
167
Spring 2001

In this issue

3 Reactions to the
SPACER REXX routine

17 Contributing articles and code
to VM Update

© Software Diversified Services 2001

©SDS, www.sdsusa.com Spring 2001 2

VM Update
Published by
Software Diversified Services (SDS)
5155 East River Road
Minneapolis, MN 55421-1025
USA
www.sdsusa.com
sales@sdsusa.com
support@sdsusa.com
voice 763-571-9000
fax 763-572-1721

Editor
Phil Norcross
vu-ed@sdsusa.com
763-571-9000

Editorial Panel
Chuck Meyer, Chuck Meyer Systems, Inc.,
USA.

File formats
VM Update is published in pdf format, to
be read with an Adobe® Acrobat® Reader.
The Reader is available free of charge at
www.adobe.com. Once the Reader is
installed, Netscape and Microsoft browsers
can display pdf files in browser windows.

Most of the code described in articles is
also available in text or other formats that
readers can readily copy to their VM
machines.

Free subscription, back issues
VM Update is free of charge at
www.sdsusa.com. At that site, SDS
provides back issues through January
1997. Parts of older issues are available at
www.xephon. com/archives/vmi.htm.

Contributions
SDS and VM Update welcome contribu-
tions. See “Contributing Articles” at
www.sdsusa.com/vmupdate/
vutoauthors.htm

Disclaimer
Readers are cautioned that, although the
information in this journal is presented in
good faith, neither SDS nor the organiza-
tions or individuals that supplied informa-
tion in this journal give any warranty or
make any representations as to the accu-
racy of the material it contains. Neither
SDS nor the contributing organizations or
individuals accept any liability of any kind
whatsoever arising out of the use of such
material.

Readers should satisfy themselves as to the
correctness and relevance to their circum-
stances of all advice, information, code,
JCL, EXECs, and other contents of this
journal before making any use of it.

© SDS. Beginning with the January 2000 issue, all copyrights to VM Update belong to
Software Diversified Services. All rights reserved. Users are free to copy code repro-
duced in this publication for use in their own installations, but may not sell such code or
incorporate it into any commercial product. No part of this publication may be used for
any form of advertising, sales promotion, or publicity without the written permission of
SDS. Prior to January 2000, VM Update was published by Xephon plc.

VM Update

©SDS, www.sdsusa.com Spring 2001 3

Reactions to the SPACER REXX routine

SPACER REXX, the routine presented in the last issue of VM Update
(Winter 2001), provides great help for making readable lists of files: It
inserts a blank line between files of different types. With this article, I
want to present a similar tool for XEDIT sessions, and I want to add
to your knowledge of pipelines by offering a performance improve-
ment to SPACER REXX.

Filetype separator for XEDIT

SPACER REXX is to be used in a pipeline:

PIPE COMMAND LISTFILE * * S | SORT 10.8 | SPACER 10.8 | > SDISK FILES

SEPAR XEDIT is for an XEDIT session:

FILELIST * * S # stype # SEPAR 10 17

Both examples give you a list of files sorted by filetype, and when the
filetype changes, a blank line is inserted.

I wrote SEPAR XEDIT for listings like the following: The customer I
work for has 19 VM systems, and using a service machine, we get
lists of files installed on each system. To list all files with filename
VMPRF on VMPRF's 191 minidisk, for example, we enter

GEEFME VMPRF * VMPRF 191.

The result looks like figure 1 (next page). SEPAR XEDIT improves
readability by inserting blank lines between files of different types, as
in figure 2.

SEPAR XEDIT is listed at the end of this article, and available for
downloading from VM Update as SEPAR.VMARC.

VM Update

©SDS, www.sdsusa.com Spring 2001 4

figure 1: without SEPAR XEDIT
 GEEFME RESULTS A1 V 80 Trunc=80 Size=154 Line=0 Col=2 Alt=1
====>
<!..+....1....+....2....+....3....+....4....+....5....+....6....+....7...
* * * Top of File * * * 00000
--------- FILENAME FILETYPE FM F LRECL RECS BLKS DATE TIME 00001
VMKBTW01: VMPRF MASTER Z1 V 60 20 1 2000-03-07 1:40:11 00002
VMKBSI02: VMPRF MASTER Z1 V 80 20 1 2000-03-07 1:40:10 00003
VMKBSH01: VMPRF MASTER Z1 V 60 20 1 2000-03-07 1:40:09 00004
VMKBHK01: VMPRF MASTER Z1 V 80 20 1 2000-03-07 1:40:07 00005
VMKBIC01: VMPRF MASTER Z1 V 80 20 1 2000-03-07 1:40:07 00006
VMKBBR10: VMPRF MASTER Z1 V 80 20 1 2000-03-07 1:40:03 00007
VMKBME01: VMPRF MASTER Z1 V 80 20 1 2000-03-07 1:40:03 00008
VMKB2000: VMPRF MASTER Z1 V 80 20 1 2000-03-07 1:40:03 00009
VMKBFF01: VMPRF MASTER Z1 V 60 20 1 2000-03-07 1:40:01 00010
VMKBFF01: VMPRF MASTERX Z1 V 60 20 1 1995-10-12 11:51:12 00011
VMKBLO01: VMPRF MASTERX Z1 V 60 20 1 1995-10-12 11:51:12 00012
VMKBMN01: VMPRF MASTERX Z1 V 60 20 1 1995-10-12 11:51:12 00013
VMKBSH01: VMPRF MASTERX Z1 V 60 20 1 1995-10-12 11:51:12 00014
VMKBTW01: VMPRF MASTERX Z1 V 60 20 1 1995-10-12 11:51:12 00015
 1=scr 2=X 3=qt 4=spjn 5=ctxt 6=? 7=b 8=f 9=vh 10=home 11=save 12=file

figure 2: with SEPAR XEDIT
 GEEFME RESULTS A1 V 80 Trunc=80 Size=167 Line=0 Col=19 Alt=0
====>
13 separator lines inserted
DMSXSU510I AUTOSAVED as 100001 AUTOSAVE A1
* * * Top of File * * * 00000
--------- FILENAME FILETYPE FM F LRECL RECS BLKS DATE TIME 00001
 00002
VMKBTW01: VMPRF MASTER Z1 V 60 20 1 2000-03-07 1:40:11 00003
VMKBSI02: VMPRF MASTER Z1 V 80 20 1 2000-03-07 1:40:10 00004
VMKBSH01: VMPRF MASTER Z1 V 60 20 1 2000-03-07 1:40:09 00005
VMKBFR01: VMPRF MASTER Z1 V 80 20 1 2000-03-07 1:40:04 00006
VMKBME03: VMPRF MASTER Z1 V 80 20 1 2000-03-07 1:40:04 00007
VMKBBR10: VMPRF MASTER Z1 V 80 20 1 2000-03-07 1:40:03 00008
VMKBME01: VMPRF MASTER Z1 V 80 20 1 2000-03-07 1:40:03 00009
VMKB2000: VMPRF MASTER Z1 V 80 20 1 2000-03-07 1:40:03 00010
VMKBFF01: VMPRF MASTER Z1 V 60 20 1 2000-03-07 1:40:01 00011
 00012
VMKBBR01: VMPRF MASTERX Z1 V 80 20 1 1999-11-26 14:56:45 00013
VMKBFF01: VMPRF MASTERX Z1 V 60 20 1 1995-10-12 11:51:12 00014
VMKBLO01: VMPRF MASTERX Z1 V 60 20 1 1995-10-12 11:51:12 00015
VMKBMN01: VMPRF MASTERX Z1 V 60 20 1 1995-10-12 11:51:12 00016
VMKBSH01: VMPRF MASTERX Z1 V 60 20 1 1995-10-12 11:51:12 00017
 1=scr 2=X 3=qt 4=spjn 5=ctxt 6=? 7=b 8=f 9=vh 10=home 11=save 12=file

VM Update

©SDS, www.sdsusa.com Spring 2001 5

Improving performance of SPACER REXX

I have a curious nature, and I care—maybe too much—for perform-
ance. I had a look at the SPACER REXX procedure. And I saw room
for performance.

A bit simplified, the heart of SPACER REXX is as follows:

signal on error /* Jump to "error:" when at end-of-file */
'PEEKTO RECORD' /* Get the first record */

Do num_input=1
 If ?wdnum
 Then field = WORD(record,c1)
 Else field = SUBSTR(record,c1,c2-c1)
 If (num_input=1) Then field_sav = field
 If \(field_sav = field) Then Do
 field_sav = field
 'OUTPUT' spacer_rec /* write out the SPACER record */
 End
 'OUTPUT' record /* write out the record */
 'READTO' /* consume the previously-PEEKTO-ed record */
 'PEEKTO RECORD' /* and then expose the next record */
 End
Error: Exit rc*(rc\=12)

In the code above, each and every line is handled by the Rexx code. A
general assumption is that replacing Rexx DO loops by PIPE stages
improves performance. For the above "problem" we can use what
Melinda Varian calls a "sipping Pipeline," in which records are proc-
essed in groups. In general, the process looks like this:

 do forever
 'PEEKTO RECORD' /* Get a record */
 ... analyze the record to prepare handling a group
 'CALLPIPE *.input:', /* read input records */
1) '| WHILExxxx....' /* Process a group of records */
 '| ...handle/rearrange records ',
 '|*.output:' /* pass records to output */
 End

The key to this technique is the pipe stage marked "1)" above. It must
be a stage that stops reading more records when a new group begins.
Stages often used for this function are WhileLabel, ToLabel, ToTar-
get, or even TAKE nnn. The first two can only be used when a group
is delimited by data in column 1 of the record. ToTarget is more
general.

VM Update

©SDS, www.sdsusa.com Spring 2001 6

For our "insert separator" problem, however, we'd like a WhileTarget
state. If it existed, we could code the following:

 signal on error /* Jump to "error:" when at end-of-file */
 If ?wdnum /* What defines a "group" ? */
 Then Picfield = 'W'c1 /* Word selection */
 Else Picfield = c1'-'c2-1 /* Column selection */

 'PEEKTO RECORD' /* Get the first record */
 Do num_input=1
 If ?wdnum
 Then field = WORD(record,c1)
 Else field = SUBSTR(record,c1,c2-c1)
 If (num_input=1) Then field_sav = field
 If \(field_sav = field) Then Do
 field_sav = field
 'OUTPUT' spacer_rec /* write out the SPACER record */
 End
 'CALLPIPE',
 '*:', /* Get input records */
1) '|WHILETARGET LOCATE' PicField '/'field'/', /* Handle a group */
 '|*:' /* Send group to output */
 'PEEKTO RECORD' /* and then expose the next record */
 End
 Error: Exit rc*(rc\=12)

There are a few problems with line 1) in the above solution:

• There is no WhileTarget stage; we have to use something else.
What we use is explained below.

• The LOCATE stage isn't safe when used with a word as search
scope. Suppose you use

PIPE COMMAND LISTFILE * * S | SORT W2 | SPACER W2 | > SDISK FILES A

and the spacer code has "EXEC" stored in Rexx variable "field."
LOCATE W2 /EXEC/ will let filetypes EXECOLD, or EXEC-- throug;
string "EXEC" will be found in the second word. A waterproof
solution is to use the PICK stage: PICK W2 == /EXEC/

• How the above code specifies the string to search isn't safe either:
when Rexx variable "field" contains a slash or vertical bar
(/ or |), the syntax of the LOCATE stage is wrong. Suppose
"field" contains "xyz | klm" and "pickfield" contains 10-25.
When Rexx resolves the statement, the following command is
passed to CMS Pipelines:

CALLPIPE *: |WHILETARGET LOCATE 10-25 /xyz|klm/ |*:

VM Update

©SDS, www.sdsusa.com Spring 2001 7

The Pipeline scanner splits the arguments at the | character, so the
Locate stage will complain for a missing string delimiter as it
gets "10-25 /xyz" as parameters.

There is an easy solution. Use Rexx's C2X function to convert the
string to hexadecimal notation and pass this hex string to LOCATE.
So we code:

...LOCATE' picField 'X'c2x(field)

Two general warnings must be remembered:

WARNING 1: Often in your code you want to select lines in which a
given word is equal to the search string. Using LOCATE WORD n /xxx/ is
dangerous then, not only in sipping pipes, but everywhere. You must
use PICK WORD n == /xxx/

WARNING 2: To solve delimiter problems, exploit Pipe's hexadecimal
string notation. For example:

'LOCATE X'c2x(string)
'PICK 1.10 == X'c2x(string)

or

'StrWhileLabel X'c2x(string)

So, instead of

 '|WHILETARGET LOCATE' PicField '/'field'/',

we code

 '|WHILETARGET PICK' PicField '== X'c2x(field),

Now we are ready to find an alternative to the nonexistant WhileTar-
get stage. What can we use? The stage ToTarget comes to mind. The
argument of ToTarget is another Pipeline stage. ToTarget passes
records down the pipeline until the argument stage produces a record.

The solution would be easy if we knew the string that followed the
group we're about to handle:

 '|ToTARGET PICK' PicField '== X'c2x(nextField),

But we don't know what string ends this group. The code that works is
this:

 '|ToTARGET PICK' PicField '\== X'c2x(field),

VM Update

©SDS, www.sdsusa.com Spring 2001 8

That solution may look a bit strange: We code a "not equal field" to
handle the group containing our field. But carefully analyze the code;
you'll understand that it does what we want.

NOTE: Do not abandon sipping pipelines because we need a confus-
ing stage here. You can learn a lot more about sipping pipelines by
reading Varian's paper: Go to http://pucc.princeton.edu/~pipeline/ and
search for "Cramming for the Journeyman Plumber Exam; Part III:
Dynamic Reconfiguration in CMS Pipeline."

There is one final issue to solve. In a Pipeline not only the input "file"
can be at end-of-file, the output "file" can be there too.

Suppose the user only wants to get 20 lines and inserts a TAKE in the
pipeline:

PIPE COMMAND LISTFILE * * S | SORT W2 | SPACER W2 | take 20 | > SDISK FILES A

This TAKE stage has consequences for our SPACER REXX. When
SPACER REXX has produced 20 records, the TAKE ends and
SPACER's output is at "end-of-file." In the original solution we basi-
cally had:

1) signal on error /* Jump to "error:" when at end-of-file */
2) 'PEEKTO RECORD' /* Get the first record */

 Do num_input=1
 ...
3) if ... then 'OUTPUT' record /* write out the separator record */
4) 'OUTPUT' record /* write out the record */
 'READTO' /* consume the previously-PEEKTO-ed record */
5) 'PEEKTO RECORD' /* and then expose the next record */
 End
 Error: Exit rc*(rc\=12)

At line 1, we tell Rexx to jump to "error:" whenever a non-zero return
code is presented. Lines 2, 3, 4 and 5 can present a non-zero return
code. Return code 12 on READTO, PEEKTO or OUTPUT means
end-of-file. So our Rexx exec will not only end when there is no more
input (line 2 or 5), but also when no more output is wanted (line 3 or
4).

VM Update

©SDS, www.sdsusa.com Spring 2001 9

The improved code basically looks like this:

1) signal on error /* Jump to "error:" when at end-of-file */
2) 'PEEKTO RECORD' /* Get the first record */

 Do num_input=1
 ...
3) if ... then 'OUTPUT' record /* write out the separator record */
4) 'CALLPIPE ...' /* write out a group of records */
5) 'PEEKTO RECORD' /* and then expose the next record */
 End
 Error: Exit rc*(rc\=12)

We no longer use OUTPUT to pass the original records through. The
following CALLPIPE is used instead:

 'CALLPIPE',
 '*:', /* Get input records */
 '|ToTARGET PICK' PicField '\== X'c2x(field), /* Handle a group */
 '|*:' /* pass to Output */

Three conditions can cause this CALLPIPE to end:

1. There are no more input records.

2. PICK found a record not containing the field, consequently
ToTarget stops passing records through.

3. No more output is wanted.

In each case, CALLPIPE's return code is zero. How can the DO loop
be ended then?

• There is no problem detecting end-of-file on input. The PEEKTO
at line 5 will present a return code of 12.

• Only the OUTPUT at line 3 can detect end-of-file on output. But
this statement is only executed when a new group starts. In our
example, when the TAKE 20 stops taking records in the middle
of a group, the DO loop indeed becomes a real DO FOREVER.

VM Update

©SDS, www.sdsusa.com Spring 2001 10

The problem can be solved by two means.

• The oldest solution is to explicitly test if the output stream is at
end-of-file by using the STREAMSTATE command.
STREAMSTATE gives a non-zero return code at end-of-file.

Signal on error
'PEEKTO RECORD' /* Get the first record */
Do num_input=1
 ...
 if ... then 'OUTPUT' record /* write out the separator record */
 'CALLPIPE ...' /* write out a group of records */
 'STREAMSTATE OUTPUT' /* is more output wanted ? */
 'PEEKTO RECORD' /* and then expose the next record */
 End
Error: Exit rc*(rc\=12)

• A more modern solution is to use the EOFREPORT command.
With EOFREPORT ALL the PEEKTO command will end with
return code 8 when all output streams are at end-of-file. The heart
of our solution now looks like:

Signal on error
'EOFREPORT ALL' /* Stop also when no more output is wanted */
'PEEKTO RECORD' /* Get the first record */
Do num_input=1
 ...

if ... then 'OUTPUT' record /* write out the separator record */
'CALLPIPE ...' /* write out a group of records */
'PEEKTO RECORD' /* and then expose the next record */

 End
Error: Exit rc*(rc\=12 & rc\=8)

The complete new code, SPACER2 REXX, is listed below and is
available to download from the VM Update website as
SPACER2.VMARC.

VM Update

©SDS, www.sdsusa.com Spring 2001 11

Comparing performance of SPACER and SPACER2

As mentioned earlier, the main reason to use CALLPIPE, is to im-
prove performance. So I measured both SPACER procedures. The
most elegant way to measure Pipelines is to use the RITA module,
which can be found on MAINT 193, and is explained by Varian: go to
http://pucc.princeton.edu/~pipeline/ and search for "Streamlining your
Pipelines."

To use RITA, start the pipeline by entering "RITA . . ." instead of
"PIPE . . ."

RITA COMMAND LISTFILE * * C | SORT 10.8 | SPACER 10.8 | > CDISK FILES A
RITA COMMAND LISTFILE * * C | SORT 10.8 | SPACER2 10.8 | > CDISK2 FILES A

Great was my surprise, or rather, my disappointment. The new pipe
consumed 20% more CPU than the original one. What could be the
explanation of this unexpected result?

To find the cause, I ran the same pipe, but against the S-disk. Now
SPACER2 was clearly the winner—almost twice as fast. This table
illustrates the results.

table 1: performance results

Pipe with Pipe with Separators
 SPACER REXX SPACER2 REXX Files inserted

C-disk 16.962 ms CPU used 20.484 ms CPU used 178 29

S-disk 59.387 ms CPU used 31.583 ms CPU used 700 26

To explain the difference, let's take two extreme examples, both with
100 lines of data to handle.

At on extreme, suppose all the files on the minidisk are of the same
filetype:

• With SPACER REXX, the Rexx code has to inspect every line,
one by one. The DO loop is executed 100 times.

VM Update

©SDS, www.sdsusa.com Spring 2001 12

• With SPACER2 REXX, the first line is handled by Rexx, then
the CALLPIPE reads all the lines at once. Few Rexx lines must
be interpreted. The DO loop is executed one time.

Now let's take the other extreme: all the files on the minidisk have a
different filetype.

• With SPACER REXX, the Rexx code has to inspect every line,
one by one. The DO loop is executed 100 times.

• With SPACER2 REXX, the CALLPIPE will only let one line
through. The DO loop is executed 100 times.

The test results show that the CALLPIPE used by SPACER2 costs
more than the OUTPUT and READTO used by SPACER. And that's
not a surprise. The CALLPIPE arguments must first be analyzed and
then stages must be initialized, a rather complex process.

But when the new construction can handle many records, the initial
overhead is payed back.

Conclusion

I hope I have illustrated how CALLPIPE can be used and that it can
perform better. On the other hand, CALLPIPE isn't faster in all cases.

Do not forget that the SPACER procedure does not have to do com-
plex things with the records it passes through. It only looks at them; it
doesn't change them at all. When writing a procedure that touches the
records flowing through, you can gain performance by replacing Rexx
code by stages included in the CALLPIPE.

VM Update

©SDS, www.sdsusa.com Spring 2001 13

SPACER2 REXX

/*****************************SPACER.REXX******************************/
/* Add a "spacer" record when a specified field changes value */
/* */
/* SPACER field-spec <fill-character> */
/* */
/* For example -- */
/* 'PIPE COMMAND LISTFILE * * A (DATE NOH' , */
/* '! SORT 10.8 1.19' , */
/* '! SPACER 10.3' , */
/* '! CONSOLE' */
/* */
/* will sort LISTFILE output on FileType (10.8), and then add */
/* a blank record between lines where there is a change in the */
/* first 3 characters of FileType. */
/* The added record will be as long as the right-most column */
/* being compared (13, in the preceding example). */
/* If the stage had read "SPACER 10.3 -" or "SPACER 10.3 60" */
/* then each inserted record has dashes (X'60') in the field. */
/* "SPACER W2" (in this case) creates same results as "SPACER 10.8". */
/* */
/* 1996/11/15 CMSi/CHM Written by Chuck Meyer */
/* 1996/11/21 CMSi/CHM Allow "Wnnn" as operand (word number) */
/* 18 Mar 2001: Kris Buelens: use CALLPIPE instead of OUTPUT & READTO */
/* */
/**/
copyright = 'Copyright: Chuck Meyer Systems, Inc.; 1996'
version = '1996.11.21'

Signal ON ERROR

Parse Upper Source . . fn1 ft1 fm1 fn2 . 1 _source_
Parse Upper Arg c01 fil . /* possibly 2 words of input */
Parse Var c01 c11 '-' c12 /* maybe it's FROM-TO */
Parse Var c01 c21 '.' c22 /* maybe it's FROM.LENGTH */
Parse Var c01 'W' c31 /* maybe it's WORD number */

?wdnum = DATATYPE(c31,'W')

Select /* determine the column-range to be compared */
 When DATATYPE(c11,'W') & DATATYPE(c12,'W') Then ss = c11 (c12 + 1)
 When DATATYPE(c21,'W') & DATATYPE(c22,'W') Then ss = c21 (c22 +c21)
 When DATATYPE(c01,'W') Then ss = c01 (c01 + 9)
 When ?wdnum Then ss = c31 '0'
 Otherwise ss = 1 (10 + 1)
 End
Parse Var ss c1 c2 .

Select /* determine what the fill-record should look like */
 When (LENGTH(fil)=2) & DATATYPE(fil,'X') Then fx = X2C(fil)
 Otherwise fx = LEFT(fil,1,' ')
 End
num_added = 0
num_input = 0

'EOFREPORT ALL' /* Make PEEKTO stop when no more input or output */

VM Update

©SDS, www.sdsusa.com Spring 2001 14

'PEEKTO RECORD'

If ?wdnum
 Then Picfield = 'W'c1
 Else Picfield = c1'-'c2-1
Do num_input=1
 If ?wdnum
 Then field = WORD(record,c1)
 Else field = SUBSTR(record,c1,c2-c1)
 If (num_input=1) Then Do
 field_sav = field
 x = COPIES(fx,LENGTH(field))
 If ?wdnum
 Then spacer_rec = COPIES(' ',WORDINDEX(record,c1)-1) !! x
 Else spacer_rec = COPIES(' ',c1-1) !! x
 Drop x
 End
 If field_sav <> field Then Do
 field_sav = field
 num_added = num_added + 1
 'OUTPUT' spacer_rec /* write out the SPACER record */
 End
'CALLPIPE (NAME SPCR)',
 '*:',
 '!TOTARGET PICK' PicField '\== X'c2x(field),
 '!*:'
 'PEEKTO RECORD' /* and then expose the next record */
 End

ERROR:
 /* RC 12= eof on input; rc=8= eof on output */
 rcx = rc*(rc<>12 & rc<>8)
 /* If called from a REXX prog, pass-back some numbers */
 Signal OFF ERROR
 Address COMMAND 'PIPE (SEP ?)' ,
 'COMMAND PIPE (NOMSG 15)' ,
 'LITERAL' num_input num_added '! VAR' fn1 '1 ! HOLE'
 If (rc<>0) Then Say 'PIPE stage' fn1 'read' num_input 'records,' ,
 'inserted' num_added 'records ('num_input+num_added rc')'
 Exit rcx

/*===*/

VM Update

©SDS, www.sdsusa.com Spring 2001 15

SEPAR XEDIT

/* This XEDIT macro will insert a separator line whenever
 the content of part of the existing records changes.
 +---+
 ! format: ! SEPAR col1 col2 <separator_line> !
 +---+
 Example:
 -File before: VMSRES MAINT 191
 VMSRES MAINT 190
 VMSRES MAINT 490
 VMPK01 KRIS 191
 VMPK01 GUY 191
 VMPK02 MAINT 194
 VMPK02 KRIS 192
 -Enter "SEPAR 1 6 ===================" in XEDIT's commandline
 -File after: VMSRES MAINT 191
 VMSRES MAINT 190
 VMSRES MAINT 490
 ===================
 VMPK01 KRIS 191
 VMPK01 GUY 191
 ===================
 VMPK02 MAINT 194
 VMPK02 KRIS 192

 Written by: Kris Buelens IBM Belgium; KRIS at VMKBBR01 1 Sep 1998*/

parse upper source . . myname mytype . syn .
c ='COMMAND'; cs=c 'SET'; ce=c 'EXTRACT'
parse upper arg c1 c2 separ
if c2='' then call Errexit 5,'Column range missing/incomplete'

if \datatype(c1,'W') then call ErrExit 5,'Invalid column:' c1
if \datatype(c2,'W') then call ErrExit 5,'Invalid column:' c2

c 'PRESERVE'
ce '/LINE/TOF/ALT'
cs 'Z' c1 c2
if rc<>0 then call ErrExit 5 1,'Invalid column:' c2

cs 'WRAP OFF';cs 'STAY OFF';cs 'LINEND OFF';cs 'IMAGE OFF';cs 'MSGM OFF'
cs 'MASK IMM' separ
if tof.1='ON' then c '+1'
allsep=xrange('00'x,'3F'x)xrange('41'x,'FF'x)
new=0
do new=0 by 1
 ce '/CURLINE'
 targ=substr(curline.3,c1,c2-c1+1)
 sep=verify(allsep,targ)
 if sep=0 then call ErrExit 5 1,'No separator char can be found for',
 'string' targ
 sep=substr(allsep,sep,1)
 c 'LOCATE \'sep!!targ!!sep
 if rc<>0 then Call Exit 0 1
 c '-1' c 'ADD'
 c '+2'
end

VM Update

©SDS, www.sdsusa.com Spring 2001 16

exit:
ERREXIT: /* general errorexit routine */
 parse upper source . . myname mytype . syn .
 parse arg erc rest
 if rest=1 then c ':'line.1 c 'RESTORE'
 if symbol('new')='VAR' then do
 c 'MSG' new 'separator line'left('s',new<>1) 'inserted'
 if new>0 then cs 'ALT' alt.1+1
 end
 do i=2 to arg() /* give errormessages (if any) */
 c 'EMSG' myname':' arg(i)
 end
 exit erc

Kris Buelens, Advisory Systems Engineer
IBM Belgium
dris_buelens@be.ibm.com
© IBM 2001

VM Update

©SDS, www.sdsusa.com Spring 2001 17

Contributing Articles and Code to VM Update
We welcome your inquiries and
manuscripts. Please send them to
vu-ed@sdsusa.com

VM Update magazine has
changed hands. Its new publisher,
Software Diversified Services,
strives to continue VM Update's
service to the VM community. To
that end, SDS invites, welcomes,
and encourages your contribu-
tions to VM Update.

The scope of the magazine has
not changed. VM Update wel-
comes your description and code
of use to technicians, program-
mers, and managers running VM
systems. Your articles might
share modifications, fixes, utili-
ties, short-cuts, hints, guidelines,
evaluations, and advice.

Authoring needn't be difficult.
The typical article copies code
the author wrote for some other
purpose and adds a few pages of
explanatory text that VM Up-
date's editor will happily polish
for you.

In return for the license to publish
your article at its website, VM
Update will pay you $125 per
article. We understand that is less
than Xephon used to pay. But
remember we now distribute VM
Update free of charge.

Along with that payment you also
get worldwide attention via the
Web, you get a contribution to
your reputation and your em-
ployer's reputation, and you get to
help your colleagues in the busi-
ness of running VM. Last year,
VM Update printed on paper
went to about 150 VM profes-
sionals each month. By publish-
ing free of charge on the Web, we
expect to bring you more readers
than that.

So please join SDS in the care
and feeding of VM Update, a
valuable resource in the world-
wide community of VM profes-
sionals.

Please send your ideas and manu-
scripts to vu-ed@sdsusa.com.
Further details are available at
www.sdsusa.com/vmupdate/
vutoauthors.htm. Thank you.

