

© 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Subtype 8 (CKDS Refresh) — ICSF writes to subtype 8
when the in-storage CKDS is successfully refreshed.
ICSF refreshes the in-storage CKDS by reading a disk
copy of a CKDS into storage.

Subtype 9 (Dynamic CKDS Update) — ICSF writes to
subtype 9 when an application uses the dynamic CKDS
update services to write to the CKDS.

Subtype 10 (PKA Key Part Entry) — ICSF writes to subtype
10 when a clear key part is entered for one of the PKA
master keys, ie when you use the ICSF panels to enter
PKA master key parts.

Subtype 11 (Clear New Master Key Part Entry) — ICSF
writes to subtype 11 when a clear key part is entered for
the DES master key, ie when you use the ICSF panels to
enter new master key parts.

Subtype 12 (PKSC Commands) — ICSF writes to subtype
12 for each request and reply from calls to the CSFSPKSC
service by TKE.

Subtype 13 (Dynamic PKDS Update) — ICSF writes to
subtype 13 whenever the PKDS is updated by a dynamic
PKDS update service, ie when an application uses the
dynamic PKDS update services to change the PKDS.

Subtype 14 (PCI Cryptographic Coprocessor Clear Master
Key Entry) — ICSF writes to subtype 14 when a clear part
Is entered for any of the PCI Cryptographic Coprocessor
master keys, ie whenever you use ICSF panels to update
SYM-MK and ASYM-MK in the new master key register in
a PCI Cryptographic Coprocessor.

Subtype 15 (PCI Cryptographic Coprocessor Retained
Key Create or Delete) — ICSF writes to subtype 15
whenever you create or delete a retained private key in a
PCI Cryptographic Coprocessor.

Subtype 16 (PCI Cryptographic Coprocessor TKE
Command Request or Reply) — ICSF writes to subtype 16

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 19

whenever a TKE workstation either issues a command
request to a PCI Cryptographic Coprocessor or receives
a reply response from a PCI Cryptographic Coprocessor.

Subtype 17 (PCI Cryptographic Coprocessor Timing) —
ICSF periodically records processing times for PCI
Cryptographic Coprocessor operations in subtype 17 to
provide some indication of PCI Cryptographic Coprocessor
performance.

Subtype 18 (PCIl Cryptographic Coprocessor
Configuration) — ICSF writes subtype 18 when a PCI
Cryptographic Coprocessor, PCIl Cryptographic
Accelerator, or PCI X Cryptographic Coprocessor is brought
on-line or taken off-line.

Subtype 19 (PCI X Cryptographic Coprocessor Timing) —
ICSF periodically records processing times for PCI X
Cryptographic Coprocessor operations (when a PCI X
Cryptographic Coprocessor operation begins or ends) in
subtype 17 to provide some indication of PCIl X
Cryptographic Coprocessor performance.

As already mentioned, the subtype 17 and 19 records have
timestamps that can be used to give an indication of how a
particular coprocessor is performing. By extracting the
timestamps from the records and calculating the elapsed time
for the card activity and the time for the data to get back to the
caller’'s address space, a picture can be drawn of how the
cards have processed over time.

| have extracted the following fields:

20

SMF82CTN - the timestamp just before queueing the
request to the coprocessor.

SMF82CTD - the timestamp just after dequeueing the
result from the coprocessor.

SMF82CTW —the timestamp just after returning the result
to the caller’'s address space

© 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

Extract of SMF 82 type 17

Observation

0 0.005 0.01 0.015 0.02 0.025 003
Response time

Figure 1. Coprocessor performance

Then | have calculated the following values:

e SMF82CTD - SMF82CTN - this approximates to the
response time from the card.

e SMF82CTW - SMF82CTD - this approximates to the time
taken to transfer the data back to the caller.

| have loaded the times produced into a spreadsheet, and
graphed the results (see Figure 1).

In this way, it is easier to spot trends. This graph is an extract
of data produced during test runs, and contains the card
response time data from 40 SMF type 82 records produced
over a period of 40 seconds. This shows that a lot of records
can be produced when the cards are being heavily used,
though the records themselves are quite small. The SMF
records contain the card serial number, function code, etc, so
furtherfiltering is possible. However, itis importantto remember
that these records are only periodic and not necessarily
regular, so the records do not provide an accurate time series
and are only representative of the overall activity. They may be
useful when trying to track delays, but this is not guaranteed.

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 21

Also, note that different function codes are recorded in these
records, each with different characteristics. As can seen from
the graph, some of them have much longer elapsed times than
others, in normal operation, so you need to ensure that you
are comparing the response times of the same functions. The
amounts of data being processed per operation will also affect
the elapsed times, but this is not recorded in the data. In
particular, since the RMF records are regularly spaced in time,
unlike the ICSF records, correlating the two types of data will
require some effort. One approach to correlating the data
involves grouping the ICSF records into the same time intervals
as reported in RMF, eg every five minutes, and averaging the
response times by card and function. In this way the variable
numbers of records produced can be reduced to fewer
observations. Any intervals without records can be assigned
zero values. This should then produce consolidated time-
sequenced values, which can then be compared against RMF
reports.

CODE

Based on the ICSF type 82 record description obtained from
its mapping macro (CSFSMF82, which resides in
SYS1.MACLIB), asample ICSF eventreportwriter was written.
Please note that there are/were several assembly errors in
CSFSMF82 macro (see APAR OW47627, OA02792, and
OW46414) so | would advise you to check the PTF database
for availability of the appropriate fix. In order to extract ICSF
event information from SMF data, | have constructed a three-
part job stream. In the first part (DUMP82), SMF records 82
are extracted from an SMF weekly dataset to a file that can be
used as a base of archived records. Please note that sorting
of SMF data may issue an error message (ICE204A), set a
return code of 16 and terminate if it detects an incomplete
spanned record. In order to overcome this potential obstacle,
DFSORTs SPANINC=RC4 option was used to remove the
incomplete spanned records. It should be noted that
SPANINC=RCO tells DFSORT (Release 14) to issue a warning

22 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

message, set a return code of 0 and eliminate all incomplete
spanned records it detects. Valid records (that is, complete
spanned records) are recovered and written to the output data
set, while SPANINC=RC4 does the same thing as
SPANINC=RCO, but with a return code of 4 instead of 0. The
shipped default is SPANINC=RC16. In the second step
(COPY82) previously extracted records (selection being
defined by INCLUDE'’s condition) are sorted and copied to a
file, which is then input to the analysis and reporting ICSF
REXX EXEC invoked in ICSF82 step.

Only one report is generated by this REXX EXEC — the ICSF/
MVS event report. The report provides information about the
event/operation that caused ICSF to write to the SMF record.
The REXX routine was modified to parse basic SMF type 82
subtype 17 data into a CSV format file for downloading to a
spreadsheet or database — perhaps the most amenable
medium for analysis. This dataset can then be transferred to
a PC using the transfer mechanism of your choice, for
example FTP or IBM PC 3270 file transfer. Ensure that the
data is transferred in ASCII mode. The data can then be
imported into the spreadsheet of your choice and manipulated
as required.

Sample JCL to execute SMF type 82 data extract and ICSF/
MVS event reporting:

//* UNLOAD SMF 82 RECORDS FROM VSAM OR VBS TO VB

//* Note: change the DUMPIN DSN=your.smfdata to be the name of
//* the dataset where you currently have SMF data being

//* recorded. It may be either SMF weekly dataset or an active
//* dump dataset. If you choose the Tatter, then prior to

//* executing this job, you need to terminate SMF recording
//* of the currently active dump dataset to allow the

//* unloading of SMF records.

//* Also, change the DCB reference to match the name of your
//* weekly SMF dump dataset.

* ok Ok F ok ok ¥ ¥

//DUMP82 EXEC PGM=IFASMFDP

//DUMPIN DD DISP=SHR,DSN=your.smfdata

//DUMPOUT DD DISP=(NEW,PASS),DSN=&&SMF820UT,UNIT=SYSDA,
// SPACE=(CYL,(2,2)),DCB=(your.smfweekly.dataset)
//SYSPRINT DD SYSOUT=*

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 23

//SYSIN DD *
INDD(DUMPIN,OPTIONS(DUMP))
OUTDD(DUMPOUT,TYPE(82))

/*

//* __ *
//* COPY VBS TO VB, DROP HEADER/TRAILER RECORDS, SORT ON DATE/TIME *
//* Note: change the SMF82 DSN=h1q.SMF82.DATA to the name of *
//* the dataset you'll use in the Tast step. *
//* __ *

//COPY82 EXEC PGM=ICETOOL
//TOOLMSG DD SYSOUT=*
//DFSMSG DD SYSOUT=*
//RAWSMF DD DSN=&&SMF820UT,DISP=SHR
//SMF82 DD DSN=h1q.SMF82.DATA,SPACE=(CYL, (x,y)),UNIT=SYSDA,
// DISP=(NEW,CATLG,KEEP),
// DCB=(RECFM=VB, LRECL=32756,BLKSIZE=32760)
//TOOLIN DD *

SORT FROM(RAWSMF) TO(SMF82) USING(SMFI)
//SMFICNTL DD *

OPTION SPANINC=RC4,VLSHRT

INCLUDE COND=(6,1,BI,EQ,82)

SORT FIELDS=(11,4,PD,A,7,4,BI,A)

//* FORMAT ICSF/MVS TYPE 82 RECORDS

//* Note: change the SYSEXEC DSN=your.rexx.library to the name
//* of the dataset where you have placed the ICSFF REXX EXEC.
//* Also, change the ICSF DSN=hlq.SMF82.DATA to the name of
//* the dataset you have created in the previous step.

* Ok ok ok F

//1CSF82 EXEC PGM=IKJEFT@1,REGION=@M
//SYSEXEC DD DISP=SHR,DSN=your.rexx.library
//ICSF DD DISP=SHR,DSN=hTq.SMF82.DATA
//SYSPRINT DD SYSOUT=*

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

prof nopref

%ICSF

/*

ICSFE reporting EXEC:

/* REXX EXEC to read and format ICSF/MVS records */
Numeric digits 16
userid=SYSVAR(SYSUID)
r82icsf = userid||'.icsf.rep’ /* ICSF/MVS report file */
r82csv userid|]|'.icsfcsv.rep' /* ICSF/MVS CSV file */

If SYSDSN(r82icsf) = '0OK'
Then "DELETE "r82icsf" PURGE"
"ALLOC FILECREPORT) DA("r82icsf")",

24 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

"UNIT(SYSALLDA) NEW TRACKS SPACE(94,5) CATALOG",
"REUSE LRECL(18@) RECFM(F B) "

If SYSDSN(r82csv) = '0OK'

Then "DELETE "r82csv" PURGE"
"ALLOC FILE(S82CSV) DA("r82csv")",
"UNIT(SYSALLDA) NEW TRACKS SPACE(1,1) CATALOG",
"REUSE LRECL(4@0) RECFM(F B) "

/F o oo
/* Short subtypes Tabel

/* ___
label = "ICSF Initialization"
label = "Processors status change"
label = "Error handling for CCP feature"

"Special Security mode changed"
"Master Key Part Entry"

"Operation Key Part Entry"
"Cryptographic Key Data Set Refreshed"
label.9 = "Dynamic CKDS Update"

label.10= "Clear key part for the PKA"

label.11= "Clear New Master Key Part Entry"
label.12= "PKSC Commands"

label.13= "Dynamic Public KDS Update"

label.14= "PCI Crypto Coprocessor Clear Master Key"
label.15= "Retained key create/delete"

label.16= "PCI Interface"

label.17= "PCI Crypto Coprocessor Timing"
label.18= "PCI Crypto Coprocessor Configuration"

—
<))
o
(0]
—
ONO O W
1

hdr.1 = left('ICSF/MVS Event report',50)

hdr.2 = left(' ',1," ")

hdr.3 = left('Report produced on',18),

[ITeft(" ',1," ")llTeft(date(),11),
[[Teft('at',3," ")[[Teft(time(),10)
left(' ',1," ")

left('Date and time',13)||Teft("' ',11,' "),
[[Teft("ICSF Event',11)|11eft(" ',3,' '),
[1Teft('Record subtype',15)

hdr.6 = left('-',60,"'-")

"EXECIO * DISKW REPORT (STEM hdr.)"

hdr.4
hdr.

o
1l

ccr.l ='ICSF/MVS response timing CSV file'
ccr.2 = 'Response time'||";"||'Transfer time'
"EXECIO * DISKW S82CSV (STEM ccr.)"

Totrec = @; subtype_count.= @; indent =
sep = left('.',60,"'.")

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement.

25

/* Main processing loop */

DO FOREVER
"EXECIO 1 DISKR ICSF"
IF RC == @ THEN call End_of_file

else do
PARSE PULL record
Totrec = Totrec + 1 /* Count the total records processed */
PARSE VAR record header 15 rest
smf82rty = c2d(substr(header,2,1)) /* Record type */
call SMF82_header
end
End
/-k ___ */
/* Print out record count at end of input file */
/* ___ */
End_of_file:

call printline " "
call printline "Total SMF 82 (ICSF/MVS) records read: " left(Totrec,4)
call printline " "
call printline " sub
call printline " type count percent Subtype label™
call printline M —-ccmm o e "
do j=1 to 25
if subtype_count.j > @ then
call printline right(j,3) format(subtype_count.j,6),
format((subtype_count.j/Totrec)*100,5,2),
label.j

end
/* Close & free all allocated files */
"EXECIO @ DISKR ICSF (FINIS"
"EXECIO @ DISKW REPORT (FINIS"
"EXECIO @ DISKW S82CSV (FINIS"

say "ICSF/MVS report "r82icsf
say "ICSF/MVS csv file "r82csv
"FREE FILE(CICSF REPORT S82CSV)"
EXIT @
/-k ___ */
/* Basic section of the SMF82 */
/* ___ */
SMF82_header:
smf82f1g = x2b(c2x(substr(header,@1,01))) /* System indicator */
smf82rty = c2d(substr(header,@2,1)) /* Record type */

smf82tme = smf(c2d(substr(header,@3,04))) /*Time record was written*/
smf82dte = substr(c2x(substr(header,07,84)),3,5)
/* Date record was written */

smf82sid = substr(header,11,04) /* System Identification */
smf82ssi = substr(rest,1,0) /* Subsystem ID */
smf82sty = c2d(substr(rest,5,2)) /* Record subtype */

26 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

subtype_count.smf82sty =

subtype_count.smf82sty + 1

Sub_Tine = left(Date('N',smf82dte,'Jd"'),11)

Sub_Tine = Sub_Tine smf82tme /* SMF time in hh:mm:ss.th */
call SMF82rec /* Process SMF82rec record */
return
/* ___ */
/* SMF82rec: get subtype info */
/* ___ */
SMF82rec:
PARSE var rest first 7 subtype
SMF82rec_subtype:
Select
when smf82sty = "@1" then call subtypedl
when smf82sty = "@3" then call subtype@3
when smf82sty = "@4" then call subtype@d4
when smf82sty = "@5" then call subtype@b
when smf82sty = "06" then call subtype@dé
when smf82sty = "@7" then call subtype@d?7
when smf82sty = "@8" then call subtype@d8
when smf82sty = "@9" then call subtype@9
when smf82sty = "10" then call subtypel@d
when smf82sty = "11" then call subtypell
when smf82sty = "12" then call subtypel2
when smf82sty = "13" then call subtypel3
when smf82sty = "14" then call subtypeld
when smf82sty = "15" then call subtypelb
when smf82sty = "16" then call subtypel6
when smf82sty = "17" then call subtypel?
when smf82sty = "18" then call subtypel8
when smf82sty = "19" then call subtypel9
otherwise nop
End /* of select */
return
subtypefl:
/* ___ */
/* ICSF Initialization (Subtype 1) - written whenever */
/* ICSF/MVS is started */
/* ___ */
call printline Sub_line "INITIALIZATION (Subtype:" ||smf82sty||")"
smf82ves = substr(subtype,01,4) /* CCVE status bits */
smf82vts = c2x(substr(subtype,85,1)) /* CCVT status bits */
smf82ido = c2d(substr(subtype,@6,1)) /*Current crypto domain index*/
smf82ite = c2d(substr(subtype,89,4)) /*Number of trace entries */
smf82ckd = substr(subtype,13,44) /* CKDS name */
smf82iml = c2d(substr(subtype,57,4)) /*Maximum length for data */
smf82usr = substr(subtype,61,8) /* Userparm from options ds*/
smf82pkd = substr(subtype,69,44) /* PKDS name */
inden@ = Teft(' ',23," '); inden3="Crypto comm. status: "
inden4="Crypto domain index: "s inden5="Num. of trace entries: "
inden6="Crypto key data set: "; inden7="Max length for data: "

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement.

27

inden8="Userparm options ds: "; inden9="PKDS name:

inden2 =" "

/K e o e e e e e e e e e e e e e e e e eeeeeao */
/* Decode and print Cryptographic Communication Vector */
/* table Extension (CCVE) status bits. */
/K o e e o o o e e e e e e e e e e e e e e e - */

smf82sma = '8000000B'x /* Special Security Mode allowed */

smf82sme = '40000000'x /* Special Security Mode enabled */
smf82ka = '10000000'x /* Key authentication */
smf82rac = '02000000'x /* RACF checking */
smf82enc = '00040000'x /* Compenc from options ds */

if bitand(smf82ves,smf82sma) = smf82sma then
inden2="Crypto comm. extension:"
call printline inden2 "Special security mode allowed"
if bitand(smf82ves,smf82sme) = smf82sme then
call printline inden@ "Special security mode enabled"
if bitand(smf82ves,smf82ka) = smf82ka then
call printline inden@ "Key authentication"
if bitand(smf82ves,smf82rac) = smf82rac then
call printline inden@ "RACF checking of supervisor-state callers"
if bitand(smf82ves,smf82enc) = smf82enc then
call printline inden@ "Encryption algorithm in the installation"

/3 */
/* Decode and print Cryptographic Communication Vector */
/* Table (CCVT) status bits. */
2 */

smf82cpa = '08000000'x /* Compatibility mode bit*/

if bitand(smf82vts,smf82cpa) = smf82cpa then
call printline inden3 "Compatible with CUSP and PCF"

msg = inden3 smf82vts; call printline msg

msg = indend4 smf82ido; call printline msg

msg = indenb5 smf82ite; call printline msg

msg = inden6 smf82ckd; call printline msg

msg = inden7 smf82iml; call printline msg

msg = inden8 smf82usr; call printline msg

msg = inden9 smf82pkd; call printline msg

call printline sep

return
subtypef3:

/* ___ */

/* Status Change (Subtype 3) - written whenever there is */

/* a change to the number of available processors with */

/* the cryptographic feature */

/* ___ */
seclen = 56

call printline Sub_1line "STATUS CHANGE (Subtype " ||lsmf82styl|[|")"

stibit ="Master key verification:
PARSE var subtype smf82sns 5 section; smf82sns = c2d(smf82sns)

28 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

/* Status Change Sections: */

/* ___ */

do j = @ to smf82sns -1

secoff = substr(section,(j*seclen)+l,seclen)

smf82spr = c2d(substr(secoff,d1,4)) /* Processor number */

smf82ksu = c2d(substr(secoff,#5,4)) /*Key storage unit (KSU) number*/

smf82sdx = c2d(substr(secoff,09,4)) /*Current crypto domain index*/

smf82ver = c2d(substr(secoff,13,4)) /*Current master key version*/

smf82ssw = c2d(substr(secoff,17,4)) /*@ if no error condition exists*/
/* with the processor. Otherwise, */

smf82sti = substr(secoff,21,4) /* the ICSF status word */

smf82mkf = c2x(substr(secoff,21,4)) /* Master key flag */

smf82cvp = c2x(substr(secoff,25,8))

/*Current master key verfy pattern*/
smf82nap = c2x(substr(secoff,33,8)) /*New master key auth pattern*/
smf82nvp = c2x(substr(secoff,41,8)) /*New master key verfy pattern*/
smf82ovp = c2x(substr(secoff,49,8)) /*01d Master key verfy pattern*/
msg = "Processor number: "smf82spr; call printline msg
msg = "Key storage unit number: "smf82ksu; call printline msg
msg = "Current crypto domain index: "smf82sdx; call printline msg
msg = "Current master key version: "smf82ver; call printline msg
msg = "Processor error condition: "smf82ssw; call printline msg
msg = "Master key bit flag: "smf82mkf; call printline msg
msg = "Current master key verfy pattern:"smf82cvp; call printline msg
msg = "New master key auth pattern: "smf82nap; call printline msg
/* __ */

/* Decode and print Master key bit flag */
/* __ */
smf82cv = '8000000@'x /* Current master key ver pattern */
smf82na = '40000000'x /* New master key auth pattern */
smf82nv = '20000000'x /* New master key ver pattern */
smf82ov = '10000000'x /* 01d master key ver pattern */

if bitand(smf82sti,smf82cv)
call printline stibit "Curr
bitand(smf82sti,smf82na)
call printline inden@ "New
bitand(smf82sti,smf82nv)
call printline inden@ "New
bitand(smf82sti,smf82ov)
call printline inden@d "01d
msg "New master key verfy p
msg "0ld Master key verfy p
msg = " "3
end
call printline sep

return
subtypefé4:

if

if

if

/* Condition Code Three Section (Subtype 4) - written
/* whenever ICSF/MVS handles error conditions for

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement.

smf82cv then
ent master key
smf82na then
master key authentication pattern valid"
smf82nv then
master key verification pattern valid"
smf82ov then
master key verification pattern valid"
attern: "smf82nvp;call printline msg
attern: "smf82ovp;call printline msg
call printline msg

verification pattern valid"

29

/* Cryptographic Coprocessor feature failure (CC3, Reason */
/* Code 1) or cryptographic tampering CC3 Reason Code 3) */

.2 */

call printline Sub_1line "CONDITION CODE (Subtype:" ||smf82styl[")"
smf823sw = c2d(substr(subtype,01,4)) /* Status word from CC3*/
smf823pr = c2d(substr(subtype,85,1)) /* CPU number */

smf823dx = c2d(substr(subtype,@6,1)) /*Current Crypto Domain Index*/

msg = "Status word from condition code: "smf823sw; call printline msg
msg = "Processor number: "smf823pr; call printline msg
msg = "Current crypto domain index: "smf823dx; call printline msg
call printline sep

return

subtypef5:

/-k ___ */

/* Special Secure Mode Change (Subtype 5) - is written */

/* whenever a change to special security mode is detected */
/* ___ */

ssmtxt ="Special security mode:
call printline Sub_1line "SPECIAL SECURITY MODE (Subtype:"
| |smf82styl[|")"
smf82ssb = substr(subtype,01,8) /*Special security mode (SSM) bits*/
smf82ssa = '8000000000000000 "' x /* SSM mode is enabled: */
/* ON=SSM mode went from OFF to ON*/
/* OFF=SSM mode went from ON to OFF*/

2 */
/* Decode and print Special security mode bits */
2 */

if bitand(smf82ssb,smf82ssa) = smf82ssa then
call printline ssmtxt "SSM mode is enabled"
call printline sep

return
subtypef6:
/* ___ */
/* Master Key Part Entry (Subtype 6) - written whenever */
/* a master key parts are entered using TKE workstation */
/* and are processed using the TKE master key entry ICSF */
/* ICSF panels. */
/* ___ */

mkptxt ="Master Key part entry: "

call printline Sub_1line "MASTER KEY PART ENTRY (Subtype:"

[|smf82sty|[")"
smf82mkb = substr(subtype,1,4) /*Master key part (MKPART) bits*/
smf82mkx = c2x(substr(subtype,@1,4)) /*Master key part (MKPART) bits*/
smf82nmv = c2x(substr(subtype,85,8)) /*New master key ver pattern */
smf82omv = c2x(substr(subtype,13,8)) /* Ver pattern for key part */
smf82mks = c2d(substr(subtype,21,1)) /* KSU number */
smf82mdx = c2d(substr(subtype,22,1)) /*Current crypto domain index */

msg = "Master key part bits (MKPART): "smf82mkx; call
printline msg

30 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

msg = "New master key verification pattern: "smf82nmv; call
printline msg

msg = "Verification pattern for the key part: "smf82omv; call
printline msg
msg = "Key storage unit (KSU) number: "smf82mks; call
printline msg
msg = "Current crypto domain index: "smf82mdx; call
printline msg
/* ___ */
/* Decode and print Master key part (MKPART) bits */
/* ___ */
smf82nvv = '80000000'x /* New master key vp valid */
smf82ovv = '40000000"' x /* 01d master key vp valid */

if bitand(smf82mkb,smf82nvv) = smf82nvv then

call printline mkptxt "New master key verification pattern valid"

if bitand(smf82mkb,smf82ovv) = smf82ovv then

call printline mkptxt "01d master key verification pattern valid"

call printline sep

return

subtypef7:
/-k ___ */
/* Operation Key Part Entry (Subtype 7) - written whenever */
/* a key parts are entered using the TKE workstation */
/* and are processed using the operational key entry ICSF */
/* panels. */
/-k ___ */

okptxt ="Operation Key Part Entry:
call printline Sub_1line "OPERATION KEY PART ENTRY (Subtype:"
| |smf82sty||")"

smf82kpb = substr(subtype,@1,4) /* Key part (KPART) bits */

smf82kpx = c2x(substr(subtype,01,4)) /* KPART bits */

smf82kv = c2x(substr(subtype,05,8)) /*Key part verification pattern*/

smf82kks = c2d(substr(subtype,13,1)) /* KSU number */

smf82kdx = c2d(substr(subtype,14,1)) /*Current crypto domain index*/

smf82kck = substr(subtype,17,44) /* CKDS name */

smf82kcl = c2d(substr(subtype,61,72)) /*CKDS entry being modified*/

msg = "Key part (KPART) bits: "smf82kpx; call printline msg

msg = "Key part verify pattern: "smf82kv ; call printline msg

msg = "Key storage unit number: "smf82kks; call printline msg

msg = "Current crypto domain index: "smf82kdx; call printline msg

/* __ */

/* Decode and print Key part (KPART) bits */

/* __ */
smf82kvv = '80000000'x /* Key part verify pattern valid */

if bitand(smf82kpb,smf82kvv) = smf82kvv then
call printline okptxt "Key part verification pattern valid"

msg = "CKDS name: "smf82kck;call printline msg
msg = "CKDS entry being modified: "smf82kcl;call printline msg
call printline sep

return

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement.

31

subtypef8:

/* Cryptographic Key Data Set Refresh Section (Subtype 8) */
/* - is written whenever the in-storage copy of the CKDS */

/* is refreshed. */
/K e o o e e e e e e e e e e iemeao o */
call printline Sub_line "CKDS REFRESH (Subtype:" ||smf82styl[")"

smf82roc = substr(subtype,1,44) /*Name of the CKDS being replaced*/
smf82rnc = substr(subtype,45,44) /*Name of the CKDS to replace the*/
ynden@="01d CKDS name: " /* current CKDS */
yndenl="New CKDS name: "

msg = ynden@ smf82roc; call printline msg

msg = yndenl smf82rnc; call printline msg

call printline sep

return
subtypef9:
/* ___ */
/* Dynamic CKDS Update (Subtype 9) - written whenever an */
/* application uses the dynamic CKDS update services to */
/* write to the CKDS */
/* ___ */
dyn = "Dynamic CKDS Update event: "
call printline Sub_Tine "DYNAMIC CKDS UPDATE (Subtype:" |[|smf82sty[][|")"
smf82ucb = substr(subtype,d1,04) /* Update CKDS bits */
smf82ucx = c2x(substr(subtype,01,04)) /* Update CKDS bits */
smf82ucn = substr(subtype,05,44) /* CKDS name */
smf82ucl = substr(subtype,49,72) /*CKDS entry being modified*/
msg = "Dynamic CKDS Update bits: "smf82ucx; call printline msg
/* ___ */
/* Decode and print Dynamic CKDS Update bits */
/* ___ */
smf82uca = '80000000'x /* CKDS record added */
smf82ucc = '40000000'x /* CKDS record changed */
smf82ucd = '20000000"' x /* CKDS record deleted */

if bitand(smf82ucb,smf82uca) = smf82uca then

call printline dyn "CKDS record added"
if bitand(smf82ucb,smf82ucc) = smf82ucc then

call printline dynn "CKDS record changes"
if bitand(smf82ucb,smf82ucd) = smf82ucd then

call printline dyn "CKDS record deleted"
msg = "Name of the CK data set: "smf82ucn; call printline msg
msg = "CKDS entry being modified: "smf82ucl; call printline msg
call printline sep

return
subtypelf:

/* ___ */
/* PKA Key Part Entry (Subtype 10) - is written */
/* when a clear key part is entered for one of the PKA */
/* master keys, ie when you use the ICSF panels to enter */
/* PKA master key parts */

32 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

pkat = "PKA Key Part Entry: "

pkkt — n n

call printline Sub_Tine "PKA KEY PART ENTRY (Subtype:" |[|smf82sty|[][")"
smf82pkb = substr(subtype,01,04) /* PKA part bits */

smf82pkz = c2x(substr(subtype,d1,84)) /* PKA part bits (hex) */

smf82php = c2x(substr(subtype,85,16)) /* Master key hash pattern*/
smf82kph = c2x(substr(subtype,21,16)) /* Key part hash pattern */
smf82pks = c2d(substr(subtype,37,01)) /* KSU number */
smf82pkx = c2d(substr(subtype,38,01)) /*Current crypto domain ix*/
msg = "Master key hash pattern: "smf82php; call printline msg

msg = "Key part hash pattern: "smf82kph; call printline msg

msg = "PKA Key Part Entry bits: "smf82pkz; call printline msg

/* ___ */

/* Decode and print PKA Key Part Entry bits */

/* ___ */

smf82rhv = '80000000"' x /* KMMK processed */

smf82shv = "40000000"' x /* SMK processed */

smf82khv = '20000000' x /* KP hash pattern valid */

smf82mhv = '10000000' x /* MK hash pattern valid */

if bitand(smf82pkb,smf82rhv) = smf82rhv then
call printline pkat "Key management master key processed"
if bitand(smf82pkb,smf82shv) = smf82shv then
call printline pkat "Signature master key processed"
if bitand(smf82pkb,smf82khv) = smf82khv then
call printline pkkt "Key part hash pattern valid"
if bitand(smf82pkb,smf82mhv) = smf82mhv then
call printline pkkt "Master key hash pattern valid"

msg = "Key storage unit no.: "smf82pks; call printline msg
msg = "Current crypto domain ix:"smf82pkx; call printline msg
call printline sep
return
subtypell:
/* ___ */
/* Clear New Master Key Part Entry (Subtype 11) - written */
/* when a clear key part is entered for the DES master */
/* key 1i.e when you use the ICSF panels to enter new */
/* master key parts. */
/* ___ */
nme = "Clear New Master key event:"
call printline Sub_1line "CLEAR NEW MASTER KEY PART (Subtype:"
[|smf82sty||")"
smf82cmb = substr(subtype,01,4) /*Clear new master key bits */
smf82cmx = c2x(substr(subtype,81,4))

/*Clear new master key bits (hex)*/

smf82chp = c2x(substr(subtype,?5,16))

/* Clear new master key hash patt. */
smf82cnp = c2x(substr(subtype,21,8))

/* Clear new master key ver. patt. */
smf82cpw = c2x(substr(subtype,29,16)) /* Key part hash pattern */

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 33

smf82cpq = c2x(substr(subtype,45,8))

/* Key part verification pattern */
smf82cks = c2d(substr(subtype,53,1)) /* KSU number */
smf82cdx = c2d(substr(subtype,54,1)) /*Current crypto domain index*/
msg = "Clear NM key hash pattern: "smf82chp; call printline msg
msg = "Clear NM key ver pattern: "smf82cnp; call printline msg
msg = "Key part hash patter: "smf82cpw; call printline msg
msg = "Key part verification pat: "smf82cpq; call printline msg
msg = "Clear NM key bits: "smf82cmx; call printline msg
/* ___ */

/* Decode and print Clear new master key bits */
/* ___ */
smf82cmh = '80000000'x /* Clear NMK HP valid */
smf82cmv = '40000000' x /* Clear NMK VP valid */
smf82cph = '20000000'x /* Clear NMK KP HP valid */
smf82cpv = '10000000'x /* Clear NMK KP VP valid */
if bitand(smf82cmb,smf82cmh) = smf82cmh then

call printline nme "Clear NM key hash pattern valid"
bitand(smf82cmb,smf82cmv) = smf82cmv then

call printline nme "Clear NM key"
bitand(smf82cmb,smf82cph) smf82cph then

call printline nme "Clear NM key part hash pattern valid"

if

if =

if bitand(smf82cmb,smf82cpv) = smf82cpv then
call printline nme "Clear NM verification pattern valid"

msg = "Key storage unit number: "smf82cks; call printline msg
msg = "Current crypto domain ix: "smf82cdx; call printline msg
call printline sep
return
subtypel?:

/* ___ */

/* PKSC Commands (Subtype 12) - written for each request */

/* and reply from calls to the CSFSPKSC service by TKE. */

/* ___ */

call printline "Subtype=" || smf82sty "PKSC Commands "

smf82psq = substr(subtype,01,1024) /*The complete PKSC request*/
smf82prl = substr(subtype,01,01) /* Reserved (X'@@') */
smf82prt = substr(subtype,02,01) /* Request message type */
xmf82prt = c2x(substr(subtype,d2,01)) *Request message type (hex)*/
smf82pr1 = c2d(substr(subtype,03,02)) /* Message length */
smf82prc = substr(subtype,®5,01) /* PKSC command code */
xmf82prc = c2x(substr(subtype,@5,01)) /*PKSC command code (hex) */
smf82par = c2d(substr(subtype,06,01)) /*Number of authorization */
/* register to be used to */
/* verify signature on a */
/* signed command (X'@@' for */
/* unsigned commands, X'FF' */
/* for self-signature */
/* initialization commands) */
smf82pda = c2d(substr(subtype,07,01)) /* Domain index or */
/* Authorization register */

34 © 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

/* number */
smf82pkt = c2d(substr(subtype,07,01)) /* Master key type for */
/* extract and encrypt mstr. */
/* key, key part type for */
/* Toad key part, */
/* X'00" otherwise */
smf82pid = c2x(substr(subtype,08,16)) /*Query ID for request type*/
/* UCQ, Crypto Module ID for */
/* request type SCB */
smf82pts = c2x(substr(subtype,26,16)) /* Transaction SN for */
/* request type SCB */
smf82pr2 = c2x(substr(subtype,43,984)) /*From here to the end of */
/* the request is available */
/* for IBM diagnosis only */
msg = "No.of authorization register: "smf82par; call printline msg
msg = "Authorization register no.: "smf82pda; call printline msg
msg = "Master key type/key part type: "smf82pkt; call printline msg
/* ___ */
/* Decode and print Request message type bits */
/ K o o o o e o o o o o o o o o e a2 o * /
reqtyp = "Request type: "
reqbla = "Query ID: "
reqmod = "Crypto Module ID: "
regqmdd = "Transaction SN: "
komma = "PKSC command: "
repkom = "Requesr reply: "
smf82puc = '02000000'x /* Type is UCQ (Query request) */
smf82pcr = '03000000"' x /* Type is SCB (Command request)*/
if bitand(smf82prt,smf82puc) = smf82puc then do
call printline reqtyp "Query request"
call printline regbla smf82pid
end
if bitand(smf82prt,smf82pcr) = smf82pcr then do
call printline reqtyp "Command request”
call printline regmod smf82pid
call printline regmdd smf82pts
end
/ K o o o o e o o o o o o o e e e o e a2 - * /
/* Decode and print Query/Command request */
/* ___ */
smf82qmi = '00000000'x; smf82qar = '01000000'x
smf82qcb = '02000000'x; smf82qpc = '03000000'x
smf82ghm = '04000000'x; smf82qhg = '@5000000'x
smf82qhf = '06000000'x; smf82qbt = '07000000'x
smf82qdi = '08000000'x; smf82qpt = '09000000'x
smf82cos = '30000000'x; smf821hm = '32000000'x
smf821hg = '33000000'x; smf82chk = '34000000'Xx
smf82lap = '70000000'x; smf821cb = '71000000'x
smf82zd = '72000000'x; smf82lec = '73000000'x
smf82xem = '74000000'x; smf821kp = '75000000'x
© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 35

if

if

if

if

if

if

if

if

if

if

if

if

if

if

if

if

36

'76000008 " x
"77002008 " x

smf82xes = '76000000'x; smf82xer =
smf821cs = '77000000'x; smf821cr =
tmpg = "Query module information"
bitand(smf82prc,smf82qmi) = smf82gmi then do
call printline komma tmpq
tmpg = "Query authorization register"
bitand(smf82prc,smf82qar) = smf82gar then do
call printline komma tmpq
tmpg = "Query pksc control block"
bitand(smf82prc,smf82qcb) = smf82qcb then do
call printline komma tmpq
tmpg = "Query pending-command register"
bitand(smf82prc,smf82qpc) = smf82qgpc then do
call printline komma tmpq
tmpg = "Query dh modulus™
bitand(smf82prc,smf82qghm) = smf82ghm then do
call printline komma tmpq
tmpg = "Query dh generator"
bitand(smf82prc,smf82qhg) = smf82qghg then do
call printline komma tmpq
tmpqg = "Query dh first key part"
bitand(smf82prc,smf82qghf) = smf82ghf then do
call printline komma tmpq
tmpg = "Query basic transport"
bitand(smf82prc,smf82qbt) = smf82qbt then do
call printline komma tmpq
tmpg = "Query domain information"
bitand(smf82prc,smf82qdi) = smf82qdi then do
call printline komma tmpq
tmpg = "Query pka transport"
bitand(smf82prc,smf82qpt) = smf82qpt then do
call printline komma tmpq
tmpq = "co_sign"
bitand(smf82prc,smf82cos) = smf82cos then do
call printline komma tmpq
tmpq = "Load dh modulus”
bitand(smf82prc,smf82T1hm) = smf821hm then do
call printline komma tmpq
tmpg = "Load g and generate dh first part"
bitand(smf82prc,smf821hg) = smf821hg then do
call printline komma tmpq
tmpq = "Combine dh key parts"
bitand(smf82prc,smf82chk) = smf82chk then do
call printline komma tmpq
tmpg = "Load authorization public modulus"
bitand(smf82prc,smf821lap) = smf82lap then do
call printline komma tmpq
tmpg = "Load pksc control block"
bitand(smf82prc,smf821cb) = smf821cb then do

call printline komma tmpq

© 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

tmpq = "Zeroize domain"

if bitand(smf82prc,smf82zd) = smf82zd then do
call printline komma tmpq
tmpg = "Load environment-control mask"
if bitand(smf82prc,smf82lec) = smf82lec then do
call printline komma tmpq
tmpg = "Extract and encrypt master key"
if bitand(smf82prc,smf82xem) = smf82xem then do
call printline komma tmpq
tmpqg = "Load key part"
if bitand(smf82prc,smf821kp) = smf82T1kp then do
call printline komma tmpq
tmpg = "Extract and encrypt smk"
if bitand(smf82prc,smf82xes) = smf82xes then do
call printline komma tmpq
tmpg = "Extract and encrypt rmk"
if bitand(smf82prc,smf82xer) = smf82xer then do
call printline komma tmpq
tmpq = "Load and combine smk"
if bitand(smf82prc,smf821cs) = smf821cs then do
call printline komma tmpq
tmpg = "Load and combine rmk"
if bitand(smf82prc,smf821cr) = smf821cr then do
call printline komma tmpq
/* ___ */
/* Decode and print PKSC response */
/* ___ */

smf82psp = substr(subtype,1025,1024)

/* The corresponding PKSC response */
smf82rrl = c2d(substr(subtype,1025,01)) /* Reserved (X'@@0"') */
smf82rrt = substr(subtype,1026,01) /* Reply type */
xmf82rrt = c2x(substr(subtype,1026,01)) /* Reply type (hex) */
/ K o o o o e o o o o o o e o o e a2 o * /

/* Decode and print Reply message type bits */
/* ___ */
smf82rpu = '82000000'x /* Unsigned reply (type URN or UNI) */
smf82rps = '83000000'x /* Signed reply (type SRN or SRQ) */
smf82rpl = c2d(substr(subtype,1027,02)) /* Message length */
smf82rrc = substr(subtype,1029,01) /* Reply code */
smf82rr2 = substr(subtype,1030@,01) /* Reserved (X'@@"') */
smf82rrp = substr(subtype,1@31,082)) /* For type URN: X'0@@0' */
/* For type UNI: 7-bit PRNIC, */
/* right-justified */
smf82ryp = substr(subtype,1033,02) /* For type SRN and SRQ */
/ K o o o o e o o o o o o o e a2 - * /
/* Decode and print Reply type */
/* ___ */
smf82urn = '0000000000000000" /* Unsigned reply URN */
smf82srn = '0001000000000000"' /* Reply type is SRN */
smf82srq = '0002000000000000' /* Reply type is SRQ */
© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 37

if bitand(smf82ryp,smf82srn) = smf82srn then
sign = "Reply type is SRN"
if bitand(smf82ryp,smf82srq) = smf82srq then
sign = "Reply type is SRQ"
Select
when bitand(smf82rrp,smf82urn) = smf82urn then,
unsign = "Unsigned type is URN"

otherwise unsign = "Unsigned type is UNI"

End

smf82rcm = substr(subtype,1035,16) /* Crypto Module ID */

smf82rsn = c2x(substr(subtype,1051,16)) /*Crypto Module Signature*/
/* Sequence Number */

smf82rr3 = c2x(substr(subtype,1067,152)) /* Available for IBM */
/* diagnosis only */

smf82rts = c2x(substr(subtype,1219,16)) /* Transaction sequence */
/* number for QUERY */

/* AUTHORIZATION REGISTER*/
smf82rr4 = c2(substr(subtype,1235,816)) /*From here to the end of*/
/* the reply is available */
/* for IBM diagnosis only */
msg = "Crypto Module ID: "smf82rcm; call printline msg
msg = "Crypto Module Signature Seq.: "smf82rsn; call printline msg
rpl = "Reply type:
rpls= "Signed reply type:
upls= "Unsigned reply type: "
if bitand(smf82rrt,smf82rpu) = smf82rpu then do
call printline rpl "Unsigned reply (type URN or UNI)"
call printline upls unsign
end
if bitand(smf82rrt,smf82rps) = smf82rps then do
call printline rpl "Signned reply (type SRN or SRQ)"
call printline rpls sign

end

/* ___ */

/* Decode and print Query/Command request reply */

/* ___ */
smf82r@d@ = '00000000'x; smf82rl@ = '10000000'x
smf82r21 = '21000000'x; smf82r22 = '22000000'x
smf82r23 = '23000000'x; smf82r24 = 24000000 x
smf82r2b5 = '25000000'x; smf82r26 = '26000000'x
smf82r27 = '27000000'x; smf82r28 = '28000000"'x
smf82r31 = '31000000'x; smf82r33 = '33000000'x
smf82r4l = '41000000'x; smf82r42 = '42000000' x
smf82rb51 = '51000000'x; smf82r6l1 = '61000000"'x
smf82r62 = '62000000'x; smf82r63 = '63000000'x
smf82r64 = '64000000'x; smf82r65 = '65000000'x
smf82r71 = '71000000'x; smf82r72 = '72000000'x
smf82r73 = '73000000'x; smf82r81 = '81000000'x
smf82r82 = '82000000'x; smf82r83 = '83000000"'x
smf82r91 = '91000000"'x

38 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

if

if

if

if

if

if

if

if

if

if

if

if

if

if

if

if

if

tmpr = "Normal completion™
bitand(smf82rrc,smf82r@d@) = smf82rd@
call printline repkom tmpr

tmpr = "Machine failure"
bitand(smf82rrc,smf82rl@) = smf82rl@d
call printline repkom tmpr

tmpr = "Invalid command"
bitand(smf82rrc,smf82r21) = smf82r21
call printline repkom tmpr

tmpr = "Command disabled"
bitand(smf82rrc,smf82r22) = smf82r22
call printline repkom tmpr

tmpr = "Request message Tlength"
bitand(smf82rrc,smf82r23) = smf82r23
call printline repkom tmpr

tmpr = "Reserved field"
bitand(smf82rrc,smf82r24) = smf82r24
call printline repkom tmpr

tmpr = "Signature index"
bitand(smf82rrc,smf82r25) = smf82r25
call printline repkom tmpr

tmpr = "Authorization index"
bitand(smf82rrc,smf82r26) = smf82r26
call printline repkom tmpr

tmpr = "Domain index"
bitand(smf82rrc,smf82r27) = smf82r27
call printline repkom tmpr

tmpr = "Command extension"
bitand(smf82rrc,smf82r28) = smf82r28
call printline repkom tmpr

tmpr = "Facility disabled"”
bitand(smf82rrc,smf82r31) = smf82r31
call printline repkom tmpr

tmpr = "PKSC domain disabled"
bitand(smf82rrc,smf82r33) = smf82r33
call printline repkom tmpr

tmpr = "CM not initialized"
bitand(smf82rrc,smf82r4l) = smf82r4l
call printline repkom tmpr

tmpr = "PRN not initialized"
bitand(smf82rrc,smf82r42) = smf82r4?2
call printline repkom tmpr

tmpr = "Configured command"
bitand(smf82rrc,smf82r51) = smf82r51
call printline repkom tmpr

tmpr = "Incorrect CMID"
bitand(smf82rrc,smf82r61) = smf82r61
call printline repkom tmpr

tmpr = "ASM violation™”
bitand(smf82rrc,smf82r62) = smf82r62

then

then

then

then

then

then

then

then

then

then

then

then

then

then

then

then

then

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement.

do

do

do

do

do

do

do

do

do

do

do

do

do

do

do

do

do

39

call printline repkom tmpr
tmpr = "Incorrect TSN"

if bitand(smf82rrc,smf82r63) = smf82r63 then do
call printline repkom tmpr
tmpr = "Authority modulus"

if bitand(smf82rrc,smf82r64) = smf82r64 then do
call printline repkom tmpr
tmpr = "Signature verification"

if bitand(smf82rrc,smf82r65) = smf82r65 then do
call printline repkom tmpr
tmpr = "ACM violation"

if bitand(smf82rrc,smf82r71) = smf82r71 then do
call printline repkom tmpr
tmpr = "DXM violation™”

if bitand(smf82rrc,smf82r72) = smf82r72 then do
call printline repkom tmpr
tmpr = "DCM violation"

if bitand(smf82rrc,smf82r73) = smf82r73 then do
call printline repkom tmpr
tmpr = "Pattern mismatch"

if bitand(smf82rrc,smf82r81) = smf82r81 then do
call printline repkom tmpr
tmpr = "DH operand”

if bitand(smf82rrc,smf82r82) = smf82r82 then do
call printline repkom tmpr
tmpr = "Configured modulus"

if bitand(smf82rrc,smf82r83) = smf82r83 then do
call printline repkom tmpr
tmpr = "Key-part-queue full"

if bitand(smf82rrc,smf82r91) = smf82r91 then do
call printline repkom tmpr
call printline sep

return
subtypel3:

/* ___ */

/* Dynamic PKDS Update (Subtype 13) - written whenever */

/* the PKDS is updated by a dynamic PKDS update service */

/* (when an application uses the dynamic PKDS update */

/* services to change the PKDS) */

/* ___ */

upg = "PKDS update event: "

call printline Sub_Tine "DYNAMIC PKDS UPDATE (Subtype:" |[|smf82sty[][|")"
smf_pkds_bits = substr(subtype,01,04) /* PKDS bits */
smf_pkds_bitsx = c2x(substr(subtype,d1,04)) /* PKDS bits (hex)*/
smf_pkds_name = substr(subtype,05,44) /* PKDS name */

smf_pkds_key_Tlabel c2x(substr(subtype,49,72))

/* PKDS being modified */
msg = "Dynamic PKDS Update bits: "smf_pkds_bitsx; call printline msg

/* Decode and print Dynamic PKDS Update bits */

40 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

smf_pkds_added = '80000000 " x /* PKDS record added */
smf_pkds_updated "40000000 "' x /* PKDS record changed */
smf_pkds_deleted '20000000 "' x /* PKDS record deleted */
if bitand(smf_pkds_bits,smf_pkds_added) = smf_pkds_added then
call printline upq "PKDS record added"
if bitand(smf_pkds_bits,smf_pkds_updated) = smf_pkds_updated then
call printline upq "PKDS record changed"
if bitand(smf_pkds_bits,smf_pkds_deleted) = smf_pkds_deleted then
call printline upqg "PKDS record deleted"
msg = "PKDS name: "smf_pkds_name; call printline msg
msg = "PKDS entry being modified: "smf_pkds_key_label;call printline
msg
call printline sep

return
subtypeléd:

/* ___ */

/* PCI Cryptographic Coprocessor Clear Master Key */

/* Entry (Subtype 14) - written when a clear part is */

/* entered for any of the PCI Cryptographic Coprocessor */

/* master keys (ie whenever you use ICSF panels to */

/* update SYM-MK and ASYM-MK in the new master key */

/* register in a PCI Cryptographic Coprocessor) */

/* ___ */

pci = "PCI Crypto Processor event: "

tit = "PCI CRYPTOGRAPHIC COPROCESSOR CLEAR MK"

titl = "(Subtype:" ||smf82sty|[|")"

call printline Sub_line tit titl

smf82aab = substr(subtype,01,04) /* Flag bytes */
smf82aax = c2x(substr(subtype,01,84)) /* Flag bytes (hex) */

smf82anv = c2x(substr(subtype,85,16)) /*New master key register VP*/
smf82akv = c2x(substr(subtype,21,16)) /*Key part verification pattern*/
smf82apn = c2d(substr(subtype,37,01)) /* PCI Crypto Processor no */

smf82asn = substr(subtype,38,08) /*PCI Crypto Processor serial no*/
smf82adm = c2d(substr(subtype,46,01)) /*PCI Crypto Coprocessor domain*/
msg = "New master key register VP: "smf82anv; call printline msg
msg = "Key part verification pattern: "smf82akv; call printline msg
msg = "PCI Crypto Processor flag bytes: "smf82aax; call printline msg
/-k ___ */
/* Decode and print PCI Crypto Processor flag bytes */
/* ___ */

smf82asv = '80000000'x /* Sym-Key NMK VP valid */

smf82aav = '40000000"' x /* Asym-Key NMK VP valid */

smf82ask = '20000000"'x /* Sym-Key Key part VP valid */

smf82aak = '10000000'x /* Asym-Key Key part VP valid */

fb8@ = "Symmetric-Key NMK verification pattern is valid"

fbap "Asymmetric-Key NMK verification pattern is valid"

fb2@ = "Symmetric-Key Key part verification pattern is valid"
fbl@ = "Asymmetric-Key Key part verification pattern is valid"
if bitand(smf82aab,smf82asv) = smf82asv then

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 41

call printline pci fb80#
if bitand(smf82aab,smf82aav)
call printline pci fb4@
if bitand(smf82aab,smf82ask)
call printline pci fb20@
if bitand(smf82aab,smf82aak)
call printline pci fblg@

smf82aav then

smf82ask then

smf82aak then

msg = "PCI Crypto Processor number: "smf82apn; call printline msg
msg = "PCI Crypto Processor serial num.:"smf82asn; call printline msg
msg = "PCI Crypto Coprocessor domain: "smf82adm; call printline msg
call printline sep
return
subtypelb:

/-k ___ */

/* PCI Cryptographic Coprocessor Retained Key */

/* Create or Delete (Subtype 15) - written whenever you */

/* create or delete a retained private key in a PCI */

/* Cryptographic Coprocessor. */

/-k ___ */

call printline Sub_line "RETAINED KEY CREATE/DELETE (Subtype:"
| |smf82styl|")"

smf82rkf = substr(subtype,01,04) /* Retained key flag bits */
smf82rkx = c2x(substr(subtype,d1,04)) /* Retained key flag (hex)*/
smf82rkn = c2x(substr(subtype,85,64)) /* Label of retained key */
smf82rkp = c2x(substr(subtype,69,01)) /* Processor number */
smf82rks = c2x(substr(subtype,70,08)) /* Serial number */
smf82rdm = c2x(substr(subtype,78,01)) /* Current crypto domain */
msg = "Retained key flag bits: "smf82rkx; call printline msg
/* ___ */
/* Decode and print Retained key flag bits */
/* ___ */

smf82rkc = '80000000"'x /* Retained key created */

smf82rkd = '40000000"' x /* Retained key deleted */

rke = "Retained key event "

s1580 = "Retained key created"

s1540 = "Retained key deleted"

if bitand(smf82rkf,smf82rkc) = smf82rkc then
call printline rke s1580

if bitand(smf82rkf,smf82rkd) = smf82rkd then
call printline rke s1540

msg = "Label of Retained private key: "smf82rkn; call printline msg
msg = "PCI Crypto Coprocessor number: "smf82rkp; call printline msg
msg = "PCI Crypto Coprocessor serial: "smf82rks; call printline msg
msg = "PCI Crypto Coprocessor domain: "smf82rdm; call printline msg
call printline sep
return
subtypelé6:

/* ___ */

/* PCI Cryptographic Coprocessor TKE Command Request or */
/* Reply (Subtype 16) - written whenever a TKE workstation */

42 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

/* either issues a command request to a PCI Cryptographic */
/* or receives a reply response from a PCI Cryptographic */

/* Coprocessor. */
/* ___ */
call printline Sub_1line "PCI INTERFACE (Subtype:" [||smf82styl|")"
smf82pfl = substr(subtype,01,04) /* Bits to indicate request/r*/
smf82pfx = c2x(substr(subtype,d1,04)) /* Bits to indicate request/r*/
smf82ppn = c2d(substr(subtype,85,81)) /* Receiving PCI Index */
smf82psn = substr(subtype,06,08) /* Receiving PCI Serial No */
smf82pdm = c2d(substr(subtype,14,81)) /* Receiving PCI Domain */
smf82pb1 = c2d(substr(subtype,17,04)) /*Parameter Block Len ("xxx")*/
smf82pdl = c2d(substr(subtype,21,04)) /* Parameter Data Block Len */
/* (Myyy") */
/*smf82pil Length of basic section */
smf82pbk = substr(subtype,25,smf82pbl+; /* Parameter data blocks: */
smf82pd1) /*parameter block of Tength*/

/* "xxx"(smf82pb1) followed*/

/* by parameter data block */

/*of length "yyy"(smf82pdl1)*/
msg = "Request / Reply bits: "smf82pfx; call printline msg

msg = "Receiving PCI Index: "smf82ppn; call printline msg
msg = "Receiving PCI Serial: "smf82psn; call printline msg
msg = "Receiving PCI Domain: "smf82pdm; call printline msg
msg = "Parameter Block Len: "smf82pbl; call printline msg
msg = "Parameter Data Block: "smf82pdl; call printline msg
/-k ___ */
/* Decode and print request/reply bits */
/* ___ */

s1680 = "Request command"

s1640 = "Reply response"

sl6 = "Request / Reply: "

smf82prq = '80000000'x /* Processing Request CPRB */
smf82prp = 40000000 x /* Processing Reply CPRB */

if bitand(smf82pfl1,smf82prq) = smf82prq then
call printline sl6 s1680
if bitand(smf82pfl1,smf82prp) = smf82prp then
call printline sl6 s1640
msg = "Parameter data blocks: "smf82pbk
call printline msg
call printline sep

return

subtypel7:

/-k ___ */
/* PCI Cryptographic Coprocessor Timing (Subtype 17) - */
/* written periodically to provide some indication of PCI */
/* Cryptographic Coprocessor usage */
/* ___ */
call printline Sub_Tline "PCI TIMINGS (Subtype:" ||smf82styl|[")"

titl7 = "PCI Cryptographic Coprocessor Timing: "; call printline titl7
smf82ctn = substr(st(c2x(SUBSTR(subtype,?1,08))),12,32)

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 43

/* CCP time before NQAP: */
/* time just before the PCI */
/* Cryptographic Coprocessor */

/* operation begins */
smf82ctd = substr(st(c2x(substr(subtype,?9,08))),12,32)
/* CCP time after DQAP: */
/* time just after PCI */
/* Cryptographic Coprocessor */
/* operation ends */
smf82ctw = substr(st(c2x(substr(subtype,17,08))),12,32)
/* CCP time after WAIT: */
/* time just after results */
/* have been communicated back */
/* to caller address space */
smf82ctq = c2d(substr(subtype,25,04)) /* CCP queue Tlength: */
/* number of processes waiting */
/* to submit work to the */
/* same PCI Cryptographic */
/* Coprocessor and domain, */
/* using the same reference */
/* number */
smf82ctf = c2d(substr(subtype,29,02)) /* Function code of service */
smf82ctx = c2d(substr(subtype,31,01)) /* CCP Index */
smf82cts = substr(subtype,32,08) /* CCP Serial Number */
smf82ctm = c2d(substr(subtype,46,01)) /* Domain */
smf82ctr = c2d(substr(subtype,41,01)) /* Reference Number */
Resptime = dif(smf82ctn,smf82ctd) /* CCP card response time */
Xfertime = dif(smf82ctd,smf82ctw) /* CCP transfer time */
msg = "CCP time before NQAP: "smf82ctn; call printline msg
msg = "CCP time after DQAP: "smf82ctd; call printline msg
msg = "CCP card response time: "Resptime; call printline msg
msg = "CCP time after WAIT: "smf82ctw; call printline msg
msg = "CCP transfer time: "Xfertime; call printline msg
msg = "CCP queue length: "smf82ctq; call printline msg
msg = "Service function code: "smf82ctf; call printline msg
msg = "CCP Index: "smf82ctx; call printline msg
msg = "CCP Serial Number: "smf82cts; call printline msg
msg = "CCP Domain: "smf82ctm; call printline msg
msg = "CCP Reference Number: "smf82ctr; call printline msg
call printline sep
r82time.1 = Resptime [[";"|] Xfertime
"EXECIO 1 DISKW S82CSV(stem r82time.)"
drop r82time.
return
subtypel8:
/* ___ */

/* PCI Cryptographic Coprocessor Configuration (Subtype 18): */
/* written when a PCI Cryptographic Coprocessor is brought */
/* online or taken offline. */

44 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

call printline Sub_Tline "CCP CONFIGURATION (Subtype:" |[||smf82styl|")"

smf82cgb = substr(subtype,d1,04) /* CCP configuration bits
smf82cxx = c2x(substr(subtype,@1,84)) /* CCP configuration bits
smf82cgx = c2d(substr(subtype,®85,81)) /* CCP index

smf82cgs = substr(subtype,06,08) /* CCP serial number
s181 ="Crypto Coprocessor: "
s182 ="CCP index: "
s183 ="CCP serial number: "

s184 ="CCP configuration bits:"

msg = s183 smf82cgs; call printline msg

msg = s184 smf82cxx; call printline msg

/* ___ */

/* Decode and print CCP configuration bits */

/* ___ */
smf82cgn = '80000003"' x /* CCP brought online */
smf82cgf = '4000000A "' x /* CCP taken offline */

if bitand(smf82cgb,smf82cgn) = smf82cgn then
call printline s181 "PCI CC brought online"
if bitand(smf82cgb,smf82cgf) = smf82cgf then
call printline s181 "PCI CC brought offline"
msg = s182 smf82cgx; call printline msg
call printline sep

*/
*/
*/
*/

return
subtypel9:
/* ___ */
/* PCI X Cryptographic Coprocessor Timing (Subtype 19) - */
/* written when a PCI X Cryptographic Coprocessor */
/* operation begins or ends. */
/* ___ */
call printline Sub_1line "PCI X TIMINGS (Subtype:" ||smf82styl|")"
titl7 = "PCI X Cryptographic Coprocessor Timing: "; call printline
titl7
smf82xtn = substr(st(c2x(SUBSTR(subtype,?1,08))),12,32)
/* X CCP time before NQAP:
/* time just before the PCI X
/* Cryptographic Coprocessor
/* operation begins
smf82xtd = substr(st(c2x(substr(subtype,?9,08))),12,32)
/* CCP X time after DQAP:
/* time just after PCI X
/* Cryptographic Coprocessor
/* operation ends
smf82xtw = substr(st(c2x(substr(subtype,17,08))),12,32)

/* CCP X time after WAIT:
/* time just after results

/* have been communicated back

/* to caller address space
smf82xtq = c2d(substr(subtype,25,04)) /* CCP X queue length:

/* number of processes waiting

/* to submit work to the

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement.

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/
*x/
*/
*/

45

/* same PCI Cryptographic */

/* Coprocessor and domain, */
/* using the same reference */
/* number */
smf82xtf = c2d(substr(subtype,29,02)) /* Function code of service */
smf82xtx = c2d(substr(subtype,31,01)) /* PCI X CCP Index */
smf82xts = substr(subtype,32,08) /* PCI X CCP Number */
smf82xtm = c2d(substr(subtype,40,01)) /* PCI X CCP domain */
smf82xtr = c2d(substr(subtype,41,01)) /* PCI X CCP reference number*/
Xresptime= dif(smf82xtn,smf82xtd) /* PCI X CCP card response time*/
Xxfertime= dif(smf82xtd,smf82xtw) /* PCI X CCP transfer time */
msg = "CCP time before NQAP: "smf82xtn; call printline msg
msg = "CCP time after DQAP: "smf82xtd; call printline msg
msg = "CCP card response time: "Xresptime; call printline msg
msg = "CCP time after WAIT: "smf82xtw; call printline msg
msg = "CCP transfer time: "Xxfertime; call printline msg
msg = "CCP queue length: "smf82xtq; <call printline msg
msg = "Service function code: "smf82xtf; call printline msg
msg = "CCP Index: "smf82xtx; call printline msg
msg = "CCP Serial Number: "smf82xts; call printline msg
msg = "CCP Domain: "smf82xtm; call printline msg
msg = "CCP Reference Number: "smf82xtr; call printline msg
call printline sep
return
Printline:
/* ___ */
/* Print each report Tine */
/* ___ */

PARSE arg Tlineoutl
"EXECIO 1 DISKW REPORT (STEM 1lineout)"
if rc == @ then

do
say "printline RC =" RC
exit rc
end /* end of printline */
Return
SMF: procedure
/* ___ */
/* REXX - convert a SMF time to hh:mm:ss:hd format */
/* ___ */
arg time
timel = time % 100
hh = timel % 3600; hh = right("@"||hh,2)
mm = (timel % 68) - (hh * 60); mm = right("@"|Imm,2)
ss = timel - (hh * 360@) - (mm * 60); ss = right("@"|1ss,2)
fr = time // 1000; fr = right("g"11fr,2)
rtime = hh[[":"[|mm||":"[|ss||":"|[fr
return rtime
ST:
/* ___ */

/* TOD64 timestamp format converted. The BLSUXTOD proc is */

46 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

/* described in "z/0S V1IR3 MVS IPCS Customization". */
/* ___ */
arg todtime
If todtime <> 'Q00000000000000000303"' Then
Do
TOD_Value = X2C(todtime)
Returned_Date = "---------“-“-“co-- '
address LINKPGM "BLSUXTOD TOD_Value Returned_Date"
End
Else
Returned_Date = '0000000000000000000"'
Return Returned_Date

DIF:
/* ___ */
/* Dif: REXX subroutine to find the difference between two */
/* timestamps */
/* ___ */
arg t.1,t.2
do j=1 to 2
_=arg(j)':0:0:0:"
parse var _ h ":" m ":" s ":"
s.j= h * 3600 + m* 60 + s
end

diff=s.2-s5.1+(s.1>5.2)*86400

dtime =right(diff%3600,2,8)':"'1| ,
right(diff//3600%60,2,8)":"11 ,
translate(format(diff//3600//66,2),8,"' ')

return diff

CONCLUDING REMARK

The ICSF SMF data reports are useful, but should be used
with care. The data is basically only a sample of the activity
against the crypto cards. They should be used in conjunction
with:

* An understanding of the RMF reports for the same time
intervals.

« The crypto hardware installed and the crypto functions
they support.

« The applications using cryptographic functions, the
functions and data sizes they use, and the hardware they
exploit.

Mile Pekic
Systems Programmer (Serbia and Montenegro) © Xephon 2005

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 47

RACF 101 — a RACF quiz

RACF 101 is a regular column for newcomers to the RACF
world. It presents basic RACF topics in a tutorial format. In this
issue we will advance our RACF knowledge by taking a quiz
designed to make you think like RACF does.

Just as a programmer, when writing a program, thinks like the
computer does, so a RACF administrator should think like
RACF does in determining the outcomes of various security
checks.

The following quiz will help the beginner review some of the
material covered in past issues, by looking at real-life RACF
security scenarios.

Answers are given at the end. Give yourself one point for each
correct answer. Anything more than five points is good.

Question 1
Consider the following access list for a dataset profile:

Userid/Group Access
ABC UPDATE
DEF ALTER

If ABC and DEF are groups, and userid USER76 is a member
of both of these groups, what effective access does USER76
have for this profile?

Question 2

Regarding Question 1, if, in addition to being connected to
groups ABC and DEF, userid USER76 is also mentioned by
userid in the access list, with READ access:

Userid/Group Access
ABC UPDATE
DEF ALTER
USER76 READ

what access does userid USER76 now get?

48 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

Question 3

Regarding Question 2, what access would be granted to
USERT76 if, in addition to the above, the user also has the
OPERATIONS attribute? (Remember, the OPERATIONS
attribute by default allows the user ALTER access to all
datasets.)

Question 4
True or false?

If a user is not in the access list of a profile, is not connected
to any groups in the access list, the UACC for the profile is
NONE, andthe user does nothave the OPERATIONS attribute,
then the user does not get any access to the profile (user’s
access is NONE).

Question 5
If you use the RACF PERMIT command like this:

PERMIT profile.name, USER(XYZ)

andforgetto specifythe ACCESS(...) parameter, the command
does not fail. Neither does it prompt you to specify the
ACCESS(...) parameter. What is the default access in a
PERMIT command if you forget to specify it?

Question 6

If you want to grant, say, READ access to all users in a profile,
you can do it two ways — you can specify Universal Access of
READ (UACC(READ) in the profile), or you can specify the
userid ** access(READ) in the access list of the profile.

What is the subtle difference in the access being granted by
the two methods? Which method is preferable?

Question 7

If Global Access Checking grants ALTER access to a user for
a profile, but in the access list of the profile itself the user has
only READ access, which one prevails?

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 49

Question 8

In the recent past, RACF introduced a new user attribute
called RESTRICTED. If a userid has the RESTRICTED
attribute, what does it mean?

Answer 1

The effective access for userid USER76 is ALTER. RACF
resolves this by granting the highest level of access the user
is permitted by their various group connections; in this case,
ALTER.

Answer 2

USER76 now gets READ access. If individual userid access
is specified in an access list, then RACF will override the
access it determines by checking various groups to which the
user may belong.

RACF will always grant the access specified at the userid
level, if one is specified. RACF does this to allow reduction (or
increase) in access for a user, outside of the group-level
access if the user belongs to a group in the access list. In the
example, if the group ABC has 100 users connected to it, an
override such as this may be necessary for one or two
individuals in the group, and this allows that to happen.

Answer 3
USER76 will in this case get only READ access to the profile.

Even though USER76 has the OPERATIONS attribute, the
explicit READ specified in this profile will override the ALTER
access normally allowed and reduce the user’s access to
READ. This is RACF’s way of removing some of the powers
of users with the OPERATIONS attribute for important or
classified datasets.

Answer 4

False. The profile can be in the Global Access Checking
(GAC) Table, in which case the user will get whatever access

50 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

Is specified there. If the Global Access Checking Table grants
some access to a user, it overrides any restrictions that may
be in place in the actual profile.

Answer 5

The defaultis READ access. This is one of the quirks in RACF.
It would be nice if the access level was prompted, or if the
command failed, forcing you to specify the access level in the
PERMIT command.

Answer 6

The method of specifying UACC(READ) will grant READ
access to all users, whether they are defined to RACF or not.

The method using the generic entry “** with READ access in
the access list will grant READ access to all users defined to
RACF. It will not grant any access to undefined users.

For this reason, the second method is preferred. The UACC
of most of your profiles should be NONE.

Answer 7

The user gets ALTER access. With Global Access Checking
(GAC) active, the profile is not checked if the GAC entry allows
access. The profile is, however, checked if GAC does not
allow the required access.

Having entries in the GAC Table is not foolproof, should you,
for instance, overlook this table. For this reason you should
have a ‘mirror’ profile defined for each of your entries in the
GAC Table that reflects the specifications in the GAC entry, to
make you aware at a glance of what the profile allows.

Answer 8

If a userid has the RESTRICTED attribute, the userid will get
only the access specifically granted to the userid via profiles’
access lists.

The userid does not get general-purpose accesses specified
in the Global Access Checking Table, or in UACCs, or via ID(*)

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 51

entriesinaccesslists. These are bypassed foraRESTRICTED
userid.

In a sense, this is the converse of the OPERATIONS attribute,
where the userid has full (ALTER) access to all datasets
unless specifically prohibited (or access reduced) in an access
list.

Dinesh Dattani is an Independent Consultant specializing in
mainframe security. He welcomes comments and feedback
on this column. He can be contacted at
dineshl23@rogers.com.

Dinesh Dattani
I ndependent Consultant
Toronto (Canada) © Xephon 2005

Querying and reporting the RACF database

The RACF database unload utility, IRRDBUOO, enables users
to create a sequential file from a RACF database. The
sequential file can be used in several ways — viewed directly,
used as input for installation-written programs, and manipulated
with sort/merge utilities. It can also be uploaded to a relational
database, such as DB2, to process complex inquiries and
create user-defined reports.

The IRRDBUOO utility processes either a copy of the RACF
database, a back-up RACF database, or the active RACF
database. You must have UPDATE authority on the database.

The following JCL copies the data from a back-up RACF file
(SYS1.RACF.BACK.MB) to the output sequential file
(SYSADM.RACFDB.FLATFILE):

//SYSADMX JOB (1200-1205-00),CLASS=A,
// MSGCLASS=X,NOTIFY=SYSADM,
// MSGLEVEL=(1,1),USER=,REGION=4M

52 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

//* RACF DATABASE UNLOAD UTILITY

//UNLOAD EXEC PGM=IRRDBU@@,PARM=NOLOCKINPUT

//* RACF INPUT DATASET

//INDD1 DD DISP=SHR,DSN=SYS1.RACF.BACK.MB

//* SEQUENTIAL OUTPUT DATA SET

//0UTDD DD DISP=SHR,DSN=SYSADM.RACFDB.FLATFILE

//SYSPRINT DD SYSOUT=*

/*

The PARM field on the EXEC statement must be specified.
The parameters NOLOCKINPUT, LOCKINPUT, and
UNLOCKINPUT are allowed. If you are running the unload
utility IRRDBUOO against an active RACF database,
LOCKINPUT is recommended. If you use NOLOCKINPUT on

the active database, the data might contain inconsistencies.

The output (OUTDD) sequential file of IRRDBUOO is a dataset
of variable (RECFM=VB) length records. The recommended
record length (LRECL) is 4096 and block size is 27998.

The output file from the IRRDBUOO unload utility can be
loaded into arelational database management system (DBMS)
such as DB2, but first you must create one or more DB2
databases, one or more DB2 table spaces, DB2 tables, and
the DB2 indexes, then load data into the tables, and, finally,
reorganize and runstat the data in the tables (optional).

The Data Definition Language (DDL — CREATE DB2 objects)
statements to define the relational presentation of the RACF
database are in member SYS1.SAMPLIB(RACDBUTB).

The sample control statements for the DB2 load utility that
map the output from the database unload utility (IRRDBUOO)
are in member SYS1.SAMPLIB(RACDBULD).

The following JCL loads the data from the output sequential
file (SYSADM.RACF.FLATFILE) into DB2 tables:

//SYSADMX JOB (1200-1205-00),'",
// NOTIFY=SYSADM,REGION=4M,

// CLASS=A,MSGCLASS=X,MSGLEVEL=(1,1)
//LOAD EXEC DSNUPROC,SYSTEM=DSNN,
// UID='SYSADM.LOAD1',UTPROC="",COND=(4,LT)

//SYSREC DD DSN=SYSADM.RACFDB.FLATFILE,DISP=SHR
//SYSUT1 DD DSN=DB2V7.SYSUT1.TABLE.TB1,

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 53

// DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(CYL, (10,10),RLSE)
//SYSERR DD DSN=DB2V7.SYSERR.TABLE.TB1,

// DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(CYL, (1@,10),RLSE)
//SYSMAP DD DSN=DB2V7.SYSMAP.TABLE.TBI,

// DISP=(MOD,DELETE,CATLG),

// UNIT=SYSDA,SPACE=(CYL, (10,10),RLSE)

//SORTWK@1 DD UNIT=SYSDA,SPACE=(CYL,(10,10),,,ROUND)
//SORTWK@2 DD UNIT=SYSDA,SPACE=(CYL,(10,10),,,ROUND)
//SORTWK@3 DD UNIT=SYSDA,SPACE=(CYL,(10,10),,,ROUND)
//SORTWK@4 DD UNIT=SYSDA,SPACE=(CYL,(10,10),,,ROUND)
//SORTOUT DD UNIT=SYSDA,SPACE=(CYL,(10,10),,,ROUND)
//SYSPRINT DD SYSOUT=*

//SYSIN DD DSN=SYSADM.DBZ2.CNTL(RACDBULD),DISP=SHR
/*

The control statements In SYSIN dataset
SYSADM.DB2.CNTL(RACDBULD) show only one DB2 table
(USER_TSO_DATA):

INTO TABLE RACFID.USER_TSO_DATA

WHEN(1:4)="0220" (

USTSO_NAME POSITION(@86:013) CHAR(8),
USTSO_ACCOUNT POSITION(@15:054) CHAR(40),
USTSO_COMMAND POSITION(@56:135) CHAR(80),

USTSO_DEST POSITION(137:144) CHAR(8),
USTSO_HOLD_CLASS POSITION(146:146) CHAR(1),
USTSO_JOB_CLASS POSITION(148:148) CHAR(1),
USTSO_LOGON_PROC POSITION(150:157) CHAR(8),
USTSO_LOGON_SIZE POSITION(159:168) INTEGER EXTERNAL(10),
USTSO_MSG_CLASS POSITION(170:170) CHAR(1),
USTSO_LOGON_MAX POSITION(172:181) INTEGER EXTERNAL(10),
USTSO_PERF_GROUP POSITION(183:192) INTEGER EXTERNAL(10),
USTSO_SYSOUT_CLASS POSITION(194:194) CHAR(1),
USTSO_USER_DATA POSITION(196:203) CHAR(8),
USTSO_UNIT_NAME POSITION(205:212) CHAR(8),
USTSO_SECLABEL POSITION(214:221) CHAR(8)

)

When you have RACF data in a DB2 environment, you can
generate complex queries and user-defined reports. The
REXX procedure (RDB0) generates some ISPF reports as
follows:

 Find all users with the GLOBAL — SPECIAL authority.

 Check each of the dataset access list entries and verify
that each user ID is a valid user or group ID.

54 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

« Find all the users connected to a particular group ID
(USCON_GRP_ID) and list their names, user IDs, and
authority within the group.

 Find all of the group connections that a particular user 1D
(USCON_NAME) has, and retrieve the authority within
each group.

 Find all the RACF users defined with valid OMVS UIDs
and valid OMVS GIDs. List the OMVS program name and
home path associated with the users.

 Find all of the RACF users defined with valid OMVS UIDs.

 Find all of the RACF groups defined with valid OMVS
GIDs.

« Find all of the RACF users having RRSF associations
defined with a wuser ID on another system
(USRSF_TARG_NODE). For these users, list their user
ID, name, and user ID with which the association exists.

 Find all of the RACF users being managed by another
user. For these users, list their user ID, name, the user ID
managing them and the node of the managing user ID.

 Find all DCE users and display their RACF user IDs, DCE
UUIDs, DCE home cells, DCE home cell UUIDs,
OpenEdition UIDs, and their names.

 Find all the DCE users without a corresponding profile in
the DCEUUIDS class where the RACF user ID is in the
APPLDATA field.

 Find all the DCE users without a corresponding OMVS
segment.

RDBO — REXX DRIVER PROCEDURE

/* REXX */

/* trace r */
zpfctl = 'OFF'
/* The subsystem name */
db2="DSNN'"

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 55

address ispexec 'vput (zpfctl) profile’
CUR="F1'
address ispexec "display panel(rdbp@) cursor("CUR")"
do while rc=0

56

if kurs='F1' then do
Call rdbl db2 'F1'
CUR="F1"

end

if kurs='F2' then do
Call rdbl db2 'F2'
CUR="F2'

end

if kurs='F3' then do
Call rdbl db2 'F3'
CUR="F3"

end

if kurs='F4' then do
Call rdbl db2 'F4'
CUR="'F4"

end

if kurs='F5' then do
Call rdbl db2 'F5'
CUR="F5"

end

if kurs='F6' then do
Call rdbl db2 'F6'
CUR="F6'

end

if kurs='F7' then do
Call rdbl db2 'F7'
CUR="F7"

end

if kurs='F8' then do
Call rdbl db2 'F8'
CUR="F8'

end

if kurs='F9' then do
Call rdbl db2 'F9'
CUR="F9'

end

if kurs='F1@0' then do
Call rdbl db2 'F18'
CUR="F1@'

end

if kurs='F11l' then do
Call rdbl db2 'F11'
CUR='F11"

end

if kurs='F12' then do
Call rdbl db2 'F12'

© 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

CUR="F12'
end

address ispexec "display panel(rdbp@) cursor("CUR")"

end
exit

RDB1 — REXX DETAIL REPORT PROCEDURE

/* REXX */
/* List all RACF DB2 tables
/* trace r */

arg db2 fs

if db2 = ' ' then db2 ='DSNN'

zpfctl = 'OFF'

Y=MSG("OFF")

address ispexec 'vput (zpfctl) profile’
hitem=""

/* DSNREXX Language Support
Address TSO "SUBCOM DSNREXX"

IF RC THEN
S_RC = RXSUBCOM(ADD,DSNREXX,DSNREXX)
SSID = db2

ADDRESS DSNREXX "CONNECT" SSID

/* User with the GLOBAL-SPECIAL authority

if fs='F1' then do
SQLSTMT= "SELECT USBD_NAME
" FROM RACFID.USER_BD
" WHERE USBD_SPECIAL='Y"
" ORDER BY USBD_NAME
" WITH UR
Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
Address DSNREXX "EXECSQL OPEN C1"
Address DSNREXX "EXECSQL FETCH C1 INTO :hitem"
address ispexec 'tbcreate "flist" names(hitem)'
do while(sqlcode=0)

address ispexec 'tbadd "flist"'
Address DSNREXX "EXECSQL FETCH C1 INTO :hitem"

end
Address DSNREXX "EXECSQL CLOSE C1"
address ispexec 'tbtop "flist"'
title="GLOBAL-SPECIAL authority’
address ispexec 'addpop row(1l) column(2@)'
address ispexec 'tbdispl "flist" panel(RDBP1)'
address ispexec rempop all
address ispexec 'tbend "flist"'

end

/* User with the GLOBAL-SPECIAL authority

if fs='F2' then do

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement.

*/

*/

*x/

*x/

57

SQLSTMT= "SELECT DSACC_NAME ",

" ,DSACC_AUTH_ID "
" ,DSACC_ACCESS ",
" ,DSACC_ACCESS_CNT "
" FROM RACFID.DS_ACCESS X "
" WHERE NOT EXISTS "
" (SELECT * "
" FROM RACFID.AUTH_IDS ",
" WHERE X.DSACC_AUTH_ID=AUTHID_NAME ",
") .
" AND X.DSACC_AUTH_ID"="*" "
" ORDER BY 1 "
" WITH UR "

Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
Address DSNREXX "EXECSQL OPEN C1"
Address DSNREXX,
"EXECSQL FETCH C1 INTO :hiteml, :hitem2, :hitem3, :hitem4"
address ispexec 'tbcreate "flist",
names(hiteml hitem2 hitem3 hitem4)'
do while(sqlcode=0)
address ispexec 'tbadd "flist"'
Address DSNREXX,
"EXECSQL FETCH C1 INTO :hiteml, :hitem2, :hitem3, :hitem4"
end
Address DSNREXX "EXECSQL CLOSE C1"
address ispexec 'tbtop "flist"'
title='Check each of the dataset authorities’
address ispexec 'tbdispl "flist" panel(RDBP2)'
address ispexec 'tbend "flist"'
end
/* Information about user group connections */
if fs='F3' then do
title="Information about user group connections’
address ispexec "display panel(rdbp3) cursor("grpid")"
TOPF3:
SQLSTMT= "SELECT T2.USCON_NAME ",
" , T1.USBD_NAME ",

" , T1.USBD_PROGRAMMER ",
" , 12 .USCON_GRP_SPECIAL ",
" , 12 .USCON_GRP_OPER ",
" , 12 .USCON_GRP_AUDIT ",

" ,T2.USCON_REVOKE "
" ,VALUE(CHAR(T2.USCON_REVOKE_DATE),"' ') "

" FROM RACFID.USER_BD T1, ",
" RACFID.USER_CONNECT_DATA T2 ",
" WHERE T2.USCON_GRP_ID =""grpid"' ",
" AND T2.USCON_NAME = T1.USBD_NAME ",

" ORDER BY T2.USCON_NAME ",
" ,T1.USBD_NAME ",

58 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

" WITH UR "
Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1™"
Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
Address DSNREXX "EXECSQL OPEN C1"
Address DSNREXX,
"EXECSQL FETCH C1 INTO :hvl,:hv2,:hv3,:hv4,:hv5,:hv6,:hv7,:hv8"
address ispexec 'tbcreate "flist",
names(hvl hv2 hv3 hv4 hv5 hvée hv7 hv8)'
do while(sqlcode=0)
address ispexec 'tbadd "flist"'
Address DSNREXX,
"EXECSQL FETCH C1 INTO :hvl,:hv2,:hv3,:hv4,:hv5,:hv6,:hv7,:hv8"
end
Address DSNREXX "EXECSQL CLOSE C1"
address ispexec 'tbtop "flist"'
address ispexec 'tbdispl "flist" panel(RDBP3)'
rrc=rc
address ispexec 'tbend "flist"'
if rrc=8
then Exit
else Signal TOPF3
end
/* Information about a user connection to a group */
if fs='F4' then do
title="Information about a user connection to a group'
address ispexec "display panel(rdbp4) cursor("uscname")"

TOPF4:

SQLSTMT= "SELECT USCON_NAME "
" ,USCON_GRP_SPECIAL "
" ,USCON_GRP_ID "
" ,USCON_GRP_OPER "
" ,USCON_GRP_AUDIT "

" ,USCON_REVOKE ",
" , VALUECCHAR(USCON_REVOKE_DATE)," ') "
" , VALUECCHAR(USCON_RESUME_DATE)," ") ",

" FROM RACFID.USER_CONNECT_DATA ",
" WHERE USCON_NAME='"uscname"' ",
" ORDER BY USCON_GRP_ID ",
" WITH UR "

Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
Address DSNREXX "EXECSQL OPEN C1"
Address DSNREXX,
"EXECSQL FETCH C1 INTO :hvl,:hv2,:hv3,:hv4,:hv5,:hv6,:hv7,:hv8"
address ispexec 'tbcreate "flist",
names(hvl hv2 hv3 hv4 hvb5 hvé hv7 hv8)'

do while(sqlcode=0)

address ispexec 'tbadd "flist"'

Address DSNREXX,

"EXECSQL FETCH C1 INTO :hvl,:hv2,:hv3,:hv4,:hv5,:hv6,:hv7,:hv8"

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement.

end
/* Find the users that are defined with valid OMVS UID and OMVS GID */

end

Address DSNREXX "EXECSQL CLOSE C1"

address ispexec 'tbtop "flist"'

address ispexec 'tbdispl "flist" panel(RDBP4)'
rrc=rc

address ispexec 'tbend "flist"'

if rrc=8

then Exit

else Signal TOPF4

if fs='F5' then do

60

title="'Users with valid OMVS UID and OMVS GID'
address ispexec "display panel(rdbp5) cursor("uscname")"
TOPF5:
SQLSTMT= "SELECT USBD_NAME
" ,GPOMVS_GID
" ,GPOMVS_NAME
" ,USBD_PROGRAMMER
" , USCON_NAME
" ,USCON_GRP_ID
" FROM RACFID.USER_BD,
" RACFID.USER_CONNECT_DATA,
" RACFID.GROUP_OMVS_DATA
" WHERE GPOMVS_GID IS NOT NULL
" AND USBD_NAME ='""uscname"'
" AND USCON_NAME = USBD_NAME
" AND USCON_GRP_ID = GPOMVS_NAME
" ORDER BY USBD_NAME
" WITH UR
Address DSNREXX "EXECSQL DECLARE Cl1 CURSOR FOR S1"
Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
Address DSNREXX "EXECSQL OPEN C1"
Address DSNREXX,
"EXECSQL FETCH C1 INTO :hvl,:hv2,:hv3,:hv4,:hv5,:hv6"
address ispexec 'tbcreate "flist",
names(hvl hv2 hv3 hv4 hv5 hv6)'

do while(sqlcode=0)

address ispexec 'tbadd "flist"'

Address DSNREXX,

"EXECSQL FETCH C1 INTO :hvl,:hv2,:hv3,:hv4,:hv5,:hv6"
end
Address DSNREXX "EXECSQL CLOSE C1"
address ispexec 'tbtop "flist"'
address ispexec 'tbdispl "flist" panel(RDBP5)'
rrc=rc
address ispexec 'tbend "flist"'
if rrc=8
then Exit
else Signal TOPF5

© 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

end
/* Find the users that are defined with valid OMVS UID */
if fs='F6' then do

title='Find the users that are defined with valid OMVS UID'

SQLSTMT= "SELECT USOMVS_UID
" ,USBD_NAME
" ,USBD_PROGRAMMER
" FROM RACFID.USER_BD,
" RACFID.USER_OMVS_DATA
" WHERE USOMVS_NAME = USBD_NAME
" AND USOMVS_UID IS NOT NULL
" ORDER BY USOMVS_UID
" WITH UR
Address DSNREXX "EXECSQL DECLARE Cl1 CURSOR FOR S1"
Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
Address DSNREXX "EXECSQL OPEN C1"
Address DSNREXX,
"EXECSQL FETCH C1 INTO :hvl,:hv2,:hv3"
address ispexec 'tbcreate "flist",
names(hvl hv2 hv3)'
do while(sqlcode=0)
address ispexec 'tbadd "flist"'
Address DSNREXX,
"EXECSQL FETCH C1 INTO :hvl,:hv2,:hv3"
end
Address DSNREXX "EXECSQL CLOSE C1"
address ispexec 'tbtop "flist"'
address ispexec 'tbdispl "flist" panel(RDBP6)'
address ispexec 'tbend "flist"'
end
/* Find the users that are defined with valid OMVS GID */
if fs='F7' then do
title="Find the users that are defined with valid OMVS
SQLSTMT= "SELECT GPOMVS_GID
" ,GPOMVS_NAME
" FROM RACFID.GROUP_OMVS_DATA
" WHERE GPOMVS_GID IS NOT NULL
" ORDER BY GPOMVS_GID
" WITH UR
Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
Address DSNREXX "EXECSQL OPEN C1"
Address DSNREXX,
"EXECSQL FETCH C1 INTO :hvl,:hv2"
address ispexec 'tbcreate "flist",
names(hvl hv2)'
do while(sqlcode=0)
address ispexec 'tbadd "flist"'
Address DSNREXX,
"EXECSQL FETCH C1 INTO :hvl,:hv2"

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement.

GID'

61

end

end

Address
address
address
address

DSNREXX
ispexec
ispexec
ispexec

"EXECSQL CLOSE C1"

"tbtop

"flist"'

"tbdispl "flist" panel(RDBP7)'

'"tbend

"flist"'

/* Find the users that have RRSF defined on another system */
if fs='F8' then do
title="Find the users that have RRSF defined on another system’
address ispexec "display panel(rdbp8) cursor("usrnode")"

end

/* Find the users that are being managed by another user */

if

62

TOPF8:

SQLSTMT= " SELECT USRSF_NAME

" ,USBD_PROGRAMMER

" ,USRSF_TARG_USER_ID

" ,USRSF_TARG_NODE

" FROM RACFID.USER_RRSF_DATA,
" RACFID.USER_BD

" WHERE USRSF_NAME = USBD_NAME
" AND USRSF_NAME IS NOT NULL
" AND USRSF_TARG_NODE = "EMDSYS '
" ORDER BY USRSF_NAME

" WITH UR

Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'

Address DSNREXX "EXECSQL OPEN C1"
Address DSNREXX,
"EXECSQL FETCH C1 INTO :hvl,:hv2,:hv3,:hv4"
address ispexec 'tbcreate "flist",
names(hvl hv2 hv3 hv4)'

do while(sqlcode=0)

address ispexec 'tbadd "flist"'

Address DSNREXX,

"EXECSQL FETCH C1 INTO :hvl,:hv2,:hv3,:hv4"
end
Address DSNREXX "EXECSQL CLOSE C1"
address ispexec 'tbtop "flist"'
address ispexec 'tbdispl "flist" panel(RDBP8)'
rrc=rc
address ispexec 'tbend "flist"'
if rrc=8
then Exit
else Signal TOPF8

fs='F9' then do

title="Find the users that are being managed by another user’

SQLSTMT= "SELECT USRSF_NAME

" ,USBD_PROGRAMMER

" ,USRSF_TARG_USER_ID
" ,USRSF_TARG_NODE

© 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

" ,USRSF_MANAGED
" FROM RACFID.USER_RRSF_DATA,
" RACFID.USER_BD
" WHERE USRSF_NAME = USBD_NAME
" AND USRSF_NAME IS NOT NULL
" AND USRSF_MANAGED = 'Y'
" ORDER BY USRSF_NAME
" WITH UR
Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
Address DSNREXX "EXECSQL OPEN C1"
Address DSNREXX,
"EXECSQL FETCH C1 INTO :hvl,:hv2,:hv3,:hv4,:hv5"
address ispexec 'tbcreate "flist",
names(hvl hv2 hv3 hv4 hv5)'

do while(sqlcode=0)

address ispexec 'tbadd "flist"'

Address DSNREXX,

"EXECSQL FETCH C1 INTO :hvl,:hv2,:hv3,:hv4,:hy5"
end
Address DSNREXX "EXECSQL CLOSE C1"
address ispexec 'tbtop "flist"'
address ispexec 'tbdispl "flist" panel(RDBP9)'
address ispexec 'tbend "flist"'

end
/* DCE information about users */
if fs='F1@0' then do

title='DCE information about users'

SQLSTMT= " SELECT USDCE_NAME,

" USBD_PROGRAMMER,

" USDCE_UUID,

" USOMVS_UID

" FROM

" RACFID.USER_DCE_DATA,

" RACFID.USER_OMVS_DATA,

" RACFID.USER_BD

" WHERE USDCE_NAME = USOMVS_NAME

" AND USBD_NAME = USOMVS_NAME

" ORDER BY USDCE_NAME

" WITH UR

Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"

Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'

Address DSNREXX "EXECSQL OPEN C1"

Address DSNREXX,

"EXECSQL FETCH C1 INTO :hvl,:hv2,:hv3,:hv4"

address ispexec 'tbcreate "flist",
names(hvl hv2 hv3 hv4)'

do while(sqlcode=0)

address ispexec 'tbadd "flist"'
Address DSNREXX,

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement.

63

"EXECSQL FETCH C1 INTO :hvl,:hv2,:hv3,:hv4"
end
Address DSNREXX "EXECSQL CLOSE C1"
address ispexec 'tbtop "flist"'
address ispexec 'tbdispl "flist" panel(RDBP1@)'
address ispexec 'tbend "flist"'

/* DCE information about users without profile in the DCEUUIDS */
if fs='F11' then do

title='Users without profile in the DCEUUIDS'
SQLSTMT= "SELECT USDCE_NAME,
" USDCE_NAME,
" USDCE_UUID,
" USDCE_HOMECELL
" FROM RACFID.USER_DCE_DATA
" WHERE
" USDCE_NAME NOT IN
" (SELECT GRBD_APPL_DATA
" FROM RACFID.GENR_BD
")
" ORDER BY USDCE_NAME
" WITH UR
Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"
Address DSNREXX 'EXECSQL PREPARE S1 FROM :SQLSTMT'
Address DSNREXX "EXECSQL OPEN C1"
Address DSNREXX,
"EXECSQL FETCH C1 INTO :hvl,:hv2,:hv3"
address ispexec 'tbcreate "flist",
names(hvl hv2 hv3)'

do while(sqlcode=0)

address ispexec 'tbadd "flist"'

Address DSNREXX,

"EXECSQL FETCH C1 INTO :hvl,:hv2,:hv3"
end
Address DSNREXX "EXECSQL CLOSE C1"
address ispexec 'tbtop "flist"'
address ispexec 'tbdispl "flist" panel(RDBP11)'
address ispexec 'tbend "flist"'

/* DCE information about users without corresponding OMVS segment
if fs='F12' then do

title="Users without corresponding OMVS segment’
SQLSTMT= "SELECT USDCE_NAME,

" USDCE_NAME,

" USDCE_UUID,

" USDCE_HOMECELL

" FROM RACFID.USER_DCE_DATA

" WHERE

" USDCE_NAME NOT 1IN

" (SELECT USOMVS_NAME

© 2005. Xephon USA telephone (214) 340 5690, fax (214) 341 7081.

*/

FROM RACFID.USER_OMVS_DATA ",
) ll’

" ORDER BY USDCE_NAME ",
" WITH UR "
Address DSNREXX "EXECSQL DECLARE C1 CURSOR FOR S1"

Address DSNREXX

"EXECSQL PREPARE S1 FROM :SQLSTMT'

Address DSNREXX "EXECSQL OPEN C1"
Address DSNREXX,
"EXECSQL FETCH C1 INTO :hvl,:hv2,:hv3"

address ispexec

"tbcreate "flist",

names(hvl hv2 hv3)'
do while(sqlcode=0)
address ispexec 'tbadd "flist"'
Address DSNREXX,
"EXECSQL FETCH C1 INTO :hvl,:hv2,:hv3"

end

Address DSNREXX "EXECSQL CLOSE C1"

address 1ispexec

"tbtop "flist"'

address ispexec 'tbdispl "flist" panel(RDBP11)"
address ispexec 'tbend "flist"'

end

ADDRESS DSNREXX "DISCONNECT"

Exit

RDBPO — MAIN MENU

yattr default(%+_)
type (output)
type (output)
type (input)
type (text)
type (text)
type (text)
@ type (text)

el |

U+

intens(low) color(green) caps(off)

intens(low) color(white) caps(off)

intens(low) color(yellow) caps(off) pad('_")
intens(low) color(green)

intens(low) color(yellow)

intens(high) color(turquoise)

intens(high) color(red) caps(off) hilite(reverse)

Ybody window(8@,24) expand ($$)

_z[rfldl
_z[rfld2
_z[rf1d3
_z[rfld4
_z[rfld5
_z[rfld6
_z[rfld7
_z[rf1d8
_z[rfl1d9

+ 4+ 4+ + A+ A+ 4+

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement.

65

_z[rf1d1p +

_z[rfldl1l +
_z[rfldl2 +
+
L e e e e et e e e e et e e e e e e e e e,
+
/PF1 - Help+ #msg +
/PF3 - End + ~Jun 2005,"ZB"
)init

.ZVARS = '(f1 f2 f3 f4 f5 f6 f7 f8 f9 f1@ f11 f12)'

&rfl1dl = 'User with the GLOBAL-SPECIAL authority'

&rfld2 = 'Check each of the dataset authorities'

&rfl1d3 = "Information about user group connections'

&rfld4 = '"Information about a user connection to a group'

&rf1d5 = 'Find the users that are defined with valid OMVS UID and OMVS
GID'

&rfld6 = 'Find the users that are defined with valid OMVS UID'

&rfld7 = 'Find the users that are defined with valid OMVS GID'

&rf1d8 = 'Find the users that have RRSF defined on another system'

&rfl1d9 = 'Find the users that are being managed by another user'
&rf1d1@= 'DCE information about users'
&rfldll= 'DCE information about users without profile in the DCEUUIDS'
&rfldl2= 'DCE information about users without corresponding OMVS
segment'
&msg = 'Place cursor on choice and press <Enter>'
IF (&kurs = F1,rfl1dl)
.attr (rf1dl) = 'color (yellow) caps(on)'
IF (&kurs = F2,rf1d2)
.attr (rf1d2) = 'color (yellow) caps(on)'
IF (&kurs = F3,rf1d3)
.attr (rf1d3) = 'color (yellow) caps(on)'
IF (&kurs = F4,rf1d4)
.attr (rf1d4) = 'color (yellow) caps(on)'
IF (&kurs = F5,rf1d5)
.attr (rf1d5) = 'color (yellow) caps(on)'
IF (&kurs = F6,rf1d6)
.attr (rf1d6) = 'color (yellow) caps(on)'
IF (&kurs = F7,rf1d7)
.attr (rf1d7) = 'color (yellow) caps(on)'
IF (&kurs = F8,rf1d8)
.attr (rf1d8) = 'color (yellow) caps(on)'
IF (&kurs = F9,rf1d9)
.attr (rf1d9) = 'color (yellow) caps(on)'
IF (&kurs = F10,rf1d10)
.attr (rf1d1@) = 'color (yellow) caps(on)'
IF (&kurs = F11,rf1d11)
.attr (rfl1dll) = 'color (yellow) caps(on)'
IF (&kurs = F12,rf1d12)
.attr (rf1d12) = 'color (yellow) caps(on)'
.HELP = rdbh@

66 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

yproc

&kurs = .CURSOR

if (.pfkey = pf@3) &pf3 = exit
yend

RDBP1 — PANEL

YJAttr Default(%+_)
$ type(output) intens(high) caps(off) color(yellow) hilite(reverse)
type(text) intens(high) caps(off) hilite(reverse)
] type(output) intens(low) caps(off) just(asis) color(turquoise)
)Body WINDOW(5@,20)
$title +
%Command =>_zcmd +
%Scroll ===>_amt +

#User +

)Model

1z +

)Init
.ZVARS = '(hitem)'
&amt = PAGE

JReinit

)Proc

)End

RDBP2 — PANEL

YAttr Default(%+_)
$ type(output) intens(high) caps(off) color(yellow) hilite(reverse)
type(text) intens(high) caps(off) hilite(reverse)
] type(output) intens(high) caps(on) just(left)
)Body
$title +
%Command =>_zcmd %Scroll =>_amt +

DSACC #DSACC # DSACC +

#DSACC NAME #AUTH ID #ACCESS #ACCESS CNT+
YModel
1z 1z 1z 1z +
YInit

.ZVARS = '(hiteml hitem2 hitem3 hitem4)'

&amt = PAGE
JReinit
)Proc
)End

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 67

RDBP3 — PANEL

JAttr Default(%+_)
$ type(output) intens(high) caps(off) color(yellow) hilite(reverse)
type(text) intens(high) caps(off) hilite(reverse)
{ type(text) intens(high) caps(off) color(yellow)
[type(input) intens(high) caps(on) color(red) just(left)
] type(output) intens(high) caps(on) just(left)

)Body

$title +
%Command =>_zcmd %Scroll =>_amt +
{USCON GRP ID[grpid +

e +

USCON #USCON#USCON#USCON # USCON +
#USCON NAME#USBD NAME#USBD PROGRAMMER #SPECIAL#OPER #AUDIT#REVOKE#
DATE +

YModel
1z 1z 1z 1z]z]z]z 1z +
YInit
.ZVARS = '"(hvl hv2 hv3 hv4 hv5 hvée hv7 hv8)'
&amt = PAGE
JReinit
)Proc
VPUT (grpid) PROFILE
)End

RDBP4 — PANEL

YJAttr Default(%+_)
$ type(output) intens(high) caps(off) color(yellow) hilite(reverse)
type(text) intens(high) caps(off) hilite(reverse)
{ type(text) intens(high) caps(off) color(yellow)
[type(input) intens(high) caps(on) color(red) just(left)
] type(output) intens(high) caps(on) just(left)
)Body
$title
%Command =>_zcmd %Scroll =>_amt
{USCON NAME[uscname +

#USCON GRP#USCON # USCON #USCON GRP#USCON # USCON # USCON
#USCON NAME# SPECIAL #GRP ID #GRP OPER# AUDIT #REVOKE#REVOKE
DATE#RESUME DATE
YModel
1z 1z 1z 1z 1z]z 1z 1z +
YInit
.ZVARS = '"(hvl hv2 hv3 hv4 hv5 hvée hv7 hv8)'
&amt = PAGE

JReinit

)Proc

68 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

VPUT (uscname) PROFILE
YEnd

RDBP5 — PANEL

YJAttr Default(%+_)
$ type(output) intens(high) caps(off) color(yellow) hilite(reverse)
type(text) intens(high) caps(off) hilite(reverse)
{ type(text) intens(high) caps(off) color(yellow)
[type(input) intens(high) caps(on) color(red) just(left)
1 type(output) intens(high) caps(on) just(left)

)Body
$title
%Command =>_zcmd %Scroll =>_amt
{USBD NAME[uscname +
o o e m e e e e e e e e e e e e e e e e e e e m e m e m e m— -
#USBD NAME#GPOMVS GID#GOMVS NAME#USBD PROGRAMMER #USCON NAME#USCON
GRP ID
)Model
1z 1z 1z 1z 1z 1z +
YInit

.ZVARS = '(hvl hv2 hv3 hv4 hv5 hv6)'

&amt = PAGE
JReinit
)Proc

VPUT (uscname) PROFILE
)End

RDBP6 — PANEL

YAttr Default(%+_)
$ type(output) intens(high) caps(off) color(yellow) hilite(reverse)
type(text) intens(high) caps(off) hilite(reverse)
] type(output) intens(high) caps(on) just(left)

)Body

$title

+

%Command =>_zcmd %Scroll =>_amt +

#USOMVS UID#USBD NAME#USBD PROGRAMMER +
YModel
1z 1z 1z +
YInit
.ZVARS = '(hvl hv2 hv3)'
&amt = PAGE
)JReinit
)Proc
)End

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 69

RDBP7 — PANEL

JAttr Default(%+_)
$ type(output) intens(high) caps(off) color(yellow) hilite(reverse)
type(text) intens(high) caps(off) hilite(reverse)
1 type(output) intens(high) caps(on) just(left)

)Body
$title +
%Command =>_zcmd %Scroll =>_amt +
g +
#GPOMVS GID#GPOMVS NAME+
YModel
1z 1z +
)Init
.ZVARS = '"(hvl hv2)'
&amt = PAGE
JReinit
)Proc
)End

RDBP8 — PANEL

YJAttr Default(%+_)
$ type(output) intens(high) caps(off) color(yellow) hilite(reverse)
type(text) intens(high) caps(off) hilite(reverse)
{ type(text) intens(high) caps(off) color(yellow)
[type(input) intens(high) caps(on) color(red) just(left)
] type(output) intens(high) caps(on) just(left)

)Body
$title
%Command =>_zcmd %Scroll =>_amt
{USRSF TARG NODE[usrnode +
o o e m e e m m m e m e m e m m e e e mm e mmm e ———— =
#USRSF NAME#USBD PROGRAMMER #USRSF USER ID#USRSF TARG NODE+
YModel
1z]z 1z 1z +
YInit
.ZVARS = '(hvl hv2 hv3 hv4)'
&amt = PAGE
JReinit
)Proc
VPUT (usrnode) PROFILE
)End

RDBP9 — PANEL

YAttr Default(%+_)
$ type(output) intens(high) caps(off) color(yellow) hilite(reverse)
type(text) intens(high) caps(off) hilite(reverse)

70 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

1 type(output) intens(high) caps(on) just(left)
)Body
$title +
%Command =>_zcmd %Scroll =>_amt +

#USRSF TARG+

#USRSF NAME#USBD PROGRAMMER #USRSF TARG USER ID# NODE #USRSF
MANAGED+
YModel
1z 1z 1z 1z 1z +
)Init

.ZVARS = '"(hvl hv2 hv3 hv4 hv5)'

&amt = PAGE
JReinit
)Proc
)End

RDBP10 — PANEL

YJAttr Default(%+_)
$ type(output) intens(high) caps(off) color(yellow) hilite(reverse)
type(text) intens(high) caps(off) hilite(reverse)
1 type(output) intens(high) caps(on) just(left)

)Body
$title +
%Command =>_zcmd %Scroll =>_amt +
g +
#USDCE NAME#USBD PROGRAMMER #USDCE UUID #USOMVS UID+
YModel
1z 1z 17 17 +
)Init

.ZVARS = "(hvl hv2 hv3 hv4)'

&amt = PAGE
JReinit
)Proc
)End

RDBP11 — PANEL

YJAttr Default(%+_)
$ type(output) intens(high) caps(off) color(yellow) hilite(reverse)
type(text) intens(high) caps(off) hilite(reverse)
1 type(output) intens(high) caps(on) just(left)

)Body
$title +
%Command =>_zcmd %Scroll =>_amt +
g +
#USDCE NAME#USDCE UUID #USDCE HOMECELL +
YModel

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement. 71

]z 1Z 1Z +
YInit

.ZVARS = '"(hvl hv2 hv3)'
&amt = PAGE

)JReinit

)Proc

)End

RDBHO — HELP PANELO

yattr default(/+")
@ type(text) intens(high) color(red) caps(off) hilite(reverse)
~ type(text) intens(high) color(red) caps(off)
} type(text) intens(high) color(white) hilite(reverse)
{ type(text) intens(high) color(white)
[type(text) intens(high) color(white) hilite(uscore)
(type(text) intens(high) color(green)
) type(text) intens(high) color(pink)
\ type(text) intens(high) color(blue)
1 type(text) intens(high) color(yellow)
Ybody expand ($$%)
+ $ $@Help+$_%
+
+[Panel Explanation:+ 1 of 2
+
+(The~RDB@(procedure shows some{RACF Information(from RACF database.
+(Sample queries uses output data from the Unload Utility{IRRDBU@@. (
+(The REXX precedure generates the following SQL reports.
+
+]Find all of the user with the GLOBAL-SPECIAL authority.
+
+(Check each of the dataset access 1list entries and verify that each
+(user ID is a valid user or group ID.
+
+]Find all of the users connected to a particular department, and
+]1ist their names, user IDs, and authority within the group.
+
+(Find all of the group connections that a particular user ID has,
+(and retrieve the authority within each group.
+
+]Find all of the RACF users that are defined with valid OMVS UIDs +
+Jand valid OMVS GIDs. +
+ +
}Enter: Next Panel+ }F3: Return
)init
.HELP
yproc
.HELP rdbhl
&zcont = rdbhl
yend

+ 4+ + 4+ + + + +

+ + + + +

rdbhl

72 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

RDBH1 — HELP PANEL1
)yattr default(/+")

@

Ld A A]

type(text) intens(high)
type(text) intens(high)
type(text) intens(high)
type(text) intens(high)
type(text) intens(high)
type(text) intens(high)
type(text) intens(high)
type(text) intens(high)
type(text) intens(high)

Ybody expand ($$)
+ $_$@Help +$_$

color(red) caps(off) hilite(reverse)
color(red) caps(off)

color(white) hilite(reverse)
color(white)

color(white) hilite(uscore)
color(green)

color(pink)

color(blue)

color(yellow)

+
+[Panel Explanation:+ 2 of 2
+
+]Find all of the RACF users that are defined with valid OMVS UIDs. +
+ +
+(Find all of the RACF groups that are defined with valid OMVS GIDs. +
+
+]Find all of the RACF users that have RRSF associations defined with +
+]a user ID on another system. +
+ +
+(Find all of the RACF users that are being managed by another user. +
+
+]Find all of DCE users and display their RACF user IDs, DCE UUIDs,
+
+]DCE home cells, DCE home cell UUIDs, OpenkEdition UIDs, and their
names. +
+ +
+(Find all of the DCE users who do not have a corresponding profile in +
+(the DCEUUIDS class where the RACF user ID is in the APPLDATA field. +
+
+]Find all of the DCE users who do not have a corresponding OMVS
segment. +
+
+
}Enter: Previous Panel+ }F3: Return
)init

.HELP = rdbhl
)proc

.HELP = rdbh@

&zcont = rdbh@
yend

Bernard Zver (bernard.zver @informatika.si)
DBA
Informatica (Sovenia)

© Xephon 2005

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement.

73

RACF and encryption

One way to ensure that mainframe data is secure is through
the use of cryptography. The data is encrypted so that it
cannot be decrypted without access to a key that specifies
how it has been encrypted. If RACF security is penetrated, the
hacker will be unable to understand the information they have
accessed.

Cryptography provides three important security functions —
confidentiality, integrity, and non-repudiation. What this means
Is that the data can’t be read or altered except by authorized
users. Also, the identity of the sender of the data is known.

Cryptography comes in two forms — hardware and software.
IBM’s hardware solution is its Cryptographic Coprocessor,
which is coupled with a z/OS Integrated Cryptographic Service
Facility (ICSF) component.

RACF uses the OCEP (Open Cryptographic Enhanced Plug-
ins, which are part of the OS/390 Security Server) to act as a
limited certificate authority. OCEP provides an application
interface for managing server certificates and helping to
protect server private keys. Applications must comply with
CDSA (Common Data Security Architecture) standard
interfaces in order to use OCEP.

The ideal software solution would comply with RFC2440
(OpenPGP) standards to ensure that it interoperates with
encryption products on other platforms. The product should
also support well-known encryption algorithms (such as AES,
DES, Triple-DES, etc). It should allow the use of private and
public keys. And it should ensure data integrity by offering
cyclic redundancy checking, message digest algorithms, and
message authentication codes. A digital signature can be
used to ensure that the sender of the data can be positively
identified.

Basically, RACF is no longer enough in terms of mainframe

74 © 2005. X ephon USA telephone (214) 340 5690, fax (214) 341 7081.

security. Additional protection is required and cryptography is

a useful methodology.

Sephen Hare

Security Consultant (UK) © Xephon 2005

If you have an article, or anidea for an article, that you
think would be suitable for inclusion in RACF Update,
please send it to the editor, Trevor Eddolls, at
TrevorE@xephon.com.

© 2005. Reproduction prohibited. Pleaseinform Xephon of any infringement.

75

RACF news

Beta Systems Software AG has added two
modulesto its SAM Jupiter |[dM suite. SAM
Virtual Directory and SAM Data
SynchronizationEngineprovideaway tocreate
anldM architecturebasedon SAM Jupiter. The
components make use of technology from
MaxwareAS.

SAM Jupiter automates the life-cycle
management of IT users, passwords, access
rights, and security settings. Theproduct offers
standard connectors for the management of
systems such as RACF, ACF2, TopSecret,
Windows, SAP, or Unix.

WiththeSAM DataSynchronization Engine,
policies can be applied uniformly in order to
synchronizedatabetween primary sources, for
example between HR systems, the SAM
provisoningsolutionandany existingdirectories
inwhichuserinformationisheld. Inadditionthe
SAM Virtua Directory providesmiddleware
guaranteeing simpleaccessto elementsof user
information from different databases and
directories.

For further informationcontact:
URL: www.betasystems.com/e_beta.nsf/
(Docs)/0300000205.

* k% %

IBM has announced Tivoli Security
Administrator for RACF R1, which helpsto
improveRA CFadministrator productivity with
new tool sandviews, reducestraining costswith
a Java-based GUI or new ISPF panels,
Improvesaudit readinessandtroubleshooting
capabilities with flexible queries against the
RA CF database, minimizesrepetitivetasksby
providing one interface to multiple RACF

databases, increases flexibility by enabling
del egated security administration, andimproves
application accessto RACF data.

For further informationcontact:
URL : www.ibm.com/software/tivoli/products/
security-admin-racf.

* % *

Vanguard Integrity Professionals has
announced an agreement with IBM inwhich
IBM will resell Vanguard’ ssecurity software
productsfor theeServer zSeries. Vanguard’'s
offerings will add zSeries support to IBM’s
Tivoli security software portfolio. The
agreement includesVanguard Administrator,
Advisor, Analyzer, Enforcer, and
SecurityCenter. These provide a toolset for
adminigtration, reporting, auditing, andintruson
detectionfor RACF.

Vanguard has also announced Verion 6.1 of
Vanguard Security Solutions, with
enhancements for Vanguard Administrator,
Advisor, Analyzer, Enforcer, and
INCompliance. Included in thereleaseisez/
AccessControl for Windows, asinglepoint of
control for routingall accessrequeststoadrive,
file, or directory on a Microsoft Windows
machinethroughRA CF. Thisallowscompanies
toextendthesecurity authorizationandauditing
capabilitiesof themainframetotheir Windows
2000 and 2003 systems.

For further informationcontact:

URL: www.go2vanguard.com/docs/
marketing/press_releases/
PR_2005 6.1 Release.pdf.

* % %

xephon

	Access RACF data using LDAP in just five steps
	RACF in focus - finding redundant RACF groups
	ICSF events reporting
	RACF 101 - a RACF quiz
	Querying and reporting the RACF database
	RACF and encryption
	RACF news

